
STAT 309: MATHEMATICAL COMPUTATIONS I

FALL 2013

LECTURE 11

1. computing the qr factorization

• there are two common ways to compute the qr decomposition:
– using Householder matrices, developed by Alston S. Householder
– using Givens rotations, also known as Jacobi rotations, used by Wallace Givens and

originally invented by Jacobi for use with in solving the symmetric eigenvalue problem
in 1846

– the Gram-Schmidt or modfied Gram-Schmidt orthogonalization discussed in previous
lecture works in principle but has numerical stability issues and are not usually used

• roughly speaking, Gram-Schmidt applies a sequence of triangular matrices to orthogonalize
A (i.e., transform A into an orthogonal matrix Q),

AR−1
1 R−1

2 · · ·R
−1
n−1 = Q

whereas Householder and Givens QR apply a sequence of orthogonal matrices to triangu-
larize A (i.e., transform A into an upper triangular matrix R),

QT
n−1 · · ·QT

2Q
T
1A = R

• orthogonal transformations are highly desirable in algorithms as they preserve lengths and
therefore do not blow up the errors present at every stage of the computation

2. orthogonalization using givens rotations

• we illustrate the process in the case where A is a 2× 2 matrix
• in Gaussian elimination, we compute L−1A = U where L−1 is unit lower triangular and U

is upper triangular, specifically,[
1 0
m21 1

] [
a11 a12
a21 a22

]
=

[
a
(2)
11 a

(2)
12

0 a
(2)
22

]
, m21 = −a21

a11

• by contrast, the qr decomposition takes the form[
γ σ
−σ γ

] [
a11 a12
a21 a22

]
=

[
r11 r12
0 r22

]
where γ2 + σ2 = 1
• from the relationship −σa11 + γa21 = 0 we obtain

γa21 = σa11

γ2a221 = σ2a211 = (1− γ2)a211
which yields

γ = ± a11√
a221 + a211

• it is conventional to choose the + sign
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• then, we obtain

σ2 = 1− γ2 = 1− a211
a221 + a211

=
a221

a221 + a211
,

or

σ = ± a21√
a221 + a211

• again, we choose the + sign
• as a result, we have

r11 = a11
a11√

a221 + a211
+ a21

a21√
a221 + a211

=
√
a221 + a211

• the matrix

QT =

[
γ σ
−σ γ

]
is called a Givens rotation
• it is called a rotation because it is orthogonal, and therefore length-preserving, and also

because there is an angle θ such that sin θ = σ and cos θ = γ, and its effect is to rotate a
vector through the angle θ
• in particular, [

γ σ
−σ γ

] [
α
β

]
=

[
ρ
0

]
where ρ =

√
α2 + β2, α = ρ cos θ and β = ρ sin θ

• it is easy to verify that the product of two rotations is itself a rotation
• now, in the case where A is an n× n matrix, suppose that we are given the vector[

× · · · × α × · · · × β × · · · ×
]T ∈ Rn,

then 

1
. . .

1
γ σ

1
. . .

1
−σ γ

1
. . .

1





×
...
×
α
×
...
×
β
×
...
×



=



×
...
×
ρ
×
...
×
0
×
...
×


• so, in order to transform A into an upper triangular matrix R, we can find a product of

rotations Q such that QTA = R
• it is easy to see that O(n2) rotations are required

3. orthogonalization using householder reflections

• it is natural to ask whether we can introduce more zeros with each orthogonal rotation and
to that end, we examine Householder reflections
• consider a matrix of the form P = I − τuuT, where u 6= 0 and τ is a nonzero constant
• a P that has this form is called a symmetric rank-1 change of I
• can we choose τ so that P is also orthogonal?
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• from the desired relation PTP = I we obtain

PTP = (I − τuuT)T(I − τuuT)

= I − 2τuuT + τ2uuTuuT

= I − 2τuuT + τ2(uTu)uuT

= I − (τ2uTu− 2τ)uuT

= I + τ(τuTu− 2)uuT

• it follows that if τ = 2/uTu, then PTP = I for any nonzero u
• without loss of generality, we can stipulate that uTu = 1, and therefore P takes the form
P = I − 2vvT, where vTv = 1
• why is the matrix P called a reflection?
• this is because for any nonzero vector x, Px is the reflection of x across the hyperplane

that is normal to v
• for example, consider the 2× 2 case and set v =

[
1 0

]T
and x =

[
1 2

]T
, then

P = I − 2vvT = I − 2

[
1
0

] [
1 0

]
=

[
1 0
0 1

]
− 2

[
1 0
0 0

]
=

[
−1 0
0 1

]
and therefore

Px =

[
−1 0
0 1

] [
1
2

]
=

[
−1
2

]
• now, let x be any vector, we wish to construct P so that Px = α

[
1 0 · · · 0

]T
= αe1

for some α
• from the relations

‖Px‖2 = ‖x‖2, ‖αe1‖2 = |α|‖e1‖2 = |α|
we obtain α = ±‖x‖2
• to determine P , we observe that

x = P−1(αe1) = αPe1 = α(I − 2vvT)e1 = α(e1 − 2vvTe1) = α(e1 − 2vv1)

which yields the system of equations

x =


x1
x2
...
xn

 = α


1− 2v21
−2v1v2

...
−2v1vn


• from the first equation x1 = α(1− 2v21) we obtain

v1 = ±
√

1

2

(
1− x1

α

)
• for i = 2, . . . , n, we have

vi = − xi
2αv1

• it is best to choose α to have the opposite sign of x1 to avoid cancellation in v1
• it is conventional to choose the + sign for α if x1 = 0
• note that the matrix P is never formed explicitly: for any vector b, the product Pb can be

computed as follows

Pb = (I − 2vvT)b = b− 2(vTb)v

• this process requires only O(2n) operations
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• it is easy to see that we can represent P simply by storing only v
• we showed how a Householder reflection of the form P = I − 2uuT could be constructed so

that given a vector x, Px = αe1
• now, suppose that that x = a1 is the first column of a matrix A, then we construct a

Householder reflection H1 = I − 2u1u
T
1 such that Hx = αe1, and we have

A(2) = H1A =


r11
0
... a

(2)
2 · · · a

(2)
n

0


where we denote the constant α by r11, as it is the (1, 1) element of the updated matrix

A(2)

• now, we can construct H2 such that

H2a
(2) =


a
(2)
12
r22
0
...
0

 , u12 = 0, H2 =


1 0
0
... hij
0


• note that the first column of A(2) is unchanged by H2

• continuing this process, we obtain

Hn−1 · · ·H1A = A(n) = R

where R is an upper triangular matrix
• we have thus factored A = QR, where Q = H1H2 · · ·Hn−1 is an orthogonal matrix
• note that

ATA = RTQTQR = RTR,

and thus R is the Cholesky factor of ATA (we will discus Cholesky factorization next week)

4. givens rotations versus householder reflections

• we showed how to construct Givens rotations in order to rotate two elements of a column
vector so that one element would be zero, and that approximately n2/2 such rotations could
be used to transform A into an upper triangular matrix R
• because each rotation only modifies two rows of A, it is possible to interchange the order of

rotations that affect different rows, and thus apply sets of rotations in parallel
• this is the main reason why Givens rotations can be preferable to Householder reflections
• other reasons are that they are easy to use when the qr factorization needs to be updated

as a result of adding a row to A or deleting a column of A
• Givens rotations are also more efficient when A is sparse

5. computing the complete orthogonal factorization

• we first seek a decomposition of the form A = QRΠ where the permutation matrix Π is
chosen so that the diagonal elements of R are maximized at each stage
• specifically, suppose

H1A =


r11 × · · · ×
0 × · · · ×
...

...
...

0 × · · · ×

 , r11 = ‖a1‖2
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• so, we choose Π1 so that ‖a1‖2 ≥ ‖aj‖2 for j ≥ 2
• for Π2, look at the lengths of the columns of the submatrix; we don’t need to recompute the

lengths each time, because we can update by subtracting the square of the first component
from the square of the total length
• eventually, we get

Q

[
R S
0 0

]
Π1 · · ·Πr = A

where R is upper triangular
• suppose

A = Q

[
R S
0 0

]
Π

where R is upper triangular, then

AT = ΠT

[
RT 0
ST 0

]
QT

where RT is lower triangular
• we apply Householder reflections so that

Hi · · ·H2H1

[
RT 0
ST 0

]
=

[
U 0
0 0

]
• then

AT = ZT

[
U 0
0 0

]
QT

where Z = Hi · · ·H1Π
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