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1 General information 

Programita is a comprehensive software package for conducting spatial point pattern 
analysis in ecology. I tailored Programita to accommodate the needs of “real world” 
applications in ecology and developed the different modules in response to my own research 
questions and to requests of colleagues and students who have approached me with their 
specific research problems in mind. More than ten years after its launch in the 2004 Oikos 
Mini review (Wiegand and Moloney 2004), Programita has considerably grown and now 
contains a variety of statistical methods for most of the point pattern data types which are 
relevant in ecological applications, including 

 univariate patterns (i.e., one type of points) 
 bivariate patterns (i.e., two types of points such as two species of trees) 
 multivariate patterns (i.e., several types of points such as a forest tree community) 
 multivariate patterns with a matrix of pairwise (e.g., functional or phylogenetic) 

dissimilarities between types of points 
 qualitatively marked patterns (i.e., one type of point with a qualitative mark such 

as surviving vs. dead)  
 quantitatively marked patterns (uni- or bivariate pattern augmented with 

quantitative marks such as size) 
 objects with finite size and real shape (cases for which the point approximation 

does not hold) 

Programita offers for each of these data types the most appropriate summary functions:  
 univariate patterns [pair correlation function g(r), L-function L(r), the K2 function 

K2(r), the distance distribution functions Dk(r) of the kth nearest neighbor, the 
spherical contact distribution Hs(r), the mean distance to the kth neighbor nn(k), and 
inhomogeneous g- and L-functions] 

 bivariate patterns [pair correlation function g12(r), L-function L12(r), the K2 
function K212(r), the distance distribution functions Dk

12(r) to the kth nearest 
neighbor, the mean distance to the kth neighbor nn12(k), and inhomogeneous g- and 

β(r), individual species-

x 
rrelation function kd(r), phylogenetic ISAR function 

nctions pij(r) and various test 

terns [various normalized and non-normalized mark 

 

s, 

se and global simulation envelopes and to conduct several 
Goodness-of-Fit (GoF) tests. 

L-functions] 
 multivariate patterns [e.g., spatially explicit Simpson index 

area relationship ISARf(r), distance decay of similarity F(r)]  
 multivariate patterns with dissimilarity matrix [e.g., phylogenetic Simpson inde

βphy(r), phylogenetic mark co
PISARf(r), rISAR function] 

 qualitatively marked patterns [mark connection fu
functions based on pair correlation or K-functions]  

 quantitatively marked pat
correlation functions kt(r)] 

 objects with finite size and real shape [g(r), L(r), g12(r), L12(r)] 

and the most important null models for ecological applications, which often allow for 
consideration of a spatially varying intensity function λ(x), and a variety of point process
models describing clustering and regularity that are relevant for ecological applications.  

Programita allows you to conduct Monte Carlos simulations of null model point processe
fit cluster point processes to the data, and to generate stochastic realizations of the point 
processes to determine pointwi
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Terms of use 
  

1.1.1 Terms of use 

I am not in the commercial software business, but recognize the need for a tool like 
Programita for scientists to assist in research on spatial point pattern analysis. I produced the 
Programita software to foster the analysis of point patterns in ecology and to provide 
ecologists with a tool that contains null models and procedures not supported by most 
statistical packages, but which are essential for a thorough analysis of point-patterns. I have 
done my best to provide in the documentation complete, step-by-step instructions for the 
variety of analysis you can conduct with Programita, but the user is responsible for acquiring 
the necessary background knowledge to appropriately use the software. 

The Programita software may be downloaded and used free of charge for purposes of 
scientific research and teaching. However, please do not distribute the link, Programita or 
the manual.  Any commercial application of Programita requires my previous permission by 
the author. Programita is provided “as is” without warranty of any kind. In no event will the 
authors be liable for any damages, including lost profits, lost savings, or other incidental or 
consequential damages arising from the use of or the inability to use this software. 

Publications using Programita must acknowledge use of Programita and include the 
following citations: 
 
Wiegand T., and K. A. Moloney 2004. Rings, circles and null-models for point pattern 

analysis in ecology. Oikos 104: 209-229. 
Wiegand T., and K. A. Moloney 2014. A handbook of spatial point pattern analysis in 

ecology. Chapman and Hall/CRC press, Boca Raton, FL. 

if analysis of objects with finite size and real shape is used add: 
Wiegand, T., Kissling, W.D., Cipriotti, P.A., and Aguiar, M.R. 2006. Extending point pattern 

analysis to objects of finite size and irregular shape. Journal of Ecology 94: 825-837 

if cluster point processes are used add: 
Wiegand, T, A. Huth., and I. Martínez. 2009. Recruitment in tropical tree species: revealing 

complex spatial patterns. The American Naturalist 174: E106 - E140 

if random labeling analysis is used add: 
Jacquemyn, H., P. Endels, O. Honnay, and T. Wiegand. 2010. Evaluating management 

interventions in small populations of a perennial herb Primula vulgaris using spatio-
temporal analyses of point patterns.  Journal of Applied Ecology 47: 431–440 

for analysis of multivariate patterns add: 
Shen, G., T. Wiegand, X. Mi, and F. He in 2014. Quantifying spatial phylogenetic structures 

of fully mapped plant communities. Methods in Ecology and Evolution 4: 1132-1141 
Wiegand, T., M. Uriarte, N.J.B. Kraft, G. Shen, X. Wang, and F. He. 2017. Spatially explicit 

metrics of species diversity, functional diversity, and phylogenetic diversity: insights 
into plant community assembly processes. Annual Review of Ecology, Evolution, and 
Systematics 48:329–351 

If global simulation envelopes are used add: 
Wiegand, T., P. Grabarnik, and D. Stoyan. 2016. Envelope tests for spatial point patterns 

with and without simulation. Ecosphere 7(6):e01365 
 
 



  
Handbook of Spatial Point Pattern Analysis in Ecology

 

1.1.2 Handbook of Spatial Point Pattern Analysis in Ecology 

Understand How to Analyze and Interpret Information in Ecological Point Patterns 
 
The methods underlying Programita and many examples executed with Programita can be 
found in our recent book published by Chapman and Hall. This manual will therefore not 
contain detailed explanations of the methods, but I will refer instead to the respective 
sections in the book. I warmly recommend you to buy the book to fully benefit from the 
possibilities offered by Programita.  
 

 
 

Although a broad array of statistical methods for 
analyzing spatial point patterns have been 
available for several decades, they haven’t been 
extensively applied in an ecological context. 
Addressing this gap, Handbook of Spatial Point 
Pattern Analysis in Ecology shows how the 
techniques of point pattern analysis are useful for 
tackling ecological problems. Within an ecological 
framework, the book guides readers through a 
variety of methods for different data types and aids 
in the interpretation of the results obtained by 
point pattern analysis.  
 
Ideal for empirical ecologists who want to avoid 
advanced theoretical literature, the book covers 
statistical techniques for analyzing and interpreting 
the information contained in ecological patterns. It 
presents methods used to extract information 
hidden in spatial point pattern data that may point 
to the underlying processes. The authors focus on 
point processes and null models that have proven 
their immediate utility for broad ecological 
applications, such as cluster processes. 

 
Along with the techniques, the handbook provides a comprehensive selection of real-world 
examples. Most of the examples are analyzed using Programita, a continuously updated 
software package based on the authors’ many years of teaching and collaborative research in 
ecological point pattern analysis. Programita is tailored to meet the needs of real-world 
applications in ecology. The software and a manual are available online.  
 
Features  
 Focuses on the application of spatial point pattern analysis in an ecological context 
 Helps ecologists unfamiliar with advanced statistics select the proper analysis method 
 Emphasizes the formulation of appropriate null models and point processes for describing 

the features of point patterns and testing ecological hypotheses of spatial dependence 
 Provides the Programita software package on the first author’s website, enabling readers 

to perform analyses with their own point pattern data 
 Includes a collection of real-world examples  
 Offers suggestions on how to use the book for teaching graduate students 
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Before starting Programita 
 

1.2 Before starting Programita 

1.2.1 Hardware requirements 

Programita is a free unsupported software, developed in Borland Delphi under a Windows 7 
environment. Programita is also executable under older Windows versions such as Windows 
XP and can be used under a MacOs with help of programs like WinneBottler 
(http://winebottler.kronenberg.org) and Xquartz (http://xquartz.macosforge.org/landing/).  
 

1.2.2 Installation  

There is no setup procedure; installation of Programita requires only the extraction of all files 
from the zip file ProgramitaOctubre2018.exe. Place the files into a directory of your choice; 
extracting the zip file will place all files into the sub-directory Programita. Note that you 
must place Programita into the same directory as the data input files; for simplicity 
Programita does not use a path variable. However, since Programita occupies little space you 
can place into each folder with data files for specific analysis a copy of Programita. 
 
The zip-file contains the following files and file types: 
ProgramitaNoviembre2018.exe  the executable of Programita, version November2018 
*.dat files  data files for uni-, bivariate and qualitatively marked 

analyses and temporary files 
*.mcf files  data files for mark correlation analysis 
*.phy files  data files for multivariate analysis  
*.asc files  data file in ArcView raster format for grid-based 

analyses of objects with finite size and real shape 
  
*.irr files  text file with coordinates to encircle an irregularly 

shaped observation window 
*.txt files  data files with the dissimilarity matrix and species list 

for multivariate analysis 
*.spl  text files with list of species to be analyzed in ISAR 

analysis 
*.res files  files to be used to load the settings of an analysis and to 

redo an analysis. Contain the results of an analysis and 
all its settings. 

*.rep files  data files to show results of previous analyses and for 
combining replicates 

*.int files  plug-in files with the intensity function λ(x), for 
example to be used in the heterogeneous Poisson 
process 

*.env files  temporary files containing the observed summary 
functions and that of the simulations of the null model; 
required for GoF and envelope tests and result graphs in 
Programita 



  
Programita screen

 

1.2.3 Screen size 

Programita occupies a screen of 1024 × 784 pixels and after executing Programita the screen 
shown below should appear. However, sometimes buttons or windows within Programita are 
truncated and the text does not fit. To avoid this problem check the default letter size in the 
settings of your computer. Your computer may scale the letters but not the window sizes and 
as a consequence, the windows appear too small. 
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Load a settings file to redo an analysis 
 

2 Features of Programita common to all analysis modes 
 

2.1 Load a settings file to redo an analysis 
 

 

There is a convenient way to quickly start with Programita and to learn 
the settings. You can read a file (a *.res-file) that contains all setting of 
a previous analysis and redo this analysis. To do this, click button 
“Load settings for Example”, select a results file (in the example 
“test.res”), and the small “ok” button. Programita now reads all 
settings from the file test.res and if you click “Calculate Index” 
Programita repeats the analysis. However, this works only if all data 
files are in the same folder.  

2.2 Overview over menus 

 

Programita allows you to conduct analyses of a variety of data types. Basically, you can 
use: 

1. the Standard analysis mode for uni-, bivariate and qualitatively marked analyses 
2. the analysis mode for Mark correlation functions 
3. the analysis mode for multivariate analysis using a dissimilarity matrix 

(Phylogenetic analysis) 
4. the grid-based standard analysis mode (box “no grid” not checked) 
5. the analysis model for object of finite size and real shape (“no grid” not checked) 

 
You can select the data type in the window What do you want to do? 
 

 

The settings are governed by two different sets of menus. First, one 
menu bar (at the left side of the screen) allows you to select the type 
of analysis and the estimators. For example, in the menu for the 
standard analysis mode shown on the left you can:  
 select “Standard analysis” in What do you want to do? to reach the 

standard analysis mode. With “no grid” disabled you reach the 
grid-based standard analysis mode 

 select the input data file (Input data) 
 provide information on the organization of your data (How are 

your data organized?) and (Select modus of data) 
 analyze observation windows with rectangular or irregular shape 

(Observation window) 
 select the estimators of the summary functions (Which method will 

you use?) 
 define a ring width for estimation of the pair correlation function 

and a maximal distance r of analysis. Programita suggests an 
initial ring width (for pattern 1/pattern 2) based on equation 
4.3.43 in Illian et al. (2008): dw = 0.2/λ0.5 for almost random 
patterns. However, for regular or hyperdispersed patterns the 
ring width can be smaller.  
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Hints.  What happens on the screen? 

 
 
 
 
 
 
 
 
 

 

Second, if you check the checkbox “Calculate simulation 
envelopes” located above “Input data” a menu window that appears 
on the bottom right that allows you to specify the settings of the 
null model of the standard analysis.  

The radio buttons are the different null models available for this 
data type (e.g., “Pattern 1 and 2 random” uses the CSR null 
model for pattern 1 and pattern 2), and the checkboxes specify 
settings of the null model selected (e.g., with “heterogeneous 
Poisson” you can select an intensity file for the heterogeneous 
Poisson process).  
On the top you can select the number of simulations of the null 
model (# simulations) and the rule for the simulation envelope. 
Mostly you may use 199 (999) simulations and the 5th (25th) 
lowest and highest values as pointwise simulation envelopes. 

2.3 Hints 

Almost all important elements on the screen contain a hint. For example, if you move the 
cursor over the element “Load settings for Example”, a small message box shows the hint 
that briefly explains the meaning of the element. 
 

 
 
 
 

2.4 What happens on the screen? 

After loading the settings file test.res as described above, Programita will automatically 
select all settings for the data and analysis mode and all settings for the null model. If you 
click “Calculate Index” Programita repeats the analysis. Two plots will appear additionally 
to the menus: 
One plot shows the original 
point pattern being analyzed 
(left or top plot), and the 
other plot (on the right or 
bottom) shows the patterns 
of the Monte Carlo 
simulations of the null 
model used for constructing 
the simulation envelopes 
and the GoF test. 
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What happens on the screen?   Save the results of the analysis 
 
After the simulations of the null model are 
finished, the figure with the simulated patterns 
of the null model disappears, and instead a 
figure with the result of the analysis appears. 
The top (or left) figure shows generally the 
results of the univariate analysis and the 
bottom (right) figure shows the results of the 
bivariate analysis. (Exceptions are multivariate 
analysis using a dissimilarity matrix under the 
random labeling and trivariate random labeling 
mode). The data file in the example contained 
only one pattern (i.e., an univariate analysis), 
therefore no figure appears for the bivariate 
results  
 
The observed summary functions are indicated 
by red dots, the pointwise simulation envelopes 
by black lines and the expectation of the null 
model by a grey dotted line.  
 
In the standard mode you can then view the 
results of various summary functions, the hint 
explains the symbols.  

 
 
 
 
 

 

 
 

2.5 Save the results of the analysis  

To save the results of an analysis, press the button “Save results” (it 
appears below the graph with the results of the bivariate analysis) and 
insert a name for the result file. The results file will be saved as 
ASCII-file name.res in the same directory where the *.exe file of 
Programita is located. 

 
 
 

 

 
If the setting “Combine replicates” was enabled, Programita saves 
additionally the file name.rep that contains the information to 
recreate the results graph. Additionally, the *.rep files contain all 
information to combine the results of different replicate analysis. 
However, in the standard mode you need to save the results for each 
summary function separately. 

 

 

The *.res results file for the standard analysis (see below) contains the settings of this 
analysis and the results of the univariate and the bivariate point pattern analysis. The results 
file name.res can be used to load the setting and to repeat the analysis. More importantly 
you can copy-paste the second part of the *.res file into a graphics program to produce the 
figures. The *.res files for the other modes of analysis look similar.  
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Pointpattern analysis of file c:\Programita\Book_Fig4_15a.dat 
Method Wiegand-Moloney (ring) with  199 replicates for simulation envelopes, ring width = 3   5 th lowest and highest values of 199 simulations 
Test Model= 12random   
the null model assumed homogeneous pattern(s) 
Analysis modus= points        gridless    WM    NN Hanisch  Hs factor   1.0 
several points per cell allowed 
All cells within the rectangle were considered for calculating the indices 
number points of pattern 1 =  626 
number points of pattern 2 =    0 
the rectangular area contains 500*500 = 250000   cells  (= dim1*dim2) 
 x-grid-size=  500 y-grid-size=  500 cell-size =  1.0000 units. rmax=     50,  max distance for NN functions:    354 
 
Distancerr    g11(r)     E11-         E11+       Expect           g12(r)     E12-        E12+        Expect 
   0.50 +r  19.9600000   0.4071000   1.7326000   1.0831684       0.0000000   0.0000000   0.0000000   0.0000000 
   1.50 +r  17.0493000   0.5437000   1.6350000   1.0602789       0.0000000   0.0000000   0.0000000   0.0000000 
   2.50 +r  14.0978000   0.6263000   1.4757000   1.0582842       0.0000000   0.0000000   0.0000000   0.0000000 
   3.50 +r  11.6271000   0.8178000   1.3682000   1.0507368       0.0000000   0.0000000   0.0000000   0.0000000 
   4.50 +r   9.5810000   0.7798000   1.3273000   1.0564684       0.0000000   0.0000000   0.0000000   0.0000000 
   5.50 +r   8.3210000   0.8089000   1.2150000   0.9861684       0.0000000   0.0000000   0.0000000   0.0000000 
   6.50 +r   7.2732000   0.8022000   1.1272000   0.9614842       0.0000000   0.0000000   0.0000000   0.0000000 
   7.50 +r   6.6848000   0.8795000   1.1553000   0.9754263       0.0000000   0.0000000   0.0000000   0.0000000 
   8.50 +r   6.0997000   0.8702000   1.1641000   1.0171474       0.0000000   0.0000000   0.0000000   0.0000000 
   9.50 +r   5.6139000   0.8822000   1.1749000   1.0165895       0.0000000   0.0000000   0.0000000   0.0000000 
 

The *.res results file (test.res). The first 11 lines contain the information on the settings of the analysis; the 
following part contains a table with the results of the analysis for the particular summary function selected. The 
important information for this example is heighted in grey. Note that the cell-size indicates in the standard analysis 
mode only the bin of the distance axis (given in data units), but in the grid-based standard analysis mode it 
indicates the size of the cells. In the following lines: 
 
 The first column gives the spatial distance r of the point-pattern analysis in units of bins,  
 the second and third column provide a summary of the Monte Carlo significance test of the null model ("-": 

data at scale r below the pointwise simulation envelopes, "r": inside the simulation envelopes, and "+": above 
the simulation envelopes; second column for univariate analysis, third column for bivariate analysis),  

 columns 4, 5, 6, 7: results of univariate analysis (column 4: summary functions of the data, column 5: lower 
pointwise simulation envelope, column 6: upper pointwise simulation envelope, column 7: expectation under 
the null model),  

 columns 8, 9, 10, 11: results of bivariate analysis (column 8: summary functions of the data, column 9: lower 
simulation envelope, column 6: upper simulation envelope, column 7: expectation under the null model). 
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2.6 Simulation envelopes, Goodness-of-Fit (GoF) and global tests 

2.6.1 Simulation envelopes 

An important step of all methods of point pattern analysis implemented in Programita is the 
comparison of the observed pattern with patterns generated by stochastic point process or 
null models. The objective of this comparison is generally to examine ecological hypotheses. 

Spatial point process models are mathematical models that provide a stochastic mechanism 
to generate point patterns. The spatial structure in a point process model is usually governed 
by a set of parameters (e.g., the degree of clustering), which must be fitted to the observed 
pattern. Point process models are typically used to 

 describe the data as close as possible and to summarize the statistical properties of the 
observed point patterns with few parameters 

 represent the expected spatial pattern according to specific ecological hypotheses that 
are being tested.  

Null models are a subclass of point process models and formalize a particular null 
hypothesis in ecology. Basically, null models create the spatial patterns that are expected in 
the absence of a particular ecological mechanism by means of the randomization of 
ecological data where certain elements of the data are held constant, and others are allowed 
to vary stochastically. The null model is therefore used to determine whether there is spatial 
structure in the data that does not exist in the null model. Although this approach is often not 
very informative for univariate patterns, it can be useful for detecting spatial structure in 
more complex data types which are often extremely relevant for ecologists. 

Monte Carlo methods are used to generate multiple realizations of the null model or point 
process (e.g., 199 or 999 replicate patterns) to be compared to the observed data. To this end, 
the summary functions S0(r) of the observed pattern and of each of the i null model patterns 
Si(r) are estimated. The task is to find out if the summary functions of the observed 
pattern fall outside the typical range of the patterns produced by the model.  

Pointwise simulation envelopes are mostly used in ecology. They are for example the 5th 
lowest and highest values of the pair correlation functions of 199 simulated patterns at 
distance r, which yield a significance level of α = 0.05 for a fixed distance r. If the observed 
summary function lies at some distance r outside the pointwise simulation envelopes it is 
often taken as evidence of a departure from the null hypothesis. 

 
Pointwise simulation envelopes of the example 
GoF.res based on the 5th lowest and highest 
values of 199 simulations of the CSR null model 

The figure indicates that the pattern of the data 
set HC_2.dat shows regularity because the 
observed pair correlation function g(r) is at 
distances 0.5 – 5.5 m clearly below the pointwise 
simulation envelopes. 
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The graphical representation of pointwise simulation envelopes is especially attractive for 
ecological applications because it encircles the fluctuations of the summary function under 
the null model and points to distances where departures may occur.  

However, departures of the observed summary function from the pointwise simulation 
envelopes cannot be used to reject the null model with significance level α because this 
analysis typically conducts multiple tests, one at each spatial distance bin r, and is prone to 
type I error inflation (Loosmore and Ford 2006, Wiegand et al. 2016). More refined methods 
are required for this purpose. Methods implemented in Programita include 

 the Goodness-of-Fit test promoted by Loosmore and Ford (2006) that appeared also in 
the classical book of Diggle (1983, 2003) and was used before by ecologists (Velázquez 
et al. 2016b). This test collapses the scale-dependent information of the summary 
function S(r) into one test function that represents the accumulated squared deviation of 
the observed summary function from the expected summary function under the null 
model. This test does not lead to simulation envelopes but estimates a P-value that 
corresponds to the prescribed significance level α. 

 Maximum Absolute Deviation (MAD) tests introduced by Diggle (1979) and Ripley 
(1979) reduce the multiple tests at different distance bins r into a single test statistic being 
the maximum absolute value of the difference between the summary function expected 
under the null model and the summary function of the data, taken over all distance bins. 
This test leads to simulation envelopes of constant width, centred on the expected 
summary function. However, the envelopes arising from the simple MAD test have a 
major problem: they are not sufficiently flexible to represent the behaviour of the 
summary functions of the null model for different distances r if their distribution of is not 
the same for all r. They are therefore not implemented in Programita. 

 MAD tests of studentized summary functions. To overcome the problem of the simple 
MAD test, Wiegand et al. (2016) and Myllymäki et al. (2015, 2017) proposed to 
transform first the summary functions (to obtain at each distance bin r an identical 
distribution of the values of the summary functions of the null model simulations) before 
applying the MAD test. They used for this purpose the so-called studentization of the 
summary functions that produces basically standardized effect sizes (also called z-scores) 
of the summary functions by subtracting the mean and dividing by the standard deviation. 
The resulting simulation envelopes are constant and have therefore the desired property 
that the null hypothesis can be rejected with significance level α if the empirical summary 
function wanders outside the envelopes. 

 maximal global envelope tests first studentize the summary functions, estimate from 
this the simulation envelopes of the MAD test (that show a the prescribed significance 
level α) and then use the inverse student transformation of the MAD envelopes to obtain 
the global simulation envelopes. The term “global” indicates that the significance level 
α of the test is valid for a whole given distance interval and not only for one distance r as 
for the pointwise simulation envelopes. The global simulation envelopes have therefore 
the desired property that the null hypothesis can be rejected with significance level α if 
the empirical summary function wanders outside the global envelopes. 
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2.6.2 Goodness-of-Fit test 

The pointwise simulation envelopes provide a good idea on the range of the summary 
functions expected under the null model, but they cannot be used to assess the general fit of 
the model because of problems associated with Type I error inflation. This can be avoided by 
one of the methods listed above, for example, by using additionally a Goodness-of-Fit test 
(GoF) (see Loosmore and Ford 2006 and section 2.5.1.2 of Wiegand and Moloney 2014) or a 
global envelope test (see Wiegand et al. 2016).  

A GoF is used to test if a given null model (or point process model) fits a given summary 
function of the observed data over a given distance interval (rmin, rmax). (However, the test is 
conservative if the point process model involved fitting of parameters). The GoF test 
collapses the scale-dependent information of a functional summary function [e.g., g(r)] into a 
single index ui. The index ui represents the accumulated squared deviation of the observed 
summary function from the expected summary function under the null model, summed up 
over an appropriate distance interval (rmin, rmax) (Loosmore and Ford 2006):  
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where the  is the empirical summary function of the observed pattern (i = 0) and that of 
the simulated patterns (i = 1,...m), and S(r) the expected summary function under the null 
model. If the expected summary function S(r) is not known analytically, it can be replaced by 
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which is the average over all summary functions,  except the one with index i. Note 
that 

)(ˆ rSi

)(0 rS  yields the average over the summary function of all m simulated patterns and 
provides therefore an unbiased estimate of S(r) under the null model. For the GoF test the ui 
are calculated for the observed data (i = 0) and for the simulated data (i = 1...m) and the rank 
of u0 among all ui is determined. The observed P-value of this test is 
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For example, if the u0 computed for the observed pattern was larger than the ui computed for 
each of the m = 199 simulations of the null model we have rank[u0] = 200 and 

.  005.0)200/199(1ˆ p

Note that this GoF test is somewhat sensitive to the distance interval selected. For example, if 
the departure from the null model occurs only at small scales of say 5m, but the test is 
conducted over an interval of 0–100m a true departure may be overpowered and not detected. 
Therefore use only an interval where departures from the null model are (a priori) expected. 
The P-value alone does not always convey the nature of discrepancy between the data and 
the null model. It should always be used in conjunction with visual inspection of the 
pointwise simulation envelopes. 
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2.6.3 Global simulation envelopes 

Global envelopes S+(r) and S-(r) that are variable in r were proposed by Wiegand et al. 
(2016) and Myllymäki et al. (2017). They have the desired and intuitive property that the null 
model can be rejected over a given distance interval with significance level α if the observed 
summary function S(r) wanders at one or more distances r outside the global simulation 
envelopes. Pointwise envelopes do not have this property because of the problem of multiple 
testing (Loosmore et al. 2006). Myllymäki et al. (2017) presented a version of the test that is 
based on simulations and can be applied generally whereas Wiegand et al. (2016) presented 
an analytical version of the test that applies for non-cumulative summary functions such as 
the pair correlation function. 

The global envelopes S+(r) and S-(r) are constructed in three steps. First, the summary 
functions Si(r) are estimated from the observed data (i = 0) and from the m realizations of the 
null model (i = 1,.. m), and the mean )(rS  and the standard deviation )(ˆ rS  of the Si(r) are 
estimated for i = 1,.. m. Then, the original summary functions Si(r) are student transformed: 
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 , i = 0,…, m. 

Notably, the pointwise simulation envelopes Gp
‒(r) and Gp

+(r) of the student transformed 
summary functions (e.g., for α = 0.05 the 5th lowest and highest values of Si

ses(r) taken from 
i = 1, .., 199) approximate for all distances r the critical value Gp

‒ (r) = –zα and Gp
+(r) = zα 

t is applied.  

with zα = 1.96 for α = 0.05. Thus, we have constant pointwise simulation envelopes. This 
works if the distribution of the Si(r) for i = 1, …m approximates for fixed values of r a 
normal distribution. This assumption can be tested by comparing the Gp

‒(r) and Gp
+(r) 

with the critical values zα and –zα. If the distribution is not symmetric for some values of r 
one can either use upper and lower quantiles proposed by Myllymäki et al. (2017) or 
exclude these distances from the distance interval where the global envelope tes

Second, the standard “maximal absolute difference” (MAD) test is applied for the studentised 
summary functions Si

ses(r). This test makes sense now because the variance of the Si
ses(r) 

under the null model is the same for all distances r. The functional summary function Si
ses(r) 

of the ith simulation of the null model is reduced to its minimum and maximum value Si
min 

and Si
max, respectively, taken over the distance interval r = rmin, .., rmax of interest. The kth 

largest value of the Si
max is the upper global envelope G+, and the kth smallest value of the 

Si
min is the lower global envelope G‒. Note that this test conducts only one test for the entire 

interval. For this reason, the problem of multiple inference (Loosmore et al. 2006) does not 
occur and we can reject the null model with significance level α if S0

ses(r) > G+ or S0
ses(r) < 

G- for one or more distances r (r ≥ rmin and r ≤ rmax).  

Third, to obtain the desired global simulation envelopes S+(r) and S-(r) that are variable in r 
we apply the inverse student transformation to G+ and G‒ (see eq. 17 in Myllymäki et al. 
2017): 
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Programita allows you to access the GoF and global envelope tests in 
two ways. First, after termination of a simulation of the null model a 
small checkbox “GoF” appears top right on the window “Select a null 

model”. After enabling the check box a window appears. Click “Uni” or 
“Bi”, depending if the analysis of interest is uni- or bivariate, 
respectively. Then a small graph with the observed summary function 
and the lowest and highest values of the null model 
appear.  

Provide now the distance interval (rmin, rmax) to be 
tested and click “Calculate GoF rank”. The rank 
and the associated P-value of the GoF test are then 
provided. The figure is updated and shows now the 
pointwise simulation envelopes with the nth lowest 
and highest values of the summary function of the 
null model simulations at distance r.  
Programita saves for the selected test statistic temporary files 
Uni_confidence.env (or Bi_confidence.env). This file contains the 
observed uni- or bivariate summary function of the data (first line) and 
of all simulations of the null model (following lines). 

The second way to access the GoF test is to click in the menu “What do 

you want to do?” the option “GoF of terminated simulation”. With this 
option Programita reads a *.env file that you saved after running a 
simulation with “Save results”.  

 
 
 
 
 

 
Additional options: student transformation and pointwise envelopes 

The power of the GoF test can be enhanced by transforming the summary function 
(Myllymäkia et al. 2015). If the distribution of a summary function S(r) estimated for the 
simulations of the null model at distance r approximates a normal distribution with mean 

)(rS and standard deviation )(ˆ rS  we can apply the student transformation 

)(ˆ/)]()([)( rrSrSrS Si
ses
i   

which transforms the raw values Si(r) of the summary function into a “standardized effect 
size” Si

ses(r) (sometimes also called z-score). If we consider only one distance r, we have for 
Si

ses(r) > 1.96 a significant positive departure with significance level α = 0.05, for Si
ses(r) < -

1.96 a significant negative departure with α = 0.05, and the larger the absolute value Si
ses(r) 

the stronger the departure from the null model. 

The option  uses the Si
ses(r) to conduct the GoF test 

and a MAD test (see below). The figure shows the student-
transformed observed S0

ses(r) (black dots), the pointwise 
simulation envelopes estimated from Si

ses(r) (red lines), the 
theoretical value for a 5% significance level (i.e., 1.96; blue 
line). The pointwise simulation envelopes have now at all 
distances r approximately the same width! The left values for 
the rank and the p-value are for the GoF test based on the 
Si

ses(r). The file SES_name.res (where name is the name of 
the *.dat data file or a name you provide) shows the data f
plotting the figure on the right together with 

or 
)(rS  and )(ˆ rS . 
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Please check that the red lines (i.e., the 
simulation envelopes of the 
transformed Sses(r) approximate the 
theoretical 5% value of 1.96 (as in the 
example). If the S(r) of the null model 
do not approximate the normal 
distribution (e.g., if the residuals are  

 

student transformation 

not symmetric) you will observe a bias in the simulation envelopes 
as in the example of the spherical contact distribution for distances 
r > 22. This is because for r > 22 many of the Hs(r) values show the 
maximal value of one which yields a non-symmetric distribution. In 
this case conduct the GoF test only for the interval where 
simulation envelops (red lines) approximate the theoretical value 
(blue line). Alternatively use the percentile transformation (see 
below). 

percentile transformation 

 
Additional options: student transformation and MAD test 

The effect of the student (or percentile) transformation is to homogenize the residuals which 
make the pointwise simulation envelopes basically a constant. If the width of the simulation 
envelopes is the same for all distances r, it makes sense to construct a “global envelop” test 
(Ripley 1981) based on the maximal absolute deviation of the observed summary function 
from the expectation. This test then reduces the functional summary functions into one or 
two numbers: its minimal and maximal value taken over the interval rmin to rmax of interest. 

If you check  this test reduces the functional summary function Si
ses(r) of the ith 

simulation of the null model into two numbers, its minimal and maximal value Si
min and 

Si
max, respectively, taken over the interval rmin to rmax. The upper global envelop G+ is the

the kth largest value of the S
n 

in.  
i
max and the lower global envelop G- is the kth smallest value of 

the Si
m

If you do not check  this test reduces the functional summary function Si
ses(r) of 

the ith simulation of the null model into one numbers, the maximal value Si
max of ǁSi

ses(r)ǁ, 
taken over the interval rmin to rmax. The upper global envelop G+ is the 2*kth largest value 
of the Si

max, and the lower global envelop G+ = - Si
max. In the example we find G+ = 3.356.  

The green lines now show the upper and lower global envelopes. 
The right values for the rank and the p-value are for the global test 
based on Si

gl = max(ǁSi
maxǁ, (ǁSi

minǁ) where the rank of S0
gl among 

all Si
gl is determined.  

The file “transformENV_st.env” shows the values of the 
transformed summary functions Sses(r), the )(rS  and )(ˆ rS , the 
Si

min and Si
max and lower and upper global envelopes G+ and G-.  

The file SES_name.res (where name is the name of the *.dat data 
file or a name you provide) shows the data for plotting the figure on 
the right together with )(rS  and )(ˆ rS  and the file envelope.env 
gives the 1 + m transformed summary functions.  
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Additional options: global simulation envelopes that are variable in r 

The global test with effect size scaling allows for an inverse transformation of the global 
envelopes S+

ses and S-
ses (if the distributions of Si

ses(r) follow a standard normal distribution) 
to yield the corresponding envelops S+(r) and S-(r) with the exact α value in the non-scaled 
representation: 
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This allows for estimation of global envelopes in the 
non-transformed representation of the summary 
function S(r) if you click the option . The 
green lines show the global envelopes, and the red 
lines the pointwise envelopes (i.e., the nth lowest and 
highest value of Si(r)). The left rank and p-value is 
GoF test for the non-transformed envelop test (option 
“none”) and the right rank and p-value is for the global 
envelope test of the student transformed Si(r). The file 
GL_name.res provides the data to plot the figure 
together with )(ˆ rS  and the file envelope.env gives 

the 1 + m transformed summary functions.  

 

Programita allows you to check the assumption that the 
distributions of Si

ses(r) follow a standard normal distribution. Check 
and press again  and Programita shows 

you the distributions of the Si
ses(r) (taken for i = 1,...m) for fixed 

values of r. It shows the distribution for 10 values of r that a 
regularly spaced over rmin – rmax. In the example r = 1– 5. The 
grey bold line shows the standard normal distribution For the 
example of the g(r) the Si

ses(r) follow the assumption well.  

 

However, as shown above, this assumption does not hold for the spherical contact 
distributions Hs(r) shortly before saturation (where all values are close to 1). Below see the 
distributions for different intervals of r. For r > 25 the distribution becomes asymmetric. 

                                 r = 1–15                                      r = 15–25                                r = 25–35 
                 student transformation 

                    
                percentile distribution 
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Additional options: percentile scaling 
 
The student transformation works only if the Si(r) are approximately normally distributed 
(symmetric). However, some summary functions which are bounded to minimal and 
maximal values (such as Hs(r) may show non-symmetric residuals and in this case the global 
envelopes of the student transformed summary functions Sses(r) may show a bias. One 
possibility to avoid this is to scale with the upper and lower simulation envelopes S+(r) and S-

(r) and the expectation of the null model )(rS : 
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The file “PERC_name.res” shows the data to plot the 
figure on the right, and the file envelope.env gives the 
1 + m transformed summary functions.  
 
The figures on the right show the 
difference between percentile and 
student scaling for the asymmetric 
distributions of the nearest neighbor 
distance distribution Hs(r).  

 
        percentile scaling                     student scaling 

  
The figures on the right show that there 
is basically no difference between 
percentile and student scaling for the 
symmetric distributions of the pair 
correlation function g(r). 

percentile scaling                      student scaling 

  
 
Standard T-test: 
 
The GoF test presented above is based on a one-sided test statistics. A similar two-sided test 
statistics can be constructed based on the standard T-test (Diggle et al. 2007; equation 2.10 in 
Wiegand and Moloney 2014). You can access this test with the option . 
 
 
This test uses, similarly to the student transformation, the variables Si(r), the summary 
function for the observed data (for i = 0) and the summary functions of the m simulations of 
the null model (for i = 1 to m), and the variables )(rS and )(ˆ rS  which are the mean and 

standard deviation of the summary function of the m simulations of the null model at distance 
r. The test is conducted over an appropriate distance interval (rmin, rmax) where departures 
from the null model are expected (before conducting the test). For the data (i = 0) and the m 
imulations of the null model (for i = 1 to m) the test statistic. s 
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is estimated. It is the sum of the standardized values Zi(r) over the selected distance interval. 
The transformation Zi(r) of the original summary functions Si(r) is a so-called “studentised 
scaling”. At each distance bin r the values 1.96 and 1.96 are simulation envelopes with 
approximately 5% error rate if the values of Si(r) (i= 1,.., m) follow a normal distribution 
with mean )(rS  and standard deviation )(ˆ rS .  

 
The p-value of this GoF test is obtained by estimating T0 from the data and comparing it to 
each of the m estimated Ti statistics from the null model. The significance level of the test is 
given by P = (k + 1)/(m + 1), where k is the number of simulated Ti greater (or smaller) than 
T0 if the departure was positive (or negative). Access the GoF test as described above. 
A small graph with the observed summary function and the 
lowest and highest values of the null model appear. Provide now 
the distance interval (rmin, rmax) to be tested and click “Two-
sided test”.  
 
Programita now estimates the Z0(r) values of the observed data 
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for the selected distance interval and plots the values of Z0(r) together with the critical bands 
for a P-value of 0.05 (red) and 0.01 (grey). The rank, the associated P-value of the Ti test 
over distance interval (rmin, rmax) and the direction of the departure (i.e., positive or negative) 
are then provided. The red lines corresponds to 5% envelopes (1.96) and the grey line to 1% 
envelopes (2.575).  
 
Note that the Zi(r) test statistic can have negative and positive values and if the observed 
summary function shows at some distances positive and at others negative departures from 
he null model, they may cancel.  t 
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2.7 Show results of previous analyses 

2.7.1 Show results of previous analyses: standard analysis 

Programita offers a convenient possibility to show the results of 
previous analyses. In the standard analysis mode, this works only if the 
option “Combine replicates” was enabled when doing the original 
analysis. However, for mark correlation analyses and multivariate 
(phylogenetic) analyses this mode is automatically enabled.  
 
To show the results of a previous analysis, apply the button 
“Replicates” and a window with a list of results files appears: 

Highlight for example Book_Fig4_2b.rep to 
repeat the analysis of Figure 4.2b in Wiegand and 
Moloney (2014), and click “Calculate joined 
statistic”. The result of the analysis will then 
appear: 

 
 
Change ring width for pair correlation function 
If you use the pair correlation function as summary function, this feature of Programita 
allows you also to change a posteriori the ring width. To take advantage of this feature, the 
original analysis must be done with ring width of 1: . For ring width = 1 the plot 
of the pair correlation function will be rugged.  

 

To select a posteriori a wider ring width select 
the file “Book_Fig4_2b.rep” to read the results 
of the analysis of Figure 4.2a in Wiegand and 
Moloney (2014), and then go” again to 
“Replicates”. Now, when highlighting the again 
the file “Book_Fig4_2b.rep” you can select a 
new ring width, for example a ring width dr = 5: 

. See below the example with dr = 1 
(left) and dr = 5 (right): 

dr = 1 dr = 5 

 
See also the description of combine replicates. Clearly, if you “combine” only the results of 
one “replicate”, you view the analysis of one analysis.  
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2.7.2 Show results of previous analyses: random labeling 

To show the results of a previous analysis, apply the button 
“Replicates” and a window with a list of results files appears. If the 
null model in a standard analysis was random labeling, Programita 
saved two results files per analysis. To simplify selection of results files 
and to tell Programita that you will combine replicates that used 
random labeling click “Only files for random labeling”.  

 

 
 
Then you can select the *_1.rep file that was 
saved from your previous analysis: 

 
 

Highlight for example Book_Fig2_15_1.rep to 
repeat the analysis of Figure 2.15 in Wiegand and 
Moloney (2014), and click “Calculate joined 
statistic”. The result of the analysis shows up: 

 
 
Change ring width for pair correlation function 
If you use the pair correlation function as summary function, this feature of Programita 
allows you also to change a posteriori the ring width. To take advantage of this feature, the 
original analysis must be done with ring width of 1: . For ring width = 1 the plot 
of the pair correlation function will be rugged.  

 

To select a posteriori a wider ring width select 
the file “Book_Fig2_15_1.rep” to read the 
results of the analysis of Figure 2.15 in Wiegand 
and Moloney (2014), and then go” again to 
“Replicates”. Now, when highlighting the again 
the file “Book_Fig2_15_1.rep” you can select a 
new ring width, for example a ring width dr = 5: 

. See below the example with dr = 1 
(left) and dr = 5 (right): 

dr = 1 dr = 5 

 
See also the description of combine replicates. Clearly, if you “combine” only the results of 
ne “replicate”, you view the analysis of one analysis.  o 
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2.7.3 Show results of previous analyses: mark correlation 

functions 

You can also change a posteriori the ring width, use the cumulative or 
the non-normalized mark correlation function. 
To take advantage of these features, the original analysis must be 
done with ring width of 1: .  
 
To show the results of a previous mark correlation analysis, apply the 
button “Replicates” and a window with a list of results files appears: 

 
 

Note that the *.rep files of the mark correlation 
analysis show also the prefix “mcf_”. Highlight 
for example mcf_Book_Fig2_16a.rep to repeat 
the analysis of Figure 2.16 in Wiegand and 
Moloney (2014), and click “Calculate joined 
statistic”. The result of the analysis shows up: 

 
In the box “Select one test function” you can now select the different 
mark correlation functions implemented in Programita.  

 

 

Change ring width for non-cumulative 
functions  
To select a posteriori a wider ring width enter 
now a new width dr = 3, and click “the small 
“ok” button: 

 

 

 

To obtain the corresponding cumulative mark 
correlation function, select “Cum mcf”, a ring 
width of 1 and click “the small “ok” button: 
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con-cumulative, dr=1 

 

cumulative 

 
 
Show non-normalized mark correlation functions 
 

 

To obtain the corresponding non-normalized mark correlation function 
select “Not normalized”, a ring width of your choice (e.g., dr = 3), and 
click “the small “ok” button: 

dr = 3, non-cumulative, normalized dr = 3, non-cumulative, normalized 

    
 

2.7.4 Show results of previous analyses: multivariate analysis 

Show the results of previous multivariate analyses works in the same 
way as for mark correlation functions. Again, you can also change a 
posteriori the ring width and use the cumulative multivariate summary 
functions if appropriate. Note that some summary functions such as that 
from the ISAR family are already cumulative.  
 
To take advantage of these features, the original analysis must be 
done with ring width of 1: .  
 
Note that the *.rep files of the multivariate analysis are of the form:  
 
“mcf_name_phy.rep”  
 
where “name is the name you select for the results file.   
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Running multiple analyses with numbered files under the standard mode

 

2.8 Run series of analyses 

Sometimes you have to conduct many times the same analysis. Programita allows you to do 
this in an automated way. There are three different possibilities for this: 

 using numbered files 
 select the files to be analyzed from a list (only mode for mark correlation functions) 
 for the bivariate standard analysis you can analyze all pairs of univariate patterns 

defined in two file lists. This is practical if you have many pairs to analyze because 
you need not to store all data files as in the first two cases.  

 
Programita conducts many individual analyses, outputs results files for each analysis, and 
one summary file that provides an overview over all analyses.  

2.8.1 Standard analysis: multiple analyses with numbered files 

The first step is to conduct the analysis with one of the data files. Use 
for example the analysis “Book_Fig4_2b.res”. Once this is done, select 
the check box “Series of analysis”. There are 10 data file with names 
“test_1.dat”, “test_2.dat”, ..., “test_10.dat” to be analyzed in the same 
way as “Book_Fig4_2b.res”. 

 
A window opens where you need to provide the specifications of your 
series of analysis in the area of the red box. Your data files must all 
follow the name convention “name_n.dat” where name is a name you 
can provide in the “Give trunk name of data files” and n is the 
number of the data file. You can specify the first number and the last 
number and an increment. You have “test_” and n = 1,..., 10.  

Programita conducts a Goodness-of-fit (GoF) test for each analysis. 
You can specify the distance interval over which to conduct the GoF 
test (here 1 – 50).  

Programita can output for the analysis of each data file several results 
files:  

 uni_confidence: the observed univariate summary function of 
the data (first line) and of all simulations of the null model 
(following lines) 

 bi_confidence: same as uni_confidence, but for bivariate 
functions. 

 *.res: this is the results file which contains all your settings. 
This file should be outputted. 

 a *.txt summary file with name Summary_name.txt 
 if you check additional summary functions at “additional *.env 

files for” Programita outputs the corresponding *.env files.  
 
Once all settings are specified, click the fat ok bottom , and then “Calculate Index” to 
start the series of analyses.  
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After termination of the simulation series, you can load the comma delimited summary file 
into EXCEL. The summary file has the name Summary_truncname.txt where truncname is 
the shared name of all data files you provided in : 
 
This is an example of the summary file for an univariate analysis: 

 
 
 (r0, r1) is interval of the GoF test,  
 “rank 11” is the rank of the GoF test for the univariate analysis,  
 “rank12” is the rank of the GoF test for the bivariate analysis,  
 “anzp1” and “anzp2” give the number of points of pattern 1 and 2, respectively.  
 The “rank11_g”, “rank11_L”, “rank11_D”, “rank11_Hs”, “rank11_K2” show the rank 

of the GoF test for the summary functions g(r), the L(r), D(r), Hs(r), and K2(r), 
respectively.  

 The following lines are observed summary functions and pointwise simulation 
envelopes, g11 is g(r), g-11 and g+11 are the lower and upper simulation envelopes of 
g(r), etc.  

 The rank0, rank1, .. , rankr give the rank of the GoF test of the selected summary 
function at distance r.  

 
In the standard grid based mode, you can only output the O(r) or the L(r) in the summary 
file, and additionally the D(r) as *.env file.  
 
 

2.8.2 Multiple analyses with files selected from a list 

As above, the first step is to conduct the analysis with one of the data files. Once this is done, 
select the check box “Series of analysis”. 
A window opens where you need to provide the specifications of 
your series of analysis. To select files from the working directory 
select “File list”. A list with files appears. To enlarge the file list 
click “expand”.  

  

Now you can select all files you want 
to analyze. The trunk-name is now 
only used to name the summary 
output file.  
 
If your data are selected, click “File 
list ok” to confirm your selection.  
 
Once all settings are specified, click 
the fat ok bottom , and then 
“Calculate Index” to start the series 
of analyses.  
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2.8.3 Multiple bivariate standard analyses with all pairs of files from two file lists 

 
As above, the first step is to conduct one analysis with a bivariate data file (use the example 
file “sapling2vs1.res”. Once this is done, select the check box “Series of analyses”.  
 
A window opens where you need to provide the specifications of 
your series of analyses. To select files for pairwise analyses select 
“File list for pat1 and pat2”.  
 
If pattern 1 and 2 should be selected from the same list (e.g., 
bivariate analyses of recruits of different species) select 
“pat1=pat2”. This is necessary to omit that the same file is 
selected as pattern 1 and pattern 2.  
 
Insert the name of the file list for pat 1 (and if appropriate, for pat 
2). The file list is an *.txt ASCII file with the names of the files to 
be analyzed (but without the *.dat extension).  
 
The trunk-name is now only used to name the summary output 
file. For bivariate analyses, you need usually no output for the 
univariate analysis, therefore de-select the univariate output with  

 
 
If your data are selected, click “File list ok” to confirm your 
selection.  
 
Once all settings are specified, click the fat ok bottom , and 
then “Calculate Index” to start the series of analyses. 

 
 
this is an example of a 
file list (saplings.txt): 
 
saplings1 
saplings2 
saplings3 

 
You can use this analysis series also for cases where you 
previously saved the null model for the different patterns listed in 
the file lists, for example generated with pattern reconstruction.  
 
In this case you need to click “null model from file”. The null 
model patterns corresponding to your data files must follow the 
name conventions: 
 
       data file:                 name.dat 
       null model file:      rec_name_n.dat  
 
where name is the data file (e.g., Saplings1 in the example from 
the file list above) and n the number that should run from 1 to the 
number of # simulations of the null model specified in the 
window “Select a null model”. 
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Running multiple analysis with mark correlation functions 
  

2.8.4 Multiple analyses with mark correlation functions 

Running series of analyses works for mark correlation functions in the same way as for the 
standard analysis but only with the list option. The first step is to conduct the analysis with 
one of the data files. Once this is done, select the check box “Series of analyses”. A window 
opens where you need to select “File list”. A list with files appears. To enlarge the file list 
click “expand”. 

 

Now you can select all files you want 
to analyze. If your data are selected, 
click “File list ok” to confirm your 
selection. Provide also the name of the 
file that contains a summary of the 
results of the series of analyses.  
 
To get the *.env files for the GoF test 
of individual analyses click “save 
uni_confidence” and “save 
bi_confidence” if appropriate. Once 
all settings are specified, click the fat 
ok bottom , and then “Calculate 
Index” to start the series of analyses. 

 
After termination of the simulation series, you can load a comma delimited summary file 
(name convention “Summary_mcf_name.dat”) into EXCEL. This is an example of the 
summary file for an univariate analysis: 

 
 #pat 1, #pat 2, and #pat 3 gives the number of points of type 1, 2 or 3 points, 

respectively,  
 (r0, r1) is interval of the GoF test,  
 rank 11 is the rank of the GoF test for the univariate analysis,  
 rank12 is the rank of the GoF test for the bivariate analysis.  
 The following lines are the observed summary functions (using the mark correlation 

function you selected in the example analysis) and simulation envelopes (indicated by 
mvf11, E-11, E+11), and mcf11_exp is the expectation of the mark correlation function.  

 

2.8.5 Multiple analyses for multivariate analysis using a dissimilarity matrix 

I did not implement a Series of analyses option for this data type because it will be in most 
cases a community level analysis. However, there is a possibility to conduct series of 
“individual” analyses where the individuals of a given species are selected as focal points 
and the individuals of the entire community are used as second points at distance r away. To 
use this option enable the checkbox “Run all focal species” in the window specifying the 
null model:  
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2.9 Combine results from replicate analyses 

In some cases you may have maps of several replicate plots of a larger point pattern under 
identical conditions. In this case the resulting test statistics of the individual replicate plots 
can be combined into average test statistics (Diggle 2003: page 123; Illian et al. 2008: page 
263; Wiegand and Moloney 2014: section 3.2). This is of particular interest if the number of 
points in each replicate plot is relatively low. In this case the simulation envelopes of 
individual analyses would become wide, but combining the data of several replicate plots 
into average test statistics increases the sample size and thus narrows the simulation 
envelopes. When considering different species as replicates, average test statistics are also 
an effective way of summarizing the results of an analysis on the community level. Average 
test statistics based on replicates can also be used to implement specific null models that 
would otherwise require very specific software. Section 3.2.1 of Wiegand and Moloney 
(2014) provides details on the aggregation formulas for different summary functions and 
section 3.2.2 several examples.  
 
The default estimators of the Programita standard mode (and the 
grid-based mode) use the WM estimators for the pair correlation 
and the K-function based on the quantities λg(r) and λK(r). The 
corresponding aggregation formulas for the WM estimator are 
provided in equations 3.114 and 3.117 in Wiegand and Moloney 
(2014). For the other estimators available in the standard mode 
(Stoyan, Ripley, and Ohser) the aggregation formula for g(r) and 
K(r) is based on the abundance weighted mean of the g(r) and K(r) 
for the individual plots where the weight is the abundance of the 
focal pattern 1 [because it combines λg(r) and λK(r)].  
 
If you select other summary functions than g(r) or L(r), the 
aggregation formula used by Programita is also the abundance 
weighted mean of the summary functions of the individual 
replicates where the weight is the abundance of the focal pattern 1. 
Note that it makes little sense to apply the aggregation formula to 
the K2 function, here you should first estimate the pair correlation 
function and then estimate the derivative. 
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2.10 Settings and estimators of the summary functions 

2.10.1 Bins and distances of non-cumulative summary functions 

Depending on the summary functions used, Programita uses conventions to define distances 
and the distance bins. In general, second-order summary functions based on product densities 
(e.g., pair correlation functions, K2 function, mark connection functions, and mark 
correlation functions) characterize properties of the spatial pattern using pairs of points i and 
j that are located approximately at distance r of each other.  
 
Programita uses simple box kernels to define “at distance r”. This kernel function 
introduces a small “tolerance” interval (r – dr/2, r + dr/2) for the distance r (called the 
bandwidth dr/2) within which two points are regarded as being located distance r apart. In 
this way, the kernel function defines rings with width dr and radius r around the focal point i 
and any point j falling within the ring causes the kernel function to evaluate to a positive 
value (less than or equal to one), otherwise it returns zero.  
 
Programita uses a default bin width of 1 (i.e., it uses the units of 
the data), however, when you select (in the standard mode) a data 
file the window Select a new bin (cell size) opens and allows you to 
change the unit of the data. For example, if you select 5, all 
analyses are conducted with bins of 5m.  
 
In the mark correlation modes this information can be selected in 
the windows Mark correlation function or Multivariate analysis.  

 

Programita initially locates each point pair i and j within the following distance bins:  
0.5: [0 - 1)  
1.5: [1 - 2) 
2.5: [2 - 3) 
…  
where the “[“ and “)” indicate that the left but not right border belongs to the interval. If you 
select a bin width different from 1 (e.g., 5), the bins and intervals have to be scaled to yield 
bins in the original data units: 2.5: [  0 -   5),  7.5: [  5 - 10), 2.5: [20 - 15), …  
 
This binning corresponds to a ring width dr = 1. However, you can select a larger ring width 
dr of 3, 5, 7, … bins. In this case the binning uses not only the central bin, but also the 
neighboring bins and the binning yields e.g., for dr = 3  (in units of bins): 
0.5: [0 - 2), 1.5: [0 - 3), 2.5: [1 - 4), … Note that the first bins may be smaller than dr.  
 
The *.res output file provides the distance bin in units of the data.  
 
The following summary functions in the standard analysis mode are scaled in this way: g(r), 
E(r), K2(r), and mark connection and the non-cumulative mark correlation functions. 
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2.10.2 Bins and distances of cumulative summary functions 

Estimation of cumulative summary functions is easier. In this case no kernel function is 
required and the maximal distance r means simply distances from zero up to r, i.e., interval 
[0, r).  
 
If you select a bin width different from 1 (e.g., 5), the bins have to be scaled to yield bins in 
the original data units: [0 - 5), [0 - 10), [0 - 20), … The *.res output file then provides the 
distance bin r in units of the data.  
 
This rule applies for the cumulative summary functions such as L functions L(r), nearest 
neighbor distribution functions Dk(r), the spherical contact distribution Hs(r), and cumulative 
mark correlation functions (available when using combine replicates). 
  

2.10.3 Estimators in standard analysis 

For the estimation of second order summary functions in the 
standard analysis mode you can select among four methods of edge 
correction which are detailed in Wiegand and Moloney (2014: 
equations 3.24, 3.37, 3.54, and 3.61). The Ripley and Stoyan method 
corrects for each point pair individually using a weight wij. The 
Ripley weight divides the circumference of a full disk centered on 
point i with radius r and passing through point j by the 
circumference of the disk lying inside the sample domain and the 
Stoyan edge correction uses the translation method. The Ohser and 
WM edge correction correct not each point pair individually, but use 
for each distance r a factor that corrects globally.  
 
For the nearest neighbor distribution functions Dk(r) you can select 
“no edge correction” and the so-called Hanisch edge correction (see 
sections 3.1.3.1, 3.1.3.1, and 3.1.4.5) in Wiegand and Moloney 
(2014). The spherical contact distribution Hs(r) is estimated as 
bivariate D12(r) (where a regular grid of 40 × 40 test points is 
pattern 1 and the univariate pattern is pattern 2) using the Hanisch
edge correction. You can increase the number of test points by factor
f in each direction (but this may slow down the estimation

 
 

).  
 
The mean distance to the kth neighbor nn(k) is estimated without 
edge correction. Because the estimation of nn(k) slows down 
Programita, you can reduce the maximal neighborhood rank k to the 
maximal k used for the Dk(r) by enabling “no mean dist to kth NN”.  
 
For mark correlation functions you can use the Stoyan translation 
edge correction when clicking the check box “edge”, but there will 
be almost no effect since the edge correction terms cancel in the 
ratio estimator of mark correlation functions.  
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3 Univariate analysis in the standard analysis mode 

The standard analysis mode allows for analysis of 
 univariate patterns (data type 1) 
 bivariate patterns (data type 2) 
 qualitatively marked patterns (i.e., random labeling analysis; data type 4). 
 
In the following I explain the different settings, null models, and point process models for 
univariate analysis in detail. Most examples are taken from Wiegand and Moloney (2014).  
 
The standard analysis mode works in most cases exactly the same way as the grid-based 
standard mode. The only difference is to enable or disable the checkbox “no grid” in the 
window What do you want to do? 
 

 
 
I therefore report here only cases where differences occur. For example, in some cases the 
procedures for the standard mode are not yet implemented and you have to use instead the 
grid-based mode for particular analyses.  
  

3.1 Getting started 

3.1.1 Data preparation 

Univariate analysis deals with a data type that comprises only the coordinates of a given 
point pattern. There is only one type of points and no mark considered. The univariate data 
type is the most analyzed data type in point pattern analysis.  
 
The data files for univariate standard analysis must be an ASCII file with the *.dat extension 
and the following format (the example shows the first lines of the file Book_Fig4_15a.dat): 
 
0  500 0  500 626 
  3.96     55.94    1    0 
277.66    230.78    1    0 
273.28    235.15    1    0 
296.37     99.51    1    0 
273.10    217.30    1    0 
 40.28      7.81    1    0 
140.55    194.02    1    0 
180.49    300.19    1    0 
187.01    304.66    1    0 
275.27    229.10    1    0 
… 
 
 

 35



  
Data preparation for univariate analysis 
 
 
where the first line gives the size of the observation window (500 × 500 units in the example) 
and the number of points in the pattern (= number of lines following the header). The first 
two columns are the coordinates, an entry “1” in the third column indicates that the point is 
of pattern 1 (i.e., a type 1 focal point) and an entry “1” in the fourth column indicates that the 
point is of pattern 2 (i.e., a type 2 point). The value of the third and the forth columns must 
be for the standard analysis mode “0  1” or “1   0”, no larger numbers or “1  1” are allowed.  
 
The data file must be a space or tab delimited ASCII file with the *.dat extension. If you use 
Excel, there is a simple, but obviously generally unknown, way of saving files of a given 
type with a given extension: 
  

1. Prepare the data file in Excel following the instructions above 
2. Then save as a tab delimited text file, but write “name.dat” for the name (usually you 

would only write name and end up with a file named name.txt. The quotation marks 
are important because they force Excel to save the comma delimited file under the 
name name.dat.  
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3.1.2 Steps of analysis in standard mode and example 

Programita estimates for data files of this type several summary 
functions based on estimators detailed in Illian et al. (2008) and 
Chapter 3 of Wiegand and Moloney (2014). The window Which 

method will you use allows you to specify the estimators. 
 
The standard analysis mode can be accessed with the following 
sequence of actions: 
 

1. Highlight a data file “Book_Fig4_15a.dat” in Input data and 
click the small “ok” button. 

2. The window Select a new cell size opens and allows you to 
provide a bin for your analysis given in units of your data. 
For example, if your data are in meter units and your 
observation window is 500 × 500m in size, an appropriate 
bin would be 1m. Press “ok” to confirm selection of the bin. 
 

3. After selection of the bin Programita suggests a ring width 
dr for the estimation of the pair correlation function g(r) 
based on equation 4.3.43 in Illian et al. (2008) [dr = 
0.2/λ0.5]. This equation provides a rough starting point for 
deciding on the ring width. In the example file 
“Book_Fig4_15a.dat” with 626 points within a 500 × 500m 
observation window and a bin of 1m this yields a ring width 
of dr = 4.0 for pattern 1. Because the pattern is strongly 
clustered and dr can only have values of dr = 1, 3, 5, … 
select dr = 3. 
 

4. The estimators of the pair correlation function implemented 
in the standard mode of Programita use a default ring 
width of one bin to obtain non-overlapping concentric 
rings. For reasons of computational efficiency you can then 
select only ring widths adding one bin in each direction, i.e., 
ring widths of 1, 3, 5, 7, … bins. You can change the ring 
width at the menu “Which method will you use”. In the example 
you may use a ring width of 3. 
 

5. Selecting the option “no grid” opens also a small window 
where you can select the desired rank k of the distribution 
functions Dk(r) of the distances to the kth neighbor. Default 
is k = 1, 2, 4, 6, 8, 12, 16, 20, and 25. You can thus select 
the rank k of nine different functions Dk(r). To confirm 
press the small ok button.  
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6. Press button “Calculate Index” and Programita estimates a 
variety of summary functions of the univariate data:  

 g(r): pair correlation function 
 L(r): L-function,  
 Hs(r): the spherical contact distribution 
 nn(k) the mean distance to the kth neighbor 
 E(r) the probability that a point has no neighbor at 

distance within distances (r - dr/2, r + dr/2) 
 K2(r) the K2 function 
 Dk(r), the kth nn distribution functions,  

here with k = 1, 2, 4, 6, 8, 12, 16, 20, and 25 
 If you enable the check box “non-cumulative dk(r) and 

hs(r)” you can view the non-cumulative counterparts 
of the cumulative Dk(r) and Hs(r).  

 
To view the different summary functions select the respective 
radio button and then the small ok button.  
 
After one analysis Programita saves the results of all 15 
univariate (and if appropriate all 15 bivariate) summary 
functions into the temporary files SumStat1.env, 
SumStat2.env, etc. and allows you to view all results without 
conducting new analysis.  

 
7. The next step is to select a null model or point process 

model implemented in Programita. Click the checkbox 
“Calculate simulation envelopes” to be found in the menu 
“What do you want to do?” on the top left of the interface. A 
window will open that allows you to select a null model. In 
the example, we select “Pattern 1 and 2 CSR”. In this case 
both patterns are independently distributed following a 
homogeneous Poisson processes (or Complete Spatial 
Randomness CSR). If the data set is univariate only the first 
pattern is randomized following CSR.  
 
Here you can specify the number of simulations of the null 
model (199 in the example) and the rule for the estimation of 
simulation envelopes (here the 5th lowest and highest values 
of the summary function of the 199 null model data sets). 
 
The radio buttons in the menu “Select a null model” are the 
different basic options for null models or point process 
models whereas the check boxes are mostly additional options 
to specify the null model. The checkbox “Save null models” 
allows you to save the patterns generated by the null model as 
“name_n.dat” 
 
If all settings are specified, press “Calculate Index” and 
Programita conducts the simulations of the null model.  
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8. Programita shows the original point pattern being analyzed (left or top plot), and 
patterns of the Monte Carlo simulations of the null model (on the right or bottom) 
used for constructing the pointwise simulation envelopes and the GoF and global 
envelope tests.  

           
 
The simulation is quicker if Programita does not show the plots of all simulated data. 
You can not show the graphs by disabling the checkbox “graph” at the bottom right. 
 
After the simulations of the null model the figure with the simulated patterns of the 
null model disappears, and a figure with the result of the analysis appears: 

 
 
The top (or left) figure shows generally the results of the univariate analysis and the 
bottom (right) figure shows the results of the bivariate analysis. (Exceptions are 
multivariate analysis using a dissimilarity matrix under the random labeling and 
trivariate random labeling mode). The data file in the example was univariate, 
therefore no figure appears for the bivariate results. 
 

9. To save the results of the analysis for a particular summary functions press the 
button  in the result graph for the bivariate analysis. Programita then 
generates a *.res file [e.g., “g(r)_name.res” for the pair correlation function where 
“name” is a name] with the summary of the results and the settings of the analysis, 
and a *.env file with the detailed results of the summary function for the data and the 
simulations of the null model. The *.env file can be used for the GoF test. 
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3.2 Methods for univariate standard analysis 

The following examples present step-by-step instructions for the most impotent univariate 
analyses. If analyses of Wiegand and Moloney (2014) are repeated, I refer to them using the 
figure number in the book, e.g., Book _Fig4_2 refers to an analysis shown in Figure 4.2 and 
the corresponding data file is named Book_Fig_4_2a.dat. Other analyses are named after the 
null model used.  

3.2.1 Homogeneous Poisson (CSR) 

The homogenous Poisson process is characterized by two fundamental properties. First, the 
intensity  of the process (i.e., the mean point density in a unit area) is a constant and 
therefore, the number of points in a study plot of area A follows a Poisson distribution with 
an expected mean of A. Second, the points are independently distributed, which means that 
there is no interaction between the points of the pattern determining their locations.  
 
Although CSR appears in many cases overly simple, it is the basic building block for more 
complex null models. As example, step-by-step instructions for the analysis of Figure 4.2 in 
Wiegand and Moloney (2014) are provided below.  
 
 

1. Execute Programita. 
2. Highlight data file Book_Fig4_2a.dat you want to analyze in 

Input data and click the small “ok” button. 
3. Select bin of 1m window Select a new cell size 
4. Select a ring width of 9 in the menu “Which method will you use” 
5. Click button “change” below to set maximal distance r to be 

analyzed. Insert 100 in small box that opens and then the small 
ok button.  

6. Accept selection of neighborhood ranks for estimation of Dk(r). 
7. Press button “Calculate Index” 
8. Click the checkbox “Calculate simulation envelopes” to be 

found in the menu “What do you want to do?” on the top left of the 
interface.  

9. Select “Pattern 1 and 2 CSR” in the window “Select a null 

model”.  
10. Specify the number of simulations of the null model (199 in the 

example) and the rule for the estimation of simulation envelopes 
(here the 5th lowest and highest values of the summary function 
of the 199 simulated null model data sets). 

11. To view a large range of neighborhood ranks k in the mean 
distance to the kth neighbor summary function nn(k), disable 
the option “no mean distance to kth NN”  
in the menu Which method will you use. This requires estimation of a 
larger nearest neighbor matrix which slows down the 
estimation. If the check box is enabled (default), the maximal k 
value is the maximal k of the Dk(r)’s estimated. 
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CSR. Example Book_Fig4_2.res

 
12. If all settings are specified, press the button “Calculate 

Index” and Programita conducts the simulations of the null 
model. 

13. In window “Select a summary function” you can view the results 
of the analysis for the different summary functions:  

 

  

  

  

  
 

15. To save the results of the analysis for a particular summary functions press the 
button  that appears in the result graph for the bivariate analysis and provide 
the name (e.g., Book_Fig.4_2b). By enabling the small checkboxes beside the 
summary function you can save all selected summary functions at the same time.  
 
Here is an example for the *.res results file for the spherical contact distribution 
Hs(r): 
 
NN distance rr      Hs11(r)  E11-        E11+        Expect      
       0.00 rr   0.0000000   0.0000000   0.0000000   0.0000000  
       1.00 rr   0.0006555   0.0000000   0.0039425   0.0014869  
       2.00 rr   0.0052574   0.0026458   0.0105168   0.0059499  
       3.00 rr   0.0145009   0.0079239   0.0205985   0.0136494  
       4.00 rr   0.0251006   0.0159655   0.0310984   0.0238473  
       5.00 rr   0.0443942   0.0286351   0.0468248   0.0373350  
       6.00 rr   0.0557446   0.0419402   0.0641362   0.0529284  
       7.00 rr   0.0738612   0.0587447   0.0829726   0.0716262  
       8.00 rr   0.0987816   0.0800635   0.1060944   0.0929994  
       9.00 rr   0.1271862   0.1028497   0.1320018   0.1163091  
      10.00 rr   0.1509547   0.1279122   0.1576738   0.1421021  
      11.00 rr   0.1748168   0.1564811   0.1832409   0.1692070  
      12.00 rr   0.2028685   0.1845011   0.2130192   0.1983967  
      13.00 rr   0.2269228   0.2135108   0.2425942   0.2291874  
      14.00 rr   0.2579776   0.2437670   0.2778281   0.2607731  
 

You can load this part of the results file into a scientific graphics program to produce 
figures. 
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Estimators. Example Book_Fig4_2.res 
 

3.2.2 Homogeneous Poisson and estimators 

In the previous example we used the WM estimator for the pair 
correlation function and the L-function. However, Programita allows 
you to use also alternative estimators presented in Illian et al. (2008) 
and Wiegand and Moloney (2014). The analysis Book_Fig4_2 is 
therefore repeated below with different estimators.  
 

1. Click “Load Settings for Example”, highlight file 
“Book_Fig4_2.res” and click small ok. 

2. Select “Stoyan” in menu “Which method will you use”. 
3. Click “Calculate Index” 
4. Repeat the same with “Ripley” but disable the option 

“adapted” to obtain the standard estimator that does not use the 
adapted intensity estimator proposed in Illian et al. (2008)  

5. To obtain the grid-based mode deselect “no grid” 
 

The differences among estimators are small for near random or random 
univariate patterns: 

 
 
 

 
 

 

 

 
WM estimator 

  
 
Stoyan estimator 

  
Ripley estimator (non adapted) 
 

  
 
Grid-based WM estimator 
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Heterogeneous Poisson process with kernel estimate of intensity function

   

3.2.3 Heterogeneous Poisson with kernel estimate 

The heterogeneous Poisson process is characterized by two fundamental properties. First, in 
contrast to the homogeneous Poisson process the intensity (x) of the process depends on 
location x. Second, the points are independently distributed, which means that there is no 
interaction between the points of the pattern determining their locations.  
 
The heterogeneous Poisson process is completely determined by the intensity function (x) 
and therefore the estimation of the intensity function is an important ingredient of this point 
process model. There are basically two methods to estimate the intensity function, parametric 
and non-parametric methods. If you used non-parametric methods to estimate the intensity 
function you can read the resulting intensity file into Programita by checking the checkbox 
“Intensity function from file” 
 

 

However, Programita allows you also to estimate the intensity 
function non-parametrically, directly from the data using 
smoothing techniques based on kernel estimators. See section 
2.6.2.1 “Nonparametric Intensity Estimation” in Wiegand and 
Moloney (2014) for details.  

 
Programita offers four different kernel functions 

 Box kernel (neither “Epan” nor “Gauss” nor “Expon” checked) 
 Epanechnikov kernel (“Epan” checked) 
 Gaussian kernel (“Gauss” checked) 
 Exponential kernel (“Expon” checked) 

that can estimate with (“Edge” checked) and without edge correction (“Edge” not checked). 
 
Remember that the intensity is defined basically as number of points per unit area and that an 
estimator of the intensity divides the number of points in a given area by the area. For a 
homogeneous pattern the “natural” estimator of the intensity is therefore λn = n/A where n is 
the number of points in the observation window and A the area of the observation window. 
The non-parametric intensity estimators generalize this idea. Because the intensity changes 
along the observation window it makes sense to use smaller subareas centered at location x to 
estimate the intensity function (x). Programita therefore estimates the density of points 
within circular moving windows C(x)(R) with radius R centered on location x. The moving-
window estimate  of the non-constant first-order intensity (x) yields R̂
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where the operator Points[X] counts the points in a region X, and the operator Area[X] 
determines the area of the region X. This is a box kernel estimate with fixed bandwidth R 
(all points located within distance R of location x are counted equal with weight 1 and all 
oints at larger distance have weight zero and are not counted). p 
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Heterogeneous Poisson process with kernel estimate of intensity function 
 
As edge correction, the number of points in an incomplete circle is divided by the proportion 
of the area of the circle that lies within the study region. Without edge correction, it is 
divided by the area of the full circle. The intensity function is then normalized to have a 
maximal value of one, thus ranging between zero and one.  
 

The moving window estimator  involves a decision on an appropriate radius R of the 
moving window (see section 2.6.2.1 “Nonparametric Intensity Estimation”). As detailed in 
section 4.1.2.1 “HPP: Nonparametric Intensity Estimate to Avoid Virtual Aggregation”, the 
heterogeneous Poisson process with box kernel intensity estimate has a simple geometric 
interpretation. While CSR basically displaces a given point with random distance and angle 
within the observation window, the heterogeneous Poisson process with box kernel intensity 
displaces each point of the pattern basically within a circular neighborhood of radius R.  

)(ˆ xR

 
Thus, because the bandwidth R is the scale of smoothing, possible departure from this null 
model may only occur for scales r < R, and for small moving windows it will closely mimic 
the original pattern, whereas a large moving window approximates CSR. 
 
The three other options (“Epan”, “Gauss”, or “Expon”) are kernel functions that weight the 
points which are counted according to their distance to the focal location x. In case of the 
Epanechnikov kernel (enable Epan”) this produces smoother intensity estimates than the box 
kernel (Fig. 2.20 in Wiegand and Moloney 2014). The Epanechnikov kernel is based on the 
following weight of a point within distance d of location x: 
 

    )1(2),(
2

2

R

d
RdwE   if d ≤ R and 0 otherwise.   

 
The option “Gauss” is mostly used as analogue to the Thomas cluster process and generates 
an intensity function which is the superposition of two-dimensional and symmetric Gaussian 
curves centered in the points of the pattern (see Fig. 4.17 in Wiegand and Moloney 2014). It 
is based on the weight: 
 

    ))(
2

1
exp(

2

1
),( 2

R

d

R
RdwG 


 if d ≤ 3R and 0 otherwise.  

 
The option “Expon” generates an intensity function based on an exponential kernel  
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 if d ≤ 7R and 0 otherwise.  

 
Note that the integral ∫w(r, R) 2π r dr over both kernel functions yields the area π R2 of the 
circle. For computational reasons the Gaussian kernel is only estimated up to distances of 3R 
because in this case the integral yields 0.99 πR2. Similarly, the exponential kernel is 
estimated up to distance 7R and takes longer to estimate.  
 
The algorithm for creating a pattern under a heterogeneous Poisson process is simple: a 
provisional point is placed at a random cell (x, y) in the study area, but this point is only 

retained with probability  (the function max[X] determines the 
maximum of a variable X). This procedure is repeated until n points are distributed.  

)],(ˆmax[/),(ˆ yxyx RR 
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Heterogeneous Poisson. Example Book_Fig2_28h.res

 
 
Example Book_Fig2_28h.res 
The following example presents the analysis of Figure 2.28 using a 
heterogeneous Poisson process with non-parametric kernel estimate. 
 

1. Execute Programita. 
2. Highlight data file Book_Fig2_26.dat you want to analyze in 

Input data and click the small “ok” button. 
3. Select bin of 1m window Select a new cell size 
4. Select a ring width of 3 in the menu “Which method will you use” 
5. Accept selection of neighborhood ranks for estimation of Dk(r). 
6. Press button “Calculate Index” 
7. Click the checkbox “Calculate simulation envelopes” to be 

found in the menu “What do you want to do?” on the top left of the 
interface.  

8. Select “Pattern 1 and 2 CSR” in the window “Select a null 

model”.  
9. Specify the number of simulations of the null model (199 in the 

example) and the rule for the estimation of simulation 
envelopes (here the 5th lowest and highest values of the 
summary function of the 199 simulated null model data sets). 

10. Click checkbox “Heterogeneous Poisson”  
11. Go to window “Settings for hetero. Poisson” on the left and insert 

the bandwidth R (30m in the example), enable “Epan” for the 
Epanechnikov kernel and select “Intensity of pattern 1” 
(because your data are univariate). Edge correction “Edge” is 
enabled by default. Click “Calculate Index” and Programita 
estimates the intensity function and shows the pattern and the 
corresponding intensity function. 
 

   
 
Click OK at the message box to save the intensity file. The file 
is saved with name int_E_Book_Fig2_26_R1_30.int where the 
“int_E” indicates Epanechnikov kernel, Fig2_26.dat was the 
data file, “_R1_30” means that the intensity was estimated with 
pattern 1 and bandwidth 30.  
 
Now Programita conducts the analysis. You can observe d
the simulations that the null model distributes the points with 
probability proportionally to the intensity. Here an exam

uring 

ple: 
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Heterogeneous Poisson. Example Book_Fig2_28h.res 
 

 
 

12. The result resembles that in Figure 2.28 h, i well: 
 

  
 
 

13. This is the analogous Gaussian kernel (left) with R = 10m in comparison with the 
Epanechnikov kernel with R = 30m (right): 
 

    
  
In contrast, the estimate using the box kernel with bandwidth R = 30m looks quite 
rugged (left) and an Epanechnikov kernel with R = 15m seems to conserve too much 
detail (right): 
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Heterogeneous Poisson. Example Book_Fig2_28h_file.res

 

3.2.4 Heterogeneous Poisson with intensity from file 

Example Book_Fig2_28h_file.res, intensity from file 

This example repeats the previous analysis of Figure 2.28 using a heterogeneous Poisson 
process, but now uses an intensity function that was saved as a *. int file. 

1. Execute Programita. 
2. Highlight data file Book_Fig2_26.dat you want to analyze in 

Input data and click the small “ok” button. 
3. Select bin of 1m window Select a new cell size 
4. Select a ring width of 3 in the menu “Which method will you use” 
5. Accept selection of neighborhood ranks for estimation of Dk(r). 
6. Press button “Calculate Index” 
7. Click the checkbox “Calculate simulation envelopes” to be 

found in the menu “What do you want to do?” on the top left of the 
interface.  

8. Select “Pattern 1 and 2 CSR” in the window “Select a null 

model”.  
9. Specify the number of simulations of the null model (199 in the 

example) and the rule for the estimation of simulation 
envelopes (here the 5th lowest and highest values of the 
summary function of the 199 simulated null model data sets). 

10. Click checkbox “Heterogeneous Poisson”  
11. Go to window “Settings for hetero. Poisson” on the left and click 

checkbox “Intensity function from file”. Highlight file 
int_E_Book_Fig2_26_R1_30.int and press the small ok.  
 

 
 
and Programita shows you the data on the left and the intensity 
function together with the data on the right. 
 

   
 

12. Click OK at the message box and then “Calculate Index” and 
Programita conducts the analysis.  
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Irregularly shaped observation window  
 

3.2.5 Irregularly shaped observation window 

Programita offers several options to analyze a univariate pattern within an observation 
window of irregular shape.  
 

1. The points of the null model are only distributed inside the observation window, but 
otherwise no adjustments are done.  

2. The observation window is explicitly reduced and the estimators of the second-order 
summary functions take the reduced observation window into account.  The points of 
the null model are only distributed inside the observation window.  

3. Inhomogeneous summary functions are used which are based on an intensity function 
λ(x) which has a value of λ inside the observation window and zero outside (in the 
standard mode option 2 is implemented as option 3).  

 
In the following example I show the first option which is based on the heterogeneous Poisson 
process and an intensity function which is zero outside the observation window and λ inside 
the observation window. In this case the CSR null model rejects points outside the 
observation window because they have a zero intensity and as a result the null model is CSR 
inside the observation window and no point of the null model will be located outside the 
observation window.  
 
The intensity file must be an ASCII file with the *.int extension:  
 
1  197  1  190  37430  1 
  1  1  1  -9 
  1  2  1  -9 
  1  3  1  -9 
  1  4  1  -9 
  1  5  1  -9 
  1  6  1   1 
  1  7  1   1 
  1  8  1  -9 
  1  9  1  -9 
  1  10 1  -9   
….  

 
The file must describe a matrix and has therefore coordinates of a grid that run from 1 to 197 
(x-coordinate) and 1 to 190 (y-coordinate). Thus, we have in total 197 × 190 = 37430 cells. 
Thus, the first line gives the first and last x-coordinate and the first and the last y-coordinate 
and the number of cells which follow. The last number is the cell size (i.e., 1 in the example). 
 
The following lines give the coordinates of all cells and its value. Each cell can have a value 
of -9 if it is outside the observation window or 1 if it is inside the observation window. (Note 
that the *.int files are always normalized between 0 and 1).  
 columns 1 and 2: coordinates of the cells 
 column 3: always 1 
 column 4: value of normalized intensity function 
 



  
Irregularly shaped observation window.  Example Book_Fig2_28_opt1.res 

 
 
Example Book_Fig2_28_opt1.res (manipulate null model, option 1) 
 

1. Execute Programita. 
2. Highlight data file Book_Fig2_26.dat in Input data and click the 

small “ok” button. 
3. Select bin of 1m window Select a new cell size 
4. Select a ring width of 3 in the menu “Which method will you use” 
5. Accept selection of neighborhood ranks for estimation of Dk(r). 
6. Press button “Calculate Index” 
7. Click the checkbox “Calculate simulation envelopes” to be 

found in the menu “What do you want to do?” on the top left.  
8. Select “Pattern 1 and 2 CSR” in “Select a null model”.  
9. Specify the number of simulations of the null model (199 in the 

example) and the rule for the estimation of simulation envelopes 
(here the 5th lowest and highest values of the summary function 
of the 199 simulated null model data sets). 

10. Click checkbox “Heterogeneous Poisson”  
11. Go to window “Settings for hetero. Poisson” on the left and click 

checkbox “Intensity function from file”. Highlight file 
int_Book_Fig2_26.int and press the small ok.  

 

 
 
 
 
 
 
 
 
 
 

 

 
and Programita shows you the data on the left and the intensity function together with 
the data on the right: 

    
Click OK at the message box and then “Calculate Index” and Programita conducts 
the analysis. You can observe during the simulations that the null model does indeed 
not distribute points outside the observation window.  

12. The result resembles that in Figure 2.28 e, f well: 

 
 

 49



  
Irregularly shaped observation window 
 
 
Now I show the second option to consider observation windows of irregular shape which is 
based on an explicit reduction of the observation window. In this case the estimator of the 
second-order summary functions takes the reduced observation window into account and 
istributes the points of the null model only inside the observation window.  d

 
Two methods are available in the literature to consider observation windows of irregular 
shape.  
 First, Goreaud and Pélissier (1999) developed explicit equations for the Ripley edge 

correction for irregular observation windows where the geometrical shape is 
approximated by removing triangular surfaces from an initial rectangular shape. This 
method is not used in Programita. 

 Second, Wiegand and Moloney (2004) approximated the geometrical shape of the 
observation window with an underlying grid and based the estimators of the second-
order summary functions on estimates of the mean number of points in (potentially 
incomplete) rings (or circles) around the points of the focal individuals and the mean 
area of the rings (or circles) inside the observation window. For more details on this 
method see section 3.1.2.2 “O-Ring Statistic” and equation 3.36 in section 3.1.2.7 
“Ripley’s K-Function”. This method is used in the standard grid based mode in 
Programita.  

 Wiegand and Moloney (2014) extended the WM and Ohser estimators of the second-
order summary functions to inhomogeneous estimators (see section 3.1.2.6 “Alternative 
Estimators of Inhomogeneous Pair-Correlation Functions” and equations 3.41 and 3.42 
in section 3.1.2.7 “Ripley’s K-Function”). These estimators can be used to consider 
observation windows of irregular shape by using the intensity function introduced 
above which is zero outside the observation window and λ inside the observation 
window. This method is used for univariate analyses in the standard mode in 
Programita.  

 
You need to tell Programita the shape of the observation window of irregular shape. This is 
done with a file that contains the coordinates of the border of the observation window which 

ust result in a closed line.  m
 
The file with the border of the observation window must be an ASCII file with the *.irr 
extension. Note that this is not an ArcGis shape file but an ASCII file with the *.irr 
extension. In the example of Figure 2.28 it looks like this: 
The first line gives the number of 
points and the following lines are 
the coordinates of the border. Note 
that the points must yield a closed 
curve and that the first and the last 
points must be the same.  
 

 
      70          
      0.0   153.3 
      3.4   152.2 
     10.8   146.1 
     14.2   144.3 
     17.1   143.0 
     20.6   139.0 
     25.6   143.0 
     27.7   151.2 
     28.3   160.7 
     32.0   162.3 
     …. 

  
Because Programita has only the coordinates of the curve, it needs some information what is 
inside and what is outside the observation window. To help Programita in this task, place a 
point of the pattern which is located well in the center of the observation window to the 
beginning of the *.dat data file. Programita uses this point as starting point to define the cells 
hat belong to the observation window. t 
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Irregularly shaped observation window.  Example Book_Fig2_28_opt2.res 

 
Book_Fig2_28_opt2.res (manipulate estimators, option 2) 
 

1. Execute Programita. 
2. Highlight data file Book_Fig2_26.dat you want to analyze in 

Input data and click the small “ok” button. 
3. Select bin of 1m window Select a new cell size 
4. Select a ring width of 3 in the menu “Which method will you use” 
5. Accept selection of neighborhood ranks for estimation of Dk(r). 
6. Press button “Calculate Index” 
7. Click the radio button “Irregularly shaped study region” in 

the menu “Observation window” on the top left of the interface. 
8. Select file Book_Fig2_26.irr, click “cell size” and ok if the cell 

size appearing in the window “Select a new cell size” is ok and 
then the small ok button in the Select a shape file window. 
Programita now determines the area of the rectangle that 
belongs to the observation window. Basically, Programita 
generates an underlying grid with a spatial resolution of one bin 
(i.e., the cell size) and all cells outside are marked and excluded. 
Programita outputs the resulting intensity file as temporary file 
“int_temp.int”. 

 

 
 
 
 
 

 
 
 
 
 

 
 
 
 

9. Click “Calculate Index” and Programita shows a plot of the data within the reduced 
observation window. The excluded area is marked in black.  
 

 
 

10. Click the checkbox “Calculate simulation envelopes” to be found in the menu “What 

do you want to do?” on the top left of the interface.  
11. Select “Pattern 1 and 2 CSR” in the window “Select a null model”.  
12. Specify the number of simulations of the null model (199 in the example) and the rule 

for the estimation of simulation envelopes (here the 5th lowest and highest values of 
the summary function of the 199 simulated null model data sets). 

13. Click the checkbox “Calculate simulation envelopes and Programita conducts the 
analysis. You can observe during the simulations that the null model does indeed not 
distribute points outside the observation window.  
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Irregularly shaped observation window.  Example Book_Fig2_28_opt2.res  
 

14. The results are different from that of the first option because Programita considers 
explicitly the shape of the observation window by estimation of the second-order 
summary functions. Top row: previous results (first option). Bottom row: results 
(second option):  
 

 

  
 
Both, the pair correlation function and the L-function are now centered on the 
expectation of the CSR null model. This is because the estimators consider only the 
area of the observation window and the edge correction removed the bias seen in the 
first method that was caused by the heterogeneity of the pattern (i.e., the large patch 
in the center of the rectangle).   

 
15. You can repeat the entire analysis also for the grid-based standard mode. The only 

difference is that you need to disable the option “no grid” in Which method will you use. 
As shortcut you can load the results file Book_Fig2_28_opt2.res, disable “no grid”, 
and press “Calculate Index”.  

 
Try also the analogous analysis of Figure 3.48 based on Book_Fig3_48.dat, 
Book_Fig3_48.irr, and Book_Fig3_48c.res.  
 
Finally, I show below how the third option based on inhomogeneous summary functions 
works in the standard mode. Note that the internal estimations of Programita are identical to 
that of the second option. To simplify the procedure for the user and to make it completely 
analogous to the grid-based mode, I programmed the second option in a way that Programita 
uses inhomogeneous summary functions. 
 
In the second option you need to provide a polygon (i.e., the *.irr file) to define the 
observation window and Programita internally converts the polygon into an intensity 
function which is zero outside the observation window and λ inside the observation window 
(this intensity function is saved as temporary file “int_temp.int”). However, in the third 
option you need to provide the intensity function which is the same as used in the first option 
to condition the null model.  
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Irregularly shaped observation window.  Example Book_Fig2_28_opt3.res 

 
 
Example Book_Fig2_28_opt3.res (manipulate estimators, option 3) 
 

1. Rename temporary file “int_temp.int” into “Book_Fig2_28.int” 
2. Execute Programita. 
3. Highlight data file Book_Fig2_26.dat you want to analyze in 

Input data and click the small “ok” button. 
4. Select bin of 1m window Select a new cell size 
5. Select a ring width of 3 in the menu “Which method will you use” 
6. Accept selection of neighborhood ranks for estimation of Dk(r). 
7. Press button “Calculate Index” 
8. Click the checkbox “Calculate simulation envelopes” to be 

found in the menu “What do you want to do?” on the top left of the 
interface. 

9. Select “Pattern 1 and 2 CSR” in the window “Select a null 

model”.  
10. Specify the number of simulations of the null model (199 in the 

example) and the rule for the estimation of simulation 
envelopes (here the 5th lowest and highest values of the 
summary function of the 199 simulated null model data sets). 

11. Enable checkbox “Inhom g and k”, highlight in the appearing 
window “Select a file with the intensity function” the intensity file 
Book_Fig2_28.int, and click the small ok button.  
 

 
 
Because we analyze here univariate patterns the radiobox “pat 
1” must be selected. This means that the intensity is assigned to 
pattern 1. Programita shows you the data on the left and the 
intensity function together with the data on the right: 
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Irregularly shaped observation window.  Example Book_Fig2_28_opt3.res  
 
 

14. Click OK at the message box and then “Calculate Index” and Programita conducts 
the analysis. You can observe during the simulations that the null model does indeed 
not distribute points outside the observation window.  

15. The results are virtually identical to that of option 2. Top row: previous results 
(second option). Bottom row: results (third option):  
 
 

  

 
  
Both, the pair correlation function and the L-function are now centered on the 
expectation of the CSR null model. This is because the estimators consider only the 
area of the observation window and the edge correction removed the bias seen in the 
first method that was caused by the heterogeneity of the pattern (i.e., the large patch 
in the center of the rectangle).  
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Null model from file.   Example Book_Fig3_51.res

  

3.2.6 Null model from file 

In some cases you may not generate the null model patterns internally with Programita, but 
use patterns generated from other sources for this purpose. One important example for this 
case is pattern reconstruction (section 4.1.3 “Null Model of Pattern Reconstruction” in 
Wiegand and Moloney 2014). In this case you can generate from a given pattern statistical 
replicates that are optimized to closely match several summary functions of the observed 
pattern. Of course, the reconstructed patterns will not be an identical copy of the observed 
pattern, but show the same statistical features as the observed pattern where the typical 
structures will appear at somewhat displaced locations.    
 
Be sure to use the same estimator for the second-order summary functions in pattern 
reconstruction and in Programita.  
 
The first method of the pattern reconstruction software presented in Wiegand et al. (2013) 
uses the Ohser edge correction (see equation 3.9 in Wiegand and Moloney 2014) and two 
times the natural estimator of the intensity λn = n/A (i.e., the non-adapted intensity 
estimators):  
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This method is used because it corresponds to pattern reconstruction without edge correction 
for g(r) because the term )(/ rA W does not depend on the points pair i, j but only on distance

r and can therefore be factored 

 

out in the estimation of the partial energy (equation 3.317 in 
iegand and Moloney 2014). 

the pattern reconstruction software corresponds to the WM estimator in 
rogramita: 
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which results from replacing one of the natural estimators λn of the intensity in method 1 by 

e adapted intensity estimate  
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and the method 3 in the pattern reconstruction software corresponds to the Ohser estimator in 
Programita with adapted intensity estimate where both natural estimators λn of the intensity 
in method 1 are replaced by the adapted intensity estimate λS(r)  
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Null model from file.   Example Book_Fig3_51.res 
 
Example Book_Fig3_51.res (null model from file) 
 

1. Execute Programita. 
2. Highlight data file Book_Fig3_50a.dat you want to analyze in 

Input data and click the small “ok” button. 
3. Select bin of 1m window Select a new cell size 
4. Select a ring width of 5 in the menu “Which method will you use” 
5. Click button “change” below to set maximal distance r to be 

analyzed. Insert 100 in small box that opens and then the small 
ok button.  

6. To view a large range of neighborhood ranks k in the mean 
distance to the kth neighbor summary function nn(k), disable 
the option “no mean distance to kth NN” 

. 
7. Accept selection of neighborhood ranks for estimation of 

Dk(r). 
8. Press button “Calculate Index” 
9. Click the checkbox “Calculate simulation envelopes” to be 

found in the menu “What do you want to do?” on the top left of the 
interface.  

10. Select “Data from file” in the window “Select a null model”.  
 

 
 

11. Insert the trunk name of the null model files 
(rec_Book_Fig3_50a_) in the window “Specify null model from 

file” that opens. This is because your data file had the name 
“Book_Fig3_50a.dat” and because the pattern reconstruction 
software names the reconstructions rec_name_n.dat where the 
“rec_” indicates that this is a reconstructed data file and the n 
is the number of the reconstructions. Thus you have null model 
files rec_Book_Fig3_50a_1.dat, rec_Book_Fig3_50a_2.dat, …
 

 

 
 
 

 
 

 



  
Null model from file.   Example Book_Fig3_51.res

 
 

12. Click also the radio button “Pattern 2 fix”. This means that the null model files are 
used for pattern 1. In bivariate analysis you will typically leave pattern 1 unchanged 
but replace pattern 2 in the null model by pattern reconstruction files and therefore 
select “Pattern 1 fix”. To finish click the small ok button in the window “Specify null 

model files from file”.Specify the number of simulations of the null model (19 in the 
example) and the rule for the estimation of simulation envelopes (here the 1th lowest 
and highest values of the summary function of the 19 simulated null model data sets). 

13. If all settings are specified, press the button “Calculate Index” and Programita 
conducts the simulations of the null model. 

14. In window “Select a summary function” you can view the results of the analysis for the 
different summary functions and compare with Figure 3.51 in Wiegand and Moloney 
(2014): 
 

 

 

 
 
If you take the results for the pair correlation function from the *.res file and estimate 
(2π r)g(r) from of g(r) and plot (2π r)g(r) over r and nn(k) non-logarithmically you 
find: 
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Combine replicates for standard analysis 

3.2.7 Combine replicates for standard analysis 

In some cases you may have maps of several replicate plots of a larger point pattern under 
identical conditions. In this case the resulting test statistics of the individual replicate plots 
can be combined into average test statistics (Diggle 2003: page 123; Illian et al. 2008: page 
263; Wiegand and Moloney 2014: section 3.2). This is of particular interest if the number of 
points in each replicate plot is relatively low. In this case the simulation envelopes of 
individual analyses would become wide, but combining the data of several replicate plots 
into average test statistics increases the sample size and thus narrows the simulation 
envelopes. Section 3.2.1 of Wiegand and Moloney (2014) provides details on the 
aggregation formulas for different summary functions and section 3.2.2 several examples.  
 
The default estimators of the Programita standard mode (and the 
grid-based mode) use the WM estimators for the pair correlation 
and the K-function based on the quantities λg(r) and λK(r). The 
corresponding aggregation formulas for the WM estimator are 
provided in equations 3.114 and 3.117 in Wiegand and Moloney 
(2014). If you select other summary functions than g(r) or L(r), the 
aggregation formula used by Programita is the abundance weighted 
mean of the summary functions of the individual replicates where 
the weight is the abundance of the focal pattern 1. Note that it 
makes little sense to apply the aggregation formula to the K2 
function, here you should first estimate the pair correlation function 
and then estimate the derivative. 
 

 

 
 
 
 

 

 
Before running an individual standard analysis enable the checkbox 
"Combine replicates", then run all analyses with replicate plots of 
the same treatment with the same settings (this is important!) and 
the same summary function(!), i.e., do not change the maximal 
scale analyzed, or the grid size, or the summary function. This can 
be done most conveniently with the “Series of analyses” option 
described above.  

 

 
When the option “Combine replicates” is enabled, Programita creates specific results files 
that contain all information necessary for combining the replicates. If your data file was 
named “name.dat”, the corresponding results file will be called “WM_name.rep” if you 
used the pair correlation function (or any other summary function in the standard mode 
other than the L-function) and “R_name.rep” if you select the L-function. However, better 
save the data using the Save results option:  for example with the name “test” 

 

In this case Programita saves the two files test.res and test.rep that 
contain all information needed to combine the results of several 
replicate analyses.  
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Combine replicates for standard analysis
 
This is a typical WM_name.rep output file: 
 
    3    199  626     0 250000  W-M    1  gridless  g(r) 
 0  0   1966.6370    100.0000      0.0000  12732.40    0.00 
 0  1   5848.9918    290.0000      0.0000  12415.13    0.00 
 0  2   9639.6005    354.0000      0.0000  9195.57    0.00 
 0  3  13395.3274    374.0000      0.0000  6991.21    0.00 
 1  0   1966.6370      2.0000      0.0000  254.65    0.00 
 1  1   5878.7354     10.0000      0.0000  425.94    0.00 
 1  2   9770.7399     14.0000      0.0000  358.79    0.00 
 1  3  13644.6155     30.0000      0.0000  550.55    0.00 
 2  0   1966.6370      4.0000      0.0000  509.30    0.00 
 2  1   5885.8916     16.0000      0.0000  680.68    0.00 
 2  2   9774.6603     34.0000      0.0000  870.99    0.00 
 2  3  13663.3306     26.0000      0.0000  476.49    0.00 
 C1 C2  C3           C4            C5      C6          C7 

 
The header contains basic information on the number of distance bins used (3), the number 
of simulations of the null model (199), the number n1 of points of pattern 1 (626), the 
number  n2 of points of pattern 2 (0), the area of the observation window in units of the bin 
(250000), and if the L-function (R) or any other summary function was selected (W-M). 
Additionally, in the standard mode the header contains information on the test function 
selected [1 and g(r)], and (gridless). The following columns contain information of the 

ll model where 0 are the observed data and 1, 2, are 
 null model. 

, 1.5, 2.5, … for the pair correlation 
function and 0, 1, 2, 3,… for the L-function) 

ator 

en yield the n1 weighted 
s. 

, for example n1 D 11(r) if you selected the 

 C7: same as C6, but for the bivariate summary function.  

ns C6 and C7 
contain the information on the summary functions other than g(r) and L(r). 

estimators: 
 C1: number of simulation of the nu

the simulations of the
 C2: the distance bin 
 C3: the denominator of equation (3.106) in Wiegand and Moloney (2014). If an 

estimator other than WM is selected (i.e., Ohser, Stoyan or Ripley), the denominator 
yields n1 times the area of a ring with radius r and width 1 [n12πr] for the pair 
correlation function, and n1 times the area of a circle with radius r [π r2] if the L-
function is selected. (Note that the bins are 0.5

 
 
 C4: the numerator of equation (3.106) in Wiegand and Moloney (2014). If an estim

other than WM is selected, the numerator yields n12πrλg(r) for the pair correlation 
function, and n1πr2λK(r) if the L-function is selected. Application of the aggregation 
formulas 3.114 and 3.117 in Wiegand and Moloney (2014) th
mean of the summary functions of the individual replicate

 C5: same as C4, but for the bivariate summary function. 
 C6: n1 times the summary function selected k

distribution function to the kth neighbour.  

 
The columns C1-C5 are the same for all summary functions selected, colum



  
Combine replicates for standard analysis 
 
Once you completed all analyses close Programita, open it again and click the button 
"Replicates" below the "Stop" button: 

 
 
A window opens where you can select the files you like to combine. Highlight the files you 
want to combine and click "Calculate joined statistic", and the result of the combined 
analysis appears. 

 
 

 
You can save the results using the “Save results button”. Insert a 
name. If “name” stands for the selected name, the results file 
“name.res” gives you the mean weighted summary function, the file 
“name.rep” the file that allows you to view the results with “Combine 
replicates”, and *.env files with the summary functions for the 
observed data and the null model simulations for use in the GoF test.  
 
Note that these *.rep and *.env files contain at the end a list of the files 
you combined. This result file joined the results from point-pattern 
analysis of several single analyses in different replicate plots, namely: 
 

 

 
 

This result file joined the results from point-pattern analysis of several single analyses in 
different replicate plots, namely: 
WM_rec_saplings1_1.rep 
WM_rec_saplings1_2.rep 
WM_rec_saplings1_3.rep 
WM_rec_saplings1_4.rep 
WM_rec_saplings1_5.rep 
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Combine replicates for standard analysis

 
Instead of highlighting individual *.rep files in the listbox on the left (Select result files), you 
can also select a file that contains a list with the names of the results files you want to 
combine (Use list with *.rep files). This file must be an ASCII file with the *.lst extension. The 
file corresponding to the example above is named Saplings.lst and is: 
 
5 
WM_rec_saplings3_1.rep 
WM_rec_saplings3_2.rep 
WM_rec_saplings3_3.rep 
WM_rec_saplings3_4.rep 
WM_rec_saplings3_5.rep 

 
where first line is number of files and following lines are the names of the *.rep files you 
want to combine. This allows you to combine files with certain criteria in a quick way. 

 

 

 
Change ring width for pair correlation function 
 
If you use the pair correlation function as summary function, this feature of Programita 
allows you also to change a posteriori the ring width. However, to take advantage of this 
feature, the original analyses must be done with ring width of 1: . Then you can 
change the ring width in the Combine replicated window, as shown above, using  

  
To select a posteriori a wider ring width, go 
again to  (without closing Programita) and 
select again the same files. If the ring width of 
the original files was 1, the box  
appears where you can change the ring width. 
After changing the ring width go again to 

 to get the corresponding result 
seen on the left. 
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Simple Thomas cluster process. Example Book_Fig4_12.res 
  
3.3 Homogeneous cluster processes 

3.3.1 Overview on Thomas cluster processes 

Thomas cluster processes are point process models that describe clustering in a simple way. 
Details can be found in section 4.1.4 “Poisson Cluster Point Processes” in Wiegand and 
Moloney (2014). Programita allows you to fit several Thomas cluster processes to univariate 
data: 

1. a simple Thomas process with one critical scale of clustering 
2. a simple bivariate parent-offspring Thomas process where the cluster centers are 

known 
3. a bivariate parent-offspring Thomas process where the known cluster centers are 

themselves clustered 
4. a generalized Thomas process with two nested scales of clustering where small 

clusters are located inside large clusters.  
Additionally, the cluster processes can be independently superimposed with a CSR pattern 
and you can change the distribution of points over the clusters from a Poisson distribution 
(random assignment to a cluster) to a negative Binominal distribution (clustered assignment).  

The cluster processes are parametric point processes and must be fitted to the data. 
Programita allows you to do so in a straight forward way. The procedure to fit a cluster 
process to the data is described in sections 2.5.2.1 “Minimum Contrast Methods” and 4.1.4.3 
“Fitting a Thomas Process to the Data” in Wiegand and Moloney (2014). Programita allows 
you to conduct the fit of the simple (1) and the double-cluster Thomas process (4) in an 
automated way, thereby facilitating the automated analysis of several patterns. Additionally, 
Programita uses a specific technique to avoid that departures from the point process model at 
small scales “contaminate” the fit with the cumulative K-functions at larger scales. This is an 
important advance over current techniques and avoids a bias in the fitted parameters. This is 
exemplified in the first example.  
 

3.3.2 Thomas cluster processes with one scale of clustering 

This example illustrates the procedure in Programita that allows 
manually fitting of a cluster process to a point pattern. It also shows 
how to deal with patterns that show an additional pattern at small 
scales not accommodated by the cluster process. 

1. Execute Programita. 
2. Highlight data file Book_Fig4_12.dat you want to analyze in 

Input data and click the small “ok” button. This data file was 
generated with a nested double cluster Thomas process with 
parameters of large scale clustering being σ1 = 8.69 and Aρ1 = 
68.7 clusters. The additional small-scale clustering had 
parameters σ1 = 2.64 and Aρ1 = 147 clusters.  

3. Select bin of 1m window Select a new cell size 
4. Select a ring width of 3 in the menu “Which method will you use” 
5. Accept selection of neighborhood ranks of Dk(r). 
6. Press button “Calculate Index” 
7. Click the checkbox “Calculate simulation envelopes” to be 

found in the menu “What do you want to do?” on the top left.  
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Simple Thomas cluster process. Example Book_Fig4_12.res

 
8. Select “Cluster process” in the window “Select a null model”.  
9. A window “Fit of cluster process to data” opens. Select in the section “Null models” at the 

bottom “Univar. cluster”. This is the simplest Thomas process with one critical scale 
of clustering. Continue with the small ok button 
 

 
 

10. Now the interface for fitting appears: 
 

 
 
Select the radio button “L-function” to only use the L-function for fitting.  The 
default settings now fits the L-function over distance interval 2 to 50m 
( ).  
 

11. Click the button “fit” and Programita fits the two parameters ρ and σ of the Thomas 
process to the pattern. Note that ρA yields the number of clusters and 2σ the 
approximate radius of the “typical cluster”. To iteratively encircle the parameter 
space around the minimum in the σ-ρ parameter space click “Zoom” and “Fit”: 
 

  
 
The graph on the right shows the deviation between observed summary function (here 
only the L-function) and that predicted by Thomas process over the σ-ρ parameter 
space indicated by σmin, σmax, 100ρmin, and 100ρmin. There is a clear minimum at σ = 
5.7 and 46.3 clusters. However, the lower left graph show that the fit of the L-function 
is not satisfying. This corresponds to Figure 4.12a.  
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Simple Thomas cluster process. Example Book_Fig4_12.res 
 
 

12. Instead of using the Zoom option to iteratively encircle the minimum in parameter 
space you can also manually change the σ-ρ parameter space by selecting appropriate 
values for σmin, σmax, 100ρmin, and 100ρmin: 

                 
 
This may be required if the (initially) selected parameter space does not contain the 
minimum and the fit is poor. In this case a message “increase the maximal value of 
sigma”, “increase the maximal value of roh”, “decrease the minimal value of sigma” or 
“decrease the minimal value of roh” may appear. In this case the observed minimum is 
located at the edge of the selected parameter space (see right figure above). 
 

13.  To use only the pair correlation function for the fit over the 1 - 50m interval repeat 
steps 1-12 but click “g - function”. Again, as in Figure 4.12b, the fit is not satisfying: 

 
 

14. The important issue is that you recognize from the shape of the pair correlation 
function that the pattern contains probably a second critical scale of small-scale 
clustering. By manipulating the distance r0 (i.e., the lower limit of the interval of the 
fit) you can determine the scale of small-scale clustering. For this use both, the pair 
correlation function and the L-function for fitting, i.e., select “L- and g - function”: 

 
1-50m                              4-50m:                          6-50m:                         8-50m 

    
  

15. The interval of 8-50m provides the best approximation. Thus, the contribution of the 
additional small-scale clustering to the pair correlation function disappears after 8m. 
Note that the transformation (equation 4.12) “attaches” the left value of the L-function 
[i.e., L(r0)] to the observed value, thereby removing the “memory” of the L-function
 
Fitting the cluster process only for distances > 8m allows you to determine the 
parameters of the large-scale clustering. We obtain the parameter estimates σ1 = 8.6 
and 59.6 clusters which are very close to the parameters σ1 = 8.69 and 68.7 clusters 
that were used to generate the pattern. The parameter space also indicates a deep and 
clear minimum (i.e., with dark blue). 
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17. If you are satisfied with the fit, click the ok button  and then 
“Calculate Index”. Programita now conducts the simulations of the fitted Thomas 
process: 

 

Here the top graph shows the observed 
pattern and the bottom graph the simulated 
patterns. As expected, the fitted point process 
fits the pair correlation function for distances 
r > 8m very well, but an additional clustering 
is visible at smaller distances: 
 

 
 
The spherical contact distribution is overestimated which means that the gaps in the 
simulated pattern are too small and the distribution function of the distances to the 
nearest neighbor is underestimated which means that the nearest neighbor in the 
simulated patterns are in general too far away.  
 

 
 
Clearly, this is because the additional small-scale clustering is missing where 147 
small clusters are nested inside the 68.7 large clusters. Thus each large cluster contains 
on average 2.2 clusters with radius 2σ = 5.3m. For this reason we notice that the 
observed clusters look somewhat smaller than the simulated ones. 
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In step 16 you can also save the results of the parameter fitting. In this case a file Book_Fig4_12.fit is generated.  
 the first part of the file shows the settings of the *.res file.  
 the second part of the file show details on the fit such as the interval in parameter space, the best fitting parameters and their interpretation.  
 the third part of the file contains the history of the fitting settings 
 the fourth part of the file contains the observed and fitted g- and L-function.  
 the final part of the file contains the final parameter space and the associated errors. 

 
 
This file contains settings and results of fitting your data to a cluster1 Thomas cluster process --------- 
--------------------------------------------------------------- 
 
Your settings for the point-pattern analysis were: 
 
Pointpattern analysis of file T:\towi\thorsten\text\ManualProgramita2013\Programita\Book_Fig4_12.dat 
Method Wiegand-Moloney (ring) with 199 replicates for simulation envelopes, ring width =   3   5 th lowest and highest values of   199 simulations 
Test Model= cluster1   8.6270 0.00011900  
the null model assumed homogeneous pattern(s) 
Analysis modus= points        gridless    WM    NN Hanisch 
several points per cell allowed 
All cells within the rectangle were considered for calculating the indices 
number points of pattern 1 = 1160 
number points of pattern 2 =    0 
the rectangular area contains 1000*500 = 500000   cells  (= dim1*dim2) 
 x-grid-size= 1000 y-grid-size=  500 cell-size =  1.0000 units. rmax=     50,  max distance for NN functions:    279 mean dist to kth neighbor only 
partly determined 
--------------------------------------------------------------- 
 
 Your settings for the fit of the L-and g-function with a Thomas cluster process were: 
 
 Interval (r0, rmax)  = (8,50) 
 Interval for sigma   = (3.5844,13.9855) 
 Interval for 100*roh = (0.00635,0.02299) 
 The power transformations: 
   c = 1.0  for L 
   c = 0.5  for g 
 The fitted parameters are:  
   sigma   = 8.627 
   100*roh = 0.01190 which corresponds to 59.48 parents in the study region and to 59.48 parents in the rectangle 
 You optimezed the L- and g-function simultaneously 
 Only fits with an error <0.02500 are accepted for the estimation of the confidence interval 
 The error for the best fit was: 0.00068 
 The confidence interval for sigma was:     ( 4.4249,13.9855). This is the interval where the error is <0.02500 
 The confidence interval for 100*roh was:   ( 0.0080, 0.0210). This is the interval where the error is <0.02500 
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--------------------------------------------------------------- 
 Here is the setting history of your fit  
step sigmin   sigmax   100romin   100romax     R0   rmax    power_g    power_L    sigma     100roh     g          error   L_g_Lg 
12     3.58    13.99   0.006350   0.022990      8     50     0.5000     1.0000     8.63   0.011897       8.99    0.00068   3    
11     3.49    11.65   0.006390   0.019160      8     50     0.5000     1.0000     8.60   0.011937       9.01    0.00069   3    
10     3.49    11.65   0.006390   0.019160      6     50     0.5000     1.0000     7.94   0.011034      11.43    0.00208   3    
 9     3.33     9.71   0.006340   0.015970      6     50     0.5000     1.0000     7.91   0.011009      11.56    0.00208   3    
 8     3.33     9.71   0.006340   0.015970      4     50     0.5000     1.0000     6.81   0.010036      17.09    0.00613   3    
… 
 
 
--------------------------------------------------------------- 
 
Here are the data and the fits:  
  r  Ldata   Lfit   gdata   gfit  
  1   7.7842  33.1815 58.2340   9.9568  
  2  14.4385  32.6138 48.5176   9.8670  
  3  19.9061  32.3140 38.3178   9.7193  
  4  24.3846  32.2546 29.6160   9.5167  
  5  27.8025  32.4019 22.5303   9.2631  
  6  30.4101  32.7187 16.9736   8.9633  
  7  32.3811  33.1676 13.1916   8.6231  
  8  33.7127  33.7127 10.4626   8.2486  
  9  34.8369  34.3211  8.8404   7.8463  
 10  35.6848  34.9637  7.4954   7.4230  
 11  36.3997  35.6152  6.6477   6.9856  
… 
 
--------------------------------------------------------------- 
  Here are the best parameters together with the error: (Note that all errors > 0.02500 are set to the value 0.02500) 
 sigma  100*roh     error 
3.5844  0.00635  0.025000 
3.5844  0.00652  0.025000 
3.5844  0.00669  0.025000 
3.5844  0.00685  0.025000 
3.5844  0.00702  0.025000 

 



  
Generalized simple Thomas processes 
 

3.3.3 Generalized simple Thomas processes 

This example illustrates the generalization of the simple Thomas process with one scale of 
clustering that allows for clumping of the number of points over the clusters (see section 
4.1.4.2. “Thomas process” in Wiegand and Moloney 2014).  
 
Remember that the simple Thomas process assigned the points randomly to the clusters, thus 
yielding a Poisson distribution for the distribution pS of the number of points S per cluster. 
However, if the distribution pS follows a more general negative Binominal distribution with 
clumping parameter k, we can generate more realistic patterns where some clusters have more 
points than expected by random allocation of the points over the clusters, and others have less 
than expected. For k →∞ the negative Binominal distribution collapses to the Poisson 
distribution.  
 
The nice feature of the Thomas process is that a negative Binominal distribution does not 
change the functional form of the analytical solution of the pair correlation function (and the 
K-function) of the Thomas process. We obtain: 
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where the factor fk = (k + 1)/k yields fk = 1 for the simple Thomas process using a Poisson 
distribution for the distribution pS. In practical terms this means that clumping of points over 
the clusters does not change the functional form of the Thomas process, and that we can 
therefore find for each value of k a simple Thomas process (where pS is a Poisson 
distribution) with exactly the same pair correlation (and K-) function. The parameter of this 
simple Thomas process that describes the number of clusters yields ρS = ρ fk where ρ is the 
parameter of the generalized Thomas process. That means that clumping of the points o
clusters generates a pair correlation function that seems to have more cl

ver the 
usters.  

 
This also means that fitting with second order properties alone does not allow us to determine 
the parameter k of the generalized Thomas process. However, other summary functions of 
different nature such as the spherical contact distribution Hs(r) and the distribution function 
Dk(r) of the distances to the kth neighbor may allow us to approximate the value of k. Thus, 
we need to fit first with the pair correlation and the L-function and then simulate several 
generalized Thomas process with different values of the clumping parameter k, but adjust the 
number of clusters of the simulated generalized Thomas process in a way that the pair 
correlation function does not change (i.e.,  ρS = ρ fk). We then can check the fit of Hs(r) and 
D(r) for different values of k and indirectly determine the value that fits Hs(r) and Dk(r) best.  
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Generalized simple Thomas processes.  Example Book_Fig4_11e_k=1000.res

  
Example Book_Fig4_11e_k=1000.res (fit parameters σ, ρ, and k) 
 
This example file was generated with a generalized Thomas process with 
parameters σ =6, Aρ = 50, and k = 1 (fk = 2). 
 

1. Execute Programita. 
2. Highlight data file Book_Fig4_11e.dat you want to analyze in Input data and 

click the small “ok” button.  
3. Select bin of 1m window Select a new cell size 
4. Select a ring width of 3 in the menu “Which method will you use” 
5. Accept selection of neighborhood ranks for estimation of Dk(r). 
6. Press button “Calculate Index” 
7. Click the checkbox “Calculate simulation envelopes” to be found in the 

menu “What do you want to do?” on the top left of the interface.  
8. Select “Cluster process” in the window “Select a null model”.  
9. A window “Fit of cluster process to data” opens. Select in the section “Null 

models” at the bottom “Univar. cluster”. Continue with the small ok 
button. 

10. Fit the parameters σ, and ρ. First provide distances interval (r0, rmax) for the 
fit (i.e., ) and then click the small “fit” button:  
Programita now tests the entire parameter space indicated by (min,  max) 
and (ρmin,  ρmax) with default values.  

11. By clicking “zoom” and then “fit”, Programita repeats the fit, but only for 
the neighborhood of the best fitting parameter combination. In this way 
you can improve the fit. As expected, you obtain a good fit (σ =6.1, Aρ = 
49 in the example below).  
 

 
If you now click the “ok”  and the “Calculate Index” 
you simulate the simple Thomas process (i.e., k = ∞).  

12. As expected, the pair correlation and L- function are perfectly fitted: 

 
 
but the spherical contact distribution Hs(r) and the distribution function 
Dk(r) of the distances to the kth neighbor (here the 6th neighbor) not:  
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Generalized simple Thomas processes. Example Book_Fig4_11e_k=1000.res    
 

 
 
The spherical contact distribution is underestimated which means that the gaps in the 
simulated pattern are too large and the distribution function of the distances to the 6th 
neighbor is overestimated which means that the 6th neighbors in the simulated patterns are in 
general too close.  
 
When looking at the observed pattern and a realization of the simple Thomas process we 
detect only subtle differences, the observed pattern has somewhat more scattered points and 
the simulated pattern has more well delineated clusters with larger gaps:   
 

 
 
Automated fit of simple Thomas process 
 
The simple Thomas process can also be fitted in an automated way by using the procedure 
developed for the Thomas process with two critical scales of clustering. Steps 1-8 are the 
same as before, then: 

11. A window “Fit of cluster process to data” opens. Select in the section “Null models” at the 
bottom “Univar. double-cluster”.  

12. Select “Univariate” and click “automated” 

 

13. Enable “single cluster” and click the small “Ok” button. You can also change the 
distance interval (r0, rmax) 

 

14. Programita then fits the simple Thomas process over the interval (r0, rmax) to the 
data.   
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Generalized simple Thomas processes. Example Book_Fig4_11e_k=10.res

 
Example Book_Fig4_11e_k=10.res (fit parameters σ, ρ, and k) 
 
This example continues the above example Book_Fig4_11e_k=1000.res, but now simulates a 
generalized Thomas process with parameter k = 10.    
 

1. The simulation of the simple Thomas process is terminated. To 
access the menu of the Thomas process click the button 
“Parameters” in the window “Select a null model”.  

2. To select a value of k = 10  that corresponds to fk = 1.1, click the 
check box “neg. Binom” and write 10 in the corresponding text 
box:  
 

 
 

3. If you now click the “ok”  and the “Calculate 
Index” you simulate the generalized Thomas process with k = 10 
that fits the observed pair correlation and L-function. The simulated 
patterns now resemble the observed one better but there are still too 
large gaps: 

 

 
 
and the spherical contact distribution Hs(r) and the distribution 
function Dk(r) of the distances to the kth neighbor (here the 6th 
neighbor) are only slightly better fitted than before: 
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Generalized simple Thomas processes. Example Book_Fig4_11e_k=1.res 
 
Example Book_Fig4_11e_k=1.res (fit parameters σ, ρ, and k) 
 
This example continues the above example Book_Fig4_11e_k=1000.res, but now simulates a 
generalized Thomas process with parameter k = 1 (the parameter used to generate the pattern). 
 

1. The simulation of the simple Thomas process is terminated. To 
access the menu of the Thomas process click the button 
“Parameters” in the window “Select a null model”.  

2. To select a value of k = 1  that corresponds to fk = 2, click the check 
box “neg. Binom” and write 1 in the corresponding text box:  
 

 
 

3. If you now click the “ok”  and the “Calculate 
Index” you simulate the generalized Thomas process with k = 1 
that fits the observed pair correlation and L-function. The simulated 
patterns now resemble the observed one very well: 

 

 
 
and the spherical contact distribution Hs(r) and the distribution 
function Dk(r) of the distances to the kth neighbor (here the 6th 
neighbor) are also well fitted: 
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Generalized simple Thomas processes. Example Book_Fig4_11e_k=01.res

 
Example Book_Fig4_11e_k=01.res (fit parameters σ, ρ, and k) 
 
This example continues the above example Book_Fig4_11e_k=1000.res, but now simulates a 
generalized Thomas process with parameter k = 0.1. 
 

1. The simulation of the simple Thomas process is terminated. To 
access the menu of the Thomas process click the button 
“Parameters” in the window “Select a null model”.  

2. To select a value of k = 0.1  that corresponds to fk = 11, click check 
box “neg. Binom” and write 1 in the corresponding text box:  
 

 
 

3. If you now click the “ok”  and the “Calculate 
Index” you simulate the generalized Thomas process with k = 0.1 
that fits the observed pair correlation and L-function. The simulated 
patterns now show a somewhat to dispersed pattern with too much 
scattered points: 

 

 
 
and the spherical contact distribution Hs(r)  and the distribution 
function Dk(r) of the distances to the kth neighbor (here the 4th 
neighbor) are not well fitted: 
 

 
 
the simulated pattern now has too small gaps and the 4th neighbor is 
too far.  
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Generalized simple Thomas processes. Example Book_Fig4_11e_k=01.res 
 
Summarizing the fits with the Dk(r) we see that the spherical 
contact distribution Hs(r) and the distribution function Dk(r) of the 
distances to the kth neighbor (i.e., the pointwise simulation 
envelopes) change systematically with changing clumping 
parameter k:  
 
k = ∞: 

 
 
 
 
k = 10: 

 
 
 
k = 1: 

 
 
 
 
k = 0.1: 
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Superposition of CSR and a simple Thomas process

 

3.3.4 Superposition of CSR and a simple Thomas process 

This example illustrates a second generalization of the simple Thomas process with one scale 
of clustering that allows description of a clustered pattern with more “isolated” points than 
expected by the simple Thomas process.  
 
The first option to accomplish this was using the negative Binominal distribution pS to 
describe the number of points S per cluster. Clearly, if k is relatively small (e.g., k = 1 or 0.1) 
there will be much more clusters with only one point (i.e., isolated points) than expected by 
the simple Thomas process (see e.g., insets in Figures 4.11b, f, and j in Wiegand and Moloney 
2014). For example, the generalized Thomas process with k = 0.1 yields 550 clusters, 422 are 
empty (i.e., S = 0) and 42 have only one point (= 32% of all clusters with at least one point) 
while the corresponding simple Thomas process does not show isolated points (see Fig. 
4.11b).  
 
The second option is an independent superposition of a simple Thomas process with a CSR 
pattern (for details see sections 3.3 and 3.3.5 “Examples of the Superposition of a Thomas 
Process with a Random Pattern” in Wiegand and Moloney 2014). The nice feature of the 
Thomas process is the superposition with CSR does not change the functional form of the 
analytical solution of the pair correlation function (and the K-function) of the Thomas 
process. We obtain: 
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where the parameter c is the proportion of points of the pattern belonging to the Thomas 
process. In practical terms this means that superposition with CSR does not change the 
functional form of the Thomas process, and that we can therefore find for each value of c a 
simple Thomas process (where c = 1) with exactly the same pair correlation (and K-) function. 
The parameter of this simple Thomas process that describes the number of clusters yields ρS = 
ρ/c2 where ρ is the parameter of the generalized Thomas process. That means that 
superposition with CSR generates a pair correlation function that seems to have more clusters. 
 
This also means that fitting with second order properties alone does not allow us to determine 
the proportion (1- c) of isolated CSR points. However, other summary functions of different 
nature such as the spherical contact distribution Hs(r) and the distribution function Dk(r) of 
the distances to the kth neighbor may allow us to approximate the value of c. Thus, we need 
to fit first with the pair correlation and the L-function to obtain estimates of σ and ρ and 
simulate several generalized Thomas processes with different proportions 1- c of random 
points, but adjust the number of clusters of the simulated generalized Thomas processes in a 
way that the pair correlation function does not change (i.e., ρ

then 

S = ρ/c2). We then can check the 
fit of Hs(r) and D(r) for different values of c and indirectly determine the value that fits Hs(r) 
and Dk(r) best.  
 
Note that you cannot simulate an independent superposition of a random pattern with a 
generalized Thomas process with a negative Binominal distribution. Such a process is not 
implemented in Programita and it would be difficult to determine the parameters with any 
confidence.   
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Superposition of CSR and a simple Thomas process. Example Book_Fig4_11CSR0.res 
  
Example Fig4_11CSR0.res (fit parameters σ, ρ, and c) 
 
This example file was generated with a generalized Thomas process with 
parameters σ =6, Aρ = 50, and k = 1 (c = 0.84; 100 isolated points). 
 

1. Execute Programita. 
2. Highlight data file Book_Fig4_11csr100.dat in Input data and click the small 

“ok” button.  
3. Select bin of 1m window Select a new cell size 
4. Select a ring width of 3 in the menu “Which method will you use” 
5. Accept selection of neighborhood ranks for estimation of Dk(r). 
6. Press button “Calculate Index” 
7. Click the checkbox “Calculate simulation envelopes” to be found in the 

menu “What do you want to do?” on the top left of the interface.  
8. Select “Cluster process” in the window “Select a null model”.  
9. A window “Fit of cluster process to data” opens. Select in the section “Null 

models” at the bottom “Univar. cluster”. Continue with the small ok 
button. 

10. Fit the parameters σ, and ρ by clicking the “fit” button and if needed 
“Zoom” and “fit”.  As expected, you obtain a good fit (σ =5.4, Aρ = 47 in 
the example below).  
 

 
 

If you now click the “ok”  and the “Calculate Index” 
you simulate the simple Thomas process (i.e., k = ∞, c = 1).  
 

11. As expected, the pair correlation and L- function are perfectly fitted: 
 

  
 
but the spherical contact distribution Hs(r) and the distribution function 
Dk(r) of the distances to the kth neighbor (here the 1th neighbor) not:  
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Superposition of CSR and a simple Thomas process. Example Book_Fig4_11CSR0.res

 

  
 
The spherical contact distribution is underestimated which means that the gaps in the 
simulated pattern are too large (clearly the interspersed random points are missing) and the 
distribution function of the distances to the nearest neighbor is overestimated which means 
that the nearest neighbors in the simulated patterns are in general too close. Clearly, the 
isolated points of the CSR component have their nearest neighbor not within a cluster but 
usually much farther away.   
 
When looking at the observed pattern and a realization of the simple Thomas process we 
detect only subtle differences, the observed pattern has somewhat more isolated points:   
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Superposition of CSR and a simple Thomas process.  Example Book_Fig4_11CSR100.res 
 
This example continues the above example Fig4_11CSR0.res, but now simulates a 
generalized Thomas process with the parameter c = 0.84 (i.e., 100 isolated points) that were 
used to generate it. 
 

1. The simulation of the simple Thomas process is terminated. To access the menu of the 
Thomas process click the button “Parameters” in the window “Select a null model”.  

2. To select 100 random points click the checkbox “neg. Binom” and “# isolated 
points” and write 100 in the corresponding text box:  
 

 
 
A value of k = 9999 appears automatically to represent a Poisson distribution for pS. If 
you would select a different value for k it will be reset to 9999 since this more 
complex combination of processes is not implemented in Programita. 
 

3. If you now click the “ok”  and the “Calculate Index” you 
simulate the simple Thomas process with 526 points, independently superposed with 
100 random points that fits the observed pair correlation and L-function. The 
simulated patterns now resemble the observed one well: 

 

 
 
and the spherical contact distribution Hs(r) and the distribution function Dk(r) of the 
distances to the kth neighbor (here the 1th neighbor) fitted well: 
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Simple bivariate parent-offspring Thomas process.  Example Book_Fig4_13_bi.res

  

3.3.5 Simple bivariate parent-offspring Thomas process 

This example illustrates use of a Thomas process where the cluster centers are known. This 
cluster process was first presented in Jacquemyn et al. (2007) and Wiegand et al. (2007). In 
this case we have two patterns, pattern 1 are the cluster centers and pattern 2 the pattern that 
is assumed to follow a simple Thomas process.  
 
Programita offers two point process models to analyze this data type:  
 In the first case the bivariate second-order statistics between the points (pattern 2) and 

the cluster centers (pattern 1) is fitted.  
 In the second case the standard Thomas process is used to fit the univariate pattern 2, 

but the simulation of the point process uses the known cluster centers (pattern 1).  
 
The bivariate pair correlation functions of the bivariate pattern yields (equation 4.13 in 
Wiegand and Moloney 2014): 
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where λ1 = ρ2 is the intensity of pattern 1 (i.e., the cluster centers).   
 
Programita fits the parameters λ1 and σ2 of this point process and then simulates the 
univariate Thomas process with known parents.  
 
Example Book_Fig4_13_bi.res 
 
This example file was generated with a simple Thomas process with 157 points and 
parameters σ2 = 13.3 and A λ1 = 35 random clusters. 
 

1. Execute Programita. 
2. Highlight data file Book_Fig4_13.dat you want to analyze in Input data and click the 

small “ok” button.  
3. Select bin of 1m window Select a new cell size 
4. Select a ring width of 3 in the menu “Which method will you use” 
5. Click button “change” below to set maximal distance r to be analyzed. Insert 100 in 

small box that opens and then the small ok button.  
6. Accept selection of neighborhood ranks for estimation of Dk(r). 
7. Press button “Calculate Index” 
8. Programita then shows the pattern, the univariate pair correlation function of the 

cluster centers and the bivariate pair correlation function of the points around their 
parents: 
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Simple bivariate parent-offspring Thomas process.  Example Book_Fig4_13_bi.res 
 

 
 
The pair correlation function of pattern 1, which is not of interest here, is somewhat 
rugged because pattern 1 has few points (i.e., 34 clusters). 
  

9. Click the checkbox “Calculate simulation envelopes” to be found in the menu “What 

do you want to do?” on the top left of the interface. 
10. Select “Cluster process” in the window “Select a null model”.  
11. A window “Fit of cluster process to data” opens. Select in the section “Null models” at the 

bottom the button “Bivar. linked double-cluster”.  
 

 
 
Now this window appears that asks you to provide the parameters from the univariate 
analysis of pattern 1 (i.e., the cluster centers): 
 

 
 
This is because the implementation of Programita uses here the equation for the more 
general point process where the cluster centers follow a simple Thomas process. See 
section 4.1.4.4 “Bivariate Parent–Offspring Thomas Processes” in Wiegand and 
Moloney (2014). The equation  used for fitting is equation 4.14: 
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Because pattern 1 is in the example pattern “Book_Fig4_13.dat” a random pattern, 
you can recover the equation of the more simpler point process where the cluster 
centers following CSR, i.e.,  
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Simple bivariate parent-offspring Thomas process.  Example Book_Fig4_13_bi.res
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by selecting parameters σ1 and ρ1 that correspond to CSR for pattern 1, e.g., σ1 = 
1111 and 100ρ1 = 1. In this case the second term 

)2,(
1 2

2
2
1

1




rh  

 
approximates zero. Thus, insert σ1 = 1111 and 100ρ1 = 1 
 

 
 
and click the small “ok” button and then again the small “ok” button in the next 
window: 
 

  
 

12. Fit the parameters σ, and ρ over the distance 1 to 80: 
 

 
 
As indicated by the L-function, the fit is good and even the fitted number of cluster 
centers (34.2) coincides well with the known number (i.e., 34).  
 
If the fitted number of cluster centers is larger than the number of points of pattern 1 
(here 34), a warning appears and the known number of points of pattern 1 is used 
instead of the fitted parameter Aρ2 for the number of cluster centers. If the fitted 
number of clusters is smaller than the known number of points of pattern 1 a reduced 
number of cluster centers is randomly selected among the points of pattern 1. 
 
Click the small “ok” buttons and the “Calculate Index”. Programita now simulates 
the pattern 2 of the fitted point process using the locations of pattern 1 as cluster 
centers: 

 81



  
Simple bivariate parent-offspring Thomas process.  Example Book_Fig4_13_bi.res 
 

 
 

13. The pair correlation and L- function are well fitted: 
 

  
 
and the distribution functions Dk(r) of the distances to the kth neighbors as well (here 
the 1th and 6th neighbor):  
 

  
 

 
Note that fitting the bivariate parent-offspring Thomas process where the known cluster 
centers (i.e., pattern 1) are themselves clustered follows exactly the same procedure. The 
only difference is that you need to provide in step 11 the parameters fitted to the clustered 
pattern 1. Test for example with the data of file Book_Fig4_14.dat: 
 

 
 
Note also that the bivariate parent-offspring Thomas processes with known parents are 
somewhat sensitive to the assumption that the parents follow CSR or a simple Thomas 
process. If this assumption is not well met, you may better use the equivalent Cox process 
presented in example Book_Fig4_18.res below which makes no assumptions on the pattern 
of the cluster centers. 
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Simple bivariate parent-offspring Thomas process.  Example Book_Fig4_13_uni.res

 
Example Book_Fig4_13_uni.res 
 
This example analyzes the same data set as example Book_Fig4_13_bi.res, but with a 
different method. In this case pattern 2 is fitted to a simple Thomas process and then in the 
simulation of the fitted point process the points of pattern 1 are used as cluster centers.  
 

1. Execute Programita. 
2. Highlight data file Book_Fig4_13.dat you want to analyze in Input data and click the 

small “ok” button.  
3. Select bin of 1m window Select a new cell size 
4. Select a ring width of 3 in the menu “Which method will you use” 
5. Accept selection of neighborhood ranks for estimation of Dk(r). 
6. Press button “Calculate Index” 
7. Click the checkbox “Calculate simulation envelopes” to be found in the menu “What 

do you want to do?” on the top left of the interface. 
8. Select “Cluster process” in the window “Select a null model”.  
9. A window “Fit of cluster process to data” opens. Select in the section “Null models” at the 

bottom the button “Univar. double cluster”.  
 

 
 
Now the below window appears. Select radio button “Bivariate” because you use the 
points of pattern 1 as cluster centers. Provide the parameters from the univariate 
analysis of pattern 1 (i.e., the cluster centers): 
 

 
 
Again, this is because the implementation of Programita uses here the equation for 
the more general point process where the cluster centers follow a simple Thomas 
process. See section 4.1.4.5 “Generalized Thomas Process with Two Nested Scales of 
Clustering” in Wiegand and Moloney (2014). The equation used for fitting is equation 
4.17. 
 
Because pattern 1 is in the example pattern “Book_Fig4_13.dat” a random pattern, 
you can, in the same way as in the previous example, recover the equation of the 
simple Thomas process where the cluster centers following CSR by selecting 
parameters σ1 and ρ1 that correspond to CSR for pattern 1, e.g., σ1 = 1111 and 100ρ1 
= 1. Thus, insert σ1 = 1111 and 100ρ1 = 
 

1 
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Simple bivariate parent-offspring Thomas process.  Example Book_Fig4_13_uni.res 
 

and click the small “ok” button and then again the small “ok” button in the next 
window. 
 

 
 

10. Fit the parameters σ, and ρ over the distance 1 to 50 by clicking the small button “fit”:
 

 
 
With clicking “zoom” you can restrict the parameter space and obtain a better fit.  
 
As indicated by the L-function, the fit is good and even the fitted number of cluster 
centers (34.4) coincides well with the known number (i.e., 34).  
 
If the fitted number of cluster centers is larger than the number of points of pattern 1 
(here 34), a warning appears and the known number of points of pattern 1 is used 
instead of the fitted parameter Aρ2 for the number of cluster centers. If the fitted 
number of clusters is smaller than the known number of points of pattern 1 a reduced 
number of cluster centers is randomly selected among the points of pattern 1. 
 

11. Click the small “ok” buttons and the “Calculate Index”. Programita now simulates 
the pattern 2 of the fitted point process using the locations of pattern 1 as cluster 
centers (note that the colors are exchanged in the simulated pattern): 
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Simple bivariate parent-offspring Thomas process.  Example Book_Fig4_13_uni.res

 
The pair correlation and L- function are well fitted: 
 

  
 
and the distribution functions Dk(r) of the distances to the kth neighbors (here the 1th 
neighbor) and the spherical contact distribution as well:  
 

  
 
Note that fitting the bivariate parent-offspring Thomas process where the known cluster 
centers (i.e., pattern 1) are themselves clustered follows exactly the same procedure. 
The only difference is that you need to provide in step 12 the parameters fitted to the 
clustered pattern 1: 
 

 
 

Test for example with the data file Book_Fig4_14.dat 
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Thomas process with two nested scales of clustering 
  

3.3.6 Thomas process with two nested scales of clustering 

This point process is a generalization of the (generalized) simple Thomas process where the 
pattern of cluster centers does not follow CSR (as in the generalized simple Thomas process), 
but can itself be a (generalized) simple Thomas process. This leads to clusters inside clusters 
and a nested cluster structure as shown below: 
 

 
 
Details on this point process model can be found in section 4.1.4.5 “Generalized Thomas 
Process with Two Nested Scales of Clustering” in Wiegand and Moloney (2014).  
 
The pair correlation function of this point process is shown in equation 4.17: 
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 . This point process has six free parameters: 

 S: the parameter that describes the size of the small clusters 
 ρS: the intensity of the small clusters (governing the number of small clusters) 
 fkS = (kS + 1)/kS where kS is the parameter of the negative Binominal distribution that 

governs the distribution of points over the small clusters 
 L: the parameter that describes the size of the large clusters 
 ρL: the intensity of the large clusters (governing the number of large clusters) 
 fkL = (kL + 1)/kL where kL is the parameter of the negative Binominal distribution that 

governs the distribution of the number of small clusters over the large clusters 
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Thomas process with two nested scales of clustering

 
The above equation for the pair correlation function of the double cluster process is 
composed of three summands. The first summand (1) is the contribution which remains if the 
two other summands disappears when the pattern is a CSR pattern. The second summand is 
only due to the small-scale clustering, and the third summand contains an interaction 
between small- and large-scale clustering, indicated by sum.  
 
As we saw before when introducing the generalized simple Thomas process, the parameters 
kL and kS cannot be fit with the g- or L-function, but need to be indirectly determined by 
comparing the resulting fit of other summary functions such as the spherical contact 
distribution and the distribution function of the distances to the kth neighbor. Thus, we are 
left with the task to fit four unknown parameters to the second-order summary functions. 
 
Programita uses for this a simple two-step procedure which is based on separation of scales. 
If the two critical scales of clustering are well separated, i.e.,  S << L 
 we can first fit the parameters ρL and L of the large scale clustering using a distance 

interval that starts with distance larger than ≈ 2S. In this case the second summand 
will be very small and because of S << L the third summand will be dominated by


 

cale 
L. Thus, in this case we basically fit the generalized simple Thomas process to the 

data and obtain unbiased estimates for the parameters ρL and sum of the large s
clustering.  

 Second, we use the estimates of ρL and L and fit the unknown parameters ρS and S of 
the small scale clustering now using the entire distance interval. Finally, we use the 
estimate of S to estimate L using 

22 . Note that the fitting procedure of 

Programita uses 

2
SsumL  

sum in the third summand and estimates S via the second summand. 
 
Algorithm to fit univariate double cluster Thomas process 
 
Programita uses an automated fitting algorithm based on the two-step idea outlined above. 
One essential auxiliary parameter of the two-step approach is the distance r0L where the 
small-scale clustering component just disappears. While this parameter can be relatively well 
adjusted by hand, the automatic procedure requires repeating the fit for different values of r0L 
and to select the one that produces the best overall fit. 
Programita conducts the fit over distance interval (r0, rmax) which you can select in the 
settings of the double cluster Thomas process. 

 
 
Programita varies the auxiliary parameter r0L over the interval (r0, r0,max) where  
r0,max = trunc(rmax/2.5). For example for rmax = 50, r0L is varied over the interval (r0, 20) in 
steps of Δr = 1+trunc([r0max–r0]/10). For r0 = 2 and rmax = 50 we obtain steps of Δr = 2.  
 
 

 87



  
Thomas process with two nested scales of clustering. Example Book_Fig4_15b.res 
 
To fit the four parameters σL, ρL, σS, ρS for a given value of r0L (subscripts L and S stand for 
large- and small-scale clustering, respectively), Programita fits first the two parameters ρL 
and L of the large-scale clustering:  
 To do this Programita samples the ρL - L 

parameter space based on all parameter 
combinations of a grid. To do this the 
parameter interval of each parameter is divided 
per default into 128 bins (this setting can be 
changed).  

 
Programita minimizes for the fit the 
discrepancy error_Lg between the observed 
and the theoretical g(r) and L(r) predicted by 
the double-cluster Thomas process over the 
interval (r0L, rmax). In the example, r0L = 10. 
Smaller r values are not considered in the first 
step of the fitting procedure. 

 

 

 
The small plots show the minimal value of error_Lg for a given value of 
L (taken over all values of ρL) (left) and for a given value of ρL (taken 
over all values of L) (right). The minimum should be sharp and in the 
middle of the interval. 
 

The discrepancy error_Lg is the geometric mean of the individual discrepancies error_L and 
error_g of the L- and g-function, respectively. For example, the error_g is basically the sum 
of squares of the difference between observed and theoretical g(r), by divided by the total 
sum of squares of the observed g(r): 
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Additionally, to have more flexibility, the L- and g-function are power transformed with 
power c. If you like, you can base the fit also only on the pair correlation function or only on 
the L-function. However, it is recommended to base the fit on both second-order statistics 
because the g-function is more sensitive to small-scale clustering and the L-function to large-
scale clustering. The corresponding settings can be changed here: 
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Thomas process with two nested scales of clustering. Example Book_Fig4_15b.res

 
In a next step the parameters σL = 12.78 and ρL = 0.0125/100 of the large-scale clustering are 
kept fixed and the parameters σS and ρS of the small-scale clustering are fitted. 

To do this Programita now samples the ρS - S 
parameter space based on all parameter 
combinations of a grid. To do this the 
parameter interval of each parameter is divided 
per default into 128 bins (this setting can be 
changed). 

 
Programita minimizes for the fit again the 
discrepancy error_Lg between the observed 
and the theoretical g(r) and L(r) predicted by 
the double-cluster Thomas process, but now 
over the entire distance interval (r0, rmax).  

 

The small plots show the value of error_Lg for a given value of S 
(taken over all values of ρS) (left) and for a given value of ρS (taken o
all values of 

ver 

.  
S) (right). The minimum should be sharp and in the middle 

of the interval
 

The examples shows a good fit with error_Lg = 0.000793. For each 
value of the auxiliary parameter r0L Programita memorizes the 
smallest error_Lg and the corresponding parameters. Once all 
values of r0L are tested, the final fit is given by those that show the 
smallest value of error_Lg.  
 

As shown on the left, Programita found a 
slightly better fit with error_Lg = 0.000496.  
 
 
Note that the velocity of the fit depends on the 
square of the number of bins, but more bins 
allows for a more detailed fit. In general, 128 
bins produce good fits.  
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Thomas process with two nested scales of clustering. Example Book_Fig4_15b.res 
 
Example Book_Fig4_15b.res (fit parameters σL, ρL, σS, ρS) 

istribution.  

ook_Fig4_15a.dat you want to analyze in Input data and click the 

 ranks for estimation of D (r). 

pes” to be found in the menu “What 

odels” at the 
bottom “Univar. cluster”. Next enable “Univariate” and “automated”: 

 
Now I explain the fitting procedure for the double-cluster Thomas process step-by-step. This 
example file is shown in Figure 4.15a in Wiegand and Moloney (2014). The data are the 
locations of small saplings of the species Shorea congestiflora from the Sinharaja plot in Sri 
Lanka. This data set was analyzed in detail in Wiegand et al. (2007a).  
 
To analyze this data set we first fit the Thomas process with two nested scales of clustering 
to the data, following the automated two-step procedure outlined above, and then simulate 
this point process with different parameters fkL and fkS of the negative Binominal 
d
 

1. Execute Programita. 
2. Highlight data file B

small “ok” button.  
3. Select bin of 1m window Select a new cell size 

k4. Accept selection of neighborhood
5. Press button “Calculate Index” 
6. Click the checkbox “Calculate simulation envelo

do you want to do?” on the top left of the interface.  
7. Select “Cluster process” in the window “Select a null model”.  
8. A window “Fit of cluster process to data” opens. Select in the section “Null m

 
Select also the distance interval (r0, rmax) used for fitting. You can also change the 
number of bins used for each parameter in the σ-ρ parameter space. Note that the ti
requirement for the fit scales with (# b 2

me 
ins) . Finally click the small “ok” button to 

9. Once Programita has finished this task, this window is shown: 
start the automatic fitting procedure.  

            
10. Finally, click the small “ok” button and then “Calculate Index” to simulate the fitted 

point process. 
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Thomas process with two nested scales of clustering.  Example Book_Fig4_15b.res

 
11. The simulated patterns are similar to the observed one, but there are not enough 

isolated points: 
  

 
 

12. The pair correlation function is well fitted, but there is an additional clustering at very 
small distances < 3m which also causes some smaller departures in the L-function: 
 

  
 
However, the spherical contact distribution is clearly underestimated (i.e., the gaps 
are too large in the simulated patterns) and the distribution function of the distances 
to the nearest neighbor are overestimated at distances > 5m which indicates that the 
data have more isolated points than the data generated by the cluster process: 
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Thomas process with two nested scales of clustering. Example Book_Fig4_15f.res 
 
Examples Book_Fig4_15f.res (fit parameters fkL, fkS) 
 
This example continues the previous example Book_Fig4_15b.res by using a negative 
Binomial distribution to generate a clumped distribution of the number of saplings over the 
small clusters. We select as in Figure 4.15f kL = ∞ (fkL = 1) and kS = 0.1 (fkS = 11). 
 

13. To access the parameter fitting window click “Parameters” at the Select a null model 
window, click “neg. Binom” at the “simulation” window, insert k = 9999 for the 
large scale clustering,  k = 0.1 for the small scale clustering, and then click the small 
“ok” button:  

      
 

14. After pressing the “Calculate Index” button Programita simulates the generalized 
cluster process with two nested scales of clustering. Comparison between data and 
simulated patterns shows that the simulated pattern still has too large gaps: 
 

 
  
If you select in the small window below the simulated pattern “Show parents and 
offspring” you can see additionally to the simulated pattern (red points) the cluster 
centers (of the small-scale clustering) as green points: 
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Thomas process with two nested scales of clustering. Example Book_Fig4_15f.res

 
15. Clearly, because of kS = 0.1 and fkS = 11 you have 11 times as much cluster centers as 

in the example above with fkS = 1.  
 
The fit of the spherical contact distribution does not improve but the fit of the 
distribution function of the distances to the nearest neighbor somewhat improves, thus 
the important feature of the data is probably not the distribution of the number of 
points over the small clusters: 
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Thomas process with two nested scales of clustering. Example Book_Fig4_15j.res 
 
Examples Book_Fig4_15j.res (fit parameters fkL, fkS) 
 
You can easily verify that the point process analogous to Book_Fig4_15f.res with parameters 
kL = 0.1 (fkL = 11) and kS = ∞ (fkS = 1) does also not much improve the fit of the spherical
contact distribution and the distribution function of the distances to the nearest neighbor. 

 

 

 
This example therefore continues the previous example Book_Fig4_15f.res by using a 
negative Binomial distribution to generate a clumped distribution of both, the number of 
small clusters over the large clusters and the number of saplings over the small clusters. We 
select as in Figure 4.15j parameters kL = 0.1 (fkL = 11) and kS = 0.1 (fkS = 11). 
 

1. To access the parameter settings of example Book_Fig4_15f.res click “Load Settings 
for Example”, highlight file Book_Fig4_15f.res, and click the small “ok” button.  

           
Now change in the “simulation” window the parameters k to insert k = 0.1 for the 
large scale clustering and k = 0.1 for the small scale clustering, and then click the 
small “ok” button. 
 

2. After pressing the “Calculate Index” button Programita simulates the generalized 
cluster process with two nested scales of clustering. Comparison between data and 
simulated patterns shows that the simulated pattern looks now very similar to the 
observed pattern: 
 

 
  
The fit of the Hs(r) is now perfect, and that of the DL(r) substantially improved. Note 
also that the GoF test of the Dk(r) was not significant for k > 3: 

  

 94 



  
Superposition of CSR and a double cluster process

  

3.3.7 Superposition of CSR and a double cluster process 

In the previous examples Book_Fig4_15b.res, Book_Fig4_15f.res, and Book_Fig4_15j.res 
we generalized the double-cluster Thomas process to produce a pattern with the same 
second-order structure but more isolated points. This was done by manipulating the 
distribution of the number of points over the clusters and by increasing the number of 
clusters.  
 
As already shown for the simple Thomas process in example Fig4_11CSR100.res, we can 
also generate a pattern with the same second-order structure but more isolated points if we 
independently superimpose a simple double cluster Thomas process (i.e., fkL = 1 and fkS = 1) 
with a CSR pattern (for details see section 4.1.4.6 “Independent Superposition of CSR within 
a Double Cluster Process”). A nice feature of the Thomas processes is that superposition with 
CSR does not change the functional form of the analytical solution of the pair correlation 
function (and the K-function). We obtain: 
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and the parameter pC is the proportion of points of the pattern belonging to the double-cluster 
Thomas process. 
 
In practical terms this means that superposition with CSR does not change the functional 
form of the Thomas process, and that we can therefore find for each value of pC a double 
cluster Thomas process (where pC = 1) with exactly the same pair correlation (and K-) 
function. The parameter of this double cluster Thomas process that describes the number of 
clusters yields ρS = ρ/pC

2 where ρ is the parameter fitted to the superposition process. That 
means that superposition with CSR generates a pair correlation function that seems to have 
more clusters. Comparison with the pair correlation function of the generalized double 
cluster process 
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shows that the parameter pC

2 of the superposition process plays the same role as the 
parameters fkL and fkS in the generalized double cluster Thomas process.  
 
As before, this means that fitting with second order properties alone does not allow us to 
determine the proportion (1- pC) of isolated CSR points. However, other summary functions 
of different nature such as the spherical contact distribution Hs(r) and the distribution 
function Dk(r) of the distances to the kth neighbor may allow us to approximate the value of 
pC. The procedure for this is exactly the same as for the generalized double cluster Thomas 
process described above. 
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Superposition of CSR and a double cluster process. Examples Book_Fig4_16e.res 
 
Examples Book_Fig4_16e.res (superposition with random pattern) 
 
This example continues the previous example Book_Fig4_15c.res by independently 
superimposing a simple double cluster Thomas process (i.e., fkL = 1 and fkS = 1) with CSR. 
 

1. To access the parameter settings of example Book_Fig4_15c.res click “Load 
Settings for Example”, highlight file Book_Fig4_15c.res, and click the small “ok” 
button. Then click the small “ok” button at the window “Fitted parameters” and the 
button “Parameters” at the Select a null model window: 

                 
 

2. Now click “# isolated points”, insert the number of points of the pattern that belong to 
the CSR pattern (80 in the example),  
  

 
 
and finally click the small “ok” button at the window “Fitted parameters”. 
 

3. After pressing the “Calculate Index” button Programita simulates the superposition 
point process. Comparison between data and simulated patterns shows that the 
simulated pattern looks very similar to the observed pattern: 
 

 
  
The fit of the Hs(r) is very good, the GoF test over distance interval 1-50m yields a P-
value of 0.36:  
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Superposition of CSR and a double cluster process. Examples Book_Fig4_16e.res

 

           
 
However, while the distribution function of the distances to the nearest neighbor is relatively 
close to the data, the Dk(r) fails for higher neighborhood ranks k, for example for k = 12: 
 

   
 
That means that the internal structure of the clusters is not well represented by the 
superposition process. This indicates that the generalized double cluster Thomas process 
presented above in example Book_Fig4_15f.res is a more likely model for this data set.  
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Superposition of two Thomas processes 
  

3.3.8 Superposition of two Thomas processes 

The previous example Book_Fig4_15b.res showed a Thomas process with two scales of 
clustering where the clusters where nested; i.e., small clusters where located inside large 
clusters. However, this is not the only possibility to generate univariate patterns with two 
scales of clustering. Stoyan and Stoyan (1996) proposed a point process resulting from the 
independent superposition of two simple Thomas processes. The additional parameter of this 
point process is the proportion pL of the points that belong to the Thomas process with large-
scale clustering. The pair correlation function for this point process yields: 
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For example, if both component processes have the same number of points (i.e., pL = 0.5), 
the contribution of clustering h(r, 20.5σ)/ρ of each component is only one quarter of that of 
the original process. Thus, clustering of the superposition process is substantially reduced 
compared with the clustering of the two component processes. (If we have also σL = σS we 
obtain, as expected, a process with only one scale of clustering, but with the double number 
of clusters).  
 
For comparison, the pair correlation function nested double cluster process yields: 
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Thus, the pair correlation function of the superposition of two simple Thomas processes has 
the same structure as that of the nested double cluster process. We can therefore fit the 
parameters ρL, σL, ρS, and σS by using the procedure of the nested double cluster process.
However, comparing the two equations suggests that small adjustments in the parameters are 
needed. If we fit with the procedure for the nested double cluster process we obtain 
parameters ρ

 

t 
L, σL, ρS, and σS, but to describe the superposition process we have parameters 

ρs
L, σs

L, ρs
S, and σs

S. The parameter σS does not change (i.e., σS
s = σS), but we need to adjus

the parameter σL
s that determines the size of the large clusters to 

 

   22
SL

s
L    

 
and the parameters ρL and ρS that determine the number of cluster centers must be 
transformed to     and    . Programita adjusts this 
automatically, but the *.res file outputs the parameters ρ

2
111 ps   )1( 2

112 ps  
L, σL, ρS, and σS. 
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Superposition of two Thomas processes:  Example Fig4_15super.res

 
Thus, the two components Thomas processes of the superposition process have fewer cluster 
centers than the corresponding nested process. Or in other words, to yield the same pair 
correlation function for the nested and the superposition double cluster process, the 
superposition process must have substantially less clusters than the corresponding nested 
process (i.e., ρs

L = ρL p2
L and ρs

S = ρS (1 – p2
L).   

 
One consequence of this is that in cases where the proportion pL of the points that belong to 
the Thomas process with large-scale clustering is small or large, we may have cases with 
(formally) less than one small or large cluster, respectively. Thus, one has to check if the 
parameters of the process make sense. In cases where one component process has less than 
one cluster Programita gives a warning and you can change the parameter pL to yield exactly 
one cluster. However, with one cluster the point process is not well represented; it should 
have several clusters to make sense.  
 
As before, fitting with second order properties alone does not allow us to determine the 
proportion pL of the points that belong to the Thomas process with large-scale clustering. 
However, other summary functions of different nature such as the spherical contact 
distribution Hs(r) and the distribution function Dk(r) of the distances to the kth neighbor may 
allow us to approximate the value of pL. 
 
 
Examples Fig4_15super.res (superposition of two Thomas processes) 
 
This example continues the previous example Book_Fig4_15b.res by fitting the point process 
that independently superimposes two simple Thomas processes to the data. 
 

1. To access the parameter settings of example Book_Fig4_15b.res click “Load 
Settings for Example”, highlight file Book_Fig4_15b.res, and click the small “ok” 
button. Then click the small “ok” button at the window “Fitted parameters” and the 
button “Parameters” at the Select a null model window: 

                 
 

2. Now click “2 Thomas”, and insert the number of points of the large-scale Thomas 
process (313 in the example yielding a proportion pL = 0.5),  
  

 
 
and finally click the small “ok” button at the window “Fitted parameters”. 

3. After pressing the “Calculate Index” button Programita simulates the superposition 
point process. Comparison between the simulated nested double-cluster process and 
the superposition process show clear differences. 
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Superposition of two Thomas processes:  Example Fig4_15super.res 
 

The superposition process shows many small clusters (49 vs. 198 for the double 
cluster process) and few large clusters (7 vs. 31 for the double cluster process): 
 
  data                                       nested double cluster              superposition 

   
  
As expected, the fit of the pair correlation function and the L-function of the 
superposition and the nested process are similar: 
 
        nested double cluster                            superposition 

 

  
 
Interestingly, the fit for the spherical contact distribution and the nearest neighbor 
distribution function are also similar: 
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Superposition of two Thomas processes:  Example Fig4_15super_500.res

 
4. Using instead a superposition process with a large-scale cluster process with 500 

points (and 126 points being part of the small-scale cluster process) we have 20 large 
clusters but 8 small clusters: 
 

 
 

5. The spherical contact distributions of the nested double cluster and the superposition 
process are similar: 
 
         nested double cluster                            superposition 

  
 
but the nearest neighbor distribution function changes: 
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Superposition of two Thomas processes:  TwoThomas313.res 
 
Examples TwoThomas313.res (superposition of two Thomas processes) 
 
In this example we use a pattern generated with the fitted superposition process in example 
Fig4_15super.res where both component processes had the same number of points (= 313). 
We fit this pattern to the superposition process of two simple Thomas processes.  

1. Execute Programita. 
2. Highlight data file TwoThomas313.dat you want to analyze in Input data and click the 

small “ok” button. 
3. Select bin of 1m window Select a new cell size 
4. Accept selection of neighborhood ranks for estimation of Dk(r). 
5. Press button “Calculate Index” 
6. Click the checkbox “Calculate simulation envelopes” to be found in the menu “What 

do you want to do?” on the top left of the interface.  
7. Select “Cluster process” in the window “Select a null model”.  
8. A window “Fit of cluster process to data” opens. Select in the section “Null models” at the 

bottom “Univar. cluster”. Next enable “Univariate” and “automated”: 

 
Select also the distance interval (r0, rmax) used for fitting. You can also change the 
number of bins used for each parameter in the σ-ρ parameter space. Note that the time 
requirement for the fit scales with (# bins)2. Finally click the small “ok” button to 
start the automatic fitting procedure.  

9. Once Programita has finished this task, this window is shown: 
 

 
 

10. Select the checkbox “2 Thomas” and insert true number of points of large scale 
clustering (313): 

 
 

11. Finally, click the small “ok” button and then “Calculate Index” to simulate the fitted 
point process. 
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Superposition of two Thomas processes:  TwoThomas313.res

 
12. As expected, the simulated and the observed pattern are very similar, we have 6 large 

clusters and 77 small clusters: 
  

 
 
As expected, the pair correlation function and the L function are well fitted: 
 

  
 
The spherical contact distribution is slightly overestimated but the distribution 
function of the nearest neighbor distances is well fitted: 
 

  
 
The parameters of the original point process are reasonably recovered: σS = 2.66 (vs. 
3.64), σL = 11.9 (vs. 13.3), AρS = 461 (vs. 199), and AρL = 24.9 (vs. 31.5). Because of 
the stochasticity of the point process and the low number of clusters we cannot expect 
a better fit between parameters used to simulate the point process and the fitted 
parameters of a realization of the point process. 

 
As exercise you can simulate the superposition process with different numbers of points of 
the large scale clustering. With 500 points (TwoThomas313_500.res) the spherical contact 
distribution is now underestimated and the distribution function of the nearest neighbor 
distances is also underestimated.  
 
With 250 points (TwoThomas313_250.res) the spherical contact distribution is now 
substantially overestimated but the distribution function of the nearest neighbor distances is 
well fitted. 
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Series of analyses with Cluster processes 
 

3.3.9 Series of analysis with cluster point processes 

A common task is to assess the clustering of several (plant) species in a community. In this 
case you need to fit a Thomas cluster point processes to the pattern of each species. To avoid 
the tedious task of conducting the fit for each species individually, Programita allows you to 
do this in an automated way. To this end you can select the files to be analyzed from a list 
and fit the three basic Thomas processes 
 

 simple univariate Thomas process with one critical scale of clustering (with a Poisson 
distribution governing the distribution of the points over the clusters) 

 the generalized Thomas process with two nested scale of clustering (with a Poisson 
distribution governing the distribution of the points over the clusters) 

 the superposition of two simple Thomas processes (with Poisson distributions 
governing the distribution of the points over the clusters) 

 
to the data based on the second-order summary functions g(r) and L(r). However, as show in 
Wiegand and Moloney (2014: sections 4.1.4.2, 4.1.4.5, and Figs. 4.11 and 4.15), although the 
second-order summary functions remain unchanged, different the distribution of the points of 
the clusters can produce patterns with largely different structure captured by the spherical 
contact distribution Hs(r) and the nearest neighbor distribution function D(r). Failure to 
account for such differences can severely limit the inference made by fitting cluster processes 
to the data. Therefore, you can additionally fit more detailed features of the Thomas processes 
not determined by the second-order summary functions: 
 

 change the distribution of points over the clusters from a Poisson distribution (random 
assignment to a cluster) to a negative Binominal distribution (clustered assignment) 

 assume an independent superposition with a CSR pattern 
 
This results in a wide range of point processes that allows for describing the detailed features 
of clustering for a wide range of clustered data. Programita conducts many individual 
analyses, outputs results files for each analysis, and one summary file that provides an 
overview over all analyses.  
 
Step-by-step example for series of analyses using the generalized 
Thomas process with two scales of clustering 

The example uses point patterns generated by example 
Book_Fig4_15j.res which generates patterns with two nested scales of 
clustering (S = 3.7, L = 14.2) and clustered assignment of points to 
the clusters (kS = 0.1, kL = 0.1). 

1. The first step is to conduct the analysis with one of the data files. 
Use for example the data file from analysis “Book_Fig4_15j.res” 
that was used to generate the patterns. Read the settings with 
“Load settings for Example” and repeat the analysis with 
“Calculate Index” 

2. Once this is done, select the check box “Series of analysis”. There 
are nine data file with names “Book_Fig4_15j_1.dat”, , ..., 
“Book_Fig4_15j_9.dat” to be analyzed in the same way as the 
original data file “book_Fig4_15a.dat” used in the example.  
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Series of analyses with Cluster processes

 
3. A window opens where you need to provide the specifications of 

your series of analysis. First click “File list” and “expand” to 
select the data files to be analyzed. Once all data files are 
highlighted click the small button “File list ok” and select a name 
for the analysis (e.g., SeriesDC_”). The output results files will be 
named based on this name.  

4. Disable “save bi_confidence” because you run an univariate 
analysis 

5. Provide distance interval (r0, rmax) for the GoF tests. In the 
example it is r0 = 2 and rmax = 50.  

6. Go to the box “Settings cluster” to select details of the cluster 
analysis. Provide distance interval (r0, rmax) for the fitting. In the 
example it is r0 = 2 and rmax = 50 (the same as for the GoF tests). 

7. Select “# bins”, the number of intervals the interval of the 
parameters is derived into. Programita tests the entire grid of the 
(, ρ) parameter space (i.e., [# bins]2 values are tested). The large 
the value the more precise is the estimate of the parameters but 
the longer the time requirement which increases with [# bins]2. 
Select for example 90 bins.  

8. Select “max sig” which gives the maximal value for parameter  
(100 in the example).  

9.  Select “iterations”. This value determines the number of 
“zooms” into (or out of) the parameter space to get fines 
parameter estimates. A value of 3 iterations produces good 
results, if you select more the procedure is slower.  

10. Select “single” only if you want to fit a single cluster process to the data.  

11. If you select “neg Bino”, Programita will first fit the standard Thomas process with two 
scales of clustering to the data (or with one scale of clustering if “single was selected”) 
and then simulate the patterns for ten different values of the parameters kL and kS that 
govern how the points are distributed over the large and small clusters, respectively. We 
use here values of kL = kS = 1000, 5, 1, 0.3, 0.1, 0.05, 0.03, 0.015, 0.0083, 0.0045, 
0.0025, 0.0014. Other options (e.g., kL = 1000, and kS variable) can be implemented if 
needed. This option works also together with the option “single”. 

12. If you select “superposition with CSR” Programita will first fit the standard Thomas 
process with two scales of clustering to the data (or with one scale of clustering if 
“single was selected”) and then simulate the patterns for ten proportions of points being 
part of a CSR component pattern. The maximal percentage of CSR points can be 
selected with “max. percent CSR points”.  

13. If you select “2 Thomas” Programita will first fit the standard Thomas process with two 
scales of clustering to the data (or with one scale of clustering if “single was selected”) 
and then simulate the patterns of the corresponding superposition of two Thomas 
processes with one scale of clustering for ten different values of proportion of points 
being part of the large scale Thomas process. 

14. If all settings are correct, click the large “ok” button and then “Calculate index”. 

 

 105



  
Series of analyses with Cluster processes 
 
 
Programita outputs for each analysis a  number of files: 

1. if “save *.res file” was enabled Programita saves *.res file that 
contains all settings of this particular analysis. In the example, 
because “neg Bino” was enabled, Programita saves ten numbered 
results files for each data file because ten different values for kL 
and kS were tested. They are named for the nth data file 
“SeriesDC_n_1.res”, “SeriesDC_n_10.res” (based on the name 
you select in “Give trunk-name of data file”).  

2. if “save uni_confidence” was selected, Programita saves for 
each data file (numbered consecutively) the files 
“Uni_confidence1.env”, …“Uni_confidence10.env”.  

3. If any of the “Additional *.env files for” was selected, 
Programita outputs the *.env files for each the selected summary 
functions for each analysis. They are named for the nth data file: 

   g(r)_SeriesDC_n_1.env,.., g(r)_SeriesDC_n_10.env 

   L(r)_SeriesDC_n_1.env,.., L(r)_SeriesDC_n_10.env 

   D1(r)_SeriesDC_n_1.env,…., D1(r)_SeriesDC_n_10.env 

   Hs(r)_SeriesDC_n_1.env,…., Hs(r)_SeriesDC_n_10.env 

… 

4. To document the fit, Programita saves for the nth data file a file 
fitDC_dataname_n.txt that shows the best fitting parameters for 
the different values of the auxiliary parameter r0L that gives the 
distance r0L where the small-scale clustering component just 
disappears. In the example we find that a value of r0L = 12 
produces the smallest error and was therefore selected: 
  

 

5. Finally, Programita outputs one large table that summarizes the 
results of the series of analyses named in the example 
“Summary_FitDCseriesDC_.txt”. … 
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Series of analyses with Cluster processes

 
The results table 

Each line of the results table corresponds to the results of one analysis for one summary 
function out of the four summary functions g(r), L(r), D(r) and Hs(r). In the example we have 
nine data files, ten values of kS, and four summary functions which results in 9×10×4 = 360 
lines. The lines are originally ordered by data file (Dataname), kS (kNegBino) and summary 
function (SumFunct) but it is better to order the table by SumFunct, Dataname, kNegBino.  
 

The results file contains the following columns: 

1. Dataname: the name of the data file containing the coordinates of 
the pattern to be analyzed 

2. Intname: the name of the intensity file associated with the 
pattern. Only used if inhomogeneous second-order summary 
functions are used.  

3. nrpat1, nrpat2: number of points of pattern 1 and 2. For 
univariate analysis we have nrpat2 = 0.  

4. kNegBino, kNegBinoS: the values of kS and kL of the negative 
Binominal distribution. A value of 1000 corresponds to the 
standard case of the Poisson distribution. The columns are only 
relevant if “neg Bino” was enabled.  

 
 
 
 
 
 

 

5. #isolatedP: the number of points belonging to the CSR component pattern. The columns 
is only relevant “superposition with CSR” was enabled. 

6. anzPointsLC: the number of points belonging to the large-scale Thomas process. Only 
relevant if “2 Thomas” was enabled. 

7. strengthCSR, strenghtLC, strenghtSC: measures of the relative contribution of CSR, 
large scale clustering and small-scale clustering to the value of the pair correlation 
function g(r0). The three values add up to one and are independent of kS and kL.  

We define strengthCSR = 1/g(r0), strenghtLC = stLC/g(r0), and strenghtSC = stSC/g(r0) 

where 
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8. sigL, rohL, sigS, rohS: the fitted parameters L, S, ρL, ρS. 
9. minLg: The value of the discrepancy error_Lg between the observed and fitted second-

order summary functions L(r) and g(r). Parameter fitting minimizes minLG. 
10. SSqr: The sum of squares between the observed summary function and the expected 

summary function of the fitted point process over the distance interval (r0, rmax) which 
was (2, 50) in the example.  

 
11. R2: The proportion of variation explained by the model over the distance interval (r0, 

rmax), calculated as 1-SSE/SST, where SSE=Σr[Fob(r) - Fpr(r)]2 and SST= Σr[Fob(r) -
mean(Fob)]2, Fpr(r) is the predicted summary function and Fob(r) is the observed one. 
Note that R2 < 0 if the intercept only model (i.e. mean(Fob)) fits better than the model. 
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12. rank: the rank of the Loosmore and Ford (2006) GoF test. For the 199 simulations of the 

point process model.  
13. SumFunct: the summary function, being g(r), L(r), D(r), or Hs(r). 
 
In the example, we varied the parameter kS and kL of the negative Binominal distribution to 
obtain non-random (i.e., non-Poisson) variability in the number of points per cluster. Because 
the values of second-order summary functions are not affected by the way how the points are 
distributed over the clusters, we need to use the nearest neighbor summary functions D(r) and 
Hs(r) to determine the values of kS and kL that produce the best fit. The results of the GoF test 
for the Hs(r) shows that the value kS = kL = 0.1 produces the best fit, and the values kS = kL =
0.1 produce also small sum of squares. Thus, we were able to recover the values of k

 
S and kL 

used for simulation of the pattern.  
 

 
 
 
For a more detailed assessment of the fit, the results file contains the following additional 
columns: 

14. obsSF(r= 0), …, obsSF(r= rmax): the values of the observed summary function 
15. expSF(r= 0), …, expSF(r= rmax): the values of the summary function expected under 

the point process model, being the mean of that of the simulated patterns.   
16. GRank: the rank of the global envelope test conducted for the given summary function 

over the distance interval (r0, .., rmax).  
17. G-, G+: the lower and upper global envelope of the global test of the student-transformed 

summary function.  
18. SES(r0), …, SES(r0max): the standardized effect sizes of the summary functions for the 

distance interval (r0, .., rmax). 

…  
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Step-by-step example for series of analyses using the superposition 
of a Thomas process with two scales of clustering with a random 
pattern 

The example repeats the above example but uses the superposition of 
a Thomas process with two scales of clustering with a random pattern 
instead. The example is based on the point patterns generated by 
example Book_Fig4_15j.res which generates patterns with two nested 
scales of clustering (S = 3.7, L = 14.2) and clustered assignment of 
points to the clusters (kS = 0.1, kL = 0.1).  

 

All steps 1 - 14 of the above example are identical, the only difference 
is that you do not select “neg Bino” (step 11) but “superposition with 
CSR” (step 12): 

12. If you select “superposition with CSR” Programita will first fit 
the standard Thomas process with two scales of clustering to the 
data (or with one scale of clustering if “single was selected”) and 
then simulate the patterns for ten proportions of points being part 
of a CSR component pattern. The maximal percentage of CSR 
points can be selected with “max. percent CSR points”.  

13. The example patterns Book_Fig4_15j_n.dat have 626 points, thus 
with a maximal percentage of 90% CSR points you have in the 
extreme case 63 points of the Thomas process and 563 random 
points.  

 

 
The results table is also identical, only the estimation of the columns strengthCSR, 
strenghtLC, strenghtSC differ because of the slightly analytical expressions of the pair 
correlation functions of two point processes.   
 
7.  strengthCSR, strenghtLC, strenghtSC: measures of the relative contribution of 

CSR, large scale clustering and small-scale clustering to the value of the pair 
correlation function g(r0). The three values add up to one and are independent of the 
parameter pC of the superposition process, which is the proportion of points of the 
pattern belonging to the double-cluster Thomas process: 

 

We define strengthCSR = 1/g(r0), strenghtLC = stLC/g(r0), and strenghtSC = stSC/g(r0) 

where 
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Step-by-step example for series of analyses using the superposition 
of two single cluster Thomas processes 

The example repeats the above example but uses the superposition of a 
Thomas process with two scales of clustering with a random pattern 
instead. The example is based on the point patterns generated by 
example Book_Fig4_15j.res which generates patterns with two nested 
scales of clustering (S = 3.7, L = 14.2) and clustered assignment of 
points to the clusters (kS = 0.1, kL = 0.1).  

 

All steps 1 - 14 of the above example are identical, the only difference 
is that you do not select “neg Bino” (step 11) but “2 Thomas” (step 
13): 

13. If you select “2 Thomas” Programita will first fit the standard 
Thomas process with two scales of clustering to the data (or with 
one scale of clustering if “single was selected”) and then simulate 
the patterns of the corresponding superposition of two Thomas 
processes with one scale of clustering for ten different values of 
proportion of points being part of the large scale Thomas process. 
The range of this proportion is defined in a way that the patterns of 
two extreme cases comprise two or more large or small clusters. To 
use a negative Binominal distribution to distribute the points over 
the clusters click “neg. Bin”.  

14. If you want to use generalized Thomas processes with one scale of 
clustering where the number of points per cluster follows a negative 
Bionomical distribution select “neg. Bin” and provide the k-values 
of the two distributions.  

 

 
The results table is also identical, only the estimation of the columns strengthCSR, 
strenghtLC, strenghtSC differ because of the slightly analytical expressions of the pair 
correlation functions of two point processes.   
 
7.  strengthCSR, strenghtLC, strenghtSC: measures of the relative contribution of 

CSR, large scale clustering and small-scale clustering to the value of the pair 
correlation function g(r0). The three values add up to one and are independent of the 
parameter pC of the superposition process, which is the proportion of points of the 
pattern belonging to the double-cluster Thomas process: 

 

We define strengthCSR = 1/g(r0), strenghtLC = stLC/g(r0), and strenghtSC = stSC/g(r0) 

where 
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 .and σL
s, ρL

s, ρL
s are the parameters 

of the superposition process that need to be transformed with respect to the parameters 
fitted with the procedure for the nested double cluster Thomas process.  
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Step-by-step example for series of analyses using a single cluster 
Thomas processes 

The example repeats the above example but uses the Thomas process 
with two one of clustering. The example is based on the point pattern 
Book_Fig4_12a.dat which was generated with one nested scales of 
clustering (L = 6, ρL = 0.02) and random assignment of points to the 
clusters (kS = 9999, kL = 9999). The fitted point process had very 
similar parameters (L = 5.91, ρL = 0.0221) and the patterns SC_1.dat, 
..., SC_9.dat are generated with the latter parameter set.  

All steps 1 - 14 of the above example are identical, use the settings file 
SC.rep to read the parameters of this point process. The only difference 
is that you do select additionally “single” and then “neg Bino” to test 
the generalized Thomas process with one scale of clustering and a 
negative Binominal distribution governing the distribution of the 
number of points over the clusters.  

10. If you select “single” and “neg Bino” Programita will first fit the 
standard Thomas process with one scale of clustering to the data 
and then simulate the patterns of the corresponding generalized 
Thomas processes with one scale of clustering for ten different 
values of the parameters kL that govern how the points are 
distributed over the clusters. We use here values of kL = kS = 1000, 
5, 1, 0.3, 0.1, 0.05, 0.03, 0.015, 0.0083, 0.0045, 0.0025, 0.0014 that 
cover the entire range of parameter values.  

11. If you select “single” and “superposition with CSR” Programita 
will first fit the standard Thomas process with one scale of 
clustering to the and then simulate the patterns for ten proportions 
of points being part of a CSR component pattern. The maximal 
percentage of CSR points can be selected with “max. percent CSR 
points”.  

12. The example pattern Book_Fig4_12a.dat has 626 points, thus with 
a maximal percentage of 90% CSR points you have in the extreme 
case 63 points of the Thomas process and 563 random points. 
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3.4 Inhomogeneous g- and K functions 

3.4.1 Estimators of inhomogeneous g- and K functions 

Inhomogeneous second-order statistics can be used in Programita for two different purposes. 
First, they offer a natural estimator of the second-order summary functions for irregularly 
shaped observation windows. In this case the *.int file that defines the intensity function 
λ(x) contains only the values “1” (inside the observation window) and “0” (outside the 
observation window). Second, the second-order statistics can be used to remove the effect of 
environmental heterogeneity represented by an intensity function λ(x). The inhomogeneous 
g- and K functions show then the residual clustering or overdispersion, conditionally on λ(x). 

You can use in Programita two different estimators of the inhomogeneous g- and K-
functions that are generalizations of the Ohser estimator (see Wiegand and Moloney 2014: 
sections 3.1.2.6 and 3.1.2.7). Recall that the general univariate estimator of the pair 
correlation function is given by 

   
, ,

2
1 1 1 1

( )1 1 1
ˆ( ) ( ) ( ) ( )

ˆ ˆ2  2  

n nn n
ij

i j ij i j
i j i j

w r
g r k r w r k r

r A r A  ˆ 

 

   

     x x x x   

where ̂  is an estimator of the overall intensity of the pattern in the observation window, the 
double sum counts all pairs of points that have the approximate distance r (defined by a box 
kernel with ring width dr), and wij(r) is an edge correction weight of point pair i‒j that 
attempts to compensate for the points j located in the rings (with radius r and width dr around 
point i) that are located outside the observation window. There are two main options for 
correcting this. 

The first option, the Ripley edge correction, basically scales the number of points in 
incomplete rings by a factor being the area of an incomplete circle (with origin at point i that 
passes through point j), relative to the area of the complete circle. This produces in general a 
different weight for each i‒j point pair. To extend this weight to a certain class of 
inhomogeneous patterns with intensity function λ(x), Baddeley et al. (2000) weighted each 
point i in the double sum by the value of the intensity function λ(xi) at the location xi of point 
i. The resulting estimator is then given by 
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For homogeneous patterns we have λ(x) = λ and the homogeneous estimator given above is 
recovered. A problem of  that can seriously limit its application is that λ(xˆ BMWg i) should not 
be small at the locations xi of the points. Programita therefore uses estimators based on the 
second option not affected by this problem. 

The second option of homogeneous edge correction, which is based on the Ohser weights, 
corrects only the expected final bias by estimating the mean area of rings with radius r and 
centers that are randomly distributed within the observation window. Thus, the weighting 
factor wO

i,j is only a function of distance r, but not of individual point pairs i‒j. The Ohser 
weight is given by wO(r) = A/ )(rW  where )(rW  is the so-called isotropized set covariance 

that can be estimated analytically for homogeneous patterns and simple shapes of the 
observation window.  
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The resulting Ohser estimator for homogeneous patterns is 
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where  is the natural estimator of the intensity. For inhomogeneous patterns (or 

irregularly shaped observation windows) a generalization of 

Ann /ˆ 
)(rW  can be obtained by means 

of simulations of a heterogeneous Poisson process with intensity function λ(x):  
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where  is the natural estimator of the intensity. The denominator contains a 

generalized, isotropised set covariance 
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which needs to be estimated numerically by  
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where the yi are the points of an auxiliary heterogeneous Poisson process of intensity 
function λ(x) that has a high number of points (= m) and . With this approximation 

we find  
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Note that the generalized isotropized set covariance ( , ( ))W r  x  need to be calculated only 

once and can then be used for all simulations of the null model. 

Programita offers also a version of this estimator based on adapted intensity estimators 
presented in Illian et al. (2008): 
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where only the second j‒point in each point pair i‒j is taken from the auxiliary pattern yi. 
This estimator therefore compares the relative number of points of the pattern in rings around 
the points xi with the relative number of points of the auxiliary pattern in rings around the 
points xi. In contrast to the Ohser estimator, the double-sum in the denominator must be 
evaluated each simulation of the null model because the xi change each simulation. This 
makes this estimator slower, even though it produces less variability. 
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Inhomogeneous g- and K functions. Example Book_Fig4_19b_Ohser.res 
  

3.4.2 Inhomogeneous g- and K functions in Programita 

One estimator of the inhomogeneous second-order summary functions is the inhomogeneous 
WM estimator detailed in equation 3.31 in Wiegand and Moloney (2014) and equation 3 
above. This is an adapted estimator that conducts internally an estimation of a heterogeneous 
Poisson process based on the selected intensity function (the pattern yj in equation 3). Thus, 
Programita simulates internally an auxiliary heterogeneous Poisson process for the 
estimation of the summary functions of both, the observed pattern and that of the simulated 
patterns. This makes the estimation somewhat slow. For this reason Programita uses the 
alternative Ohser estimator as default. 

The number m of points of the auxiliary heterogeneous Poisson process used to estimate the 
expected area of rings or circles around the points of the pattern is proportionally to n*m 
(adapted WM estimator) and proportionally to m*(m ‒ 1) (generalized Ohser estimator). To 
obtain reasonably quick numerical estimation of the inhomogeneous edge correction 
functions, Programita uses as default 

  m = 6000*6000/n       (adapted WM estimator) 
  m = 30000                  (generalized Ohser estimator) 

If you want to use more (or less) points than that of the default you can provide a factor in 
the Select a null model window left of the checkbox “Ohser” (0.5 in the example): 

  

The temporary file temp_ec.dat shows the points of auxiliary heterogeneous Poisson process 
of the first simulation. Clearly, the more points you use the slower the estimation. 

To speed up the estimation of the inhomogeneous summary functions Programita use the 
generalized Ohser estimator which is detailed in equation 3.29 and 3.30 in Wiegand and 
Moloney (2014) and in equation 2 above. This estimator is not adapted in a sense that it does 
not estimate (for irregularly shaped observation windows) the expected area of rings or 
circles around the actual points of the pattern (as the corresponding WM estimator), but it 
estimates a generalization of the isotropized set covariance (equation 3.30) that yields 
basically the expected area of rings or circles around the points of a heterogeneous Poisson 
process based on the intensity function selected. The advantage is that the generalized 
isotropized set covariance needs to be estimated only once (because it is independent on the 
actual locations of the points of the pattern), and once estimated it can be applied to both, the 
estimation of the inhomogeneous summary functions of the observed pattern and the 
simulated patterns. 

The number of points of the auxiliary heterogeneous Poisson process for the generalized 
Ohser estimator ranges will be in general lower than that of the adapted WM estimator, with 

     m = 30000                       (generalized Ohser estimator) 

To use the inhomogeneous Ohser estimator click the check box “Ohser”: 

 .  
 



  
Inhomogeneous g- and K functions. Example Book_Fig4_19b_Ohser.res

 
Using the Ohser estimator in example Book_Fig4_19b_Ohser.res instead of the WM 
estimator (example Book_Fig4_19b) yields almost the same results (see below 
“Inhomogeneous Thomas process” for step-by-step instructions): 

                          adapted WM                                           Ohser 

  

   

You can also fit an inhomogeneous double cluster Thomas process; try for example the data 
set of Figure 3.13.  

You can also use the generalized inhomogeneous double cluster Thomas process with 
negative Binomial distributions to govern the distribution of the number of points over the 
clusters of the underlying homogeneous point process.  
  

3.4.3 Variability in estimation of inhomogeneous summary functions  

Because estimation of the inhomogeneous summary functions using the WM estimator uses 
an auxiliary (heterogeneous Poisson) pattern to estimate the edge correction it introduces a 
small stochastic variability. This variability can be easily assessed.  
 
Example Book_Fig4_19_var.res 
 

1. Execute Programita. 
2. Highlight data file Book_Fig4_19b.dat you want to analyze in Input data and click the 

small “ok” button.  
3. Select bin of 1m window Select a new cell size 
4. Select a ring width of 3 in the menu “Which method will you use” 
5. Accept selection of neighborhood ranks for estimation of Dk(r). 
6. Press button “Calculate Index” 
7. Click the checkbox “Calculate simulation envelopes” to be found in the menu “What 

do you want to do?” on the top left of the interface.  
8. Enable check box “Inhom g and K” and disable “Ohser” 
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9. The window “Select a file with the intensity function” appears where you select the intensity 
file you want to use for estimation of the inhomogeneous second-order summary 
functions (i.e., int_Book_Fig4_19.int). Select “pat 1” (because it is the intensity of 
pattern 1) and then click the small “ok” button: 

 
 

Programita now shows the intensity function and the pattern: 
 

   
 

10. Specify the number of simulations of the null model (199 in the example) and the rule 
for the estimation of simulation envelopes (here the 5th lowest and highest values of 
the summary function of the 199 simulated null model data sets). 

11. Select in the window Select a null model “Pattern 1 fix, pattern 2 CSR”. This null 
model does therefore estimate 199 times the summary functions of the observed 
pattern, thereby assessing the variability in the estimators of the inhomogeneous 
second-order summary functions.  

12. Click “Calculate Index”. Programita now estimates the inhomogeneous summary 
functions based on an auxiliary heterogeneous Poisson pattern with a default of m = 
6000*6000/n1 = 6000*6000/428 = 84,112 points. One example file with the auxiliary 
pattern is saved as temp_ec.dat. 

13. The variability in the estimators of the inhomogeneous second-order summary 
functions is extremely small: 
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Inhomogeneous g- and K functions. Example Book_Fig4_19_var.res

 
Example Book_Fig4_19_var06.res 
 
To investigate how the variability in the estimators of the 
inhomogeneous second-order summary functions depends on the 
number of points of the auxiliary pattern change the number of 
points in the Select a null model window by giving a factor that 
increases/decreases the number of points. In the example we use 
the minimum (50,000 auxiliary points) which yields a factor 0.6.   

First, with 50,000 auxiliary points the variability in the estimators 
of the inhomogeneous second-order summary functions is low:  
 

  
 
Second, with 15,000 auxiliary points (factor 0.178) the variability in the estimators of the 
inhomogeneous second-order summary functions becomes notable:  
 

  
 
Third, when using 4,200 auxiliary points (factor 0.05) the variability in the estimators of the 
inhomogeneous second-order summary functions becomes unacceptably large: 
 

  
 
When using the WM estimator for inhomogeneous second-order summary functions it is 
a good idea to first check if the number of auxiliary points provides a good compromise 
between estimation speed and variability.  
  



   
Cox processes 
  

3.5 Cox processes and inhomogeneous cluster processes 

Cox processes are a broad class of point processes that encompass and can combine 
heterogeneous Poisson processes and cluster processes. They are based on a generalized 
intensity function. More detail can be found in section 4.1.5 “Cox Processes” in Wiegand and 
Moloney (2014) and especially in Section 6.4 of the book of Illian et al. (2008, pp. 379–386). 
 
For example, a simple Thomas process can also be generated with an intensity function that 
is based on superposition of two dimensional normal distributions that are centered on the 
locations of the cluster centers. Here is for example on the left the simple parent-offspring 
pattern Book_Fig4_13.dat shown in Figure 4.13 (see example Book_Fig4_13.res). The 
cluster centers are shown as red points and the points of the simple Thomas process as green 
points. The pattern was simulated based on 34 cluster centers and a parameter σ = 13.3 
governing the normal distribution. In the middle and right is the intensity function that results 
from the superposition of the normal distribution with parameter σ = 13 centered on the 34 
cluster centers (saved as file int_G_Book_Fig4_13_R1_13.int): 
 

   
 
The Cox/simple Thomas process can be simulated in a straight forward way using the 
methods for the heterogeneous Poisson process. Points with random coordinates x are 
proposed and a point is accepted with a probability proportionally to λ(x)/λ*where λ* is the 
maximal value of λ(x). These random trials are repeated as long as all n points of the pattern 
are distributed.  
 
If the cluster centers are the same for all simulations of the point process, we have a parent-
offspring Thomas process which is basically a heterogeneous Poisson process with a fixed 
intensity function λ(x). However, we may also generate for each simulation of the point 
process a separate set of cluster centers as done in the simple Thomas process. This yields a 
“double stochastic” point process where the intensity function is itself stochastic and a 
realization of a stochastic process Λ(x).  
 
It is clear that superposition of an intensity function generated by homogeneous Thomas 
process with another intensity function that represents a large-scale trend, for example due to 
different habitat suitability (where the probability that a point is accepted depends on habitat 
suitability), generates an inhomogeneous Thomas process. This is an interesting feature of 
Cox processes that allows fitting inhomogeneous Thomas processes to the data.  
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Example Book_Fig4_18.res 
 
In this example we reanalyze example Book_Fig4_13.res to illustrate the duality between a 
Cox process and a parent-offspring Thomas process where the cluster centers (i.e., parents) 
are known and are the same in each simulation of the point process.  
 
The example file Book_Fig4_13.dat was generated with a simple Thomas process with 
parameter σS = 13.3, A λ1 = 34 random clusters and 157 points and parameters. 
 

1. Execute Programita. 
2. Highlight data file Fig4_13.dat you want to analyze in Input data and click the small 

“ok” button.  
3. Select bin of 1m window Select a new cell size 
4. Select a ring width of 7 in the menu “Which method will you use” 
5. Accept selection of neighborhood ranks for estimation of Dk(r). 
6. Press button “Calculate Index” 
7. Programita shows the pattern, the univariate pair correlation function of the cluster 

centers and the bivariate pair correlation function of the points around their parents: 
 

 
 
The pair correlation function of pattern 1 which is not of interest here is somewhat 
rugged because pattern 1 has few points (i.e., 34 clusters). 

8. Click the checkbox “Calculate simulation envelopes” to be found in the menu “What 

do you want to do?” on the top left of the interface. 
11. Select in the window Select a null model “Pattern 1 fix, pattern 2 CSR”.  
12. Specify the number of simulations of the null model (199 in the example) and the rule 

for the estimation of simulation envelopes (here the 5th lowest and highest values of 
the summary function of the 199 simulated null model data sets). 

13. Click checkbox “Heterogeneous Poisson”.  
14. Go to window “Settings for hetero. Poisson” on the left and insert the bandwidth R (13m 

in the example) and enable “Gauss” for the Gaussian kernel. Now select “Intensity 
of pattern 1”. In this case Programita estimates the intensity of pattern 1 (i.e., the  
cluster centers) based on a Gaussian kernel. (If you would select 
“Intensity of pattern 2” Programita would estimate the intensity 
of pattern 2). Edge correction “Edge” is enabled by default. 
Programita then uses this intensity function in the 
heterogeneous Poisson null model.  
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15. Click “Calculate Index” and Programita estimates the intensity function and shows 
the pattern and the corresponding intensity function. 
 

     
 

16. Click OK at the message box to save the intensity file. The file is saved with name 
int_G_Book_Fig4_13_R1_13.int where the “int_GE” indicates the Gaussian kernel, 
Book_Fig4_13.dat was the data file, “_R1_13” means that the intensity was estimated 
with pattern 1 and bandwidth 13.  
 
Now Programita conducts the analysis. You can observe during the simulations that 
the null model distributes the points of pattern 2 with probability proportionally to the 
intensity function. (If you would select e.g., null model “Pattern 1 and 2 CSR”, 
pattern 1 and 2 would be randomized following this intensity function) Here an 
example: 

  
 
The result reproduce that of Fig. 4.18d-f and resembles that of example 
Book_Fig4_13bi.res well, outlining the equivalence of the Thomas and the Cox 
process: 
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Example Book_Fig4_18_file.res 
 
If you have the intensity file already saved, you can do the analysis also using this file. 
Starting with step 13 above: 
 

13. Click checkbox “Heterogeneous Poisson”.  
14. Go to window “Settings for hetero. Poisson”, select “Intensity of pattern 1” (because 

you use an estimate of the intensity of pattern 1) and then select “Intensity file 
function from file” on the left.  
 
The window “Select a file with the intensity function” appears where you can highlight the 
intensity file you want to use (i.e., int_G_Book_Fig4_13_R1_13.int ). Select “pat 1” 
(because you use an estimate of the intensity of pattern 1), and then click the small ok 
button: 
 

       
 
Programita then uses this intensity function in the selected null model. If your null 
model was “Pattern 1 and 2 CSR” the same intensity function is used for the 
heterogeneous Poisson process of pattern 1 and pattern 2, if your null model was 
“Pattern 1 fix and pattern 2 CSR” the intensity function is used for the heterogeneous 
Poisson process of pattern 2, and if  your null model was “Pattern 2 fix and pattern 1 
CSR” the intensity function is used for the heterogeneous Poisson process of pattern 
1. 
 
Programita  shows the observed pattern (left) and the intensity function together with 
the data (right): 
 

     
 
Click OK at the message box and “Calculate Index”. Now Programita conducts the 
same analysis as before in example Book_Fig4_18.res  
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Inhomogeneous Thomas process.   Example Book_Fig4_19b.res 
 

3.5.1 Inhomogeneous Thomas process 

We now fit an inhomogeneous Thomas process to the data shown in Figure 4.19b in Wiegand 
and Moloney (2014). The pattern is a realization of an inhomogeneous Thomas process based 
on a non-parametric estimation of the intensity function of all living individuals of the species 
Ocotea whitei from the 2000 census at the BCI plot (details on the habitat model can be found 
in Table 4.1 in Wiegand and Moloney 2014). The parameters of the underlying homogeneous 
Thomas process used to generate the pattern were σ = 4.8 and Aρ = 581 cluster centers.  
 

1. Execute Programita. 
2. Highlight data file Book_Fig4_19b.dat you want to analyze in Input data and click the 

small “ok” button.  
3. Select bin of 1m window Select a new cell size 
4. Select a ring width of 3 in the menu “Which method will you use” 
5. Accept selection of neighborhood ranks for estimation of Dk(r). 
6. Press button “Calculate Index” 
7. Click the checkbox “Calculate simulation envelopes” to be found in the menu “What 

do you want to do?” on the top left of the interface.  
 

8. Enable check box “Inhom g and K” and disable “Ohser” 
9. The window “Select a file with the intensity function” appears 

where you select the intensity file you want to use for 
estimation of the inhomogeneous second-order summary 
functions (i.e., int_Book_Fig4_19.int). Select “pat 1” 
(because it is the intensity of pattern 1) and then click the 
small “ok” button 

 
 

10. Programita now shows the intensity function and the pattern: 

    
It is clear that most of the area is unsuitable (dark blue) and that many of the 581 
clusters of the underlying homogeneous Thomas process will disappear.   

11. To fit the inhomogeneous Thomas process to the data select “Cluster process” in the 
window “Select a null model”.  

12. A window “Fit of cluster process to data” opens. Select in the section “Null models” at the 
bottom “Univar. cluster”. Continue with the small ok button. 
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Inhomogeneous Thomas process.   Example Book_Fig4_19b.res

 
13. Fit the parameters σ, and ρ. You obtain a good fit for σ =5.3, Aρ = 548 which is close 

to the parameters σ = 4.8 and Aρ = 581 used to generate the pattern. Note that one 
cannot expect a perfect agreement between the parameters used for generating the 
pattern and the fitted parameters of one realization. This is because the Thomas 
process is a stochastic process and because many of the original clusters of the 
underlying homogeneous Thomas process disappeared during thinning with the 
intensity function.  

 
 

14. If you now click the “ok”  and the “Calculate Index” you 
simulate the inhomogeneous Thomas process. As expected, the simulated pattern 
resembles the observed pattern well: 

 
 
The pair correlation and L- function are well fitted: 
 

  
 
the spherical contact distribution Hs(r) and the distribution function Dk(r) of the 
distances to the kth neighbor (here the 1th neighbor) as well (the GoF test for D1(r) 
yields a P-value of 0.19):  
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Inhomogeneous g- and K functions. Series of analyses 
 

3.5.2 Series of analysis with inhomogeneous cluster point processes 

The analyses of inhomogeneous cluster processes works exactly in the same way as for their 
homogeneous counterparts. However, in addition to the homogeneous cluster processes, 
Programita needs to read the file with the intensity function that contains the information on 
the environmental heterogeneity and is used to estimate the inhomogeneous second order 
summary factions.  
 
Name convention for intensity files 
Programita needs to link the *.int intensity file to the corresponding *.dat data file. Therefore 
use the file list option to select the *.dat data files to be analyzed.  
 
If a data file has name Name.dat, the intensity file must have the name truncnameName.int 
where truncname is an additional string common to all intensity files, suc as truncname=int_  
 
For example, if the data file is Book_Fig4_19_1.dat, the corresponding intensity file must be 
named int_Book_Fig4_19_1 
 
 
Step-by-step example for series of analyses using 
inhomogeneous Thomas processes 

The example uses point patterns generated by example 
Book_Fig4_19b_Ohser.res which generates patterns with driven 
by the intensity function int_Book_Fig4_19.int and a simple 
Thomas process with one scale of clustering with parameters ( = 
5.3500, ρL = 0.00103130). The data files are named 
Book_Fig4_19_n.dat.  

 

1. Read settings file Book_Fig4_19b_Ohser.res and run one 
simulation. Alternatively conduct one example analysis for 
the analyses you want to run as series.  

2. Click “Series of analyses” 

3. A window opens where you need to provide the specifications 
of your series of analysis. First click “File list” and “expand” 
to select the data files to be analyzed. Once all data files are 
highlighted select the truncname of the intensity files (“int_”) 
and select a name for the analysis (e.g., inhomSC_”). The 
output results files will be named based on this name. Click 
the small button “File list ok”.  

4. Disable “save bi_confidence” because you run an univariate 
analysis 

5. Provide distance interval (r0, rmax) for the GoF tests. In the 
example it is r0 = 2 and rmax = 50. 

 

 
 
 
 

 



  
Series of analyses with Cluster processes

 
6. Go to the box “Settings cluster” to select details of the cluster 

analysis. Please use the same cluster process as the *res file you 
used for running the example (i.e., Book_Fig4_19b_Ohser.res) or 
as used in the example analysis before running the series of 
analyses. Thus, if this was a single cluster process, enable 
“single”. If it was a cluster process with two scales of clustering 
do not enable “single”. 

7. Provide distance interval (r0, rmax) for the fitting. In the example 
it is r0 = 2 and rmax = 50 (the same as for the GoF tests). 

8. Select “# bins”, the number of intervals the interval of the parameters is derived into. 
Programita tests the entire grid of the (, ρ) parameter space (i.e., [# bins]2 values are 
tested). The large the value the more precise is the estimate of the parameters but the 
longer the time requirement which increases with [# bins]2. Select for example 90 bins.  

9. Select “max sig” which gives the maximal value for parameter  (100 in the example).  

10.  Select “iterations”. This value determines the number of “zooms” into (or out of) the 
parameter space to get fines parameter estimates. A value of 3 iterations produces good 
results, if you select more the procedure is slower. 

11. Select “single” only if your example is single cluster process.  

12. If you select “neg Bino”, Programita will first fit the standard Thomas process with two 
scales of clustering to the data (or with one scale of clustering if “single was selected”) 
and then simulate the patterns for ten different values of the parameters kL and kS that 
govern how the points are distributed over the large and small clusters, respectively. We 
use here values of kL = kS = 1000, 5, 1, 0.3, 0.1, 0.05, 0.03, 0.015, 0.0083, 0.0045, 0.0025, 
0.0014. Other options (e.g., kL = 1000, and kS variable) can be implemented if needed. 
This option works also together with the option “single”. 

13. If you select “superposition with CSR” Programita will first fit the standard Thomas 
process with two scales of clustering to the data (or with one scale of clustering if “single 
was selected”) and then simulate the patterns for ten proportions of points being part of a 
CSR component pattern. The maximal percentage of CSR points can be selected with 
“max. percent CSR points”.  

14. If you select “2 Thomas” Programita will first fit the standard Thomas process with two 
scales of clustering to the data (or with one scale of clustering if “single was selected”) 
and then simulate the patterns of the corresponding superposition of two Thomas 
processes with one scale of clustering for ten different values of proportion of points being 
part of the large scale Thomas process. 

15. If all settings are correct, click the large “ok” button and then 
“Calculate index”. Programita now conducts a series of identical 
analyses based on the data files Book_Fig4_19_n.dat  
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Hard core processes. Example Book_Fig2_11.res 
  
3.6 Point processes generating regular patterns 

3.6.1 Hard core processes 

Cluster processes show an elevated neighborhood density where the typical point has more 
neighbors nearby than expected under a CSR process. In contrast, point processes showing 
regularity (or hyperdispersion) have a reduced neighborhood density. In the extreme case 
there is a minimal distance 2r0 between two points. This corresponds in the simplest case to 
randomly distributed disks with radius r0 which do not overlap (i.e., a hard core process).  
  
The hard-core process has a pair correlation function  
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which is zero for distances r smaller than the diameter 2r0 of the disk and one for larger 
distances.  
 
Hard core processes are often too simple to characterize inhibition processes producing 
observed point patterns in ecology, and more complex Gibbs or Markov Point Processes are 
used that can consider interaction functions of different shape (see section 4.1.6.2 “Gibbs or 
Markov Point Processes” in Wiegand and Moloney (2014) or sections 3.6 and 6.5 in Illian et 
al (2008)). However, in general Gibbs or Markov Point Processes cannot be simulated in a 
straight forward way as cluster or heterogeneous Poisson processes. Instead, they are 
governed by the so-called location density function (a high-dimensional probability density 
function) which yields basically the likelihood of a given point configuration. Simulation of 
this point processes requires optimization techniques where points of an initial pattern are 
deleted and replaced by randomly drawn points, which are accepted if the new point 
configuration becomes more likely, given the location density function. Such fitting 
procedures are not too different from individual-based simulation models that are based on 
biological mechanisms instead of purely statistical considerations. Therefore Programita has 
not implemented this type of point processes.  
 
However, to provide you the possibility to simulate simple point patterns with 
hyperdispersion, Programita includes a simple algorithm to simulate a so-called “random 
sequential absorption” (RSA) process to produce simple hard core patterns. 
 
The RSA algorithm implemented in Programita is simple. It is constructed by placing 
iteratively and randomly points within an observation window W which are thought to be the 
centers of disks with radius r0. If a newly placed disk overlaps with an already accepted disk, 
it is not accepted, and new points are placed until the total number of points of the pattern is 
reached or until no further point can be placed because the pattern is “jammed”.  
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Hard core processes. Example Book_Fig2_11.res

 
Example Book_Fig2_11.res (RSA inhibition process) 
 
This pattern has been generated with a RSA algorithm to simulate non-overlapping disks with 
radius r0 = 10m.  
 

1. Execute Programita. 
2. Highlight data file Book_Fig2_11.dat you want to analyze in Input data and click the 

small “ok” button.  
3. Select bin of 1m window Select a new cell size 
4. Select a ring width of 3 in the menu “Which method will you use” 
5. Accept selection of neighborhood ranks for estimation of Dk(r). 
6. Click the button "change" in  set maximal radius rmax to define the maximal scale r of the 

analysis and insert “100” 
7. Press button “Calculate Index” 
8. Click the checkbox “Calculate simulation envelopes” to be found in the menu “What 

do you want to do?” on the top left of the interface.  
9. Select null model “Pattern 1 and 2 CSR” to start with the basic CSR algorithm. 
10. Click checkbox “Hard core” and 

go to the window “Hard core null 

model” to define details of the 
RSA null model. Click “Radius 
of pattern 1” because you have a 
univariate pattern and provide 
the radius (10.0) in our case. To 
confirm settings  click small 
“ok” button 
 

 
11. To simulate the point process press “Calculate Index”. As expected, the simulated 

patterns look very similar to the observed pattern: 
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Hard core processes. Example Book_Fig2_11.res 
 

12. The pair correlation function and the L-function agree well with the simulated point 
process and show the typical “hard-core” shape: 
 

  
 
Note however that the expectation of the RSA null model for the pair correlation 
function at distances slightly larger than the diameter 2r0 of the disk is not exactly 
one but somewhat larger. The reason for this is that in cases where already many 
points are placed the rejection rule causes acceptance of slightly more points close
an already placed point than farther away (because suitable gaps become scarce). As
a consequence, we have a slight cluster effect.
 

 to 
 

  

13. The same is true for the spherical contact distribution and the nearest neighbor 
distribution function:  
 

  
 

 
 
Example Book_Fig2_11jam.res (RSA inhibition process) 
 
To see what happens if the pattern is close to jamming (i.e., no further points can be added) 
we increase the radius of the non-overlapping disks to r0 = 18m. In this case the fraction of 
the observation 1000 × 1000 window covered by the disks yields AA = (500 × π 182 )/10002 = 
0.509. The maximum possible value of AA for the RSA process yields AA = 0.547 (which 
corresponds to a radius just below 19m). The file Book_Fig2_11_jam.dat is a realization of 
this point process with 500 points.  
 

1. Execute Programita. 
2. Highlight data file Book_Fig2_11jam.dat you want to analyze in Input data and click 

the small “ok” button.  
3. Select bin of 1m window Select a new cell size 
4. Select a ring width of 3 in the menu “Which method will you use” 
5. Accept selection of neighborhood ranks for estimation of Dk(r). 
6. Click the button "change" in  set maximal radius rmax to define the maximal scale r of the 

analysis and insert “100” 
7. Press button “Calculate Index” 
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Hard core processes. Example Book_Fig2_11jam.res

 
8. Click the checkbox “Calculate simulation envelopes” to be found in the menu “What 

do you want to do?” on the top left of the interface.  
9. Select null model “Pattern 1 and 2 CSR” to start with the basic CSR algorithm. 
10. Click checkbox “Hard core” and go to the window “Hard core null model” to define 

details of the RSA null model. Click “Radius of pattern 1” because you have a 
univariate pattern and provide the radius (18.0) in our case. To confirm settings click 
small “ok” button. 

11. To simulate the point process press “Calculate Index”. You notice that the pattern is 
close to jamming because the simulation takes more time. This is because the 
algorithm needs many attempts to find a place for the last points. The resulting 
patterns are very regular patterns that almost yield a regular grid: 
 

 
 

12. The pair correlation function at distances larger than the diameter 2r0 of the disk is 
now clearly elevated, it yields at the distance r = 40m a value of g(r) ≈ 2 and then 
declines with one oscillation to the expected value of one. The closer the pattern to 
the jamming point, the higher the peak at distance 2r0. It is clear that point processes 
with the hard core pair correlation function shown above need more refined 
simulation methods: 
 

  
 
The distribution function of the distances to the nearest neighbor switches over a very 
narrow range between r = 36 and r = 46 from zero to one. That means that all points 
have approximately the same distance to the nearest neighbor: 
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Soft core processes. Example Book_Fig4_20rec.res 
 

3.6.2 Soft-core processes 

A soft core pattern arises if the radiuses of the disks are not the same or if the disks have a 
certain probability to overlap that depends on the distance to the nearest neighbor. Programita 
extends the sequential RSA process explained above where all radiuses are the same to a 
simple point process that yields a soft-core pattern. Programita uses a probability pHC of a 
provisional point to be accepted that varies between 0 and 1, depending on the distance d to 
the nearest (accepted) neighbor, and an exponent p that gives the degree of “softness”: 
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For p = 0, we obtain the RSA hardcore model, for p > 
0 a soft core model, and for p →∞ we obtain CSR. 
The figure on the right shows how the rejection 
probability depends on the distance d to the nearest 
neighbor and the exponent p.  
 
 
Example Book_Fig4_20rec.res (RSA soft core process) 
 
Figure 4.20A in Wiegand and Moloney (2014) shows a 300 × 300m window from the BCI 
plot with all trees with a diameter larger than 20cm. The pair correlation function of this 
pattern shows a typical soft core shape (Fig. 4.20b). We analyze here instead a pattern with 
the same properties that was generated with pattern reconstruction based on the original BCI 
pattern for a 300 × 300m window.  
 

1. Execute Programita. 
2. Highlight data file Fig4_20rec.dat you want to analyze in Input data and click the small 

“ok” button.  
3. Select bin of 1m window Select a new cell size 
4. Select a ring width of 3 in the menu “Which method will you use” 
5. Accept selection of neighborhood ranks for estimation of Dk(r). 
6. Press button “Calculate Index”. As confirmed by the pair correlation function and 

the distribution function of the distances to the nearest neighbor, the pattern is a 
typical soft core pattern: 
 

 
 

 130 



  
Soft core processes. Example Book_Fig4_20rec.res

 
7. Click the checkbox “Calculate simulation envelopes” to be found in the menu “What 

do you want to do?” on the top left of the interface.  
8. Select null model “Pattern 1 and 2 CSR” to start with the basic CSR algorithm. 
9. To fit the soft core process (manually) to the data click checkbox “Hard core” and go 

to the window “Hard core null model” to define details of the RSA null model. Click 
“Radius of pattern 1” because you have a univariate pattern. The pair correlation 
function and the distribution function of the distances to the nearest neighbor shown 
above suggest a maximum diameter of the disks of 10m, thus use as first estimate of 
the radius of pattern 1 a value of 5m. Because the pattern is quite soft, start with an 
exponent of p = 1.  

 
 
To confirm settings click small “ok” button. 
 

10. To simulate the point process press “Calculate Index”. The simulated patterns look 
very similar to the observed pattern: 
 

 
 

11. However, the pair correlation function is not well fitted at small distances, the 
observed pattern is softer. Therefore, use an exponent of say p = 1.5:  
  
         r0 = 5m, p = 1                                        r0 = 5m, p = 1.5 

  
 
 

12. An exponent p= 1.5 still yields a small underestimation of the pair correlation 
function at small distances. Select now p = 1.7 
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Soft core processes. Example Book_Fig4_20rec.res 
 

13. The soft core RSA point process with parameters r0 = 5m and p = 1.7 provides a good 
fit for all of the important summary functions: 
 

 

 
The simulation confirmed that the trees with diameter larger than 20cm at BCI have a 
type of “zone of influence” of 5m (the radius r0 = 5m) and the probability that a tree is 
inside this zone of influence of another tree declines almost with the square root of the 
distance to the focal tree.   
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Berman test to test for association of pattern with environmental covariate
 

3.7 Instructions for the Berman test in Programita  

The Berman test can be used to test for a significant association of a univariate point 
pattern to a continuous spatial covariate. This test goes back to a study motivated by a 
geological problem (Berman 1986). The question was whether copper ore deposits 
(representing a point pattern) were spatially associated with linear-shaped geological features 
(lineaments) visible from satellite images. Berman (1986) reduced the problem to a test of 
spatial association between a point pattern and a spatial covariate v(x). In the case of this 
motivating example, the spatial covariate v(x) was the distance of a point located at x to the 
nearest lineament, but the test is applicable to any covariate v(x).  
 
The test is performed by comparing the observed distribution of the values of a spatial 
covariate v(x) taken at the locations xi of the points i of a point pattern and the predicted 
distribution of the same covariate under a null model that randomizes the points of the 
pattern.  
 
The test statistic Z1 = (S - μ)/σ introduced by Berman (1986) is based on the mean S of the 
covariate values v(xi) at the points xi of the observed pattern. The value μ is the predicted 
value of S under the null model and σ2 the corresponding variance. The null distribution of 
this test statistic is approximately the standard normal distribution.  
 
Based on this test statistic one can formulate the null and alternative hypotheses. The initial 
null hypothesis H0 was that the pattern was generated by a homogeneous Poisson process 
(CSR) independent of the environmental covariate v(x). The alternative hypothesis H1 was 
that the pattern is an inhomogeneous Poisson point process with an intensity function 
proportionally to the covariate v(x). In a GoF test, significant deviation of the test statistic Z1 
from the null hypothesis H0 can be assessed by comparing the observed value of Z1 with the 
standard normal distribution or by comparing the rank of the observed S within the 
corresponding values of S for the simulations of the null model.  
 
However, the original Berman test based on a homogeneous Poisson null model does not 
take into account the effect of spatial autocorrelation (clustering) in the point pattern and, 
therefore, it will detect too often a significant habitat association if the pattern is clustered 
(Berman 1986). Berman (1986) already proposed to use a torus translation null model to 
account for potential clustering of the pattern. A better alternative, however, is to use null 
distributions of the point pattern based on pattern reconstruction (Wiegand et al. 2013) that 
is able to generate stochastic replicates of the observed pattern that approximate several 
summary functions of the observed pattern very well (e.g., pair correlation function, K-
function, spherical contact distribution, nearest neighbor distribution functions,...), thereby 
maintaining the observed spatial autocorrelation structure of the pattern very closely.  
 
If null models other than CSR are used, the GoF test must be based on stochastic simulations 
of the null model. Here the values of μ and σ are estimated from the n simulations of the null 
model. The μ is the mean of the S values of the simulations of the null model and σ2 the 
corresponding variance. The P-value of Z1 can then be looked up from a table because Z1 
approximates the standard normal distribution. If Z1 < 0 there is a negative association of 
the pattern with the covariate (because the observed value of S is smaller than the expected 
value μ) and if Z1 > 0 the association is positive. 
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Berman test to test for association of pattern with environmental covariate 
 
Note that the implementation of the Berman test in Spatstat is based on a (not documented) 
rank transformation of the covariate which however is not recommended in ecological 
applications. The rank transformation can change the P values of the test substantially. If you 
nevertheless want to use it, transform the covariate yourself and run the Berman test (in 
Programita) with the rank-transformed covariate instead of the original covariate. 
 
The current implementation of the Berman test in Programita allows you to do both, use null 
models (e.g., the homogeneous Poisson process and the torus translation) implemented in 
Programita and to import null model files generated outside Programita (e.g., by the pattern 
reconstruction software). This provides the Berman test great flexibility to respond to your 
specific questions. 
 

3.7.1 Input data for Berman test 

This is the format required for point pattern data files. It is basically a list with the coordinates 
of the points of the pattern and a header containing information on the dimensions of the plot 
and the number of points: 
 
0 250 0 250    169 
0.30 9.40 1 0 
0.60 11.60 1 0 
3.80 13.70 1 0 

6.40 8.90 1 0….  
 
The first line gives the coordinates of the edges of the observation window xmin, xmax, ymin, 
xmax (0  250  0  250 in the example of a 250m × 250m plot) and the fifth number is the 
number of points of the pattern (169 in the example) and the following lines list the 
coordinates of the points. The file must be space or tab delimited ASCII file with the *.dat 
extension. If you use EXCEL for data preparation save the data file as tab delimited text file 
with name “name.dat”. The quotation marks force EXCEL to save your data as *.dat file.  
 
The covariate must be stored as *.int file which again is a space or tab delimited ASCII file 
but based on an underlying discrete grid with the following structure: 
 
1   250 1   250       62500  1.0000 
   1    1 1   0.064804 
   1    2 1   0.061006 
   1    3 1   0.057456 
   1    4 1   0.054125 

… 
 
The intensity function must use a grid which must exactly match the dimensions of the 
plot. For example, for a 250m × 250m plot one may use a grid of 1m × 1m cells which yields 
a 250 × 250 grid or 5m × 5m cells which yield a 50 × 50 grid. If you use a cells size other 
than 1 × 1 you must adjust this in Programita as well (i.e., the bin width, see below). 
 
The header of the *.int data file gives the coordinates of the edges of the gridded observation 
window xmin, xmax, ymin, xmax (1 250 1 250 in the example of a 250m × 250m plot and 1m 
× 1m cells), the fifth number is the total number of cells (250*250 = 62500 in the example), 
and the last number is the cell size in units of the data (= 1m). Be careful that the bin width 
and the cell size fit together! For interpretation of the output note that Programita normalizes 
the intensity function in a way that the maximal value is 1. 



  
Berman test to test for association of pattern with environmental covariate

 

3.7.2 Name convention for null model file 

The Programita implementation of the Berman test can use the toroidal shift and the 
homogeneous Poisson process (CSR) implemented in Programita as null model. However, 
Programita can also read the null model data previously generated by pattern reconstruction 
or any other null model that randomizes the observed pattern.  

If you use the option to read the null model data from data files, they must meet simple name 
conventions. If the point pattern data file is for example called Berman.dat, the null model 
files must be called truncname_n.dat where the truncname is a string common to all null 
model files (in the example rec_Berman; pattern reconstruction assigns this name to 
reconstructions of the file Berman.dat) and n is the current number of the null model file, e.g., 
unning from n = 1 to 199 if you use 199 realization of the null model for the Berman test. r 

3.7.3 Running the Berman test, shortcut 

The first step is to read the correct settings required for the 
Berman test. They are stored for example in the file 
Berman_torus.res that you can load when cliquing “Load 
Settings for Example” and “ok”. Programita will then 
automatically select all settings that were used for this analysis.  

First, a window “Select a file with the intensity function” appears where 
the covariate is selected. When using the example file to read the 
settings, the window shown on the right appears and the name of 
the covariate stored in the settings file is already highlighted 
(int_D5_R50_sp2.int) and “pat1” selected which means that the 
intensity of the first pattern is selected (i.e., an univariate 
analysis). Click “ok” and the covariate is shown together with the 
points of the pattern: 

 

Additional important settings automatically loaded are those 
associated with the selection of the null model in window “Select a 

null model“. First, the checkbox “Heterogeneous Poisson” is 
checked (this is to read the covariate, not for the null model). 
Second, the checkbox “Berman test” must be checked, and the 
desired null model must be indicated (“Toroidal shift” in the 
example). Third, the number of realizations of the null model 
(199 in the example data) must be provided.  
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Berman test, example Berman.res 
 
The example Berman_torus.res uses a null model implemented in 
Programita, an example for reading files with null model patterns is 
given in example Berman.res. Here 19 the files rec_Berman_1.dat, 
..., rec_Berman_19.dat serves as example. You need to select the 
“Data from file” null model option to use these null model files. 
The window Specifiy null model from file opens where you have to 
provide details on the null model files; including the name 
conventions (i.e., the truncname “rec_Berman_” common to all null 
model files) explained above and selection of “Pattern 2 fix” (the 
latter indicates that pattern 1 is randomized). In the settings be sure 
hat the number of realizations is the same as the number of files. t

 

 

3.7.4 The Berman test with null model data files, step by step 

To run the Berman test analysis, follow the following steps: 
 
1. Select the data file (Berman.dat in the example) 

2. How are your data organized: List 

3. Select modus of data: “List with coordinates, no list” 

4. The window “Select a new bin (cell size)” appears. Select bin width 
to be 1 (default 1 unit). Note that you have to adapt the bin to the 
resolution (cell size) of the covariate data! 

5. Click  and Programita shows the observed pattern: 

 

6. Click , the widow “Select a null model” appears.  

7. Be sure that the number of realizations is the same as the number 
of files. Therefore input 19 for # sims because the number of 
realizations of the null model is 19 in the example data. 
However, use for real analyses at least 199 null model patterns.  

8. Select “Data from files”, “Heterogeneous Poisson”, and 
“Berman test” 

9. Specify names of files of realizations of null model 
(“rec_Berman_”) and select “Pattern 2 fix” and then “ok”. 
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Berman test, example Berman.res

 
10. Next, select in the window “Settings for hetero. Poisson” on the 

left the option “Intensity function from file” 

11. A window “Select a file with intensity function” opens. Highlight the 
desired file with the intensity function (int_D5_R50_sp2.int) 
and clique “ok”. 

12. After cliquing ok, the covariate is shown together with the 
points of the pattern: 

      

 
 
 

 

13. “Finally, click , now Programita reads the point pattern data file and the null 
model data files and conducts the Berman test. 

14. Programita shows you the analysis of the univariate pattern to verify that the null model 
correctly conserved the observed univariate structure of the pattern: 

          
In this case the null model based on pattern reconstruction reproduced the structure of the 
univariate pattern very well. This can also be verified for other summary functions such 
as the L-function or the spherical contact distribution: 
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15. After the execution of the Berman test a box with the results 

appear that show  
 the observed value of S (being the mean of the covariate 

values v(xi) at the points xi of the pattern) (0.58623 in the 
example),  

 the predicted value of S under the null model = μ (i.e., the 
expected mean of the covariate values v(xi) under a null 
model realization) estimated as the mean value over the S 
values resulting from the simulations of the null model 
(0.29925 in the example).  

 the predicted standard deviation σ of the values of S 
resulting from the null model realizations (0.07795 in the 
example), 

 the test statistic Z1 = (S - μ)/σ (3.681 in the example). Z1 is 
positive which indicates a positive association between the 
observed pattern and the covariate, and Z1 is larger than 
1.96 which indicates a moderate positive association. 

 the P-value of the test derived from the value of Z1 
(<0.002 in the example) 

 the rank of S within the corresponding values of S for the 
null model patterns where P = 1 – (rank-1)/(anzsim+1). 
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3.7.5 Run the Berman test for CSR, step by step 

To run the Berman test for null models implemented in Programita 
you have to conduct the following steps: 
 
1. Select the data file (Berman.dat in the example) 

2. How are your data organized: List 

3. Select modus of data: “List with coordinates, no list” 

4. The window “Select a new bin (cell size)” appears. Select bin width 
to be 1 (default 1 unit). Note that you have to adapt the bin 
width to equal the resolution (cell size) of the covariate data! 

5. Click  and Programita shows the observed pattern: 

 

6. Click , the widow “Select a null model” appears.  

7. Select “Pattern 1 and 2 CSR”. 

8. The number of realizations of the null model (199 in the 
example data) must be provided.  

9. Select “Heterogeneous Poisson” (to read the intensity file, not 
as null model!) and “Berman test”. A window “Settings for hetero. 

Poisson” opens on the left, select “Intensity function from file” 

10. A window “Select a file with intensity function” opens. Highlight the 
desired file with the intensity function (int_D5_R50_sp2.int) 
and press “ok”, the covariate is shown together with the points 
of the pattern.  

11. Be sure that “Berman test” is selected.  
12. “Finally, click , now Programita reads the point 

pattern data file and conducts the Berman test based on the CSR 
null model.  
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13. Programita shows on the left the observed pattern and ob the right the null model pattern: 

 

14. After termination of the simulations of the null model Programita shows you the analysis 
of the univariate pattern to verify that the null model correctly conserved the observed 
univariate structure of the pattern: 

 

In this case the null model based on CSR does not reproduce the observed cluster 
structure of the univariate pattern. 

15. After the execution of the Berman test a box with the results 
appear that show  
 the observed value of S (being the mean of the covariate 

values v(xi) at the points xi of the pattern) (0.58623 in the 
example),  

 the predicted value of S under the null model = μ (i.e., the 
expected mean of the covariate values v(xi) under a null 
model realization) estimated as the mean value over the S  
values resulting from the simulations of the null model (0.23596 in the example. For 
comparison, μ = 0.33984 under the pattern reconstruction null model. These values 
should coincide for a homogeneous null model. The larger value of μ obtained in the 
pattern reconstruction null model is a consequence of the low number of simulations 
of the null model which does not yields a “representative” sample of the plot. 

 the predicted standard deviation σ of the values of S resulting from the null model 
realizations (0.01191 in the example) which is much lower than that of the pattern 
reconstruction null model (0.07408). 

 the test statistic Z1 = (S - μ)/σ (29.415 in the example) which indicates a highly 
significant effect (compare with Z1 = 3.326 for the pattern reconstruction null model). 
Z1 is positive which indicates a positive association between the observed pattern and 
the covariate and Z1 is larger than 1.96 which indicates a significant association. 

 Consequently, the P-value of the test derived from the value of Z1 <0.0001 in the 
example) 

 the rank of S within the corresponding values of S for the null model patterns where P 
= 1 - (rank-1)/(anzsim+1).   
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3.7.6 Run the Berman test for toroidal shift, step by step 

To run the Berman test analysis for null models implemented in 
Programita conduct the following steps. 
 
1. Select the data file (Berman.dat in the example) 

2. How are your data organized: List 

3. Select modus of data: “List with coordinates, no list” 

4. The window “Select a new bin (cell size)” appears. Select bin width 
to be 1 (default 1 unit). Note that you have to adapt the bin 
width to equal the resolution (cell size) of the covariate data! 

5. Click  and Programita shows the observed pattern: 

 

6. Click , the widow “Select a null model” appears.  

7. Select “Toroidal shift”. 

8. The number of realizations of the null model (199 in the 
example data) must be provided.  

9. Select “Heterogeneous Poisson” (to read the intensity file, not 
as null model!) and “Berman test”. A window “Settings for hetero. 

Poisson” opens on the left, select “Intensity function from file” 

10. A window “Select a file with intensity function” opens. Highlight the 
desired file with the intensity function (int_D5_R50_sp2.int) 
and press “ok”, the covariate is shown together with the points 
of the pattern.  

11. Be sure that “Berman test” is selected.  

12. “Finally, click , now Programita reads the point 
pattern data file and conducts the Berman test with the toroidal 
shift null model.  
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Berman test, Berman_torus.res 
 
13. Programita shows on the left the observed pattern and ob the right the null model pattern: 

 

14. After termination of the simulations of the null model Programita shows you the analysis 
of the univariate pattern to verify that the null model correctly conserved the observed 
univariate structure of the pattern: 

  

In this case the torus shift null model reproduces, as expected, the observed cluster 
structure of the univariate pattern well. 

15. After the execution of the Berman test a box with the results 
appear that show  
 the observed value of S (being the mean of the covariate 

values v(xi) at the points xi of the pattern) (0.58623 in 
the example),  

 the predicted value of S under the null model = μ (i.e., the 
expected mean of the covariate values v(xi) under a null 
model realization) estimated as the mean value over the S 
values resulting from the simulations of the null model 
(0.23528 in the example which coincides, as expected, 
with that of CSR).  

 
 
 

 the predicted standard deviation σ of the values of S resulting from the null model 
realizations (0.10162 in the example) which is larger than that of the pattern 
reconstruction null model (0.07408), which however used in the example only 19 
simulations of the null model. 

 the test statistic Z1 = (S - μ)/σ (3.453 in the example) which indicates a moderate 
significant effect (compare with Z1 = 27.557 for CSR null model). Z1 is positive 
which indicates a positive association between the observed pattern and the covariate 
and Z1 is larger than 1.96 which indicates a significant association. 

 Consequently, the P-value of the test derived from the value of Z1 <0.0001 in the 
example) 

 the rank of S within the corresponding values of S for the null model patterns where P 
= 1 - (rank-1)/(anzsim+1). 
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3.7.7 Run the Berman tests for several data sets  

To run the Berman tests for several data sets you may need to 
change three settings: 
 
1. The point pattern data file  

2. The covariate data file. This can be done by disabling and 
enabling the checkbox “Heterogeneous Poisson” in the null 
model selection window and then disabling and enabling the 
checkbox “Intensity function from file” in the “Settings for 
hetero. Poisson” window and then selecting the new intensity 
file. 

3. Change the name of the null model files by cliquing 
“Toroidal shift” and “Data from file” in the ” in the null 
model selection window and then update the trunc name of 
the null model files and clique “ok”.  

 

 
 
 

 
 

 
 

 

 
Series of analyses to run the Berman tests for several data sets with their own 
covariates for toroidal shift or CSR 
 
To run the Berman tests for several point pattern data with own covariate you can use the 
series of analysis option with numbered files. 
 
You have a common name for all *.dat data files (in the example the truncname “HP_”) and 
a number for each data file: 
HPsp_1.dat 
HPsp_2.dat 
HPsp_3.dat 
… 
 
You have a common name for all *.int covariates (the truncname “int_D5_R50_HPsp_”) that 
correspond to the *.dat pattern files: 
int_D5_R50_HPsp_1.int 
int_D5_R50_HPsp_2.int 
int_D5_R50_HPsp_3.int 
 
Note that it is better to use consistent name conventions for the *.dat pattern data files and 
the *.int intensity files (i.e., the name of the intensity file is composed of a common string 
(int_D5_R50_) followed by the name of the data files (HPsp_1).  
 
However, for the numbered file option this is not necessary. So you can also use intensity 
files int_D5_R50_sp1.int and int_D5_R50_sp2.int where the names of the data file and 
intensity file do not fully correspond, except the number.  
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Berman test for several data sets, example BermanSeries_torus.res 
 
Step by step 
 

1. Read the settings of one analysis of the Berman test, e.g., the file BermanSeries_torus.res 
that uses 

 the data file HPsp_2.dat (truncname “HP_sp_”),  

 the covariate will be int_D5_R50_HPsp_2.int (truncname “int_D5_R50_HPsp_”) 

2. Run the example analysis with “Calculate index” 

3. To run series of analysis the point pattern data must be named HPsp_1.dat, HPsp_2.dat, 
… and your covariates int_D5_R50_HPsp_1.int,.. int_D5_R50_HPsp_2.int,... 

4. Clique “Series of analysis” on the right bottom 

 
and provide trunc-name of point pattern data files (= HPsp_) 
to yield data files HPsp_1.dat, HPsp_2.dat. 

5. Click “Individual intensity files” and provide the truncname 
for the intensity files common to the intensity files for all 
species (= “int_D5_R50_HP_”).  

6. Provide the maximal number of data files (2), disable “save 
uni_confidence” and “save uni_confidence” and then “ok”  

 
7. “Calculate Index”. Programita now repeats the Berman test for the two data files 

HPsp_1.dat, and HPsp_2.dat based on toroidal shift null model. 

8. Programita creates a (comma delimited) output file “Summary_BermanHPsp_.txt” that 
summarizes the results of the test for the different analyses. It also cerates the results files 
HPsp_1.res and HPsp_2.res 

9. The file Summary_BermanHPsp_.txt: 

 
 
Alternatively, you can select the focal pattern to be analyzed 
that share a “trunc name” (i.e., HP_1.dat, HP_2.dat) from a list 
of files. To this end: 
 
1. Conduct the Berman test analysis for one of the data files 

(e.g., with example BermanTorus.res). 

2.  Clique “Series of analysis” 

 

Click “Individual intensity files” and provide the truncname 
for the intensity files common to the intensity files for all 
species (= “int_D5_R50_”).  
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3. Note that in this case you need exact correspondence between the data and intensity files 

(e.g., HPsp_1.dat, int_D5_R50_HPsp_1.int”) because Programita must be able to 
reconstruct the name of the intensity file from the data name and the truncname (here 
“int_D5_R50_”). 

4. Click “File list” and “expand” and highlight the files you want to analyze (HPsp_1.dat and 
HPsp_2.dat). Then click “File list ok” and disable “save uni_confidence”, “save 
bi_confidence” and “ok”.  

5. “Calculate Index”. Programita now repeats the Berman test for the two data files 
HPsp_1.dat and HPsp_2.dat based on the toroidal shift null model. 

6. Programita creates a (comma delimited) output file “Summary_BermanHPsp_.txt” that 
summarizes the results of the test for the different analyses. It also cerates the results files 
HPsp_1.res and HPsp_2.res 

 
Series of analysis for several point pattern data sets with the same covariate 
 
To run the Berman tests for several point pattern data sets with 
the same covariate proceed as in the cases above. 
 
There is only one small difference, disable the option 
“Individual intensity function” and Programita will use for the 
analysis of all point pattern data files the same covariate.  
 

 
 

The file Summary_BermanHPsp_.txt 
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Bivariate analysis. Data preparation
  

4 Bivariate analysis in the standard mode 

Bivariate analysis deals with a data type that comprises two types of points and is usually 
concerned with the characterization of the small-scale interaction structure between the two 
types of points although it can also be used to explore (larger-scale) co-occurrence patterns 
that may be influenced by habitat effects . A bivariate pattern is composed of two univariate 
component patterns which were created a priori by a different set of processes (e.g., two 
different species of trees in a forest). Chapter 4.2 in Wiegand and Moloney (2014) provides 
examples for the different analyses of bivariate patterns that are useful in ecology.  

4.1 Getting started 

4.1.1 Data preparation 

Bivariate patterns comprise the coordinates of the two component point patterns. The data 
files for bivariate standard analysis must be an ASCII file with the *.dat extension and the 
following format (the example are the first lines of the file Book_Fig4_21a.dat): 
 
0  200  0  200   500 
 0.2   56.4  1  0 
 0.4  133.6  0  1 
 0.4  144.6  0  1 
 0.8   19.4  1  0 
 1.0   49.6  0  1 
 2.4   52.2  1  0 
 2.6  177.4  0  1 
 3.0  123.8  1  0 
 3.8   37.0  0  1 
 4.6  196.0  1  0 
 5.0   83.2  1  0 
 5.0  146.2  0  1 
… 
 
where the first line gives the size of the observation window (200 × 200 units in the example) 
and the number of points in the pattern (= number of lines following the header). The first 
two columns are the coordinates, an entry “1” in the third column indicates that the point is 
of pattern 1 (i.e., a type 1 focal point) and an entry “1” in the fourth column indicates that the 
point is of pattern 2 (i.e., a type 2 point). The value of the third and the forth columns must 
be for the standard analysis mode “0  1” or “1   0”, no larger numbers or “1  1” are allowed.  
 
The data file must be a space or tab delimited ASCII file with the *.dat extension. If you use 
Excel, there is a simple, but obviously generally unknown, way of saving files of a given 
type with a given extension: 
 

1. Prepare the data file in Excel following the instructions above 
2. Then save as a tab delimited text file, but write “name.dat” for the name (usually you 

would only write name and end up with a file named name.txt). The quotation marks 
are important because they force Excel to save the comma delimited file as name.dat.  

 



  
Bivariate analysis. Access standard mode and example Book_Fig4_21e.res 
  

4.1.2 Steps of bivariate analysis in standard mode 

Programita estimates for data files of this type several summary 
functions based on estimators detailed in Illian et al. (2008) and 
Chapter 3 of Wiegand and Moloney (2014). The window Which 

method will you use allows you to specify the estimators. 
 
The standard analysis mode can be accessed with the following 
sequence of actions: 
 

1. Select “Standard analysis” in window What do you want to do? 
2. Highlight a data file in Input data (“Book_4_21e.dat” in the 

example) and click the small “ok” button. 
3. The window Select a new cell size opens and allows you to 

provide a bin for your analysis given in units of your data. 
For example, if your data are in meter units and your 
observation window is 200 × 200m in size, an appropriate 
bin would be 1m. Press “ok” to confirm selection of the bin. 
 

4. After selection of the bin Programita suggests a ring width 
dr based on equation 4.3.43 in Illian et al. (2008) [dr = 
0.2/λ0.5]. This equation provides a rough starting point for 
deciding on the ring width.  
 
The estimators of the pair correlation function implemented 
in the standard mode of Programita use a default ring 
width of one bin to obtain non-overlapping concentric 
rings. For reasons of computational efficiency you can then 
select only ring widths adding one bin in each direction, i.e., 
ring widths of 1, 3, 5, 7, … bins. You can change the ring 
width at the menu “Which method will you use”. In the example 
file “Book_Fig4_21a.dat” with 250 type 2 points within a 
200 × 200m observation window and a bin of 1m this yields 
a ring width of dr = 2.5. Thus select a ring width of 3. 
 

5. Selecting the option “no grid” opens also a small window 
where you can select the desired rank k of the distribution 
functions Dk(r) of the distances to the kth neighbor. Default 
is k = 1, 2, 4, 6, 8, 12, 16, 20, and 25. You can thus select 
the rank k of nine different functions Dk(r). To confirm 
press the small ok button.  
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Steps of bivariate analysis in standard mode, example Book_Fig4_21e.res

 
6. Press button “Calculate Index” and Programita estimates a 

variety of summary functions of the uni- and bivariate data:  
 

 g(r): pair correlation function 
 L(r): L-function,  
 Hs(r): the spherical contact distribution (only 

univariate) 
 nn(k) the mean distance to the kth neighbor 
 E(r) the probability that a point has no neighbor at 

distance within distances (r - 0.5, r + 0.5) 
 K2(r) the K2 function 
 Dk(r), the kth nn distribution functions,  

here with k = 1, 2, 4, 6, 8, 12, 16, 20, and 25 

 
 
 

 
 
 

 
The screen shows on the left the bivariate pattern Book_Fig4_21e.dat with type 1 
points (red) and type 2 points (green). On the right shown are the selected summary 
functions. The graph for the (partial) univariate summary functions (i.e., the analysis of 
only type 1 points) is shown on the top, and the bivariate summary functions on the 
bottom: 
  

 
 
Note that the bivariate summary functions count type 2 points (green) around type 1 
points (red). Thus, points of pattern 1 are the focal points.  
 
To view the different summary functions select the respective radio button and then 
the small “ok” button.  

 
7. The next step is to select a null model or point process 

model implemented in Programita. Click the checkbox 
“Calculate simulation envelopes” to be found in the menu 
“What do you want to do?” on the top left of the interface.  
 
A window will open that allows you to select a null model. In 
the example, we select “Toroidal shift”. In this case pattern 
2 is shifted as a whole a random vector and points falling 
outside the observation window are wrapped following torus 
geometry.  
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Steps of bivariate analysis in standard mode, example Book_Fig4_21e.res 
 

Here you can specify the number of simulations of the 
null model (199 in the example) and the rule for the 
estimation of simulation envelopes (here the 5th lowest 
and highest values of the summary function of the 199 null 
model data sets). 
 
The checkbox “Save null models” allows you to save the 
patterns generated by the null model as “name_n.dat” 
 
If all settings are specified; press “Calculate Index” and 
Programita conducts the simulations of the null model. 

 
 

 
 
 

8. Programita shows the original point pattern being analyzed (left or top plot), and 
patterns of the Monte Carlo simulations of the null model (on the right or bottom) 
used for constructing the simulation envelopes and the GoF test.  
 

           
 
The simulation is quicker if Programita does not show the plots of all simulated data. 
You can not show the graphs by disabling the checkbox “graph” at the bottom right. 
 

9. After the simulations of the null model the figure with the simulated patterns of the 
null model disappears, and a figure with the result of the analysis appears: 
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10. The top (or left) figure shows generally the results of the univariate analysis and the 

bottom (right) figure shows the results of the bivariate analysis. The null model did 
only displace the type 2 points, therefore no simulation envelopes appear for the 
univariate results. 
 

11. To save the results of the analysis for a particular summary functions press the 
button  in the result graph for the bivariate analysis. Programita then 
generates a *.res file [e.g., “name.res” where “name” is a name] with the summary of 
the results and the settings of the analysis, and a *.env file with the detailed results of 
the summary function for the data and the simulations of the null model (the *.env 
file is named for example for the bivariate pair correlation function 
“g12(r)_name.env”). The *.env file can be used for the GoF test. 
 

12. To conduct the GoF and global envelope tests check the small checkbox “GoF” that 
appears top right on the window “Select a null model”. After enabling the check box a 
window appears where you need to click “Uni” or “Bi”, depending if the analysis of 
interest is uni- or bivariate, respectively. Select “Bi” since the analysis was bivariate. 
 
A small graph with the observed summary function and the lowest and highest values 
of the null model appears. Provide now the distance interval (rmin, rmax) to be tested 
and click “Calculate GoF rank” for the GoF test based (Loosemore and Ford 2006) 
and the global envelope tests based on Myllymäki M., et al. (2015b).  
 
Global envelope test of student transformed g12(r):  Global envelopes that are variable in r            

      
 
The graph on the left shows the pointwise (red) and global (green) envelopes of the 
studentized summary function Si

ses(r) for different distances r. This transformation  
makes the pointwise simulation envelopes horizontal 
lines because all distributions of the Si

ses(r) follow the 
same standard normal distribution. The graph on the 
right shows the re-transformed global envelopes that are 
variable in r and which indicate a departure from the null 
model with significance level α if the observed summary 
function wanders at one or distances r outside the global 
envelopes (red).  
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Toroidal shift. Example Book_Fig4_21a.res 
  

4.2 Methods for bivariate standard analysis 

The following examples present step-by-step instructions for the most important bivariate 
analyses. We start with null models for independence. Devising a null model for independence 
for bivariate patterns is a highly non-trivial issue because a test of independence must maintain 
the univariate spatial structures in the two component patterns. Programita contains several 
bivariate null models that can be used as approximation of the independence null model.  

4.2.1 Toroidal shift 

Section 4.2.1 in Wiegand and Moloney (2014) deals with different approaches to test for 
independence between the two component patterns of a bivariate pattern. An early non-
parametric solution is the toroidal shift null model where pattern 2 is shifted as a whole a 
random vector against pattern 1 which is fixed (see section 4.2.1.1 “The Toroidal Shift Null 
Model” in Wiegand and Moloney 2014). The parts of the pattern that are shifted outside the 
observation window re-appear following torus geometry. If one pattern is antecedent (e.g., the 
pattern of saplings relative to adult trees) the antecedent pattern (e.g., adults) should be selected 
as the fixed pattern 1 and the other randomized. If no pattern is antecedent, two tests should be 
conducted switching the role of type 1 and 2.  
 

1. Execute Programita. 
2. Highlight data file Book_Fig4_21a.dat you want to analyze in Input data and click small 

ok button. 
3. Select bin of 1m window Select a new cell size 
4. Select a ring width of 3 in the menu “Which method will you use” 
5. Accept selection of neighborhood ranks for estimation of Dk(r). 
6. Press button “Calculate Index”.   
7. Click the checkbox “Calculate simulation envelopes” in the 

menu “What do you want to do?” on the top left of the interface.  
8. Specify the number of simulations of the null model (199 in 

the example) and the rule for the estimation of simulation 
envelopes (here the 5th lowest and highest values of the 
summary function of the 199 null model data sets).  

9. Select “Toroidal shift”. 
10. Press button “Calculate Index” and Programita shows the 

observed pattern (left) and the null model pattern (right): 
 

 
 

 152 



  
Toroidal shift. Example Book_Fig4_21a.res

 
13. After the simulations of the null model the figure with the simulated patterns of the 

null model disappears, and a figure with the result of the analysis appears: 
 

14.  
 
The pair correlation function is fully within the pointwise simulation envelopes. This 
is also confirmed by the GoF tests over the distance interval 1 - 50m: 
 

GoF test based on test statistic ui of Loosmore and Ford  and the global test 
envelope test based on the studentised summary statistic (left) and the global 
envelope test (right): 
  

        
 
 
The rank and p-value of the global tests are given right hand 
of that of that of the test statistic ui 

 
15. The other summary functions are also well inside the pointwise simulation envelopes:
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4.2.2 Pattern 2 Thomas process 

You can also fit a parametric point process to one of the component patterns and use the 
realizations of the fitted point process as null model patterns for independence (see section 
“4.2.1.2 Parametric Point-Process Models” in Wiegand and Moloney 2014). In this case you 
define this pattern as pattern 2, fix the other pattern, and randomize pattern 2 following this 
point process. For a simple Thomas process this procedure is directly implemented in 
Programita. Otherwise, conduct first a univariate analysis and save the patterns generated by 
the fitted univariate Thomas sprocess. They can then be used as null model patterns for 
pattern 2 using the “from file” option. Here we show the null model where pattern 1 is fixed 
and a Thomas process fitted to pattern 2.  
 

1. Execute Programita. 
2. Highlight data file Fig4_24.dat you want to analyze in Input data and click the small 

“ok” button. 
3. Select bin of 1m window Select a new cell size 
4. Select a ring width of 3 in the menu “Which method will you use” 
5. Accept selection of neighborhood ranks for estimation of Dk(r). 
6. Press button “Calculate Index”.   
7. Click the checkbox “Calculate simulation envelopes” to be 

found in the menu “What do you want to do?”.  
8. A window will open that allows you to select a null model. 

Here you can specify the number of simulations of the null 
model (199 in the example) and the rule for the estimation of 
simulation envelopes (here the 5th lowest and highest values 
of the summary function of the 199 null model data sets).  

9. In the example, select “Cluster process” and then select 
“Pattern 1 fixed, patter 2 cluster” in the window “Null 
models”: 
 

 
 

10. Click the small “ok” button, the interface for fitting appears: 
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11. Select the radio button “L- and g” to use the g- and L-function for fitting. The default 

settings over distance interval 2 to 50m ( ). (There are usually very little 
point pairs at distance r = 1 which results in high uncertainty, therefore better start 
with r = 2.   

12. Click the button “fit” and Programita fits the two parameters ρ and σ of the Thomas 
process to the pattern. Note that ρA yields the number of clusters and 2σ the 
approximate radius of the “typical cluster”. To iteratively encircle the parameter 
space around the minimum in the σ-ρ parameter space click “Zoom” and “Fit”: 
 

  
 
The graph on the right shows the deviation between observed summary function (here 
the pair correlation and the L-function) and that predicted by Thomas process over the 
σ-ρ parameter space indicated by σmin, σmax, 100ρmin, and 100ρmin. There is a clear 
minimum at σ = 7.0 and ρA = 12.5 clusters. The pattern was generated with σ = 6.2 
and ρA = 12.5 clusters. 
 
If you are satisfied with the fit, press the small “ok” button in the “Fitted parameter” 
section of the fitting window.  
 

13. Press button “Calculate Index” and Programita shows the observed pattern (left) and 
the null model pattern (right): 
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Parametric null model for independence. Example Book_Fig4_24.res 
 

16. After the simulations of the null model the figure with the simulated patterns of the 
null model disappears, and a figure with the result of the analysis appears: 
 

 
 
As expected, the bivariate pair correlation function and the other summary functions 
are fully within the pointwise simulation envelopes.  

 

4.2.3 Pattern 2 from file 

In this example we use null model patterns for pattern 2 that were generated previously with 
Programita fitting a Thomas process to the data of pattern 1. Thus, first fit a Thomas process to 
pattern 2 and save the patterns generated by the Thomas process. Second, read these files into 
Programita as null model for pattern 2.  
 
1) Fit a Thomas process to pattern 2 (data Book_Fig4_24_p2.dat).  
 

1. Execute Programita. 
2. Highlight data file Book_Fig4_24_p2.dat you want to analyze in Input data.  
3. Select “no grid” in What do you want to do? 
4. Select bin of 1m window Select a new cell size 
5. Select a ring width of 3 in the menu “Which method will you use” 
6. Accept selection of neighborhood ranks for estimation of Dk(r). 
7. Press button “Calculate Index”.   
14. Click the checkbox “Calculate simulation envelopes” to be found in the menu “What do 

you want to do?” on the top left of the interface.  
15. A window will open that allows you to select a null model. Here you can specify the 

number of simulations of the null model (19 in the example).  
16. In the example, select “Cluster process” and then select “Univar. cluster” in the 

window “Null models”: 
 

 
 

8. Now the interface for fitting appears. 
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To iteratively encircle the parameter space around the minimum in the σ-ρ parameter 
space click “Zoom” and “Fit”. As expected, the best fit is similar to that in the 
previous example: 
 

 
 
There is a clear minimum at σ = 7.0 and ρA = 12.5 clusters. The pattern was generated 
with σ = 6.2 and ρA = 12.5 clusters. 
 
If you are satisfied with the fit, press the small “ok” button in the “Fitted parameter” 
section of the fitting window.  
 

9. To save the patterns generated by the Thomas process click “Save null model” and 
provide name of null model files (Tho_Book_Fig4_24_p2) 
 

 
 

10. Press button “Calculate Index” and Programita generates the null model patterns 
Tho_Book_Fig4_24_p2_1.dat, Tho_Book_Fig4_24_p2_2_dat,…. 

 
2) Conduct analysis with the null model from file (Book_Fig4_24file.res) 
 

11. Execute Programita. 
12. Highlight data file Book_Fig4_24.dat you want to analyze in 

Input data and click the small “ok” button 
13. Select bin of 1m window Select a new cell size 
14. Select a ring width of 3 in the menu “Which method will you use” 
15. Accept selection of neighborhood ranks for estimation of Dk(r). 
16. Press button “Calculate Index” 
17. Click the checkbox “Calculate simulation envelopes” to be 

found in the menu “What do you want to do?” on the top left of the 
interface.  
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Parametric null model for independence. Example Book_Fig4_24file.res 
 

18. Select “Data from file” in the window “Select a null model”.  
 

 
 

19. Insert the name trunk of the null model files (Tho_Book_Fig4_24_p2_) in the 
window “Specify null model files from file” that opens to read the null model files 
Tho_Book_Fig4_24_p2_1.dat, Tho_Book_Fig4_24_p2_2.dat, … 
 
Click also the radio button “Pattern 1 fix”. This means that the null model files are 
used for pattern 2.  
 
To finish click the small ok button in the window “Specify null model files from file”. 
Specify the number of simulations of the null model (19 in the example) and the rule 
for the estimation of simulation envelopes (here the 1th lowest and highest values of 
the summary function of the 19 simulated null model data sets). 
 

20.  If all settings are specified, press the button “Calculate Index” and Programita 
conducts the simulations of the null model. 

21. After the simulations of the null model the figure with the simulated patterns of the 
null model disappears, and a figure with the result of the analysis appears: 
 

 
 
As in the previous example, the bivariate pair correlation function and the other 
summary functions are fully within the pointwise simulation envelopes. 
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4.2.4 Pattern reconstruction 

In this example we use null model patterns for pattern 2 that were generated previously with 
the pattern reconstruction software (Wiegand et al. 2013). Programita can read these files 
and use it for the null model.  
 

1. Execute Programita. 
2. Highlight data file Book_Fig4_24.dat you want to analyze in Input data 
3. Select “no grid” in What do you want to do? 
4. Select bin of 1m window Select a new cell size 
5. Select a ring width of 3 in the menu “Which method will you use” 
6. Accept selection of neighborhood ranks for estimation of Dk(r). 
7. Press button “Calculate Index” 
8. Click the checkbox “Calculate simulation envelopes” to be found in the menu “What 

do you want to do?” on the top left of the interface.  
9. Select “Data from file” in the window “Select a null model”.  

 

 
 

10. Insert the name trunk of the null model files (rec_Book_Fig4_24_p2_) in the window 
“Specify null model files from file” that opens to read the null model files 
rec_Book_Fig4_24_p2_1.dat, rec_Book_Fig4_24_p2_2.dat, … 
 
Click also the radio button “Pattern 1 fix”. This means that the null model files are 
used for pattern 2.  
 
To finish click the small ok button in the window “Specify null model files from file”. 
Specify the number of simulations of the null model (19 in the example) and the rule 
for the estimation of simulation envelopes (here the 1th lowest and highest values of 
the summary function of the 19 simulated null model data sets). 
 

11.  If all settings are specified, press the button “Calculate Index” and Programita 
conducts the simulations of the null model. 

12. After the simulations of the null model the figure with the simulated patterns of the 
null model disappears, and a figure with the result of the analysis appears.  
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4.2.5 Pattern 2 CSR 

In this example we use the CSR null model for pattern 2. Note that this is not a suitable null 
model for testing for independence if pattern 2 shows clustering or hyperdispersion.  
 

1. Execute Programita. 
2. Highlight data file Book_Fig4_24.dat you want to analyze in Input data and click the 

small “ok” button. 
3. Select bin of 1m window Select a new cell size 
4. Select a ring width of 3 in the menu “Which method will you use” 
5. Accept selection of neighborhood ranks for estimation of Dk(r). 
6. Press button “Calculate Index” 
7. Click the checkbox “Calculate simulation envelopes” to be found in the menu “What 

do you want to do?” on the top left of the interface.  
8. Select “Pattern 1 fix, pattern 2 CSR” in the window “Select a null model”.  
9. Specify the number of simulations of the null model (199 in the example) and the 

rule for the estimation of simulation envelopes (here the 5th lowest and highest 
values of the summary function of the 199 null model data sets). 
 

 
 

10. If all settings are specified, press the button “Calculate Index” and Programita 
conducts the simulations of the null model. The null model patterns are shown on the 
right, the observed pattern on the left: 
 

 
 
It is clear that the null model (i.e., the green points) does not conserve the observed 
cluster structure.  
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Null model from file.   Example Book_Fig4_24CSR2.res

 
11. After the simulations of the null model the figure with the simulated patterns of the 

null model disappears, and a figure with the result of the analysis appears. Note that 
no simulation envelopes are shown for the univariate case because pattern 1 is fixed.  
 
The simulation pointwise envelopes for the bivariate summary functions are 
substantially narrower than that of the diverse null models that conserved the 
observed spatial structure of pattern 2.  

 
 

12. The GoF and global envelope tests show that the departures of the bivariate pair 
correlation function are significant: 

13.  

  
 

14. Especially the nearest neighbor distribution functions show strong departures from 
the null model: 

 
 
The nearest type 2 neighbor of type 1 points in the null model is usually much closer 
than in the observed data. This is because pattern 2 was clustered in the data.  
 
The observed bivariate pattern contains non-random spatial structure, but this 
structure is caused by the univariate clustering of the component patterns which 
accidently created a point configuration which is difficult to reproduce with the null 
model where pattern 2 is CSR. If we conserve the observed univariate structures (as 
in example Book_Fig4_24.res) we see that such point configurations can arise just by 
chance.  
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4.2.6 Pattern 1 CSR 

In this example we use the CSR null model for pattern 1 whereas pattern 2 is unchanged. 
Note that this is not a suitable null model for testing for independence if pattern 1 shows 
clustering or hyperdispersion.  
 

1. Execute Programita. 
2. Highlight data file Book_Fig4_24.dat you want to analyze in Input data and click the 

small “ok” button. 
3. Select bin of 1m window Select a new cell size 
4. Select a ring width of 3 in the menu “Which method will you use” 
5. Accept selection of neighborhood ranks for estimation of Dk(r). 
6. Press button “Calculate Index” 
7. Click the checkbox “Calculate simulation envelopes” to be found in the menu “What 

do you want to do?” on the top left of the interface.  
8. Select “Pattern 2 fix, pattern 1 CSR” in the window “Select a null model”.  
9. Specify the number of simulations of the null model (199 in the example) and the 

rule for the estimation of simulation envelopes (here the 5th lowest and highest 
values of the summary function of the 199 null model data sets). 
 

 
 

10. If all settings are specified, press the button “Calculate Index” and Programita 
conducts the simulations of the null model. The null model patterns are shown on the 
right, the observed pattern on the left: 
 

 
 
It is clear that the null model (i.e., the red points) does not conserve the observed 
cluster structure.  
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Null model from file.   Example Book_Fig4_24CSR1.res

 
11. After the simulations of the null model the figure with the simulated patterns of the 

null model disappears, and a figure with the result of the analysis appears. Note that 
there is now a result for the univariate analysis because pattern 1 was randomized.  
 

 
 

12. The global simulation envelopes indicate a weak but significant effect but the 
standard GoF test of the untransformed data is not significant (right graph).  
 

  
 

13. Interestingly, the nearest neighbor distribution functions show no departures from the 
null model, but those with higher neighborhood ranks such as the 4th nearest 
neighbor: 
 

 
 
However, as expected there is a strong departure from the CSR null model in the 
univariate analysis.  

 
 

 163



  
Null model from file.   Example Book_Fig4_24CSR12.res 
  

4.2.7 Pattern 1 and 2 CSR 

In this example we use the CSR null model for both component patterns. Note that this is not 
a suitable null model for testing for independence if pattern 1 and 2 shows clustering or 
hyperdispersion.  
 

1. Execute Programita. 
2. Highlight data file Book_Fig4_24.dat you want to analyze in Input data and click the 

small “ok” button. 
3. Select bin of 1m window Select a new cell size 
4. Select a ring width of 3 in the menu “Which method will you use” 
5. Accept selection of neighborhood ranks for estimation of Dk(r). 
6. Press button “Calculate Index” 
7. Click the checkbox “Calculate simulation envelopes” to be found in the menu “What 

do you want to do?” on the top left of the interface.  
8. Select “Pattern 1 fix, pattern 2 CSR” in the window “Select a null model”.  
9. Specify the number of simulations of the null model (199 in the example) and the 

rule for the estimation of simulation envelopes (here the 5th lowest and highest 
values of the summary function of the 199 null model data sets). 
 

 
 

10. If all settings are specified, press the button “Calculate Index” and Programita 
conducts the simulations of the null model. The null model patterns are shown on the 
right, the observed pattern on the left: 
 

 
 
It is clear that the null model (i.e., the red and green points) does not conserve the 
observed cluster structure.  
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Null model from file.   Example Book_Fig4_24CSR12.res

 
11. After the simulations of the null model the figure with the simulated patterns of the 

null model disappears, and a figure with the result of the analysis appears. The 
pointwise simulation envelopes are substantially narrower than for the diverse null 
models that conserved the observed spatial structure of pattern 2. 
 

 
 

12. As a consequence, the GoF tests show that the departures of the bivariate pair 
correlation function are highly significant: 

 

 
 
Especially the nearest neighbor distribution functions show strong departures from 
the null model: 
 

  
 
The nearest neighbor in the null model is usually much closer than in the observed 
data. This is because the observed patterns 1 and 2 were clustered.  
 
The observed bivariate pattern contains non-random spatial structure, but this 
structure is caused by the univariate clustering of the component patterns which 
created a point configuration which is impossible to reproduce with the null model 
where patterns 1 and 2 are CSR. However, if we conserve the observed univariate 
structures we see that such point configurations can arise just by chance.  
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The classification scheme 
  

4.2.8 Classification scheme 

The classification scheme is used for exploring the overall spatial association structure of 
species pairs in a multivariate pattern. The goal of this analysis is to determine how the 
individuals of a species j were distributed within local neighborhoods of individuals of a 
species i, and this analysis is repeated for all pairs i‒j of the community. The scheme is 
basically a summary of all pairwise bivariate analyses at a given neighborhood scale r which 
are possible for a community. Sections 4.2.2.2- 4.2.2.4 and section 4.3.1.1 in Wiegand and 
Moloney (2014) and Getzin et al. (2014) provide details on the scheme. Applications of the 
scheme include Wiegand et al. (2007b), Martínez et al. (2010), Wang et al. (2010), Wiegand 
et al. (2012), and Jacquemyn et al. (2014).  

The bivariate analysis of the scheme can use different null models; in the simplest case one 
pattern is kept fixed and the other pattern is randomized following CSR, or one pattern is 
kept fixed and the other pattern is randomized following a toroidal shift. Additionally, you 
can use null model patterns that are produced outside Programita, for example, by pattern 
reconstruction. 

The analysis using the CSR null model reveals how frequently the two different species were 
in close contact and therefore have the opportunity to interact whereas the toroidal shift null 
(and the homogeneous pattern reconstruction) model explores in good approximation how 
frequent different departures from independence occur for the pairs of species at a given 
neighborhood r. Here departures from independence con occur due to both, species 
interactions (e.g., repulsion due to competition) or shared or opposed habitat associations. 
The inhomogeneous pattern reconstruction null model that keeps the larger-scale intensity of 
the observed pattern and randomizes only the smaller-scale spatial structures of the 
univariate patterns. Here departures from independence con occur in good approximation 
only due to species interactions (e.g., repulsion due to competition).  

The scheme relies on two summary functions, the bivariate K function Kij(r) and the 
bivariate distribution function Dij(r) of the distances to the nearest neighbor and their 
expectations under the two null models. Why do we need two summary functions
homogeneous patterns departures in D

? In case of 
ij(r) and Kij(r) would be correlated. However, for “real 

world” heterogeneous patterns the local spatial configuration of individuals of species j 
around individuals of species i can widely vary at different locations in the plot. For example, 
at some locations some individuals of species i may have many neighbors of species j and at 
other locations some individuals of species i may have only few neighbors of species j. To 
describe the different types of spatial configurations which may arise we classify the 
bivariate pattern of a species pair at neighborhoods r into a two-dimensional space spanned 
by the two axis: 
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where the hat symbol indicates the observed value of each species pair. The Dij(r) and Kij(r) 
axes were transformed in a way that the expectation of independence or CSR) is located at 
the origin and that positive or negative departures of K(r) from the null model are weighted 
in the same way (Wiegand et al. 2012).  
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The classification scheme. Example scheme_torus.res

 
An alternative definition of the axes of the scheme that correct for the variability in the null 
model (based on standardized effect sizes) is given by (Getzin et al. 2014): 
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where SD[] estimates the standard deviation over all simulations of the null model. Because 
the distribution of P(r) and M(r) under the null model can be approximated by the standard 
normal distribution, the box delimited by values of –2.33, 2.33 (which correspond to a p-
value of 0.025 for two summary statistics individually) approximates the area where the null 
hypothesis cannot be rejected, and a given species departs more strongly from independence 
the farther away it is located from the box. 

However, the quadrant of the scheme where the species is located provides additional 
information on the type of departure. Four fundamental types of spatial association patterns 
are possible for each neighborhood r [32]: 

 Type 0: no departures: neither K12(r) nor D12(r) show significant departure from the 
null model 

 Type I: Segregation: Species pairs located in the lower-left quadrant show 
segregation because there are fewer individuals of species j within neighborhoods of 

radius r around individuals of species i than expected under the null model [ )(ˆ rP < 0 

and )(ˆ rM  < 0]. 

 Type II: Partial overlap: Species pairs located in the upper-left quadrants show 
partial overlap because individuals of species j occur more often within 
neighborhoods of radius r around individuals of species i [M(r) > 0], but a notable 
proportion of individuals of species i have fewer neighbors of species j [P(r) < 0] than 
expected under the null model. 

 Type III: Mixing: Species pairs located in the upper-right quadrant show a high 
degree of spatial association (mixing) because here individuals of species j occur 
more often within neighborhoods of radius r around individuals of species i [M(r) > 
0], and individuals of species i have more neighbors of species j [P(r) > 0], than 
expected under the null model. 

 Type IV: For species pairs located in the lower-right quadrant, species i individuals 

are highly clustered and some species j individuals occur in these clusters [ )(ˆ rP  > 0 

and )(ˆ rM  < 0]. This type rarely occurs.   

 
Instructions for the scheme based on univariate pattern files 

1. Prepare a data set with a univariate *.dat data file for each species. No specific name 
conventions are required, however, it is better to code the name with the species 
acronyms (e.g., ADE1TR.dat, ALSEBL.dat, BEILPE.dat) or numbers (e.g., 
BCI_C1_sp1.dat, BCI_C1_sp2.dat, BCI_C1_sp3.dat,…). In the example data we 
have Competition1_sp1.dat, Competition1_sp2.dat, ... The latter data files correspond 
to a simulated community (of Miller et al. 2017) with small-scale competition.  
Do not include species with less than 50 individuals.  
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The classification scheme. Example scheme_torus.res 
 

2. Prepare one bivariate data file. In the example this is Competition1_sp1_sp2.  

3. Prepare an *.txt ASCII file with a list of the species names (without extension) you 
want to analyze. In our case the list is “Competition1.txt”: 
Competition1_sp1 
Competition1_sp2 
Competition1_sp3 
.... 

4. Now prepare the example analysis for the bivariate data file. First, execute 
Programita. 

5. Highlight data file Competition1_sp1_sp2.dat you want to analyze in Input data and 
click the small “ok” button. 

1. Select bin of 1m window Select a new cell size  
2. Accept selection of neighborhood ranks for estimation of Dk(r). 
3. Select no edge correction for D12(r) because Hanisch edge correction does not work 

well for some bivariate patterns (see section 3.1.4.5 in Wiegand and Moloney 2014) 
4. Press button “Calculate Index” 
5. Select L(r) in window “Select a summary function” and click the small “ok” button 
6. Click the checkbox “Calculate simulation envelopes” to be found in the menu “What 

do you want to do?” on the top left of the interface.  Select “Toroidal shift” in the 
window “Select a null model”. 

7. Specify the number of simulations of the null model (199 in the example) and the 
rule for the estimation of simulation envelopes (here the 5th lowest and highest 
values of the summary function of the 199 null model data sets). 

                                   
If all settings are specified, press the button “Calculate Index” and Programita 
conducts the simulations of the null model. Save the results with the “Save results” 
button (Scheme_competition1_sp1_2_torus.res) .  

8. Enable check box “ClassificationSchemeSim” on the 
right hand side of the “Select a null model” window. A 
window opens with settings of the Series of analyses. 

  
9. To select files for pairwise analyses based on the 

univariate data files select “File list for pat1 and pat2”. 
10. If pattern 1 and 2 should be selected from the same list 

select “Pat1=pat2” (click the check box “pat1=pat2” two 
times). This is necessary to omit that the same file is 
selected as pattern 1 and pattern 2. 

11. To save the bivariate data files that are automatically 
assembled by Programita enable “save data file” 
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12. Insert the name of the file list for pat 1 (and if appropriate, 

for pat 2). In our case it is “Competition1.txt”.  
13. The trunk-name is used to name the summary output file. 

We use “scheme” 
14. Provide the distance interval for the GoF test (1-50m in 

our case) 
15. To obtain the second version of the scheme with 

standardized effect sizes click the check box “Stand. effect 
size” 

16. Once all settings are specified, click the fat ok bottom , 
and then “Calculate Index” to start the series of analyses. 

17. Disable the checkbox “graph” to simulate quicker  

18. The important output file is then named “Summary_SchemeSim_scheme.txt” 
(“scheme” is the name you selected). It is a comma delimited ASCII file. It gives you 
a summary of the result of all analyses and can be used to construct the scheme.  
The first part of the data file:  

 

 Dataname: the datafile of the given species pair. It is always rectemp.dat if the 
bivariate data were composed from the univariate data. The columns “name 1” 
and “name 2” provided later give the names of the univariate files.  

 nr: the number of the species pair analyzed 
 r0 and r1: the interval of the GoF test 
 the values of the M-axis of the scheme for distances 1, 2, 3 (ln(K12)-ln(K12th) 1, 

ln(K12)-ln(K12th) 2, ..., ln(K12)-ln(K12th) 50). We show here only distances r 
up to 3. A value of -111 indicates a large negative value (> -4) 

 the values of the P-axis of the scheme for distances 1, 2, 3 (-D12-D12th 1, - D12-
D12th 2, ..., - D12-D12th 50). We show here only distances r up to  3.  

The second part of the file: 

 

 rank11: the rank of the GoF test for the univariate pair correlation function (not 
used here) 

 rank12: the rank of the GoF test for the bivariate pair correlation function 
(additional info) 

 anzp1: number of points of pattern 1 
 anzp2: number of points of pattern 2 
 name 1: name of focal pattern 
 name 2: name of second pattern 
 rankL12  0- 50: the rank of the GoF test for the Lij(r) over the entire range of 

distances selected (to check if the M-axis of scheme is significant)  
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 rankD12  0- 50: the rank of the GoF test for the Dij(r) over the entire range of 
distances 1-50 selected (to check if P-axis of the scheme is significant) 

 Rank M1, Rank M2, …, Rank M 50: the rank of the M-axis of the scheme at all 
individual distances r = 1, 2, … 50m analyzed 

 Rank P1, Rank P 2, …, Rank P50: the rank of the P-axis of the scheme at all 
individual distances r = 1, 2, … 50m analyzed 
 

19. Based on the values of the M and P axes and the rank of the M and P axes at distance r 
you can determine the association type of a given species pair.  
 
Because we use two test statistics at the same time [Lij(r), Dij(r)] we need to use a P-
value of 0.025 for each summary functions to yield an overall error rate of 5%. If you 
selected 199 simulation of the null model, the rank must be therefore larger than 195 
to be significant. 

If (Rank P r) > 195 or (Rank M r) > 195 the species pair belongs at distance r to a 
significant class: 
 P < 0 and M < 0:   type 1 (segregation) 
 P < 0 and M > 0:   type 2 (partial overlap) 
 P > 0 and M > 0:   type 3 (mixing) 
 P > 0 and M < 0:    type 4 (does only rarely occur) 
 otherwise the species pair belongs to the no “significant patterning class”  
 

20. The scheme with effects sizes  
 
If you selected “Stand. effect sizes” 

 
the corresponding summary file “Summary_SchemeSim_scheme.txt” is given by 

where T0(K12) 1 is the effect size of the K12(r) at distance r = 1 and T0(D12) 1 the 
effect size of D12(r) at distance r = 1 and so on.  

21. Based on the values of the M and P axes that are 
given as effect sizes, you can determine the 
association type of a given species pair. Because 
we use two test statistics at the same time 
[Lij(r), Dij(r)] we need to use a P-value of 0.0
for each summary functions to yield an overall 
error rate of 5%. That means that values of the 
effect size > 2.24 or < – 2.24 indicate a 
significant departure from the null model with
the types shown on the left. Nicely, now
non-significant associations are all placed in the 
blue square in the middle, and the farther away 
from the square a species pair is located the 
stronger is the departure from the null

25 

 
 the 

 model. 
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Instructions for the scheme based on univariate component  patterns and null models 
from file 
 
You can do the same procedure as above also for cases where 
you previously saved the null model files for the different 
patterns listed in the file lists, for example generated with 
pattern reconstruction.  
 
In this case you need to click “null model from file”. The null 
model patterns corresponding to your data files must follow 
the name conventions: 
 
       data file:                 name.dat 
       null model file:      rec_name_n.dat  
 
where name is the data file (e.g., sp_3 in the example from the 
file list above) and n the number that should run from 1 to the 
number of # simulations of the null model specified in the 
window “Select a null model”. 

 
 
 
 
 
 
 
 

 
 
Derive scheme with pattern reconstruction null model (Example scheme_rec.res) 
 
For each univariate data file you need to generate as much reconstructions as you select for 
the number of simulations of the null model.  
 
In the first step you have to prepare one example analysis with the correct settings and then 
save the corresponding *.res file.  
 

1. First, execute Programita. 
2. Highlight data file sp_1_3.dat you want to analyze in Input data and click the small 

“ok” button. 
3. Select bin of 1m window Select a new cell size 
4. Accept selection of neighborhood ranks for estimation of Dk(r). 
5. Press button “Calculate Index” 
6. Select L(r) in window “Select a summary function” 
7. Click the checkbox “Calculate simulation envelopes” to be found in the menu “What 

do you want to do?” on the top left of the interface. Select “Data from file” in the 
window “Select a null model”.  

8. Specify the number of simulations of the null model (19 in the example) and the 
rule for the estimation of simulation envelopes (here the 1th lowest and highest 
values of the summary function of the 19 null model data sets). 

9. Provide trunk name of null model files in window “Specify null model from file”. It is 
“rec_sp_3_” because the data file used sp_1.dat as focal pattern and sp_3.dat as 
second pattern. Select also “Pattern 1 fix” because you randomize pattern 2 and click 
small “ok” button. 
 

 
 



   
The classification scheme. Example scheme_rec.res 
 

 
 
If all settings are specified, press the button “Calculate Index” and Programita 
conducts the simulations of the null model. 

10. Save results file as “scheme_rec.res” 

11. Enable check box “ClassificationSchemeSim” on the 
right hand side of the “Select a null model” window. A 
window opens with settings of the Series of analyses. 

  
12. To select files for pairwise analyses based on the univariate data files select “File list 

for pat1 and pat2”. 
13. If pattern 1 and 2 should be selected from the same list select “Pat1=pat2” (click the 

check box “pat1=pat2” two times). This is necessary to omit that the same file is 
selected as pattern 1 and pattern 2. 

14. To save the bivariate data files enable “save data file” 
15. Insert the name of the file list for pat 1 (and if appropriate, for pat 2). In our case it is 

“sp.txt”.  
16. The trunk-name is used to name the summary output file. 

We use here the name “scheme”  
17. Provide the distance interval for the GoF test (1-50m in 

our case) 
18. Once all settings are specified, click the fat ok bottom , 

and then “Calculate Index” to start the series of analyses. 
19. Disable the checkbox “graph” to simulate quicker. 
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The classification scheme. Example scheme_nr_rec.res

 
The scheme for numbered files and pattern reconstruction null model (Example 
scheme_nr_rec.res) 
 
You can also run the classifications scheme analysis with numbered data files and the 
corresponding null model files from pattern reconstruction for the second pattern (the first 
pattern is unchanged). 
 
In the example the data files are named “sp_6_sp_1.dat”, “sp_6_sp_2.dat”, and 
“sp_6_sp_3.dat”, or “sp_6_sp_nr.dat” where nr runs from 1 to 3.  
 
The null model files which are only for the second species are named “rec_sp_1_n.dat”, 
“rec_sp_2_n.dat”, and “rec_sp_3_n.dat” where n runs from 1 to 19 (the number of 
simulations of the null model) and the blue marked number must corresponds to the nr of the 
data files.  
 

1. First, execute Programita. 
2. Highlight the first data file sp_6_sp_1.dat you want to analyze in Input data and click 

the small “ok” button. 
3. Select bin of 1m window Select a new cell size 
4. Accept selection of neighborhood ranks for estimation of Dk(r). 
5. Press button “Calculate Index” 
6. Select L(r) in window “Select a summary function” 
7. Click the checkbox “Calculate simulation envelopes” to be found in the menu “What 

do you want to do?” on the top left of the interface. Select “Data from file” in the 
window “Select a null model”. 

8. Specify the number of simulations of the null model (19 in the example) and the 
rule for the estimation of simulation envelopes (here the 1th lowest and highest 
values of the summary function of the 19 null model data sets). 
Provide trunk name of null model files in window “Specify null model from file”. It is 
“rec_sp_1_” because the data file used sp_1.dat as second pattern. Select also 
“Pattern 1 fix” because you randomize pattern 2 and click small “ok” button. 

 
If all settings are specified, press the button “Calculate Index” and Programita 
conducts the simulations of the null model. 

9. Save results file as “scheme_nr_rec.res” 
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The classification scheme. Example scheme_nr_rec.res 
 

10. Enable check box “ClassificationSchemeSim” on the 
right hand side of the “Select a null model” window. A 
window opens with settings of the Series of analyses. 
 

11. Provide the trunk name for the data files (sp_6_sp_), and 
select the appropriate numbers because the number nr runs 
from 1 to 3 (i.e., you have 3 data files).  

12. Select “save bi_confidence” and “D1(r)” to save the *.env 
files with names D12_1(r)_nr.env, Bi_confidencenr.env. 

13. Provide the distance interval for the GoF test (1-50m in 
our case) 

14. Once all settings are specified, click the fat ok bottom , 
and then “Calculate Index” to start the series of analyses. 

15. Disable the checkbox “graph” to simulate quicker. 
 

 
 

 

 
16. The output file “Summary_SchemeSim_scheme.txt” (“scheme” is the name you 

selected) is: 
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Bivariate Thomas process with shared parents. Example BiThomasShared.res

  

4.2.9 Bivariate Thomas process with shared parents 

The simple univariate Thomas process can be generalized to a bivariate point process that 
includes an explicit mechanism of attraction between the two component patterns.  
 
While in a simple Thomas process the points of one pattern are distributed around the cluster 
centers, the bivariate Thomas process distributes the points of two patterns around the cluster 
centers. Each component pattern has an own parameter ρ determining the number of cluster 
centers for this pattern and a parameter σ determining the approximate size of the clusters. 
See section 4.2.3.1 “Bivariate Thomas Process with Shared Parents” in Wiegand and 
Moloney (2014). This cluster process was first presented in Jacquemyn et al. (2007).  
 
If ρ1 = ρ2 all cluster centers are shared and the attraction between pattern 1 and 2 will be 
maximal. However, if ρ1 < ρ2 or ρ1 > ρ2 not all clusters host points of both types. In this case
some parents are not shared. The fewer parents are shared, the less attraction exists between 
pattern 1 and pattern 2. Note that the degree of attraction is also determined by the size of the 
clusters. 

 

 
The pair correlation function of the simple Thomas process yields: 
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and the pair correlation function of the simple bivariate Thomas process with shared parents 
(i.e., ρ1 = ρ2 = ρ; all parents are shared) yields  
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Thus, Programita can fit basically the pair correlation function of a simple Thomas process 
to the observed bivariate pair correlation function, but with parameters  

and ρ: 
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The fitted point process is therefore only appropriate if the fitted value of σt yields in good 
approximation  and if ρ2/)( 2

2
2
1

2  t 1 ≈ ρ2 ≈ ρ. To test this, you need first to determine 

the parameters ρ1, ρ2, σ1 and σ2 of the univariate patterns using univariate analysis.  
 

 175



  
Bivariate Thomas process with shared parents. Example BiThomasShared.res 
 
This example is based on the example Book_Fig4_13_bi.res and the two univariate patterns 
are taken from two different realizations of the univariate parent-offspring Thomas process. 
That means that the cluster centers are the same (i.e., shared parents) and the cluster sizes are 
also the same. The parameters of the original point process were σ = 12.54 and Aρ = 34.3. 
Use a ring width of dr = 7 for the analyses.  
 
Example BiThomasShared.res 
 

1. In the first step fit a simple Thomas process to the two univariate component patterns 
to verify that the assumption of this point process (i.e., both patterns follow a simple 
Thomas process) holds.  

2. The fitted parameters of pattern 1 (file BiThomasShared_p1.dat) yield σ1 = 12.3 and 
Aρ1 = 34.6 

3. The fitted parameters of pattern 2 (file BiThomasShared_p2.dat) yield σ2 = 13.6 and 
Aρ2 = 28.4 
 
pattern 1:                                               pattern 2: 

      
 

11. Using the information from the univariate analysis, now fit in a second step the 
bivariate Thomas process with shared parents to the data 

12. Execute Programita. 
13. Highlight data file BiThomasShared.dat you want to analyze in Input data and click the 

small “ok” button.  
14. Select bin of 1m window Select a new cell size 
15. Select a ring width of 7 in the menu “Which method will you use” 
16. Accept selection of neighborhood ranks for estimation of Dk(r). 
17. Press button “Calculate Index” 
18. Programita then shows the bivariate pattern. It is clear that the points of the two 

patterns are merged within the same clusters: 
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Bivariate Thomas process with shared parents. Example BiThomasShared.res

 
19. Click the checkbox “Calculate simulation envelopes” to be found in the menu “What 

do you want to do?” on the top left of the interface. 
20. Select “Cluster process” in the window “Select a null model”.  
21. A window “Fit of cluster process to data” opens. Select in the section “Null models” at the 

bottom the button “Bivar. cluster, shared parents”.  
 

 
 
Now this window appears that asks you to provide the parameters from the univariate 
analysis of patterns 1 and 2. Copy-paste the results from the univariate analyses and 
press the small “ok” buttons: 
 

 
 

22. Now you are at the fitting window. Use the “fit” and “zoom” buttons to find a good 
fit. Programita fits the bivariate pair correlation function to the data, estimating  
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The best fit yields a parameter Aρ = 28.4 shared parents and the fitted value of σt = 
12.51 is in good agreement with 5.02 = 12.95 (click “check” for 

estimating σ
2

2
1(( t )2/)

t. Then click the “ok” button and “Calculate Index”. 
 

23. As expected, the different summary functions are in good agreement with the fitted 
point process for both, the univariate analysis of pattern 1 and the bivariate analysis: 
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Bivariate Thomas process with shared parents. Example BiThomasShared.res 
 

 
 
The weak departure in the bivariate nearest neighbor distribution function is 
caused by the underestimation of the number of clusters in pattern 2. A few cluster 
centers were not shared and therefore for the non-shared clusters of pattern 1 the 
nearest type 2 neighbors were farther away than expected from the data: 
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Bivariate Thomas process with shared parents. Example BiThomasShared.res

  

4.2.10 Bivariate Thomas process with partly shared parents 

Not all clusters of the bivariate Thomas process with shared clusters need to be shared. If 
fewer parents are shared, the attraction of the two patterns will decline and in the extreme 
case where no cluster is shared they will be independent. Section 4.2.3.2 “Bivariate Thomas 
Process with Partly Shared Parents” in Wiegand and Moloney (2014) estimate the pair 
correlation function for the more general cluster process where not all clusters are shared. 
This cluster process was first presented in Jacquemyn et al. (2007). The pair correlation 
function of the simple bivariate Thomas process with partly shared parents yields 
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The ρ1 and ρ2 are the fitted parameter of the univariate analyses of pattern 1 and 2, 
respectively, and the number of shared clusters yields Aρs. Thus, this point process has an 
“effective” number of clusters ρ* which agrees with the number of clusters if all clusters are 
shared (i.e., ρ1 = ρ2 = ρs), and which becomes very large if no clusters are shared (i.e., ρs is 
small).  
 
Thus, as before Programita fits basically the pair correlation function of a simple Thomas 
process to the observed bivariate pair correlation function and estimates ρ* and σ*.  
 
Comparing the values of ρ* and σ* with the values of the parameters from the univariate 
analysis σ1, Aρ1, σ2, and Aρ2 allows to find out if the point process yields consistent
parameters. First, the fitted value for σ* should yield in approximation . 
Second, we also expect ρ

 

 

5.02
2

2
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1 > ρs and ρ2 > ρs, because the number of shared parents cannot be
greater than the number of parents of pattern 1 or 2. 
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Bivariate Thomas process with shared parents. Example Book_Fig4_29.res 
 
This example is based on a realization of the bivariate Thomas process with partly shared 
parents fitted in example of Figure 4.29 in Wiegand and Moloney (2014).  
 
The parameters of the original point process were σ1 = 6.65, and Aρ1 = 14.85, σ2 = 4.42, Aρ2 

.67 

5.0 

= 64.75, and the fitted parameter of the shared parents was Aρ = 10.3.  
 
Example Book_Fig4_29.res 
 

1. In the first step fit a simple Thomas process to the two univariate component patterns 
to verify that the assumption of this point process (i.e., both patterns follow a simple 
Thomas process) holds.  

2. The fitted parameters of pattern 1 (file Book_Fig4_29_p1.dat) yield σ1 = 6.25 and 
Aρ1 = 15

3. The fitted parameters of pattern 2 (file Book_Fig4_29_p2.dat) yield σ2 = 4.26 and 
Aρ2 = 6
 
pattern 1:                                               pattern 2: 

      
 

4. Using the information from the univariate analysis, now fit in a second step the 
bivariate Thomas process with shared parents to the data 

5. Execute Programita. 
6. Highlight data file Book_Fig4_29.dat you want to analyze in Input data and click the 

small “ok” button. 
7. Select bin of 1m window Select a new cell size 
8. Select a ring width of 3 in the menu “Which method will you use” 
9. Accept selection of neighborhood ranks for estimation of Dk(r). 
10. Press button “Calculate Index” 
11. Programita then shows the bivariate pattern. It is clear that not all clusters are shared 

but that there is a strong attraction between the two patterns: 
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Bivariate Thomas process with shared parents. Example Book_Fig4_29.res

 
12. Click the checkbox “Calculate simulation envelopes” to be found in the menu “What 

do you want to do?” on the top left of the interface. 
13. Select “Cluster process” in the window “Select a null model”.  
14. A window “Fit of cluster process to data” opens. Select in the section “Null models” at the 

bottom the button “Bivar. cluster, shared parents”.  
 

 
 
Now this window appears that asks you to provide the parameters from the univariate 
analyses of patterns 1 and 2. Copy-paste the results from the univariate analyses and 
press the small “ok” buttons: 
 

 
 

15. Now you are at the fitting window. Use the “fit” and “zoom” buttons to find a good 
fit. Programita fits the bivariate pair correlation function to the data, estimating  
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The best fit yields a parameter Aρ = 10.3 shared parents and the fitted value of σt = 
4.7 is in good agreement with 5.02 = 5.34.   

 
2

2
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16. As expected, the different summary functions are in good agreement with the fitted 
point process for both, the univariate analysis of pattern 1 and the bivariate analysis. 
However, note the relatively wide pointwise simulation envelopes of the bivariate 
analysis which indicates a strong stochastic variability among the realizations of this 
point process.  
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Bivariate Thomas process with shared parents. Example Book_Fig4_29.res 
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Hard core processes. Example Book_Fig2_21e.res

  

4.2.11 Bivariate hard and soft core processes 

Gibbs (or Markov) point processes can be used to consider interaction among points of one 
type and between points of different type (see section 4.2.3.4 “Gibbs Processes to Model 
Interactions between Species” in Wiegand and Moloney 2014). They are natural 
generalizations of the univariate Gibbs processes.  
 
Simulation of bi (or multivariate) Gibbs processes requires optimization techniques where 
points of an initial pattern are deleted and replaced by randomly drawn points, which are 
accepted if the new point configuration becomes more likely, given the location density 
function. Such “birth and death” simulation algorithms closely resemble aspects of spatial 
population or community dynamics and are structurally very similar to spatially explicit, 
individual-based simulation models (Grimm and Railsback 2005) which are used by 
ecologists to study the spatiotemporal dynamics of plant populations and communities.  
 
Programita has not implemented Gibbs processes, for ecologists it is recommend to use 
instead individual-based models that are based on direct biological mechanisms. However, 
to provide you the possibility to simulate simple point patterns with repulsion or 
segregation, Programita includes a simple algorithm based on “random sequential 
absorption” (RSA) processes to produce bivariate hard and soft core patterns.  
 
The RSA algorithm implemented in Programita is simple. It is constructed by placing 
iteratively and randomly points within an observation window W which are thought to be 
the centers of disks with radius r0. For bivariate patterns Programita first places the points 
of pattern 1 and then in a second step, the points of pattern 2. Thus, points of pattern 2 do 
not influence the placement of points of pattern 1.  
 
Five parameters govern this point process, two radiuses r1 and r2 of pattern 1 and 2, 
respectively, that give the “zone of influence” of the two patterns, and three interaction 
coefficients p1, p2, and p21 that determine together with the distance d to the nearest already 
placed point the probability that the new point is accepted. As in the univariate case, this 
probability yields  
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where p is p1, p2, and p12 depending on the types of the 
tentatively placed point and the nearest neighbor, r12 = 2 
r1 if the tentatively placed point and the nearest 
neighbor are of type 1, r12 = 2 r2 if the tentatively placed 
point and the nearest neighbor are of type 2, and r12 = r1 
+ r2 if the tentatively placed point and the nearest 
neighbor are of different type. 
 
This setting allows for different types of patterns with interactions only between points of 
type 1 and type 2, only between points of type 1, between points of type 2, and so on. 
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Hard core processes. Book_Fig4_21e_bi.res 
 
Example Book_Fig4_21e_bi.res (bivariate RSA inhibition process) 
 
This pattern has been generated with a RSA algorithm to simulate non-overlapping disks with 
radius r0 = 2m, but overlap was only restricted between disks of different type.  
 

1. Execute Programita. 
17. Highlight data file Book_Fig4_21e.dat you want to analyze in Input data and click the 

small “ok” button. 
2. Select bin of 1m window Select a new cell size 
3. Select a ring width of 3 in the menu “Which method will you use” 
4. Accept selection of neighborhood ranks for estimation of Dk(r). 
5. Press button “Calculate Index” 
6. Click the checkbox “Calculate simulation envelopes” to be found in the menu “What 

do you want to do?” on the top left of the interface.  
7. Select null model “Pattern 1 and 2 CSR” to start with the basic CSR algorithm. 
8. Click checkbox “Hard core” and 

go to the window “Hard core null 

model” to define details of the 
RSA null model. Click “Radius 
of pattern 1” and “Radius of 
pattern 2”because you have a 
bivariate pattern and provide the 
radius (2.0) in our case.  
 

 
 

9. Because the two univariate component patterns should be CSR patterns, select large 
values of the exponents p1 and p2 e.g., 111. However, because of a negative 
interaction between type 1 and type 2 points select p21 = 0.5. Finally, click the small 
“ok” button. 

10. To simulate the point process press “Calculate Index”. As expected, the simulated 
patterns look very similar to the observed pattern: 
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Hard core processes. Example Book_Fig4_21e_bi.res

 
11. The uni- and bivariate pair correlation functions and the L-functions agree well with 

the simulated point process and the bivariate summary functions show the typical 
“soft-core” shape: 
 

  
 

12. The same is true for the nearest neighbor distribution functions:  
 

  
 

 
 
Example Book_Fig4_21a_bi.res (Bivariate inhibition process) 
 
This pattern has been generated with a RSA algorithm to simulate non-overlapping disks with 
radius r0 = 2m where “interactions” occurred only among points of the same type.  
 

1. Execute Programita. 
2. Highlight data file Book_Fig4_21a.dat you want to analyze in Input data and click the 

small “ok” button.  
3. Select bin of 1m window Select a new cell size 
4. Select a ring width of 3 in the menu “Which method will you use” 
5. Accept selection of neighborhood ranks for estimation of Dk(r). 
6. Press button “Calculate Index” 
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Hard core processes. Example Book_Fig4_21a_bi.res 
 

7. Click the checkbox “Calculate simulation envelopes” to be found in the menu “What 

do you want to do?” on the top left of the interface.  
8. Select null model “Pattern 1 and 2 CSR” to start with the basic CSR algorithm. 
9. Click checkbox “Hard core” and go to the window “Hard core null model” to define 

details of the RSA null model. Click “Radius of pattern 1” and “Radius of pattern 
2”because you have a bivariate pattern and provide the radius (2.5) in our case.  

10. Because the two univariate component patterns should be hard core patterns, select 
small values of the exponents p1 and p2 e.g., 0.1. However, because there should be 
no interaction between type 1 and type 2 points select p21 = 111. Finally, click the 
small “ok” button. 

  
 

11. To simulate the point process press “Calculate Index”. As expected, the simulated 
patterns look very similar to the observed pattern: 
 

 
 

12. The uni- and bivariate pair correlation functions and the L-functions agree well with 
the simulated point process, and the univariate summary functions show the typical 
“hard-core” shape: 
 

  
 
The distribution functions of the distances to the nearest neighbor are also very well 
matched.  
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Heterogeneous Poisson process. Example Book_Fig4_31a.res

  

4.2.12 Heterogeneous Poisson processes for bivariate patterns 

The heterogeneous Poisson process can be used to account for first-order heterogeneity [i.e., 
the pattern has a non-constant intensity function λ(x)] in one of the two component patterns 
of a bivariate pattern. The summary functions are still impacted by the heterogeneity, but the 
null model shows the same heterogeneity than the original pattern. The shape of the observed 
summary functions, relative to that of the simulated null model patterns, allows revealing 
potential effects of species interactions.  
 
The following examples show simple cases of heterogeneity which are nevertheless often 
close to real-world patterns of tropical forests. In the examples the two component patterns 
are CSR and independent of each other, but only distributed within subareas A1 and A2 of the 
observation window W. Depending on the size and the overlap of the two subareas, the 
different association types mixing, partial overlap and segregation already introduced above 
in the classification scheme can occur.  
 
Example Book_Fig4_31a.res 
The following example presents the analysis of Figure 4.31 using a heterogeneous Poisson 
process with non-parametric kernel estimate for pattern 2 whereas pattern 1 remains 
unchanged. You can repeat the analyses with the data files Book_Fig4_31b.dat and 
Book_Fig4_31c.dat 
 

1. Execute Programita. 
2. Highlight data file Book_Fig4_31a.dat you want to analyze in 

Input data and click the small “ok” button 
3. Select “no grid” in What do you want to do? 
4. Select a ring width of 5 in the menu “Which method will you use” 
5. Accept selection of neighborhood ranks for estimation of Dk(r). 
6. Press button “Calculate Index” 
7. Click the checkbox “Calculate simulation envelopes” to be 

found in the menu “What do you want to do?” on the top left of the 
interface.  

8. Select “Pattern 1 fix, pattern 2 CSR” in the window “Select a 

null model”.  
9. Specify the number of simulations of the null model (199 in the 

example) and the rule for the estimation of simulation 
envelopes (here the 5th lowest and highest values of the 
summary function of the 199 simulated null model data sets). 

10. Click checkbox “Heterogeneous Poisson”  
11. Go to window “Settings for hetero. Poisson” on the left and insert 

the bandwidth R (30m in the example), enable “Kernel” for the 
Epanechnikov kernel and select “Intensity of pattern 2” 
(because this null model randomizes pattern 2). Edge 
correction “Edge” is enabled by default.  

12. Click “Calculate Index” and Programita estimates the 
intensity function and shows the pattern and the corresponding 
intensity function. 
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Heterogeneous Poisson. Example Book_Fig4_31a.res 
 

   
 
Click OK at the message box to save the intensity file. The file is saved with name 
int_E_Book_Fig4_31a_R2_30.int where the “int_E” indicates Epanechnikov kernel, 
Book_Fig4_31a.dat was the data file, “_R2_30” means that the intensity was 
estimated with pattern 2 and bandwidth 30. 
 

13. Now Programita conducts the analysis. You can observe during the simulations that 
the null model distributes the points of pattern 2 (green points) with probability 
proportionally to the intensity. Here an example: 
 

 
 
The strong heterogeneity of the second pattern (green points) is conserved, although 
pattern 2 is somewhat “smeared” because of the kernel function.  
 

14. The result resembles that in Figure 4.31d, g well: 
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Heterogeneous Poisson. Example Book_Fig4_31a_int2.res

 
Example Book_Fig4_31a_int2.res 
The following example presents the analysis above, but uses instead of 
the approximation of the intensity function based on a kernel estimate 
the “real” intensity function which has a value of λ inside the (100, 
300) × (100, 300) subarea occupied by pattern 2. The null model again 
is a heterogeneous Poisson process for pattern 2 whereas pattern 1 
remains unchanged. 
 

1. Execute Programita. 
2. Highlight data file Book_Fig4_31a.dat you want to analyze in 

Input data and click the small “ok” button. 
3. Select bin of 1m window Select a new cell size 
4. Select a ring width of 5 in the menu “Which method will you use” 
5. Accept selection of neighborhood ranks for estimation of Dk(r). 
6. Press button “Calculate Index” 
7. Click the checkbox “Calculate simulation envelopes” to be 

found in the menu “What do you want to do?” on the top left of the 
interface.  

8. Select “Pattern 1 fix, pattern 2 CSR” in the window “Select a 

null model”.  
9. Specify the number of simulations of the null model (199 in the 

example) and the rule for the estimation of simulation envelopes 
(here the 5th lowest and highest values of the summary function 
of the 199 simulated null model data sets). 

10. Click checkbox “Heterogeneous Poisson”  
11. Go to window “Settings for hetero. Poisson” on the left and select 

“Intensity of pattern 2” (because this null model randomizes 
pattern 2). 

12. Click checkbox “Intensity function from file”. The window 
“Select a file with the intensity function” opens.  

13. Highlight in this window the file int_Book_Fig4_31a_R2.int 
that contains the intensity function, 
 

 
 
select also “pat 2” because it is the intensity of pattern2 and 
then the small “ok” button. Be sure that “Intensity of pattern 
2” is selected in the window “Settings for hetero. Poisson”.  
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Heterogeneous Poisson. Example Book_Fig4_31a_int2.res 
 

14. Click “Calculate Index” and Programita simulates the heterogeneous Poisson 
process. Because now the real intensity function was used, the null model patterns are 
not smeared as in the heterogeneous Poisson process with a kernel estimate of the 
intensity function: 
 

 
 

15. The results are similar to the previous case, as expected, there is no significant 
departure from the null model although a slight (non-significant) departure is visible 
at larger scales in the g- and L-function: 
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Heterogeneous Poisson process with dispersal kernel. Example Book_Fig4_18_bi.res

 

4.2.13 Heterogeneous Poisson processes process with dispersal kernel 

The example Book_Fig4_18.res was used in the univariate section (“Simple bivariate parent-
offspring Thomas process”) to illustrate the duality between a Cox process and a parent-
offspring Thomas process where the cluster centers (i.e., parents) are known and are the same 
in each simulation of the point process. In this case we assume a “dispersal kernel” around 
the points of type 1 (which are the cluster centers) and the points of type 2 are distributed in 
accordance with this dispersal kernel. The advantage of the more flexible interpretation as 
Cox process (i.e., heterogeneous Poisson process) is that we can use additional kernel 
functions and not only the normal distribution as assumed in the Thomas process. 
Additionally, as shown in Rodríguez-Pérez et al. (2012), we can manipulate the intensity 
function to accommodate various hypotheses.  
 
The procedure for this null model is the same as in the example above, but now you select in 
the window “Settings for hetero. Poisson “Intensity of pattern 1” (because this null model uses 
the intensity function of pattern 1 to randomize pattern 2). 
 

1. Execute Programita. 
2. Highlight data file Book_Fig4_13.dat you want to analyze in Input data and click the 

small “ok” button. 
3. Select bin of 1m window Select a new cell size 
4. Select a ring width of 7 in the menu “Which method will you use” 
5. Accept selection of neighborhood ranks for estimation of Dk(r). 
6. Press button “Calculate Index” 
7. Click the checkbox “Calculate simulation envelopes” to be 

found in the menu “What do you want to do?” on the top left of the 
interface.  

8. Select “Pattern 1 fix, pattern 2 CSR” in the window “Select a 

null model”. 
9. Specify the number of simulations of the null model (199 in the 

example) and the rule for the estimation of simulation 
envelopes (here the 5th lowest and highest values of the 
summary function of the 199 simulated null model data sets). 

10. Click checkbox “Heterogeneous Poisson”  
11. Go to window “Settings for hetero. Poisson” on the left and insert 

the bandwidth R (13m in the example), enable “Gauss” for the 
kernel function being 2-dimensional normal distribution and 
select “Intensity of pattern 1” (because in this null model the 
intensity is based on pattern 1). Edge correction “Edge” is 
enabled by default.  

12. You can also select alternative kernel functions such as the 
Epanechnikov kernel or the exponential kernel (see univariate 
section “Heterogeneous Poisson with kernel estimate”. 

13. Click “Calculate Index” and Programita estimates the 
intensity function and shows the pattern and the corresponding 
intensity function: 
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Heterogeneous Poisson process with dispersal kernel. Example Book_Fig4_18_bi.res 
 

       
14. Click OK at the message box if you want to save the intensity file. The file is saved 

with int_G_Book_Fig4_18_R1_13.int where the “int_G” indicates Gaussian kernel, 
Book_Fig4_18.dat was the data file, “_R1_13” means that the intensity was estimated 
with pattern 1 and bandwidth 13. As shown in Rodríguez-Pérez et al. (2012), the 
intensity function can be further anipulated to accommodate additional hypotheses. 
For example, if can be multiplied (weighted) with a habitat suitability index for points 
of pattern 2.  
 

Now Programita conducts the analysis. You can observe during the simulations that 
the null model distributes the points with probability proportionally to the intensity 
function. Here an example: 

 
15. As expected, the summary functions of the point process agree well with that of the 

observed data and resemble that of Figure 4.18: 
 

  

   
 

 

 192 



  
Inhomogeneous g- and K functions

  

4.2.14 Bivariate inhomogeneous g- and K functions 

Inhomogeneous second-order statistics can be used in Programita for two different purposes. 
First, they offer a natural estimator of the second-order summary functions for irregularly 
shaped observation windows. In this case the *.int file that defines the intensity function 
λ(x) contains only the values “1” (location x inside the observation window) and “0” (x 
outside the observation window). Second, the second-order statistics can be used to remove 
the effect of environmental heterogeneity, given by the intensity function λ(x). The 
inhomogeneous g- and K functions then quantify the residual clustering or overdispersion of 
the data, conditionally on λ(x).  

Note that Programita can only handle one intensity function which is then applied to both, 
the uni- and the bivariate second-order summary functions. Thus, cases where the two 
component patterns show different response to environmental heterogeneity cannot be 
handled (although you can use a null model where the first pattern is unchanged and then 
select the adapted WM estimator to consider the intensity of the second pattern). 

You can use in Programita two different estimators of the bivariate inhomogeneous g- and 
K-functions that are generalizations of the Ohser estimator (see Wiegand and Moloney 2014: 
sections 3.1.4.3 and 3.1.4.4. The bivariate Ohser estimator for two univariate patterns with n1 
and n2 points x1,i and x2,i of pattern 1 and 2, respectively, works in the same way as the 
univariate estimator. It uses the points yi of an auxiliary heterogeneous Poisson process of 
intensity function λ(x) with m points:  
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Note that the generalized isotropized set covariance ( , ( ))W r  x  needs to be calculated only 

once and can be used for all simulations of the null model. Programita offers also a version 
of this estimator based on adapted intensity estimators presented in Illian et al. (2008):  
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where only the second point in each point pair i‒j is taken from the auxiliary pattern yi. This 
estimator therefore compares the relative number of points xi,2 of pattern 2 in rings around 
the points xi,1 of pattern 1 with the relative number of points of the auxiliary pattern in rings 
around the points xi,1 of pattern 1. In contrast to the univariate case, the double-sum in the 
denominator must be evaluated only once if the null model keeps the points of pattern 1 fixed 
(i.e., an antecedent pattern). 

Programita use a default value for the number m of points of the auxiliary heterogeneous 
Poisson process of 

   m = 6000*6000/n1          (adapted WM estimator with pattern 1 not fixed) 
   m = 20000*20000/n1      (adapted WM estimator with pattern 1 fixed) 
   m = 30000                      (generalized Ohser estimator) 
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Irregularly shaped observation window.  Example IrrInhomBi.res 

 
Example IrrInhomBi.res (bivariate pattern, irregular study area) 
 

1. Execute Programita. 
2. Highlight data file InhomBi.dat you want to analyze in Input data 

and click the small “ok” button. This pattern was created within 
an irregularly shaped observation window with a bivariate RSA 
inhibition process with “Radius of pattern 1” and “Radius of 
pattern 2” being 3 and exponents p1 = p2 = p21 = 0.1 that 
represent equal con- and heterospecific negative interactions 
within distance of 6m:  

   
3. Select bin of 1m window Select a new cell size 
4. Select a ring width of 3 in the menu “Which method will you use” 
5. Accept selection of neighborhood ranks for estimation of Dk(r). 
6. Press button “Calculate Index” 
7. Click the radio button “Irregularly shaped study region” in 

the menu “Observation window” on the top left of the interface. 
8. Select file Book_Fig2_26.irr, click “cell size” and ok if the cell 

size appearing in the window “Select a new cell size” is ok and 
then the small ok button in the Select a shape file window. 
Programita now determines the area of the rectangle that 
belongs to the observation window. Basically, Programita 
generates an underlying grid with a spatial resolution of one bin 
(i.e., the cell size) and all cells outside are marked and excluded. 
Programita outputs the resulting intensity file as temporary file 
“int_temp.int”. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

9. Click “Calculate Index” and Programita shows a plot of the data within the reduced 
observation window. The excluded area is marked in black (see above).  

10. Click the checkbox “Calculate simulation envelopes” to be found in the menu “What 

do you want to do?” on the top left of the interface.  
11. Select “Pattern 1 fix , pattern 2 CSR” in the window “Select a null model”.  
12. Specify the number of simulations of the null model (199 in the example) and the rule 

for the estimation of simulation envelopes (here the 5th lowest and highest values of 
the summary function of the 199 simulated null model data sets). 

13. Click the button “Calculate Index and Programita conducts the analysis. You can 
observe during the simulations that the null model does indeed not distribute points 
outside the observation window.  
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Irregularly shaped observation window.  Example InhomBi.res 
 

14. The results show for the pair correlation function no departures from the null model 
at distances larger than 7m (as expected), but small-scale repulsion between pattern 1 
and 2 close to the jamming point (as indicated by the higher density of points of 
pattern 2 around points of pattern 1 just before 6m). In contrast, the shape of the 
cumulative L-function is more difficult to interpret:  
 

 
 
 
Example InhomBi.res (bivariate pattern, irregular study area) 
Now we redo the previous example, but now explicitly based on 
inhomogeneous second-order summary functions (note that the 
procedure for irregularly shaped study areas uses them implicitly). 

1. Execute Programita. 
2. Highlight data file InhomBi.dat you want to analyze in Input data 

and click the small “ok” button.  
3. Select a bin of 1m window Select a new cell size 
4. Select a ring width of 3 in the menu “Which method will you use” 
5. Accept selection of neighborhood ranks for estimation of Dk(r). 
6. Press button “Calculate Index” 
7. Click the checkbox “Calculate simulation envelopes” to be 

found in the menu “What do you want to do?” on the top left of the 
interface.  

8. Enable check box “Inhom g and K” 
9. The window “Select a file with the intensity function” appears where 

you select the intensity file you want to use for estimation of the 
inhomogeneous second-order summary functions (i.e., 
int_Book_Fig2_28.int). Select “pat 1” (because it is the 
intensity of pattern 1) and then click the small “ok” button 

 
10. Select “Pattern 1 fix, pattern 2 CSR” in the window “Select a 

null model”.  
11. Specify the number of simulations of the null model (199 in the 

example) and the rule for the estimation of simulation envelopes 
(here the 5th lowest and highest values of the summary function 
of the 199 simulated null model data sets).Click the button 
“Calculate Index and Programita conducts the analysis. You 
can observe during the simulations that the null model does 
indeed not distribute points outside the observation window. 
The results are the same as in the previous example. 
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Irregularly shaped observation window.  Example InhomBi.res

 
12. The results are identical to the previous example and comparison with the adapted 

WM estimator shows that the adapted estimator provides better results because it 
removes the very small bias in the L-function of the null model shown by the 
generalized Ohser estimator and a somewhat smaller variance for the L-function: 
 

                          adapted WM                                          generalized Ohser 

  

  
 
 
Example InhomBi_SoftCore.res  
Now we reanalyze the previous example but using the bivariate 
interaction point process that was used to generate the data. 

1. Execute Programita. 
2. Highlight data file InhomBi.dat you want to analyze in Input data 

and click the small “ok” button.  
3. Select a bin of 1m window Select a new cell size 
4. Select a ring width of 3 in the menu “Which method will you use” 
5. Accept selection of neighborhood ranks for estimation of Dk(r). 
6. Press button “Calculate Index” 
7. Click the checkbox “Calculate simulation envelopes” to be 

found in the menu “What do you want to do?” on the top left of the 
interface.  

8. Enable check box “Inhom g and K” 
9. The window “Select a file with the intensity function” appears where 

you select the intensity file you want to use for estimation of the 
inhomogeneous second-order summary functions (i.e., 
int_Book_Fig2_28.int). Select “pat 1” (because it is the 
intensity of pattern 1) and then click the small “ok” button 

 
10. Select “Pattern 1 fix, pattern 2 CSR” in the window “Select a 

null model”. 
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Irregularly shaped observation window. Example InhomBi_SoftCore.res 
 

11. Specify the number of simulations of the null model (199 in the example) and the rule 
for the estimation of simulation envelopes (here the 5th lowest and highest values of 
the summary function of the 199 simulated null model data sets).Click the button 
“Calculate Index and Programita conducts the analysis. You can observe during the 
simulations that the null model does indeed not distribute points outside the 
observation window. The results are the same as in the previous example. 

12. Click checkbox “Hard core” and go 
to the window “Hard core null model” 
to define details of the RSA null 
model. Click “Radius of pattern 
1” and “Radius of pattern 2” 
because you have a bivariate pattern 
and provide the radius (3.0) for both 
patterns in our case and the 
interaction exponents p = 0.1 for all 
cases.   

 
13. To simulate the point process press “Calculate Index”. The resulting patterns are 

regular patterns with repulsion of pattern 1 points, pattern 1 to pattern 2 points and of 
pattern 2 points: 
 

 
 

13. As expected, the pair correlation and L-functions of the data (that were generated with 
the above parameters of the RSA process) is well within the simulation envelopes: 
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Inhomogeneous summary functions.  Example Inhom_12HP_Ohser.res 
 
Example Inhom_12HP_Ohser.res 

In this example we analyze a data set that was generated with two patterns following both 
independent heterogeneous Poisson processes based on the intensity function 
int_Book_Fig4_19.int.  

1. Execute Programita. 
2. Highlight data file Inhom_12HP.dat you want to analyze in Input data and click the 

small “ok” button.  
3. Select a bin of 1m window Select a new cell size 
4. Select a ring width of 7 in the menu “Which method will you use” 
5. Accept selection of neighborhood ranks for e

D
stimation of 

nvelopes” to be 
eft of 

 null 

199 in 
on 

e 
a sets). 

k(r). 
6. Press button “Calculate Index” 
7. Click the checkbox “Calculate simulation e

found in the menu “What do you want to do?” on the top l
the interface.  

8. Select “Pattern 1 and 2 CSR” in the window “Select a

model”.  
9. Specify the number of simulations of the null model (

the example) and the rule for the estimation of simulati
envelopes (here the 5th lowest and highest values of th
summary function of the 199 simulated null model dat

10. Enable check box “Inhom g and K” The window 
here 

 for 
der 

4_19.int). 
 of 

button. 

“Select a file with the intensity function” appears w
you select the intensity file you want to use
estimation of the inhomogeneous second-or
summary functions (i.e., int_Book_Fig
Select “pat 1” (because it is the intensity
pattern 1) and then click the small “ok” 

11. Note that the null model simulates for both p
Poisson process based on the intensity fu

atterns independent heterogeneous 
nction. 

tween the two patterns, once the 
 

12. Click the button “Calculate Index and Programita will conduct the analysis. 

13. The results show that there are no interactions be
effect of the shared habitat suitability is removed by the use of inhomogeneous
summary functions: 

 

 
Results file Inhom_2HP_WM.res contains the setting for the case where the null model 
randomizes only pattern 2 and where the adapted WM estimator is used. N in this 
ase only the intensity function of pattern 2 is needed. This allows you to analyze the 

 
 

ote that 
c
interactions of a heterogeneous patterns  2 to an observed pattern 1.  
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aredCluster.res Irregularly shaped observation window.  Example inhomSh

 
Example InhomSharedCluster.res 

In this example we analyze a data set that was generated with an inhomogeneous Thomas 
process with shared parents (see also example BiThomasShared.res). again based on the 
intensity function int_Book_Fig4_19.int. That means that the cluster centers are the same 
(i.e., shared parents) and the cluster sizes are also the same. The parameters of the original 
point process were σ1 = σ2 = 6 and ρ1 = ρ1= 0.001. Use a ring width of dr = 7 for the 
analyses.  

1. Execute Programita. 
2. Highlight data file inhomShCluster.dat you want to analyze in Input data and click the 

small “ok” button.  
3. Select a bin of 1m window Select a new cell size 
4. Select a ring width of 7 in the menu “Which method will you use” 
5. Accept selection of neighborhood ranks for estimation of Dk(r). 
6. Press button “Calculate Index”  
7. Click the checkbox “Calculate simulation envelopes” to be found in the menu 

“What do you want to do?” on the top left of the interface.   

 

8. Enable check box “Inhom g and K” The window 
“Select a file with the intensity function” appears where 
you select the intensity file you want to use for 
estimation of the inhomogeneous second-order 
summary functions (i.e., int_Book_Fig4_19.int). 
Select “pat 1” (because it is the intensity of 
pattern 1) and then click the small “ok” button. 

9. Specify the number of simulations of the null model (199 in 
the example) and the rule for the estimation of simulation 
envelopes (here the 5th lowest and highest values of the 
summary function of the 199 simulated null model data sets). 

10. Select “Cluster process” in the window “Select a null model”. 
11. A window “Fit of cluster process to data” opens. Select in the 

section “Null models” at the bottom the button “Bivar. 
cluster, shared parents”.  
 

 
11. Now this window appears that asks you to provide the 

parameters from the univariate analysis of patterns 1 and 2: 
σ1 = σ2 = 6 and ρ1 = ρ1= 0.001. Press the small “ok” button 
and again the small “ok” button: 
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Irregularly shaped observation window.  Example inhomSharedCluster.res  
 

12. Now you are at the fitting window. Use the “fit” and “zoom” buttons to find a good 
fit. Programita fits the bivariate inhomogeneous pair correlation function to the data: 
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13. As expected, the different summary functions are in good agr
point process for both, the univariate analysis of pattern 1 and
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haredCluster.resIrregularly shaped observation window.  Example inhomPartlyS
 
Example InhomPartlySharedCluster.res 

In this example we analyze a data set that was generated with an inhomogeneous Thomas 
so example Book_Fig4_29.re

ean
same (i.e., shared parents) and the cluster s

n e
you select the intensity file you want to use for 
estimation of the inhomogeneous second-order 
summary functions (i.e., int_Book_Fig4_19.int). 
Select “pat 1” (because it is the intensity of 

process with partly shared parents (see al s), again based on the 
intensity function int_Book_Fig4_19.int. That m s that part of the cluster centers are the 

izes are also the same. The parameters of the 
original point process were σ1 = σ2 = 6 and ρ1 = 0.002 and ρ2 = 0.001. Use a ring width of dr 
= 7 for the analyses.  

1. Execute Programita. 
2. Highlight data file inhomPShCluster.dat you want to analyze in Input data and click the 

small “ok” button.  
3. Select a bin of 1m window Select a new cell size 
4. Select a ring width of 7 in the menu “Which method will you use” 
5. Accept selection of neighborhood ranks for estimation of Dk(r). 
6. Press button “Calculate Index”  
7. Click the checkbox “Calculate simulation envelopes” to be found in the menu 

“What do you want to do?” on the top left of the interface.   

 

8. Enable check box “Inhom g and K” The window 
“Select a file with the intensity functio ” app ars where 

pattern 1) and then click the small “ok” button. 

9. Specify the number of simulations of the null model (199 in 
the example) and the rule for the estimation of simulation 
envelopes (here the 5th lowest and highest values of the 
summary function of the 199 simulated null model data sets). 

10. Select “Cluster process” in the window “Select a null model”. 
14. A window “Fit of cluster process to data” opens. Select in the 

section “Null models” at the bottom the button “Bivar. 
cluster, shared parents”.  
 

 
11. Now this window appears that asks you to provide the 

parameters from the univariate analysis of patterns 1 and 2: 
σ1 = σ2 = 6, ρ1 = 0.002 and ρ2 = 0.002. Press the small “ok” 

utton: 
 
b
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Irregularly shaped observation window.  Example inhomPartlySharedCluster.res  
 

15. Now you are at the fitting window. Use the “fit” and “zoom” buttons to find a good 
fit. Programita fits the bivariate inhomogeneous pair correlation function for the 
Thpmas process with partly shared parents to the data:  
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Random labeling analysis. Data preparation 
  

5 Analysis of qualitatively marked patterns  

Qualitatively marked patterns usually com ates of a univa te pattern,
each point carries an additional (a posterio tative mark that dis o types of 
points. The qualitative mark is a binary property of the point such as surviving vs. dead, 
infected vs. non-infected, occupied vs. non-occupied, etc. which was created by a given 
process a posteriori on the existing points of the univariate pattern. This distinguishes (a 
posteriori) qualitative marked patterns from bivariate patterns where the difference between 
the two types of points is a priori (e.g., two different species). 
 
The major interest in analysis of qualitatively marked patterns is in revealing the spatial 
correlation structure of the marking process, conditional on the given univariate pattern. For 
example, are dead saplings clustered within all saplings, are dead saplings surrounded by a 
higher density of saplings than surviving saplings, etc.? The basic null model for this data 
type is the so-called random labeling null model which randomly shuffles the marks over 
the points, thus removing all potential spatial structure in the marks. Chapter 4.4 in Wiegand 
and Moloney (2014) provides examples for the different analyses of qualitatively marked 
patterns that are useful in ecology.  

5.1 Getting started 

5.1.1 

Qualita

0  500  0  500  600 
0.60   35.35  0  1   
0.70  274.90  0  1   
1.10  385.85  1  0   
1.15  342.20  1  0   
1.80  274.60  1  0   
2.02  385.30  0  1   
2.50  230.25  1  0   
2.60  383.05  1  0   
2.85   40.15  0  1   
3.25  322.25  0  1   
3.65   37.45  0  1   
… 
 
where the first line gives the size of the observation window (500 × 500 units in the example) 
and the number of points in the underlying univariate pattern (= number of lines following 
the header). The first two columns are the coordinates, an entry “1” in the third colum

t the point is of type 1 (i.e., dead in the example) and an entry “1” in th
olumn indicates that the point is of type 2 (i.e., surviving in the example). The value of the 
ird and the forth columns must be for the standard analysis mode “0  1” or “1   0”, no larger 

umbers or “1  1” are allowed.  

prise the coordin ria  but 
ri) quali tinguishes tw

Data preparation 

tively marked patterns comprise the coordinates of the underlying univariate point 
s and the mark. The data files for standard anapattern lysis must be an ASCII file with the 

*.dat extension and the following format (the example shows the first lines of the file 
Book_Fig_2_15.dat): 
 

n 
indicates tha e fourth 
c
th
n 
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ing analysis. Access standard mode and exampleRandom label
 
The data file must be a space or tab delimited ASCII file with the *.dat extension. If you use 

iles of a given 

 

analysis” in window What do you want to do? 
e in Input data (“Book_2_15.dat” in the 

example).  
e opens and allows you to 

provide a bin for your analysis given in units of your data. 

Excel, there is a simple, but obviously generally unknown, way of saving f
type with a given extension: 
 

1. Prepare the data file in Excel following the instructions above. 
2. Then save as a tab delimited text file, but write “name.dat” for the name (usually you 

would only write name and end up with a file named name.txt. The quotation marks 
are important because they force Excel to save the comma delimited file under the
name name.dat.  

 
  

5.1.2 Steps of random labeling analysis in standard mode 

Programita estimates for data files of this type several adapted test 
statistics based on pair correlation functions (or L- and K-functions) 
presented initially in Jacquemyn et al. (2010) and detailed in section 
4.4.1 in Wiegand and Moloney (2014). The standard analysis mode 
can be accessed with the following sequence of actions: 
 

1. Select “Standard 
2. Highlight a data fil

3. The window Select a new cell siz

For example, if your data are in meter units and your 
observation window is 500 × 500m in size, an appropriate 
bin would be 1m. Press “ok” to confirm selection of the bin. 

 
4. Select a ring width of 7 in the menu “Which method will you 

 neighborhood ranks for estimation of 
random labeling analyses). 

6. To access the standard analysis mode for qualitatively 

use” 
5. Accept selection of

Dk(r) (will not be used in 

marked patterns (i.e., random labeling analysis; data type 
4) you must enable the checkbox “Calculate simulation 
envelopes” in the window What do you want to do? and select 
the random labeling null model in the Select a null model 
window.  
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Random labeling analysis. Access standard mode. Example Book_Fig_2_15.res 
 
 

7. If you enable the check box “Combine replicates” before 
running the analysis and save the results of the analysis with 

 under name.res, Programita saves additionally two 

8. Press button “Calculate Index” and Programita runs the 
desired number of simulations of the random labeling null 
model: 

files (name_1.rep and name_2.rep) which allow you to view 
and save the results for all different test statistics. You can 
access the procedure for loading the results with button 
“Replicates”.  

 

 

 

As you can see, the randomization procedure keeps the 
locations of the points unchanged, but randomly shuff
mark, indicated here by red (dead) and green (surviving). 
 

les the 

9. After running the Monte Carlo simulations of the random 
labeling null model you can select among several test 
statistics that allow you to assess potential departures from 
random labeling. The test statistics are described in detail in 
Jacquemyn et al. (2010) and section 4.4 on Wiegand and 
Moloney (2014). Here the ones on the left (the ones on the 
right results from exchanging labels 1 and 2):  

12 11

11

) 
ference shows the g11(r) and g1,1+2(r) - g2,1+2(r) 

 
10. If you select the L-function before selecting the random 

labeling null model you can also view the analogous test 
statistic based on the L- or K-functions. 

 
 g (r): shows the pair correlation functions g (r) and 

g12(r) 
 p12(r): shows the mark connection functions p

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(r) 
and p12(r) 

 g12(r) - g11(r) shows the g11(r) and g12(r) - g11(r) 
 g21(r) - g11(r) shows the g11(r) and g21(r) - g11(r) 
 g22(r) - g11(r) shows the g11(r) and g22(r) - g11(r) 
 g12(r) - g21(r) shows the g11(r) and g12(r) - g21(r
 dif
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ig_2_15.resRandom labeling analysis. Example Book_F
 
 

15. The marks of the 600 points of data Book_Fig2_15.dat are 
individuals and 400 surviving individuals. The probability of 

ortional to the number of individuals occurring within
more isolated individuals thus had a higher probability of surv
 
 The results of the univariate and bivariate pair correlatio
dead individual

constructed; 200 dead 
an individuals dying 

was prop  a 10 m neighborhood; 
iving. 

16. n functions show that the 
s are strongly clustered inside all individuals (g11), that the surviving 

individuals are regularly distributed within all individuals (g22), but that the bivariate 
ot sho  departures from relationship between surviving and dead (g12, g21) does n

random labeling: 
 

w

 
 

17. When removing the signal of the clustering of all individuals 
underlying univariate pattern) by using the corresponding mark connection functions 
we can see these results much clearer: 

(i.e  the pattern of the .,
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Random labeling analysis. Example Book_Fig_2_15.res 
 

18. Instructive are also the summary functions g21(r) - g11(r) and g12(r) - g22(r). The 
er g21(r) - g11(r) shows that the neighborhood density of dead individuals is much low

around surviving individuals (g21) than dead individuals (g11). The g12(r) - g22(r) 
shows that the neighborhood density of surviving individuals is somewhat higher 
around dead individuals (g12) than surviving individuals (g22): 
 

  
 

19. The summary functions g22(r) - g11(r) shows that the dead individuals are much more 
clustered than the surviving ones  
 

  
 
and the summary functions g12(r) - g21(r) shows that edge effects are un portant. 

ote that the g12(r) and g21(r) are the same except small edge effects that arise for 
t 

inally, the summary function g1,1+2(r) - g2,1+2(r) which was especially designed to 
detect density dependent effects in mortality shows that the neighborhood density of 
surviving and dead individuals (indicated by subscript 1+2) is much higher in 
neighborhoods around dead individuals than around surviving individuals. Thus, the 
more pre-mortality individuals in the neighborhood of an individual, the higher the 
risk of mortality. As expected this effect is strong up to 10m.  
 

im
N
example if many dead individuals are close to an edge of the observation window, bu
not surviving individuals.  
 

20. F

 
Velázquez et al. (2016a) used the different random labeling test functions to analyze 
the mortality of samplings at the BCI forest.  
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. Example Book_Fig2_15_local.resLocal random labeling
  

5.2 More complex null models 

5.2.1 Local random labeling 

The effect of a large-scale heterogeneity in th ut in a s

Random labeling analysis may also be impacted by heterogeneity. In this case the value of 
the marks may be influenced by environmental covariates and we may observe systematic 
spatial trends in the marks. For example, the proportion of dead individuals may be larger at 
the eastern part of an observation window than at the western part.  
 

e marking can be factored o imilar way 

 point can be exchanged with the mark of each 
other point in the entire observation window, localized random labeling exchanges only 
marks of points which are located closer than a given distance R. This removes any small-
scale correlation structure of the marks, but maintains their observed large-scale correlation 
structure. Technically, all n1+2 points i of the marked pattern are numbered and the entries of 
the array nr[i] that runs from 1 to n1+2 are randomly permutated in a way that the coordinates 
of all points i and j = nr[i] are not farther away than distance R.   

ious example, but the 
the left part of the observation 

e example).  
3. Select bin of 1m window Select a new cell size 
4. Select a ring width of 5 in the menu “Which method will you 

use” 
5. Accept selection of neighborhood ranks for estimation of 

Dk(r) (will not be used in random labeling analyses). 

late 
simulation envelopes” in the window What do you want to 

do? and select the random labeling null model in the Select 

a null model window.  
7. Press button “Calculate Index” and Programita runs the 

desired number of simulations of the random labeling null 
model (e.g., 199).  

as using the heterogeneous Poisson process with kernel intensity estimate for factoring out 
large scale heterogeneity in univariate patterns. While the marks in standard random labeling 
are shuffled in a way that the mark of each

 
Local random labeling, example Book_Fig2_15_local.res 
 
The example pattern Book_Fig2_15_het.dat is the same 
univariate pattern as used in the prev
marking is different. The points in 

 
 

window (x-coordinate <250) have a mortality rate of 0.08 and the 
points of the right part of the observation window (x-coordinate 
> 250) have a mortality rate of 0.2533.  
 

1. Select “Standard analysis” in window What do you want to 
do? 

2. Highlight a data file in Input data (“Book_2_15het.dat” in 
th

6. To access the standard analysis mode for qualitatively 
marked patterns (i.e., random labeling analysis; data 
type 4) you must enable the checkbox “Calcu
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Local random labeling. Example Book_Fig2_15_local.res 
 
 

8. You can observe the lower mortality rate at the left side of the observation window:
 

 
 

9. Consequently, the test statistics show departures from random labeling which are 
difficult to interpret: 
 

  
 

10. To conduct local random labeling click the checkbox “Permutation radius” and 
insert an appropriate radius R (25m in our case). Only the marks of points that are less 

intains approximately the 
y rate on the right side of 

than 25m apart are shuffled. This null model therefore ma
large-scale structure of the marks (i.e., the higher mortalit
the observation window).  
 

 
 

11. Press button “Calculate Index” and Programita runs th
labeling null model: 
 

e simulations of the random 
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Example Book_Fig2_15_local.resLocal random labeling. 
 
 

You can observe that the randomization now maintains the large-scale structure of 
the marks (i.e., the higher mortality rate on the right side of the observation 
window): 
 

 
 

12. The summary functions do now not show significant departures from the local 
random labeling null model, but the expectation under this null model are not 
centered on the expectations for random labeling (which are indicated by a grey 
horizontal line): 
 

  
 
You can verify with the GoF test that there is no significant departure from the null 
model over distance interval 1-50m: 
 

   
 

13. It is clear that the radius R should not be too large compared with the scale of the 
heterogeneity. However, isolated points (with distances to the nearest neighbor < R) 
maintain under this null model their mark.  
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Random labeling with covariate.  Example Book_Fig2_15_cov.res 
  

5.2.2 R

Random alysis may also be impacted by heterogeneity. In this case the value of 
the mark may be influenced by environmental covariates and we may observe systematic 
trends in the marks. For example, the proportion of dead individuals may be larger at the 
eastern part of an observation window than at the western part.  
 
A second option to consider such first-order heterogeneity in the marks is to use a covariate 
that describes how the probability of mortality changes in dependence on the location x. 
Programita offers you the possibility to read an intensity function λ(x) that governs the 
probability of occurrence of one of the two types of points (e.g., the probability of mortality). 
 
Random labeling with covariate, example Book_Fig_2_15_cov.res 
 
We use the pattern Book_Fig_2_15_het.dat as example. The points 
in the left part of the observation window (x-coordinate <250) have 

elect “Standard analysis” in window What do you want to do? 
2. Highlight a data file in Input data (“Book_2_15het.dat” in the 

example) and click the small “ok” button. 
3. Select bin of 1m window Select a new cell size 
4. Select a ring width of 5m in window “Which method will you 

use” 
5. Accept selection of neighborhood ranks for estimation of 

Dk(r) (will not be used in random labeling analyses). 
6. To access the standard analysis mode for qualitatively 

marked patterns (i.e., random labeling analysis; data type 
4) you must enable the checkbox “Calculate simulation 
envelopes” in the window W y u nt to do? and select 

e “Random labeling” in the lect a ll model window.  

 

andom labeling with covariate 

 labeling an

a mortality rate of 0.08 and the points of the right part of the 
observation window (x-coordinate > 250) have a mortality rate of 
0.25.  
 

1. S

hat do o  wa

th Se nu

 
 

 
7. To use the covariate press button “He

w
terogeneous Poisson” in the Select a null model 

indow, enable the checkbox “Intensity function from file” in the Settings for hetero. 

Poisson window and then highlight the intensity file in the corresponding window 
(int_Book_Fog2_15cov.int in the example). 

                                                  
8. S ivelect “pat 1” because the dead ind iduals are pattern 1 (i.e., the type 1 points). If 

you select “pat2” the event will be surviving and the probability of the intensity 
function will be applied to survival and not to mortality. 
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le Book_Fig2_15_cov.resRandom labeling with covariate.  Examp
 
 

9. Programita then shows the intensity function together with the points. The intensity 
function yields the probability that the event of pattern 1 (here dead) occurs (0.08 at 
the western part and 0.2533 on the eastern part of the observation window): 
 

    
 

10. Now click “Calculate Index” to run the simulations of the he
labeling null model. You can observe that the random
structure of the marks (i.e., the higher mortality rate on the 

terogeneous random 
ization maintains the large-scale 

right side of the 
observation window): 
 

 
 

11. Consequently, the test statistics show no departure from ran
similarly to localized random labeling, and the expectatio

dom labeling and 
n under the null model 

(black line) differs from that under random labeling (grey horizontal line): 
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Trivariate random labeling 
  

5.2.3 Trivariate random labeling 

The standard random labeling explores the statistical properties of the marking proce
many cases, the m

ss. In 
arking of a given pattern may be dependent on the presence of a third, 

antecedent pattern. For example, mortality of saplings in tropical forests may depend on the 
proximity of large trees. Trivariate random labeling explores the influence of an antecedent 
pattern on the marking of a qualitatively marked pattern.  
 
I included trivariate random labeling into the 2004 Programita manual using the name 
“Random labeling under antecedent condition”. Trivariate random labeling based on the K-
function was first published by Marcelino de la Cruz in Spanish [De la Cruz Rot M. 2006], 
later in De la Cruz et al. (2008) using the name “independent labeling” and the Programita 
implementations based on the mark connection functions were published in Biganzoli et al. 
(2009), Jacquemyn et al. (2010) and Raventos et al. (2010). A publication using the grid-
based im lementation of trivariate random labeling is Murphy et al. (2017). 

d pattern. 
ls of the antecedent pattern (subscript a), dead individuals 
viduals (subscript 2) of the marked pattern. The summary 

function estimates the probability of mortality (or survival) of the individuals of the marked 
pattern as a function of distance r from the individuals of the antecedent pattern:  
  

  

p
 
The null model is again random labeling, but the summary function considers the impact of 
individuals of the third antecedent pattern on the marking of the qualitatively marke
In this case, we have individua
(subscript 1) and surviving indi

)(

)(

)(
)(

21,

1,

21

1
1, rg

rg
rp

a

a
a







 

 
The quantities λ1 and λ2 are the partial intensities of the dead and surviving individuals, 
respectively, and ga,1+2(r) and ga,1(r) are the bivariate pair correlation functions measuring 
the intensity normalized neighborhood density around antecedent individuals (a) of the 

b rn of surviving and dead individuals (1+2) and d
.2 

 
 and 

ark correlation function (equation 3.83) in Wiegand and Moloney 
(2014).  
 
Programita offers two equivalent implementations of trivariate random labeling, one based 
on the grid-based mode and one based on the mark correlation function.  
 
 

com ined patte ead individuals (1), 
respectively. More details on trivariate random labeling are provided in sections 3.1.6
“Trivariate Random Labeling (Data Type 5)” and 4.4.1.6 “Trivariate Perspective” in 
Wiegand and Moloney (2014). Note that the summary function used for trivariate random
labeling can be considered a mark connection function (equation 3.82) in Wiegand
Moloney (2014) or a m
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ased trivariate random labeling. Example Book_Fig3_27_grid.resGrid-b
 

5.2.4 Grid-based trivariate random labeling 

1  1000  1  1000  1001 

as “1  0” in 
e third and forth column, respectively.   

The points of the event (e.g., dead) in the qualitatively marked pattern are codes as:  

 in 
and forth column, respectively.  

hen reads the list of 
dividuals and applies random labeling over the qualitatively marked pattern.  

In the grid-based version of Programita I managed to handle 3 patterns at the same time with 
a trick based on irregularly shaped observation windows. The observation window was 
reduced to cells that contained points, and the random labeling was conducted between cells 
coded with “0 1” and “0 0”. With small cell sizes the continuos functions were well 
approximated.  
 

You can run the trivariate random labeling using the grid-based implementation of 
Programita. The continuous summary function can be very well approximated with an 
underlying grid for distances larger than the grid size. The coordinates are given here as 
coordinates of a grid that runs from 1 to 1000: 
 
 
543  952  1  0   
... 
383  333  1  0 
  0    0  1  0 
  2  550  0  0 
… 
993  766  0  0 
491  235  0  1 
  3  772  0  1 
… 
 
where the first line gives the size of the observation window (1000 × 1000 units in the 
example) and the total number of points (= number of lines following the header). The points 
of the antecedent pattern are coded as  
 
543  952  1  0   
 

ith the coordinates (giving the number of the grid cell in x- and y-direction) and w
th
 

 
491  235  0  1  
 
with the coordinates (giving the number of the grid cell in x- and y-direction) and as “0  1” in 
the third and forth column, respectively.  
 
The points of the no-event (e.g., surviving) in the qualitatively marked pattern are codes as:  
 
  2  550  0  0 
 
with the coordinates (giving the number of the grid cell in x- and y-direction) and as “0  0”
the third 
 
If there are two of more individuals of the antecedent or qualitatively marked pattern within 
ne cell, each individual must appear individually in the list. Programita to

in
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Grid-based trivariate random labeling. Example Book_Fig3_27_grid.res 
 

1. Execute Programita. 
t you want to analyze 

in Input data.  

imal distance r to be 
analyzed. Insert 100 in small box that opens and then the small 

Calculate Index” 
gularly shaped study region” in window 
indow 
 “Calculate Index”. Programita now shows a 
nusual plot of the data: 

2. Highlight data file Book_Fig3_27_grid.da

3. Disable the option “no grid” 
4. Select “Data are given as list in grid” in Select modus of data 
5. Select a ring width of 5 in the menu “Which method will you use” 
6. Click button “change” below to set max

ok button.  
7. Press button “
8. Select “Irre

Observation w

9. Press button
somewhat u

 

 
where the points of the antecedent pattern are shown in red, the 

and the no-event in white. All cells which have no point are 
basically, the observation window is reduced to the 

t to do?” on the top left of the 

ber of simulations of the null model (199 in the 
le for the simulation envelopes (5 in the 

arked pattern, shown are 

“event” of the qualitatively marked pattern is shown in green, 

black. Thus, 
cells which contain points.  

10. Click the checkbox “Calculate simulation envelopes” to be 
found in the menu “What do you wan

interface.  
11. Select null model “Triv. random labeling” and provide the 

desired num
example) and the ru
example). 

12. Press button “Calculate Index”. Programita now conducts the 
random labeling of the qualitatively m
the re-locations of the event:  
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k_Fig3_27_mcf.resGrid-based trivariate random labeling. Example Boo
 

13. Programita now shows the results of the trivariate random labeling analysis: 
 

 
 
The label mortality is not random. The antecedent patte
mortality within 4

rn indeed increases the risk of 
0m distance of the points of the antecedent pattern.  

5.2.5 Trivariate random labeling based on mark correlation functions 

The summary function of trivariate random labeling can be interpreted as a bivariate mark 
correlation function (equation 3.83 in Wiegand and Moloney (2014): 
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where the xi are the points of the antecedent pattern a and the xj are the 
qualitatively marked pattern. The estimator basically visits all pairs of 
antecedent pattern and x

po nts of the 
poi s xi of the 

c ted at distance r 
 t st function Cl(xj) 

 of the qualitatively 
otherwise. If the event 

ad ndividuals of the 
a. This 

 functions. It is data 
ust be an ASCII file 

... 
383  333  1  1  0 
  0    0  1  1  0 
  2  550  2  0  0 
… 
993  766  2  0  0 
491  235  2  0  1 
  3  772  2  0  1 
… 
 

i
nt

j of the qualitatively marked pattern which are lo
[(selected by the kernel function k()] and estimates the mean value of the

ese point pairs. The test func

a
e

over th tion is only a function of the mark
marked pattern and yields 1 if the event occurred for point xj and zero 
is dead, this summary function thus estimates the mean proportion of de

tively marke
 i

qualita d pattern at distance r of the individuals of the antecedent pattern 
is a so-called r-mark correlation function.  

The coding of the data file follows that of bivariate mark correlation
type 9 (a bivariate pattern with one quantitative mark), the data files m
with the *. mcf extension and have always the following format: 

 
0  1000   0  1000  1001 
543  952  1  1  0 
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Trivariate random labeling. Example Book_Fig3_27_mcf.res 
 
where the third column must be “1” for all points of the antecedent pattern 1 and “2” 
points of the qualitatively m

1. Execute Programita. 
2. Select “Mark correlation functions” in window What do you 

want to do? 
3. H

for all 
arked pattern 2, the forth column gives the value of the mark 

attached to the type 1 point (which is not used in our case, but got a value of 1), and the fifth 
column the value of the mark attached to the type 2 point. The fifth column yields “1” for the 
event (e.g., dead) and zero otherwise.  
 
Trivariate random labeling based on mark correlation functions example 
Book_Fig3_27_mcf.res 
 

ighlight data file (Book_Fig3_27.mcf) you want to analyze in 
Input data 

4. Click “List with coordinates, no grid” in MCFunction 

7. Click the small “ok” button the window mark correlation functions 
8. Press button “Calculate Index” and Programita shows you 

the pattern and the summary functions: 
 

5. Provide in the window mark correlation functions the bin width in 
data units (1), an appropriate ring width (5), and a maximal 
distance r of the analysis (100). 

6. Disable “Normalize” to get non-normalized mark correlation 
functions. 

 
 

9. Select the third test function “r-mark correlation functions” 
10. Check the checkbox “Calculate simulation envelopes”, select 

the number of simulations of the null model (199) and the rule 
for the simulation envelopes (5), and again “100” for the 

odel “Marks pat 1 fixed and 2 random” 
arks of the qualitatively marked 

alculate Index”. 

 

maximal radius 
11. Select the null m

which randomizes only the m
pattern.  

12. Press button “C
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ample Book_Fig_3_27_mcf.resTrivariate random labeling. Ex
 

13. Programita now shows the data and the simulations of the null model where the red 
circles are the points of the antecedent pattern 1 with radius proportionally to the 
mark (1) and the green circles are the points of the second pattern with a large circle 
for dead (mark 1) and a small circle for surviving (mark 0): 

 
 

14. After termination of the simulations, Programita shows the r
random labeling analysis (the r-m

esults of the trivariate 
ark correlation function m2) which are virtually 

identical with that of the grid-based analysis:  

  
         mark correlation an
 

alysis:                      grid-based analysis: 
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Random labeling for communities 
  

5.2.6 Random labeling for communities 

The standard random labeling works for a univariate pattern that car

egand and Moloney (2014). 
Details can be found in section 4.4.2.3 Comm  Ra dom Labeling in W

ries a qualitative mark. 
In some cases, however, the data are given by a multivariate pattern (e.g., the locations of all 
saplings in a tropical forest) and a qualitative mark such as surviving vs. dead. In this case we 
can run the standard random labeling analysis without regard to the species (i.e., the observed 
species-specific mortality rates are not conserved). This is called “community-wide species-
blind random labeling in Wiegand and Moloney (2014) 
 
However, another possibility is to conserve the observed species-specific mortality rates in 
the random labeling null model. Thus, conventional random labeling is conducted here 
within each species, but the final test statistics average over all species. This is called 
“community-wide species-specific random labeling” in Wi

unity Wide n iegand and 

 
0  1000  0  500  2582 
 37.76  308.91  0  1  3 
 39.92  348.13  1  0  3 

4 

5 
… 
 
Community-wide species-specific random labeling, example Book_Fig4_42_species.res 
 
To generate this example we first conducted pattern reconstruction with the underlying 
univariate pattern of the original data file of Figure 4.42 (the pattern of small saplings of gap 
species at the BCI forest) and then applied a mortality rate of 35% that depended linearly on 

. Finally, the species labels of the original data where 
en randomly distributed over the points. Thus, the pattern shows density dependent 

mortality but there is no difference between species-specific and species-blind random 
labeling.  
 

1. Select “Standard analysis” in window What do you want to do? 
2. Highlight a data file in Input data (“Book_Fig4_42_rand.dat” in the example) and click 

the small “ok” button.  
3. Select bin of 1m window Select a new cell size 
4. Select a ring width of 5m in window “Which method will you use” 
5. Accept selection of neighborhood ranks for estimation of Dk(r) (will not be used in 

random labeling analyses). 
6. Enable the checkbox “Calculate simulation envelopes” in the window What do you want 

to do? and select the random labeling null model in the Select a null model window. 
7. Specify the number of simulations of the null model (199 in the example) and the 

rule for the estimation of simulation envelopes (here the 5th lowest and highest 
values of the summary function of the 199 null model data sets).  

Moloney (2014).  
 
The coding of the data file is almost the same as for standard random labeling, but an 
additional fifth column given the species number is required: 

144.53   25.32  0  1  
229.01   64.05  1  0  4 
435.43  351.24  0  1  4 
506.88  478.12  1  0  

the number of neighbors within 10m
th
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ific random labeling. Example Book_Fig4_42_species.resCommunity-wide species-spec
 

8. Check the checkbox “species” beside of “Random labeling”:  

 
9. Press button “Calculate Index” and Programita shows the observed and simulated 

pattern: 

  
10. The results of the simulations of the species-specific random labeling null model 

ecies specific. This is recognized because the 
ion functions of the null model (the black line) are horizontal 
p1 in the univariate case and p1 p2 in the bivariate case, with 
portion of type 1 and type 2 points among all points:  

show indeed that effects are not sp
expected mark connect
lines with values of p1 
p  and p  being the pro1 2

 

 
 
These expectations are identical to the expectation of community-wide species-blind 
random labeling (i.e., standard random labeling without regard to the species label; 

res): the grey line) (example Book_Fig4_42_rand.
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Community-wide species-specific random labeling. Example Book_Fig4_42_species.res 
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ingCombine replicates for random label
 

5.3 Combine replicates for random labeling 

In some cases you may have maps of several replicate plots of a larger point pattern under 
identical conditions. In this case the resulting test statistics of the individual replicate plots 
can be combined into average test statistics (Diggle 2003: page 123; Illian et al. 2008: page 
263; Wiegand and Moloney 2014: section 3.2). This is of particular interest if the number of 
points in each replicate plot is relatively low. In this case the simulation envelopes of 
individual analyses would become wide, but combining the data of several replicate plots 
into average test statistics increases the sample size and thus narrows the simulation 
envelopes. Section 3.2.1 of Wiegand and Moloney (2014) provides details on the 
aggregation formulas for different summary functions and section 3.2.2 several examples.  
 
It is also possible to combine the random labeling analyses of all several species of a 
community into one function to get the community average.  
 
 
The default estimators of the Programita standard mode (and the 
grid-based mode) use the WM estimators for the pair correlation 
and the K-function based on the quantities λ r) and λK(r). The 
corresponding aggregation formulas for the WM estimator are 
provided in equations 3.114 and 3.117 in Wiegand and Moloney 
(2014). The specific test functions of random labeling analyses are 
also based on these estimators. 

 

 g(
 

 
If the null model used in your analyses was 
random labeling, Programita saved two results 

les per analysis, a *_1.rep and a *_2.rep.  

To simplify selection of results files and to tell 
Programita that you will combine replicates 
that used random labeling click “Only files for 
random labeling”. In this case Programita 
hides all *.rep files which are not random 
labeling.  
 
 
Now select the replicates as before, but click 
“Joined statistic for random labeling”. 
 
 
 
You can view the results of all random 
labeling test statistics by using the test 
statistics in the windows below.  

fi
 

   

 
 

 
However, to obtain test functions based on 
the pair correlation function or the K-
function you need to conduct separate 
analyses. 
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Combine replicates for random labeling 
 
The “WM_name_1.rep” and “WM_name_2.rep” (or “R_name_1.rep” and “R_name_2.rep”) 

 standard analysis mode:   
 
files for random labeling are basically the same as for the

   50    199  244    84 250000  W-M    1  gridless  g(r)    
 0  0   3059.5516      2.0000      2.0000  164.10  472.77 
 0  1   6864.6946      6.0000      3.0000  219.41  316.06 
 0  2  11409.6905     10.0000      5.0000  220.01  316.94 
 0  3  15918.2302     16.0000      4.0000  252.32  181.74 
 0  4  20401.9507     18.0000      6.0000  221.47  212.69 
 0  5  24862.8655     28.0000      7.0000  282.70  203.62 
 0  6  29303.3423     26.0000     11.0000  222.73  271.49 
 0  7  33725.9864     30.0000     10.0000  223.30  214.44 
C1 C2  C3             C4           C5      C6      C7 

 
The “WM_name_1.rep” contains the information on the λ1g11(r) and λ2g12(r) [or the 
λ1K11(r) and λ2K12(r)] and the “WM_name_2.rep” contains the information on the λ2g22(r) 
and λ1g21(r) [or the λ2K22(r) and λ1K21(r)] required to assemble the different test statistics to 
be selected.  
 

  
 
 
 
Change ring width for pair correlation function 

 you use the pair correlation function as summary function, this feature of Programita 
g width. To take advantage of this feature, the 

h of 1: 

If
allows you also to change a posteriori the rin
original analysis must be done with ring widt . For ring width = 1 the plot 

d.  of the pair correlation function will be rugge

 

To select a posteriori a wider ring width select 
 file “Book_Fig2_15_1.rep” to read the 

e analysis of Figure 2.15 in Wiegand 
 Moloney (2014), and then go” again to 

“Replicates”. Now, when highlighting the again 
the file “Book_Fig2_15_1.rep” you can select a 
new ring width, for example a ring width dr = 5: 

the
results of th
and

. See below the example with dr = 1 
(left) and dr = 5 (right): 
dr =  5dr = 1 
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Mark correlation functions
  

6 Analysis with mark correlation functions 

Because the data structure of quantitatively marked patterns is different from that of the 
wn *.mcf extension for the data 
ark correlation analysis of the 

rk (data type 6) 
 univariate patterns with two quantitative marks (data type 7) 

ata type 9 includes also trivariate random labeling as special case. 
 
The estimators for the mark correlation functions are explained in detail in Section 3.1.7 
“Summary functions for Quantitatively Marked Point Patterns” of Wiegand and Moloney 
(2014). All estimators for mark correlation functions included in Programita are based on 

istances between pairs of points.  

unctions 

defined by the box kernel; the pair belon  
interval (r - dr/2, r + dr/2) where dr is th
the second point. 

2. You estimate the mean value of a test fun
point pair, respectively, taken over all i‒j

3. You repeat step 2 for a range of distance
function ct(r) where the “t” refers to the t

4. Finally, the normalized mark correlat n t t t

s the average of the test function, but taken over A ‒j, 
less of their distance. 

 
 
 

standard univariate and bivariate patterns, I introduced an o
files of mark correlation analysis. Programita allows for m
following data structures:  
 

 univariate patterns with one quantitativ


e ma

 qualitatively marked patterns with one quantitative mark (data type 8) 
 bivariate patterns with one quantitative mark (data type 9) 

 
D

real d
  

6.1 Test functions for mark correlation f

The basic idea of mark correlation functions is simple. I illustrate it for the simplest data type 
6 where each point i with coordinates xi carries a mark of value mi. 
 
1. You identify all pairs i‒j of points which are located approximately at distance r [this is 

gs to distance class r if its distance is within the
e ring width]. Point i is the focal point, and point j 

ction t(mi, mj) of the marks mi and mj of the i‒j 
 pairs determined in step 1. 
s r to obtain a non-normalized mark correlation 
est function used. 

 function is estimated as k (r) = c (r)/c  where the 
LL possible pairs of points i

io
ct i
regard
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Mark correlation functions 
 
A wide variety of test functions can be constructed, depending on the specific objectives. 

t Name Symbol Test function ct   

Here are the ones implemented in Programita: 

        
t1 mark correlation function kmm(r) m i m j µ2

 
γ(r) (m i ‒ m j)

2/2 σ2 
 Moran’s I  Imm(r) (m i ‒ µ) (m j ‒µ) σ2 

t6 (r)] σ2 
t7 K i(r) ‒ σ σK 

t8 σ σg 
, µ     

 
t m i µ 
t  . m j µ
t

5

2 r-mark correlation function k . (r) m
3 r-mark correlation function k (r) m
4 mark variogram 

t
Schlather’s I Imm(r) [m i ‒ µ(r)][m j‒ µ
Cumulative density correlation function CmK(r)†* (m i ‒ µ)[(λ

2λK(r)]/(πr ) 
 ‒ λg(r)] Non-cum. density correlation function Cmg(r)†* (m i ‒ µ)[(λg i(r)

tt9 10 Strength of density on mortality dd1(r)‡* - 

†these functions are always normalized 
 applies only for the special case if the quantitative mark m‡

*
i is binary with values 1 and 0. 

j mark of second point j 
 mean of the marks taken over all points 

 conditional mean of the mark 
istance r 

λ the intensity of the pattern 

f point i 
 the variance of the marks m i 

 c  = µ2) and we find k (r) 

tly 
d kmm(r) > 1 (mutual stimulation).  

-mark correlation function 
o estimate the r-mark correlation function we first determine all pairs of points of the 

pattern that have an approximate distance r. The marks of the kth pair are (m1k, m2k) where 
mk1 is the mark of the first point and mk2 the mark of the second point. The number of pairs 
at distance r is n(r).  

 The r-mark correlation function km . (r) corresponds to test function t2(m1k, m2k) = 
m1k and is the normalized mean of m1k, taken over all n(r) pairs of points distance r 
apart. 

 The r-mark correlation function k . m(r) corresponds to test function t3(m1k, m2k) = m2k 
and is the normalized mean of m2k, taken over all n(r) pairs of points distance r apart. 

 not presented in Wiegand and Moloney (2014)  
 
where  

m i mark of focal point i 
m
µ
µ(r) c2(r): the non-normalized r-mark correlation function; the

of the first point, taken over all pairs of points located at d

λK i(r) the “local” K-function; the number of points within distance r of point i 
λg i(r) the “local” g-function; the density of points within distance r o

2σ
σK the variance of λK i(r) 
σg the variance of λg i(r) 
 
Mark correlation function 
 The mark correlation function kmm(r) is the normalized mean of the mark product 

t(mi, mj) = m i m j of all i‒j pairs of points distance r apart.  

If the marks are randomly distributed over the points, the mean mark product does not differ 
from the mean mark product taken over all pairs of points (i.e., 1 mm

= 1. However, if the marks of nearby points are consistently smaller than the mean mark we 
find kmm(r) < 1 (inhibition), and conversely, if the marks of nearby points are consisten
larger than the mean mark we fin
 
r
T
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Mark correlation functions
 
The non-normalized r-mark correlation functions for data type 6 are also termed µ(r) and the 
normalization constants are given by c2 = c3 = µ; they are the mean µ of the marks, taken 

er all f the pattern. Later in the bivaria we tle differences 
etween o r-mark correlation functions. 

hlath

hather  cross-correlation coefficient of the data set (m1k, m2k

us, w e mean of the two entri , m ld µ(r) for dat
e 6, a ate the covariance [m1k ‒ µ 2k ‒ normalize

th the i e s
rrelati

n’

5 with 
n the 

m1k, m2k). 
res from this function may be strongly impacted by departures from the r-mark 
on function and not due to correlations in the marks of the pairs of points (m1k, m2k). 

e mark
Th test function t4(m1k, m2k) = (m1k ‒ m2k)2/2, half 
of t

can be u alues in their marks. 
alu iance σ2 in the 
 the alues of the two 

 are 

sity co  
velope ensity correlation functions for the study of Fedriani et al. 

tion between the reproductive success of trees and the density of 

re 
nd λgi(r) of point i give the 

     t8(mi,  g i(r)) = (m i ‒ µ)[(g i(r) ‒ g(r)] 

σ 

mark of the focal point. The option 

quantitative marks of the second pattern (data types 8 and 9). 

ov points o
he tw

te cases  will find sub
b  t

Sc er’s I 

Sc ’s I is the standard Pearson ). 
Th e first estimate th es (m1k

r)
2k), that both yie

r
a 

t py nd then estim ( ][m
 b

 µ( )] which is then 
d

d 
wi  product of the standard deviations (wh ch oth yi ld σ) to yiel  the standard cro s-
co on coefficient. 

Mora s I 

Note that older studies use instead of the Schlather test function t6 the test function t
d on the global mark mean µ, and not ot5(m1k, m2k) = (m1k ‒ µ) (m2k ‒ µ) that is base

onditional mark mean µ(r) estimated from the pairs of points of the data set (c
Departu
correlati

Th  variogram 
 e mark variogram γ(r) is based on the 

he squared difference between the marks of the kth point pair.  

ints have more similar or dissimilar vIt sed to assess if nearby po
If the v

,
es of m1k and m2k are more similar than expected by the overall var

vmarks
rks

 mark variogram γ(r) will have values smaller than one and if the 
ted, we find γ(r) > 1.  ma more dissimilar than expec

Den rrelation functions
I de d the (cumulative) d
(2015) to assess the correla
neighbors located within distance r. The density correlation functions are the standard 
Pearson cross-correlation coefficient of the data sets [mi, λKi(r)/(πr2)] or [mi, λgi(r)], whe
m1i is the mark of point i and the constructed marks λKi(r)/(πr2) a
density of density of neighbors of point i within and at distance r, respectively.  

Because the correlation coefficients are independent on multiplication of the data with a 
constant, we can simplify the test functions to 

       t7(mi, Ki(r)) = (m i ‒ µ)[(K i(r) ‒ K(r)] 
  

The normalization constants are then the products σ σK and σ σg of the standard deviations 
and σg (and σ and σK) of the data sets [m1i, Ki(r)] and [m1i, gi(r)], respectively. 

Density correlation functions with sum of marks instead of number of neighbors 
In some cases not only the number of neighbors, but also their marks 
may have effects on the value of the 

 

“property” considers this for the density correlation functions: it uses 
the sum of the marks of the neighbors instead of the number of 
neighbors for the correlation analysis. In the univariate case the sum of 
the marks of the neighbors of pattern 1 are used, and in the bivariate 
case the sum of the second mark (data type 7) or the sum of the 
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Mark correlation functions 
 
Strength of density on mortality 
Some of the mark correlation functions can also be applied for a binary mark such as 
surviving (s, mark 1) vs. dead (d, mark 0). For example, in this case the non-normalized r-
mark correlation function c2(r) yields the mean proportion of focal points that survive (s), 

airs of points separated by distance r. Programita uses a transformation 
unction (with direct relationship to the densities of neighboring points), 

0. 

+d(r) 

nd 

-normalized r-mark correlation function c2(r) is closely 

taken over all p
dd (r) of this f1

instead of the density correlation functions if the mark mi is a binary mark with values 1 or 
The univariate and non-cumulative function dd1(r) is the ratio 

 

      dd1(r) = gd,s+d(r)/gs,s

 

where gd,s+d(r) is the partial pair correlation function giving the total density of points (i.e., 
with marks surviving and dead; s+d) around points with the mark dead (d) and the gs,s+d(r) is 
the partial pair correlation function giving the corresponding density of points (s+d) arou
points with the mark surviving (s). 

Analogously, the cumulative function DD1(r) is the ratio 

 

      DD1(r) = Kd,s+d(r)/Ks,s+d(r) 

 

where Kd,s+d(r) and Ks,s+d(r) are the corresponding partial K-functions.  

 

As we will show below, the non
related with dd1(r): 

 

       2

1
( )

( )(1 )
c t s

dd r s s


 
 

 
where s is the proportion of points with mark surviving (= the mean mark µ if the mark for 

rvival rate s occur only because of density 

ypes where the poin  
 Programita allows for 

tures:  

 mark (data type 9) 

surviving is one and that for dead zero). Thus, departures of the non-normalized r-mark 
correlation function c2(r) from the expected su
dependence in mortality. 
 

Note that the bivariate dd2(r) of data type 9 is especially interesting because it allows to 
quantify the effect of a second pattern on the quantitative mark of focal pattern 1. 
 
 
Extension of mark correlation functions to other data types 
“Bivariate” mark correlation functions can be derived for different data t
carry either two marks or two types of points carry one mark each.
mark correlation analysis of the following “bivariate” data struc
 one type of points with two quantitative marks (data type 7) 
 two types of points (a qualitative mark) with one quantitative mark (data type 8) 
 two types of points (a bivariate pattern) with one quantitative
 

ts
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Mark correlation functions
 
 
Data type 7 (section 3.1.7.3) 
In this case each point i carries two marks mi1, mi2. The bivariate test functions are then 
based on the first mark of point i and the second mark of point j (mi1, mj2). In this case we 
need the mean marks µ1 and µ2, the conditional means µ1(r) and µ2(r), and the covariance 
σ2

12 of the two marks. Note that in case of the density correlation functions and dd2(r), the 
“univariate” and “bivariate” functions are the same if the option “property” is not used. 
Otherwise they estimate the correlation between the first mark mi1 of point i and the 
the first marks m

sum of 
riate) and the sum of the second 

arks mj2 of points within (or at) distance r (bivariate).  

Symbol bivariate test functions c t         

j1 of points within (or at) distance r (univa
m
 
t Name   
t1 mark correlation function km1m2(r) m i1 m j2 µ1µ2 

m1m2 i1 1 j2 2 12

I (r) [m i1 ‒ µ1(r)][m j2 ‒ µ2(r)] σ12
2 

m i1 ‒ µ1)[(K i(r) ‒ K(r)]* σ σK 
 non-cum. density correlation function Cm1g(r) (m i1 ‒ µ1)[(g i(r) ‒ g(r)]* σ σg 
, t  strength of density on mortality dd2(r) - µ2    

t2 r-mark correlation function km1 . (r) m i1 µ1 
t3 r-mark correlation function k  . m2(r) m j2 µ2 
t4 mark variogram γm1m2(r) (m i1‒m j2) /2 σ2

12
2 

t5 Moran’s I  I (r) (m  ‒ µ ) (m  ‒ µ ) σ 2 
t  Schlather’s I 6 m1m2

t7 cum. density correlation function Cm1K(r) (
t8

t9 10  
* the bivariate test functions use the marks of m i2 of the neighboring points if the option “property” is 
nabled. 

 this case each point i carries one qualitative mark (e.g., type 1 for surviving vs. type 2 for 

i‒j 
 null models are possible here, randomization of the qualitative mark 

ver the points or randomization of the quantitative mark over the points. The corresponding 
ators of the mark correlation functions differ slightly. 

1) Randomize quantitative mark 
 this case the null hypothesis is that type 1 and type 2 points do not differ in their 

ark 

1+2 of the joined pattern of type 1 and type 2 points in the test 
nctions and normalization. The univariate mark correlation functions use pairs of type 1 ‒ 

 

Name Symbol bivariate test functions c t         

e
 
Data type 8 (section 3.1.7.4) 
In
dead) and one quantitative mark (e.g., size). In this data structure the focal points are of type 
1 and the second point of the pair is of type 2. Thus, the quantitative marks of point pair 
are m1i and m2j. Two
o
estim

In
quantitative marks. Thus, the marks m1i and m2j are randomly shuffled over the joined 
pattern of type 1 and type 2 points. We therefore need to normalize with µ1+2, the mean m
of the joined pattern of type 1 and type 2 points. Similarly, we use the conditional mean 
µ1+2(r) and the variance σ2

fu
type 1 points whereas the bivariate mark correlation functions use pairs of type 1 ‒ type 2
points.  
 
t   
t1 mark correlation function km1m2(r) m1i m2j µ2

1+2 

j2 1+2 1+2

1+2 2i(r)‒K2(r)] σ σK 
-  

t2, t3 r-mark correlation function km1 . (r) m1i, m j2 µ1+2 
t4 mark variogram γm1m2(r) (m1i‒m2j)

2/2 σ1+2
2

t m1m2 1i 1+2

)[(K
6 Schlather’s I I (r) [m  ‒ µ (r)][m ‒µ (r)] σ 2

t7 cum. density correlation function Cm1K2(r) (m1i ‒ µ
t , t  strength of density on mortality dd (r)  9 10 2    
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Mark correlation functions 
 
2) Randomize qualitative mark (random labeling) 

 

e 

ymbol bivariate test functions c t         

In this case the membership to type 1 and type 2 is changed in every simulation of the null 
model. Therefore we estimate the mean mark µ1 over type 1 points and the mean mark µ2 
over type 2 points, as well as the conditional means µ1(r) and µ2(r), and the covariance σ12 of
the marks among all type 1 and type 2 points. In contrast to the other cases, the values of µ1, 
µ2 and σ12 must be estimated after each simulation of the null model. As above, the univariat
mark correlation functions use pairs of type 1 ‒ type 1 points whereas the bivariate mark 
correlation functions use pairs of type 1 ‒ type 2 points.  
 
 Name St  

t1 rrelation function km1m 1µ2 
t3  km1 ), k r) j2 µ2 

γm1m 2j)
2/2 

Im1m 1i‒µ1(r)][m j2‒µ2(r)] 12 
tion Cm1 2i(r)‒K2(r)] K 

t10 y on mortality dd2 

mark co 2(r) m1i m2j µ
t2, r-mark correlation function .(r m2 .(

(r
m1i, m
(

µ1, 
t4 mark variogram 2 ) 

(r) 
m

[
1i‒m σ12 

t6 Schlather’s I 
relation func

2 m
m

σ
σt7 cum. density cor

densit
K(

) 
r) ( 1i‒µ1)[(K

 
 σ

-t9,  strength of  (r -   
 
 
Data typ

 c  1 and  whe  each point i of pattern1 and each 

points with one mark each. The focal points are of type 1 and the second points of 
pe 2. Thus the marks of point pair i‒j are m1i and m2j. In this case the quantitative marks 

fled within patterns 1 and/or 2. We therefore normalize with 

 

ing 
otential l correlation structure of the m
ttern. mple, are trees which are clos er e average 
e, or i r trees with gh small distances (Fedriani e

15  this data type is the so-called independent marking n
del w huffles the marks over the point ving all potential spat

ucture  Wiegand and Moloney (2014) provides examples
the d  mar ns y. Fedria

(20 tions, ecia y the density correlation function, 
to show how density dependent effects in the different stages of plant reproductive success 
operate either in the same or in different directions and thus reinforce or neutralize each 
other. 

e 9 (section 3.1.7.5) 
In this ase we have two patterns (type type 2) re
point j of pattern 2 carries one quantitative mark. Thus, the data structure comprises two 
types of 
ty
m1i and m2j are randomly shuf
the mean mark µ1 of type 1 points and the mean mark µ2 of type 2 points and the covariance 
σ12 between the marks of the two patterns. The univariate mark correlation functions use 
pairs of type 1 - type 1 points whereas the bivariate mark correlation functions use pairs of 
type 1 - type 2 points. The estimators are as above for data type 8 and the random labeling 
null model.  
  

6.2 Analysis of univariate patterns with one mark (data type 6) 

Univariate quantitatively marked patterns comprise the coordinates of a univariate pattern, 
but each point carries an additional quantitative mark that characterizes the ecological object 
that is idealized as point. The quantitative mark is usually a continuous attribute such as the
size of a tree, but can also be an integer such as the number of seeds of a tree.  

The major interest in analysis of univariate quantitatively marked patterns is in reveal
p  spatia

or exa
arks, conditi
r togeth

onal on the underlying univariate 
sually smaller than thpa F e u

tre s fruit initiation higher fo more nei bors at t 
al. 20 )? The basic null model for ull 
mo hich randomly s s, thus remo ial 
str  in the marks. Section 3.1.7.1 in

ifferent analyses of qualitatively
 

for 
t al. 

ked patter  that are useful in ecolog ni 
e 15) uses mark correlation func and esp ll
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One quantitative mark, data preparation
  

6.2.1 Data preparation for data type 6 

The data files must be an ASCII file with the *.mcf extension with the following format (the 
example shows the first lines of the data file Book_Fig2_16a.mcf): 
 
0  500  0  500  600 
249.75  451.80  1  3.725  0       
434.30  272.60  1  4.726  0       
482.65   35.20  1  1.826  0       
0.10 0  1  1.983  0       
5.00 5  1  2.012  0       
3.40        
85       
15       

8.65 .177  0       
2.95   2.094  0       
2.40  

here first line gives the size of the observation window (500 × 500 units in the example) 
ttern. 

 

e 
n 

 a given extension: 

would only write name and end up with a file named name.txt). The quotation marks 

10
4

 196.6
117.42  

42   38.05  1  2.552  0
222.
2.

 349.05  1  1.651  0 
.040  0  3

20
  21.55  1  3
 352.10  1  4

 9  214.85  1
11  452.65  1  3.256  0      
… 
 
w
and the number of points in the pa
 
 the first two columns of the following lines are the coordinates of the points, the third 

column indicates the pattern and must be “1” for all points because this data structure is
based on an univariate pattern.  

 The forth column carries the mark of the point. 
 The fifth column is reserved for a second mark or for the mark of a second pattern and 

must be therefore “0”. 
 
The data file must be a space or tab delimited ASCII file with the *.mcf extension. If you us
Excel, there is a simple, but obviously generally unknown, way of saving files of a give
ype witht

 
1. Prepare the data file in Excel following the instructions above. 
2. Then save as a tab delimited text file, but write “name.mcf” for the name (usually you 

are important because they force Excel to save the comma delimited file under the 
name name.mcf.  
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One quantitative mark, steps of analysis. Example Book_Fig2_16.res 
 

6.2.2 Steps data type 6 (Book_Fig2_16.res) 

 
escribed in detail in section 3.1.7.1 “Univariate Quantitatively 

e 6)” of Wiegand and Moloney (2014):  

) or Cm,K(r)  

he default for mark correlation functions is to use the normalized 

 can select the non-
ormalized mark correlation functions t(r) by disabling the 

ients I (r) may show absolute 
t this distance is 

 can be accessed with the following 

 want to analyze in Input data. In the 

” in MCFunction 
4. Provide in the window mark correlation functions the bin width 

in data units, an appropriate ring width, and a maximal 
distance r of the analysis. Select in the example a bin of 1m, 
a ring width of 3m, and a maximal distance of 50m. 

5. If you use a ring width of 1 unit, you can later use the 
function “Combine replicates” to load the results of the 
analysis, to change the ring width, and to use the 
corresponding cumulative summary function (see below 
“View results of mark correlation analysis”).  

6. Disable “Normalize” if you want to use the non-normalized 
mark correlation functions. The default is “Normalize” 

7. Check “Edge” if you want to use the Ripley edge 
correction. Default is no edge correction. Note that edge 
correction is not required for mark correlation functions. 

 
 
 
 

Programita estimates for data files of the *.mcf type several 
adapted test statistics based on mark correlation functions which are

 

d
Marked Pattern (Data Typ

 the mark correlation function kmm(r) 
 the r-mark correlation function km . (r) 
 the r-mark correlation function k  . m(r) 
 the mark variogram γ (r) mm

 a Moran’s I type mark statistics Imm(r) 
 Schlather’s correlation function I (r) mm

 the density correlation functions Cm,g(r

T
functions, i.e., kt(r) = ct(r)/ct where ct is the normalization constant 
for a given test function t. However, you

cn
checkbox “Normalize”. Note that the density correlation functions 
are always normalized. 

Note that the two correlation coeffic mm

values larger than one if the number of point pairs a
very low (say < 10). To avoid this increase the ring width.  

he mark correlation modeT
sequence of actions: 

1. Select “Mark correlation functions” in window What do you 
want to do? 

2. Highlight data file you
example it is file “Book_Fig2_16a.mcf”. The pattern is a 
superposition of 100 random points with a Thomas process 
of 100 clusters with an approximate radius 2 of 10m. The 
mark attached to a point is proportional to one over the 
number of neighbors within 10 m. 

3. Click “List with coordinates, no grid
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ple Book_Fig2_16.resOne quantitative mark, steps of analysis Exam
 

8. Check “Calculate simulation envelopes” in window What do you 

del” appears. 
9. Select an appropriate null model, the number of simulations of 

velopes

 
odels are appropriate for all
 and that they must be 

of the density correlation 

timated); if you do not need 
 by 

want to do? The subwindow “Select a null mo

the null model (199), and the rule for the simulation en
(5’ lowest and highest). Select for univariate patterns with one 
quantitative mark the null model “Marks pat 1 and 2 
random” that shuffles the mark randomly over the points of

 

the pattern. Note that not all null m  
mark correlation function data type
selected with care. 

 Sc ther’s I and 10. The estimation of hla
functions requires double calculations (because first the 
averages μ(r) and g(r) need to be es
this summary function you can speed up Programita
clicking “Disable Schlather”. 

11. Press button “Calculate Index” and Programita shows the 
observed and simulated pattern. The area of the disk that 
represents a point is proportionally to the mark: 

 
 
You notice that the points do not change their location in th
null model simulation (right), but that the size of the point
changes because the mark of all points is randomly shuffled.
You can change the size of the circles by enlarging the facto

e 
s 

 
r in

  

12. Use the radio buttons of the window Select one test function to 
ok” select a mark correlation function and click the small “

button to get the result graphic:  

  
 
The graph for the bivariate mark correlation is empty beca
the data were univariate. The results show that the mark of a 

use 

cated 

 

point which is located at distance r from another point of the 
pattern is for distances r < 16m smaller than expected (r-mark 

re locorrelation function; left) and that two points that a
closer than 16m have marks which are more similar than 
expected (mark variogram; right).  
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One quantitative mark, density correlation functions  
 
The density correlation functions  

The non-cumulative density correlation function Cm,g(r), is the standard
coefficient between the mark m

 Pearson correlation 
 surrounding these 

tion function is based 

all density of points i
terval (r dr/2, r+dr/2) of 

 po t i, and λg(r) the 
 correlation function and 

14). Because 
 t t function to  

f the sta ard deviations of 
), respectively. T e “C” in Cm,g(r) 

stands for correlation, “m” for the first mark mi, and “g” for the second m rk gi(r).  

The analogous cumulative density correlation function Cm,K(r) uses the K unction instead of 
the pair correlation functions: 

           t(r, mi, gi) = [mi - μ][(Ki(r) - K(r)] 

where K(r) is the K-function and Ki(r) the corresponding “local” K function. Additionally 
Programita estimates the correlation coefficient rmnn between the mark m istance di 
to the nearest neighbor of point i based on the test function: 

           t(mi, di) = [mi - μ][[di - d] 

 ne est neighbor 

48.5 + r     0.116    -0.091      0.089     0.003    0.000     0.000      0.000     0.000 
49.5 + r     0.788    -0.070      0.099     0.004    0.000     0.000      0.000     0.0000  

nce bin r give correlation 

te density correlation function you can use 
the small checkbox 

i of points i and the density of neighbors
points at distance r [= λgi(r)]. Thus, the non-cumulative density correla
on the test function: 

           t(r, mi, gi) = [mi - μ][(λgi(r) - λg(r)] 

where mi is the mark of the focal point i, μ is the mean mark, λ the over
the observation window, λg

n 
i(r) the density of points at distance in -

focal point i where dr is the width of the ring with radius r centered in
mean density of points within these rings. The g

in
i(r) is the “local” pair

g(r) the well known pair correlation function (Wiegand and Moloney 20
correlation coefficient are independent on constants we can simplify the

           t(r, m

es

i, gi) = [mi - μ][(gi(r) - g(r)] 

Programita uses here the Ohser edge correction weight (see Wiegand and Moloney 2014, 
section 3.1.2.1). The Cm,g(r) is normalized by the product σmσg o
the marks m

nd
i and the local pair correlation functions gi(r

where d is the mean distance to the nearest neighbor. The result of the
correlation is written in the *.res results file at the last distance bin: 

 
Scale r r    cm1d1(r)  E11-       E11+      mean11   cm1d2(r)  E12-       E12+      mean12 
47.5 r r     0.085    -0.091      0.090     0.003    0.000     0.000      0.000     0.000  

h
a

-f

i and the d

ar

 
results show density correlation function, but result for last dista
between the nearest neighbor distance of a point and the value of the mark 

 
To switch between the cumulative and non-cumula

 at the bottom of the window “Select one test function”. 

Density correlation functions with sum of marks instead of number of neighbors 
In some cases not only the number of neighbors, but also their marks 

ark of the focal point. The option 
e 

may have effects on the value of the m
“property” considers this for the density correlation function: it uses th
sum of the marks of the neighbors instead of the number of neighbors 
for the correlation analysis.  
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n functions, Example Book_Fig2_16.resOne quantitative mark, density correlatio 
 
The density correlation functions, for example for Book_Fig2_16.res are: 

         non-cumulative                                       cumulative               cumulative and “property” 

 

Note that the mark attached to a point was in the example pattern proportional to one over the 
number of neighbors within a distance of 10 m. As expected, the cumulative density 
correlation function shows a very high negative correlation at distance 10m. Because the 
mark was only related to the number of neighbors, but not their sizes, the “property” option 
does not increase the correlation. The correlation coefficient rmnn with the distance to the 
nearest neighbor is shown in the results graphs as a green line. Because the correlation is 
inverse (i.e., closer neighbors mean larger density) we show the negative value of rmnn. In 

 

r) yields the probability that of a pair of points 
rviving. This is the well known mark connection 

tion of focal points that survive 
rated by distance r. As we will see, c2(r) is related to the 

this example, the correlation of the mark with the distance to the nearest neighbor is almost
as strong as that with the density of neighbors within distance r = 10m.  
 
The density correlation functions for a binary mark (example Book_Fig2_16a_sd.res) 

Some of the mark correlation functions can also be used for a binary mark (e.g., surviving vs. 
dead). For example, if dead is represented by mark 0 and surviving by mark 1, the non-
normalized mark correlation function c1(
separated by distance r both points are su
function p11(r) (see example Book_Fig_2_15.res).  

More interesting with respect to effects of density of neighboring points on mortality is the 
non-normalized r-mark correlation function c2(r), the propor
taken over all pairs of points sepa
density of points surrounding dead relative to surviving points. An estimator of c2(r) is 

1 1,
2 ( ) n n

1 1,i j  

( )
n n

m k r

ĉ r
( )k r

i i j
i j  

i j

   x x
where the mark m

  

ero for dead and value 
one for surviving. We assume that the points are ordered 

   x x (i.e., m  = 1) and the following n ‒ n  points have the 

i has value z

in a way that the first ns points have the mark surviving 
i s

mark dead (i.e., mi = 0). Thus we find: 

2
1 1, 1 1, 1 1,si j i j i n j         

and by dividing with enumerator, multiplying the sums with n
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i j i j i j r ,  
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and re-ordering we find that c2(r) contains the ratio of two partial pair correlation funct
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r

tim
ept 1/ ns and 1/( n ‒ 
 have the ratio of the 

r correlation function 
giving the density of surviving and dead 
points (s+d) around dead points (d) and the 
gs,s+d(r), the partial pair correlation function 
giving the density of surviving and dead 
points (s+d) around surviving points (d). 

  

All constants of the es
correlation functions, exc
n

ator of the pair 

s), cancel. Therefore we
gd,s+d(r), the partial pai
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ne quantitative mark, density correlation functions, Example Book_Fig2_16_sd.res O 
 
The function dd1(r) therefore gives the density of points (i.e., s+d) at distance r around dead 

d,s+d s,s+d

The function dd1(r) is therefore a measure of density effects on mortality: it indicates 
how many more neighbors dead points have on average relative to surviving points. It 
estimates the strength and direction of density effects on mortality. If dd1(r) > 1 the effect of 
neighbors on survival is negative and for dd1(r) < 1 the effect is positive. Programita uses 

points divided by the density of points at distance r around surviving points, i.e., dd1(r) = 
g (r)/g (r).  

the dd1(r) therefore instead of the density correlation function if the mark is binary mark 
(e.g., surviving vs. dead) if you enable the option “surv”:  

To provide an example we created the data set Book_Fig2_16a_sd.mcf which is identical 
Book_Fig2_16a.mcf, except that the 200 points with the lowest value of the mark are defined
to be dead (i.e., mark 0) and the others are defined to be surviving (i.e., mark 1). 
 
Example Book_Fig2_16a_sd.res 
 

1. Select “Mark correlation functions” in window What do you 

to 
 

want to do? 

f 50m. 

“View results of mark correlation analysis”).  
6. Disable “Normalize” since yo

correlation functions and lick
7. Go to the window Select es

select the small checkbox “cu
density correlation function) a
“surv” (because the mark is binary) at the bottom of the 
window 

2. Highlight data file you want to analyze in Input data. In the 
example it is file “Book_Fig2_16a_sd.mcf” 

3. Click “List with coordinates, no grid” in MCFunction 
4. Provide in the window mark correlation functions the bin width 

in data units, an appropriate ring width, and a maximal 
distance r of the analysis. Select in the example a bin of 1m, 
a ring width of 3m and a maximal distance o

5. If you use a ring width of 1 unit, you can later use the 
function “Combine replicates” to load the results of the 
analysis, to change the ring width, and to use the 
corresponding cumulative summary function (see below 

u need non-normalized mark 
 button “Calculate Index”. 
t function that appears, de-

m” (to use the non-cumulative 
nd check the small checkbox 

 c
one t

. Now the non-cumulative “Density 
correlation function” can be selected after clicking again the 

10m with a peak at some 3m where dead
compared to surviving individuals, five 
neighbors: 

button “Calculate Index” 

8. The dd1(r) shows strong density effects up to distances of 
 individuals have, 

time more 

 

 

 

 
 

 



  
One quantitative mark, density correlation functions, Example Book_Fig2_16_sd.res  
 

9. Select an appropriate null model, the number of simulations 
of the null model (199), and the rule for the simulation 
envelopes (5’ lowest and highest). 

er than 

10. Press button “Calculate Index” and Programita shows the 
observed and simulated pattern. 

11. Use the radio buttons of the window Select one test function to 
select a mark correlation function and click the small “ok” 
button to get the result graphic. As expected the r-mark 
correlation function shows that the survival of points that 
have another point within distance 10m is low
expected. The dd1(r) shows strong density effects, dead 
individuals have, compared to surviving individuals, up to 5 
time more neighbors within neighborhoods of 10m: 

 
 

 
 

  
12. To obtain the cumulative DD1(r) function enable the small 

 ccheck box “cum” and repeat the analysis by licking th
”: 

 

e 
button “Calculate Index

 
13. The cumulative DD1(r) is the density of points (i.e., s+d) 

within distance r around dead points divided by the density 
of points within distance r around surviving points, i.e.,  
DD1(r) = Kd,s+d(r)/Ks,s+d(r).   
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nalysisOne quantitative mark, view results of a
 
View results of mark correlation analysis  
 
After conducting a mark correlation analysis you should save the 

f your analysis and an 

ne 
).  

 

 mark 
correlation function with different ring widths and to estimate the 
analogous cumulative mark correlation functions. To access this 
option follow the steps below: 

 
 
 

results with button “Save results”. Programita creates a results file 
names.res that also contains all settings o
additional file name.rep which allows you to view and save the 
results for all mark correlation functions. Note that changing the 
ring width works only correctly if you selected a ring width of o
unit for generating the data (i.e., you obtain non-overlapping rings
 
You can access the procedure for loading the results with button
“Replicates”. If you conduct your analysis with a ring width of 1, 
the Replicates option allows you additionally to estimate the

 
 

 
 
 

 
 

1. select “Replicates” 
2. highlight the *.rep results file you want to 

tion envelopes 
. For 

example, if you conducted 199 simulations of 
the null model you may select 5 (i.e., the 
simulating envelopes are the 5th lowest and 
highest values).  

 

analyze in the window Select result files 

(mcf_Book_Fig2_16a_1m.rep ) 
3. Select the rule for the simula

(insert integer before ’lowest/highest)

4. Click button “Calculate joined sta ” and Programita shows 

dth 
x “Cum mcf” for the cumulative 

mark correlation function [see section 3.1.7.2 “Univariate Marked 
K-Functions (Data Type 6)” in Wiegand and Moloney 2014]. You 
can also plot the results on a logarithmic x-axis with check box 
“log-scale”. (This can only be done if the ring width in the 
analysis was one). You can also show the non-normalized mark 
correlation functions (“Not normalize”). Finally, press the small 
ok button and Programita shows the results with the modified 
estimator.  

6. In the window Select one test function you can view different mark 
correlation functions based on the modified estimator.  

7. Using the button “Save results” you can save the results for this 
mark correlation function as *.res file. 

8. You can also conduct the GoF test by checking the small box 
“GoF”. To this end first select in the window that appears the 
distance interval of the GoF test (t0 and t1), the button “Uni” or 
“Bi” depending if the analysis is uni- or bivariate, and finally the 
button “Calculate GoF rank” to get the rank and the P-value of 
the test. 

 
 

tistic
you the results of the analysis.  

5. To change the ring width or to use the cumulative mark 
correlation function select the ring width after “Ring wi
[bin]” or enable the check bo
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One quantitative mark and local independent marking. Example CSR_grad_local.res 
 

6.2.3 Local independent marking, data type 6 

 this case th  value of 
e may observe systematic 
f the tr es may be larger at 

. This may cause larger-

i ately factored out in 
arks in standard 

ch point can be 
dow. However, localized 
ted closer than a given 

e marks, but maintains 
1+2 points i of the marked 

tries of the array nr[i] that runs from 1 to n1+2 are randomly 
ot farther away than distance R. 

ed more than distance R away from its 

local.res 

ased on a random pattern with random 
rvation window, but afterwards the 

. Thus, the average size of the marks in 
atic gradient in the marks 

ng astward. 
on   

ou want to d  

 1 and a maximal 

ant to do? and select 
endent marking. 
rule for the 
 use a value of 0.7.  

erved and simulated 
data the m arks in the east (left), 

Mark correlation analysis may also be impacted by heterogeneity. In
the marks may be influenced by environmental covariates and w
spatial trends in the values of the marks. For example, the size o
the eastern part of an observation window than at the western part
scale departures for example in the mark variogram.  

The effect of a large-scale heterogeneity in the marking can be approx

e

e

m
the same way as for random labeling for qualitatively marked patterns. The m
independent marking null model are shuffled in a way that the mark of ea
exchanged with that of any other point in the entire observation win
independent marking exchanges only marks of points which are loca
distance R. This removes the small-scale correlation structure in th
their observed large-scale correlation structure. Technically, all n
pattern are numbered and the en
permutated only if the coordinates of the point pair i – j are n
In this way a given mark will normally not be mov
original location. 
 
Local independent marking, example CSR_grad_

This example uses the data set CSR_grad.mcf that is b
marks (and mean mark μ) within a 500m × 500m obse
marks of the points were multiplied by factor x/500
dependence on the x-value is m(x) = μ x/500 Thus, there is a system
from west to east where the marks become increasingly larger when movi
However, except this gradient the marks do not show any spatial correlati

Select “Mark correlation funct

 e
s.
o?1. ions” in window What do y

2. Highlight data file CSR_grad.mcf in Input data 
3. Click “List with coordinates, no grid” in MCFunction 
4. Press button “Calculate Index”  
5. Select in mark correlation functions a bin width of 5, and a ring width of

radius of 80. 
6. Check “Calculate simulation envelopes” in window What do you w

“Marks pat 1 and 2 random”. In a first step we use global indep
Select the number of simulations of the null model (199), and the 
simulation envelopes (5’ lowest and highest). For “Size of circles”

7. Press button “Calculate Index” and Programita shows the obs
patterns. In the arks in the west are smaller than the m
but not in the null model (right): 
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cal.resOne quantitative mark and local independent marking. Example CSR_grad_lo
 

8. Use the radio buttons of the window Select one test function to select a mark correlation 
et the result graphic: 

9. Various of the mark correlation functions show larger scale departures from the 
function and click the small “ok” button to g

independent marking null model: 

  
 

 
 
Because the average size of the marks depends linearly on their x-coordinate [i.e., 
m(x) = μ x/500], the mark product of points separated by distance r will be larger than 

 mark correlation function 

n “Local 

μ2. Consequently, we observe a positive departure in the
kmm(r). However, the x-dependence in the mark is linear in the r-mark correlation 
functions and therefore averages out. The mark variogram shows negative departures 
because nearby marks are by construction similar in size, and the Moran’s I type 
correlation coefficient Imm(r) shows for the same reason positive departures. 
Especially, the marks are strongly correlated in x-direction.  
 
 geneity click the opt o10. To approximately factor out the large-scale hetero i

 approp iate maximal distance R for points that independent marking” and select an r
).should switch their marks (select here R = 30  

 
11. Press button “Calculate Index” and Programita shows the observed and simulated 

patterns. The null model shuffles the marks only locally and the marks in the east a
larger than in the west, now in the data and the null model: 

re 
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One quantitative mark and local independent marking. Example CSR_grad_local.res 
 

12. Use the radio buttons of the window Select one test function to select a mark correlation 
function and click the small “ok” button to get the result graphic. The expectation of 

iffer 
endent marking null model and approximate the 

observed mark correlation functions. This is because the marks do not show other 
correlations than that imposed by the gradient. 

the mark correlation functions under the local independent marking null model d
substantially from that of the indep

 

 
 
 Using the GoF test you can verify that there is indeed no departure from the local 
independent marking null model: 
                    k

13.

mm(r)                               k  . m(r)                                         γmm(r) 

     
Combine 

.rep, 
ark correlation analysis you 

If you conducted the analysis with a ring width of one unit and use the “
replicate” option (files mcf_Book_Fig2_16a_grad_1m
Book_Fig2_16a_grad_1m.res) to view the results of the m
can also use the cumulative mark correlation functions [see section 3.1.7.2 
“Univariate Marked K-Functions (Data Type 6)” in Wiegand and Moloney 2014]. 
Enable the checkbox “Cum mcf” to obtain the cumulative functions:  
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arationTwo quantitative marks, data prep
  

6.3 Analysis of univariate patterns with two marks (data type 7) 

Quantitatively marked patterns of this type comprise the coordinates of a univariate pattern 
and each point carries two additional quantitative marks that characterize the ecologica
object that is idealized as point. The quantitative marks

 b

l 
 are usually a continuous attribute 

such as the size and height of a tree, but can also be an integer number such as the number of 
orchids of two species located on host trees, or the number of seeds of two species in feces of 
seed dispersing animals. Because the bivariate mark variogram is sensitive to differences in 
the means μ1 and μ2 of the two marks you should normalize the marks to yield the same 
mean. (The other mark correlation functions are independent on the absolute values.) 

The major interest in analysis of quantitatively marked patterns with two quantitative marks 
is to find out whether the two marks show some spatial correlation that depends on the 
distance r between points, conditional on the underlying univariate pattern. In a way this is 
similar to testing for independence between the two component patterns of a bivariate 
pattern. For example, the two orchid species may tend to be placed less frequently together 
on nearby host trees than expected by independent placement, or the seeds of the two species 

Null model type 1 
For example, if the marks are the number of orchids of two 
species, we may ask whether they are independently distributed 
over the host trees. In this case, we can condition on the number 
of orchids of the first species and shuffle only the second mark 
(i.e., number of individuals of the second orchid species) 
randomly over the trees of the univariate pattern (Marks of p t 1  

tend to e more frequently placed together in nearby feces than expected. 

Depending on the ecological question two types of null models are possible; see section 
3.1.7.3 “Two Quantitative Marks Attached to a Univariate Pattern (Date Type 7)” in 
Wiegand and Moloney (2014): 

a
 

fixed and 2 random). If none of the two orchid species is antecedent we can also condition 
on the number of orchids of the second species and shuffle the first mark (Marks of pat 2 
fixed and 1 random). If appropriate, we may also randomize the locations of both marks 
(Marks of pat 1 and 2 random). This null model thus tests if the placement of the two 
orchid species on the host trees was spatially independent as opposed by positive or negativ
associations that could be promoted by species interactions between the two species or by 
shared or opposed habitat requirements. 

model simulation must

e 

 
Null model type 2 
If we analyze the spatial correlation in marks representing the number of seeds of two species 
in feces (e.g., Fedriani et al. 2014), we ask if there is a spatial correlation in the co-
occurrence of the two marks (i.e., number of seeds of the two species). In this case we cannot 
separate the two marks because they occurred together in the same feces. Thus, we need to 
shuffle the vector of marks of the point i, given by (mi1, mi2), randomly over the points of the 
univariate pattern (Marks pat 1 and 2 random together). Similar augments can be made for 
example for the case where the marks are the size and the height of a tree. Here the null 

 also keep these two properties together.  
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Two quantitative marks, data preparation.  
  

6.3.1 Data preparation for data type 7 

The data files must be an ASCII file with the *.mcf extension with the following format : 
 
0  200  0  191  600 
 51.14   48.99  12  0.80  0.59 
112.80   45.85  12  1.35  1.08 
  5.59   61.90  12  0.42  1.73 
  6.41   62.55  12  0.61  1.57 
 53.95   74.64  12  0.83  0.58 
123.54    4.92  12  1.06  1.02 
… 
 
where the first line gives the size of the observation window (200 × 191 units in the example
and the number of points in the pattern. 
 
 the first two columns of the following lines are the coordinates of the points. The th

column must have the value “12” for all points which indicates that each point can carry
two marks.  

 The forth column carries the first mark of the point 

) 

ird 
 

ype 7 (DataType7.res) 

lation functions described 
that consider the two 

s important to note that they 
k m  of the second 

at 

 are the same as the univariate r-mark correlation 
1 and 2, respectively, and therefore not of interest for a bivariate 

m1m2

 a Moran’s I type mark statistics Im1m2(r) 
 Schlather’s correlation function Im1m2(r) 

 The fifth column carries the second mark of the point. 

The data file must be a space or tab delimited ASCII file with the *.mcf extension.  

6.3.2 Steps data t

Programita estimates for the first mark the univariate mark corre
above, and additionally the corresponding bivariate test statistics 
quantitative marks.  

To understand the bivariate mark correlation functions it i
involve the first mark mi1 of the first point i and the second mar j2

point j. A bivariate mark correlation function for this data type therefore estimates the mean 
value ct(r) of a test function t(mi1, mj2) taken over all pairs of points i and j that are located 
distance r, and normalizes with the mean ct taken over all pairs of points. 

For example, the bivariate mark variogram γm1m2(r) estimates the squared difference 0.5(mi1 
- mj2)2 between the first mark mi1 of the first point i and the second mark mj2 of the second 
point j which is located at distance r of the first point. Note that the bivariate r-mark 
orrelation functions kc m1 . (r) and k  . m2(r)

functions for marks 
analysis. Also, the density correlation functions are not relevant for data type 7 because they 
do not differ from the corresponding univariate functions. 

The bivariate methods are explained in detail in section 3.1.7.3 “Two Quantitative Marks 
Attached to a Univariate Pattern (Date Type 7)” in Wiegand and Moloney (2014): 

 the mark correlation function km1m2(r) 
 the r-mark correlation function km1 . (r) 
 the r-mark correlation function k  . m2(r) 
 the mark variogram γ (r)  
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nctions, steps of analysis. Example DataType7.resMark correlation fu
 
Note that the two correlation coefficients Im1m2(r) may show absolute values larger than one 

 is very low (say < 10). To avoid this increase the 
ring width.  

he default for mark correlation functions are the normalized 
)/c  where c  is the normalization constant 

u can also use the non-
ct(r) when disabling the 

e mark correlation mode can be accessed with the following 
equence of actions: 

ons” in window What do you 
want to do? 

y function 
 the two 

distributed between 0 
f the marks are 

ith coordinates, no grid” in MCFunction 

edge 

ct a null model” appears. 

 

if the number of point pairs at this distance

 
T
functions, i.e., k (r) = c (rt t t t

for a given test function t. However, yo
normalized mark correlation functions 
checkbox “Normalize”. 
 
Th
s
 

1. Select “Mark correlation functi

2. Highlight data file you want to analyze in Input data. In the 
example it is file “DataType7.mcf”.  
 
This data file was generated by using an intensit
λ(x) (int_Book_Fig2_26_R1_30.int) and simulating
marks m1(x) and m2(x) for 600 random points (i.e., 
following CSR) stochastically with m(x) = λ(x) (0.3 + ε ) + ε 
where ε is a random number equally 
and 1. As a consequence the values o
positively correlated. These deterministic relationships are 
made noisy with the factor ε. 

 
3. Click “List w
4. Provide in the window mark correlation functions the bin width 

in data units, an appropriate ring width, and a maximal 
distance r of the analysis. Select in the example a bin of 1m, 
and a ring width of 3m. 

5. If you use a ring width of 1 unit, you can later use the 
function “Combine replicates” to load the results of the 
analysis, to change the ring width, and to use the 
corresponding cumulative summary function (see “View 
results of mark correlation analysis”). 

6. Disable “Normalize” if you want to use the non-normalized 
mark correlation functions. The default is “Normalize” 

7. Check “Edge” if you want to use the Ripley edge 
correction. Default is no edge correction. Note that 
correction is not required for mark correlation functions. 

8. Check “Calculate simulation envelopes” in window What do 

you want to do? The subwindow “Sele
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Mark correlation functions, steps of analysis Example DataType7.res 
 

9. Select an appropriate null model, the number of simulations 
of the null model (199), and the rule for the simulation 
envelopes (5’ lowest and highest). Note that not all null 
models are appropriate for all mark correlation function data 

 
rks 

 random”, for example if you want to use 
the density correlation function). 

he 
simulated pattern. The red circles represent the 

d the 

 

types and that they must be selected with care. 
Select for the null model “Marks pat 1 fixed and 2 
random” that shuffles the first mark randomly over the
points. (You can also use the alternative null model “Ma
pat 2 fixed and 1

10. Press button “Calculate Index” and Programita shows t
observed and 
first mark and the green circles the second mark, an
area of the disk is proportional to the mark: 

 

 
 

 
 
 
 
 

 

 
You notice that the points do not change their location, but t
points changes because the second mark is randomly shuffle

hat the size of the green 
d over all points.  

11. Use the radio buttons of the window Select one test function to select a mark correlation 
lt graph : 

                    Im1m2(r)             

function and click the small “ok” button to get the resu ic

                          km1m2(r)                                              γm1m2(r)                               
 

  

The r-mark correlation functions the density correlation functions of data type 7 are 
unctions.  

ate mark correlation function 
 of the first point i and the second 

he null model. Nearby points 
d (mark variogram) and the 

.  

not of interest here because they correspond to the univariate f

19. As expected by the construction of the pattern, the bivari
km1m2(r) shows that the product of the first mark mi1

mark mj2 of the second point j is larger than expected by t
have marks mi1 and mj2 that are more similar than expecte
values of mi1 and mj2 are positively correlated (Schlather’s I) 
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le DataType7_local.resMark correlation functions, local independent marking, Examp
 
Local independent marking for univariate patterns with two mar
 
The pattern DataType7.mcf was generated without simulating sp
the two marks and the larger-scale spatial correlations in the two mar
by the intensity function. To show this we can use the n
randomization of the marks only locally.  
 

1. Read the settings of the previous example (Example DataTyp
Settings for Example” button, but use a ring width of 5. 

2. To approximately factor out the la

ks  

atial interactions between 
ks were only imposed 

ull model variant that conducts the 

e res) using the “Load 

rge-scale heterogeneity in the marks click 
el t an appropriate 

s lect here R = 20). 

7.

additionally the option “Local independent marking” and s
maximal distance R for points that should switch their marks (
 

ec
e

 
 

3. Press button “Calculate Index” and Programita shows the observed and simulated 
pattern. The red circles represent the first mark and the green circles the second mark, 
and the area of the disk is proportionally to the mark.  

4. The mark correlation functions are now within the pointwise simulation envelopes 
except for a weak departure for the Im1m2(r):  
 
         km1m2(r)                                              γm1m2(r)                                           Im1m2(r)             

  
 

which is confirmed by the global envelope tests: 
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Mark correlation functions, steps of analysis Example Book_Fig2_16_bi.res 
 
Independent marking of mark vector for univariate patterns with two marks 
 
If the two marks of a point constitute a unit such as seeds of different species that were 
dispersed together in the same feces or if the marks characterize two different properties of 
the point (e.g., height and dbh), the randomization of the null model needs to shuffle the 
entire vector of marks (mi1, mi2) over the points i of the pattern. In the example 

ook_Fig2_16_bi.res the first mark attached to a point is proportional to one over the 

lick “List with coordinates, no grid” in MCFunction 
4. Provide in the window mark correlation functions the bin width in data units, an 

appropriate ring width, and a maximal distance r of the analysis. Select in the 
example a bin of 1m . 

heck “Calculate simulation envelopes” in window  The 

e number of simulations of the 

ita shows the observed and simulated 
atterns. The red circles represent the first mark and the green circles the second 

8. The bivariate mark variogram shows that the two marks of nearby points are up to 
distances of 20m more different than expected and bivariate Schlather’s I indicates 
for distances up to 19m a negative correlation between the two marks of nearby 
points (and between 23 and 40m a positive correlation): 
 

                                     

B
number of neighbors within 10 m and the second mark is the number of points within 10m.  
 

1. Select “Mark correlation functions” in window What do you want to do? 
2. Highlight data file you want to analyze in Input data. In the example it is file 

“Book_Fig2_16_bi.mcf”.  
3. C

, and a ring width of 5m
5. C What do you want to do?

subwindow “Select a null model” appears. 
6. Select for the null model “Marks pat 1 and 2 random together” that shuffles the 

vector (m , m ) of marks randomly over the points, thi1 i2

null model (199), and the rule for the simulation envelopes (5’ lowest and highest). 
7. Press button “Calculate Index” and Program

p
mark, and the area of the disk is proportional to the mark.  

                      γm1m2(r)                                              Im1m2(r) 

  
 

Clearly, this is caused by the construction of the marks, the first is proportional to 
the inverse of the n f points within 10m and the second is the number of 
points within 10m. Interestingly, the specific null model that keeps the marks m1 
and m2 of a point together produces for the mark variogram Ubut not for the other 
mark correlation functions) an expectation different from the random value of one. 
Thus, the bivariate mark variogram is especially sensitive to the correct assignment 
of the null model, depending on the data type.  

 
 

umber o



  

 247

data preparationOne qualitative and one quantitative mark, 
  

6.4 Pattern with one qualitative and one quantitative mark (data type 8) 

the 
or 

tive ma m  of another 
s 
i and the 

e two 
 on hand. De ata 

Data 

 
(e.g., surviving vs. dead). The nu
ma

Programita allows also analyzing a data type where each point contains one qualitative and 
one quantitative mark. For example, the quantitative mark could be the size of a tree and 
qualitative mark indicates whether the tree survived or died during the last 5 years. If f
example surviving is coded as pattern 1 and dead as pattern 2, and the quantitative mark is 
size, the univariate mark correlation functions describe the relationships between the 
quantitative mark mi of surviving focal trees i and the quantita rk j

surviving trees j distance r apart. In contrast, the bivariate mark correlation function
describe the relationships between the quantitative mark mi of surviving focal trees 

ative mark m  of dead trees quantit j j distance r apart.  
 
There are two types of null models possible for this data structure, one may randomize the 
quantitative mark or one may randomize the qualitative mark. The decision between th

odels depends on the data and the ecological qunull m estion tails on this d
type are provided in see section 3.1.7.4 “One Qualitative and One Quantitative Mark (

)” in Wiegand and Moloney (2014). Type 8
 
However, because this data structure looks at two different marks of the same individual, its 

bility may be somewhat reduced. The most useful null model is probably that of applica
random labeling that explores if the two types of points (defined by the qualitative mark) 
differ in the spatial structure of their quantitative marks.  
 
Null model type 1: randomize quantitative mark 
 
This null model will most likely detect a systematic difference in 
the quantitative mark (e.g., size) between the two types of points

ll model fixes the qualitative 
rks (e.g., surviving and dead), but shuffle the quantitative 

 

mark is randomly shuffled over all points (e.g., surviving and dead trees) (Marks random 
over pat 1 + 2).  
 
Null model type 2 
Alternatively, the “random labeling” null model randomly shuffles the qualitative mark (e.g., 
surviving vs. dead) over all locations of the points but keeps the quantitative m rk (e.g., size) 
as fixed 
 

a
(Random labeling). 
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One qualitative and one quantitative mark, data preparation 
 
 

6.4.1 Data preparation for data type 8 

The data files must be an ASCII file with the *.mcf extension with the following format (the 
example are the first lines of file DataType8.mcf): 
 
0  500  0  500  600 
0.60   35.35  1  1.281  1.281 
0.70  274.90  1  1.976  1.976 
1.80  274.60  2  2.138  2.138 
1.15  342.20  2  3.072  3.072 
1.10  385.85  1  1.361  1.361 
… 
 
where the first line gives the size of the observation window (500 × 500 units in the example) 

 

of the type 1 and 2 point, respectively (you 
can write the mark of the points in both columns).  

rogramita estimates for the univariate pattern of type 1 points the univariate mark 
 test statistics considering the marks of 

e two types of points. However, because the two types of null models randomize the marks 
 coincide with the results 

type 8 it is important to note 

i j

al mean is then normalized with the mean ct taken over all type 1 – type 
d j, irrespectively of their distance. 

ark correlation functions: 

 the mark correlation function kmm(r) 
 the r-mark correlation function km . (r) 
 the r-mark correlation function k  . m(r) 
 the mark variogram γmm(r)  
 a Moran’s I type mark statistics Imm(r) 
 Schlather’s correlation function Imm(r) 
 the density correlation functions Cm,g(r) or Cm,K(r) 

and the number of points in the pattern. 
 
 the first two columns of the following lines are the coordinates of the points. The third

column codes the qualitative mark; here a “1” for dead and a “2” for surviving.  
 the fourth and fifth column carry the mark 

  

6.4.2 Steps for data type 8 (DataType8.res) 

P
correlation functions and the corresponding bivariate
th
over the entire pattern, the results of the univariate analysis do not
of the univariate analysis of the type 1 points (i.e., data type 6). 

To understand the bivariate mark correlation functions of data 
that the bivariate mark correlation function estimates for this data type the mean value ct(r) 
of a test function t(m , m ) taken over all type 1 – type 2 pairs of points i and j distance r 
part. This conditiona

2 pairs of points i an

The bivariate methods are explained in detail in section 3.1.7.4 “One Qualitative and One 
Quantitative Mark (Data Type 8)” in Wiegand and Moloney (2014). You can select the 
following “uni” and bivariate m



Note that the two correlation coefficients Imm(r) may show absolute values larger than one if 
the number of point pairs at this distance is very low (say < 10). To avoid this increase the 
ring width.  
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antitative mark, data preparationOne qualitative and one qu
 
Because the two null models randomize over all points (either shuffling the qualitative or the 

“univariate” and the bivariate mark correlation 

airs at distance r whereas the 

 correlation function km . (r) estimates the mean size of dead trees 
 type 1 – type 2) pairs at distance r 

mm(r) estimates the mean squared size difference 
nother dead tree (type 1) at distance r whereas the  

the “bivariate” mark variogram γmm(r) estimates the mean squared size difference 

nctions estimates the correlation between the size 
of dead trees (i.e., type1) and the density of dead trees (type 1) within distance r.  

f 

alized 
nctions, i.e., kt(r) = ct(r)/ct where ct is the normalization constant 
r a given test function t. However, you can also use the non-

 disabling the 
checkbox “Normalize”. 

quantitative mark over all points), both the 
functions are of interest here. For example: 

 the “univariate” r-mark correlation function km . (r) estimates the mean size of dead trees 
(type 1) of all dead-dead (i.e., type 1 – type 1) p

 the “bivariate” r-mark
(type 1) of all dead-surviving (i.e.,

 the “univariate” mark variogram γ
between a dead tree (type 1) and a

 
between a dead tree (type 1) and surviving tree (type 2) at distance r 

 the “univariate” density correlation fu

 the “bivariate” density correlation functions estimates the correlation between the size o
dead trees (i.e., type1) and the density of surviving trees (type 2) within distance r. 

The default for mark correlation functions are the norm

 

fu
fo
normalized mark correlation functions ct(r) when  

e quantitative mark over all 

arks of the joined pattern.  

rn 
ata 

ns and the covariance of pattern 1 
ovariance must be used re-estimated for each 

 
 
Random labeling for patterns with one qualitative and one quantitative mark 
 
Data structure 8 has two possible null models, one randomizes th
points (independent marking) and the other randomizes the qualitative mark over all points 
(i.e., random labeling).  

Because the independent marking null model randomizes the quantitative mark over all 
points the normalization constants need to use as described in Wiegand and Moloney (214: 
section 3.1.7.4); i.e., the mean and standard deviation of the m

However, the random labeling null model continuously changes what is pattern 1 and patte
2. Therefore the test functions and the normalization constants must be the same as for d
type 9; i.e., the means of the marks of the individual patter
and pattern 2. In this case the mean and the c
simulation of the null model.  



  

 250 

Mark correlation functions, steps of analysis. Example DataType8_RL.res 
 

The mark correlation mode for a pattern with one qualitative and 
one quantitative mark can be accessed with the following 
sequence of actions: 

 

1. Select “Mark correlation functions” in window What do you 
want to do? 

2. Highlight data file you want to analyze in Input data. In the 
example it is file “DataType8.mcf”.  
This data file was generated by using the data file 
Book_Fig2_16a.mcf and randomly assigning to 213 of the 
600 points the type 2 and to the other 378 points the type 1. 
Thus, the null model “Random labeling” should not yield 
significant departures in none of the mark correlation 
functions.  

3. Click “List with coordinates, no grid” in MCFunction 

4. Provide in the window mark correlation functions the bin width in 
data units, an appropriate ring width, and a maximal distance 
r of the analysis. Select in the example a bin of 1m, and a 
ring width of 5m. 

5. If you use a ring width of 1 unit, you can later use the 
function “Combine replicates” to load the results of the
analysis, to change the ring width, and to use the 
corresponding cum

 
 
 

 
 

 

ulative summary function (see “View 
results of mark correlation analysis”).  

mark correlation functions. The default is “Normalize”. Note 

you want to use the Ripley edge correction. 

 

6. Disable “Normalize” if you want to use the non-normalized 

that the estimators for the mark correlation function are that 
of data type 9. 

7. Check “Edge” if 
Default is no edge correction. Note that edge correction is 
not required for mark correlation functions. 

8. Check “Calculate simulation envelopes” in window What do 

you want to do? The subwindow “Select a null model” appears. 

 

on data types and that they must be 
selected with care. 
Select the null model “Random labeling” that shuffles the 
qualitative mark randomly over the points. 

Press button “Calculate Index” and Programita shows the 
observed and simulated pattern. The red disks are type 1 
points and the green disks are type 2 points, and the area of a 
disk is proportional to the mark. Note that the null model 
changes only the type (indicated by changing the red and 
green color), but not the location or size of the marks:  

9. Select the number of simulations of the null model (199), 
and the rule for the simulation envelopes (5’ lowest and 
highest). Note that not all null models are appropriate for all 
mark correlation functi
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ataType8_RM.resMark correlation functions, steps of analysis. Example D
 

 
10. Use the radio buttons of the window Select one test function to

select a mark correlation function and click the small “ok
button to get the result graphic: 

 
” 

 
 
 
 
 

 
 

 
11. As expected, all mark correlation functions are within the pointwise simulation 

envelopes of the random labeling null model: 
 

    
 

12. Note that the null model of random labeling yields the univari
functions of the joined pattern of type 1 and type 2 points as 
differs here from

ate mark correlation 
expectation. This clearly 

 the expectation of independent marking where the values of the 

 quantitative mark. 

ou 

g to 213 of the 

3. 

 

marks are randomly shuffled (see example below). 
 
Independent marking for patterns with one qualitative and one
 
We now apply the null model of independent marking (Marks 
random over pat 1 + 2) to the previous example.  
 

1. Select “Mark correlation functions” in window What do y
want to do? 

2. Highlight data file you want to analyze in Input data. In the 
example it is file “DataType8.mcf”.  
 
This data file was generated by using the data file 
Book_Fig2_16a.mcf and randomly assignin
600 points the type 2 and to the other 378 points the type 1. 
Thus, the null model “Marks random over pat 1 + 2” 
should yield significant departures if the quantitative marks 
show a spatial structure (as the case in 
Book_Fig2_16a.mcf).  
Click “List with coordinates, no grid” in MCFunction 
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Mark correlation functions, steps of analysis Example DataType8_RM.res 
 

4. Provide in the window mark correlation functions the bin width 
in data units (1), an appropriate ring width (5), and a 
maximal distance r of the analysis (50).  

5. Check “Calculate simulation envelopes” in window What 

do you want to do? The subwindow “Select a null model” appears. 
6. Select the null model “Marks random over pat 1 + 2” that 

shuffles the quantitative mark randomly over the points, the 
number of simulations of the null model (199), and the rule 
for the simulation envelopes (5’ lowest and highest). 

 shows the 

 
 

7. Press button “Calculate Index” and Programita
observed and simulated patterns. The red disks are type 1 
points and the green disks are type 2 points, and the area of 
a disk is proportional to the mark. Note that the null model 
changes only the size, but not the location or type of the 
points (i.e., the color): 

 
 

 

 
 
 
 
 
 
 
 
 
 
 

8. Use the radio buttons of the window Select one test function to 
select a mark correlation function and click the small “ok” 
button to get the result graphic: as expected, the mark 
correlation functions show departures from the independent 
marking null model that were caused by the small-scale  
correlations in the quantitative marks: 

 

  
9. The independent marking null model can also be applied wit

marking. 
 
The two examples show that the selection between random labeling 
marking null models depends on the underlying

h local independent 

an  independent 
 hypothesis and that the expectations of the 

d

two null models may greatly vary.  
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, data preparationA bivariate pattern with one quantitative mark
  

6.5 Bivariate patterns with one quantitative mark (data type 9) 

rn arries one 
ies and the quantitative 

etect interactions 

pact of proximity (and 
d pattern (i.e., pattern 2). 

ata type 8 with random 

e) marks over all points 
 9 mu  randomize the 

atterns. For example, we may keep the marks of the 
“antecedent” pattern 1 fixed and randomize only the marks of the second pattern. The 
normalization constants ct are the same as that of data type 8 for random labeling. 
You can use three null models, one that randomizes the 
quantitative marks of both component patterns but only inside the 
patterns not across patterns (Marks 1 and 2 random), one that 
randomizes only the quantitative marks of pattern 2 (Marks 1 
fixed and 2 random), and one that randomizes only the 
quantitative marks of pattern 1 (Marks 2 fixed and 1 random).  

Programita allows also analyzing a data type where a bivariate patte
ative mark. For example, we may have two different tree spec

 c
quantit
mark is the size of the trees. This data structure is of special interest to d
between species. 
 

sic interest in analyzing patterns of this type is to explore the imThe ba
mark) of the first pattern (i.e., pattern 1) on the marking of the secon
The mark correlation functions for data type 9 are the same as for d
labeling; however, the null models are fundamentally different. While the two alternative 
null models of data type 8 randomized the (qualitative or quantitativ
of the underlying univariate pattern, the null models of data type
quantitative mark only within p

st

 
 

6.5.1 Data preparation for data type 9 

the following format (the 

.80  274.60  2  2.138  2.138 
1.15  342.20  2  3.072  3.072 
1.10  385.85  1  1.361  1.361 
… 
 
where the first line gives the size of the observation window (500 × 500 units in the example) 
and the number of points in the pattern. 
 
 the first two columns of the following lines are the coordinates of the points. The third 

column codes the component pattern of the underlying bivariate pattern; here a “1” for 
the focal pattern 1 and a “2” for the second pattern 2. 

 
ark of the points in both columns).  

The data files must be an ASCII file with the *.mcf extension with 
same as for data type 8): 
 
0  500  0  500  600 
0.60   35.35  1  1.281  1.281 
.70  274.90  1  1.976  1.976 0
1

 the fourth and fifth column carry the marks of the pattern 1 and 2 points, respectively
(you can write the m
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Bivariate pattern with one quantitative mark, data preparation 
  

6.5.2 Steps for data type 9 (DataType9.res) 

Programita estimates for the univariate pattern of type 1 points the univariate mark
correlation functions described under data type 6, and additionally the corresponding 
bivariate test statistics considering the marks of the two types of points. Because the null 
models randomize only within the component patterns, the univariate analysis is identical 

ith the univariat

 

e analysis of the first component pattern. 

One 

 Schlather’s correlation function Im1m2(r) 
 the density correlation functions C (r) or Cm,K(r) 

w
 
To understand the bivariate mark correlation functions of data type 9 it is important to note 
that the bivariate mark correlation function for this data type estimates the mean value ct(r) 
of a test function t(mi1, mj2) taken over all pairs of points i1 of pattern 1 and j2 of pattern 2 
distance r apart. The ct(r) is then normalized with the mean ct taken over all pairs of points 
where the first point i1 is of pattern 1 and the second point j2 of pattern 2. 
 
The bivariate methods are explained in detail in section 3.1.7.5 “Bivariate Pattern with 
Quantitative Mark (Data Type 9)” in Wiegand and Moloney (2014). You can select the 

: following “uni” and bivariate mark correlation functions
 the mark correlation function km1m2(r) 
 the r-mark correlation function km1 . (r) 
 the r-mark correlation function k  . m2(r) 
 the mark variogram γm1m2(r)  
 a Moran’s I type mark statistics Im1m2(r) 


m,g

 the function DD2(r) that applies if the mark of the first pattern is binary (check “surv”).  

odels randomize within patterns, only the bivariate mark 
f interest here. For example, if the mark is the size of a tree 

nction k  . m2(r) estimates the mean size of a tree of 
ecies 1 at distance r. This is the mark correlation 
ling because it investigates the impact of the presence 

of focal species 1 on the marking of trees of species 2 that are located at distance r of a 
focal tree. Here the null model must randomize the marks of pattern 2. 

ies 2 at distance r. This analogue to trivariate 
random labeling allows you to use the density correlation function C (r) to find out if 

al 

se the mark m  of pattern 1 is 1 

Note that the two correlation coefficients Im1m2(r) may show absolute values larger than one 
if the number of point pairs at this distance is very low (say < 10). To avoid this increase the 

ng width. Because the null mri
correlation functions are o

 the bivariate r-mark correlation fu
species 2 that has a focal tree of sp
analogue to trivariate random labe

 the bivariate r-mark correlation function km1 . (r) estimates the mean size of a tree of the 
focal species 1 that has a tree of spec

m1K2

the neighborhood density of points of the second pattern influences the marks of the foc
pattern. Here the null model must randomize the marks of pattern 1.  

 trivariate random labeling and DD2 function: in this ca 1

(surviving) and 0 (dead). Enable the checkbox “surv”:   
 the bivariate mark variogram γm1m2(r) estimates the mean squared size difference 

between a focal tree of species 1 and a tree of species 2 located at distance r. If the mark 
is size, this allows for example for an assessment of whether large focal tree of species 1 
are surrounded by smaller trees the second species.  
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is. Example DataType9_P2.resMark correlation functions, steps of analys
 

 the bivariate correlation function Im1m2(r) estimates the correlation between the sizes 
f pattern 2 that are separated by distance r. 

The I (r) therefore investigates the impact of the mark of the focal species 1 on 

f 

of the trees of pattern 1 and that of trees o
m1m2

the marking of nearby trees of species 2. 
 the bivariate cumulative density correlation function Cm1K2(r) estimates the 

correlation between the mark of points i of pattern 1 and the density of the points o
pattern 2 within distance r of points i.  

 the bivariate non-cumulative density correlation function Cm1g2(r) estimates the 
correlation between the mark of points i of pattern 1 and the neighborhood density of 
the points of pattern 2 at distance r of points i.  

 
The default for mark correlation functions are the normalized 
functions, i.e., kt(r) = ct(r)/ct where ct is the normalization constant 
for a given test function t. However, you can also use the non-
n  ormalized mark correlation functions c (r) when disabling the t

checkbox “Normalize”. 
 

 
Independent marking for a bivariate pattern with one quantitative mark. 

h one qualitative and 
the following sequence 

What do you 

ata. In the 

alized 
mark correlation functions. The default is “Normalize” 

 
 
 
 

The mark correlation mode for a patt  wit
one quantitative mark can be access d w h 

ern
e it

of actions: 
 

1. Select “Mark correlation functions” in window 
want to do? 

2. Highlight data file you want to analyze in Input d

example it is file “DataType9.mcf”.  
 
This data file was generated by generating 600 random 
points (i.e., CSR), and then randomly selecting 200 points to 
be of the focal pattern 1. The mark m1 of pattern 1 was then 
determined as m1 = 2 - λ1K11(r = 25)/2.51 and ranges 
between 0.01 and 2. Thus, the mark of pattern 1 was smaller 
if the point had more neighbors within 25m. The mark m2 of 
pattern 2 was then determined as m2 = 2 - λ1K21(r = 
20)/2.51 and ranges between 0.01 and 2. Thus, the mark of 
pattern 2 was smaller if the point of pattern 2 had more 
neighbors of species 1 within 20m.  
 

3. Click “List with coordinates, no grid” in MCFunction 
4. Provide in the window mark correlation functions the bin width 

in data units (1), an appropriate ring width (5), and a 
maximal distance r of the analysis (100).  

5. If you use a ring width of 1 unit, you can later use the 
function “Combine replicates” to load the results of the 
analysis, to change the ring width, and to use the 
corresponding cumulative summary function (see “View 
results of mark correlation analysis”). 

6. Disable “Normalize” if you want to use the non-norm
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Mark correlation functions, steps of analysis Example DataType9_P2.res 
 

7. Check “Edge” if you want to use the Ripley edge correction. 
Default is no edge correction. Note that edge correction is not 
required for mark correlation functions. 

8. Check “Calculate simulation envelopes” in window What do 

r h imulation 

Select the null model “Marks pat 1 fixed and 2 random” 
oints 

 the 
t the 

and the green circles the mark of pattern 2, 
and the area of the disk is proportional to the mark. Note that 

you want to do? The subwindow “Select a null model” appears. 
9. Select an appropriate null model, the number of simulations 

of the null model (199), and the rule fo  t e s
envelopes (5’ lowest and highest). Note that not all null 
models are appropriate for all mark correlation function data 
type and that they must be selected with care. 

that shuffles the quantitative mark randomly over the p
of pattern 2 but holds the marks of pattern 1 unchanged. 

10. Press button “Calculate Index” and Programita shows
observed and simulated patterns. The red circles represen
mark of pattern 1 

 
 
 
 
 
 
 
 

 
 

 
 

the null model changes only the size of pattern 2 (i.e., the 
green circles) but not that of pattern 1 (red circles): 

 

 
11. Use the radio buttons of the window Select one test function to 

select a mark correlation function and click the small “ok” 
button to get the result graphic: 

12. Of special interest here is the r-mark correlation function k  . m

mean size of a point of pattern 2 at distance r of a point of pat
reveals that the mark of pattern 2 is smaller than expected if t
of a point of pattern 1: 

2 ) that estimates the 
t n 1. As expected, it 
h points is within 20m 

(r
er
e 

   
 

13. The mark variogram shows that the marks of the two p
smaller) if they are close together. This is because both, th
pattern 1 and of pattern 2 were smaller if more points of p
consequence of this, the marks of nearby points of the two patte
correlated (Schlather’s I).  

atterns a e more similar (i.e., 
e ma  points of 
attern 1 were nearby. As a 

rns are positively 

r
rks of the
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 DataType9_P1.resMark correlation functions, steps of analysis Example
 

14. If we enable the checkbox “property” but not “cum”, , the non-
e focal tree i of pattern 

tern 2 in the ring with radius r and width r at 
 looks somewhat 

sis shows that there is a 
focal tree i of pattern 1 

rger if the tree had more 
around the focal trees i of 

cumulative density correlation function correlates the size of th
1 with the sum of the sizes of trees of pat
distance r of point i. The resulting density correlation function
unusual, but the student transformation of the “GoF” analy
strong positive correlation up to 30m between the size of the 
and the sum of the sizes of trees of pattern 2 (which is la
neighbors of species 1 within distance 20m) in the rings 
pattern 1:   
 

   
 
The correlation emerges because of the construction of the
pattern 1 was smaller if the point had more species 1

 mark  where the mark of 
 neighbors ithin 25m and the 

mark of pattern 2 if it had more neighbors of species 1 within 20m. 
 

Randomize marks of pattern 1 
 

15. Using the alternative null model for pattern DataType9.mcf where only the mark of 
pattern 1 is randomized (“Marks pat2 fixed and 1 random”) shows that points of 
pattern 1 which are located within distance 25m of another point of pattern 1 are 
smaller than expected, but that the mark of pattern 1 is not influenced by presence of 
a point of pattern 2: 
 

 

s
w

                        univariate                                                          bivariate
 

  
 
However, because both, the marks of the points of pattern 1 and that of pattern 2 
depended on the number of neighbors of pattern 1, the mark variogram
significant bivariate effect: 
  

 still depicts a 
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Mark correlation functions, steps of analysis Example DataType9_P1.res 
 

The same is true for Schlather’s I: 
 

  
 
16. However, if we use the data set where the marks of pattern 1 were randomized 

(DataType9R1.mcf) and use null model Marks pat2 fixed and 1 random the latter 
two effects disappear because the spatial correlation between the marks of pattern 1 
and pattern 2 was removed: 

 

.  
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9_triv.res  Mark correlation functions, trivariate random labeling. Example DataType
  

6.5.3 Trivariate random labeling with data type 9 (DataType9_triv.res) 

The non-normalized versions of the r-mark correlation functions k  .m2(r) and km1, . (r) can be 
used together with the null models Marks pat 1 fixed and 2 random and Marks pat 2 fixed 
and 1 random, respectively, to conduct trivariate random labeling. That means the mark of 
interest which is carried by pattern 2 or pattern 1, respectively, is a binary mark such as 
surviving (value 1) and dead (value 0). Trivariate random labeling then investigates the 
impact of a second pattern on the marking of the pattern of interest. For example, using 

cific 

The two non-normalized mark correlation functions are suitable for trivariate random 
labeling because they can estimate the mean value of the binary mark over all pairs of pattern 
1 - pattern 2 points which are distance r apart. If the mark represents surviving (1) vs. dead 
(0) the r-mark correlation functions estimate the proportion of surviving trees among all pairs 
of trees that are located at distance r of a tree of the other pattern. Thus, the non-normalized 
r-mark correlation function c .m2(r) estimates the proportion of surviving trees of pattern 2 
among all pairs of pattern 1 - pattern 2 points which are distance r apart. Conversely, the 

on-normalized r-mark correlation function cm1 . (r) estimates the proportion of surviving 
ees of pattern 1 among all pairs of pattern 1 - pattern 2 points which are distance r apart. If 
e other pattern (e.g., large trees) has a negative impact on survival of saplings, the cm1 . (r) 

will be smaller than the mean mark of pattern 1 (i.e., the survival rate). 
 
If the qualitative mark is carried by pattern 1, the cm1. (r) is used and we can additionally 
estimate the two summary functions DD1(r) and DD2(r) that directly capture the effect of the 
density of pattern 1 (or pattern 2) neighbors on mortality of the focal pattern 1. Remember 
that the cumulative function DD1(r) and DD2(r) are the ratios:  

 

      DD1(r) = λ1Kd1,1(r)/ λ1Ks1,1(r) 

      DD2(r) = λ2Kd1,2(r)/ λ2Ks1,2(r) 

 

where λ1Kd1,1(r) is the mean number of points of pattern 1 around dead individuals (subscript 
d) of pattern 1, λ2Kd1,2(r) is the mean number of points of pattern 2 around dead individuals 
of pattern 1, and the analogous quantities with subscript “s” instead of “d” are those around 
surviving individuals of pattern 1. The non-normalized bivariate r-mark correlation function 
cm1, . (r), which yields the proportion of surviving trees of pattern 1 in all pairs of type 1 - 
type 2 points separated by distance r, is closely related with DD2(r): 

 

       cm1, . (r) = s/[DD2(r)(1 – s) +s] 

 
where the mean mark of pattern 1 yields the survival rate s. Thus, departures of the bivariate 
cm1, . (r) from the expected survival rate s occur only because of density dependence in 
mortality with respect to pattern 2.  
 

trivariate random labeling you can ask: what is the impact of proximity of large conspe
trees on survival of saplings? Is there (negative) density dependence operating where the 
survival of saplings depends on the neighborhood density of large trees? 
 

n
tr
th
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Trivariate random labeling, Example DataType9_triv.res 
 

t 

 
wise. 

opposed by an average of 75% among all pattern 2 points: 

We use in the first example the non-normalized r-mark correlation function c  .m2(r) tha
estimates the mean mark of pattern 2 (e.g., survival of saplings) around points of pattern 1 
(e.g., large trees). We use the data set DataType9.mcf, but make the marks of pattern 2 binary
marks by defining them as 0 if the mark of DataType9.mcf was below 1.3 and 1 other
Thus, trees with more neighbors of type 1 are more likely to die.  

1. Select “Mark correlation functions” in window What do you 
want to do? 

2. Highlight data file you want to analyze in Input data. In the 
example it is file “DataType9_triv.mcf”.  

3. Click “List with coordinates, no grid” in MCFunction 
4. Provide in the window mark correlation functions the bin width 

in data units (1), an appropriate ring width (5), and a 
maximal distance r of the analysis (50).  

5. Check “Calculate simulation envelopes” in window What 

do you want to do? The subwindow “Select a null model” appears. 
6. Select the null model “Marks pat 1 fixed and 2 random” 

that shuffles the mark of pattern 2 randomly over the points 
of pattern 2, the number of simulations of the null model 
(199), and the rule for the simulation envelopes (5’ lowest 
and highest). 

7. De-select “Normalize” to obtain a quantity with the 
interpretation of a survival rate.  

8. Press button “Calculate Index” and Programita simulates 
the null model.  

9. As expected, the r-mark correlation function k  . m2(r) shows 
that only 36% of all points of pattern 2 that are closer than 
20m from a point of pattern 1 have mark 1 (surviving) as 
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Trivariate random labeling, Example DataType9_triv2.res 

o apply the density correlation function, the pattern with the binary mark must be the focal 

ou 

Input data. In the 

 MCFunction 
idth 

 
T
pattern 1 and the pattern that potentially influenced the binary mark must be pattern 2. We 
therefore use for this the same data set as before, but exchange patterns 1 and 2 (i.e., file 
DataType9_triv2.res). In this case the null model “Marks pat 2 fixed and 1 random” must 
be used.  

1. Select “Mark correlation functions” in window What do y
want to do? 

2. Highlight data file you want to analyze in 
example it is file “DataType9_triv2.mcf”.  

3. Click “List with coordinates, no grid” in
4. Provide in the window mark correlation functions the bin w

in data units (1), an appropriate ring width (5), and a 
maximal distance r of the analysis (50).  

5. Click “Calculate Index”. 
6. Check “Calculate simulation envelopes” in window What 

do you want to do? The subwindow “Select a null model” appears. 
7. Select the null model “Marks pat 2 fixed and 1 random” 

that shuffles the mark of pattern 1 randomly over the points 
of pattern 1, the number of simulations of the null model 
(199), and the rule for the simulation envelopes (5’ lowest 
and highest). 

8. Check in Select one test function  the check box .  
9. De-select “Normalize” to obtain a quantity with the 

lculate Index” and Programita simulates 

s 
 

pposed by an average of 75% among all pattern 2 points 
(note that this result is identical to that above in example 
DataType9_triv.res): 

interpretation of a survival rate.  
10. Press button “Ca

the null model.  
11. As expected, the r-mark correlation function km1, . (r) show

that only 36% of all points of pattern 2 that are closer than
20m from a point of pattern 1 have mark 1 (surviving) as 
o

 

 

 
                 c . (r)                                            non-cumulative DD (r)                   non-cumulative DD (r) m1, 1 2

       
 

however now we can estimate the ratio of the mean number of neighbors of pattern 2 
around dead type 1 points relative to that of surviving type 1 points [i.e., the non-
cumulative function DD2(r)] which shows that the density of type 2 points around 
dead points of type 1 is on average 4-6 times as high as around surviving points. The 
non-cumulative DD2(r) also shows nicely that a density effect occurs only up to 
distances of 20m. As expected by the construction of the pattern, the univariate non-
cumulative function DD1(r) shows that there is little to no effect of conspecific 
neighborhood density in the marking surviving vs. dead.    
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nctionsCombine replicates for mark correlation fu

6.6 Combine replicates for mark correlation functions 

e 

ach replicate plot is relatively low. In this case the simulation envelopes of 
veral replicate plots 

ws the simulation 
s details on the 

e tion 3.2.2 several examples.  

e way as for the standard 
u save the results of a mark 

 correlation analyses. In the first case they 
 they follow the convention 

 for phylogenetic 
rep”.  

ntain also the values of 
ctions which are needed in 
 For example, line 8 shows 

sis the 

stants of the six mark 

er, to manipulate 

mark correlation function you need to run the 
analysis with a ring width of 1 to yield non-
overlapping concentric rings. 

In some cases you may have maps of several replicate plots of a larger point pattern under 
identical conditions. In this case the resulting test statistics of the individual replicate plots 
can be combined into average test statistics (Diggle 2003: page 123; Illian et al. 2008: pag
263; Wiegand and Moloney 2014: section 3.2). This is of particular interest if the number of 
points in e
individual analyses would become wide, but combining the data of se
into average test statistics increases the sample size and thus narro
envelopes. Section 3.2.1 of Wiegand and Moloney (2014) provide

oaggregation formulas for different summary functi ns and s c
 
Combine replicates works for mark correlation functions in the sam
mode. However, the *.rep files are automatically created if yo

 series of markcorrelation analysis or if you run a
follow the convention “mcf_name.rep” and in the second case
“s_mcf_name.rep” where the “s_” indicates series. The same applies

.analysis, here the *.rep files follow the convention “mcf_name_phy
 
Lines 8 and 9 of the *.res results file of mark correlation functions co
the normalization constants ct for the different mark correlation fun
the aggregation formula for normalized mark correlation functions.

nalyfor a univariate a following information: 
 
number points of pattern 1 =    103 
mean mark p1=    77.2718 
variance marks p1=  3910.3144 
mean mark p1+p2=    77.2718 
ct:  3910.3144   5970.9380     77.2718     77.2718   3910.3144   3910.3144   
 

where “p1” refers to pattern 1 and the “ct” are the normalization con
correlation functions.  
Additionally to the standard mode, you can also 
change a posteriori the ring width, use the 
cumulative mark correlation function, or make 
the x-axis logarithmic. Howev
the ring width or to make use the cumulative 
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is created which is then 
renamed into mcf_name.rep after saving results. The example below shows the first few lines 
After each mark correlation analysis a temporary file MCF_test.dat 

of the univariate part of a mcf_name.rep output file: 
 
simnr    r    MCF11_t0 MCF11_t1     MCF11_t2   MCF11_t3   MCF11_t4   MCF11_t5  Zaehler11 
    0    0    1.00222  613.42544    0.99117    0.37239    0.37239    0.00155   964.00 
    0    1    1.00321  613.76804    0.99173    1.25462    1.25462    0.00522   1298.00 
    0    2    1.00255  612.62473    0.98988    2.45553    2.45553    0.01021   1664.00 

 
The columns of the file contain the following information: 

 simnr: number of simulation of the null model where 0 are the 
observed data and 1, 2, are the simulations of the null model.  

 r: the distance bin  
 

 MCF11_t0, MCF11_t1, …, MCF11_t5: the values of the six 
univariate mark correlation function where t1 refers to the 
“mark-correlation function”, t2 - t5 follow in descending order 
as shown in the selection window, and Schlather’s I is t0 

 Zaehler11: the number of pairs at distance r (the denominator 
of the estimator equation (3.84) in Wiegand and Moloney 

 
 
 
 
 
 

(2014).  

, CorDens11 and 
their normalization constants SDK11, SDK12, λ1K11, λ2K12  

his file, Programita can re-estimate the 

 

 

 MCF12_t0, MCF121_t1, …, MCF12_t5: the values of the six 
bivariate mark correlation functions. 

 Zaehler12: the number of bivariate pairs at distance r. 
 The density correlation functions CorDens11

 
 
 

 
Based on the information in t
numerator and the denominator of equation (3.84) and apply the 
aggregation formula (3.107) in Wiegand and Moloney (2014).  

 
 

If you use the default of normalized ma tions, the information in lines 8 and 9 of the rk correla
 to “de-normalize” the mark correlation 

ing with ct, and then the aggregation formula 
 mark correlation functions are then 
tant .  

ate is the average of the test function t(mi, mj) 

*.res file on the normalization constants ct is used
functions of the individual replicates by multiply
(3.107) is applied. The resulting non-normalized
normalized with a combined normalization cons

 
The normalization constant c

 agg
tc

t of a given replic
of all pairs of points of the pattern:  
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where mi, mj are the m rks of the points i and j of the pattern, respectively, and n the total 
number of points of the pattern. Therefore, we estimate the combined normalization constant 

 as 
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where the superscript m refers to replicate m. If you use non-normalized mark correlation 
functions, the results will be the same but not be divided by 

 

agg
tĉ . 
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7 Multivariate analysis 
 

his analysis mode uses multivariate data (i.e., data tT ype 3; several types of points; species) 
ty 

d 
) = 

tween individuals 
 of null or point 

: 

) the dissimilarity matrix is randomized, but the locations and the individuals and their 
larity matrix are 
ves detection of 

i uals, independent 
resente by MPD (i.e., 

v duals in the 
ecially 

ecause it is normalized with MPD (eq. 4) (Shen et al. 2013). This type 

dissimilar atrix remains 
f e individual 
nism and processes 
merging community 
 null communities 
ations for the 

tions, we can take 

rics 

 

 the probability that two randomly selected individuals 
 are heterospecific. The general framework considers generalization of S and D into two 

dimensions, considering spatial distance and phylogenetic/functional dissimilarity. 

phylogenetic dissimilarity or any other ecological dissimilarity. 

nd, S and D is made truly spatially explicit by using spatial point pattern methods 
iegand et al. 2017) that look at pairs of individuals that are a 

given distance r apart (for metrics of beta diversity) or that are located within a given 

the hey present alpha or beta 
iversity, (ii) whether they are based on S or D, and (iii) whether they quantify diversity from 

the perspective of individual species or from the perspective of the entire community.   

and multivariate summary functions that allow you to analyze spatial structures in diversi
based on a dissimilarity matrix d(f, m) that describes some distance between species f an
species m, for example functional or phylogenetic distance or simply con-specific [d(f, m
0] vs. heterospecific [d(f, m) = 1]. 

Because such analyses involve two types of distances (spatial distance be
and dissimilarities between species), two fundamentally different type
process models are possible

(1
species identity remain unchanged. The methods to randomize the dissim
those of standard phylogenetic analysis (e.g., Hardy 2008). This task inv
small-scale spatial correlations in the dissimilarities of neighbored indiv
of the overall functional or phylogenetic community structure rep

i
ol
d
d 

obtain the mean pairwise dissimilarity cd between all heterospecific indi
observation window W). The phylogenetic mark correlation function k

i
d(

suitable for this task b
r) is esp

of analysis is described here in chapter 7. 

(2) The locations of the individuals are randomized, but the ity m
unchanged. Here the task is to randomize or maintain certain features o
species patterns to determine the relative importance of different mecha

uch as habitat association or dispersal limitation) with respect to the e

th

(s
level spatial diversity patterns. This task is complex because appropriate
(or null models) must be created that possibly involve separate randomiz
individuals of each species. However, for randomization of individual loca
advantage of abundant techniques of point process modeling. This type of analysis is 
described in chapter 8.  
  

7.1 General framework for multivariate point pattern diversity met

Programita generalizes two basic diversity indices, species richness S and the Simpson index
D. Species richness S gives the total number of species in a (fully mapped) observation 
window W and the Simpson index D
in W

First, a continuous measure δij
P of ecological dissimilarity between species i and j (e.g., 

Clarke & Warwick 1998) is introduced that can represent functional dissimilarity, 

Seco
(Wiegand & Moloney 2014; W

distance r (for metrics of alpha diversity). By applying this framework, eight families of 
spatially explicit diversity metrics arise depending on (i) whe r t
d
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Additionally, within each family, different diversity metrics emerge depending on whether 
ey consider (A) species diversity, (B) functional or phylogenetic diversity, or (C) 

atial  

th
functional or phylogenetic diversity relative to species diversity: 
 

classifier non-spatial metrics  spatial metrics  sp

    A B C  A B C  condition 

F1 α S community SS SP ΔP*= SP/SS  )(rISAR  )(rPISAR  )(rrISAR   Dfs(r) 

F2 α S focal species Sf Sf
P Δ f

P= Sf
P/Sf  ISAR (r) PISAR (r) rISAR (r)  D (r) f f f fs

F3 α D community D DP c  = DP/D  α (r) α (r) K (r)  d S phy d Kij(r)/K(r) 

F4 P P K(r) α D focal species Df Df  cfd f = D /Df  α (r) α (r) K (r)  K (r)/f,S f,phy f,d ij

F5* β S community SS SP ΔP*= SP/SS  )(risar  )(rpisar  )(rrisar   dfs(r) 

F6* β S focal species Sf Sf
P Δ f

P= Sf
P/Sf  isar (r) f pisar (r) f risar (r)  f d (r) fs

F7 β D community D DP cd = DP/D  βS(r) βphy(r) kd(r)  gij(r)/g(r) 

F8 β D focal species Df Df
P cfd f = D P/Df  β (r) β (r) k (r)  gf,S f,phy f,d ij(r)/g(r) 

*Metric families F5 and F6 that are based on the non-cumulative probability density function d (r) of ij the 
distances to the nearest species j neighbor have not been used to date. 

 
The non-spatial diversity metrics are made spatially explicit by adding a spatial condition 
that is expressed by means of point pattern summary functions such as  

 the probability Dij(r) that an individual of species j is located within distance r of an 
individual of species i (families F1 and F2) 

 the conditional probability fifj Kij(r)/g(r) that of two randomly selected individuals 
within distance r the first belong to species i and the second to species j (F3 and

 the conditional probability f
 F4) 

ndance of species i. Note that the spatial metrics are possibly 
ormalized by the corresponding non-spatial metrics. If the dissimilarity matrix is 

ifj gij(r)/g(r) that of two randomly selected individuals at 
distance r the first belong to species i and the second to species j (F7 and F8) 

where fi is the relative abu
n
randomized, normalization of the metrics is important. 

a) species richness

space

p
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u
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b) phylogenetic
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Example of family F1 of diversity metric that generalize species richness towards alpha diversity on the 
community level (see table above). The scheme shows the relationships among classical and spatially explicit 
metrics of species richness S where generalization towards spatially-explicit metrics is shown along the 

orizontal axis and generalization towards a measure of phylogenetic (or functional) diversity along the v

 

ertical 

 
h
axis 
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7.1.1 Metrics of species diversity, ISAR family 

The individual species-area relationship ISARf(r) (Wiegand et al. 2007) views the local 
pecies richness of the community from the viewpoint of an individual focal species f (family 

F2 in th bove). It is d ecte  species r radius r o th
typical individual of the focal species f:

s
e table a efined as the exp d ichness with f e 

 

  
1

( ) ( )
S

f fj
j

fjISAR r D r 


  

wher ) ability tha  th spe ie ighbo  ind l of t e
c  f l n sta r er  specifics (i.e., f nd o
r p if  j). The R point pattern analog of the species area 
t s a ple areas are circles o v radi d t idu

e i u r el s ed over all spec esen n

e Dfj

 is 
(r  is the prob t e nearest c s j ne r of an ividua h  focal 

spe ies ocated withi  di nce , and δfj is z o for con  = j) a ne for 
hete os ec ics (i.e., f ≠ ISA f(r) is the 
rela ion hips where the s m f arying us aroun he indiv als of a 
given focal species f.  

Th ind vid al species-a ea r ation hip can also be averag ies pr t i  the 
community (family F1 in the table above) by summing up the ISARi(r)’s for all species i and 
weighting with their relative abundance fi: 

  
1 1 1

( ) ( ) ( )i i i ij ij
i i i

S S S

ISAR r f ISAR r f D r 
  

     

The community averaged individual species area relationship )(rISAR  is the expected 
species richness within radius r of the typical individual of the community.  

The ISAR function has an intuitive geometric interpretation for a fixed neighborhood rad
r. If we count for each location x the number of species within distance r we obtain a 

ius 

 how 
re 
 are 

window. You can calculate it with a

“landscape of local species richness” with valleys (low neighborhood species richness) and 
mountain ridges (high neighborhood species richness). The ISAR function shows then
the focal species f is embedded within this landscape: species located mostly in valleys a
“repeller” species (surrounded by species poorer assemblages), whereas species in ridges
“accumulators” (typically surrounded by species richer assemblages). 

The ISAR
“Mean of all species” (fo
the “Multivariate anal

 functions can be accessed in 
r the community level 

ysis” window and sel

Programita
ISAR) or “For one speci

ecting “ISAR” in the “sum
nd without considering conspecifics: 

 by selecting “Phylogenetic analysis”, 
es” (for the ISAR) in 

mary function” 

 
 

 

Community level 
 

 

Individual level, specify 
species (2 in the example) 

hNote that the ISAR function, which is measuring species richness, is insensitive to t
randomization of the dissimilarity matrix (that leaves the locations and species identity of 
the individuals unchanged). However, the ISAR will become important in the null 
community approaches detailed in chapter 8. 

e 
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7.1.2 Metrics of species diversity, Simpson alpha diversity family 

The cumulative spatially-explicit Simpson index (Shimatani 2001) represents alpha diversity 
at the community level (family F3 in the table above) and is the probability that two 
individuals within distance r are heterospecifics. It can be estimated as: 

  
1 1

( )
( )

( )

S S
ij

S i ij j
i j

K r
r f f

K r
 

 

   

 
 

l species f and given by  

where Kij(r) is the partial K function of the species pair i-j, and K(r) is that of all individuals
within W. For more detail see section 3.15 in Wiegand and Moloney (2014).  

The cumulative spatially-explicit Simpson index at the focal species level (family F4 in the 
table above) is the proportion of heterospecific neighbors within distance r of the typical 
individuals of the foca

  ,S
1

( ) ( )
( ) 1

( ) ( )

S
fj ff

f fj j f
j fa fa

K r K r
r f f

K r K r
 



    

where the Kfa(r) is the partial K function of the focal species f to all neighbors (i.e., the 
subscript a).  

r) at the l can 
f the typical 

l 

within 

Note that the cumulative spatially-explicit Simpson index αf,S(  focal species leve
also be expressed as one minus the proportion of conspecifics within distance r o
individuals of the target species. Thus, the metric L (r) = 1‒α (r) is an index of locat f,S

dominance of the focal species f (Wiegand et al. 2007, Wiegand & Moloney 2014) because 
it is the number of conspecific neighbors of the typical individual of the focal species 
distance r [λf Kff(r)] divided by its total number of neighbors within distance r [λKfa(r); ff = 
λf/λ]. In other words, Lt(r) = 1 – αt,S(r) yields the mean proportion of conspecific neighbors 
within a neighborhood of radius r around the typical individuals of the target species t. 

The cumulative spatially-explicit Simpson index can be accessed in Programita by selecting 
“Phylogenetic analysis”, “cumulative” in th hich method will you usee window “W
conspecifics” and “Mean of all species” (for the community level function) or “For one 
species” (for the individual level function) in the “Multivariate analysis” window and 
selecting “cum. Simpson index” in the “summary function” window: 

”, “With 

 
 

  

Community level 
 

 
Individual level, speci  

) 
Note that the cumulative Simpson index i e rand

 

fy
species (2 in the example

omization of the s insensitive to th
dissimilarity matrix (that leaves the locations and species identity of the individuals 
unchanged). However, it will become important in the null community approaches detailed in
chapter 8. 
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7.1.3 Metrics of species diversity, Simpson beta diversity family 

The spatially-explicit Simpson index (Shimatani 2001) represents beta diversity at the 
community level (family F7 in the table above) and is the probability that two individ
at distance r are heterospecifics. It can be estimated as: 

uals 

  
1 1

( )
( )

( )

S S
ij

S i ij j
i j

g r
r f f

g r
 

 

   

 
where gij(r) is the partial pair correlation function of the species pair i-j, and g(r) is that of all 
individuals within W. For more detail see section 3.15 in Wiegand and Moloney (2014). The 

 ‒ βS(r) where F(r) describes the distance 
ilarity.  

l species level (family F8 in the table above) 
is the proportion of heterospecific neighbors at distance r of the typical individuals of the 

βS(r) is an index of spatial species turnover between locations that indicates how species 
dissimilarity changes with distance r between locations of the local community. Note that 
βS(r) is directly related to the well established metric F(r) of beta diversity used in Chave and 
Leigh (2002) and Condit et al. (2002) by F(r) = 1
decay of species sim

The spatially-explicit Simpson index at the foca

focal species f and given by  

  ,S
1

( ) 1
( ) ( )

fj ff
f fj j f

j fa fa

r f f
g r g r

 


    

where the g

( ) ( )S g r g r

 
fa(r) is the partial pair correlation function of the focal species f to all neighbors 

(i.e., the subscript a). Thus, βt,S(r) captures local dominance of the target species t in a ring
with radius r around the focal individuals. 

The spatially-explicit Simpson index can be accessed in Programita by selecting 
“Phylogenetic analysis”, “cumulative” in the window “Which method will you use”, “With 
conspecifics” and “Mean of all species” (for the community level function) or “For one 
species” (for the individual level function) in the “Multivariate analysis” window, and 
selecting “beta diversity 1 - F(r)” in the “summary function” window: 

 
 

 
 

 

Community level 
 

Individual level, specify 
species (2 in the example) 

Note that the cumulative Simpson index is insensitive to the randomization of the 
dissimilarity matrix (that leaves the locations and  of th species identity e individuals 

iled in unchanged). However, it will become important in the null community approaches deta
chapter 8. 
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7.1.4 Metrics of phylogenetic diversity, ISAR family 

The individual species-area relationship ISARf(r) can be extended towards a measure of
local functional or phylogenetic diversity around a given target species (Wang et al. 2016). 
This can be done by replacing the binary dissimilarity mea

P

 the 

sure δij by a continuous measure 
δij  of pairwise species dissimilarity (Wiegand et al. 2017). We then obtain the sum of all 

wise phylogenetic distances of the typical individual of the focal species f to all other 
ies within distance r: 

pair
spec

  
1

( ) ( )P
f fj fj

j

PISAR r D r


 ,  can be normalized with P P

1

S
S

f fjj
S 


  

where Dfj(r) is the probability that the nearest species j neighbor of an individual of species f
is located within distance r. A similar approach to extend the ISAR function, but based on 
phylogenetic diversity PD (Faith 1992), has been proposed by Yang et al. (2013). 

The phylogenetic individual species area relationship PISAR can also be averaged over all 
species present in the commun

 

ity (family F1 in the table above) by summing up the 
PISARi(r)’s for all species i and weighting with their relative abundance fi: 

  
1 1 1

( ) (
S S S

i iPISAR r f PISAR r
S S

) ( )P
i ij ij

i i i

f D r
  

   can be normalized with j
P

1 1

P
i i

i i

S f 
 

   

The community averaged phylogenetic species area relationship ( )PISAR r  therefore is the 
sum of the pairwise dissimilarities of the typical individual of the community to all 

e dissimilarity matrix then gives the genetic 
ersity of 

window. You can calculate it with a

other species within distance r. 

The PISAR function can also be reinterpreted to be able to analyze genetic variability within 
a given species. For a genotyped population th
dissimilarity between individuals (not species) and the PISARf(r) is the genetic div
individuals neighboring the focal individual f across increasingly large spatial distance r. 
Shao et al. (2018) called this function “individual genetic diversity area relationship” 
(IGDAR).  

The PISAR functions can be accessed in Programita by selecting “Phylogenetic analysis”, 
ecies” (for the PISAR) 

mmary function” 
“Mean of all species” (fo
in the “Multivariate analys

r the community level 
is” windo

PISAR) or “For one sp
w and selecting “PISAR” in the “su
nd without considering conspecifics: 

 
 

 
 

Community level 
 

Individual level, specify 
species (2 in the example)  
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7.1.5 Metrics of phylogenetic diversity, αS family 

The phylogenetic extension αphy(r) of the cumulative spatially-explicit Simpson index result
from replacing the binary dissimilarity measure δ

s 
ij by a continuous measure δij

P of pairwise 
species dissimilarity. The αphy(r) is the expected dissimilarity of two randomly selected 
individuals in W that are located within distance r: 

  
1 1

( )
( )

S S
P K r

r f f   ( )
ij

phy i ij j
i j K r 

   can be normalized with  f

where Kij(r) is the partial K function of the species pair i-j, and K(r) is that of all individuals 
s 

ith 

ble 
e typical 

P

1 1

S S
P

ij i j
i j

D f
 

   

 

within W. The αphy(r) is a point pattern version of the within community version DP of Rao’
quadratic entropy because it basically estimates the average of DP for circular plots w
radius r centered on all individuals of the community. 

The cumulative phylogenetic Simpson index at the focal species level (family F4 in the ta
above) is the mean dissimilarity of all individuals located within distance r of th
individuals of the focal species f and given by  

  ,S
1

( )
( )

( )

S
fjP

f fj j
j fa

K r
r f

K r
 



    can be normalized with  P P

1

S

f fj jD f  
j

The cumulative spatially-explicit Simpson index can be accessed mita by selecting
“Phylogenetic analysis”, “cumulative” in the window “Which method will you use”, “W
conspecifics” and “Mean of all sp

 in 

or the community level f

Pro

 

gra  
ith 

unction) or “With 

:

ecies” (f
conspecifics” and “For one species” (for the individual level function) in the “Multivariate 
analysis” window and selecting “phylog. Simpson index” in the “summary function” window

 
 

 
 

 

Community level 
 

Individual level, specify 
species (2 in the example)  
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7.1.6 Metrics of phylogenetic beta diversity, βS family 

s 
y 

 r: 

The phylogenetic extension βphy(r) of the spatially-explicit Simpson index results from 
replacing the binary dissimilarity measure δij by a continuous measure δij

P of pairwise specie
dissimilarity (Wang et al. 2015). The βphy(r) is the expected dissimilarity of two randoml
selected individuals in W that are located at distance

  
1 1

( )
( )

( )

S S
ijP

phy i ij j
i j

g r
r f f

g r
 

 

   ,  can be normalized with   P

1 1

S S
P

ij i j
i j

D f
 

  f

) and βphy(r) are especially useful to 

ies level (family F8 in the table above) is 
the mean dissimilarity of all individuals located at distance r of the typical individuals of 

focal species f and given

 
where gij(r) is the partial pair correlation function of the species pair i-j, and g(r) is that of all 
individuals within W. The βS(r) is an index of spatial functional or phylogenetic turnover 
between locations that indicates how dissimilarity changes with distance r between locations 
of the local community. The beta diversity metrics βS(r
test different (null) hypotheses regarding the mechanism underlying the placement of species 
(i.e., null communities; e.g., Wang et al. 2015).  

The phylogenetic Simpson index at the focal spec

the  by  

  ,S
1

( )
( )

fjP
f fj j

j fa

r f
g r

 


    can be normalized with  P

1

( )S g r S
P

f fj j
j

D f


  

The spatially-explicit Simpson index can be accessed in Programita by selecting 
“Phylogenetic analysis”, “non-cumulative” in the window “Which method will you use”, 
“With conspecifics” and “Mean of all species” (for the community level function) or “With 
conspecifics” and “For one species” (for the indi
analysis” window and selecting “phylog. Sim

vidual level function)
pson index” in the “summ

 in the “Multivariate 
ary function” window 

 
 

 
 

 

Community level 
 

Individual level, specify 
species (2 in the example)  
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7.1.7 Metrics of phylogenetic relative to species diversity, ISAR family 

ood 

mize the locations of the 
individuals it will be difficult to tease apart the influence of species dissimilarities and 

ies placement on the PISAR  out the signal of the underlying 
 in the PISAR is to use the rI PISAR divided by the ISAR 

ang et al. 2016; Wiegand et al. 2017): 

The PISAR function is often strongly determined by the underlying pattern of neighborh
species richness. This is unimportant if the dissimilarity matrix is randomized (because in 
this case the underlying ISAR function is unaffected by the null model), however, if the 
observed data are compared to null communities that rando

spec . An elegant way of factoring
ISAR SAR function which is the 
(W

  
)(

)(
)(

rISAR

rPISAR
rrISAR

f

f
f  , can be normalized with 




S

j
fjSf

1

P
1

1P   

The rISAR is the expected pairwise dissimilarity between the typical individual of the 
focal species and all other species within distance r. The normalization constant ΔP

f is the 
mean pairwise dissimilarity of the focal species f to all other species in the observation 

e distinctness of the focal species to all other species in W.  

The community level version of the rISAR is given by  

  

window W. It is analogous to the community-level index ΔP in Hardy and Senterre (2007) 
that measures overall phylogenetic distinctness based on species incidence within a given 
community. ΔP

f is a measure of th

)(rISAR

)(
)(

rPISAR
rrISAR  , can be normalized with  


S

ji iij

S

ji iij ff
1,1,

P*P /   

The community level rISAR is the expected pairwise dissimilarity between the typical 
individual of the community and all other species within distance r. 

The normalization constant ΔP* views the community from the typical individual of the 
community and is therefore a measure of the distinctness of the typical individual of the 
community with respe

The rISAR can be accessed in 
species” (for the com

ct to all other species in 

Programita
unity level rISAR) or “For

W. 

 by selecting “Phylo
 one species” (for the 

 and selecting “rISAR” in the “summ

genetic analysis”, “Mean of all 
rISAR) in the 

ary function” window: 
m

“Multivariate analysis” window

 

Community level 
 

 
 

 

Individual level, specify 
species (2 in the example) 

The species-level rISAR function has also an intuitive graphical interpretation. For each 
location x in the observation window we can determine the mean dissimilarity Δt

P(x, r) of the 
focal species f to all other species within distance r. The resulting map shows, from the 
viewpoint of the focal species f, areas with more similar assemblages compared to a spatially 
random community (i.e., Δt

P(x, r) < Δt
P) and areas with more dissimilar assemblages 

compared (i.e., Δt
P(x, r) > Δt

P).  
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7.1.8 Metrics of phylogenetic relative to species diversity, αS family 

The αphy(r) is strongly determined by the underlying pattern of neighborhood species 
richness. This makes it difficult to tease apart the influence of species dissimilarities and 
species placement if the observed αphy(r) is compared to null communities that randomize the 
locations of the individuals. Analogously to the rISAR, the cumulative phylogenetic m
correlation function C

ark 
phy(r) d(r) factors out the signal of the species richness by dividing the α

with the αS(r): 

  phy
d

( )
( )

r
C r

S ( )r




ith 

 Cd(r) is the expected d mly selected heterospecifics in W that 
are located within distance r. The normalization constant is the mean pairwise dissimilarity 

. 
 

 
 

 by  

 , Kd(r) = Cd(r)/MPD w 



1,1,

P /
ji

jiij
ji

jiij ffffMPD   

The issimilarity of two rando

between all heterospecific individuals in W (Clarke & Warwick 1998) and identical to the 
abundance weighted MPD used in quadrat-based phylogenetic analyses (de Bello et al. 2016)
If the null model randomizes the dissimilarity matrix, the use of the normalized Kd(r) is
recommended. 

The cumulative phylogenetic mark correlation function at the focal species level (family F4 in
the table above) is the mean dissimilarity of all heterospecifics located within distance r of
the typical individuals of the focal species f and given

  ,phy
,d

,S

( )
( )

( )
f

f
f

r
C r

r




 , K  f,d(r) = Cf,d(r)/MPDf   with   



11

P /
i

jfj
i

jfjf ffMPD 

The cumulative phylogenetic mark correlation function can be accessed in Programita by 
selecting “Phylogenetic analysis”, “cumulative” in the window “Which method will you use”, 

tion) 
dow 

deselecting “With conspecifics” and “Mean of all species” (for the community level func
or “For one species” (for the individual level function) in the “Multivariate analysis” win
and selecting “phylog. Simpson index” in the “summary function” window: 

 
 

 
 

 

Community level 
 

Individual level, specify 
species (2 in the example) 

The spatially explicit Kf,d(r) is the normalized mean pairwise dissimilarity between the typical 
individual of the focal species f and all other he hin dis
rISARf(r) is the normalized mean dissimilarity between the typical in

) 

terospecifics wit tance r, whereas the 
dividual of the focal 

species f and all other species within distance r. We can therefore also derive a map Kt,d(x, r
of phylogenetic neighborhood dissimilarity that considers the relative abundance fi of the 
species i in the neighborhood of location x.  
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7.1.9 Metrics of phylogenetic relative to species diversity, βS family 

The phylogenetic mark correlation function kd(r) (Shen et al. 2013; family F7) is the most 
important summary function to capture phylogenetic spatial structure with null models 
randomizing the dissimilarity matrix. It is the normalized version of the spatially-expli
phylogenetic Simpson index β

cit 

  

phy(r) divided by the corresponding Simpson index βS(r) of 
species diversity:  

phy
d

S

( )
( )

( )

r
c r

r




 , k (r) = c (r)/MPD with 

The c (r) is the expected dissimilarity of two randomly selected heterospecifics in W that 

airwise co-occurrence patterns. For this reason it will be most powerful if it 

 which represents the 
information on the overall phylogenetic structure of the community in W relative to the 

ispersion; Webb et al. 2002). 
Therefore, kd(r) is independent on the overall phylogenetic structure of the community 

 

ll models 1a vs. 
1s and 1p in Hardy 2008). 

An advantage of the phylogenetic mark-correlation function is that the value of kd(r) = 1 
serves as dividing line between small-scale spatial phylogenetic clustering and evenness 
(Shen et al. 2013; W gand & Moloney 2014). Therefore, if heterospecifics neighbored at 
distance r are on average more similar than the non-spatial expectation MPD = DP/D we have 
spatial phylogenetic clustering (i.e., kd(r) < 1) and if they are more dissimilar than expected 
we have phylogenetic overdispersion (kd(r) > 1) (Shen et al. 2013). We also find kd(r) = 1 in 
two limiting cases: if the local community is not spatially structured and therefore does not 
show species turnover [i.e., gij(r)/g(r) = 1] becaus (r) co
βphy(r) collapses to DP, and if all heterospecific dissimilarities are the s

r 





1,1,

P /
ji

jiij
ji

jiij ffffMPD   d d

d

are distance r away. The normalization constant is the mean pairwise dissimilarity between 
all heterospecific individuals in W (Clarke & Warwick 1998) and identical to the abundance 
weighted MPD used in quadrat-based phylogenetic analyses (de Bello et al. 2016).  

An advantage of the phylogenetic mark-correlation function kd(r) is that it focuses on the 
dissimilarities among neighbored heterospecifics and factors out all signals of species 
clustering and p
is used in concert with null models that randomize the matrix of pairwise dissimilarities 
(Shen et al. 2013). Importantly, the kd(r) is also normalized with the mean pairwise 
dissimilarity MPD between all heterospecific individuals in W

species pool (i.e., phylogenetic clustering or vs. overd

in W, but only driven by the small-scale spatial arrangement of individuals relative to
their dissimilarities (Shen et al. 2013, Wiegand & Moloney 2014). As a consequence, 
abundance phylogenetic structuring does not influence the null model assessment of kd(r) 
together with null models that randomize the dissimilarity matrix δij

P or do not keep the 
overall species abundances fi in W. However, this is a problem if βphy(r) or cd(r) would be 
used instead. This problem is well known in quadrat-based analyses (e.g., nu

ie

e in this case βS llapses to D and 
ame. 

The non-normalized phylogenetic mark correlation function at the focal species level (family 
F8 in the table above) is the mean dissimilarity of all heterospecifics located at distance 
of the typical individuals of the focal species f and given by  

  ,phy
,d

,S
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( )

( )
f

f
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 , can be normalized with   P / jfjjfjf ffMPD   
 11 ii
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The phylogenetic ma

deselecting “With consp

rk correlation function can b

ecifics” and “Mean of all 

e accessed in Programita

species” (for the com

 by selecting 
 will you use”, 

munity level function) 
w 

“Phylogenetic analysis”, “non-cumulative” in the window “Which method

or “For one species” (for the individual level function) in the “Multivariate analysis” windo
and selecting “phylog. Simpson index” in the “summary function” window: 

 
 

 
 

 

Community level 
 

Individual level, specify 
species (2 in the exam ple) 

s 

 
  

7.1.10 The phylogenetic co-occurrence function 

The non-normalized phylogenetic mark correlation function cd(r) can be estimated a

  1 1
d

1 1

( )
( )

( )
( ) ( )

S S
P

ij ij
phy i j

S S
S

ij ij
i j

p r
r

c r
r p r



 

 

 

 



,   

                                      

with pij(r) = fi fj gij(r)/g(r) being the mark connection functions of the i-j species pair. Of
special interest is which spatial scales and phylogenetic depths produce overall patterns of 
spatial phylogenetic clustering or overdispersion. Following an idea of Parmentier et al. 
(2014), Wiegand et al. (201

 

7) introduced the phylogenetic co-occurrence function cphy(r, I) 

 

ise. 
P

k
 

that describes the spatial co-occurrence of heterospecific individuals with dissimilarities 
within a given phylogenetic interval min max( , ]P PI   . The cphy(r, I) is defined as the 

probability that two heterospecifics distance r apart have dissimilarities within a given
phylogenetic interval I: 
 

  P
phy , ,

( , ) [ ] ( ) / ( )ij ij ij iji j i j
c r I I p r p r   1 , 

where the indicator function 1[.] has value of one if the argument is true and zero otherw
Consequently, if small contagious phylogenetic intervals I1, I2, .., In with midpoints δk  
cover the entire dissimilarity range we find Σk cphy(r, Ik) = 1 and  
 

  ( )  ( , )Pc r c r I .  phyd kk
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Thus, the family cphy(r, Ik) of phylogenetic co-occurrence functions decomposes the 
community co-occurrence patterns at different spatial scales r and phylogenetic scales I 
(depths). This allows investigating which spatial scales and phylogenetic depths produce 
overall patterns of spatial phylogenetic clustering or overdispersion (Parmentier et al. 2014). 

The corresponding cumulative phylogenetic co-occurrence function Cphy(r, I) is defined as 
the probability that two heterospecifics within distance r have dissimilarities within a 
given phylogenetic interval I: 
 

  

with pij(r) = fi fjKij(r /K r) being the cumulative mark connection function of species pair i-j. 
 
 

.1.11 Multivariate data types that can be analyzed 

rogramita allow a variety of analysis of multivariate point patterns based on the summary 
nctions described above and their extensions: 

uals taken as focal individuals [i.e., index 
i g r ls 

 “bivariate analysis” based on two multivariate patterns where individuals of the first 
ultivariate pattern are only used as focal individuals (i.e., index i) and individuals of the 

second multivariate patter are only used as counted individuals (i.e., index j). An example 
is the mean species richness of small trees around large trees of a given focal species.  

 “individual” analyses where only individua  the first 

F8 

ce 

ed on one n 
 

rk (bivariate). Examples are the pattern of all surviving vs. surviving 
ple of such an analysis is assessment the mean species 

r of surviving large trees in a forest.  

 
t 

P
phy , ,

( , ) [ ] ( ) / ( )ij ij ij iji j i j
C r I I P r P r   1  

) (

7

P
fu

 “univariate” average analysis where the individ
 in ij( )] are stemming from the same multivariate pattern as the counted individua

[i.e., index j in gij(r)] 

m

ls of one focal species f of
multivariate pattern are used, but all individuals of the first or second multivariate pattern 
(i.e., index j) are counted for uni- and bivariate analyses, respectively (Families F2, F4, 
in the table above). This yields for example the individual species area relationship 
ISARf(r) (Wiegand et al. 2007a) that estimates the mean number of species within distan
r of individuals of focal species f. 

 analysis with a qualitative mark bas multivariate pattern that carries a
additional qualitative mark. This analysis views the entire community (count pattern with
index i) from the viewpoint of points with the first qualitative make (univariate) and the 
second qualitative ma
large trees in a forest. An exam
richness of all larger trees at distance 

 Trivariate analysis. In this case we have two multivariate patterns and a qualitative mark
in the second pattern (e.g., large trees: focal pattern f and small trees: counted pattern j tha
carries a qualitative mark). An example of such an analysis is the probability of mortality 
of small trees at distance r of large trees. 
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7.1.12 Null models and null communities 

Multivariate analyses based on a dissimilarity matrix allow for three different types of null 
models: 

1. The dissimilarity matrix is randomized in a way that spatial phylogenetic structure 

disappears and the summary functions )(rrISAR  and kd(r) yield expectations of one for 
all distances r. 

spatial locations of the individuals of the community are randomized in a way 
that certain spatial structures in the data are maintained but others are randomized. For 

but removes potential spatial associations among species and potential associations of 
species to habitat. The null community approach is of special interest for questions of 

le null community models, or 
 data files can be generated 

 

h the individual species area relationship 

ted in Programita via the “from file” option where the files for the null 

). This corresponds to 
ull model 1a in Hardy (2008).  

ith MPDobs and MPDnull being the observed and null values of 
MPD, you can set a threshold value (e.g., th = 0.05) that accepts 
only values of MPDnull with │(MPDobs - MPDnull)/MPDobs│ < th. 
The default value is th = 0.05, thus the MPD of the null model are 
only allowed to vary by 5% from that of the observed MPD. 

2. The 

example, the toroidal shift null community maintains the clustering of individual species 

community assembly. Programita offers a few simp
alternatively, for more specific null communities the
separately to be inputted into Programita via the “from file” option. See e.g., Wang et al.
(2013, 2015) and Shen et al. (2009) for examples of the null community approach. 

3. For conducting individual analyses, e.g., wit
ISAR or the rISAR function, a null model is needed for the focal species f that generates 
pairwise independence among the focal species f and all other species in the community. 
This is implemen
model of the focal species are generated separately and must be inputted. 

 
Randomization of dissimilarity matrix 
 
The species shuffling null model “12RandomSp” uses the Matrix 

 
 

of distances between species s1 and s2 (i.e., Matrix[s1, s2]), 
generates a random permutation of the vector with the species 
names (perm[s]) and creates a new distance matrix 
Matrix[perm[s1], perm[s2]] which arises by randomly shuffling the 
names of the species names. The species shuffling null model has 
a number of options: 

You can use the full species pool of your distance matrix (check 
“Use full species pool”). If this option is disabled, Programita 
shuffles only the names of species with more than one individual in 
the data set used. This corresponds to null models 1s vs. 1p in 
Hardy (2008) with 1s being only the realized species pool and 1p 
the entire species pool in the matrix. 

You can also constrain the null model to accept only null matrices 
that yield a mean pairwise phylogenetic distance (MPD) between 
all heterospecific individuals of the multivariate pattern which is 
similar to the observed one (Constrain MPD

 

n

W
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ation for multivariate analysis Data prepar
  

7.2 One multivariate pattern using a dissimilarity matrix 

ata preparation for one multivariate pattern 

ith the locations and species identity of all individuals in the community. 

 

he data 

47.47   200.51   1   4 

 i  the example and the 

ys “1” because there is only one 

r running from 1 to S). 
n is optional and can carry an quantitative mark to be used in specific 

ames_Habitat_12.txt) 
ng format: 

6 letter species 
ile “Names.txt”. 

7.2.1 D

For the multivariate analysis you need three data files: 

1. a data file w
This is an ASCII file with *.phy extension. 

2. a data file with the species acronyms and the species numbers. This is an ASCII file
with *.txt extension 

3. a data file with the dissimilarity matrix. This is an ASCII file with *.txt extension 
 
1) The data files for univariate analysis to detect phylogenetic (or functional) spatial 
structure in the fine-scale placement of individuals specify one multivariate pattern. T
files must be an ASCII file with *. phy extension and have the following format (the example 
data file DataType3_Habitat_12.phy): 
 
0  300  0  300  12000 
 87.33    98.11   1   4 
170.29   126.70   1   6 
 18.54   274.65   1   2 
147.48   230.35   1   10 
06.88   158.61   1   10 2
1
… 
 

 the first line gives the dimension of the plot (300 × 300 units)
total number of points in the list (12,000 in the example) 

 the first two columns are the coordinates of the points 
 the third column gives the pattern (here alwa

multivariate pattern) 
 the forth column gives the species identifier (being an intege
 the fifth colum

n

applications. 
 
2) The file with species numbers and species acronyms (here file N
is a tab delimited ASCII file with the *.txt extension and the followi
1  SPECI1 
2  SPECI2 
3  SPECI3 
… 
9  SPECI9 
10 SPEC10 

 

where the first column is the species number and the second column a 
acronym. Please do not call this f
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Multivariate analysis, example DataType3_Habitat12.res 
 
3) The data file with distance matrix (here DistanceMatrix_Habitat_12.txt) which is tab 

SPECI1  SPECI2  0.7587 

SPECI1  SPECI6  0.0504 

s. Do not call this file “DistMatrix.txt”. 

t exactly match, and the species number in the *.phy 
 if 

 species acronym in the distance matrix file is not in the file with the species list.  

dissimilarity matrix 

sis can be accessed with the following 

alysis” in What do you want to do? 

ant to analyze in Input data.  
The example file “DataType3_Habitat_12.phy” is a 

. 1c) 

ins phylogenetic spatial structure 

3. Click “List with coordinates, no grid” in MCFunction 

lecting “cumulative” in Which method will you use. 
ever, this somewhat slows down the estimation and 
 the better option for estimating the cumulative index is 
ing the Replicate option 

5. Provide in the window Multivariate analysis the bin width in data 

cate option to 
change the ring width), and a maximal distance r of the 
analysis. 

6. Provide the file with species numbers and names (here file 
“Names_Habitat_12.txt”) 

 
 
 
 
 

delimited ASCII file with the *.txt extension and the following format: 
 

SPECI1  SPECI3  0.9752 
SPECI1  SPECI4  0.6250 
SPECI1  SPECI5  0.4814 

SPECI1  SPECI7  0.1111 
 

where the first two columns are the six letter species acronyms of the species pair and the 
third column is the distance between the two specie
Note that this file must be tab delimited, that the species acronyms in the distance 
matrix and the species list mus
data file must match with that of the species list. The file temp_MissMatch.txt indicates
a
  

7.2.2 One multivariate pattern and randomization of the 
 
 

The univariate average analy
sequence of actions: 

1. Select “Phylogenetic an

2. Highlight data file you w

simulated data set where 12,000 individuals of 10 species are 
distributed in a 300 × 300m plot. It belongs to the habitat 
association communities of Shen et al. (2013: their Fig
and describes associations to a periodic habitat in x-direction. 
The community conta
caused by habitat association (habitat filtering) because niche 
differences between two species were highly correlated with 
their phylogenetic relatedness.  

4. Optionally you can estimate the cumulative spatially-explicit 
Simpson index (or phylogenetic mark correlation function) 
by se
How
there
by us

units, an appropriate ring width (use ring width of 1 if the 
analysis takes long time and then the Repli
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example DataType3_Habitat12.res

 
Multivariate analysis, 

 
7. Provide the data file with distance matrix (here 

DistanceMatrix_Habitat_12.txt) 

8. For the “univariate”

9. You can include or
box With conspeci
the phylogenetic Si

 analysis select “Mean of all species” 

 exclude the focal species with the check 
fics. If you include conspecifics you obtain 
mpson index and if you exclude 

more detail:  

conspecifics you obtain the phylogenetic mark correlation 
function (see section 3.1.7.6 in Wiegand and Moloney 2014 
and Shen et al. 2013).  

10. Click “Calculate Index”. Programita now shows you the 
multivariate pattern on the left with different species indicated 
by different colors. You can also zoom into the map to see 

 
 
 

 

 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
On the right you see the multivariate summary functions o
the data. In window Select one test function you can select the 
different multivariate summary functions. 

f 

11. The results of the non-normalized phylogenetic mark correlatio
shown on the left, and that of the normalized k

n function cd(r) is 
: d(r) on the right

             

12. The phylogenetic mark correlation function captures the perio
very well and suggests phylogenetic clustering for nearby ind
individuals located in the repea

dic habitat filtering 
ividuals and for 

ted bands of the underlying habitat. However, 
ilar than on average. 

 underlying habitat is 
individuals located in the out of phase habitats are more dissim
Note that the oscillations are not much damped because the
strictly periodic in one direction. 
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ariate analysis, example DataType3_Habitat12.res 
 

13. The normalized PISAR and rISAR functions cap
species only within one strip of the habitat 

ture the phylogenetic similarity of 

  

  
 
but because they are based on nearest neighbor statistics (i.e., presence of species in 

 reve d by the 

patia y explicit Simpson 
ou need to include the conspecifics by clicking 

neighborhoods r) they cannot capture the periodic structure
phylogenetic mark correlation function. 

14. To obtain the results for the species beta diversity [i.e., the s
index β

le

ll
s(r)] y  in 

window Multivariate analysis and click again “Calculate Index”: 

       
As expected by the construction of the data, the proportion heterospecifics increases 
up to the distance of (approximately) 20m where the habitat is out of phase. The 
repeated strips of habitat therefore cause the periodicity in the Simpson index βs(r).  

lick “calculate simulation envelopes”  

of simulations of the 
(25).  

s shuffling null model “12RandomSp” 

etween species s1 and 
s2 (i.e., Matrix[s1, s2]), generates a random permutation of the vector with the species 
names (perm[s]) and creates a new distance matrix Matrix[perm[s1], perm[s2]] which 
arises by randomly shuffling the names of the species names. 

 
 

15. C

16. Go back to the window Multivariate analysis and select the number 
null model (999), and the rule for the simulation envelopes 

17. Select for the univariate analysis the specie
(see Shen et al. 2013). 

The species shuffling null model uses the Matrix of distances b
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example DataType3_Habitat12.resMultivariate analysis, 
 

18. The species shuffling null model has a number of options: 

 You can use the full species pool of you

e dissimil

 You can also constrain the null model to accept only 
null matrices that yield a mean pairwise phylogenetic 
distance between all heterospecific individuals (MPD) 
which is similar to the observed one (

r distance matrix 
(check “Use full species pool”). If this option is 
disabled, Programita shuffles only the names of species 
with more than one individual in the data set used. This 
corresponds to null models 1s vs. 1p in Hardy (2008) 
with 1s being only the realized species pool and 1p the 
entire species pool in th arity matrix.  

Constrain MPD). 
This corresponds to null model 1a in Hardy (2008): 

 

With MPDobs and MPDnull being the observed and null ues of MPD,
can set a threshold value (e.g., th = 0.05) that accepts on

00 attempt ulated dissim
condition, Programita uses a 5 times larger threshold, after 5000 failed 
attempts it uses a 25 times larger threshold, and after 10000 failed attempts it 
uses the last randomization of the dissimilarity matrix.  
 

val  you 
ly values of MPDnull 

with │(MPDobs - MPDnull)/MPDobs│ < th.  

The default value is th = 0.05, thus the MPD of the null model are only 
allowed to vary by 5% from that of the observed MPD.  

However, if after 10 s no sim ilarity matrix satisfies the 

 or without considering conspecifics: 19. Decide if you want to run the analysis with
. The beta diversity summary functions are different and the ISAR 

summary functions slightly different: 
                

     

20. Exclude conspecifics:  

After clicking “Calculate Index” and running the simulations of the null model you 
can select with the window Select one test function among the different test functions.  
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21. Select “non-norm. phylogenetic mcf” to obtain the results of the non- normalized 

 

phylogenetic mark correlation function cd(r): 

                                                              

  

22. You notice that the simulation pointwise envelopes are very wide. This is because 
this summary function is not normalized and the MPD [whi
absolute value of the c

ch determines the 
e names of the species 

th = 0.05; middle graph) 
ou constrain less the 

envelop

23. Becaus
on the genetic mark correlation function 
cd(r) th
departu lacement of 
species
correla
 
           

d(r)] can vary widely when shuffling th
in the null model. If you constrain the MPD more (default is 
you obtain narrower simulation envelopes (right) and if y

es become wider (th = 0.5, left).  

e the MPD resulting from the species shuffle null model has a strong impact 
absolute values of the non-normalized phylo
e pointwise envelopes are very wide and you cannot detect properly 
res that are only due to phylogenetic structures in the small-scale p
. Therefore it is recommended to use the normalized phylogenetic mark 
tion function kd(r) by selecting “normalized phylogenetic mcf”: 

                                          

 

The simulation pointwise envelopes are now narrower and depict only phylogenetic 
structures in the small-scale placement of species, but are not influenced by the 
overall phylogenetic structure of the plot relative to the species pool or the structure of 
the phylogenetic tree (see Shen et al. 2013). Note that constraining the MPD has no 
influence on the width of the simulation envelopes of kd(r). 

24. Note that there m big difference between the non-normalized phylogenetic 
on cd( alized mark correlation function kd(r).  

spatial phylogenetic structure you are interested in. 
 
See Shen et al. (2013) and end of section 3.1.7.6 in Wiegand and Moloney (2014). 
This can be noted by the fact that the cd(r) will in general not approach at larger 
distances the expectation of the null model whereas the kd(r) does. As noted by Hardy 
2008, this problem can be reduced by null model 1a. 
 

ay be a 
mark correlation functi r) and the norm
 
The non-normalized mark correlation function carries a signal of the overall 
(non-spatial) phylogenetic structure of the plot which is likely to confound the 
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25. Select “ISAR” to obtain the average individual-species area relationship. 
However, because the null model randomizes the dissimilarity matrix, the simulations 

odel will yi

26. Select “normalized PISAR” to obtain the PISAR function:  

of the null m eld always the observed ISAR. 

      

The PISAR is driven here mostly by the underlying ISAR, but 
if you use the GoF test  with the student transformation a 
departure from the null model can be detected at small 

 

distances.  

 
 
 
 

 
 

27. Select rISAR to obtain the rIsar function. The result is somewhat dependent on how 
you constrain the MPD of the null model: 

                                                            

  
The result shows that the mean phylogenetic distance between the typical individual 
of the community and all other species in its neighborhoods with radius r is smalle

n 

28.

r 
than expected by the null model. Or in other words, more similar species tend to be 
located close to each other. However, it is clear that the phylogenetic mark correlatio
function captures in the present context more information than the average rISAR. 

 To obtain the phylogenetic Simpson index βphy(r) enable checkbox  an
repeat the simulation of the null model: 

d 

 
non-normalized βphy(r)                           normalized βphy(r)/β*

phy 

  

Again, the normalized index shows the periodic habitat filtering quite well.    
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7.2.3 View results of multivariate analysis with combine replicates 

 
You can use the “Replicate” option to view the results of one 
phylogenetic analysis and to change the estimator, for example 
changing the ring width or using cumulative summary functions 
instead of non-cumulative ones. 

1. Run analysis example DataType3_Habitat12.res. To be faster 
disable the options “Show patterns 1 and 2”. Once the 
simulation is finished click the “Save results” button and 
insert the name of the results file. Select as name 
“DataType3_Habitat_12” and tw

2. n “Replicate”. A window appears where you can 
select the results 

o results files are generated: 
name.res and mcf_name_phy.rep. The “_phy” extension at the 
end tells the combine replicates procedure that you conducted 
an analysis with a dissimilarity matrix.  

Click butto

 
 
 
 
 
 

 
 

 
 

 
 

 
 
 
 
 
 
 

 
Select “mcf_DataType3_Habitat_12_phy.rep”, and they click 
button “Calculate joined statistic”. Programita now shows you 
the results of the analysis and you can select as before among 
the different summary functions.  

3. Select the normalized phylogenetic mark correlation function: 

 

 
 
 
 
 
 

 

 
Now select a ring width of 5 units and press the “ok” button to 
obtain the normalized phylogenetic mark correlation function 
with a larger ring width. The function is much smoother:  
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example DataType3_Habitat12.resMultivariate analysis, 
 

4. Check the checkbox “GoF” to conduct the Goodness of Fit 
test and select the student transformation of the residuals  

       

You observe that the effect size does not decline with large
distances as you would expect because the habitat

5. Now click “Cum mcf” to obtain the cumulative counterpart of
the phylogenetic mark correlation function that yields the 
expected phylogenetic distance of two heterospecific 
individuals which are separated by a dist

r 
 is periodic.  

 

ance less than r, 

ividuals taken randomly from the plot: 
normalized with the expected phylogenetic distance cd of two 
heterospecific ind

 

You observe that the cumulative nature of the summary 
function tends to obscure the periodic nature of the species 
similarity induced by the periodic habitat. Only the first 
phase and antiphase are detected to be significant.  

Here for comparison the results of the rISAR function which 
is not able to reveal the oscillations because it looks only to 
the nearest neighbors: 

6. Now click “log-scale” to view the results with a logarithmic 
x-axis: 
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7.2.4 One multivariate pattern: competition community 

This data set is one of the examples for a community assembled by competition based on 
Miller et al. (2017) and analyzed in Wiegand et al. (2017). To generate the data, Wiegand et 
al. (2017) used the R package metricTester presented in Miller et al. (2017) to simulate 
phylogenies and individual-based communities within a 316 × 316 m observation window W.  

The species dissimilarities of the corresponding 
phylogeny (file Dist_Co
continu
34), bu

mpetitio t) are 
ously distributed for smaller distances (i.e., < 
t discrete for larger distances with “clusters” 

n1.tx

around dissimilarities 41, 50 and 62.4: 

Dissimilarity
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 and repeatedly 

 a 
randomly located individual from the species pool. The example data file “Competition1.phy” 
consists of 3843 individuals of 100 species.  
The univariate average analysis can be accessed with the following 
sequence of actions: 

1. Select “Phylogenetic analysis” in What do you want to do? 

2. Highlight data file you want to analyze in Input data.  

mpetition 

3. 

4. Optionally you can estimate the cumulative spatially-explicit 
Simpson index (or phylogenetic mark correlation function) 
by selecting “cumulative” in Which method will you use. 
However, this somewhat slows down the estimation and the 
better option for estimating the cumulative index is using the 
Replicate option after the results of a non-cumulative 
analysis with ring width 1 are saved as *.rep and *.res file. 

 
 appropriate ring width (use ring width of 1 if the 

analysis takes long time and then the Replicate option to 
change the ring width), and a maximal distance r of the 
analysis. Wiegand et al. (2017) selected a bin width of 2, a 
ring width of 3, and a maximal distance of 30 bins.  

 
 
 

To mimic competition, metricTester considered an interaction range of 20m
removed one of two closely related individuals within this distance and replaced it by

The example file “Competition1.phy” is a simulated data set 
where 3843 individuals of 100 species are distributed in a 
316 × 316m plot. It belongs to the competition communities 
of Wiegand et al. (2017: their Fig. 3). The community 
contains phylogenetic spatial structure caused by co
of closely related species.  

Click “List with coordinates, no grid” in MCFunction 

5. Provide in the window Multivariate analysis the bin width in data
units, an
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6. Provide the file with species numbers and acronyms (here file 

7. Provide the data file with the distance matrix (here 

d if you exclude 
 correlation 
oloney 2014 

10. Click “Calculate Index”. Programita now shows you the 
multivariate pattern on the left with different species 
indicated by different colors:  

“Names_Competition1.txt”) 

Dist_Competition1.txt) 

8. For the “univariate” analysis select “Mean of all species” 

9. You can include or exclude the focal species with the check 
box With conspecifics. If you include conspecifics you 
obtain the phylogenetic Simpson index an
conspecifics you obtain the phylogenetic mark
function (see section 3.1.7.6 in Wiegand and M
and Shen et al. 2013). 

 
 
 
 
 
 

 

 
 
 
 
 
 
 
 

On the right you see the multivariate summary functions of 
the data. In window Select one test function you can select the 
different multivariate summary functions. 

11. Click “calculate simulation envelopes”  

e 

train 

12. Go back to the window Multivariate analysis and select th
number of simulations of the null model (199), and the rule 
for the simulation envelopes (5).  

13. Select for the univariate analysis the species shuffling null 
model “12RandomSp” (see Shen et al. 2013). 

14. The species shuffling null model randomly shuffles the 
species names in the dissimilarity matrix. Select “Cons
MPD (1a)” to constrain the null model to accept only null 
dissimilarity matrices that yield a MPD similar to the 
observed one. This corresponds to null model 1a in Hardy 
(2008). 

15. Exclude conspecifics: 

 

 to obtain the phylogen
mark correlation functions.  

etic 
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16. After clicking “Calculate Index” and running the 
simulations of the null model you can select with the window 

s. 

genetic mcf” for results of the 
): 

Select one test function among the different test function

17. Select “normalized phylo
normalized phylogenetic mark correlation function kd(r

 
The kd(r) indicates that the expected dissimilarity of two 

 

x. This was expected by the 
construction of the community. There is also a slight 
tendency of being more similar than expected if two 
individuals are some 33m away. This tendency to 
phylogenetic clustering arises because two neighbors B and C 
located at the edge of the zone of influence of a focal 
individual A will tend to be ecologically similar because AB 
and AC are dissimilar, as depicted by kd(r). 

18. Select “cumulative”, and click again “Calculate index” to 
obtain the results of the corresponding cumulative summary 
function Kd(r): 

randomly selected individuals at a fixed distance between 1
and 16m is significantly larger than expected by the 
randomized dissimilarity matri

 
The cumulative Kd(r) indicates that the expected (normalized
dissimilarity of two randomly selec

) 
ted individuals within 

use of the 
(r) 

ical 

 r: 

some 40m is significantly larger than expected by the 
randomized dissimilarity matrix. However, beca
cumulative nature of the Kd(r), the details shown by the kd

disappear.  

19. Select now “rISAR” to get the average rISAR function that 
gives the expected (normalized) dissimilarity of the typ
individual of the community to all other species within 
distance

 
The results of the rISAR are very similar to that of the 
cumulative Kd(r). 
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Phylogenetic co-occurrence function 

The phylogenetic co-occurrence function cphy(r, I) describes the sp
heterospecific individuals with dissimilarities within a given

atial co-occurrence of 
 phylogenetic interval 
at two heterospecifics 

ic interval I. 

20. You can select the distance interval in the window “Multivariate analysis”.  

min max( , ]P PI   . The cphy(r, I) is defined as the probability th

distance r apart have dissimilarities within a given phylogenet

 
Select first intervals of sma i s ities between 0 and 20 and 20 and 35 and run ll d s imilar
the analyses by clicking “Calculate index”:  
                                                    

  
 
The results show that individuals with short phylogenetic dist
spatially less than expected by the randomized

anc s do co-occur 
 dissimilarity matrix. This is expected 

ilarities 

         

e

by construction of the community. 

21. Select now intermediate dissimilarities between 35 and 47 and larger dissim
between 47 and 52:  

                                        

  
 
The results show that those individuals with short phylogen
occur spatially different from the expectation of the randomize
However, th

etic d stances do not co-
d issimilarity matrix. 

e many species pairs with the largest dissimilarity of 63.05 co-occur more 
trix

i
 d

frequently than expected by the randomized dissimilarity ma
        

: 
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ariate analysis, individual analysis, example DataType3_Habitat_12_fs6.res 
  

7.3

Instead of using s se 
“in
(W nduct the 

nts. 
Programita uses in the individual analysis only the individuals of the focal species as focal 
pattern but counts individuals of all other species in the neighborhood of the focal 
individuals.  

r.  

7.3.1 Individual analysis of one multivariate pattern 

The univariate individual analysis can be accessed with the same 
sequence of actions as the standard average analysis: 

1. Select “Phylogenetic analysis” in window What do you want to 
do? 

2. 

 describes habitat filtering 

dinates, no grid” in MCFunction 

 bi i t  data 
units (1), an appropriate ring width (use ring width of 1 if the 
analysis takes long time and then the Replicate option to 
change the ring width), and a maximal distance r of the 
analysis (100).  

5. Provide the data file with species num ers and names (here 
_12.txt”) 

6. 

7. 

ple) 

8. You can include or exclude the focal species from the count 
pattern m with the check box With conspecifics. If you 
include conspecifics you obtain the individual phylogenetic 
Simpson index and if you exclude conspecifics you obtain 
the individual phylogenetic mark correlation function (see 
section 3.1.7.6 in Wiegand and Moloney 2014 and Shen et al. 
2013).  

 
 
 
 
 
 
 

 Individual multivariate analysis using a dissimilarity matrix 

ummary functions that describe the community average, you can also u
dividual” summary functions such as the individual species area relationship ISAR 
iegand et al. 2007) or the rISAR function (Wang et al. 2016) that allow you to co

analysis from the viewpoint of the individuals of a given “focal” species as focal poi

The summary functions of the individual analyses belong to families F2, F4, F8 in the 
framework of the table at the beginning of the chapte 

Highlight data file you want to analyze in Input data.  
The example file “DataType3_Habitat_12.phy” is a 
simulated data set of the habitat association communities of 
Shen et al. (2013: their Fig. 1c) and
with respect to a periodic habitat in x-direction.  

3. Click “List with coor

4. Provide in the window Multivariate analysis the n w d h in

b
file “sim

Provide the data file with distance matrix (here 
“DistanceMatrix_Habitat_12.txt”) 

For the individual analysis select “One focal species” and 
select the species number of the focal species (6 in the 
exam
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9. Click “Calculate Index”. Programita now shows you the 

habitat can be seen best with the option 
pattern. The banded pattern of species 6 caused by the periodic 

: 
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In window Select one test function you can select the multivariate 
summary functions of the data, for example the individual 

 

 

 

phylogenetic mark correlation function for species 6: 

 

 
 
 
 
 
 
 

        non-cumulative                                             cumulative 

 

 
The normalized individual phylogenetic mark correlation function kd,f(r) yields the 

focal species f and a 
d with the expected 

cal species f to a 
 

 10m the species is mostly surrounded by more similar species 
cie as imposed by the 

e cumulative version somewhat obscures the effects of the periodic 
ve” in the window “Which method 

expected phylogenetic distance of the typical individual of the 
heterospecific individuals located at distance r and is normalize
phylogenetic distance cd,f of the typical individual of the fo
heterospecific individuals taken randomly from the plot. 

Up to distance of
(habitat filtering) and at distance 20m by more dissimilar spe
periodic habitat. Th

s 

habitat. It can be obtained by selecting “cumulati
will you use?” and clicking “Calculate index”: 
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10. The ISAR of focal species 6 shows that neighborhoods of say 
20m contain all other 9 species within th ommunity:  e c

 

11. The rISAR functions yields the mean phylogenetic distance 
between the typical individuals of focal species 6 and all other 
species in its neighborhoods with radius r, normalized with 
the mean phylogenetic distance between the typical 

r species 
 non-

spatial expectation (of one) because each individual of the 
focal species has all other species within 20m neighborhoods: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

individuals of focal species 6 and all species present in the 
community. The result shows that the focal species 6 is 
surrounded at small neighborhoods by more dissimila
and saturates, as expected, at distances of 20m to the

 

 To assess the individual species beta diversity from the 
viewpoint of the focal species f enable the option “With 
conspecifics”, click “Calculate Index”, and select “beta 
diversity 1 - F(r)”: 

 
 
 

12.

 
non-cumulative:                                      cumulative 

 
 
 
 

  

13. The probability βS,f ) that an individual distance r apart from 
the typical individual of species f = 6 is heterospecific yields 
at small distances of say 3m a value of 85% and reaches at 
distance of 21m a maximum of 87%. Note that this index can 
be interpreted as an (inverse) index of local dominance. 
The cumulative version of the index αS,f(r) is shown on the 
right.  

 
(r  

 293



  

 294 

2_fs6.resMultivariate analysis, individual analysis, example DataType3_Habitat_1
 

14. Click “calculate simulation envelopes” 

ule 
for the simulation envelopes (25). Select a ring width of dr = 
3. 

16. Select for the univariate analysis the species shuffling null 
model “12RandomSp” (see Shen et al. 2013). The species 
shuffling null model randomly shuffles the names of the 
species in the dissimilarity Matrix. 

 

15. Go back to the window Multivariate analysis and select the 
number of simulations of the null model (999), and the r

17. Disable the option “With conspecifics”  

18. After clicking “Calculate Index” and running the 
simulations of the null model you can select in the window 
Select one test function among the different test functions. 

19. Select “normalized phylogenetic mcf” to obtain the 
individual phylogenetic mark correlation function kd,f(r) that 
yields the expected phylogenetic distance of the typical 
individual of the focal species f and a heterospecific 
individuals located at distance r, normalized with the non-

 

spatial expectation: 

 

 

 

  

The analysis shows
phylogenetic neighborhoods as shown by the

 that the focal species shows just non-significant associations to its 
 global envelope tes   

20. You can repeat the analysis also for other focal species, for example species 5 does not 
show departures from the null model:  

t.

  

Note that species 5 does not show local dominance; the p
individual distance r apart from the typical individual of spec
varies o

robability βS,f(r) that an 
ies f = 5 is heterospecific 

nly between value of 79.8% and 0.81%. 
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21. To compare the local dominance of species 5 and specie
can select the cumulative index α

s 6 you 
S,f(r) by   and 

clicking “cumulative” in Which method will you use: 
 
      

 
 
 

 

   species 6, cumulative                           species 5, cumulative 

          species 6, non cumulative                  species 5, non cumulative 

 

The cumulative index αS,f(r) yields the proportion of 
heterospecifics within distance r of the typical individual of
focal species f. Thus,

 the 
 the index 1 - αS,f(r) has the direct 

terpretation of an index of local dominance; it is the 
proportion of conspecifics within distance r of the typical 
individual of the focal species. The grey line in the graphs 
indicates the value of the Simpson index (i.e., the non-spatial 
expectation). 

Species 6 has a banded pattern that follows the periodic habitat 
and shows strong variation in local dominance ranging from 
82.5% heterospecifics up to 87% heterospecifics. In contrast, 

in

focal species 5 varies only between 79.8% and 80.6% 
heterospecifics. This explains why this species does not show 
patterns of phylogenetic association to its neighbors.   
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7.3.2 Series of individual analysis of one multivariate pattern 

When running individual analyses one is in general inter
in the com

ested to obtain re ults for all species 
munity to understand variability in individual responses. Therefore, Programita 

offers ll focal species that have a 
minimum number of individuals. Programita outputs for this series analysis an additional file 
with a results summary. To run the series of analyses follow the following steps: 

1. Load settings from file DataType3_Habitat12.res using the 
“Load Settings for Example” option.  

2. Highlight the file DataType3_Habitat12.res and click the small 

3. Programita now loads all settings from this analysis. Change 
the maximal distance to 50, the ring width to 3, the number of 
simulations to 199, and the rule for the simulation envelopes to 
the 5th lowest and highest, otherwise the *.rep results files will 
become quite large. To save the *.rep file, disable the checkbox

s

the convenient possibility to run individual analyses of a

ok button 

 
“large”: 

 

 

 
 
 
 

4. 
ult 

5. e 

6. ate Index” and Programita runs the individual 

Enable the checkbox “Run all focal species” and provide the 
minimal number of individuals of the focal species (defa
value is 50).  

Select a summary function in window Select one test function, th
*.res results file will use this test function.  

Click “Calcul
analyses of all focal species with more than 50 individuals. To 
speed up to estimation, disable the options that plot the focal 
pattern after each simulation of the null model: 

 

Programita generates results files “name_fsp_nr_phy.res” and
“mcf_name_fsp_nr_phy.rep” where “name” is the file 

7.  
name 

(here “DataType3_Habitat_12”) and “nr” the number of the 
focal species. For example, the first results file in the series for 
species 1 is DataType3_Habitat_12_fsp_1_phy.res.  

8. Programita also outputs a file with a results summary named 
“name.txt” where the name is the name of the data file (here 
“DataType3_Habitat_12”): 
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9. The results summary provides information on: 

tion 
iate” analysis (i.e., 

        one multivariate pattern) or “bivariate” (i.e., two multivariate patterns). 

 focalsp:   the number of the focal species 
 name:    the acronym of the focal species 
 nr indiv1:  number of individuals of the focal species 
 nrind2:    number of individuals of the first multivariate pattern 
 nrind3:   number of individuals of the second multivariate pattern  

                   (always 0 for analysis  with one multivariate pattern)  
 rmin:     minimal distance for GoF test 
 rmax:     maximal distance for GoF test 
 tf:       number of summary func
 was     “uni” or “bi” indicates if results are from “univar

           
 summary function 

 Delta_p_f  



S

j
fjSf

1

P
1

1P   

 MPD_f    P / jfjjfjf ffMPD   
 11 ii

 Rank:    the rank of the standard GoF test over interval rm
 SumSt( r)  the value of the summary functions at distance 
 E-( r)     the value of lower simulation envelop at dista
 E+( r)    

in to rmax 
r.  

nce r.  
the value of upper simulation envelop at distance r.  

distance r. 
ise departure from the null model (1) or 

val 1 to rmax/2 
 G+l     upper over interval 1 to rmax/2 

ax 2 
 radm
 radm

 t radmax 
 to rmax 

 rmax 
 distance r 

 
 

 mean( r)   the expected value of the summary functions at 
 sig( r)    indicates if there is a pointw

not (0)  
 
Additionally information on the global envelope test: 

 G-l      lower global envelope over inter
global envelope 

 rank_l    rank of global envelope test over interval 1 to rm
 G-r      lower global envelope over interval rmax/2 to
 G+r     upper global envelope over interval rmax/2 to
 rank_r   rank of global envelope test over interval rmax/2
 G-      lower global envelope over interval 1

/
ax 
ax 

o 

 G+     upper global envelope over interval 1 to rmax 
 rank     rank of global envelope test over interval 1 to
 Effsize(  r) effect size for



  

 298 

e patterns Data preparation for analysis of two multivariat
  

7.4 Two multivariate patterns using a dissimilarity matrix 

Programita allows you also to analyze spatial structures among individuals of two types of 
c diversity of 

. In this 
nted 

 same as for the “univariate” 

points of the same community. For example, you can analyze the phylogeneti
small trees around large trees by using a “bivariate” phylogenetic Simpson index
case, the “focal individuals” belong to the first pattern of large trees and the “cou

g h  For example, the estimator of the individuals” belon t e second pattern of small trees.
“bivariate” phylogenetic Simpson index is formally the
phylogenetic Simpson index: 

   
1 1

( ) ( )
S S

P
phy fm fm

f m

r p r 
 

  

but now the mark connection functions pfm(r) yield the probability that, when randomly 
nd a sm r apart, the large tree is of type f and the small 

tree of type m. 

ciple, all summary functions listed in the overview table (see below) 
can be applied in a “bivariate” manner. The focal individuals are always taken from the first 

rom the 

ordingly. For 

selecting a large tree a all tree distance 

Based on the same prin

multivariate pattern (e.g., large trees) and the counted individuals are always taken f
second multivariate pattern (e.g., small trees).  

Note that some of the normalization constant have also be re-interpreted acc
example, in the estimation of the indices DP and D P    f

P

1 1

S S
P

ij i j
i j

D f f
 

   and P
S

P

1
f fj jD f , 

j

the f  refers to the relatii ve abundance of species i within the first multivariate pattern whereas 
the fj re cond multivariate pattern. The fers to the relative abundance of species j within the se
same is true for of the indices SP: 

P

1 1
i ij

i i

S S
PS f 

 

  . 

 

classifier non-spatial metrics  spatial metrics  spatial  

    A B C  A B C  condition 

F1 α S community SS SP ΔP*= SP/SS  )(rISAR  )(rPISAR  )(rrISAR   Dfs(r) 

F2 α S focal specie  S  S P Δ P= S P/S   ISAR (r) PISAR (s f f f f f r) rISARf f f(r)  Dfs(r) 

F3 α D community D DP P  α (r) α (r) K c  = Dd /D S phy d(r)  Kij(r)/K(r) 

F4 α D focal species Df f fd f f α f,S(r) α f,phy(r) Kf,d(r)  Kij(r)/K(r)  D P c  = D P/D   

F5* β S community SS SP ΔP*= SP/SS  )(risar  )(rpisar  )(rrisar   dfs(r) 

F6* β S focal species Sf Sf
P Δ f

P= Sf
P/Sf  isarf(r) pisarf(r) risarf(r)  dfs(r) 

F7 β D community D DP cd = DP/D  βS(r) βphy(r) kd(r)  gij(r)/g(r) 

F8 β D focal species Df Df
P cfd = Df

P/Df  β f,S(r) β f,phy(r) kf,d(r)  gij(r)/g(r) 

*Metric families F5 and F6 that are based on the non-cumulative probability density function dij(r) of the 
distances to the nearest species j neighbor have not been used to date. 
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7.4.1 Data preparation for analysis of two multivariate pattern 

For the multivariate analysis you need three data sets: 

1. a data file with the location and species identity of all individuals in the two 
multivariate patterns. This is an ASCII file with *.phy extension. 

2. a data file with the species acronyms and the species numbers. This is an ASCII 
with *.txt extension 

3. a data file with dissimilarity matrix. This is an ASCII file with *.txt extension
 

file 

 

1) The data files for “bivariate” average analysis to detect phylogenetic (or functional) 
l structure in the fine-scale placement among individuals of two types are given by two 

multivariate patterns. For example, the focal pattern could be that of large trees and the 
sion 

6  10101 

 236.51  164.10   2     4  100 
 227.24   31.34   2     5  100 
… 

pattern: “1” for the first focal multivariate pattern (e.g., 
large trees) and “2” for the second multivariate pattern (e.g., small trees) 

 the forth column gives the species identifier (being an integer running from 1 to S). 
 the fifth column is optional and can carry an quantitative mark, however, this mark is 

sed. 
 

T  f  w s b  a  acronyms (here file Names_random1.txt) is a 
SCII file w txt exten nd the f w at: 

S C1

er th i  is  s es and h ond c u an u  lette s

spatia

second pattern that of small trees. The data files must be an ASCII file with *. phy exten
and have the following format (the example data file DataType3bi_cluster10.phy): 
 
0  316  0  31
 304.98  203.69   1     1  100 
 236.99  311.00   1     2  100 
 289.42  171.37   1     3  100 
 187.55   11.82   1     4  100 
 308.96  138.19   1     5  100 
   5.14  210.25   1     6  100 
 176.71   76.73   2     1  100 
  74.92   29.00   2     2  100 
 271.00   39.00   2     3  100 

 the first line gives the dimension of the plot (316 × 316 units) in the example and the 
total number of points in the list (10,101 in the example) 

 the first two columns are the coordinates of the points 
 the third column gives the 

not yet u

2) he ile ith specie num ers nd species
tab (or space) delimited A ith the *. sion a ollo ing form
1  SPECI1 
2  SPECI2 
… 
9  SPECI9 
10 PE 0 

…. 

wh e e f rst column  the peci  number  t e sec ol mn p to 6 r pecies 
acronym
 

. 
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3) The data file with distance matrix (here Dist_random1.txt) which is a tab (or space) 

 

he 

 

ased on randomization of the dissimilarity matrix works 
 I provide therefore 

ata file “DataType3bi_cluster10.phy”.  

es) is an example of the “dispersal limitation” 
l. (2017). It mimicked dispersal limitation by using 
ss with parameters σ = 5m and ρ = 0.0002/m2. 
ach other. The dissimilarity matrix and species 
 community” generated with the R package 

us, the spatial pattern of large trees is only 

y a mixture of a random 
meter σ = 10m where only 

delimited ASCII file with the *.txt extension and the following format: 

SPECI2 SPECI1  15.9161 
SPECI3 SPECI1  19.6389 
SPECI3 SPECI2  19.6389 
SPECI4 SPECI1  19.6389 
SPECI4 SPECI2  19.6389 
SPECI4 SPECI3  11.8997 
SPECI5 SPECI1  19.6389 
…. 
 

hew re the first two column are the six letter species acronyms of the species pair and t
third column is the distance between the two species.  

Note that this file must be tab or space delimited and that the species acronyms in the 
distance matrix and the species list must exactly match.  

7.4.2 Two multivariate pattern and randomization of the dissimilarity matrix

The “bivariate” analysis b
completely analogously to the analysis of one multivariate pattern.
only one example that is based on the d

The first multivariate pattern (i.e., large tre
communities presented in Wiegand et a
for each species a Thomas cluster proce
Species were placed without regard to e
abundances were taken from a “random
metricTester presented in Miller et al. (2017). Th
governed by dispersal limitation and does not contain phylogenetic spatial structure. 

The second multivariate pattern (i.e., small trees) was generated b
pattern (10%) and a Gaussian dispersal kernel (90%) with para
20% of the large trees generated offspring: 

first multivariate pattern                               second multivariate pattern 

 

Thus, there is also no spatial phylogenetic structure within the small trees and no spatial 
phylogenetic structure between small and large trees. However, due to the dispersal kernel, 
there is a distance decay of similarity between the community of small and large trees.  
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aType3bi_cluster10.res 

  
The bivariate analysis can be accessed with the following sequence 
of actions: 

1. Select “Phylogenetic analysis” in window What do you want to 

you want to analyze in Input data. Select the 
Type3bi_Habitat_12.phy”.  

 Click “List with coordinates, no grid” in MCFunction 

n function) 

index is 

5. Provide in the window Multivariate analysis the bin width in data 

ex and if you exclude 
ation 

10. Click “Calculate Index”. Programita now shows you the 
multivariate summary functions of the data. In window Select 

one test function you can select the different multivariate 
summary functions. First look at the spatially explicit 
Simpson index that describes species beta diversity: 

do? 

2. Highlight data file 
example file “Data

3.

4. Optionally you can estimate the cumulative spatially-explicit 
Simpson index (or phylogenetic mark correlatio
by selecting “cumulative” in Which method will you use. 
However, this somewhat slows down the estimation and 
there the better option for estimating the cumulative 
by using the Replicate option. 

units (here dr = 3), an appropriate ring width (use ring width 
of 1 if the analysis takes long time and then the Replicate 
option to change the ring width), and a maximal distance r of 
the analysis (here rmax = 100). 

6. Provide the data file with species numbers and names (here 
file “Names_random1.txt”) 

7. Provide the data file with distance matrix (here 
Dist_random1.txt) 

8. For the “bivariate” analysis select “Mean of all species” 

9. You can include or exclude the focal species with the check 
box With conspecifics. If you include conspecifics you 
obtain the phylogenetic Simpson ind
conspecifics you obtain the phylogenetic mark correl
function.  

 
The probability that a small tree at distance r of a large tree is 

 

heterospecific is at small distances 0.92, but increase following
the Gaussian dispersal kernel to some 99% at r = 30m.  
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11. Click “calculate simulation envelopes” 

12. Go to the window Multivariate analysis and select the number of 

he species 
 a

simulations of the null model (199), and the rule for the 
simulation envelopes (5). 

13. Select for the univariate analysis the species shuffling null 
model “12RandomSp” (see Shen et al. 2013). T
shuffling null model randomly shuffles the n mes of the 
species in the dissimilarity Matrix. 

17. Disable the option “With conspecifics”  

14. After clicking “Calculate Index” and running the sim
of the null model you can select in the window Select one test 

function among the different test functions. Note that the 
second multivariate pattern (i.e., sm

ulations 

all trees) were generated 
persal kbased on a Gaussian dis ernel around (20%) of the 

large trees. Therefore, no phylogenetic spatial structure is 
expected in the relationship between large and small trees.  

 

15. The results show the pattern of large trees (multivariate pattern
right you find the uni- and bivari

 1) on the left. On the 
ate summary functions. The bivariate normalized 

tial phylogenetic 
ties of large and small 

phylogenetic mark correlation function confirms absence of spa
structure in the “bivariate” multivariate pattern of the communi
trees (right, bottom):  

 

16. The same is true for the normalized PISAR and rISAR functions: 

 
For the PISAR click “subtr. exp” to subtract the expectation of the null model to see 
the envelopes.  
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7.5 Multivariate analysis with a qualitative mark 

Programita allows you also to analyze spatial structures based on one multivariate pattern 
s two types of points that 
ivariate” analysis. The 
iate patterns, but the null 

, the label (qualitative 

iving large trees in a 
erences among 

borhood. 

random labeling. 
 surviving small trees 

 the ISAR function allows 
 r of large trees differs 

 random labeling analysis 

For the multivariate analysis you need three data sets: 

1. a data file with the location and species identity of all individuals in the two 
multivariate patterns. This is an ASCII file with *.phy extension. 

2. a data file with the species acronyms and the species numbers. This is an ASCII file 
with *.txt extension 

3. a data file with dissimilarity matrix. This is an ASCII file with *.txt extension 
 
1) The data files for analysis with a qualitative mark is given by one multivariate pattern 
which comprises two types of points (e.g., surviving vs. dead) that represent a qualitative 
mark. The data files must be an ASCII file with *. phy extension and have the following 
format (the example data file DataType3_RL_Habitat_12.phy): 

0  300  0  300  12000 

0.19    2.96  2  10 
0.22  214.77  2   2 
… 
 the first line gives the dimension of the plot (300 × 300 units) in the example and the 

total number of points in the list (12,000 in the example) 
 the first two columns are the coordinates of the points 
 the third column gives the qualitative mark and must be “1” or “2” 
 the forth column gives the species identifier (being an integer running from 1 to S). 
  

 

that carries an additional qualitative mark. This mark (label) define
are indicated by pattern 1 and pattern 2 in the same way as in the “b
summary functions are the same as for the case of two multivar
model is different. Instead of randomizing the dissimilarity matrix
mark) is randomly shuffled among the individuals of the community (i.e., the random 
labeling null model).  

Examples for this data structure are the pattern of all surviving vs. surv
forest community. In this case the analysis can reveal systematic diff
surviving and dead trees with respect to their phylogenetic neigh

Additionally, Programita allows you to conduct a type of trivariate 
Examples for this data structure are the pattern of all surviving vs.
together with the pattern of all large trees. For example, in this case
to find out if the species richness of dead small trees within distance
from that expected by random mortality of small trees. The phylogenetic mark correlation 
functions give the expected dissimilarity of large trees to surviving (or dead) small trees 
located at distance r.   

7.5.1 Data preparation for

0.02   17.71  1   5 
0.02  137.32  2  10 

the fifth column is optional and can carry an quantitative mark, however, this mark is
not yet used. 
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2) The file with species numbers and species acronyms (here file sim_12.txt) is a tab or 

owing format: 
1  SPECI1 

tance between the two species.  

at the species acronyms in the 
distance matrix and the species list must exactly match. 

 

analysis” in What do you want to do? 

ou want to analyze in Input data. Select the 
ype3_RL_Habitat_12.phy”.  

it 
ion) by 

ion. 

space delimited ASCII file with the *.txt extension and the foll

2  SPECI2 
3  SPECI3 
… 
10 SPEC10 

 

where the first column is the species number and the second column a 6 letter species 
acronym. 
 
3) The data file with distance matrix (here DistanceMatrix_Habitat_12.txt) which is a tab 
or space delimited ASCII file with the *.txt extension and the following format: 
 
SPECI1  SPECI2  0.7587 
SPECI1  SPECI3  0.9752 
SPECI1  SPECI4  0.6250 
SPECI1  SPECI5  0.4814 
SPECI1  SPECI6  0.0504 
SPECI1  SPECI7  0.1111 
SPECI1  SPECI8  0.4236 
SPECI1  SPECI9  0.0211 
SPECI1  SPEC10  0.5394 
 

where the first two column are the six letter species acronyms of the species pair and the 
hird column is the dist

Note that this file must be tab or space delimited and th

  

7.5.2 Multivariate analysis with a qualitative mark 
 
 

The analysis of a multivariate pattern with qualitative mark 
 
 

works completely analogously to the bivariate average analysis. The 
xample is based on the data file “DataType3RL_Habitat_12.phy” 

 
 e

which is identical to the data file for the univariate average analysis 
(DataType3_Habitat_12.phy), except that the label “1” or “2” was 
randomly assigned to the individuals of the community to yield 
approximately the same number of points of type 1 and type 2. This 
analysis can be accessed with the following sequence of actions:

 
 
 
 

1. Select “Phylogenetic 

2. Highlight data file y
example file “DataT

3. Click “List with coordinates, no grid” in MCFunction 

 Optionally you can estimate the cumulative spatially-explic4.
Simpson index (or phylogenetic mark correlation funct
selecting “cumulative” in Which method will you use. However, 
this somewhat slows down the estimation and there the better 
option for estimating the cumulative index is by using the 
Replicate opt  
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5. Provide in the window Multivariate analysis the bin width in data 
units, an appropriate ring width (use ring width of 1 if the 
analy
chang
analysis. 

sis takes long time and then the Replicate option to 
e the ring width), and a maximal distance r of the 

6. Provide the data file with species numbers and names (here 
file “sim_12.txt”) 

atrix_Habitat_12.txt) 

does not really make sense here. 

 exclude the focal species with the check 
fics. If you include conspecifics you 
etic Simpson index and if you exclude 
tain the phylogenetic mark correlation 

variate 

12. Go to the window Multivariate analysis and select the number of 
r the 

simulation envelopes (1). For demonstrative purpose use 39 

l 

7. Provide the data file with distance matrix (here 
DistanceM

8. For the community level analysis select “Mean of all 
species”. The species level analysis (i.e., “For one species”) 

9. You can include or
box With conspeci
obtain the phylogen
conspecifics you ob
function.  

10. Click “Calculate Index”. Programita now shows you the 
multivariate summary functions of the data. In window Select 

one test function you can select the different multi
summary functions.  

11. Click “calculate simulation envelopes” 

 
 
 

 
 
 
 

 
 
 

 
 

simulations of the null model (39), and the rule fo

simulations, but for serious analysis use at least 199. 

13. Select for the univariate analysis the random labeling null 
model “RandomLabeling”. This null model randomly 
shuffles the labels “1” and “2” of the individuals of the 
community. It is much slower than the species shuffling nul
model. 

18. Disable the option “With conspecifics”  

14. After clicking “Calculate Index” and running the 
simulations of the null model you can select in the window 
Select one test function among the different test functions. 
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15. With “Show pat 1” enabled, Programita shows the type 1 poin
marked multivariate pattern and with “Show pat 2” enabled
type 2 points. On the right you find the uni- and bivariate summary func

ts of the qualitatively 
, Programita shows the 

tions: 

 

The analysis shows clearly that the phylogenetic neighborhood does not differ 
between points of type 1 and type 2. This was expected because the label was 
randomly assigned to the points. This finding is also suppo
the student transformation: 

         type 1 around type 1                        type 2 around type 1 

rted by the GoF test with 

 

16. Note that when using the random labeling null model the diss
same in 

imilarity matrix is the 
all simulations of the null model.  

io o a  not show any departures from 17. As expected, the PISAR and rISAR funct ns d  lso
the random labeling null model: 
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Random labeling within species 

Similar to the standard random labeling for a simple qualitatively 
marked pattern, Programita allows you also to conduct the random 

 
 
 

labeling inside of the different species. If the label is surviving vs. 
dead, this null model thus conserves the observed mortality rates 
within species.   

To conduct random labeling inside of the different species enable the 
checkbox “within species” on the right of the Random labeling 
option.  

The results of the example show that the pointwise simulation 
envelopes become narrower which was expected because the 
variability in the assignment of type 1 or type 2 becomes smaller 
when forcing each species to maintain the frequency of type 1 and 
type 2 points.  
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7.5.3 Multivariate trivariate random labeling 

Programita allows you also to analyze spatial structures among indi
multivariate patterns were one of them is a qualitatively marked pa
study the potential impact of a focal multivariate pattern (e.g., large tre

viduals of two 
ttern. In this case you can 

es) on the qualitative 
es). Thus, in this 

trees) 
e second qualitatively marked multivariate pattern with 

) 

onal diversity of (say) 
s in the neighborhood of large trees differs from that of all (surviving and 

dead) small trees in the neighborhood of large trees. In contrast to “standard” trivariate 
random labeling that works at the species level (i.e., you have one univariate focal pattern 
and a qualitatively marked pattern), the multivariate trivariate random labeling works at the 
community level and is able to quantify additionally the impact of phylogenetic or functional 
distances among species.  

Using the ISAR family of summary functions, you can assess if the species richness (or the 
phylogenetic diversity) of dead trees within distance r of large trees differs from that of all 
small trees (i.e., surviving and dead).  

Using the Simpson family of summary functions, you can assess for example with the βphy(r) 
if the expected dissimilarity between a randomly selected large tree and a dead small tree at 
distance r differs from that of all small trees. If it would be significantly smaller, this means 
that small trees of species more similar to the focal large trees tend to have at distance r a 
higher risk of mortality than more distantly related small trees.  

.5.4 Data preparation for trivariate random labeling analysis 

For the multivariate analysis of trivariate random labeling you need three data sets: 

1. a data file with the location and species identity of all individuals in the two 
multivariate patterns. This is an ASCII file with *.phy extension. 

2. a data file with the species acronyms and the species numbers. This is an ASCII file 
with *.txt extension 

3. a data file with dissimilarity matrix. This is an ASCII file with *.txt extension 
 
1) The data files for analysis with a qualitative mark is given by one multivariate pattern 
which comprises two types of points (e.g., surviving vs. dead) that represent a qualitative 
mark. The data files must be an ASCII file with *. phy extension and have the following 
format (the example data file DataType3triRL_cluster10.phy): 

0 316 0 316 10101 
  304.98  203.69  3  1  100 
  305.31  219.24  3  1  100 
  289.91  249.78  3  1  100 
  176.71   76.73  1  1  100 
   34.70  199.96  2  1  100 
  155.62  185.90  1  1  100 
  159.68  168.80  1  1  100… 

marking of a second multivariate pattern (e.g., surviving vs. dead small tre
data structure you have: 
 the focal multivariate pattern (codes as type 3, e.g., large 
 th

o the pattern of type 1 (e.g., dead small trees) 
o the pattern of type 2 (e.g., surviving small trees

 
The analysis allows to find out if the species, phylogenetic or functi
dead small tree

7
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 the first line gives the dimension of the plot (316 × 316 units) in the example and the 
total number of points in the list (10,101 in the example) 

 

ives the species identifier (being an integer running from 1 to S). 
however, this mark is 

 
2) Names_random1.txt) is a tab 

r c mited ASCII file with the *.txt extension and the following format: 

 the species pair and the 

Note that this file must be tab or space delimited and that the species acronyms in the 

d in 

 

 “DataType3triRL_cluster10.phy”, the focal pattern of large trees 
ualitatively marked pattern of surviving and dead small 
 dead) and “2” (say surviving”). This analysis can be 
ce of actions: 

 
 

 the first two columns are the coordinates of the points 
 the third column gives the qualitative mark and must be “1” or “2” for the 

multivariate pattern with the qualitative mark (e.g., surviving or dead small trees) and
“3” for the focal pattern (e.g., large trees) 

 the forth column g
 the fifth column is optional and can carry an quantitative mark, 

not yet used. 

 The file with species numbers and species acronyms (here 
spa e delio

1  SPECI1 
2  SPECI2 
3  SPECI3 
4  SPECI4 
… 
 

where the first column is the species number and the second column a 6 letter species 
acronym. 
 
3) The data file with distance matrix (here Dist_Random1.txt) which is a tab or space 
delimited ASCII file with the *.txt extension and the following format: 
 
SPECI2 SPECI1  15.9161 
SPECI3 SPECI1  19.6389 
SPECI3 SPECI2  19.6389 
SPECI4 SPECI1  19.6389 
SPECI4 SPECI2  19.6389 
SPECI4 SPECI3  11.8997 
 

where the first two column are the six letter species acronyms of
third column is the distance between the two species.  

distance matrix and the species list must exactly match. 
  

7.5.5 Example of multivariate trivariate random labeling 

The example data set is based on “DataType3bi_cluster10.phy”, where the multivariate 
attern of large trees are an example of the “dispersal limitation” communities presentep

Wiegand et al. (2017) and the small trees were generated by a mixture of a random pattern 
(10%) and a Gaussian dispersal kernel (90%) around large trees with parameter σ = 10m 
where only 20% of the large trees generated offspring. The qualitative mark of the pattern
of small trees was randomly assigned. 

In the example data file
was coded with value “3”, and the q
trees was coded with value “1” (say
accessed with the following sequen
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1. Select “Phylogenetic analysis” in What do you want to do? 

elation function) 

r option for estimating the cumulative index is 
by using the Replicate option. 

alysis takes long time and then the Replicate option to 
e the ring width), and a maximal distance r of the 
sis. 

6. Provide the data file with species numbers and names (here 

vide the data file with distance matrix (here 

species” 

 exclude the focal species with the check 
fics. If you include conspecifics you 
etic Simpson index and if you exclude 
tain the phylogenetic mark correlation 

s you the 

te 
summary functions.  

er of 

ividuals of the community. It 

st functions. 

2. Highlight data file you want to analyze in Input data. Select 
the example file “DataType3triRL_cluster10.phy”.  

3. Click “List with coordinates, no grid” in MCFunction 

4. Optionally you can estimate the cumulative spatially-explicit 
Simpson index (or phylogenetic mark corr
by selecting “cumulative” in Which method will you use. 
However, this somewhat slows down the estimation and 
there the bette

5. Provide in the window Multivariate analysis the bin width in 
data units, an appropriate ring width (use ring width of 1 if 
the an
chang
analy

file “Names_random1.txt”) 

7. Pro
Dist_random1.txt) 

8. For the community level analysis select “Mean of all 

9. You can include or
box With conspeci
obtain the phylogen
conspecifics you ob
function.  

10. Click “Calculate Index”. Programita now show
multivariate summary functions of the data. In window Select 

one test function you can select the different multivaria

 
 

 

11. Click “calculate simulation envelopes” 

12. Go to the window Multivariate analysis and select the numb
simulations of the null model (39), and the rule for the 
simulation envelopes (1). For demonstrative purpose use 39 
simulations, but for serious analysis use at least 199. 

13. Select for the univariate analysis the random labeling null 
model “TrivariateRL”. This null model randomly shuffles 
the labels “1” and “2” of the ind
is much slower than the species shuffling null model. 

14. After clicking “Calculate Index” and running the 
simulations of the null model you can select in the window 
Select one test function among the different te
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15. The results show the pattern on the left. With “Show pat 1” enabled, Programita 
riate pattern and with 
 of the qualitatively 

variate summary functions 
 the focal (type 3) points and 

een the focal (type 3) 

shows the type 1 points of the qualitatively marked multiva
“Show pat 2” enabled, Programita shows the type 2 points
marked multivariate pattern. On the right you find tri
where the upper panels shows the relationship between
type 1 points and the lower panels shows the relationship betw
points and type 2 points: 

 

As expected, the analysis with the phylogenetic Simps
expected 

on index phy(r) shows that the 
dissimilarity between a randomly selected large tree (type “3”) and a 

dif r from that of the 
re shows the analogous 

rge es. Lack of spatial 
d tr s and large trees is 

rted by the GoF test with the student transformation: 

 β

surviving small tree (type “1”) located at distance r does not 
random mortality null model (top figure). The lower figu
summary function for dead small trees (type “2”) around la
phylogenetic structure in the relationship between small dea
also suppo

fe

tre
ee

         type 1 around type 1                        type 2 around type 1 

  

16. Note that when using the random labeling null model the dis
same in all simulations of the null model. 
 

similarity matrix is the 
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17. The species beta diversity captured by the Simpson index βS(r) 
does also not show any departures from the null model: 
 

 

 

 

18. The same is true for the ISAR:  

indicating that the species richness of dead small trees around 
large trees does not differ from the null expectation.  

19. As expected, the rISAR shows that the expected pairwise 
dissimilarity between the typical large tree and dead small 
trees of all other species within distance r do not differ from 
the null expectation:  

 
 
 

 
 
 
 
 
 

 

 

 

m labeling within species 
 
Rando

Similar
marked pattern, Programita allows you also to conduct the random 
labeling inside of the different species. If the label is surviving vs. 
dead, this null model thus conserves the observed mortality rates 
within species.   

To conduct random labeling inside of the different species enable 
the checkbox “within species” on the right of the Random labeling 
option.  

 to the standard random labeling for a simple qualitatively 
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random labeling, example DataType3tri_RL.res 
  

7.5.6 Individual analysis of trivariate random labeling 

that xpected under rand

Programita allows you to conduct individual analyses of trivariate random labeling based on 
the focal pattern of a given species (extracted from the multivariate focal pattern of type “3”) 
and a second, qualitatively marked multivariate pattern.  

For example, in the simplest case you can explore using the ISAR function if the species 
richness of dead small trees around the large trees of the given focal species f differs from 

e om mortality of the small trees. When consideri
s between species, you can explore using the PISAR 

function if large trees of a given species impact small trees in their neighborhood in a way 
that the phylogenetic (or functional diversity) of dead small trees differs from that expected 
under random mortality. One expectation would be that small trees of species more similar to 
the large focal individuals die with higher probability than more dissimilar species. 

The individual multivariate analyses of trivariate random 

 to 

Type3tri_cluster10.phy”.  

3. Click “List with coordinates, no grid” in MCFunction 

4. Provide in the window Multivariate analysis the bin width in 
data units (1), an appropriate ring width (use ring width of 1 
if the analysis takes long time and then the Replicate option 
to change the ring width), and a maximal distance r of the 

dividual analysis select “One focal species” and 

ou can include or exclude the focal species from the count 
pattern m with the check box With conspecifics. If you 
include conspecifics you obtain the individual phylogenetic 
Simpson index and if you exclude conspecifics you obtain 
the individual phylogenetic mark correlation function (see 
section 3.1.7.6 in Wiegand and Moloney 2014 and Shen et 
al. 2013).  

ng additionally 
phylogenetic or functional dissimilaritie

labeling can be accessed with the same sequence of actions as the 
standard average analysis: 

1. Select “Phylogenetic analysis” in window What do you want
do? 

2. Highlight data file you want to analyze in Input data. Select 
the example file “Data

analysis (50).  

5. Provide the data file with species numbers and names (here 
file “Names_random1.txt”) 

6. Provide the data file with distance matrix (here 
Dist_random1.txt) 

7. For the in
select the species number of the focal species (8 in the 
example) 

8. Y
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9. Click “calculate simulation envelopes” 

he number 

ing null 

e focal 

10. Go back to the window Multivariate analysis and select t
of simulations of the null model (199), and the rule for the 
simulation envelopes (5).  

11. Select for the univariate analysis the random label
model “TrivariateRL”. This null model randomly shuffles the 
labels “1” and “2” of the individuals of the community. It is 
much slower than the species shuffling null model. 

12. After clicking “Calculate Index” and running the simulations 
of the null model you can select in the window Select one test 

function among the different test functions. 

13. Select first “beta diversity 1 - F(r)” to obtain the individual 
spatially-explicit Simpson index that yields the probability that 
a dead small tree distance r away from a large tree of th
species 8 is a heterospecific: 

 
 

 

 

The analysis shows that there is, as expected by construc
 to the random m

tion of 
the data set, no difference ortality null model.  

14. A similar result holds for the ISAR function:  

  

The species richness of small trees around large tre
species 8 do nut differ

es of the focal 
 between surviving and dead small trees. 

 in the 
od of large focal trees:  

15. The PISAR functions do not indicate differences in the 
phylogenetic diversity of surviving vs. dead small trees
neighborho
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7.5.7 Series of individual ana  multivariate trivariate random

When running individual analyses one is in general interested to ob
in the community to understand va

lysis of  beling 

tain results for all species 
riability in individual responses. Therefore, Programita 

cal species that have a 
lysis an additional file 

ttings of the previous 

all ok button. 

 file, disable the checkbox 
“large”: 

la

offers the convenient possibility to run individual analyses of all fo
minimum number of individuals. Programita outputs for this series ana
with a results summary. To run the series of analyses based on the se
example follow the following steps: 

1. To load the settings from the previous example use the 
“Load Settings for Example” option. Highlight the file 
DataType3tri_RL_fs8.res and click the sm
Programita now loads all settings from this analysis.  

2. Enable the checkbox “Run all focal species” and provide the 
minimal number of individuals of the focal species (default 
value is 50). To save the *.rep

 

 

3. Select a summary function in window Select one test function, 
the *.res results file will use this test function.  

4. Click “Calculate Index” and Programita runs the individual 
analyses of all focal species with more than 50 individuals. 
To speed up to estimation, disable the options that plot the 
focal pattern after each simulation of the null model: 

 

5. Programita generates results files “name_fsp_nr_phy.res” 
and “mcf_name_fsp_nr_phy.rep” where “name” is the file 
name (here “DataType3triRL_cluster10”) and “nr” the 
number of the focal species. For example, the first results file 
in the series for species 1 is 
DataType3triRL_cluster10_fsp_1_phy.res.  

6. Programita also outputs a file with a results summary named 
“name.txt” where the name is the name of the data file (here 
“DataType3_Habitat_12”): 

 

 

 

 
 



  

 316 

itat_12_fs6.resMultivariate analysis, individual analysis, example DataType3_Hab
 

10. The results summary provides information on: 

nce for GoF test 

 for summary function that 

 focalsp:   the number of the focal species 
 name:    the acronym of the focal species 
 nrindiv1:  number of individuals of type 1 of the qualitatively marked pattern 
 nrind2:    number of individuals of type 2 of the qualitatively marked pattern 
 nrind3:   number of individuals of the focal multivariate pattern 
 rmin:     minimal distance for GoF test 
 rmax:     maximal dista
 tf:       number of summary function 
 was     “uni” or “bi” indicates if results are shown

quantify pairs of type 3 -1 (uni) and 3 - 2 (bi) points. 
 summary function: the summary function 

 Delta_p_f  



j

fjSf
1

P
1

1P    

 MPD_f    P / ffMPD   where f is the 

S

 11 i
jfj

i
jfjf focal s ecies and j indicates 

t over interval rmin to rmax 
 r.  
ce r.  

ance r.  
s at distance r. 

 sig( r)    indicates if there is a pointwise departure from the null model (1) or 

 
envelope over interval 1 to rmax/2 

ver interval 1 to rmax/2 
admax 

radmax 
ax 

 G-      lower global envelope over interval 1 to rmax 
 G+     upper global envelope over interval 1 to rmax 
 rank     rank of global envelope test over interval 1 to rmax 
 Effsize(  r) effect size for distance r 

 
 
 

p

type 1 points (univariate) and type 2 points (bivariate). 
 Rank:    the rank of the standard GoF tes
 SumSt( r)  the value of the summary functions at distance
 E-( r)     the value of lower simulation envelop at distan
 E+( r)    the value of upper simulation envelop at dist
 mean( r)   the expected value of the summary function


not (0)  
 
Additionally information on the global envelope test: 

 G-l      lower global envelope over interval 1 to rmax/2
 G+l     upper global 
 rank_l    rank of global envelope test o
 G-r      lower global envelope over interval rmax/2 to r
 G+r     upper global envelope over interval rmax/2 to 
 rank_r   rank of global envelope test over interval rmax/2 to radm
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7.6 Combine replicates for multivariate analysis 

tern under 

s. This is of particular interest if the 
. In this case the simulation envelopes 

Note that combining replicates works in the multivariate case only if the species list and the 
 the sam plicate plots (i.e., it must be a common matrix and a 

common species list including all species in all plots), but there is no problem if some species 
the plots. 

Combine replicates for multivariate analysis works in the same way as for mark correlation 
fun  temporary file 

 results. 

ler11 

    0    3   0.999353 613.801751   0.988690   3.564693   3.564693 2189.610864   15758.00 
0 615.290318   0.991088   4.963715   4.963715 3054.806301   18902.00 

    0    6   1.003077 617.437710   0.994547   8.035959   8.035959 4954.475959   24598.00 
    0    7   1.003720 617.016484   0.993868   9.637697   9.637697 5945.819098   27250.00 

o t2 refers to the normalized phylogenetic mark 
correlation function or the normalized phylogenetic 
Simpson index 

o t3 refers to the spatially explicit Simpson index (beta 
diversity) 

o t4 refers to the ISAR function, 
o t5 refers to the PISAR function, 
o t0 refers the rISAR function, and  
o t6 refers to phylogenetic co-occurrence function 

 

 

7.6.1 Combine replicates 

In some cases you may have data of several replicate plots of a larger point pat
y functions of the individual replicate identical conditions. In this case the resulting summar

plots can be combined into average summary function
number of points in each replicate plot is relatively low
of individual analyses would become wide, but combining the data of several replicate plots 
into average summary functions increases the sample size and thus narrows the simulation 

.  envelopes

dissimilarity matrix is e for all re

occur only in some of 

ctions. After each multivariate analysis with a distance matrix a
MCF_test.dat is created which is then renamed into mcf_name_phy.rep after saving

This is an example for the first few lines columns of the univariate part of a 
mcf_name_phy.rep output file: 
 
simnr    r   MCF11_t0  MCF11_t1     MCF11_t2  MCF11_t3   MCF11_t4 MCF11_t5     Zaeh
    0    0   0.994660 611.599757   0.985143   0.348398   0.348398 212.997979     3286.00 
    0    1   0.997803 614.284335   0.989467   1.158284   1.158284 710.371146     8286.00 
    0    2   0.997525 610.901445   0.984018   2.273656   2.273656 1394.035937   12460.00 

4   1.00127    0    
    0    5   1.001618 613.680947   0.988495   6.460728   6.460728 3977.493102   21960.00 

 
The columns of the file contain the following information: 

 simnr: number of simulation of the null model where 0 
 

indicates the observed data and 1, 2, … are the simulations of 
the null model. 

 r: the distance bin   
 MCF11_t0, MCF11_t1, …, MCF11_t5, MCF11_t6: the 

values of the different “univariate” summary functions where 
o t1 refers to the non-normalized phylogenetic mark 

enetic Simpson correlation function or the phylog
index,  
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 Zaehler11: the number of point pairs at distance r used for t1, t2, t3 and t6 (the 
denominator of the estimator equation (3.84) in Wiegand and Moloney (2014).  

 MCF12_t0, MCF121_t1, …, MCF12_t5, MCF12_t6: the values of different 
ate” multivariate summary functions. 

oint pairs at distance r used for t1, t2, t3 and t6. 

e 

       3.13300 

  

c 

he “SD phl 
ndard deviation.  

as combine the results of the summary functions of individual 
gle aggregated summary function. To this end they use the 

mber of points of the focal 
ion procedure consists 
y f nctions, in a second

ste malized functions [i.e., 
kd(r), Rf(r) and rISARf(r)] are obtained by dividing the aggregated non-
norm n constants.  

There e dissimilarity matrix 
and null m ilarity matrix but randomize the location of the 
individu ulation of the null 
model te aggregated normalization constants for each simulation of the 
null m izing the locations of the individuals does not 
ch ns constants do not change during the 
sim

  

corresponding “bivari
 Zaehler12: the number of bivariate p

 
Additionally, lines 8 and 9 of the *.res files contain the information on the normalization 
constants for the ISAR and PISAR function needed to estimate the rISAR. For example, lin
8 shows for a univariate analysis the following information: 
number points of foc/count of pattern 1 =   1038 /  11691    
exp phl dist11=    0.27212    
SD phl dist11=     0.2125  
ISAR11_exp=    10.00000    
PISAR11_exp= 
Simpson11_exp=  0.91129170 

where the number of focal points of pattern 1 (the first number: 1038 in the example) differs 
from the total number of points of the first multivariate pattern (the second number: 11691 in 
the example) if you select an individual analysis of a given focal species. In this case it is the 
number of points of the focal species.

The “exp phl dist11” refers to the normalization constant cd of the univariate phylogeneti
mark correlation function kd(r) (i.e., the mean phylogenetic distance between all pairs of 
individuals) if you exclude conspecifics and it refers to the normalization constant DP of the 
univariate phylogenetic Simpson index βphy(r) if you include conspecifics.  T
dist11” is the corresponding sta

The “ISAR11_exp” and “PISAR11_exp” are the normalization constants of the ISAR and 
PISAR, respectively, which are their corresponding asymptotes. They are needed to 
normalize the rISAR function (rISAR11_exp = PISAR11_exp/ISAR11_exp).  

The “ ” is the non-spatial Simpson index if you include conspecifics, Simpson11_exp

otherwise it has a value of 1.  
  

7.6.2 Aggregation formulas 

The aggregation formul
replicate analyses into a sin
additional information on the number of pairs of points or the nu
species (for individual analyses) saved in the *.rep files. The aggregat
of three ste  arps. In a first step we combine the non-normalized summ

p we combine the normalization constants, and finally, the nor
β

u  

phy(r), and PISA
alized summary functions by the aggregated normalizatio

is one smaller difference between null models randomizing th
odels that keep the dissim

als. Because the dissimilarity matrix is randomized each sim
, we have to estima
odel separately. However, since random

ange the dissimilarity matrix, the normalizatio
ulations of the null model.  
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Aggregation formulas for non-normalized summary functions 

ve two groups of estimators that work for several summary functions of the same We ha
family in the same way, one for the Simpson family summary functions (that are bas
second-order summary functions) and one for the ISAR family summ

ed on 
ary functions (that are 

y 

based on nearest neighbor summary functions).  

For example, the estimator of the spatially-explicit phylogenetic Simpson index is given b

    , ,

, ,i j 

( )
( )

)j r

dinates of the ith and jth point and the indicator function 

( )
( )phy r

De r
    

( iI x

P
ij i j

i j

I x x r
En r




 

x

where x  and x  are the coori j

)( rxxI ji   =1 if ji xx  < r and )( rxxI ji   = 0 otherwise. Thus, the denominator 

,
( ) ( )i ji j

De r I x x r    counts the number of pairs of points of the multivariate pattern 

that are distance r apart.  

The aggregation formula now takes advantage of the ratio nature of the estimator of βphy(r). 
Because we have for one plot p the estimator βphy,p(r) = Enp(r)/Dep(r) we generalize the ratio
estimator to P plots and obtain: 

    

 

1( ) ... ( )
( ) P

phy

En r En r
r  
  

1( ) ... ( )PDe r De r 

See Wiegand and Moloney (2014), section 3.2.1 and equation 3.107 for more detail o
underlying principles of this type of aggregation formulas. The same aggregatio

n the 
n formula 

βS(r), βphy(r) and cphy(r, I) and its individual versions (for one 
cal species). The formula applies also to the individual versions of the summary functions. 

The estimator of the non-normalized PISAR function for plot p is given by 

    

rn f 

” and in 
ction 

applies also for the other non-normalized summary functions of the Simpson family, 
including cd(r), Cd(r), αphy(r), 
fo

, ,( ) ( )f p fj fj pPISAR r D r  
1j

were the summary function D

S
P

fj,p(r) gives the proportion of individuals of the focal patte
that have a point of pattern j within distance r. This suggests an aggregation formula that is 
the weighted average of the PISAR functions of plots p, weighted with the relative 
abundances fp of the focal species f among all plots (section 3.2.1.2 in Wiegand and Moloney 
2014): 

    ,( ) ( ) ( )
P P S

P
f p f p p fj fjPISAR r f PISAR r f D r    . 

1 1 1p p j  

Note that you can also treat the analyses of the different focal species f as “replicates
this case the aggregation formula is identical to the community level average PISAR fun

    
1 1 1

( ) ( ) ( )
S S S

P
f f f fj fj

f f i

PISAR r f PISAR r f D r 
  

    .  
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Aggregation formulas for normalized summary functions 

Because the normalization constants represent the value of the corresponding summary 
function without spatial structure, we can obtain aggregation formulas for the normalization
constants based on the same principle as used for the summary functions. 

For the summary functions of the Simpson family

 

 that are based on pairs of points [i.e., cd(r), 

exemplified for the phylogenetic Simpson index D  in the following way: 

    

Cd(r), αphy(r), βphy(r) and cphy(r, I)] we can rewrite the normalization constants, as 
P

1 1,

1 1

1 1,

S S
P

i ij jS S
i jP P

i ij j S S
i j

i j
i j

n n
En

D f f
Den n


   

 

  
 

 
 

 

and obtain aga io wher ominator give
being  


 the summary function for an individual focal species f,  

 combine the normalization constant  

np/Dep = Enp /[(np (np - 1)]  

of P different plots p is given by: 

  

in a rat e the den s the total number of pairs of points, 

 n (n-1) for the case of one multivariate pattern (i.e., “univariate”) and  
 nf (n - 1) in case of
 n1 n2 for two multivariate patterns. 
 nf  n2 for two multivariate patterns but for an individual focal species f 

Thus, the aggregation formula to

Dp
P = E

    1 1 1

11 1

[ ( 1)] ( ) ... [ ( 1)]

[ ( 1)] ... [ ( 1)]

P P P
P PP P P

p p
pP P

n n D r n n D
D w D

n n n n 

   
 

      

were the weights wp are the relative number of pairs of points in each plot.  

The aggregation formula for the normalization constant P P

1

S

f fjj
S 


  of the PISAR is then 

 analog to the aggregation formula for the PISAR by given in

   ,
1

P P
P

f p f p
p

S f S


   

where the weights fp are the relative abundance of the focal species f among all plots p. Th
final normalized combined summary function is the combined non-normalized summary 
function divided by the combined normalization constant. 
 

e 
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7.6.3 Example for aggregation formulas 

The example file “DataType3_Com_18.phy” is one of the null communities of Shen et al. 
(2013) with intra- and interspecific competition among individuals separated by less than 5m. 

nities with 
int process was 

used where the strength of competition between two species was positively correlated (R2
adj 

> 0.95) with their ecological similarity. Thus, more similar species tended to locally exclude 
er, and as a consequence, phylogenetic evenness was expected to occur for plants 

located at distances below 5m (i.e. the range of direct competition) (scenario c6 in Table 1 of 
Shen et al. 2013). The community comprises ten species.  

e them into community level summary functions follow this 

 ok button. 

lue of dr = 1. This allows you 
ging the ring width and using the 

bining the replicates. You 
may also select for the phylogenetic co-occurrence function 
an interval of 0 to 0.5 (dissimilarities range between 0 and 1: 

Each species pair (a, b) was assigned an index of ecological similarity sim(a, b) that was 
randomly drawn from a uniform distribution between 0 and 1. To generate commu
phylogenetic spatial structure driven by competition, a multitype Strauss po

each oth

 
To conduct the analyses for the ten species individually and then 
combin
sequence of actions: 

1. Read the settings file “”DataType3_Comp_18.res in window 
Select a results file and click the small

2. Programita now reads all setting for the community level 
analysis.  

3. For the ring width select a va
for more flexibility in chan
cumulative functions when com

 

 

4.  Click “Calculate index” and Programita runs one analysis 
with the species shuffling null model at the comm
This are the results for the phylogenetic mark correlati
function and the rISAR function 

unity level. 
on 

 

 

 
 
 

The phylogenetic mark correlation function shows that 
individuals with distances below 5m are neighbored by 
individuals that a more dissimilar than expected by chance 
(i.e., the species shuffling null model). This result was 
expected by construction of the community. The cumulative 
rISAR shows a similar result, but here the significant 
departures have a somewhat larger range.  
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5. Now run the individual analyses for all focal species. To this 
le the check box “For 

all species >”. Because all species have more than 50 
end select “For one species” and enab

individuals, leave the value of 50. Additionally, enable the 
check box “large” to save both, the *.res and *.rep files. The 
latter contain all information needed to combine the 
replicates.  

6. Click  to run the individual analyses.  

7. Once all simulations are finished, close Programita and open 
it again. Click the button “Replicate” and a window for 
combining replicates opens: 

 
 
 
 

 

8. Highlight the files you want combine, 
they follow the name convention 
mcf_DataType3_Comp_18_fsp_nr_phy.
rep 
with nr being the n umber of the focal 

 it is the 5th lowest and highest 

species:  

species, here running from 1 to 10. The 
name is based on the name of the data file
DataType3_Com_18.phy.  

9. Give the “rule” for the simulation 
envelopes,
of 199 simulations of the species 
shuffling null model. Thus, write “5”.  

10. Click the button “Calculate joined 
statistics” and Programita combines the 
summary functions of the ten focal 
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11. To save the results of the combined analysis click the check 
box “Save results” that appears in the bivariate results graph 
and  

12. You can now change the ring width or obtain the 
corresponding cumulative summary function. For enlarging 
the ring width provide for example a value of 3 and c
small “ok” b

 

lick the 
utton and for obtaining the cumulative function 

Cclick “ um mcf”:   

 

 

 

 

 

13. The simulation envelopes of the combined sum
are sl
level analysis:  

mary functions 
ightly narrower compared with that of the community 

 
This is because the individual ana
do not have the same randomization of 

lyses across replicate plots 
the dissimilarity 

alysis de facto 
similarity matrix for 
me cases of the 

cur during the community 
ysis are “buffered”.  

matrix, but the community wide an
synchronizes the randomization of the dis
each focal species. Therefore, more extre
normalization constants that may oc
wide anal
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8 Multivariate analysis with null commun
 

ities 

ttern 

a -scale spatial 
endent of the overall 

ommunity structure, based on variants of the species shuffling 
null model that randomizes the dissimilarity matrix. In this case the locations of all 
individuals (as well as the species membership of the individuals) do not change. 

The point pattern null community approach is fundamentally different because it 
randomizes the locations of the individuals of the community (but no the dissimilarity 
matrix) by applying point pattern null model techniques that k

l explicit “null 
danc s of all and the 

between species (i.e., regional species-pool effects are removed), but 
randomize tree locations within each plot following spatial point-process models that 
resemble different (null) hypotheses on the presence or absence of mechanism such as 
dispersal limitation, habitat filtering, and interspecific species interactions (Wiegand and 
Moloney 2014; Wang et al., 2015, 2016, 2018). Thus, this approach can be used to test the 
relative importance of local mechanisms of species assembly tions of 

f their observed 
oloney 014). This allows 

ernative null c mmunities from the 
iterion.  

 Shen et al. 2009; 

 the random-placement hypothesis 
 the habitat-filtering hypothesis 
 the dispersal-limitation hypothesis 
 the combined habitat and dispersal hypothesis 
 the independent placement hypothesis 

The construction principle of all these null communities is similar. To generate one 
realization of a null community, the following steps are conducted. First, for each species s 
present in the plot a map is generated were the observed individuals are relocated following 
stochastic rules that correspond to the hypothesis underlying the null community. For 
example, the random placement null community represents the extreme case of a community 
without spatial structure where all species are completely randomly distributed and pairwise 
independent. In this case, the individuals of species s are relocated to random locations in the 
plot. Second, the randomized patterns of all species s are joined to obtain one realization of 
the null community. That means that all null communities conserve the observed plot-level 
species richness and relative abundances of species and are assembled by independent 
superposition of the species null model patterns. This corresponds to the assumption of no 
species interactions (Wiegand et al., 2012). Finally, this procedure is repeated as many times 
as realizations of the null community are desired (e.g., 199 or 999). The algorithms of the 
specific point process models have been described in detail by Wiegand and Moloney (2014) 
and Wang et al. (2015, 2018). 

8.1 Null communities for one multivariate pa

In the previous chapter we analyzed multivariate data sets to detect sm
correlations in the dissimilarities of neighbored individuals, indep
functional or phylogenetic c

eeping certain features of the 

ll

t 

patters unchanged, but randomizing others. It allows to simulate spatial
communities” that maintain the observed richness, the relative abun
pairwise dissimilarities 

. The summary func
the simulated null community patterns are then compared with that o
counterparts (Shen et al. 2009, Wang et al. 2011, Wiegand and M
for comparison of the support obtained by the different alt
data using e.g., log-likelihood functions and the Akaike information cr

Five types of spatially explicit null communities are mostly used (e.g.,
Wang et al. 2015, 2018): 

y-
e

 2
o
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) maintain always the observed species abundances, 

pairwise independence between species. Thus, the null communities are 

be done 

the 
 

. 

and et 

 it is also 
s 

cesses; Illian et al. 2008) or other mechanism. Ultimately even 
roaches are limited in detecting processes 
 the underlying dynamical (spatial) mechanisms 
ting dynamic and individual-based community 

ons (e.g., May et al. 2015, 2016), 
ulation models (e.g., Hartig et al. 

 

e given study area W. Significant deviations from this null 
model indicate existence of non-random spatial structures in spatial community diversity.  
 

These null communities 

1

2) maintain the observed dissimilarity matrix, 

3) show always 
assembled without considering the effects of species interactions,  

4) can maintain for each species s the observed larger-scale intensity function λs(x) that 
can be estimated parametrically (e.g., a log-linear regression model that determines the 
probability that a given small area xdx contains an individual of species s) or non-
parametrically (e.g., by using a kernel estimate of the intensity function), 

5) can maintain for each species s the observed small-scale aggregation. This can 
parametrically (e.g., by fitting a Thomas process to each species pattern and then using 
realizations of the Thomas process) or non-parametrically by using pattern-reconstruction 
(Wiegand et al. 2013). I provide a software for pattern reconstruction that generates 
multiple realizations of patterns that show the same summary functions as the observed 
pattern [e.g., g(r), L(r), Hs(r), D1(r), D2(r),…]. The files are already saved in a format to be 
read by Programita via the “from file” null model option. They can be directly used for 
individual analyses e.g., by using the ISAR or rISAR function, or for the analyses on the
community level they must be combined with the files of all other species into a *.phy file
Note that pattern reconstruction can also consider an intensity function λs(x) and therefore 
reconstruct patterns in a way that they reproduce faithfully the large-scale (intensity) and 
small-scale aggregation structures. For more detail on pattern reconstruction see Wieg
al. (2013) and Wiegand and Moloney (2014). 

The elements 3) to 5) can be combined into the five types of spatially explicit null 
communities mentioned above and described in more detail below. In principle
possible to use more complex null community models that incorporate species interaction
(e.g., Strauss or Gibbs pro
refined point pattern null community app

ribebecause they are static and do not desc
and processes directly. An alternative is fit
simulation models to point pattern summary functi
using methods of statistical inference for stochastic sim
2011, Lehmann and Huth 2015).  
 

8.1.1 The random-placement hypothesis 

This hypothesis assumes that all individuals in the study area are randomly and 
independently distributed. Thus, it fulfils properties 1) - 3) shown above, but it does not 
conserve the observed larger-scale intensity function (property 4) and it does not conserve 
the observed small-scale aggregation structure (5). This null community represents the 
extreme case of communities without spatial structure that do therefore not show distance
dependence in spatial community dissimilarity and its components. Note that the summary 
functions of the Simpson family of the random placement hypothesis are given by the 
corresponding normalization constants. 

To implement the random-placement hypothesis, Programita uses for each species s a 
homogeneous Poisson process model with the observed intensity λs (CSR) that assigns each 
tree a random location within th
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8.1.2 The habitat-filtering hypothesis  

This hypothesis assumes that the distribution of each species is only driven by local 

ve, do conserve the 

pecies s 
 habitat model then 

 

d 

l communities based on a non-parametric 
signed a 

he 

 
te, 
ore 

stification for this approach are given in Wiegand and Moloney (2014).   

 
ent null community 

Habitat filtering null community, 
approximated with heterogeneous 

 R = 20 

habitat suitability, but all further mechanism of species patterning are removed. Thus, the 
habitat filtering null communities fulfil properties 1) - 3) shown abo
observed larger-scale intensity function (property 4), but do not conserve the observed 
small-scale aggregation structure (5). 

To test the habitat filtering hypothesis, a habitat model must be derived for each s
that relates the observed species locations to environmental variables. The
provides the intensity function λs(x) to be used in an inhomogeneous Poisson process model 
to generate the realizations of the null model patterns for each species s. If a species does not
show significant relationships with environmental variables (or if it contains too few 
observations), the constant plot-scale density λs can be used instead of λi(x). Parametric 
intensity functions must be estimated outside Programita. 

The inhomogeneous Poisson process produces species patterns where the local density of 
individuals is proportional to the local habitat suitability given by λs(x), but no additional 
mechanisms of species aggregation (i.e., property 5 above) are considered. Significant 
deviations from this null model therefore indicate that mechanism and processes beyond 
habitat filtering are operating. However, departures from this hypothesis may also be cause
by missing environmental variables or extinction/recolonization dynamics where not all 
suitable areas are occupied by the species. 

A simplified version of the habitat filtering nul
intensity estimate is implemented in Programita. In this case each individual is as
random position within a neighborhood of distance R of its observed location. This is 
equivalent to a (box) kernel estimate with bandwidth R and yields a heterogeneous Poisson 
process. If the habitat changes typically at larger scales, a location distance R away from t
original location will most likely show similar habitat conditions. Thus, local random 
displacement of the individuals may remove effects caused by small-scale species 
interactions but place the individuals within similar habitats. This implementation of the 
habitat filtering null community requires an estimate of the bandwidth R which should be
larger than the distance where species interactions (e.g., competition or facilitation) opera
but below the typical scale of habitat change (i.e., a separation of scales). Examples and m
ju

 
Observed Random placem

Dispersal limitation community homogeneous Poisson Poisson,
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8.1.3 The dispersal limitation hypothesis  

erties 1) - 3) shown above, do not conserve the 
 

nealing 
 the 

ary functions such as the pair 

t 

 by 

e.  

f 

ons 
mmunity 

 

This hypothesis assumes that the in
fi tion. Th bitat dispersal  
communities fulfil properties 1) - 3) shown above, and conserves both, the observed larger-
scale intensity function (property 4) and the observed univariate small-scale aggregation 
structure of all species (5). Null communities resembling this hypothesis are best created like 
those generated by the dispersal-limitation hypothesis, but the relocation of individuals of 
species s is additionally constrained by the spatial intensity function λs(x) used in the habitat 
filtering hypothesis. This can be done by using heterogeneous pattern reconstruction 
(Wiegand et al., 2013).  

Significant deviations from this null model may result from unmeasured environmental 
factors that are ignored in the (log-linear regression) habitat models and by interspecific 
pecies interactions that are not considered (because the individual species patterns are 

posed). 

This hypothesis assumes that the community is only assembled by the effects of 
intraspecific aggregation or other mechanisms of population dynamics (e.g., dispersal 
limitation or negative conspecific density dependence) without consideration of the 
influences of habitat filtering or interspecific species interactions. Thus, the dispersal 
limitation null communities fulfil prop
observed larger-scale intensity function (property 4), but conserve the observed univariate
small-scale aggregation structure of all species (5).  

To implement this hypothesis, the flexible non-parametric homogeneous pattern 
reconstruction method should be used (although you could also use parametric methods of 
fitting cluster point processes). Pattern reconstruction is based on a non-parametric an
algorithm and able to create for each species null-distribution patterns that closely match
spatial structure of the original pattern as captured by summ
correlation function, the K-function and the kth nearest neighbour functions (for detail see 
Wiegand et al. 2013). Note that the dispersal limitation hypothesis null communities are no
implemented in Programita, the null model files for each species must be generated 
separately. The pattern reconstruction output files are already saved in a format to be read
Programita via the “from file” null model option. They can be directly used for the 
individual analyses e.g., by using the ISAR or rISAR function, but for the analyses on the 
community level they must be combined with the files of all other species into a *.phy fil

Homogeneous pattern reconstruction does not preserve the spatial intensity function λs(x) o
species s, but it preserves the observed overall aggregation (that can be co-determined by 
habitat filtering). Significant deviations from this null model indicate that habitat filtering 
and/or interspecific species interactions contribute to the observed patterns. 

A simplified version of the dispersal limitation null communities based toroidal shifts is 
implemented in Programita. Each species pattern is shifted a random vector and locati
outside the observation window are relocated based on torus geometry. This null co
conserves the univariate aggregation structure of each individual species (given that edge
effects due to the toroidal shifts are not too strong), but breaks their mutual dependence.  

  

8.1.4 The combined habitat and dispersal hypothesis 

 community is driven by the jo t effects of habitat 
 limitation nullltering and dispersal limita us, the combined ha

s
independently superim
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8.1.5 The independent-placement hypothesis 

fic 
tion 
 of 

 observed larger-scale intensity 
e of all 

es the 

inly as a 
all-

The independent placement hypothesis tests for local interspecific interactions by 
randomizing species independently of another while preserving the overall intraspeci
aggregation and the observed larger-scale distribution [i.e., the observed intensity func
λi(x)]. Thus, individuals of different species are placed at smaller scales without regard
each other (McGill, 2010). Thus, the independent-placement null communities fulfil 
properties 1) - 3) shown above, and conserves both, the
function (property 4) and the observed univariate small-scale aggregation structur
species (5). In this the hypothesis is very similar to the combined habitat and dispersal 
hypothesis, but it uses instead of the parametric intensity estimate the observed non-
parametric intensity estimate.  

Therefore, to test this hypothesis, one can use the method of the combined habitat and 
dispersal hypothesis, but a non-parametric kernel estimate of λi(x) with bandwidth R 
(Wiegand et al., 2013) replaces the parametric estimate. The non-parametric estimate 
basically smoothes the observed distribution pattern and therefore faithfully reproduc
observed larger scale variation in local tree density. Significant deviations from this null 
model can therefore only happen at distances r smaller than the bandwidth R, and ma
result of local interspecific species interactions (or imperfect pattern reconstructions or sm
scale edaphic factors).  
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 “Univariate” null communities implemented in Programita 

I implemented several simple null communities in Programita that allow you for quick 

 

 

8.1.6

checks of spatial structure in multivariate data sets: 
 CSR (random placement) 
 a non-parametric heterogeneous Poisson process (habitat filtering) 
 a global toroidal shift (dispersal limitation) 
 a local toroidal shift (combined habitat and dispersal limitation) 
 local and global random labeling 

These null communities can be accessed in the “multivariate analysis” null model window
via .  

However, more refined null communities such as that presented in Wang et al. (2015, 2018) 
need to be generated outside of Programita and uploaded with the “from file” option.  

All null communities maintain the observed abundances of the 
different species in the observation window.  

CSR (random placement) 

The CSR null community  (with parameter R = 0) 
assumes that all individuals of each species in the study area are 
randomly and independe

 
 
 
 

ntly distributed, and represents the extreme 
ase of communities without spatial structure. It implements the 

homogeneous Poisson process for each species.  

Non-parametric heterogeneous Poisson process 

The CSR null community with 

c

 (with parameter R > 0) 
moves each individual to a random position within distance R 
around the original location. It thereby maintains the larger scale 
distribution pattern of the species (that will be mainly caused by 
habitat association), but randomizes small-scale structures (that 
may be caused by species interactions). This null community 
therefore implements for each species a simple representation of 
the inhomogeneous Poisson process with a non-parametric intensity 
function based on a box kernel with bandwidth R. 

Toroidal shift 

The Torus null community 

 

 together with  and 
conducts for each species a toroidal shift (i.e., all individuals 

of a specie are displaced the same random vector and those landing 
outside the observation window are moved with torus geometry 
back to into the observation window). The toroidal shift null 

unities maintain the clustering of individual species, but 
ove potential spatial associations among species and potential 

s of species to habitat. The Torus null community 

comm
rem
association  

 
 
 
 

 

together with  applies only for data sets with two 
multivariate patterns (e.g., that of large trees and that of small trees) 
and moves the first multivariate pattern as a whole relative to the 
second one which is maintained. 
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Local toroidal shift 

The local toroidal shift null community 
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 (with 
parameter R > 0) together with  conducts for each species a 
local toroidal shift (i.e., all individuals of a specie are displaced the 

me random vector (with length < R) and those landsa ing outside the 

on potential associations to 

ntial spatial associations among species and potential 

r with 

observation window are moved with torus geometry back to into 
the observation window). The local toroidal shift null communities 
maintain the clustering of individual species and because each 
individual is moved not more than distance R of its original 
location, it also maintains in approximati
larger-scale habitat. However, this null community remove 
pote
associations of species to habitat. Because the species patterns are 
moved entirely with torus geometry, stronger edge effects my 
appear.  

Random labeling null communities 

The RL null community togethe

 

 conducts random 
 It is not really appropriate as null 

s based on this 
at association of 

ned, but i  

 
 

ed 
 

to one *.phy 
 file.  

labeling of the species label.
community model, but provided for completeness.  

For values of R > 0 the RL null community keeps the total density 
of all individuals at scale R (based on a non-parametric intensity 
estimate with a box kernel and bandwidth R) but places each 
species following a heterogeneous Poisson proces
intensity. In this null community the observed habit
individual species is not maintai t keeps the total density. 

From file 

This option allows you to read null community or null model files
that were created outside of Programita, for example by using the
pattern reconstruction software. For individual analyses, e.g., bas
on the ISAR family where only the individuals of the focal species
are relocated, you can use the pattern reconstruction output files 
directly. However, for analyses on the community level you need to 
join the individual species files of one realization in
null community

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
  

 331

ultivariate analysis with null communities, DataType3_Com18_uni.resM  
  

8.2 Analysis of one multivariate pattern based on null 

The first example file “DataType3_Com18.phy” is one of the null co
(2013) with intra- and interspecific competition among individuals se
Each species pair (a, b) was assigned an index of ecological similari
randomly drawn from a uniform distribution between 0 and 1. To ge
phylogenetic spatial structure driven by competition, a multityp
used where the strength of competition between two species was posi
> 0.95) with their ecological similarity. Thus, more similar species te
each other, and as a consequence, phylogenetic evenness wa
located at distances below 5m (i.e. the range of direct competition).

The univariate spatial structure of this null community (file Da
quite inte

communities 

mmunities of Shen et al. 
parated by less than 5m. 

ty sim(a, b) that was 
nerate communities with 

e Strauss point process was 
tively correlated (R2

adj 
nded to locally exclude 

s expected to occur for plants 
  

taType3 Com18_uni.dat) is 
resting and unusual (left below; DataType3_Com18_uni.res). If we conduct a 

 the community, regardless of species, we find that the 
e pair correlation function) declines up to distances of 

ous jum  (middle below) just 
 of the  function (middle).  

bine replicates to combine the 
on e type 

ther. he particular shape 
ed by th  intraspecific 

_

univariate analysis of all individuals in
neighborhood density (measured by th
r = 5m (due to competition), but shows afterwards a discontinu
outside the competition range. This behavior results in V-shape

If we analyze each species separately and then use com

p
L

univariate pair correlation functions to one average univariate functi
of hyperdispersion (right) as for the pattern of all individuals toge
of the pair correlation and K functions is therefore mostly caus
competition of the multitype Strauss point process.  

 

 we find the sam
 T
e
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M
  

8.2.1 Data preparation for analysis based on null communities 

r he multivariate null community analysis you need three (or four) types of data sets: 

le 

y) 

d the 

ple, 
escribed above,  

 the forth column gives the species identifier (being an integer running from 1 to S). 

2) The file with species numbers and species acronyms (here file sim10.txt) is a tab 
delimited ASCII file with the *.txt extension and the following format:  

1  SPECI1 
2  SPECI2 
3  SPECI3 
4  SPECI4 
5  SPECI5 
6  SPECI6 
7  SPECI7 
8  SPECI8 
9  SPECI9 
10 SPEC10 

The first column is the species number and the second a six letter species acronym. 
  

Fo  t

1. data files of the observed community and the null communities with the location and 
species identity of all individuals. This is an ASCII file with *.phy extension. 

2. a data file with the species acronyms and the species numbers. This is an ASCII fi
with *.txt extension 

3. a data file with the dissimilarity matrix. This is an ASCII file with *.txt extension. 

4. if the null communities or null model files were created outside Programita, you need 
additionally the *.phy null community files (for community level analysis) and the 
*.dat focal species null model files (for individual analysis e.g., with the ISAR famil

1) The multivariate data files must be an ASCII file with *. phy extension and have the 
following format: 

0 300 0 300 14473 
113.13   128.45   1   9 
186.36   206.32   1   5 
 53.40   152.03   1   2 
… 

where  
 the first line gives the dimension of the plot (300 × 300 units) in the example an

total number of points in the list (14,473 in the example) 
 the first two columns are the coordinates of the points,  
 the third column gives the “pattern” (always “1” for “univariate” as in the exam

but can be “1” or “2” for other data types as d
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3) The data file with distance matrix (here Competition_18.txt) which is a tab delimited 

e 6 letter species acronyms of the species pair and the third 
ce 

y files must have the same format as the *.phy data files. They must also 
have the sam e same species abundance distribution. The name 
of th  files must be the same, except the number at the end: 
 
DataType3_Com

e3_Com18_1.phy     (first null community) 

same 
 reconstruction 

software, th ady in the right format. If the original file of the focal 
spe SPECI3.dat, the reconstructed files will be named  
rec at 
rec at 
rec at 
…. 
rec at 

ame convention is that you only need to change the number of the focal species in the small 
text box 

ASCII file with the *.txt extension and the following format: 
SPECI1 SPECI2 0.0894 
SPECI1 SPECI3 0.5710 
SPECI1 SPECI4 0.2303 
SPECI1 SPECI5 0.4659 
SPECI1 SPECI6 0.0799 
SPECI1 SPECI7 0.4373 
SPECI1 SPECI8 0.3786 

      … 

where the first two columns are th
column is the distance between the two species. Note that this file must be tab or spa
delimited and that the species acronyms in the distance matrix and the species list must 
exactly match. 
 
4a) The null community files 

The null communit
e number of individuals and th

e data file and the null model

18_0.phy     (observed data of the community) 
DataTyp
DataType3_Com18_2.phy     (second null community) 
 
…. 
DataType3_Com18_39.phy     (last null community). 
 
4b) The null model files for the focal species 

The null model files of the focal species must be standard univariate *.dat files with the 
number of individuals as the observed focal species. If you use the pattern

e output files are alre
cies is named 
_SPECI3_1.d
_SPECI3_2.d
_SPECI3_3.d

_SPECI3_n.d

were the number of the simulations of the null model run from 1 to n. The advantage of this 
n

 and Programita automatically assembles the correct names of the null 
model files. However, the null model files of the focal species must exist!  
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8.2.2 Multivariate analysis with “from file” null commun
 

ities 

The mu d on null community files can be 
accessed with the following sequence of actions: 

1. alysis” in window What do you want to 

4. Optionally you can estimate the cumulative spatially-explicit 
genetic mark correlation function) 

data 
olution since 

5m), an 
appropriate ring width (here 5 bins = 1.25m), and a maximal 
distance r of the analysis (here 80bin = 20m). However, you 

e ring width 
later using the Replicates option.  

 
 
 
 
 

ltivariate analysis base

Select “Phylogenetic an
do? 

2. Highlight data file you want to analyze in Input data 

(DataType3_Com18.phy) 

3. Click “List with coordinates, no grid” in Data MCFunction 

Simpson index (or phylo
by selecting “cumulative” in Which method will you use. 
However, this somewhat slows down the estimation and 
there the better option for estimating the cumulative index is 
by using the Replicate option. 

5. Provide in the window Multivariate analysis the bin width in 
units (here use 0.25 to have a better spatial res
the competition effect occurs at distances below 

can also use a ring width of one and increase th

 
 

lude or exclude the focal species with the check 
nspecifics. For the phylogenetic Simpson index 

ith conspecifics”, for the phylogenetic mark 
unction disable this option.  

6. Write the names of the distance matrix 
(DistMatrix_Comp_18.txt) and the species list 
(Names_Comp_18.txt) into boxes 

7. For the standard univariate analysis select “Mean of all 
species”.  

8. You can inc
box With co
use option “W
correlation f

9. Click “Calculate index” and Programita estimates the 
different summary functions of the data. Select them in the 
window Select one test function: 

 
             phylog. mark correlation function     normalized PISAR                              rISAR 

  

The phylogenetic mark correlation function shows a clear signal of competition, up to 
distance r = 5m: there is phylogenetic evenness (i.e., species are neighbored by more 
dissimilar neighbors). However at distances larger than 5 m we observe a tendency to 
phylogenetic clustering.   

 334 
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The jump in the phylogenetic mark correlation function can be e plained by frequent 
 the istance between A 

and C is just outside the range of competition (say 6–10 m). Because species pairs AB 
 may show a small 

ndency towards phylogenetic clustering 
ith increasing 

ests that individual species are 
etically more dissimilar species. 

ecific ” access the spatially explicit 
impson index:

x
cases where three plants are arranged linearly as ABC where  d

and BC will be dissimilar (due to competition), the pair AC
phylogenetic distance. This explains the te
just outside the range of competition which disappears smoothly w
spatial distance. The PISAR function shows that phylogenetic diversity saturates only 
at about 10m whereas the rISAR functions sugg
surround within neighborhoods of 10m by phylogen

10. You can also select the option “With consp s
Simpson index (i.e., beta diversity) and the phylogenetic S   

           Simpson index β(r)                           phylogenetic Simpson index βphy(r)     rISAR 

The Simpson index shows that proportion of heterospecifics ha
approximately 92% at about 3-5m and then dramatically dec
89.5% at distances larger than 5m. The phylogenetic Simpson
the phylogenetic mark correlation function, and the rISAR is li
inclusion or not of conspecifics.  

 
11. Click “calculate simulation envelo

s  peak of 
line to values of about 

 index is very similar to 
ttle affected by 

pes” 

del (39) and 
lect for the 

ities the null model 
 

ed.  

data of community) 
DataType3_Com18_1.phy     (first null community) 

 
…. 
DataType3_Com18_39.phy     (last null community) 
 
To read the null community files add the trunk name: 

 

 a
s 

12. Select the number of simulations of the null mo
the rule for the simulation envelopes (1), and se
univariate analysis of null commun
“from file”. Usually 199 null communities (or more) are
recommend
 
The “from file” null model reads the null model patterns 
from files which need to have exactly the same structure as 
the file with the observed data. The name of the data file and 
the null model files must be the same, except the number at 
the end: 
 
DataType3_Com18_0.phy     (

DataType3_Com18_2.phy     (second null community) 

“DataType3_Com18_” and click the small “ok” button. 
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13.

superimposed to remove any signal of species interactions. 
Thus, this null community does not show effects of smaller-
scale species interactions which are incorporated into the 
data file by the multitype Strauss process. 

14. After enable the option “With conspecifics”, clicking 

dex β (r) 

 The null community in the example corresponds to the 
“dispersal limitation hypothesis” in Shen et al. (2009) and 
Wang et al. (2015, 2018). It assumes that the community 
would be assembled only by action of dispersal limitation 
and other internal mechanisms of population dynamics that 
can create intraspecific species patterns such as clustering, 
but that habitat filtering or species interactions do not 
influence the placement of trees. The species patterns of the 
null community were created by using non-parametric 
techniques of pattern reconstruction (Wiegand et al. 2013) 
to exactly conserve the observed species patterns, but the 
patterns of the individual species were independently 

“Calculate index” and running the simulations of the null 
model you can select with the window Select one test function 
among different test functions. 

 Select “phylog Simpson index” to see results for the 
phylogenetic Simpson in phy

 

which clearly indicates at distances below 5m higher 

 
lly explicit Simpson index βS(r) of the null 

communities. 

re 

ecies dissimilarities that does 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

than expected phylogenetic evenness, phylogenetic 
clustering at distances just outside the range of 
competition, and no effect afterwards. Note that the 
expectation of the βphy(r) (grey lines) yields the expected
spatia

Thus, the community shows strong spatial structu
caused by the particular univariate structure of the 
different species, but the observed data contain 
additional structure in sp
not exist in the null communities.  
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 Select “norm. phylog Simpson index” to obtain the 
P: 

 

normalized phylogenetic Simpson index βphy(r)/D

  
For null communities, the results of the normalized 
phylogenetic Simpson index differs from that of the non
normalized index only by the normalization constant D
For larger distances it approximates, as expected, a
of one. 

 Select “beta diversity 1 – F(r)” to obtain the spatially 
explicit Simpson index β(r) which yields the probabili
that two individuals distance r apart are

-
P. 

 value 

ty 
 of the same 

species. This summary function describes the (inverse) 
distance decay relationship: 

 
 
 
 
 
 
 

 

 
The analysis shows that the null communities that 
conserve the univariate spatial pattern of each species 
approximates the observed distance decay relationship, 
but does not fully explain it. This is because of the 
negative interspecific species inte  the Strauss 

 the 
ity 

ecies 
low more distantly related heterospecifics 

neighbors than expected). 

ractions of
process where species are not independently placed. 
However, the figure also shows that the largest 
contribution to species beta diversity stems from
intraspecific competition. The elevated null commun
values of β(r) = 1 – F(r) at distances smaller than 5m are 
caused by the hyperdispersion of the individual sp
patterns that al
to fill in.  
 
The observed pattern in the distance decay is a 
consequence of both, intraspecific competition and the 
hyperdispersion pattern of univariate neighborhood 
densities up to distances of 5m (i.e., fewer conspecific 
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 Select “ISAR” you obtain the average individual-species 

area relationship. Because departures from the null 
community are not visible in the standard ISAR plot use 
the 

 

 option that subtracts the expectation of the 
null community: 

You can also use the GoF test with the student transformation: 

 
 
 
 
 
 

      
The results show that the typical individual of the community is 
surrounded up to neighborhoods of 5m (= 20 bins) by fewer 
species than expected by pairwise independence of species (i.e., 
without small-scale species interactions). This was expected 

 5m 
x). 

because of the heterospecific competition and the reduced 
neighborhood density (right graph). For distances larger than
this effect fades away (note that the ISAR is a cumulative inde
Compare this behavior to that of the L-function of all points!  

 Select “normalized PISAR” to obtain the normalized 
PISAR function. the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 option that subtracts the
expectation of the null community:  

 

 

 
The result is similar to that of the average ISAR, but 
departures from the null community are somewhat 
weaker. The average PISAR is therefore driven to a larg
extent by the underlying species patterns which are 
captured by the average ISAR

e 

. 
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M
 

 Select rISAR to obtain the rISAR function.  

 

 
The rISAR indicates that the typi
community is surrounded up to neighborhoods of som
5m by more dissimilar species than expected by 
pairwise species independence.

cal individual of the 
e 

 The GoF test shows that 

5m (= 20 bins of 0.25m) (due to the competition of more 
similar species) and then declines smoothly (because it 
is a cumulative index): 

the phylogenetic evenness increases up to distances of 

 
Thus, phylogenetic diversity increases quicker than 
species diversity. This was expected because a species 
was more likely to be surrounded by more dissimilar 
species. 

15. After the analysis is finished save results with the “Save 
results option”  
 

 
 
To save results provide name. The resul r  

The *.rep file contains the detailed results of your analysis 
that allows you to reassemble them. However, you can only 
use the full features of this option if the ring width of the 
analysis was one.  

ts a e saved as file 
name_phy.res and mcf_name_phy.rep.  

16. The *.res file contains all your settings and can be used to 
load all settings to repeat the analysis (using option “Load 
Settings for Example”.  
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Phylogenetic mark correlation functions and null communities 

17. You can access the phylogenetic mark correlation function instead of the 
phylogenetic Simpson index. The difference is that you include or not conspecifics. 
To access the phylogenetic mark correlation function disable the option “With 
conspecifics”.  

18. After clicking “Calculate index” and run the simulations of the null model you can
select with the window Select one test fu n among different test functions: 

ed 
the normalizing constant 

 
etic Simpson index 

 
nctio

a. Select “non-norm. phylogenetic mcf” to obtain the non- normaliz
phylogenetic mark correlation function cd(r) (i.e., 
cd = 1). 
          non-normalized                                                 non-normalized
        phylogenetic mark correlation function            phylogen

 
Comparison with the phylogenetic Simpson index shows that the effect of 
pure species placement (captured by the Simpson index) is factored out and 
that the expectation of the null community is a constant without distance 
decay.  
 

he normalized phylogenetic 

d 
etic Simpson index 

b. Select “normalized phylogenetic mcf” to obtain t
mark correlation function kd(r): 
          normalized                                                        normalize
        phylogenetic mark correlation function            phylogen

 

The results of the normalized phylogenetic mark correlation function kd(r) 
show that the expectatio  f the null community yields indeed a value of one.  

ity graph appears as for 

, “PISAR” and “rISAR” 
lts without conspecifics.  

n o

c. If you select “beta diversity 1 – F(r)” the beta divers
the case where you include conspecifics. 

d. The results of the three summary functions “ISAR”
that include conspecifics are very similar to the resu
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Multivariate analysis with null communities, example DataType3_torus.res 
  

8.2.3 Toroidal shift null communities 

In the previous example I used the best possible implementation of 
the dispersal limitation null communities based on pattern 
reconstruction. Now I show that the shortcut of approxim

 
 
 
 

ating the 

toroid
seq

1. netic analysis” in window What do you want to 

2. 
(DataType3_Com18.phy) 

3. Click “List with coordinates, no grid” in Data MCFunction 

4. Optionally you can estimate the cumulative spatially-explicit 
Simpson index (or phylogenetic mark correlation function) 
by selecting “cumulative” in Which method will you use. 

5. 
tion since 

m). However, you 

 

 
dispersal limitation null communities through toroidal shifts 
produces very similar results. The multivariate analysis based on the 

al null communities can be accessed with the following 
uence of actions: 

Select “Phyloge
do? 

Highlight data file you want to analyze in Input data 

However, this somewhat slows down the estimation and 
there the better option for estimating the cumulative index is 
by using the Replicate option. 

Provide in the window Multivariate analysis the bin width in data 
units (here use 0.25 to have a better spatial resolu
the competition effect occurs at distances below 5m), an 
appropriate ring width (here 5 bins = 1.25m), and a maximal 
distance r of the analysis (here 80bin = 20
can also use a ring width of one and increase the ring width 
later using the Replicates option.  

 
 

6. Write the names of the distance matrix 
(DistMatrix_Comp_18.txt) and the species list 
(Names_Comp_18.txt) into boxes 

7. For the standard univariate analysis select “Mean of all 
species”. 

8. You ca
box W
use opt

9. es the 

n include or exclude the focal species with the check 
ith conspecifics. For the phylogenetic Simpson index 
ion “With conspecifics”, for the phylogenetic mark 

correlation function disable this option.  

Click “Calculate index” and Programita estimat
different indices of the data. Select them in the window Select 

one test function: 

 

  



  

 342 

Type3_torus.resMultivariate analysis with null communities, example Data
 

10. Select “calculate simulation envelopes” and click in the 
 null model “Torus”.   

ift 

“Multivariate analysis” window the

11. After enable the option “With conspecifics”, clicking 
“Calculate index” and running the simulations of the null 
model you can select with the window Select one test function 
among different test functions. 

12. Select “phylog Simpson index” to see results for the 
phylogenetic Simpson index βphy(r) 
 
       dispersal limitation                             toroidal sh

 

   

Comparison with the results of the dispersal limitation null 
communities above show that the toroidal shift communities 
provide a very good approximation.  

13. Select “ISAR” to obtain the average individual-species area
relationship. Because departures from the null community 

 

are not visible in the standard ISAR plot use the  
option that subtracts the expectation of the null
 
       dispersal limitation                            

 community: 

 toroidal shift 

  

14. Again, there is little difference between results. The same is 

                         toroidal shift 

true for the rISAR: 
 
       dispersal limitation    
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Multivariate analysis with null communities, example DataType3_torus20.res
  

8.2.4 Local toroidal shift null communities 

To show an example of the local toroidal shift null communitie
that approximately maintain the small-scale species aggregation
and the larger-scale intensity function, we c b e
example. 

s 
 

ontinue the a ov  

 

k in the 
“Multivariate analysis” window the null model “Torus” and 
“R = 20m”. That means that each species pattern is shifted by 
a random vector with length < 20 units (i.e., 5m).  

3. After enable the option “With conspecifics”, clicking 
Calculate index” and running the simulations of the null 
odel you can select with the window Select one test function 

among different test functions. 

4. Select “phylog Simpson index” to see results for the 
phylogenetic Simpson index βphy(r) 
 
       local toroidal shift                                toroidal shift 

1. Repeat the steps 1. - 9. from the DataType3_torus.res
example.  

2. Select “calculate simulation envelopes” and clic

“
m

 
 

 
 

 
Comparison with the results of the toroidal shift null 
communities above show very little differences. This shows 
that the local toroidal shift effectively removes small-scale 
associations. 

5. Select “ISAR” to obtain the average individua

 
 
 
 
 

l-species area 
relationship. Because departures from the null community 
are not visible in the standard ISAR plot use the 

 
 
 
 

 
ommoption that subtracts the expectation of the null c unity: 

  

 
 
 

6. Again, there is little difference between results. The same is 
true for the rISAR: 

 

 

  
 

 



  
Multivariate analysis with null communities, example DataType3_CSR.res

  

8.2.5 Random placement null communities 

We
pla
ran
following sequence of actions: 

 want to 

y-explicit 
tion) 

ulative index is 

sis the bin width in data 
nits (here use 0.25 to have a better spatial resolution since 

 5m), an 
appropriate ring width (here 5 bins = 1.25m), and a maximal 
distance r of the analysis (here 80bin = 20m). However, you 
can also use a ring width of one and increase the ring width 
later using the Replicates option.  

 
 
 
 
 
 

 now use the data of the previous example to present the random 
cement null communities. The multivariate analysis based on the 
dom placement null communities can be accessed with the 

1. Select “Phylogenetic analysis” in window What do you
do? 

2. Highlight data file you want to analyze in Input data 

(DataType3_Com18.phy) 

3. Click “List with coordinates, no grid” in Data MCFunction 

4. Optionally you can estimate the cumulative spatiall
Simpson index (or phylogenetic mark correlation func
by selecting “cumulative” in Which method will you use. 
However, this somewhat slows down the estimation and 
there the better option for estimating the cum
by using the Replicate option. 

5. Provide in the window Multivariate analy

u
the competition effect occurs at distances below

 
 

rd univariate analysis select “Mean of all 

s n ex 

correlation function disable this option.  

9. Click “Calculate index” and Programita estimates the 
different indices of the data. Select them in the window Select 

one test function: 

6. Write the names of the distance matrix 
(DistMatrix_Comp_18.txt) and the species list 
(Names_Comp_18.txt) into boxes 

7. For the standa
species”. 

8. You can include or exclude the focal species with the check 
box With conspecifics. For the phylogenetic Simp o  ind
use option “With conspecifics”, for the phylogenetic mark 
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Multivariate analysis with null communities, example DataType3_CSR.res 
 

10. Select “calculate simulation envelopes” and click in the 
odel “CSR, R =” 

with R = 0.  

tion 
ctions. 

 β (r) 

                random placement 

“Multivariate analysis” window the null m

11. After enable the option “With conspecifics”, clicking 
“Calculate index” and running the simulations of the null 
model you can select with the window Select one test func

among different test fun

12. Select “phylog Simpson index” to see results for the 
phylogenetic Simpson index phy

 
       dispersal limitation             

Because the random placement null community does not 
contain spatial structure, the expectation of the phylogenetic 
Simpson index βphy(r), which is up to a constant the same as 

sis with the community 
similar to the 

ted number of 
zone of influence and a 

ce.  

the spatially explicit Simpson index βS(r), is a constant and 
yields the DP. Comparison with the results of the dispersal 
limitation null communities show the degree of spatial 
structure maintained by the toroidal shift communities.  

13. Select “beta diversity 1 - F(r)” to spatially explicit Simpson 
index βS(r) and “ISAR” to obtain the average individual-
species area relationship. The analy
average ISAR function shows a pattern 
neighborhood density with a smaller than expec
species within the 5m competition 
higher number of species just outside the zone of influen

  
Again, there is large difference in the rISAR compared with 
dispersal limitation null communities 
 
           rs l limitation    

the 

dispe a                          random placement 

   

 
 

 

 
 

 
 
 
 

 

 
 

 
 
 

 
 



  

 346 

bitat1_CSR20.resMultivariate analysis with null communities, example DataType3_ha
  

8.2.6 Local random placement null communities 

To show an example of the local random placement null 
communities I use the example file “DataType3_habitat1.phy”, a 
simulated data set where 3183 individuals of 100 species are 
distributed in a 316 × 316 m plot. The community is only structured
by larger-scale habitat filtering, but doe

 
s not show additional effects 

2017) 
 Miller et al. (2017). 

riate analysis based on the local random ent null 
f 

actions: 

1. Select “Phylogenetic analysis” in window What do you want to 
do? 

2. Highlight data file you want to analyze in Input data 

x is 

a 

6. Provide the file with species numbers and names (here file 
“Names_Habitat1.txt”) 

7. Provide the data file with distance matrix (here 
Dist_Habitat1.txt) 
For the “univariate” analysis select “Mean of all species” 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

of species interactions. To generate the data, Wiegand et al. (
used the R package metricTester presented in
The multiva  placem
communities can be accessed with the following sequence o

(DataType3_habitat1.phy) 

3. Click “List with coordinates, no grid” in MCFunction 

4. Optionally you can estimate the cumulative spatially-explicit 
Simpson index (or phylogenetic mark correlation function) 
by selecting “cumulative” in Which method will you use. 
However, this somewhat slows down the estimation and 
there the better option for estimating the cumulative inde
by using the Replicate option. 

5. Provide in the window Multivariate analysis the bin width in dat
units (1m), an appropriate ring width (use ring width of 1 if 
the analysis takes long time and then the Replicate option to 
change the ring width), and a maximal distance r of the 
analysis (50). 

 
 

8. You can include or exclude the focal species with the check 
box With conspecifics. For the phylogenetic Simpson index 
use option “With conspecifics”, for the phylogenetic m
correlation function disable this option.  

ark 

9. Click “Calculate index” and Programita estimates the 
different indices of the data. Select them in the window Select 

one test function: 
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Multivariate analysis with null communities, example DataType3_habitat1_CSR20.res 
 

10. Select “calculate simulation envelopes” and click in the 
 “CSR, R =” 

with R = 20.  

 

 

“Multivariate analysis” window the null model

11. After enable the option “With conspecifics” and clicking 
“Calculate index”, Programita runs the simulations of the
null model. Programita shows on the left the observed 
community pattern and on the right the null-community 
patterns. The local random placement null communities 
maintain the larger-scale species distributions, but randomize
smaller-scale structures within 20m:  

 

12.  Select “phylog Simpson index” and “beta diversity 1 - F(
see results for the phylogenetic Simpson index β

r)”to 

dex βS(r) 
phy(r) and of 

the spatially-explicit Simpson in

  

13. However, at larger distances there is a small effect of the IS
and the PISAR:  

AR 

 
that is however mostly driven by the ISAR, as shown by the 
rISAR: 
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5.resMultivariate analysis with null communities, example DataType3_habitat1_Torus1
  

8.2.7 Local toroidal shift null communities 2 

To show an example of the local toroidal shift null communities I
use the example from above. Repeat steps 1) to 9) and then follow: 

1. Select “calculate simulation envelopes” and click in the
“Multivariate analysis” window the null model “Torus” a
R = 15. Now the pattern of each species is moved a rando
vector with length < 15 units. 

2. After enable the option “With conspec

 

 
nd 
m 

ifics” and clicking 
“Calculate index”, Programita runs the simulations of the 
null model. Programita shows on the left the observed 
community pattern and on the right the null-community 
patterns. The local toroidal shift null communities maintain 
the larger-scale species distributions, but randomize smaller-
scale structures within 15m: 

 
 
 

 

3. The phylogenetic Simpson index βphy(r) shows a small 
departure, but not the spatially-explicit Simpson index β (r): S

  

4. At larger distances there are smaller effects in the ISAR and 
the PISAR:  

 
The departures in the βphy(r), ISAR and PISAR are probably 
due to the edge effects in the toroidal shift that become visible 
because the communi hows large species patches 
that are cut in the middle by the border of the observation 
window.  

ty pattern s
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ultivariate analysis with null communities, view results M

 

8.2.8 View results of multivariate analysis with null 

 

communities 

1. Click “Load Settings for Example”, select file 
“DataType3_nullcom.res” with the example for the 
multivariate analysis with null communities, and click the 
small “ok” button.  

2. Select a ring width of 1 in the window Multivariate analysis. 

3. Click “Calculate Index” to run analysis.  

4. Click “Save Results” button and save results under the name
“DataType3_nullcom_dr1”:  

 
 
 

 
 
 

 

 
Programita saves the two files 
DataType3_nullcom_dr1_phy.res 
mcf_DataType3_nullcom_dr1_phy.rep 

5. Close and re-open Programita. 

6. To visualize results or to change the ring width or to ma

7. Click “Replicates” and select in the window that opens the 
results file you want to see 
(mcf_DataType3_nullcom_dr1_phy.rep): 

ke 
the Simpson indices cumulative, use the “Replicates” 
option. 
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Multivariate analysis with null communities, view results
 

 
8. Select file mcf_DataType3_nullcom_dr1_phy.rep, select 

the rule for the simulation envelopes (here the 1th lowest 

results graph is then shown: 
and highest) and then “Calculate joined statistic”. The 

 

 
The graph of the normalized phylogenetic Sim
looks quite rugged. Select a ring width of 5

pson index 
 and click the 

small “ok” button: 

 
The result is now much clearer.  

se the window Select one test 

obtain the 
 function that yields  

P

9. To select a different summary u
function 
 
Here you can additionally select “kd(r)” to 
phylogenetic mark correlation
 
kd(r) = (1/cd)βphy(r)/β(r)  
 
where the cd = D /D is the normalization constant: 
 

 
Now the effect of pure species placement (captured by the 
spatially-explicit Simpson index is factored out) and the 
kd(r) shows how the phylogenetic beta diversity changes 
relative to the species beta diversity.  
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Multivariate analysis with null communities, view results 
 

10. To obtain the cumulative version of the summary function
clique “Cum mcf” and then the small “ok” button. Now th
cumulative phylogenetic mark correlation function is 
shown:  

 
e 

 

 
The result of the cumulative function is similar to that of th
rISAR function: 

e 

 
 
 
 
 
 
 

 

 

11. Note that you can only change the r n  w
cumulative Simpson indices.  

i g idth for the con-

nction or the summary function with a different ring width 
12. You can also save the results of the cumulative summary 

fu
by using the “Save results” option.  
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al species area relationship Individu
  

8.3 Individual analysis of one multivariate pattern 

The individual s

l sp c e  to that of ran
in this case the community of all heterospecifics itself is unchanged, 
focal species are randomized by a suitable null model. This is a fund
between the individual analysis an

the focal species is locally surrounded by 

ummary functions such as the individual species area relationship ISAR 
(Wiegand et al. 2007) or the rISAR function (Wang et al. 2016) allow you to conduct the 
analysis from the viewpoint of the individuals of a given “focal” species. Individual 
summary functions quantify the biotic neighborhood of the individuals of the focal species 
by estimating the mean of the species richness, phylogenetic or functional diversity,... etc. of 
the neighborhoods with radius r around the focal individuals. The idea is then to compare 
the biotic neighborhood of the foca e i s dom locations in the plot. Thus, 

b  the locations of the 
a ental difference 

d the community level analysis.  

In case of the individual species area relationship ISAR (that estimates the expected species 
richness in the neighborhood with radius r around the typical individuals of the focal species; 
Wiegand et al. 2007) you can explore if the focal species is located in areas of lower or 
higher than expected species richness. The concept of the individual species area relationshi  
can also be extended to other summary functions of multivariate patterns. For example, using 
phylogenetic dissimilarity you can explore if 

he null model. 

ysis only the individuals of a given focal species f 
 individuals or species of 

gramita estimates 
riate” analysis would 

ness of large trees in the neighborhood of large 
ees of a focal species, and a “bivariate” analysis would be the species richness of small 
ees in the neighborhood of large trees of a given focal species. However, if the data file 

does not contain points of a second pattern, only the “univariate” analysis is conducted.  

The individual species area relationship ISARf(r) can be interpreted as the expected species 
richness within distance r of the typical individual of the focal species f and is estimated as:  

  

ut
m

p

ecologically more similar or dissimilar species than expected by t

Programita uses in the individual anal
(which are taken from the multivariate focal pattern 1) and counts
the multivariate focal pattern 1 or a second multivariate pattern 2. Pro
therefore always “uni” and “bivariate” summary functions. A “univa
be for example assessment of the species rich
tr
tr

1

( ) ( )
S

f fj fj
j

ISAR r D r 


  

where Dfj(r) is the probability that the nearest species j neighbor of an individual of the focal 
species f is located within distance r, and δfj is zero for conspecifics (i.e., f = j) and one for 
heterospecifics (i.e., f ≠ j). However, you can also include the focal species in the count, in 
this case 

  j
1

( ) ( )
S

f f
j

ISAR r D r


  

The individual (spatially-explicit) Simpson index βS,f(r) yields the probability that a point 
located at distance r of a point of the focal species f is a heterospecific and is estimated as: 

   r

where the pfj(r) are mark connections functions that yield the probability that of two 
individuals distance r apart the first is of type f and the second of type j.  

,

,
1 1

( ) ( ) ( )
SS

S f fj fj fj
j j

r p r p 
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Individual species area relationship 
 
The cumulative individual (spatially-explicit) Simpson index αS,f(r) yields the probability 

ed within distance r of an 
al of the focal species is heterospecific. Note that the index 1 – αS,f(r) describes the 

 
onal) 

that a randomly selected individual of the community that is locat
individu
local dominance of the focal species within a neighborhood of radius r.  

The individual species area relationship and the Simpson index can also be generalized to
include instead of the discrete δfj a continuous measure δP

fj of (phylogenetic or functi
dissimilarity between the focal species f and other species j. We obtain the phylogenetic 
individual species area relationship PISARf(r) (Wiegand and Moloney 2014): 

  
1

( ) ( )
S

P
f fj fj

j

PISAR r D r 


  

that quantifies the expected phylogenetic (or functional) diversity of species within the 
neighborhood with radius r around the typical individual of the focal species f. If the 
placement of the focal species f is unrelated with functional or phylogenetic relationships 
with their neighbors, the PISAR is proportionally to the ISAR and fully driven by the local 
species richness. 

To yield a function that is independent on local species richness within the neighborhood r 
we divide the PISAR function by the ISAR function: 

  
)(

)(
,

,1

1

rD
rrISAR

S

m
fm

m
fm

f






  

The rISAR

)(),(
,

rDmfd
S




f(r) function therefore yields the expected phylogenetic (or functional) distance 
between the typical tree of the focal species f and all other species within distance r. The 

normalization constant of the rISAR function yields P P1
1 1

S

f fjS j
 

   , the mean functional 

r

is 

logenetic relationships with their neighbors, the individual 
ogenetic Simpson index βf,phy(r) is proportionally to the individual spatially-explicit 
pson index βf,S(r) and therefore fully driven by the distance decay in species similarity as 

(or phylogenetic) dissimilarity between an individual of the focal species f and all other 
species in the plot. 

Analogously, the individual phylogenetic Simpson index yields 

   ,
1

( ) ( )
S

P
f phy fj fj

j

r p 


  

and is the mean pairwise phylogenetic distance taken over all pairs of individuals where the 
first is of the focal species f and the second individual (that can also be of the focal species) 
located distance r of the first individual. If the placement of the focal species f is unrelated 
with functional or phy
phyl
Sim
quantified by βf,S(r).  
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Individual species area relationship
 
To yield a function that is independent on the distance decay in species similarity we divide 
the βphy,f(r) by the βS,f(r) to obtain the individual phylogenetic mark correlation function 
kd,f(r): 

  
,

, 1
,

1, , ,

1

( )
( ) 1 1

( ) ( )
( ) ( )

P
fj fj S

f phy j P
f d fj fjS

jf S f d f d
fj fj

j

p r
r

k r p r
r c cp r





 








  





 

S

The normalization constant c  yields the expected phylogenetic distance of an individual of 
ocal species and a heterospecific individual taken randomly from the plot. 

rary 
n 

e or four types of data sets: 

1. data files of the observed community. This is an ASCII file with *.phy extension. 
 a data file with the species acronyms and the species identifier (species number). 

This is an ASCII file with *.txt extension 
3. a data file with the dissimilarity matrix. This is an ASCII file with *.txt extension. 

l 
r 

 with *. phy ext

14473 

 53.40   152.03   1   2 
   103.34   1   1 

where  

attern 1 
 

community properties of pattern 1; e.g., local species richness of large 
trees around large trees of a given focal species) and if patter 2 exists a “bivariate” 
analysis (taking the individuals of the focal species and estimating the neighborhood 
community properties of pattern 2; e.g., local species richness of small trees around 
large trees of a given focal species) 

 the forth column gives the species identifier (being an integer running from 1 to S). 

f,d

the f

The normalized individual phylogenetic mark correlation function kf,d(r) yields the 
expected phylogenetic distance of the typical individual of the focal species f to an arbit
selected heterospecific individual located at distance r, relative to its non-spatial expectatio
cf,d. 
 

8.3.1 Data preparation for analysis based on null communities 

For the individual multivariate analysis you need thre

2.

4. if you use the “from file” option, data files with the null model locations of the foca
species. This is an ASCII file with the *.dat extension and in the standard format fo
univariate point pattern analysis. 

1) The multivariate data files must be an ASCII file ension and have the 
following format: 

0 300 0 300 
113.13   128.45   1   9 
186.36   206.32   1   5 

 75.96
 … 

 the first line gives the dimension of the plot (300 × 300 units) in the example and the 
total number of points in the list (14,473 in the example) 

 the first two columns are the coordinates of the points,  
 the third column gives the “pattern” (“1” is the point belongs to the focal p

and “2” if the point belongs to the second patter 2. Programita conducts always an
“univariate” analysis (taking the individuals of the focal species and estimating the 
neighborhood 
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Individual species area relationship, example DataType3_ISAR.res 
 
2) The file with species numbers and species acronyms (here file sim10.txt) is a tab or 
space delimited ASCII file with the *.txt extension and the following format:  

1  SPECI1 
2  SPECI2 
3  SPECI3 
4  SPECI4 
 SPECI5 
 SPECI6 

7  SPECI7 
8  SPECI8 
9  SPECI9 

SPECI1 SPECI2 0.0894 
SPECI1 SPECI3 0.5710 
SPECI1 SPECI4 0.2303 

SPECI1 SPECI8 0.3786 

d 

h the *.dat extension, following the standard format 

  1064 

  16.77999    28.36763    1   0 
 200.
  18.
 216.
  60.
... 

5 
6 

10 SPEC10 

where the first column is the species number and the second column a 6 letter species 
acronym. 

3) The data file with distance matrix (here Competition_18.txt) which is a tab or space 
delimited ASCII file with the *.txt extension and the following format: 

SPECI1 SPECI5 0.4659 
SPECI1 SPECI6 0.0799 
SPECI1 SPECI7 0.4373 

SPECI1 SPECI9 0.6580 
SPECI1 SPEC10 0.4468 

       … 

iwhere the first two columns are the 6 letter species acronyms of the species pair and the th
column is the distance between the two species. Note that this file must be tab or space 

r

delimited and that the species acronyms in the distance matrix and the species list must 
exactly match. 
 
4) The univariate data files that describe the null model locations of the focal species must 
be a space or tab delimited ASCII file wit
for univariate point pattern analysis: 
0  300  0  300   
 153.95604    69.13256    1   0 

69017   247.38376    1   0 
00621    63.92836    1   0 
78976   147.36916    1   0 
95564   141.50468    1   0 

where  

 the first line gives the dimension of the plot (300 × 300 units) in the example and the 
total number of points in the list (1064 in the example) 

 the first two columns are the coordinates of the points,  
 the third and forth column must be always “1   0”) for univariate patterns. 

The null model files of the focal species must match that of the focal species (of the focal 
pattern 1) in the *.phy community data file.  

These files must have the name “name_n.dat” where “name” is a common string in the 
names of the files and “n” the number of the null model file that runs from 1 to the # of 
simulations (e.g., 39 or 199). 
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ple DataType3_ISAR.resISAR family and Simpson indices, exam
  

8.3.2 ISAR and Simpson indices with “from file” option 
 
 

The  “DataType3_Com18.phy” already used above for 
the ity analysis is one of the null communities of Shen 
et al. (2013) with intra- and interspecific competition among 
ind rated by less than 5m. Each species pair (a, b) was 
assigned an index of ecological similarity sim(a, b) that was 
ran  from a uniform distribution between 0 and 1. To 

 competition between two species was positively 

consequence, phylogenetic evenness is expected to occur for plants 
located .e. the range of direct competition) 
(scenar et al. 2013).  

The ind lationship and other individual 
analyse e following sequence of actions: 

ect “Phylogenetic analysis” in window What do you want to 

ith coordinates, no grid” in Data MCFunction 

at distances below 5m), an 
th (here 5 bins = 1.25m), and a maximal 

e 80bin = 20m). However, you 
ne and increase the ring width 
tion.  

ce matrix 
p_18.txt) and the species list 

mes_Comp_18.txt) into the boxes. 

sable this option. 

 
 
 
 
 
 
 

 example file
 null commun

ividuals sepa

domly drawn
generate communities with phylogenetic spatial structure driven by 
competition, a multitype Strauss point process was used where the 
strength of

 
 

correlated (R2
adj > 0.95) with their ecological similarity. Thus, more 

similar species tended to locally exclude each other, and as a 

 at distances below 5m (i
io c6 in Table 1 of Shen 

ividual species area re
s can be accessed with th

1. Sel
do? 

2. Highlight data file you want to analyze in Input data 

(DataType3_Com18.phy) 

3. Click “List w

4. Provide in the window Multivariate analysis the bin width in data 
units (here use 0.25 to have a better spatial resolution since 
the competition effect occurs 
appropriate ring wid
distance r of the analysis (her
can also use a ring width of o
later using the Replicates op

5. Write the names of the distan
(DistMatrix_Com
Na

6. Click “calculate simulation envelopes” to provide settings 
of null model 

7. To run the analysis for individual focal species (here species 
number 3) select the option “For one species” and provide 
the species number (3 in the example). 

8. You can include or exclude the focal species with the check 
box With conspecifics. For the phylogenetic Simpson index 
use option “With conspecifics”, for the phylogenetic mark 
correlation function di
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9. Select the number of simulations of the null model (39) and 
the rule for the simulation envelopes (1). Usually 199 (or 

re the 

n is that you only 
all 

more) realizations of the null model are recommended. 

10. To read for the individual analysis the files with the null 
model locations of the focal species (here number 3) select 
“from file” 
 
After clicking “from file” a small window appears where 
you have to write the trunk name of the null model files. In 
our example the full names of the null model files are 
rec_sp3_1.dat, rec_sp3_2.dat, ..., rec_sp3_39.dat whe
number of the simulations of the null model run from 1 to 
39. Programita adds the number of the focal species (3), 
therefore the trunk name in the example is “rec_sp”.  
 
The advantage of this name conventio
need to change the number of the focal species in the sm
text box 

 
 

 

 and Programita automatically 
assembles the correct names of the null mode
However, the null model files of the focal species must 
exist! For ex

l files. 

ample, if the focal species has number 1, the 
t, ..., 

al 

null model files will be rec_sp1_1.dat, rec_sp1_2.da
 
Finally click the small ok button. 

11. Clicking “Calculate index” to run the simulations of the 
null model. Programita shows the locations of the focal 
species (left) and that of the null model patterns of the foc
species (right): 
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The example data is one of the null communities of Shen et 

th 

rametric techniques of pattern reconstruction 
iegand et al. 2013) to exactly conserve the observed 

 

s 
area relationship ISAR (r) for focal species 3: 

al. (2013) with intra- and interspecific competition among 
individuals separated by less than 5m. The dissimilarity 
matrix “DistMatrix_Comp_18.txt” determines the streng
of competition between two species.  

The null model patterns of the focal species were created by 
using non-pa
(W
characteristics of the patterning of the focal species. This is
required to yield null model patterns that are independent 
from the observed pattern of all other species. 

12. You can select with the window Select one test function among 
different test functions. 

 Select “ISAR” to see results of the individual specie
f

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

 
 

To visualize departures from the null model better, enable the check box 
below the results graphs to shows the observed (and pointwise 

 result indicate that 
rrounded by fewer specie  

t the negative peak 
e of competition.  

 Select “beta diversity 1 - F(r)” to obtain the result of the individual and 
spatially-explicit Simpson index β (r) (left) 

simulation envelopes) minus the expected ISAR function. The
the focal species 3 is at distances between 3 and 8m su
than expected by the independence null model. Note tha
occurs exactly at distance 5m which is the maximal rang



s

f,S

    

The individual Simpson index βf,S(r) = 1 – Ff(r is an inverse measure of the 
non-cumulative local dominance of the focal species (the local dominance 
Ff(r) yields the probability that a randomly selected individual of the 
community that is distance r away from an individual of the focal species is 
conspecific).   

The result (left) shows that the competition caused a particular structure in 
distance decay that however was mostly explained by the univariate pattern of 
the focal species 3 (right). 

) 
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The student transformed simulation envelopes (you can 
access by clicking “GoF” and then selection “student”
show that there is a negative departure at distances o
approximately 4 to 5m. Thus, the focal species is not 
independently placed from the oth

) 
f 

er species. This is 
because of the negative interspecific species interactions 
of the Strauss process. There is weak signal of collective 
negative interactions at these distances.  

 To obtain a clearer signal of negative interspecific 
interactions select “cumulative” in Which method will you 

use and run the analysis again to obtain the 
corresponding cumulative measure of (inverse) local 
dominance αf,S(r) 

 
 
 
 
 
 
 
 

 

(the cumulative Simpson index αf,S(r) yields the 
probability that a randomly selected i d vidual of the 
com

nly up to 
the nearest neighbor whereas the Simpson index 
quantifies also larger scale structures).  

 n i
munity that is located within r away from the typical 

individual of the focal species is heterospecific). 

The student transformed simulation envelopes (you can 
access by clicking “GoF” and then selection “student”) 
show that there is a negative departure at distances 
larger than 3m. This result is very similar to that of the 
ISAR function, although the cumulative Simpson index 
αf,S(r) approaches the simulation envelopes at larger 
distances (this is clear because the ISAR looks o

 
 
 
 
cum 1-F(r): 

 
ISAR: 

 Select again “non-cumulative”, run the analysis and 
select “phylog Simpson index” to obtain the individual 
phylogenetic Simpson index βf,phyf(r): 

 
e results how that, as expected by generation of the 
ta, the focal species is surro

Th
da unded at distances below 
5m by more dissimilar species. Note the clear and 
correct indication of the scale effects at 5m. 
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 Select “cumulative” in Which method will you use to obtain 
the corresponding cumulative phylogenetic Simpson 
index αphy,f(r) 

 
 
 

  
The result shows that the focal species is su
distances of some 15m by phylogenetically more 
dissimilar species.

rrounded up to 

 However, this result is mostly driven 
by the underlying structures in local species richness as 
shown by comparison with the cumulative Simpson index. 

 Select “normalized PISAR” to obtain the normalized 
PISAR function:  

 
 

 

 

 
The result is similar to that of the average ISAR, but 
departures from the null community are somewhat 
weaker. The average PISAR is therefore driven to a larg
extent by the underlying species patterns which are 
captured by the average ISAR. Use the GoF test with th
student transformation to compare the departures with 
that of the ISAR. 

Select rISAR to obtain the rISAR functi

e 

e 

 on:  

 
 
PISAR 

 
ISAR 

 
The rISAR indicates that the typical individual of the focal 
species is surrounded up to neighborhoods of some 4m by 
more dissimilar species than expected by independence. 
Phylogenetic evenness increases  istances of 4m (= 

reases 
cted because 

a species was more likely to be surrounded by more 
dissimilar species. 

up to d
16 bins of 0.25m) (due to the competition of more similar 
species) and then declines smoothly (because it is a 
cumulative index). Thus, phylogenetic diversity inc
quicker than species diversity. This was expe

 
 
rISAR 
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13. After the analysis is finished save results with the “Save 
results” option  
 

 
 
To save results provide name. The results are saved as file 
name_phy.res and mcf_name_phy.rep.  

14. The *.res file contains all your settings and can be used to 
load all settings to repeat the analysis (using option “Load 
Settings for Example”.  

The *.rep file contains the detailed results of your analysis
that allows you to reassem

enetic ma
phylogenetic Simpson index. The difference is that you in
To access the phylogenetic mark correlation function di
conspecifics”. 

 
ble them. However, you can only 

use the full features of this option if the ring width of the 
analysis was one.  

 

 

8.3.3 Individual phylogenetic mark correlation functions  

15. You can access the individual phylog rk correlation function instead of the 
clude o onspecifics. 

sable the option “With 
r not c

 

16. After clicking “Calculate index” and run the simulations of th
select with the window Select one test function among different test functions: 

 Select “non-no

e null model you can 

rm. phylogenetic mcf” to obtain the individual non- 
ion function cd, f focal species 

          non-normalized individual                                non-normalized individual 
        phylogenetic mark correlation function            phylogenetic Simpson index 

normalized phylogenetic mark correlat
3. 

f(r) o

  
Comparison with the phylogenetic Simpson index show
pure species placement (captured by the Simpson index
that the expectation of the null model is a constan
expected, surrounded at distances between 1 to 5m by p
dissimilar species. 

s that the effect of 
) is factored out and 

t. The focal species 3 is, as 
hylogenetically more 
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 Select “normalized phylogenetic mcf” to obtain the results of the individual 
normalized phylogenetic mark correlation function kd,f(r): 
          normalized individual                                       normalized individual 
        phylogenetic mark correlation function            phylogenetic Simpson index 

  

The results of the normalized individual phylogenetic mark correlation 
 model yields indeed as 

diversity 1 – F(r)” the beta diversity is shown as before.  

ISAR” and “rISAR” 
 without conspecifics.   

.3.4 l analysis for ISAR with “from file” option 

ita is to conduct a series of 
dant (Wiegand et 

l 
s 

s in the 

 

  3, 4, and 
5 is rec_SPECI3_1.dat, rec_SPECI4_1.dat, rec_SPECI5_1.dat, respectively. The 
species list is the same, but Programita automatically assembles the file name by 
using the acronyms in the list of species numbers and acronyms (sim10.txt in the 
example). 

 
Method using species numbers 

1. 

2. 

function kd,f(r) show that the expectation of the null
expected a value of one. 

 If you select “beta 

 The results of the three summary functions “ISAR”, “P
that include conspecifics are very similar to the results

Series of individua8

The most interesting feature of the ISAR analysis in Program
analyses for all focal species of a community which are sufficiently abun
al. 2007). Because the individual analyses need data files of the null model of the focal 
species you must first generate these files. You also need a list in ASCII format with *.sp
extension that contains the number of the focal species to be analyze. The example file i
ISAR_spList.spl and it tells Programita to analyze focal species 3, 4, and 5: 
3 
4 
5 

There are two possible ways to code the null model data files for the focal specie
series of analysis procedure. Based on the example DataType3_ISAR.res: 

using the species number. In this case the first null model files of focal species 3, 4, 
and 5 are rec_sp3_1.dat, rec_sp4_1.dat, rec_sp5_1.dat, respectively.  
using the species acronym. In this case the first null model of focal species

Load settings from file DataType3_ISAR.res using the “Load 
Settings for Example” option.  

Programita now loads all settings from this analysis. Run the 
example analysis for focal species 3.  
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3. Enable the checkbox “For all species” and enable the check 

4. Select one test function

the *.res results file will use this test function.  

5. Click “Calculate Index” and Programita runs the individual 
analyses of all focal species in the list ISAR_spList.spl. To 
speed up to estimation, disable the options that plot the focal 
pattern after each simulation of the null model. 

6. Programita generates results files “nam
and if y
files  “m
name ( ) and “nr” the number of 

box ”list”. The window Select a list appears, select the list 
“ISAR_spList.spl” that contains the 3 focal species 3, 4, 5, 
and click the small “ok” button   

Select a summary function in window , 

e_fsp_nr_phy.res” 
ou check the checkbox “large”, it saves also the *.rep 
cf_name_fsp_nr_phy.rep” where “name” is the file 

here “DataType3_Com18”
the focal species.  

7. Programita also outputs a file with a results summary named 
“name.txt” where the name is the name of the data file (here 
“DataType3_Com18_series.txt”): 
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8. The results summary provides information on: 

 focalsp:   the species number of the focal species 
 name:    the acronym of the focal species 

t multivariate pattern 
te pattern  

 pattern)  

ariate” analysis (i.e., 
o multivariate patterns). 

in-rmax 
 r.  

imulation envelop at distance r.  
 E+( r)    the value of upper simulation envelop at distance r.  
 mean( r)   the expected value of the summary functions at distance r. 
 sig(r) )   )  0: inside simulation envelopes, -1: below simulation envelopes and  

                   1: above simulation envelops.  
 

Additionally information on the global envelope test: 

 G-l      lower global envelope over interval 1 to rmax/2 
 G+l     upper global envelope over interval 1 to rmax/2 
 rank_l    rank of global envelope test over interval 1 to rmax/2 
 G-r      lower global envelope over interval rmax/2 to radmax 
 G+r     upper global envelope over interval rmax/2 to radmax 
 rank_r   rank of global envelope test over interval rmax/2 to radmax 
 G-      lower global envelope over interval 1 to rmax 
 G+     upper global envelope over interval 1 to rmax 
 rank     rank of global envelope test over interval 1 to rmax 
 Effsize(  r) effect size for distance r 

 

 nr indiv1:  number of individuals of the focal species 
 nrind2:    number of individuals of the firs
 nrind3:   number of individuals of the second multivaria

                   (always 0 for analysis  with one multivariate
 rmin:     minimal distance for GoF test 
 rmax:     maximal distance for GoF test 
 tf:       number of summary function 
 was     “uni” or “bi” indicates if results are from “univ

                   one multivariate pattern) or “bivariate” (i.e., tw
 summary function 
 Delta_p_f  normalization constant of rISAR 
 MPD_f   normalization constant of kd(r) 
 Rank:    the rank of the standard GoF test over interval rm
 SumSt( r)  the value of the summary functions at distance
 E-( r)     the value of lower s
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Method using species acronyms 

ing the 1. Load settings from file DataType3_ISAR.res us
“Load Settings for Example” option.  

2. Programita now loads all settings from this analysis. Run the 
example analysis for focal species 3.   

3. Enable the checkbox “For all species” and enable the check 
box ”list”. The window Select a list appears, select the list 

cies 3, 4, 5.  “ISAR_spList.spl” that contains the 3 focal spe

4. Click also “Names” to tell Programita that the null model 
ally, click the 

”. Because the null model files are 
, the trunk 

 

res” 

files are composed by the species acronym. Fin
small “ok” button  

5. Click two times the box “from file” to open the window  
“Specify null model from file

named rec_SPECI3_1.dat, rec_SPECI4_1.dat, etc
name is “rec_”.  

6. Select a summary function in window Select one test function, 
the *.res results file will use this test function. Finally, click 
the small “ok” button 

7. Click “Calculate Index” and Programita runs the individual 
analyses of all focal species in the list ISAR_spList.spl. To 
speed up to estimation, disable the options that plot the focal 
pattern after each simulation of the null model.

8. Programita generates results files “name_fsp_nr_phy.
and “mcf_name_fsp_nr_phy.rep” where “name” is the file 
name (here “DataType3_Com18”) and “nr” the number of 

ec ethe focal sp i s.  

9. Programita outputs, as above, a file with a results summary 
named “name.txt” where the name is the name of the data 
file (here “DataType3_Com18_series.txt”). 

 
 

 
 

 
 

 



  
Individual analyses with simple null models, example DataType3_ISAR_Torus.res

  

8.3.5 Individual analyses and Programita null models 

I implemented several simple null models in Programita that allow you for quick checks of 
ll models are based on 

ove. However, while the null communities 
nalysis quantifies the 

ndomize only the 
 species at their 

om locations in the plot 
ween the community 

vel analysis. The null models implemented in Programita include: 

ring) 

ift (combined habitat and dispersal limitation) 

es in the observation 
cessed in the “multivariate analysis” null model window 

spatial structure in individual analysis of multivariate data sets. The nu
the Programita null communities presented ab
randomize the locations of all individuals in the community and the a
spatial structure of the null communities, the individual analyses ra
locations of the focal species and keep the individuals of all other
observed locations. Thus, basically, they compare different properties of the biotic 
neighborhood of the individuals of the focal species with that of rand
(i.e., the null model locations). This is a fundamental difference bet
level and the individual le

 CSR (random placement) 
 a non-parametric heterogeneous Poisson process (habitat filte
 a global toroidal shift (dispersal limitation) 
 a local toroidal sh
 local and global random labeling 

All null models maintain the observed abundances of the focal speci
window. The null models can be ac
via .  

However, more refined null communities such as that presented in W
be generated outside of Programita and uploaded with the “from file” option. 
 

a g et al. (2016) need to 

llowing sequence of actions: 

 

2. Highlight data file you want to analyze in Input data 

(DataType3_Com18.phy) 

3. Click “List with coordinates, no grid” in Data MCFunction 

4. Provide in the window Multivariate analysis the bin width in 
data units (here use 0.25 to have a better spatial resolution 
since the competition effect occurs at distances below 5m), 
an appropriate ring width (here 5 bins = 1.25m), and a 
maximal distance r of the analysis (here 80bin = 20m). 
However, you can also use a ring width of one and increase 
the ring width later using the Replicates option. 

5. Write the names of the distance matrix 
(DistMatrix_Comp_18.txt) and the species list 
(Names_Comp_18.txt) into the boxes.  

6. For the standard individual analysis select “For one species” 
and “3” for the number of the focal species.  

n  

8.3.6 Individual analysis and toroidal shift null model 

The multivariate analysis based on the toroidal null communities 
h the focan be accessed wit

1. Select “Phylogenetic analysis” in window What do you want to
do? 

 
 
 

 

 366 



  

 367

Individual analyses with simple null models, example DataType3_ISAR_Torus.res 
 

7. You can include or exclude the focal species with the check 
on index 

use option “With conspecifics”, for the phylogenetic mark 

ocal species 3: 

nstruction  

box With conspecifics. For the phylogenetic Simps

correlation function disable this option. 

8. Enable the checkbox “Calculate simulation envelopes” and 
select the “Torus” null model “Multivariate analysis”.  

9. Select the number of simulations of the null model (199) and 
the rule for the simulation envelopes (5). Usually 199 (or 
more) realizations of the null model are recommended. 

10. Click “Calculate index” and Programita estimates the 
different indices of the data.  

11. Select “ISAR” to see results of the individual species area 
relationship ISARf(r) for f
 
        toroidal shift                                     pattern reco

Comparison with the results of the pattern reconstruction null 
model show very little differences. This shows that the 
toroidal shift effectively removes small-scale associations. 

12. The phylogenetic Simpson index and the rISAR function show 
that the focal species 3 is up to 5m (20 bins of 0.25m) 

ar species 

surrounded by more dissimilar species as expected by random 
locations in the plot. The non-cumulative phylogenetic 
Simpson index shows also the jump to more simil
just outside the 5m zone of competition.  

        

13. Disable “With conspecifics”, repeat the analysis, and select 
“beta diversity 1 - F(r)” to obtain the result of the individ
phylogenetic mark correlation function k

ual 
ly 

 reconstruction 

f,d(r) that is large
unaffected by the pattern of the focal species:  
 
        toroidal shift                                     pattern
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8.3.7 Individual analysis and CSR null model 

The multivariate analysis based on the toroidal null communities can 

 want to 

 

iate analysis the bin width in data 

elow 5m), an 
ppropriate ring width (here 5 bins = 1.25m), and a maximal 

r, you 
can also use a ring width of one and increase the ring width 
later using the Replicates option. 

5. Write the names of the distance matrix 
(DistMatrix_Comp_18.txt) and the species list 
(Names_Comp_18.txt) into the boxes.  

ultivariate 
analysis” window with R= 0. 

9. Select the number of simulations of the null model (199) and 
the rule for the simulation envelopes (5). Usually 199 (or 
more) realizations of the null model are recommended. 

10. Click “Calculate index” and Programita estimates the 
different summary functions of the data and the null model.  

p to more 
n.  

be accessed with the following sequence of actions: 

1. Select “Phylogenetic analysis” in window What do you
do? 

2. Highlight data file you want to analyze in Input data 

(DataType3_Com18.phy) 

3. Click “List with coordinates, no grid” in Data MCFunction

4. Provide in the window Multivar

units (here use 0.25 to have a better spatial resolution since 
the competition effect occurs at distances b
a
distance r of the analysis (here 80bin = 20m). Howeve

6. For the standard individual analysis select “For one species” 
and “3” for the number of the focal species.  

7. You can include or exclude the focal species with the check 
box With conspecifics. For the phylogenetic Simpson index 
use option “With conspecifics”, for the phylogenetic mark 
correlation function disable this option. 

8. Enable the checkbox “Calculate simulation envelopes” and 
select the “CSR, R=” null model in the “M

14. The phylogenetic mark correlation function and the rISAR 
function show that the focal species 3 is up to 5m (20 bins of 
0.25m) surrounded by more dissimilar species as expected by 
random locations in the plot. The non-cumulative 
phylogenetic Simpson index shows also the jum
similar species just outside the 5m zone of competitio
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Data preparation for analysis of two multivariate patterns   

8.4 Two multivariate patterns using a dissimilarity matrix 

Programita allows you also to analyze spatial structures among individ
points of the same community. For example, you can analyze the phylo
small trees around large trees by using a “bivariate” p

uals of two types of 
genetic diversity of 

hylogenetic Simpson index. In this 
d the “counted 

” belong the second pattern of small trees. For example, the estimator of the 
e as for the “univariate” 

case, the “focal individuals” belong to the first pattern of large trees an
individuals
“bivariate” phylogenetic Simpson index is formally the sam
phylogenetic Simpson index: 

   (
1 1

) ( )
S S

Pr p rphy fm fm
f m

  , 
 

but now the mark connection functions pfm(r) yield the probability t
selecting a large tree and a small tree distance r apart, the large tree is
tree of type m. 

Based on the same principle, all summary functions, including those
focal species, listed in the overview table (

hat, hen randomly 
 of ype f and the small 

 based on an individual 
see below) can be applied in a “bivariate” manner. 

 first multivariate pattern (e.g., large trees) 
econd multivariate pattern (e.g., small 
e also be re-interpreted accordingly. 

 and D P  

w
 t

The focal individuals are always taken from the
and the counted individuals are always taken from the s
trees). Note that some of the normalization constant hav
For example, in the estimation of the indices DP

f

P

1 1

S S
P

ij i jD f f   and P
S

P

i j  1
f fj jD f , 

j

the fi refers to the relative abundance of species i within the first mult
the f

iva iate pattern whereas 
 multivariate pattern. The 

r
j refers to the relative abundance of species j within the second

same is true for of the indices SP: 

P

1 1

S S
P

i ij
i i

S f 
 

  . 

 

classifier non-spatial metrics  spatial metrics  spatial  

    A B C  A B C  condition 

F1 α S community SS SP ΔP*= SP/SS  )(rISAR  )(rPISAR  )(rrISAR   Dfs(r) 

F2 α S focal species Sf Sf
P Δ f

P= Sf
P/Sf  ISAR (r) PISARf f(r) rISARf(r)  Dfs(r) 

F3 α D community D DP cd = D /D  αP
S(r) αphy(r) Kd(r)  Kij(r)/K(r) 

F4 α D focal species Df Df
P cfd f = D P/Df  α (r) α (r)f,S f,phy  Kf,d(r)  Kij(r)/K(r) 

F5* β S community SS SP ΔP*= SP/SS  )(risar  )(rpisar  )(rrisar   dfs(r) 

F6* β S focal species Sf Sf
P Δ f

P= Sf
P/Sf  isar (r)f  pisarf(r) risarf(r)  dfs(r) 

F7 β D community D DP cd = DP/D  βS(r) βphy(r) kd(r)  gij(r)/g(r) 

F8 β D focal species Df Df
P cfd f = D P/Df  β (r) βf,S f,phy(r) kf,d(r)  gij(r)/g(r) 

*Metric families F5 and F6 that are based on the non-cumulative probability density function dij(r) of the 
distances to the nearest species j neighbor have not been used to date. 
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xample DataType3bi_cluster10.resMultivariate analysis, e
  

ile 

rity matrix. This is an ASCII file with *.txt extension 
4. if the null communities or null model files were created outside Programita, you need 

additionally the *.phy null community files (for community level analysis) or the 
*.dat focal species null model files (for individual analysis e.g., with the ISAR family) 

terns. For example, the focal pattern could be that of large trees and the 
 

 187.55   11.82   1     4  100 
 308.96  138.19   1     5  100 
   5.14  210.25   1     6  100 
 176.71   76.73   2     1  100 

 the first line gives the dimension of the plot (316 × 316 units) in the example and the 
total num r of points in the list (10,101 in the example) 

 the first two columns are the coordinates of the points 
 lumn gives the pattern: “ or the first focal m attern (e.g., 

s) and “2” f ariate pattern rees) 
 the forth column gives the species identifier (being an integer running from 1 to 
 th f  is optio l a ry  quantitative mark, however, this m

n y

 T  f w  b  a  acronyms (here file Names_random1.txt) is a 
 (  c C e .tx e on an ollo ormat: 
S CI
S CI

 

8.4.1 Data preparation for analysis of two multivariate pattern 

For the multivariate analysis you need three (or four) data sets: 

1. a data file with the location and species identity of all individuals in the two 
multivariate patterns. This is an ASCII file with *.phy extension. 

2. a data file with the species acronyms and the species numbers. This is an ASCII f
with *.txt extension 

3. a data file with dissimila

 
1) The data files for “bivariate” average analysis to detect phylogenetic (or functional) 
spatial structure in the fine-scale placement among individuals of two types are given by two 
multivariate pat
second pattern that of small trees. The data files must be an ASCII file with *. phy extension
and have the following format (the example data file DataType3bi_cluster10.phy): 
 
0  316  0  316  10101 
 304.98  203.69   1     1  100 
 236.99  311.00   1     2  100 
 289.42  171.37   1     3  100 

  74.92   29.00   2     2  100 
 271.00   39.00   2     3  100 
 236.51  164.10   2     4  100 
 227.24   31.34   2     5  100 
… 

be

the third co
large tree

1” f
or the second multiv

ultivariate p
 (e.g., small t

S). 
 e ifth column na nd can car an ark is 

ot et used. 
 
2) he ile ith species

e) delimited
num ers nd species

 with the *tab or spa  AS II fil t xtensi d the f wing f
1  PE 1 
2  
… 

PE 2 

9  SPECI9 
10 SPEC10 

…. 

where the first column is the species number and the second column an up to 6 letter species 
acronym. 
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Multivariate analysis, example DataType3bi_cluster10.res 
 
3) The data file with distance matrix (here Dist_random1.txt) which is a tab (or space) 

 

lso 

nd: 

 data of the community) 
 community) 
ull community) 

l community). 

species 

e null model files of the focal species must be standard univariate *.dat files with the same 

ginal file of the focal 
med  

delimited ASCII file with the *.txt extension and the following format: 

SPECI2 SPECI1  15.9161 
SPECI3 SPECI1  19.6389 
SPECI3 SPECI2  19.6389 
SPECI4 SPECI1  19.6389 
SPECI4 SPECI2  19.6389 
SPECI4 SPECI3  11.8997 
SPECI5 SPECI1  19.6389 
…. 
 

where the first two column are the six letter species acronyms of the species pair and the 
third column is the distance between the two species.  

Note that this file must be tab or space delimited and that the species acronyms in the 
istance matrix and the species list must exactly match. d

 
4a) The null community files 

The null community files must have the same format as the *.phy data files. They must a
have the same number of individuals and the same species abundance distribution. The name 
of the data file and the null model files must be the same, except the number at the e
 
DataType3_Com18_0.phy     (observed
DataType3_Com18_1.phy     (first null
DataType3_Com18_2.phy     (second n
 
…. 
DataType3_Com18_39.phy     (last nul
 
4b) The null model files for the focal 

Th
number of individuals as the observed focal species. If you use the pattern reconstruction 
software, the output files are already in the right format. If the ori
species is named SPECI3.dat, the reconstructed files will be na
rec_SPECI3_1.dat 
rec_SPECI3_2.dat 
rec_SPECI3_3.dat 
…. 
rec_SPECI3_n.dat 

were the number of the simulations of the null model run from 1 to n. The advantage of this 
name convention is that you only need to change the number of the focal species in the small 
text box  and Programita automatically assembles the correct names of the null 

However, the null model files of the focal species must exist!  model files. 
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ns, example DataType3bi_obs.res

 
Null communities for two multivariate patter

  

8.4.2 Example file for two multivariate patterns 

I show an example for the analysis of two  multivariate patterns that is based on the data file 
hy”. The first multivariate pattern (i.e., large trees) is an example 
” communities presented in Wiegand et al. (2017). It mimicked 
g for each species a Thomas cluster process with parameters σ = 

to each other. The dissimilarity 
e R 
ees 

ontain phylogenetic spatial structure or 

ted by a mixture of a random 
 (90%) around the individuals of the first 

eter σ = 10m where only 20% of the large trees generated 

“DataType3bi_cluster10.p
of the “dispersal limitation
dispersal limitation by usin
5m and ρ = 0.0002/m2. Species were placed without regard 
matrix and species abundances were taken from a “random community” generated with th
package metricTester presented in Miller et al. (2017). Thus, the spatial pattern of large tr
is only governed by dispersal limitation and does not c
structure due to habitat filtering. 

The second multivariate pattern (i.e., small trees) was genera
pattern (10%) and a Gaussian dispersal kernel
multivariate pattern with param
offspring: 

first multivariate pattern                               second multivariate pattern 

 

Thus, there is also no spatial phylogenetic structure within the small trees and no spatia
re between small and large trees. However, due to the dispersal kernel, 

l 

ecay of similarity between the community of small and large trees.  
phylogenetic structu
there is a distance d
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 The grid-based standard analysis  

Com g soon 

9

 
in

 

10 Using Programita in the mode for object of finite size 
and real shape 

 
Coming soon 
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