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INTRODUCTION 

 
This short paper deals with the location of Titanic’s Center of Buoyancy (B), Center of Gravity 
(G) and Metacenter Height (M) on the night of April 14, 1912. The location of these three points 
determine how stable the ship was in her intact condition before she was damaged by an 
encounter with an iceberg. It is also of interest to anyone wanting to build an accurate floating 
replica of the ship. In addition to these, the ship’s longitudinal center of floatation (LCF) is also 
derived. 
 

BACKGROUND 
 
When a ship is floating at rest in calm water, it is acted upon by two sets of forces: 
 

1. the downward force of gravity, and 
2. the upward force of buoyancy. 

 
The force of gravity is the result of a combination of all downward forces including the weights 
of all parts of the ship’s structure, all the equipment, cargo, fuel and personnel. This combined 
force is the weight of the ship, and may be considered as a single force which acts downward 
through a single point called the center of gravity (G). This force is equal to the ship’s 
displacement in tons and usually lies on the ship’s centerline near the ship’s midship section 
under normal trim conditions. 
 

 
 
The force of buoyancy is also a combined force which results from the pressure of seawater on 
all parts off the ship’s hull below the waterline. At almost every point on the submersed hull, the 
pressure of the seawater acting on the hull can be broken into two perpendicular components, 
one in a horizontal direction and another in a vertical direction.1 Horizontal pressures on the hull 
of a ship cancel each other under normal conditions, as there are equal forces acting in opposite 
directions. However, the vertical pressures add up to a single force of buoyancy equal to the 
                                                 
1 On parts of the submerged hull that are truly vertical, there is only a horizontal component of pressure acting on it; 
while on those parts of the submerged hull that are truly horizontal, there is only a vertical component of pressure 
acting on it. 



ship’s displacement in tons that may be regarded as acting vertically upward through a single 
point called the center of buoyancy (B). The center of buoyancy is the geometric center of the 
ship’s underwater body and lies on the centerline and usually near the midship section when the 
ship is on an even keel. Its vertical height above the keel is usually a little more than half the 
draft of the vessel. 
 

 
 
When a ship is at rest on an even keel in calm water, the forces of buoyancy (B) and gravity (G) 
are equal and opposite, and lie in the same vertical line, as shown in the figure below. 
 

 
 
A ship may be disturbed from rest by conditions which tend to make it heel over to an angle. 
These include such things as wave and wind action, forces during a turn, shifting of weights or 
location of weights off-center. When a disturbing force exerts an inclining moment to the vessel,  
the ship’s underwater body changes shape. The center of the underwater volume is shifted in the 
direction of the heel which causes the center of buoyancy to relocate off of the vessel’s centerline 
(originally at B) and move to the geometric center of the new underwater body (at B’). As a 
result, the lines of action of the forces of buoyancy and gravity are no longer acting in the same 
vertical line, but are separated thereby creating what is called a righting moment that wants to 
restore the ship back onto an even keel as shown below. 
 



 
 
The righting moment is usually taken about the center of gravity point. It is the product of the 
force of buoyancy times the distance GZ that separates the line of action of the buoyancy force 
from the center of gravity as shown. The distance GZ is called the “righting arm.” Since the 
force of buoyancy must equal the weight of the ship, the restoring moment is simply equal to the 
ship’s displacement in tons times the length of the righting arm in feet. The result will be in foot-
tons. 
 
A ship’s metacenter (M) is the intersection of two successive lines of action of the force of 
buoyancy as the ship heels through a very small angle. When the ship is on an even keel, the 
buoyant force is directed along the line from B through G. When the ship is heeling, the buoyant 
force is directed upward from B’ passing through Z to the point where it intersects the original 
buoyant force line. For a small angle of heel, about 10° or less, that intersection point will remain 
essentially stationary. It is called the initial position of the transverse metacenter. The initial 
position of the metacenter is most useful in the study of translational stability because of the 
relationship between the “righting arm” (GZ) and the “metacentric height” (GM) above G. That 
relationship is given by the equation: 
 

GZ = GM sin θθθθ 
 
and for small angles of θ, GZ ≈≈≈≈ GM θθθθ/57.3, where θ is expressed in degrees. 
 
Since the righting moment is equal to the force of buoyancy times GZ, and since the force of 
buoyancy must equal the ship’s displacement weight (W) in tons, the righting moment in foot-
tons for small angles of heel is given by: 
 

Righting Moment ≈≈≈≈ GM θθθθ W/57.3 
 
where again GM is in feet, W in tons, and θ in degrees (for θ ≤ 10°). 
 
It should also be pointed out that the distance BM, from the center of buoyancy (B) to the 
metacenter (M) when the ship is on even keel is called the “metacentric radius.” 



 
We can see from the above that GM is an indicator of the ship’s initial stability. If M is above G, 
as shown in the figure above, the metacentric height is positive and the moment which develops 
when the ship is inclined will be a righting moment tending to bring the vessel back to an even 
keel. The ship is stable. But if M falls below G, then the metacentric height is negative, and the 
moment that develops is an upsetting moment. In this case, the ship is unstable and will want to 
capsize. This is shown below. 
 

 
 
If the metacentric height (GM) of a ship is too large, the righting arms that develop at small 
angles of heel will also be large. Such a ship is very “stiff” and will roll with a short period and 
large amplitude as it tries to follow the slope of the waves. It can become very uncomfortable for 
passengers and crew, especially in a moderate to heavy seaway. On the other hand, if the 
metacentric height of a ship is small, the righting arms that develop will also be small. Such a 
ship is considered “tender” and will have a long roll period. If the metacentric height is too 
small, the risk of the ship capsizing in rough weather increases, and it also puts the vessel at risk 
of developing large angles of heel if cargo or ballast should shift. A ship with a very small GM is 
also less safe if the ship is damaged because it leaves less of a safety margin against capsizing. 
 
For the majority of ship hull forms, the curve of the righting arm (GZ) as a function of angle of 
heel (θ) departs from an initial straight line with some increasing slope for angles beyond about 
10°. As the ship heels further, its waterplane area increases and the value of BM, the metacentric 
radius, also increases. This causes a greater increase in GZ, which produces a greater righting 
moment as a consequence. Eventually, a point is reached where the value of GZ peaks. The point 
where that occurs is called the “angle of maximum stability” and produces the greatest righting 
moment acting on the ship to bring it back onto an even keel. Beyond that point, the right arm 
decreases and reaches zero at what is called the “angle of vanishing stability.” Theoretically, it is 
the point beyond which the ship will capsize. In reality, capsizing will occur at a somewhat 
smaller angle than that. 
 
An example curve of GZ as a function of heeling angle is shown below. 



 

 
 

 
DETERMINING THE LOCATION OF  B,  G,  AND  M  FOR TITANIC 

 
The metacentric height for Titanic was estimated by Chris Hackett and John G. Bedford at GM = 
2 ft 7.5 in (2.625 ft.) based on 1911 data taken from Olympic.2 The draft of Titanic after 
completing about 2/3 of her voyage on the night of April 14, 1912, was estimated (by naval 
architect Edward Wilding and presented to the Wreck Commission) at T = 32 ft. 3 in. (32.25 ft). 
At that draft, Titanic’s displacement was estimated at W= 48,300 long-tons.3 Based on what we 
derived above, the initial righting moment for Titanic on the night of April 14, 1912 as a 
function of angle θ would be approximately 2,200×θ foot-tons for small angles of θ given in 
degrees. 
 
To get the height above the keel for the metacenter (KM), we need to find the height above the 
keel for the center of buoyancy (KB) and add to it the metacentric radius (BM). This gives KM = 

                                                 
2 Hackett and Bedford, “The Sinking of S.S. Titanic - Investigated by Modern Techniques,” 1996 RINA 
Transactions. 
 
3 From the entries for Titanic in the original record book “Particulars of Completed Ships” in Harland & Wolff 
archives, the change in displacement in tons per inch immersion (TPI) was listed at 143.8. The displacement at her 
load draft of 34 ft. 7 in. was 52,310 tons. Wilding derived a mean draft at the time of collision at 32 ft. 3 in. That is a 
difference of 28 inches between the vessels load draft and her draft on April 14. The change in the vessel’s 
displacement is therefore 28x143.8 = 4,026 tons. Subtracting this number from the load displacement gives 52,310 - 
4,026 = 48,284 tons for the night of Apr 14. Wilding rounded this to 48,300 for his working estimate. 
 



KB + BM. To find the height of the center of gravity above the keel, we simply subtract GM 
from the height of the metacenter above the keel (KM). This gives KG = KM – GM. 
 
The midship cross section of Titanic was very close to being rectangular in shape. Her Midship 
Section Coefficient (Cm), a measure of how close the underwater midship section of the ship is 
to a rectangle, can be obtained from the ratio of the ship’s block coefficient to her prismatic 
coefficient. The Block Coefficient (Cb) is the ratio of the immersed volume of a vessel at a 
certain load condition to the product of its immersed draft, length, and beam at that condition. 
The Prismatic Coefficient (Cp) is the ratio of the immersed volume to the product obtained by 
multiplying its length on the waterline by the immersed area of the midship transverse section at 
the load condition. Both these numbers are available from Harland & Wolff archives.4 For 
Titanic (Hull 401), Cb = 0.684, and Cp = 0.705. From this we get a Midship Section Coefficient 
of Cm = Cb/Cp = 0.970 which tells us that the area of the underwater midship section was very 
close to a rectangular cross section. If the entire underwater body were rectangular, then it can be 
shown (see Appendix A) that the metacentric radius (BM) would be given by: 
 

BM = B2/( 12T ) 
 
where T is the draft of the vessel, and B is her breadth.  
 
However, Titanic’s cross section was close to rectangular in the middle third of the vessel only. 
Thus we have to use a more exact method of finding BM by using the actual plan diagrams. This 
is described in Appendix B along with a few other parameters which are discussed below. 
 
For Titanic at a draft of T=32.25 ft., the derived metacentric radius comes out to BM = 20.86 ft. 
 
The height of the center of buoyancy (B) above the keel for a hull form like Titanic can be 
accurately estimated using Morrish’s formula,5 which is: 
 

KB = 1/3 ( 5T / 2 – V / Awp ) 
 
Where in the above T is the draft of the vessel, V is the underwater volume of the vessel at that 
draft, and Awp is the area of the waterplane of the vessel at that draft. Since the displacement on 
the night of April 14 was W = 48,300 tons, the underwater volume is V = 35×W = 1,690,500 cu 
ft.6 The area of the water plane can be obtained by using Simpson’s rule (see Appendix B) and a 
set of body plan half-section diagrams from Harland & Wolff. For a waterline at T = 32.25 ft 
above the keel, the waterplane area came out at Awp = 59,899 sq ft. Then applying that to 
Morrish’s formula gives us a location for the center of buoyancy above the keel at KB = 17.47 ft 
(which is 54% of the ship’s draft above the keel) for the night of April 14, 1912.  
 
We now have all that we need to also get the heights of the center of gravity and the metacenter 
above the keel. The height of the metacenter above the keel is just KM = KB + BM = 38.32 ft.  
And the height of the center of gravity above the keel is simply, KG = KM – GM = 35.70 ft. 
 

                                                 
4 From entries for Olympic and Titanic taken from “Particulars of Completed Ships,” Harland & Wolff archives. 
 
5 Edward L. Attwood, Theoretical Naval Architecture, Longmans, Green and Co., 1922.  
 
6 The density of seawater is taken at 35 cu ft/ton. All tons used are British long tons, 2240 pounds. 



As a point of reference, F deck on Titanic amidships was 36 ft. 9 in. above the keel. Thus, we see 
that Titanic’s center of gravity in the intact condition was about a foot below the level of F deck 
near amidships. Her initial transverse metacenter would have been 2 feet 7.5 inches above that 
point. All this can be seen in the diagram below for Titanic’s midship cross-section.  
 

 
It should also be mentioned that Harland & Wolf naval architects had once calculated the 
location of the center of buoyancy in the fore-aft direction for Olympic assuming a displacement 
of 51,290 tons at a draft of 34 ft. 3 in. for the ship on an even keel. They found the center of 
buoyancy to be located 5.7 feet aft of amidships. The center of gravity, of course, would be 
directly above the center of buoyancy in that condition. In doing this they used a set of Bonjean 
curves.7 

                                                 
7 Bonjean curves are curves of immersed cross-sectional area plotted against the vessel’s draft and are drawn on the 
profile of the ship at each station. The use of Bonjean curves allows the underwater volume to be found for 
waterlines that are not necessarily parallel to the vessel’s baseline such as when the ship is not floating on an even 
keel. Waterlines at any angle to the vessel's baseline can be superimposed upon the profile, and it becomes possible 
to read off the immersed areas by drawing lines parallel with the baseline from the intercept of the waterline with the 
section to the Bonjean curve for that section.  In calculation the underwater volume and the location of the center of 
buoyancy for Olympic, H&W architects used a set of 21 equally spaced stations. 
 



 
DETERMINING TITANIC’S LONGITUDINAL CENTER OF FLOATATION 

 
The center of floatation (F) of a vessel is the geometric center of the vessel’s waterplane. It is the  
point about which the vessel will list and trim.8 When the ship is upright and carrying no list, the 
center of floatation in the transverse direction will be on the vessel’s centerline. The location of 
the center of floatation in the fore-and-aft direction, called the longitudinal center of floatation 
(LCF), is the point about which the vessel inclines or trims in the fore-and-aft direction. This 
location is important in longitudinal stability, and is specified as forward or aft of amidships, or 
as a length forward of the aft perpendicular or aft of the forward perpendicular. The location of F 
is shown in the diagram below for a vessel slightly trimmed by the stern such as Titanic on the 
night of April 14, 1912. 
 

 
 
In the above diagram, Ta is the draft of the vessel aft, Tf  is the draft of the vessel forward, and 
Tm is the mean draft of the vessel which is located at the amidships point, halfway between the 
perpendiculars where the drafts are taken. For Titanic on the night of April 14, 1912, the draft aft 
was Ta = 33 ft. 9 in., the draft forward was Tf = 30 ft. 9 in., and her mean draft Tm = 32 ft. 3 in. 
In this condition, the ship was trimmed down by the stern, Ta – Tf = 3 ft. 0 in.  
 
The angle of trim, θ, is given by: 
 

θθθθ = arctan (Ta – Tf )/L 
                                                 
8 When the ship lists to port or starboard, or trims down by the bow or stern, or changes draft, the shape of the 
waterplane will change. Thus, the location of the geometric center of the waterplane will move and lead to a change 
in the location of the center of flotation.  



 
which for Titanic on the night of April 14, comes out to θθθθ = 0.20°. 
 
The derivation of the longitudinal center of floatation (LCF) for Titanic is explained in Appendix 
B. For Titanic in the intact condition, LCF = 10.0 ft aft of amidships on the centerline of the 
vessel 32.25 ft. above the keel. 
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APPENDIX A – Deriving the Metacentric Radius (BM) for a Rectangular Cross Section 
 
The metacentric radius (BM) can easily be derived for a ship with rectangular cross section. 
Consider the rectangular cross section of a vessel with an angle of heel θ as shown in the 
diagram below. 
 

 
 
The center of area of a narrow submerged wedge can be shown to be located 2/3 the distance of 
half the ship’s beam width from the vessel’s centerline. This length is the moment arm for the 
submerged wedge area. In summing the moments in calculating the shift in the center of 
buoyancy from B to B’ we have to take twice the submerged wedge area because the right side 
gains submerged buoyancy area while the left side looses the same amount of submerged 
buoyancy area. To get the shift in the center of buoyancy we therefore simply multiply twice the 
area of the submerged wedge by its distance from the centerline (2/3 B/2), and divide that by the 
total underwater area which is equal to the vessel’s beam multiplied by its draft (BT).9 Since the 
area of the wedge for small angles of heel is ½ (B/2)2 θ/57.3, we obtain: 
 

X = 2 [½ (B/2)2 θθθθ/57.3]  2/3 B/2 / (BT ) = B2 (θθθθ/57.3)/(12T ) 

                                                 
9 It should be obvious from the diagram of the cross section for the heeled vessel that the total underwater area 
remains the same in the heeled condition since the vessel looses as much area as it gained when it heeled over. It is 
only the location of the center of buoyancy that is shifted. 



 
Now from the diagram above, we also see that the distance X, between B and B’, must equal BM 
sin θ, which for small angles of θ, is nothing more than X = BM θθθθ/57.3 when θ is given in 
degrees. Therefore, equating the two terms for X we get, 
 

BM θθθθ/57.3 = B2 (θθθθ/57.3)/(12T ) 
 

which simplifies to, 
 

BM = B2/(12T ) 
 
the result we were looking for. 

 
 

APPENDIX B – Deriving Titanic’s Waterplane Area (Awp), Longitudinal Center of 
Floatation (LCF), and Metacentric Radius (BM) 

 
The waterplane area for Titanic can be obtained from a set of Harland & Wolff Body Plans for 
Olympic and Titanic like those shown below. 
 

 
 

Using N = 25 equally spaced half-plane sections, we can apply Simpson’s first rule for 
integration to determine the waterplane area at a height of 32 ft 3 in above the keel. The rule 
formula using half-plane sections is: 
 

Awp = 2 × 1/3 × S (Y1 +4Y2 +2Y3 +4Y4 +2Y5 +4Y6 +… +2Y23 +4Y24 +Y25) 
 



where Yn is the distance from the ship’s centerline to the outside shell for the nth section at the 
waterline height chosen. The value of S is the spacing between sections, which is equal to the 
length of the waterline, L, divided by N-1. In our case we use L = 850 ft., and S = L/24 = 35.42 
ft.10 
 
When applying the distances Yn taken from the section curves to the formula above, we find that 
the waterplane area comes out to Awp = 59,889 sq ft. 
 
Using the Simpson’s rule for integration we can also find the longitudinal center of floatation 
(LCF) for the ship, and the metacenric radius (BM). For the LCF taken forward of the aft 
perpendicular, the formula is: 
 

LCF = 2 × 1/3 × S2 (0×Y1 +1×4Y2 +2×2Y3 +3×4Y4 +…+22×2Y23 +23×4Y24 +24×Y25)/Awp 
 
For Titanic in the intact condition on the night of April 14, 1912, the longitudinal center of 
floatation comes out at LCF = 415.0 ft ahead of the aft perpendicular, or 10.0 ft aft of 
amidships on the waterplane. 
 
The transverse metacentric radius (BM) is also obtained using the Simpson’s rule for integration. 
In this case, the formula for BM becomes: 
 

BM = 2/9 × S × (Y1
3+4Y2

3 +2Y3
3 +4Y4

3 +2Y5
3 +4Y6

3 +… +2Y23
3 +4Y24

3 +Y25
3) / V 

 
where V is the underwater volume at the draft condition, which for a displacement of W = 
48,300 tons, is V= 35×W = 1,690,500 cu ft. For Titanic, the metacentric radius comes out to BM 
= 20.86 ft. 
 

                                                 
10 Station No. 25, the forward perpendicular, in the H&W Sheer and Half-Breadth Plans for Olympic and Titanic 
intersects the ship’s stem at the level of E deck, about 58 ft. above the keel. Station No. 1, the aft perpendicular, is at 
the forward side of the rudder post. The length between these perpendiculars is 850 ft. The rake of the stem is 1 ft. 
for every 12 ft. The design load waterline, 34 ft 7 in., shows up about 2 ft. aft of the forward perpendicular, and the 
32 ft. 3 in. waterline is about 2 ft. 2 in. aft of the forward perpendicular. But in all the Harland & Wolff calculations, 
a length between perpendiculars of 850 ft. was used, and the length between each of station in the plans was based 
on dividing 850 ft. by 24. 


