

DESIGN OF STRUCTURES 2.

09. Approximating design of structures

Dr. János Szép Associate professor

2019.10.31.

Content

- Modelling of structures
- Approximating design of structures
 - * Loads
 - Material properties
 - * Columns, pillars
 - * Beams
 - * Slabs
 - * Other structures
 - * Masonry structures

Modelling of structures

- The precise calculation of the loadbearing structures would be a very hard task
- * Therefore simplified model is analysed instead of the real structure
- The basic requirements of this model are the followings:
 - * It should be simple to deal with it
 - * and sufficiently precise

Modelling steps

1. Mechanical model

- * Construction of the structural model:
 - Simplification are used in the mechanical model, for example: a beam can be modeled by its median, the supports can be modelled in points or lines
 - * Real loads are replaced by fictive loads
 - * The materials are idealized for that purpose material models are used (for example: linear elastic or non-linear elastic models)

Modelling steps

- 2. Mathematical model
 - Determination of internal forces and deformations
 - * Pl. M=p×L²/8 (relevant moment, w=5/384/p*L⁴/E/I (simply-supported beam)
- 3. Determination and checking the requirements:
 - * $M_{Ed} \le M_{Rd}; w_{Ed} \le w_{Rd}$

Approximating design of structures

- * Including disciplines:
 - Conceptual plan
 - * Draft plan
 - Building permit drawings
 - Construction documentation
- * Approximating design of structural dimensions
- Limitation of these calculations

Structural standards

- * MSZ Hungarian Standard: until 31. 12. 2010.
 - * Lower safety level
- * Eurocode MSZ-EN: from 01. 01. 2011.
 - * Higher safety level

Approximating design - Loads

Approximating design - materials

Material	Property	MSZ	EC
Reinforced concrete C20/25	Compression strength	14,5N/mm²	13,3N/mm ²
	Modulus of elasticity	15000N/mm ²	8500N/mm ²
Steel (S235)	Compression strength	200N/mm ²	235N/mm ²
	Modulus of elasticity	206000N/mm ²	200000N/mm ²
Wood (C30)	Compression strength	18-21N/mm ²	14,15N/mm ²
	Bending strength	20-25N/mm ²	18,5N/mm ²
	Modulus of elasticity	10000N/mm ²	12000N/mm ²

Columns, pillars

* RC columns:

* Steel columns:

$$A_s \approx \frac{N_{Ed}}{(0,6 \approx 0,8) \cdot f_{y,d}}$$

 $A_{c} \approx rac{N_{Ed}}{f_{c,d}}$

* Wood columns:

$$A_{\rm f} \approx \frac{\rm N_{Ed}}{\rm (0,6~\approx~0,8)~\cdot~f_{c,0,d}}$$

Beams

- * Allowed deflection:
- * In the case of simply-supported beam: $w = \frac{5}{384} \cdot \frac{q \cdot l^4}{E \cdot l}$
- * Maximal bending moment:

$$\omega_{eng} = \frac{1}{250}$$

* Maximal stress from bending moment:

$$\sigma_{max} = f_{y,d} = \frac{M_{max}}{I} \cdot y_{max}$$

$$w \approx \frac{2 \cdot l^2 \cdot f_{y,d}}{10 \cdot E \cdot h}$$

$$\frac{l}{250} \approx \frac{2 \cdot l^2}{10 \cdot h} \cdot \frac{f_{y,d}}{E} \qquad \qquad h \approx 50 \cdot \frac{f_{y,d}}{E} \cdot l$$

Reinforced concrete beam

* Substitution:

$$h \approx 50 \cdot \frac{13,3}{8500} \cdot l = \frac{l}{12,78}$$

* In general:

$$h \approx \frac{l}{10}$$
 $h \approx \frac{l}{15}$

Steel beam

* Substitution:

$$h \approx 50 \cdot \frac{235}{210\ 000} \cdot l = \frac{l}{17,87}$$

* In general:

Wood beam

* Substitution:

$$h \approx 50 \cdot \frac{8,61}{7\,000} \cdot l \approx \frac{l}{16,3}$$

$$h \approx \frac{l}{15}$$

Slabs

- * One-way slab:
 - * $v = \ell/20 \div \ell/25$
- * One-way slab (multispan)
 - * $v = \ell/25 \div \ell/30$
- * Two-way slab:
 - * $v = \ell/25 \div \ell/30$
- * Mushroom slab:
 - * v = $\ell/25$

Structure type		L – Span (m)	h/L
Prestressed beam	⊥ ↓ ↓	3-50	1/20-1/30
Hanger structures	H H H	6-60	1/35-1/50
Trusses	L A A A	8-75	1/10-1/15

	Structure type	L – Span (m)	h/L
Slab prestressed	III	5-50	1/15-1/40
Walls (loaded in plane)		5-30	1/5 - 1/10
Shell		40-200	1/400 - 1/500

Structure type		L – Span (m)	h/L	
Ribbed slab, waffle slab	L	10-70	1/25-1/35	
Hierachal space truss		10-90	1/15-1/20	
Other space trusses		20-120	1/15-1/30	

Structure type		L – Span (m)	h/L
Frame		5-40	1/30-1/40
Frame truss	$t/a \approx 1/15 - 1/30$	8-55	1/10-1/20
Arch	h H/L \approx 1/4-1/6	25-70	1/50-1/70

Structure type		L – Span (m)	h/L
Truss arch	$h H/L \approx 1/4-1/6$	40-120	1/30-1/50
Cable truss structure	H/L ~ 1/5-1/10	20-150	1/1000- 1/10000
Cable structures		20-150	1/1000- 1/10000

Masonry structures

- There are bricks with high compression strength (f_b≈15MPa)
- For example: Porotherm N+F, YTONG P4
- There are brick with lower compression strength: (f_b≈10MPa)
- For example: Porotherm HS-system, YTONG P2
- There is a minimal dimensions for masonry columns
- Load-bearing masonry walls:
 v=25/30/38cm

POROTHERM'38 N+F külső teherhordő	38×25×23.8 feles: 38×12,5×23,8	8+0.49W/m ³ K	18 9	7	16 32
	Habarcsigény: Testsűrűség: Űregtérlogat: Csomagolás:	20 t/m/ 800 kg/m ¹ 55% alatt 60 db/rakat			
POROTHERM'30 N+F belső teherhordő	, 30×25×23.8 feles: 30×12,5×23,8	k=0,69W/m/k	15 7,5	7	16 32
	Habarcsigény: Testsürűség: Üregtérlegat: Csomagolás:	16 Um ¹ 800 kg/m ¹ 55% alam 80 db/rakat			
POROTHERM*25 N+F teherhordó falazóblokk	25×37.5×23.8		18	7	11
	Habarcsigény Testsűrűség: Űregtérfogat: Csomagolás:	13 Um² 800 kg/m² 55% alatt 60 db/rakat			
2.5 1.6 1.6					

Thank you for your attention!