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Resting state studies of spontaneous fluctuations in the functional
MRI (fMRI) blood oxygen level dependent (BOLD) signal have
shown great promise in mapping the brain’s intrinsic, large-scale
functional architecture. An important data preprocessing step used to
enhance the quality of these observations has been removal of spon-
taneous BOLD fluctuations common to the whole brain (the so-called
global signal). One reproducible consequence of global signal re-
moval has been the finding that spontaneous BOLD fluctuations in the
default mode network and an extended dorsal attention system are
consistently anticorrelated, a relationship that these two systems
exhibit during task performance. The dependence of these resting-
state anticorrelations on global signal removal has raised important
questions regarding the nature of the global signal, the validity of
global signal removal, and the appropriate interpretation of observed
anticorrelated brain networks. In this study, we investigate several
properties of the global signal and find that it is, indeed, global, not
residing preferentially in systems exhibiting anticorrelations. We
detail the influence of global signal removal on resting state correla-
tion maps both mathematically and empirically, showing an enhance-
ment in detection of system-specific correlations and improvement in
the correspondence between resting-state correlations and anatomy.
Finally, we show that several characteristics of anticorrelated net-
works including their spatial distribution, cross-subject consistency,
presence with modified whole brain masks, and existence before
global regression are not attributable to global signal removal and
therefore suggest a biological basis.

INTRODUCTION

Resting state studies of spontaneous fluctuations in the
functional MRI (fMRI) blood oxygen level dependent (BOLD)
signal have shown great promise in mapping the intrinsic
functional architecture of human and primate brains (for a
recent review, see Fox and Raichle 2007). A consistent obser-
vation is that regions with similar functional properties, such as
the left and right somatomotor cortices, exhibit temporally
coherent BOLD fluctuations even in the absence of explicit
sensory stimuli or motor responses (Biswal et al. 1995; Cordes
et al. 2000; De Luca et al. 2005; Fox et al. 2006; Lowe et al.
1998). Similar results have been found in visual (Cordes et al.
2000; Lowe et al. 1998), auditory (Cordes et al. 2000), lan-
guage (Cordes et al. 2000; Hampson et al. 2002), and several
other functional systems (Fox and Raichle 2007). Correlated
spontaneous BOLD fluctuations are thought to reflect func-
tional relationships mediated by anatomical connections (Hag-
mann et al. 2008; Honey et al. 2009; Johnston et al. 2008;
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Skudlarski et al. 2008). Although the BOLD signal is an indirect
measure of neuronal activity, similarly correlated spontaneous
activity has been directly shown by electrophysiological tech-
niques (He et al. 2008; Shmuel and Leopold 2008).

In addition to positive correlations between functionally related
brain regions, negative correlations between brain regions with
theoretically opposed functional roles also have been reported
(Kelly et al. 2008; Fox et al. 2005b; Fransson 2005; Greicius et al.
2003; Uddin et al. 2008; Wang et al. 2006). In particular, negative
correlations have been observed between a set of regions routinely
exhibiting activity increases during attention demanding tasks
(task-positive regions) and a separate set of regions routinely
exhibiting activity decreases (task-negative regions) (Fox et al.
2005b). Based on this observation, we have suggested that the
task-positive and task negative networks are “intrinsically anticor-
related.” In our use, “intrinsic” means “present in patterns of
spontaneous brain activity.” The task-positive system includes the
dorsal attention system implicated in directed attention and work-
ing memory (Corbetta and Shulman 2002) as well as regions in
the insula and anterior cingulate that have been related to salience
(Seeley et al. 2007b) and task control (Dosenbach et al. 2007).
The task negative system has often been referred to as the “default
mode network” and has been implicated in self-referential pro-
cessing and episodic memory (Buckner et al. 2008; Raichle et al.
2001; Shulman et al. 1997; Vincent et al. 2006). The concept of
intrinsically anticorrelated activity has been applied toward un-
derstanding schizophrenia (Wang et al. 2006; Williamson 2007),
dementia (Seeley et al. 2007a), depression (Fox et al. 2005b),
behavioral variability (Kelly et al. 2008), and computational brain
modeling (Honey et al. 2007; Izhikevich and Edelman 2008).

The idea that functional systems with oppositely signed
responses during task performance might also exhibit sponta-
neously anticorrelated activity at rest is an appealing notion.
However, the interpretation of observed anticorrelations in
resting state BOLD data are less straightforward than originally
recognized (Fox et al. 2005b). Previous reports of anticorre-
lated networks have relied on preprocessing to remove “nui-
sance regressors” or confounding variables that obscure sys-
tem-specific relationships (Kelly et al. 2008; Fox et al. 2005b;
Fransson 2005; Greicius et al. 2003; Tian et al. 2007b; Uddin
et al. 2008; Wang et al. 2006). Of particular interest, these
reports have all included some type of correction for fluctua-
tions averaged across the entire brain, which we term the
global signal. Global signal correction is reasonably common
during processing of both resting-state and task-based fMRI
(Aguirre et al. 1998; Macey et al. 2004; Zarahn et al. 1997) and
is thought to facilitate observation of localized neuronal effects
potentially obscured by BOLD fluctuations of physiological
(non-neuronal) origin (Birn et al. 2006; Glover et al. 2000;
Lund et al. 2006; Wise et al. 2004). However, the properties of
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the global signal and the effect of its removal on resting state
correlation maps have been incompletely examined. This is
particularly important for interpretation of negative correla-
tions given the known potential for artifactual deactivations in
task-based studies after global normalization (Aguirre et al.
1998; Desjardins et al. 2001; Gavrilescu et al. 2002; Laurienti
2004; Macey et al. 2004). Along these lines, recent resting state
studies have raised questions about the interpretation of anti-
correlations in the context of global signal correction and noted
the importance of this issue for further study (Buckner et al.
2008; Fox and Raichle 2007; Golland et al. 2007; Honey et al.
2009; Murphy et al. 2009).

In this study, we begin by showing the effects of global
signal correction on resting state correlation maps including
improved specificity of positive correlations and the emergence
of negative correlations. Second, we show mathematically that
global signal correction mandates negative correlations, raising
the possibility that anticorrelated networks could emerge as an
artifact of global signal correction. Third, we examine the
properties of the global signal and show that its removal by
linear regression facilitates evaluation of neurophysiological
relationships. Finally, we directly address the interpretation of
negative correlations following global signal regression. We
argue that observed negative correlations cannot be fully ex-
plained as an artifact of global signal regression, thus suggest-
ing a biological basis.

METHODS
Subjects and data acquisition

The majority of the analyses in this study used imaging data from
a previous study on the impact of spontaneous activity on behavioral
variability (Fox et al. 2007). This resting state dataset is freely
available as dataset BS002 at www.brainscape.org. BOLD sensitized
fMRI data (3 T, 4 X 4 X 4-mm voxels, TE 25 ms, TR 2.16 s) were
acquired in 17 normal right-handed young-adults using a 3T Siemens
Allegra MR scanner. All subjects completed four fixation runs, each
194 frames (7 min) in duration interleaved with cued button press runs
that were not used in this analysis. For fixation runs, subjects were
instructed to look at a cross-hair, remain still, and to not fall asleep.
Structural data (for definitive atlas transformation) included a high-
resolution (1 X 1 X 1.25 mm) sagittal, T1-weighted MP-RAGE
(TR = 2.1's, TE = 3.93 ms, flip angle = 7°) and a T2-weighted fast
spin echo scan.

Preprocessing of imaging data

fMRI preprocessing steps included the following: first, compensa-
tion of systematic, slice-dependent time shifts; second, elimination of
systematic odd-even slice intensity differences caused by interleaved
acquisition; and, third, rigid body correction for interframe head
motion within and across runs. Step 3 provided a record of head
position within and across all fMRI runs. Each fMRI run was intensity
scaled (1 multiplicative constant over all voxels and frames) to a yield
a whole brain mode value of 1,000 (not counting the 1st 4 frames)
(Ojemann et al. 1997). Atlas registration was achieved by computing
affine transforms connecting the fMRI run first frame (averaged over
all runs after cross-run realignment) with the T2 and average T1-
weighted structural images (Ojemann et al. 1997). Our atlas represen-
tative template includes MP-RAGE data from 12 normal individuals
and was made to conform to the 1988 Talairach atlas (Talairach and
Tournoux 1988). To prepare the BOLD data for these main analyses,
each fMRI run was transformed to atlas space and resampled to 3-mm

cubic voxels. This step combined movement correction within and
across runs and atlas transformation in one resampling.

At each voxel, linear trends over fMRI runs were removed, and the
data were spatially smoothed with a 6-mm FWHM Gaussian kernel.
A temporal low-pass filter was applied with a frequency full width at
half maximum cut-off of 0.1 Hz. This cut-off was used because
previous work has shown that frequencies above this value do not
contribute to regionally specific BOLD correlations (Cordes et al.
2001). Following the procedure of Fox et al. 2005b; several sources of
spurious variance were removed by regression along with their first
derivatives: /) the six parameters resulting from rigid body correction
for head motion; 2) a signal from a ventricular region of interest; 3)
and a signal from a white matter region of interest (Fox et al. 2005b)
(see Supplemental Fig. S1).!

Correction for global signal fluctuations

After these initial preprocessing steps, three techniques were used
to correct for fluctuations in whole brain signal intensity (the global
signal). In all cases, the global signal was calculated by averaging
across all voxels within a whole brain mask (Supplemental Fig. S1).
In most present analyses, the global signal was removed by linear
regression (Fox et al. 2005b; Macey et al. 2004). A detailed mathe-
matical description of the regression technique is presented in the
APPENDIX. The residual volumetric timeseries generated from global
signal regression was used for seed based correlation mapping.

Although global signal regression is used for the primary analyses
in this study and is the technique favored by our laboratory, other
approaches have been used to correct for global fluctuations in resting
state fMRI data and are used in this study for comparison purposes.
One such approach uses multiplicative scaling to force the global
mean BOLD signal to the same at all time points (frames). We refer
to this strategy as frame-to-frame intensity stabilization (detailed in
APPENDIX). The primary difference between frame-to-frame intensity
stabilization and global signal regression is that, for each frame, the
regression technique removes the global signal in proportion to its
weight at every voxel while frame-to-frame intensity stabilization
uses a single scalar multiplier across all voxels. As such, global
regression allows for regional heterogeneity in the distribution of the
global signal, whereas frame-to-frame intensity stabilization does not
(Fox et al. 2005b; Macey et al. 2004).

A third technique used for global signal correction is post hoc
distribution centering. This strategy compensates for the global signal
after correlation maps have been generated (Lowe et al. 1998) and has
been widely used in the processing of resting state fMRI data (Hamp-
son et al. 2002, 2004; Lowe et al. 1998, 2000; Skudlarski et al. 2008).
Unlike the first two techniques, the global signal is left in the
volumetric time series during computation of seed based correlation
maps resulting in a voxelwise distribution of correlations that is
strongly shifted toward positive values. Post hoc distribution centering
directly adjusts this distribution by computing the average voxel value
in the correlation map (after Fisher z-transformation) and subtracting
this average value from all voxels. In this manner, the distribution of
Fisher z-transformed correlation coefficients is recentered about zero.

It is important to note that all three of these strategies for compen-
sation of global signal fluctuations forces the distribution of voxel
values in a seed-based correlation map to be approximately centered
about zero. This is the obvious and intended effect of post hoc
distribution centering but is also a necessary mathematical conse-
quence of both global signal regression and frame-to-frame intensity
normalization (see APPENDIX). In other words, all three strategies for
global signal compensation mandate the observation of negative
correlations.

! The online version of this article contains supplementary data.
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Generation of seed-based correlation maps

To address the effect of preprocessing on seed-based correlation
results, the BOLD data were analyzed at three stages of preprocessing.
The first stage is referred to as “standard preprocessing only” and
refers to the BOLD data after band-pass filtering and linear trend
removal. The second stage is “movement, white matter, and ventricle
regressed” and refers to data after regression of the six motion
parameters as well as the signal from the white matter and ventricles.
The third and final stage is “global signal regressed” and refers to the
data after regression of the global signal.

At each stage of preprocessing, seed-based correlation maps were
constructed by extracting the BOLD time series from a region of
interest (6-mm radius sphere) and calculating the temporal correlation
between this reference waveform and the time courses of all other
brain voxels. Regions of interest included the posterior cingulate/precuneus
(=2, —36, 37) (Fox et al. 2005b), left MT+ (—47, —69, —3) (Fox et al.
2005b), left somatomotor cortex (—39, —26, 51)(Fox et al. 2006), and
right calcarine sulcus in primary visual cortex (5, —91, 0). Most
coordinates were obtained from previous publications from our lab-
oratory. The calcarine seed was placed based on anatomical land-
marks in the atlas template. Resulting » values were converted to an
approximately normal distribution using Fisher’s r-to-z transform and
entered into a random effects analysis (2-tailed, equal variance) across
the 17 subjects. For the analysis using post hoc distribution centering
(see Fig. 5), Fisher z-transformed correlation maps were corrected by
computing the average voxel value within the whole brain mask for
each subject and subtracting this value from all voxels before the
random effects analysis (Lowe et al. 1998). In all analyses, resulting
t maps were converted to equally probable Z-scores and corrected for
multiple comparisons (thresholded at a Z of 3.0 and a cluster size of
17) (McAvoy et al. 2001). Histograms of voxel values were computed
by including all voxels within the whole brain mask (Supplemental
Fig. S1). For display purposes, fourfold interpolation was used to
smooth voxel boundaries, and images are shown using in-house software
developed on the Matlab platform (The Mathworks, Natick, MA).

Properties of the global signal

The spatial distribution of the global signal was computed by
applying the same methods detailed above for seed-based correlation
maps to the residual data after movement and ROI regression. Instead
of a 6-mm radius sphere, the “seed” region used was the whole brain
mask (Supplemental Fig. S1) and the extracted time course was
therefore the global signal. To identify regions with significantly
higher global signal than the whole brain mean, Fisher z-transformed
single subject correlation maps were normalized to zero mean by
subtraction of the whole brain average (Lowe et al. 1998). As above,
results were combined across subjects using random effects analysis
and corrected for multiple comparisons at P < 0.05 using a threshold
of Z = 3 and a cluster size of 17. To identify peak foci in this Z-score
map, it was first smoothed with a 10-mm FWHM Gaussian kernel. All
peaks above a threshold of Z = 6.5 were identified, and foci closer
than 20 mm were consolidated to the center of mass. Parameters were
chosen to return 15-20 foci. A map of peak foci was constructed by
generating 6-mm radius spheres centered on each peak coordinate.

To ensure that the global signal did not show preferential localiza-
tion to the task-positive and task-negative systems, the average global
signal Z-score was computed within templates of five distinct cortical
systems (visual, somatomotor, auditory, task negative, and task pos-
itive; Supplemental Fig. S2). These templates were generated from
seed-based correlation maps with seeds in the calcarine sulcus (5, —91, 0),
left somatomotor (—39, —26, 51), left auditory (—50, —25, 8),
posterior cingulate cortex (PCC) (=2, —36, 37), and left MT+ (—47,
—69, —3). Single subject correlation maps were Fisher z-transformed
and combined across subjects using random effects analysis. Result-
ing ¢t maps were converted to equally probable Z-scores and thresh-

olded at Z = 4. The higher threshold was chosen to prevent mask
overlap and ensure that each mask was restricted to a single cortical
system.

The magnitude of the global signal was determined by computing
the variance of the extracted global signal waveform. To determine
whether this global signal could represent the average of independent
signals from distinct cortical systems, a theoretical magnitude of the
global signal was also calculated by measuring the variance of the
fluctuations extracted from the five cortical system templates noted
above (visual, somatomotor, auditory, task negative, and task posi-
tive). The theoretical variance of the global signal was calculated by
averaging the variance measured from the different cortical systems.
The theoretical global variance was statistically compared with the
measured variance using a Wilcoxon signed-rank test.

Correspondence between anatomical
and functional connectivity

To determine the impact of global signal correction on the corre-
spondence between anatomical and functional connectivity, authors of
the most recent study evaluating BOLD correlations and anatomical
connectivity were contacted and generously agreed to provide unpub-
lished data from their analyses (C. J. Honey, P. Hagmann, and O.
Sporns, personal communication). Methodological details are given in
the primary publication (Honey et al. 2009). Briefly, structural con-
nectivity was measured noninvasively in five individuals using diffu-
sion spectrum imaging (DSI). Resting state fMRI was acquired in
these same participants. The fMRI data were preprocessed by regress-
ing out nuisance variance (ventricular and white matter signals) with
and without including the global signal. Structural connectivity was
assessed using streamline tractography and resting state functional
connectivity was computed using Pearson correlation. These measures
were computed between all pairs of 998 cortical regions of approxi-
mately equal area (~1.5 cm?), thereby generating structural and
functional 998 X 998 matrices. The correspondence between struc-
tural and functional connectivity and the correspondence between
functional connectivity and fiber length was computed using Pearson
correlation applied to the fMRI results obtained both with and without
global signal regression. Significant differences in these correlations
were assessed using a two-tailed paired #-test across the five subjects.

Creation of modified whole brain masks

To circumvent the mathematical constraint of mandatory negative
correlations, modified whole brain masks were created that excluded
particular systems of interest. This is similar in concept to the
exclusion of activated regions from the whole bran mask for comput-
ing the global signal in task data (Andersson 1997; Gavrilescu et al.
2002). Specifically, those voxels most correlated (task-positive sys-
tem) or anticorrelated (task-negative system) with the MT+ seed were
eliminated with various degrees of completeness (between 0 and 95%
of all voxels in the whole brain mask removed). This analysis was
performed at the single subject level to allow for intersubject vari-
ability in the distribution of the correlations and assure complete
removal of the involved systems. First, the single-subject Fisher
z-transformed correlation map for MT+ (after whole brain regres-
sion) was computed for each subject and converted to absolute values.
Second, this map was smoothed (9-mm FWHM Gaussian kernel) to
prevent edge effect between adjacent positive and negative regions.
Third, voxel histograms were computed, and a threshold was applied
selected to remove a specified percentage of voxels from the whole
brain mask. Finally, the data were preprocessed using this modified
mask in place of the whole brain mask during global regression, and
the correlation with MT+ was recomputed using the residual. As
before, results were combined across subjects using random effects
and corrected for multiple comparisons at P < 0.05.
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Alternative seed regions

Although the a priori seed regions used in this analysis failed to
identify significant anticorrelations without global signal regression, a
post hoc analysis was performed to determine whether anticorrela-
tions might be present with a more optimized seed region. To
determine the coordinates for this seed region, random effects maps
were first generated based on positive correlations for three canonical
seed regions of the default network from a previously published work
[seeds: MPF (—1,47, —4); PCC (=5, —49, 40); left LP (—45, —67,
36)] (Fox et al. 2005b). These maps were averaged together to
generate a representative correlation map of the default network. This
map was thresholded at z = 3 and clustered with an n = 17, which
bounded a distinct region encompassing the anatomical location of the
PCC. The center-of-mass of this region (0, —52, 27) was used as our
empirically determined PCC seed based on this dataset. Note that this
seed region was identified solely on the basis of positive resting state

A

PNAS 2005
Anticorrelated
Networks

PCC seed

FIG. 1.

correlations within the task-negative network and was not optimized
for identifying anticorrelations.

Controlling for a lagged correlation between systems

It has been suggested on theoretical grounds that a lagged correla-
tion between the task positive and task negative networks before
global regression could account for artifactual anticorrelation after
global correction (Murphy et al. 2009). To ensure that this was not the
etiology in the presently obtained results, time courses were extracted
from the task-positive and task-negative networks as previously iden-
tified on an independent dataset (Fox et al. 2005b) (Fig. 1). The time
courses were taken from the data before global regression (but
including movement, white matter, and ventricle regression), and
cross-correlation was performed separately on each individual to
generate 17 cross-correlograms. These 17 were averaged to produce
the image as shown in Supplemental Fig. S7.

Anticorrelated brain networks are replicable across datasets and statistical technique. A: anticorrelated brain networks reproduced from the dataset of Fox et

al. (2005) using fixed effects analysis showed correlations within a system and negative correlations between systems. B: Z-score map from the current independent
dataset shows voxels significantly correlated with a seed in the task-positive network (area MT+) using random effects analysis. C: Z-score map from the current dataset
shows voxels significantly correlated with a seed in the task negative network (posterior cingulate/precuneus) using random effects analysis.
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RESULTS

The original report of anticorrelated brain systems from our
group used fixed effects analysis across 10 subjects and combined
results across six seed regions (Fig. 1A) (Fox et al. 2005b). This
analysis defined a task-positive network (warm colors) and task-
negative network (cool colors) both positively correlated within
system and negatively correlated between systems. The first step
in this study was to replicate the finding of anticorrelated networks
in an independent dataset of 17 subjects using the more rigorous
random effects analysis. As anticipated, correlations with a seed in
the task-positive network (area MT+; Fig. 1B) were largely the
inverse of correlations with a seed in the task-negative network
(the PCC; Fig. 10), replicating the finding of anticorrelated brain
systems in a larger independent dataset.

Although replicable across datasets, the finding of negative
correlations was strongly dependent on preprocessing method-
ology (Fig. 2). Prior to regression of any nuisance variables
every seed region was significantly correlated (P < 0.05) with
essentially all other brain voxels and correlations were almost
entirely positive. After regression of movement, white matter,
and ventricle signals, this distribution changed only slightly.
After removal of the global signal, either by regression (Fig. 2)
or frame-to-frame intensity stabilization (Supplemental Fig.
S3), the distribution of computed correlations changed dramat-
ically: the mean correlation value became close to zero, there
was a marked improvement in the neuroanatomical specificity
of the significant positive correlations, and strongly negative
correlations (anticorrelations) emerged.

Removal of the global signal, either through linear regres-
sion or frame-to-frame intensity stabilization, ensures that, in
subsequent seed-based correlation analyses performed on the
residual, the sum of regression coefficients (the beta image)
across all voxels within the whole brain mask must be zero. An
algebraic proof is given in the AppENDIX. Because correlation
coefficients are simply regression coefficients divided by vox-
elwise variance, they must also sum approximately to zero.
Thus global signal correction mathematically mandates the
existence of negative correlations at the single subject level.
This result raises important questions regarding the appropri-
ateness of global signal regression and the interpretation of
resulting anticorrelated networks.

The first step in addressing these interpretive issues was to
examine the properties of the global signal and determine whether
global regression facilitates or impedes the observation of physi-
ological relationships. First, the spatial distribution and extent of
the global signal were examined. If the global signal selectively
localized to a small number of cortical systems (such as the
task-positive and task-negative systems), global regression would
be approximately equivalent to removing the mean of two signals,
in which case the two systems would appear to be perfectly
anticorrelated even if they were independent. However, the global
signal was not restricted in this manner but rather was ubiqui-
tously present and significant (P < 0.05) in every gray matter
voxel in the brain (Fig. 3A4). Voxels with a global signal correla-
tion significantly higher than average were identified (Fig. 3B)
along with peak foci of global signal localization (Supplemental
Fig. S4; Supplemental Table S1). The global signal was particu-
larly well represented in primary visual, auditory, and somatosen-
sory cortices along with sensory thalamus, midline pericingulate
regions, regions implicated in cognitive control (Vincent et al.
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2008), inferior temporal cortex, and cerebellum. Importantly, the
global signal did not show preferential localization to the task-
positive or task-negative networks. To confirm this impression
statistically, global signal correlations were compared inside sev-
eral cortical systems (Supplemental Fig. S2; Supplemental Table
S2). These computations showed the least global signal in the
task-negative system (P << 0.05) with the greatest representation
in the visual system.

For global regression to facilitate the observation of physiolog-
ical relationships, the global signal should be in addition to, not
simply the average of, system-specific fluctuations. This question
was addressed by measuring the variance of the global signal
along with the variance of fluctuations within multiple distinct
cortical systems (Supplemental Fig. S2). If the global signal is the
average of independent signals in these systems, its variance
should be directly computable from the system-specific variance
(Supplemental Table S3). However, the global variance computed
from these system-specific signals was, on average, significantly
less than the measured global variance (1.55 vs. 2.51 in arbitrary
units, P < 2.94 X 1074 by the Wilcoxon signed-rank test). This
finding confirms the qualitative impression of significant shared
variance across cortical systems (Fig. 2) and shows that the global
signal includes something in addition to contributions from the
major functional systems.

Finally, the question of whether global regression facilitates
or impedes observation of physiological relationships was
addressed by comparing correlation maps computed with and
without global correction. Several well-established examples
of cortico-thalamic connectivity were analyzed including V1 to
lateral geniculate nucleus (LGN; Fig. 4A), prefrontal cortex to
mediodorsal and anterior thalamic nuclei (Fig. 4B), and tem-
poral cortex to medial pulvinar (Fig. 4C) (Zhang et al. 2008).
To facilitate comparison of the correlation maps computed
with and without global regression, the thresholds in the maps
without global regression were allowed to vary to better ap-
proximate the specificity seen with global regression. For
example, for the seed in the calcarine sulcus, the correlation
map without global regression was thresholded to obtain sim-
ilar specificity to the visual cortex as seen with global regres-
sion. However, only the map with global regression revealed
specific correlations with the LGN (Fig. 4A). In all three cases,
known functional system relationships were better observed
with global regression than without it. This result suggests that
removal of the global signal facilitates the observation of true
physiological relationships at the systems level.

To confirm the above examples in a more unbiased manner, the
correspondence between BOLD correlations and anatomical con-
nectivity was evaluated across the entire brain, and these results
were compared in data preprocessed with and without global
regression. A significant correspondence between anatomical con-
nectivity, as assessed by diffusion tractography, and functional
connectivity, as assessed by resting state BOLD imaging, has
recently been reported (Hagmann et al. 2008; Honey et al. 2009;
Skudlarski et al. 2008). Interestingly, these studies all used some
type of correction for global fluctuations in the BOLD signal. To
determine whether better correspondence between structural and
functional connectivity would be observed with versus without
global signal regression, the authors of the most recent article on
this topic (Honey et al. 2009) were contacted and generously
provided unpublished data (Honey, Hagmann, and Sporns per-
sonal communication). When performed in addition to ventricular
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Movement, Ventricle,
No Regression White Matter
Regression

Global Signal
Regression

# of voxels
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V1 seed
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FIG. 2. The impact of preprocessing and global regression on seed-based correlation maps. Z-score maps show voxels significantly correlated with various
seed regions at 3 processing stages: no regression (/eft), movement, ventricle, and white matter regression (middle), and global regression (right). Histograms
of voxel intensities for the 3 processing stages are shown to the right using blue (no regression), green (movement, vent and white matter), and red (global
regression) lines. The location of each seed region is shown on the far left and include the posterior cingulate cortex/precuneus (Pcc), area MT+ (MT), the somatomotor
cortex (MC), and primary visual cortex (V1). Talairach slice coordinates for Z-score maps: z = 45 (Pcc); z = 36 (MT); z = 54 (MC); z = —6 (V).

and white matter signal regressions, regression of the global signal ~ global signal regression (r = 0.47 vs. 0.35, P < 0.01). These
improved the correspondence between functional and structural — results must be viewed as preliminary, because only five subjects
connectivity both when considering all region pairs (r = 0.36 vs.  were studied and the experiment was not specifically designed to
0.32, P < 0.03 by paired t-test) and only those pairs with address this question. Nevertheless, the outcome suggests that
significant anatomical connectivity (r = 0.53 vs. 0.45, P < 0.01). removal of the global signal improves the correspondence be-
The correspondence between functional connectivity and anatom-  tween fMRI correlations and anatomical connectivity as assessed
ical path length also was significantly greater with versus without by tractography.
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FIG. 3.

z=9 z=3 x=-1.5

The spatial distribution of the global signal. A: Z-score map showing all voxels significantly correlated with the whole brain (WB) or global signal. B: Z-score

maps showing voxels significantly more correlated with the global signal than the average voxel.

The ubiquitous presence of the global signal across brain
voxels, its large magnitude, and the improvement in the neuro-
anatomical specificity of positive correlations after regression all
suggest that global signal regression enhances resting state fMRI.
If the global signal obscures true neuroanatomical and physiolog-
ical relationships within systems with respect to positive correla-
tions, by extension, the same should be true for negative correla-
tions. The challenge is to interpret observed anticorrelations given
that they are mandated by global regression. To that end, we
evaluated several properties of the anticorrelated networks not
mandated by global regression including their spatial distribution,
cross-subject consistency, presence with modified whole brain
masks, and presence prior to global regression.

The first of these analyses examined the spatial distribution of
negative correlations. Although global signal correction mandates
the observation of negative correlations, it does not determine
their spatial distribution. This principal is illustrated by comparing
the results of global signal regression to post hoc distribution
centering (Fig. 5). Both methods of global signal correction
mandate the presence of negative correlations (see METHODS);
however, the distribution of these negative correlations was quite
different. Negative correlations after post hoc distribution center-
ing localized to white matter and were similar in distribution
regardless of the location of the seed ROI. This nonphysiological
result may be reasonably regarded as artifact. In contrast, negative
correlations after global signal regression were specific to the seed
ROI and were localized to functional systems exhibiting re-
sponses of opposite sign in task-related fMRI (Fig. 5). This
analysis shows that the mathematical mandate of negative corre-
lations with global signal correction does not necessitate the
interesting physiological distribution of the anticorrelated net-
works seen with global signal regression.

Second, global regression mandates negative correlations at
the single subject level but does not mandate consistency of the
spatial distribution across subjects. This principle is illustrated
by comparing beta coefficient maps obtained using a PCC seed
versus a seed in the white matter (Fig. 6). For both seed
regions, the beta coefficient maps obtained in individual sub-
jects (Fig. 6A) summed to zero, as algebraically required
(apPENDIX). However, the two seed regions varied greatly in the
beta map consistency across subjects. The PCC gave rise to
consistently negative regions within the beta maps, as reflected

in the random effects result, whereas the white matter seed did
not (Fig. 6B). A full set of slices corresponding to Fig. 6 is
shown in Supplemental Fig. S5. Examination of cross-subject
consistency suggests that most negative correlations seen at the
single subject level with the white matter seed are likely to be
an artifact of global regression, whereas those associated with
the PCC were reproducible across subjects and therefore at
least plausibly reflective of neurophysiology.

Third, global signal regression only places mathematical con-
straints on voxels contained within the whole brain mask. There-
fore a strategy for eliminating this constraint is to restrict the
whole brain mask to voxels outside the two anticorrelated net-
works. Correlation maps were computed using a seed ROI in area
MT+, a region positively correlated with the task-positive net-
work and anticorrelated with the task-negative network (Fig. 7).
Voxels most strongly correlated or anticorrelated with area MT+
were progressively removed from the whole brain mask. Even
after removing 80% of the voxels, most correlated or anticorre-
lated with MT+, robust anticorrelations remained (Fig. 7). As
might be expected, the estimation of the global signal became less
accurate and the anticorrelations less robust as the mask became
more restricted. However, significant anticorrelations remained
even when the global signal was computed using only the 5% of
the original mask that was least correlated with either network.
This result strongly suggests that the anticorrelation be-
tween these two systems is not an artifact of global regres-
sion. To insure that this modified mask approach is indeed
capable of differentiating underlying anticorrelation from
independence in the presence of a global signal, a simulation
was performed that confirms these conclusions (Supplemen-
tal Table S4). It is worth noting that this analysis and
simulation assume an independent and additive global sig-
nal, an assumption that may be challenged (see DISCUSSION.)

Finally, if negative correlations are physiological and not an
artifact of global regression, some evidence of these negative
correlations may be present without regressing out any type of
global signal at all. Although no significant negative correlations
were evident before global regression using our original a priori
seed regions (Fig. 2), by optimizing the location of the seed region
based solely on positive correlations within the task-negative
network and lowering the threshold, one can see evidence of
anticorrelations even before global regression (Supplemental Fig.
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No Regression

low threshold
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Cortex seed

Temporal
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White Matter Regression
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|
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’
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FIG. 4. Global signal regression shows fine neuroanatomical specificity not seen without global signal correction regardless of thresholding. Z-score maps
(random effects across 17 subjects) showing voxels significantly correlated with seeds in (A) the primary visual cortex (fop), (B) prefrontal cortex (middle), and
(C) temporal cortex (bottom) at 3 stages of processing: no regression (left), movement, ventricle, and white matter regressed (middle), and global signal regressed
(right). Raising the threshold of the Z-score map after movement, ventricle, and white matter regression does not show the neuroanatomical specificity achievable
with global regression such as the correlation between the visual cortex (V1) and the lateral geniculate nucleus (LGN). For the bottom 2 rows, images were
masked to focus on the thalamus and cortical seed regions were generated per (Zhang et al. 2008). Transverse slices: z = —6, Coronal slices: y = —27.

S6). This is admittedly a post hoc analysis and the results should
be interpreted as qualitative, but they do show that anti-correla-
tions may be present in fMRI data even without global regression.

DISCUSSION

There are three main findings in this study critical for under-
standing global regression and observed anticorrelations in rest-
ing-state fMRI data. First, global signal regression mathematically
mandates the observation of negative values in seed-based corre-
lation maps at the single subject level, highlighting the importance
of methodological considerations in result interpretation. Second,
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the global signal is ubiquitously present across gray matter and
obscures underlying neuroanatomical relationships, providing im-
portant validation for use of global regression as a processing
maneuver. Third, multiple characteristics of anticorrelated networks
are not determined by global regression, suggesting that presence of
an important and interesting physiological relationship.

Methods matter

The first main finding of this study is that methodology has a
pronounced impact on resting state fMRI studies and must be
considered when interpreting results. We show that global signal
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Whole Brain
Regression

Post Hoc
Distribution Centering

PCC seed

Left MT seed

# of voxels

z=36 z=27 -8 0 +8
Z score
FIG. 5. Global signal regression shows a unique distribution of negative correlations compared with post hoc distribution centering. Z-score maps showing
voxels significantly correlated with seeds in the posterior cingulate (fop) and area MT+ (bottom) after global signal regression (left) and post hoc distribution
centering (right). Histograms show the distribution of voxel values across the entire brain (blue = whole brain regression; green = post hoc distribution centering
images). Although both techniques center the distribution of correlations around 0, only global regression shows neuroanatomically specific negative correlations.

Seed region locations are as shown in Fig. 1.

correction places mathematical mandates on the distribution of
correlation values at the single subject level, a finding consistent
with other recent results (Murphy et al. 2009). As such, negative
correlations in individual subjects or small sample sizes (Tian
et al. 2007a) should be interpreted with caution. Furthermore, the
pronounced effect of global signal correction on subsequent cor-
relation maps and especially anticorrelations has important impli-
cations for resting state studies attempting to compare conditions
or groups. Several laboratories have examined differences in both
positive and negative correlations in an effort to provide insight

A PCC Seed

Single Subject
Beta Images

Voxelwise
Sum = -3.6760e-7

Group
Random
Effects

Voxelwise
Sum =-0.4889

into the physiology of brain disease (Seeley et al. 2007a; Wang
et al. 2006; Williamson 2007). If global signal regression is used
in such studies, it is important to consider potential group differ-
ences in the distribution of the global signal to avoid misleading
results.

We have also shown that not all strategies for global signal
correction generate equivalent results. While all types of global
signal correction result in negative correlations, the degree to
which these negative correlations represent processing artifact
versus physiology may vary. For example, post hoc distribu-

White Matter Seed

z=27
Voxelwise
Sum = 1.0722e-6

z=27
Voxelwise
Sum = 0.1580

Z score

FIG. 6. Global signal regression mandates negative correlations at the single subject level but not at the population level. A: single-subject regression coefficients (beta
maps) for seeds in the posterior cingulate (/eft, blue line) and in the white matter (right, green line) for a representative subject. B: random effects Z-score maps show
voxels significantly correlated with seeds in the posterior cingulate (leff) and white matter (right) across the population of 17 subjects. The sum of voxel values across
the entire brain is shown below each image and voxel histograms are shown to the right. Although the voxelwise sum of beta maps must be 0 for each subject and
histograms similar, these measures can vary greatly in the population level Z-score maps depending on the consistency across subjects.

J Neurophysiol « VOL 101 « JUNE 2009 « WWW.jn.org

LTOZ ‘22 49qwanoN uo 9'€€°022Z 0T Aq /Bio°ABojoisAyd-ulj/:dny wouy papeojumoq



http://jn.physiology.org/

Global Signal and Anticorrelated Networks 3279

Restriction Mask

MT Seed

z=60

z=30 z=
FIG. 7.

z=60 z=30 z=3

Anticorrelated networks persist despite modified whole brain masks that eliminate the mathematical constraints imposed by global regression.

Modified whole brain masks (left) were created by removing 0, 30, 70, 80, or 95% of the voxels most correlated or anticorrelated with area MT. The intensity
of the shown whole brain mask values reflects the absolute value of correlations with MT+. These masks were used to regress out a modified global signal, and
Z-score correlation maps for a seed in MT+ were generated using the residual (right). The systems of interest remain anticorrelated even after being excluded
from the whole brain mask, suggesting that the relationship is not an artifact of global regression. The MT+ seed region is as shown in Fig. 1.

tion centering induces negative correlations that are not spe-
cific to the seed region and localize to white matter (Fig. 6). A
second technique, frame-to-frame intensity stabilization, for
the most part, returns results similar to those obtained with
global signal regression (Supplemental Fig. S3A). However,
unlike global regression, this technique does not account for
regional heterogeneity in the distribution of the global signal
(Macey et al. 2004), a difference that becomes clear when a
seed region is placed in white matter, an area with significantly
less global signal than average (Supplemental Fig. S3B). Given
these considerations, we advocate the use of global regression
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over other normalization techniques for global signal correc-
tion, especially when studying anticorrelations.

Global signal

The second main finding of this study is that the global
signal obscures underlying neurophysiology and its removal
through linear regression represents a valid and useful process-
ing maneuver. This conclusion is supported by the three
examples of improved cortical-thalamic relationships observed
after global regression such as the correlation between V1 to
LGN (Fig. 4), as well as the improved correspondence between
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BOLD correlations and diffusion-based structural connectivity
assessed across the entire brain.

Global signal localizes primarily to gray matter, especially
primary sensory cortex and thalamus, midline peri-cingulate
regions, and control regions (Vincent et al. 2008), while
avoiding white matter and ventricles. This distribution bears a
qualitative resemblance to previous reports on the distribution
of cardiac (Chang et al. 2008) and respiratory (Birn et al. 2006)
related BOLD variance. However, it is important to note that
the global signal does not show strong localization to the
task-negative system, a finding that contrasts previous conclu-
sions regarding localization of respiratory-related fluctuations
(Birn et al. 20006).

Unambiguously, non-neuronal physiological processes give
rise to widely shared variance in BOLD fMRI data (Birn et al.
2006; Wise et al. 2004). However, it remains unclear whether
the origin of the global signal is predominantly neuronal or
nonneuronal. Variations in neuronal activity of diffuse ascend-
ing “arousal” systems similar to the locus coeruleus may play
a role. However, the presently measured distribution of the
global signal (Fig. 3) only partially overlaps with previously
identified brain regions associated with increases in arousal
(Critchley 2005). Furthermore, it is unclear what type of
arousal would localize to primary sensory cortices. This local-
ization (to primary sensory cortices) is equally problematic for
accounts of the global signal in terms of non-neuronal pro-
cesses. Further insight into this question may come from
analyses of non-fMRI correlates of the global signal. For
example, a significant lagged correlation has been identified
between the global signal and slow frequencies in respiratory
variance (Birn et al. 2006). However, this correlation was
significant at both positive and negative lags, begging the
question of causality. Is the correlation primarily caused by
fluctuations in respiration causing fluctuations in the global
BOLD signal or fluctuations in global neuronal activity causing
fluctuations in respiration? Future studies of the relationship
between the global signal and fluctuations in cardiac activity
(Chang et al. 2008), respiration (Birn et al. 2006), or indices of
autonomic arousal such as skin conductance or pupil diameter
will likely prove valuable.

How should we interpret observed anticorrelations?

The current evidence strongly suggests that previously ob-
served anticorrelations between the task-positive and task-
negative systems cannot be explained solely as a consequence
of preprocessing using global signal correction. First, we have
shown that the global signal is not preferentially localized to
these systems. Hence, the observed anticorrelation cannot be
explained as a trivial consequence of simply removing the
average of two signals. Second, it is clear that global signal
fluctuations obscure known physiological relationships with
respect to positive correlations, suggesting that the same may
be true for negative correlations. Third, the spatial distribution
of negative correlations is not mandated by global regression,
yet there exists a striking similarity between the localization of
negative correlations during the resting state (Fox et al. 2005b)
and sets of regions known to be modulated in opposite direc-
tions by task performance (Corbetta and Shulman 2002; Shul-
man et al. 1997), providing biological plausibility. Fourth, the
consistency of negative correlations across subjects is not
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mandated by global regression; however, the task-negative and
task-positive networks are routinely and specifically anticorre-
lated across subjects. Fifth, anticorrelated networks can be
observed even when the networks of interest are removed from
the whole brain mask, effectively eliminating the mathematical
constraints on these systems. Finally, evidence of anticorrela-
tions can be seen without global normalization if the location
of the seed region is optimized and the thresholds lowered.
These considerations argue that resting state correlation maps
computed after global signal regression are informative regard-
ing the physiological relationship between the task positive and
task negative systems.

In addition to these findings, results using other techniques
and modalities are also providing preliminary evidence sug-
gesting a biological basis to anticorrelated networks. Indepen-
dent components analysis (ICA) offers a means partitioning
fMRI variance into neuronal and non-neuronal components
without explicit global regression (Bartels and Zeki 2004;
Beckmann et al. 2005; Kiviniemi et al. 2003). Negative zones
corresponding to peaks in the distribution of the task-positive
and task-negative networks are evident in certain ICA results
(Beckmann et al. 2005). Outside the field of fMRI, recent
simulations using anatomical models of the monkey (Honey
et al. 2007) and human (Izhikevich and Edelman 2008) brains
have shown the spontaneous emergence of anticorrelated net-
works based solely on anatomical connections and spontaneous
neuronal firing. The later of these studies observed slow (<0.1
Hz) fluctuations in the posterior cingulate/precuneus anticorre-
lated with regions reminiscent of the task positive network [in-
traparietal sulcus (IPS) and frontal eyefield (FEF)]) (Izhikevich
and Edelman 2008). Finally, recent work using subdural elec-
trodes has reported preliminary evidence for negative correla-
tions in band limited power and slow cortical potentials in
humans (He et al. 2008). Similarly, recent electrophysiological
work in cats has shown the existence of low-frequency (0.05—
0.15 Hz) gamma power fluctuations anticorrelated between
putative homologs of the task-positive and task-negative sys-
tems (Popa et al. 2009). Although further work is needed, these
results suggest that the finding of anticorrelated networks is not
limited to fMRI data processed with global signal correction.

In contrast to these conclusions, a recent article has sug-
gested that “global signal regression is most likely the cause of
anticorrelations,” causing them to be inappropriately “intro-
duced” into the data, leading to “spurious findings” (Murphy
et al. 2009). An important question is how to reconcile our
results with this recent publication. Despite the difference in
conclusions, the two articles are in agreement regarding mul-
tiple findings that should be present if anticorrelations are to be
considered physiological. These findings include an improve-
ment in the neuroanatomical specificity of positive correlations
with global regression (Fig. 4), evidence for anticorrelations
without global regression (Fig. 7; Supplemental Fig. S6),
global signal distribution that does not specifically localize to
the task-positive and task-negative networks (Fig. 3; Supple-
mental Table S2), and a difference between global regression
and simply shifting the voxel distribution with post hoc distri-
bution centering (Fig. 5). The conclusions of Murphy et al.
(2009) were motivated by the absence of these findings both in
their study and prior literature. However, by directly testing
each hypothesis, we report clear confirmation of each of the
above findings. Furthermore, Murphy et al. suggested a mech-
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anism whereby artifactual anticorrelations could arise after
global regression from a delayed correlation between systems.
We directly tested for such delayed correlation between the
task-positive and task-negative system and found none (Sup-
plemental Fig. S7).

Limitations and areas for future work

There are several limitations in this study that should be
noted. First, this study was limited in scope to anticorrelations
between the task-positive and task-negative networks, a robust
observation with respect to dataset (Fig. 1), and resting state
conditions (Fox et al. 2005b). Anticorrelations outside these sys-
tems may be less reliable (Tian et al. 2007a,b) and have yet to be
tested using the rigorous methods presented here. Second, some of
the conclusions in this article, specifically those based on the
restricted mask analysis and simulation (Fig. 7; Supplemental
Table S4), relied on a model of an independent global signal
added on top of interacting neuronal systems. Such a model is
supported by known correlations between the global signal and
physiological variables (Birn et al. 2006) and the finding that the
global signal obscures underlying neurophysiology and neuro-
anatomy (Fig. 4). However, one could posit an alternate model in
which the high degree of interconnectedness between brain re-
gions is itself responsible for the uniformly positive correlations.
We are unable to definitively rule out such a model in this study,
and further work is needed to determine whether our assumption
of an independent additive global signal is a valid one. Finally,
this study was limited to determining whether anticorrelated
networks could emerge solely as an artifact of global correction or
whether they instead reflect an interesting and important physio-
logical relationship. The precise details of this physiological
relationship and the mechanisms by which this relationship are
mediated require further work.

There are several approaches that may better elucidate the
relationship between the task-positive and task-negative net-
works. One approach is identification of independent correlates
of the global fMRI signal such as respiratory variance that can
be used as alternate regressors in data analysis. Although
removal of respiratory fluctuations alone has not shown robust
anticorrelations (Birn et al. 2006; Murphy et al. 2009), removal
of combined respiratory and cardiac variability (Chang et al.
2008) or alternative measures of sympathetic arousal may do
so. Perhaps the definitive source for insight into the physio-
logical relationship between anticorrelated networks is electro-
physiology. In studying feline homologs of the task-positive
and task-negative networks, Popa et al. (2009) showed signif-
icant nonstationarity in the relationship between the networks,
with epochs of significant correlation as well as anticorrelation.
Given the likely correspondence between BOLD and electro-
physiologic measurements of spontaneous neuronal activity
(He et al. 2008; Shmuel and Leopold 2008), nonstationarity
may contribute similarly to our fMRI data. Regression of a
global signal would serve to highlight even intermittent periods
of anticorrelation and may partially explain these results.
Temporal changes in the relationship between systems remain
an underexplored aspect in fMRI studies of spontaneous ac-
tivity (Fox and Raichle 2007), and electrophysiology, with its
improved temporal resolution, may provide important clues to
better understanding both anticorrelated networks and the
brain’s intrinsic dynamics in general.
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Finally, additional work is needed to determine how the
relationship between the task-positive and task-negative net-
works is mediated. One possibility is that a functional interplay
between the two systems is being facilitated by a third system.
For example, a right lateralized system previously implicated
in task-block transitions (Fox et al. 2005a) has been proposed
as mediating the switch between the task-positive and task-
negative networks (Sridharan et al. 2008). Similarly, a “control
network” has recently been described that is anatomically
interposed between the task-positive and task-negative net-
works (Vincent et al. 2008) and may be involved in a compet-
itive allocation of resources. An alternative possibility is that
anatomy alone gives rise to the observed relationship between
anticorrelated networks. In general, negative BOLD correla-
tions are associated with significantly fewer anatomical con-
nections as assessed with DTI, although there may be a slight
increase in connections between regions with the strongest
anticorrelations (Honey et al. 2009; Skudlarski et al. 2008).
Based on models of the brain’s anatomical connections, recent
simulation studies have shown the spontaneous emergence of
anticorrelated networks (Honey et al. 2007; Izhikevich and
Edelman 2008), in some cases resembling those seen in human
fMRI data (Izhikevich and Edelman 2008). These possibilities
are not mutually exclusive and may all contribute in some way
to the ongoing physiological interaction between the task-
positive and task-negative networks.

APPENDIX

Description of global signal regression technique

Let the BOLD data be represented as the n X m array, B, where n
is number of time points (frames) and m is the number of voxels. The
global mean time course, g, is an n X 1 column vector, g = (1/m)B1,,,,
where 1, is the m X 1 column vector of all 1 s. Voxelwise regression
of the BOLD data on g generates

B.=g'B
where g% (a 1 X n array) is the pseudoinverse of g. Thus g+ =
[¢'g] '¢" and g'g = L
Now, B, is a I X m array (image). “Regressing out” the global
signal gives the new volumetric times series

B'=B—gB,
This residual volumetric time series (B’) can be used to generate

seed-based correlation maps.

Mandated anticorrelations following whole brain
signal regression

Extending the above description, clearly, B’, like, B, is n X m.
Now, suppose another regression is computed using B’ (the volu-
metric time series after global signal regression) on any other
regressor, f. Then

Br =f+B/

where £ is the 1 X m pseudoinverse of f. We want to show that the
spatial mean of S; is zero, i.e., that (1/m)f* 3,1, = 0. Thus

(Um)f "B'1,, = (Im)f " (B = gB,)1y,

= (I/m)f (B — gg"B)1,
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=" [(1/m)B1,, — (1/m)gg*Bl,]

=f{e—gget=rlg—g=r0,=0

The preceding proof applies to beta images rather than correlation
images. However, total correlation images are equal to beta images
divided by the local time series SD (square root of variance). The SD
image clearly is not uniform. However, the nonuniformity of the
distribution of voxelwise noise tends to be unrelated to positive versus
negative regions of the beta image for regressors extracted from
typical seed regions of interest. Hence, total correlation images (after
whole brain signal regression) tend to exhibit an approximately zero
mean property.

Description of frame to frame intensity stabilization

Using the previous notation, the intensity-stabilized volumetric
time series B’ is computed as B’ = G 'B, where G = diag|[g] is an
n X n matrix containing the (unaltered) global mean time course (as
defined above) on the diagonal.

Mandated anticorrelations following frame-to-frame
intensity stabilization

Using the previous notation, let B’ be the volumetric time course
after frame-to-frame intensity stabilization. The stabilized global
mean time course, g’ = (1/m)B'l,,, is an n X 1 column vector in
which all entries are identical. We may, without loss of generality,
take the value of these entries to be 1, as the subsequent argument is
unchanged if B’ is scaled by any arbitrary constant. To show that g’ =
1,, write

¢’ = (1/m)G™'B1,, = (/m){diag [(1/m)B1,]}"'B1,, =1,

The preceding equation can be verified by left-multiplying the expres-
sions on both sides of the last equal sign by G. Thus

(1/m)B1,, = {diag [(1/m)B1,,]}1, = (diag [g])1, = g

Global signals must be removed before correlation analysis. Having
forced the global mean value at all time points to be 1 (or any other
value), this quantity must be subtracted from all entries in B’ to obtain
B". Each row of B” (each frame) will have a whole brain mean value
of 0. Algebraically, this condition is (1/m)B"1,, = 0,. Now, suppose
that B” is regressed on some time course, f, extracted from any
arbitrary ROI. As above, we have

Bi=f"B"
We want to show that the spatial mean of £3; is 0, i.e., that (1/m)B;1,, =
0. Performing the algebra, we obtain
(1/m) B¢l = (Um)f {B"1,,} = 0,
which follows from the fact that the quantity in braces is an n X 1
column vector of all Os.
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