## Introduction to Computer Algebra

## Carlos D'Andrea

## Oslo, December 1st 2016


(U)

B Universitat de Barcelona

## What is Computer Algebra?

## What is Computer Algebra?

## let me <br> that for you <br> Google Search <br> Im Feeling Lucky

## Computer Algebra

## Computer Algebra

| article discussion edit history |
| :--- | :--- | :--- |

Computer algebra
Equation 1
$y^{2}+3 x y+x^{2}=0$
Equation 2
$y+3 x=1$
Solution
$\left[\left[y=-\frac{3 \sqrt{5}+7}{2}, x=\frac{\sqrt{5}+3}{2}\right],\left[y=\frac{3 \sqrt{5}-7}{2}, x=-\frac{\sqrt{5}-3}{2}\right]\right]$
Integration
$f(x):=\exp (\sin (x))$ :
$\int_{1}^{\pi} e^{\sin x} d x$

## Computer Algebra

## Computer algebra

```
Equation 1
    y
Equation 2
    y+3x=1
Solution
    [[y=-\frac{3\sqrt{}{5}+7}{2},x=\frac{\sqrt{}{5}+3}{2}],[y=\frac{3\sqrt{}{5}-7}{2},x=-\frac{\sqrt{}{5}-3}{2}]]
Integration
    f(x):=\operatorname{exp}(\operatorname{sin}(x)):
    \int}\mp@subsup{0}{}{\pi}\mp@subsup{e}{}{\operatorname{sin}x}d
```

Modern Computer Algebra
second ralition
joachim ven zul Gathen and jügen Gethand


## Computer Algebra

## Computer algebra

Equation 1
$y^{2}+3 x y+x^{2}=0$
Equation 2

$$
y+3 x=1
$$

Solution
$\left[\left[y=-\frac{3 \sqrt{5}+7}{2}, x=\frac{\sqrt{5}+3}{2}\right],\left[y=\frac{3 \sqrt{5}-7}{2}, x=-\frac{\sqrt{5}-3}{2}\right]\right]$
Integration
$f(x):=\exp (\sin (x))$ :
$\int_{0}^{\pi} e^{\sin x} d x$

Modern Computer Algebra
second radition
joachim von zu Gathen and jügen cethand


Integratlon using Computbr Algebra Systems (CAS)


## Computer Algebra

## Computer algebra

Equation 1
$y^{2}+3 x y+x^{2}=0$
Equation 2
$y+3 x=1$
Solution
$\left[\left[y=-\frac{3 \sqrt{5}+7}{2}, x=\frac{\sqrt{5}+3}{2}\right],\left[y=\frac{3 \sqrt{5}-7}{2}, x=-\frac{\sqrt{5}-3}{2}\right]\right]$
Integration
$f(x):=\exp (\sin (x)):$
$\int_{1}^{\pi} e^{\sin x} d x$


Modern Computer Algebra
second radition
joachim ven zul Gathen and jügen Gethand


## From Wikipedia (Symbolic Computation)



## From Wikipedia (Symbolic Computation)


"...is a scientific area that refers to the study and development of

## From Wikipedia (Symbolic Computation)


"...is a scientific area that refers to the study and development of algorithms and software

## From Wikipedia (Symbolic Computation)


"...is a scientific area that refers to the study and development of algorithms and software for manipulating mathematical
expressions and other mathematical
obiects..."
11

## From Wikipedia (Symbolic Computation)

"A large part of the work in the field consists in revisiting classical algebra in order to

## From Wikipedia (Symbolic Computation)

"A large part of the work in the field consists in revisiting classical algebra in order to make it effective and to discover efficient algorithms to implement this effectiveness"


## "Effective" Operations

## "Effective" Operations

## ■ Boolean decisions: $=, \neq,(>,<)$

## "Effective" Operations

■ Boolean decisions: $=, \neq,(>,<)$

- Arithmetic Operations over "computable" rings:
$\mathbb{Z}, \mathbb{Q}, \mathbb{F}_{q}, \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right], \ldots$


## "Effective" Operations

- Boolean decisions: $=, \neq,(>,<)$
- Arithmetic Operations over "computable" rings:
$\mathbb{Z}, \mathbb{Q}, \mathbb{F}_{q}, \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right], \ldots$
■ Finite-Dimensional Linear Algebra


## What is "an algorithm" for CA?

## What is "an algorithm" for CA?

## Given $A, B \in \mathbb{Z}$,

## What is "an algorithm" for CA?

## Given $A, B \in \mathbb{Z}$,compute the product $A \cdot B \in \mathbb{Z}$

## What is "an algorithm" for CA?

## Given $A, B \in \mathbb{Z}$,compute the product $A \cdot B \in \mathbb{Z}$

5127<br>x 4265<br>25635<br>307620<br>1025400

$$
\begin{array}{r}
453 \\
\times \begin{array}{r}
4001205 \\
2265 \\
906 \cdot \\
453
\end{array} \\
\hline 453 \cdot . \\
\hline 453545865 \\
\hline
\end{array}
$$

## Example: The Multiplication Algorithm

## $\square$ Input: $A, B \in \mathbb{Z}$

## Example: The Multiplication Algorithm

## $\square$ Input: $A, B \in \mathbb{Z}$ ■ Output: $A \cdot B \in \mathbb{Z}$

## Example: The Multiplication Algorithm

## - Input: $A, B \in \mathbb{Z}$ <br> - Output: $A \cdot B \in \mathbb{Z}$ - Procedure:

> | 36 |  |
| ---: | :--- |
| $\times 24$ |  |
| 744 | $(4 \times 36=744)$ |
| +720 | $(2 \times 36=72$ <br> 864 |
| $\begin{array}{l}\text { with a } 0 \text { added in } \\ \text { the ones' position })\end{array}$ |  |

## Effective and Efficient

## Effective and Efficient

## Effective:

## Effective and Efficient

## Effective: the procedure must finish after a finite number of operations,

## Effective and Efficient

## Effective: the procedure must finish after a finite number of operations, and give the right answer

## Effective and Efficient

## Effective: the procedure must finish after a finite number of operations, and give the right answer

## Efficient:

## Effective and Efficient

Effective: the procedure must finish after a finite number of operations, and give the right answer

Efficient: the procedure must be as short as possible

## Effective and Efficient

Effective: the procedure must finish after a finite number of operations, and give the right answer

Efficient: the procedure must be as short as possible and use as less space as possible

## Short and less Space

## ■ Input: $A, B \in \mathbb{Z}$

## Short and less Space

## ■ Input: $A, B \in \mathbb{Z}$ of $N$ digits

## Short and less Space

## ■ Input: $A, B \in \mathbb{Z}$ of $N$ digits ■ Output: $A \cdot B \in \mathbb{Z}$

## Short and less Space

■ Input: $A, B \in \mathbb{Z}$ of $N$ digits
■ Output: $A \cdot B \in \mathbb{Z}$
Output's size is around 2 N digits

## Short and less Space

$\square$ Input: $A, B \in \mathbb{Z}$ of $N$ digits
■ Output: $A \cdot B \in \mathbb{Z}$
Output's size is around 2 N digits High school algorithm takes around $\mathcal{O}\left(N^{2}\right)$ operations

## Short and less Space

$■$ Input: $A, B \in \mathbb{Z}$ of $N$ digits
■ Output: $A \cdot B \in \mathbb{Z}$
Output's size is around $2 N$ digits High school algorithm takes around $\mathcal{O}\left(N^{2}\right)$ operations
It is effective

## Short and less Space

$■$ Input: $A, B \in \mathbb{Z}$ of $N$ digits
■ Output: $A \cdot B \in \mathbb{Z}$
Output's size is around $2 N$ digits High school algorithm takes around $\mathcal{O}\left(N^{2}\right)$ operations
It is effective, but is it efficient?

## Efficient Multiplication

## Karatsuba's algorithm (1960): $\mathcal{O}\left(N^{1.585}\right)$



[^0]Carlos D'Andrea
Introduction to Computer Algebra

## Efficient Multiplication

## Toom-Cook's algorithm (1966): $\mathcal{O}\left(N^{\log (2 k-1) / \log k}\right), k \geq 3$

## Efficient Multiplication

## Toom-Cook's algorithm (1966): $\mathcal{O}\left(N^{\log (2 k-1) / \log k}\right), k \geq 3$

Schönhage-Strassen's algorithm (1971): $\mathcal{O}(N \log N \log \log N)$

## Efficient Multiplication

## Fürer's algorithm (2007): $\left.\mathcal{O}\left(N \log N 2^{\mathcal{O}\left(\log ^{*} N\right)}\right)\right)$ <br> $$
W=\left(\begin{array}{ccccc} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega^{2} & \omega^{2} & & \omega^{2 n-1} \\ 1 & \omega^{2} & \omega^{4} & & \omega^{4 n-2} \\ & & & & \\ 1 & \omega^{2 n-1} & \omega^{4 n-2} & & \omega^{2 n^{2}-n} \end{array}\right)
$$

## Efficient Multiplication

## Fürer's algorithm (2007): $\left.\mathcal{O}\left(N \log N 2^{\mathcal{O}\left(\log ^{*} N\right)}\right)\right)$ <br> Is it the most efficient??

## Numerical vs Computer Algebra

## Numerical vs Computer Algebra

"As numerical software are highly efficient for approximate numerical
computation, it is common, in computer algebra

## Numerical vs Computer Algebra

"As numerical software are highly efficient for approximate numerical computation, it is common, in computer algebra, to emphasize on exact computation with exactly represented data"

## Numerical vs Computer Algebra

## Compute the roots of

$$
x^{5}-5 x^{3}+4 x+1
$$



## Numerical vs Computer Algebra

Compute the roots of
$x^{5}-5 x^{3}+4 x+1$
(3) ce:

Numerical "solution":

## Numerical vs Computer Algebra

## Compute the roots of

$$
x^{5}-5 x^{3}+4 x+1
$$



Numerical "solution":

$$
-2.0385 ;-0.790734 ;-0.275834 ; 1.15098 ; 1.95408
$$

## Exactly Represented Data

## Exactly Represented Data



## Exactly Represented Data



- $x^{5}-5 x^{3}+4 x+1$


## Exactly Represented Data



$$
\begin{aligned}
& x^{5}-5 x^{3}+4 x+1 \\
& ■[-2.5,-2] ;[-2,-0.5] ;[-0.5,0] ;[0,1.5] ;[1.5,2]
\end{aligned}
$$

## Exactly Represented Data



$$
\begin{aligned}
■ & x^{5}-5 x^{3}+4 x+1 \\
■ & {[-2.5,-2] ;[-2,-0.5] ;[-0.5,0] ;[0,1.5] ;[1.5,2] } \\
& \{+,-,+,-,+\},\{-,+,+,-,+\}, \\
& \{+,+,-,-,+\},\{-,-,+,+,+\},\{+,+,+,+,+\}
\end{aligned}
$$

## Exactly Represented Data



$$
\begin{aligned}
& ■ x^{5}-5 x^{3}+4 x+1 \\
& ■ {[-2.5,-2] ;[-2,-0.5] ;[-0.5,0] ;[0,1.5] ;[1.5,2] } \\
&-\{+,-,+,-,+\},\{-,+,+,-,+\}, \\
&\{+,+,-,-+\},\{-,-,+,+,+\},\{+,+,+,+,+\} \\
& ■-2.5 ;-0.75 ;-0.25 ; 1 ; 2
\end{aligned}
$$

## Computational Challenge



## Computational Challenge



# Given $f(x) \in \mathbb{Z}[x]$, compute a set of small approximate roots of it 

## Computational Challenge



# Given $f(x) \in \mathbb{Z}[x]$, compute a set of small approximate roots of it fast 

## What is a small number?

| (10) |
| :---: |
| \%Ma010101001010010 ${ }^{\text {a }}$ |
| H010011001a1091070 |
| 10181010 |
| 101010101071 |
| $101010101011011 \square$ |
|  |
| 100100 |
|  |
|  |
| 101001017017071 |
| 9070707070 |
|  |

## What is a small number?

##  <br> The size of an integer $N$ is its number of digits:

## What is a small number?

##  <br> The size of an integer $N$ is its number of digits: $\log N$

## What is a small number?



The size of an integer $N$ is its number of digits: $\log N$ The size of a fraction $\frac{N_{1}}{N_{2}}$ will be

## What is a small number?



The size of an integer $N$ is its number of digits: $\log N$

## The size of a fraction $\frac{N_{1}}{N_{2}}$ will be $\max \left\{\log N_{1}, \log N_{2}\right\}$

## What is a small number?



The size of an integer $N$ is its number of digits: $\log N$

## The size of a fraction $\frac{N_{1}}{N_{2}}$ will be $\max \left\{\log N_{1}, \log N_{2}\right\}$

## Size of Algebraic Numbers

## What is "the size" of $\sqrt{2}$ ?

## Size of Algebraic Numbers

What is "the size" of $\sqrt{2}$ ?
Given $\alpha \in \mathbb{C}$ the root of
$(*) a_{0}+a_{1} x+\ldots+a_{n} x^{n} \in \mathbb{Z}[x]$

## Size of Algebraic Numbers

What is "the size" of $\sqrt{2}$ ? Given $\alpha \in \mathbb{C}$ the root of

$$
\begin{gathered}
(*) a_{0}+a_{1} x+\ldots+a_{n} x^{n} \in \mathbb{Z}[x] \\
\text { The "size" of } \alpha \text { is } \\
\left(n, \max \left\{\log \left|a_{i}\right|_{1 \leq i \leq n}\right\}\right)
\end{gathered}
$$

## Size of Algebraic Numbers

What is "the size" of $\sqrt{2}$ ? Given $\alpha \in \mathbb{C}$ the root of
$(*) a_{0}+a_{1} x+\ldots+a_{n} x^{n} \in \mathbb{Z}[x]$ The "size" of $\alpha$ is
$\left(n, \max \left\{\log \left|a_{i}\right|_{1 \leq i \leq n}\right\}\right)$
if $(*)$ is the minimal polynomial of $\alpha$

## With this definition...

## With this definition...

## - size of 2016 :

## With this definition...

## ■ size of 2016 : $(1, \log 2016 \approx 11)$

## With this definition...

## ■ size of 2016 : $(1, \log 2016 \approx 11)$ - size of $\sqrt{2}$ :

## With this definition...

## ■ size of 2016 : $(1, \log 2016 \approx 11)$ - size of $\sqrt{2}:(2, \log 2=1)$

## With this definition...

## ■ size of 2016 : $(1, \log 2016 \approx 11)$ <br> - size of $\sqrt{2}:(2, \log 2=1)$ <br> - size of $-\frac{1}{2}+\frac{\sqrt{3}}{2} i$ :

## With this definition...

# ■ size of 2016 : $(1, \log 2016 \approx 11)$ <br> - size of $\sqrt{2}:(2, \log 2=1)$ <br> - size of $-\frac{1}{2}+\frac{\sqrt{3}}{2} i:(2, \log 1=0)$ 

## With this definition...

# ■ size of 2016 : $(1, \log 2016 \approx 11)$ - size of $\sqrt{2}:(2, \log 2=1)$ <br> - size of $-\frac{1}{2}+\frac{\sqrt{3}}{2} i:(2, \log 1=0)$ - size of $\sqrt[3]{2}$ : 

## With this definition...

# ■ size of 2016 : $(1, \log 2016 \approx 11)$ - size of $\sqrt{2}:(2, \log 2=1)$ <br> - size of $-\frac{1}{2}+\frac{\sqrt{3}}{2} i:(2, \log 1=0)$ <br> - size of $\sqrt[3]{2}:(3, \log 2=1)$ 

## How does the size grow?

## Over the integers: size of N

## How does the size grow?

## Over the integers: size of $N=(1, \log N)$

## How does the size grow?

## Over the integers: size of $N=(1, \log N)$ <br> Size of

- $N_{1}+N_{2}$ :


## How does the size grow?

## Over the integers: size of $N=(1, \log N)$ Size of

$\square N_{1}+N_{2}:\left(1, \max \left\{\log N_{1}, \log N_{2}\right\}\right)$

## How does the size grow?

## Over the integers: size of $N=(1, \log N)$ Size of

$\square N_{1}+N_{2}:\left(1, \max \left\{\log N_{1}, \log N_{2}\right\}\right)$

- $N_{1} \cdot N_{2}$ :


## How does the size grow?

Over the integers: size of

$$
N=(1, \log N)
$$

Size of
■ $N_{1}+N_{2}:\left(1, \max \left\{\log N_{1}, \log N_{2}\right\}\right)$

- $N_{1} \cdot N_{2}: \quad\left(1, \log N_{1}+\log N_{2}\right)$


## Size of algebraic numbers

## Size of:

- $\sqrt{2} \cdot \sqrt[3]{2}$ :


## Size of algebraic numbers

$$
\begin{gathered}
\text { Size of: } \\
-\sqrt{2} \cdot \sqrt[3]{2}:(6, \log 32=5)
\end{gathered}
$$

## Size of algebraic numbers

$$
\begin{gathered}
\text { Size of: } \\
\sqrt{2} \cdot \sqrt[3]{2}:(6, \log 32=5) \\
\left(2^{\frac{1}{2}+\frac{1}{3}}=2^{\frac{5}{6}}\right.
\end{gathered}
$$

## Size of algebraic numbers

$$
\begin{gathered}
\text { Size of: } \\
\sqrt{2} \cdot \sqrt[3]{2}:(6, \log 32=5) \\
\left(2^{\frac{1}{2}+\frac{1}{3}}=2^{\frac{5}{6}} \leftrightarrow x^{6}-2^{5}=0\right) \\
\sqrt{2}+\sqrt[3]{2}: ? ? ?
\end{gathered}
$$

## Computer Algebra helps!

$$
\left\{\begin{array}{l}
x^{2}-2=0 \\
(y-x)^{3}-2=0
\end{array}\right.
$$

## Computer Algebra helps!

$$
\left.\begin{array}{c}
\left\{\begin{array}{l}
x^{2}-2=0 \\
(y-x)^{3}-2=0
\end{array}\right. \\
\downarrow
\end{array}\right\} \begin{aligned}
& \left\{\begin{array}{l}
x^{2}-2=0 \\
\mathbf{y}^{6}-\mathbf{6} \mathbf{y}^{4}-\mathbf{4} \mathbf{y}^{3}+\mathbf{1 2} \mathbf{y}^{2}-\mathbf{2 4} \mathbf{y}=\mathbf{4}
\end{array}\right.
\end{aligned}
$$

## Computer Algebra helps!

$$
\left.\begin{array}{c}
\left\{\begin{array}{l}
x^{2}-2=0 \\
(y-x)^{3}-2=0
\end{array}\right. \\
\downarrow
\end{array}\right\} \begin{aligned}
& x^{2}-2=0 \\
& \mathbf{y}^{6}-6 \mathbf{y}^{4}-4 y^{3}+12 y^{2}-24 y=4 \\
& \text { size of } \sqrt{2}+\sqrt[3]{2}=(6, \log 24 \approx 4.5)
\end{aligned}
$$

## In general...

## In general...

$$
\begin{aligned}
& \text { if the sizes of } \alpha_{1}, \alpha_{2} \text { are } \\
& \left(d_{1}, L_{1}\right),\left(d_{2}, L_{2}\right),
\end{aligned}
$$

## In general...

if the sizes of $\alpha_{1}, \alpha_{2}$ are
$\left(d_{1}, L_{1}\right),\left(d_{2}, L_{2}\right)$, the sizes of both $\alpha_{1}+\alpha_{2}$ and $\alpha_{1} \cdot \alpha_{2}$ is of the order of

## In general...

if the sizes of $\alpha_{1}, \alpha_{2}$ are
$\left(d_{1}, L_{1}\right),\left(d_{2}, L_{2}\right)$, the sizes of both $\alpha_{1}+\alpha_{2}$ and $\alpha_{1} \cdot \alpha_{2}$ is of the order of

$$
\left(d_{1} \cdot d_{2}, d_{1} L_{2}+d_{2} L_{1}\right)
$$

## Triangulating systems of equations

$$
\left\{\begin{array}{l}
x^{2} y+y^{2}-x=0 \\
x^{3}+y^{3}-x y+y=0
\end{array}\right.
$$

## Triangulating systems of equations

$$
\left\{\begin{array}{l}
x^{2} y+y^{2}-x=0 \\
x^{3}+y^{3}-x y+y=0
\end{array}\right.
$$



## Triangulating systems of equations

$$
\left\{\begin{array}{l}
x^{2} y+y^{2}-x=0 \\
x^{3}+y^{3}-x y+y=0
\end{array}\right.
$$



$$
\left\{\begin{array}{l}
x^{3}+y^{3}-x y+y=0 \\
\mathbf{y}^{9}+2 \mathbf{y}^{7}+\mathbf{y}^{5}-4 \mathbf{y}^{4}+\mathbf{y}=\mathbf{0}
\end{array}\right.
$$

## What can you get from here?

## What can you get from here?

## ■ Number of solutions of a system of equations

## What can you get from here?

## ■ Number of solutions of a system of equations <br> ■ "Location" of the solutions

## What can you get from here?

## ■ Number of solutions of a system of

 equations■ "Location" of the solutions
■ Dimension, degree, size, ...

## What can you get from here?

## ■ Number of solutions of a system of

 equations- "Location" of the solutions

■ Dimension, degree, size, ...
■ Symbolic Integration

## What can you get from here?

## ■ Number of solutions of a system of

 equations■ "Location" of the solutions
■ Dimension, degree, size, ...
■ Symbolic Integration

- Factorization of polynomials,


## What can you get from here?

## ■ Number of solutions of a system of

 equations■ "Location" of the solutions
■ Dimension, degree, size, ...
■ Symbolic Integration
■ Factorization of polynomials, matrices,

## What can you get from here?

■ Number of solutions of a system of equations

- "Location" of the solutions

■ Dimension, degree, size, ...
■ Symbolic Integration
■ Factorization of polynomials, matrices, differential operators,...

## "Triangulation" = Elimination of variables

## "Triangulation" = Elimination of variables

Find "the condition" on
$a_{10}, a_{11}, a_{20}, a_{21}$ so that the system

$$
\left\{\begin{array}{l}
a_{10} x_{0}+a_{11} x_{1}=0 \\
a_{20} x_{0}+a_{21} x_{1}=0
\end{array}\right.
$$

has a solution different from $(0,0)$

## The General System with Parameters

## The General System with Parameters

For $\boldsymbol{a}=\left(a_{1}, \ldots, a_{N}\right), k, n \in \mathbb{N}$ let $f_{1}\left(a, x_{1}, \ldots, x_{n}\right), \ldots, f_{k}\left(a, x_{1}, \ldots, x_{n}\right) \in$
$\mathbb{K}\left[a, x_{1}, \ldots, x_{n}\right]$. Find conditions on $a$ such that

$$
\left\{\begin{array}{ccc}
f_{1}\left(a, x_{1}, \ldots, x_{n}\right) & =0 \\
f_{2}\left(a, x_{1}, \ldots, x_{n}\right) & =0 \\
\vdots & \vdots & \vdots \\
f_{k}\left(a, x_{1}, \ldots, x_{n}\right) & =0
\end{array}\right.
$$

has a solution

## Solution?

## ■ Depends on the ground field

## Solution?

$\square$ Depends on the ground field There is not necessarily a "closed" condition

## Solution?

$\square$ Depends on the ground field ■ There is not necessarily a "closed" condition
■ Tools from Geometry are needed!

## The "simplest" example

$$
\begin{gathered}
k=n=1 \\
a_{0}+a_{1} x_{1}+a_{2} x_{1}^{2}+\ldots+a_{d} x_{1}^{d}=0
\end{gathered}
$$

## The＂simplest＂example

$$
\begin{gathered}
k=n=1 \\
a_{0}+a_{1} x_{1}+a_{2} x_{1}^{2}+\ldots+a_{d} x_{1}^{d}=0 \\
\text { Conditions? }
\end{gathered}
$$



## Known and "universal" examples

## Known and "universal" examples

$$
\left\{\begin{array}{ccc}
a_{11} x_{1}+\ldots+a_{1 n} x_{n}= & 0 \\
a_{21} x_{1}+\ldots+a_{2 n} x_{n}= & 0 \\
\vdots & \vdots \\
a_{k 1} x_{1}+\ldots+a_{k n} x_{n}= & 0
\end{array}\right.
$$

with $k \geq n$

## Known and "universal" examples

$$
\left\{\begin{array}{ccc}
a_{11} x_{1}+\ldots+a_{1 n} x_{n}= & 0 \\
a_{21} x_{1}+\ldots+a_{2 n} x_{n}= & 0 \\
\vdots & \vdots \\
a_{k 1} x_{1}+\ldots+a_{k n} x_{n}= & 0
\end{array}\right.
$$

with $k \geq n$
Conditions: all maximal minors of $\left(a_{i j}\right)_{1 \leq i \leq k, 1 \leq j \leq n}$ equal to zero

## Another Classical Example

## Another Classical Example

$$
\begin{aligned}
a_{11} v_{1}+\ldots+a_{1 n} v_{n} & =\lambda v_{1} \\
a_{21} v_{1}+\ldots+a_{2 n} v_{n} & =\lambda v_{2} \\
\vdots & \vdots \\
a_{n 1} v_{1}+\ldots+a_{n n} v_{n} & =\lambda v_{n}
\end{aligned}
$$

## Another Classical Example

$$
\begin{gathered}
a_{11} v_{1}+\ldots+a_{1 n} v_{n}=\lambda v_{1} \\
a_{21} v_{1}+\ldots+a_{2 n} v_{n}=\lambda v_{2} \\
\vdots \\
\vdots \\
a_{n 1} v_{1}+\ldots+a_{n n} v_{n}=\lambda v_{n} \\
\text { Condition: } C_{A}(\lambda)=0
\end{gathered}
$$

## Geometry

$$
\begin{aligned}
V= & \left\{\left(a, x_{1}, \ldots, x_{n}\right): f_{1}\left(a, x_{1}, \ldots, x_{n}\right)=\right. \\
& \left.0, \ldots f_{k}\left(a, x_{1}, \ldots, x_{n}\right)=0\right\}
\end{aligned}
$$

## Geometry

$$
\begin{gathered}
V=\left\{\left(a, x_{1}, \ldots, x_{n}\right): f_{1}\left(a, x_{1}, \ldots, x_{n}\right)=\right. \\
\left.0, \ldots f_{k}\left(a, x_{1}, \ldots, x_{n}\right)=0\right\} \\
V \quad \subset \mathbb{K}^{N} \times \mathbb{K}^{n} \\
\downarrow \pi_{1} \\
\downarrow \pi_{1} \\
\pi_{1}(V) \subset \quad \mathbb{K}^{N}
\end{gathered}
$$

## Geometry

$$
\begin{gathered}
V=\left\{\left(a, x_{1}, \ldots, x_{n}\right): f_{1}\left(a, x_{1}, \ldots, x_{n}\right)=\right. \\
\left.0, \ldots f_{k}\left(a, x_{1}, \ldots, x_{n}\right)=0\right\} \\
V \quad \subset \mathbb{K}^{N} \times \mathbb{K}^{n} \\
\downarrow \pi_{1} \\
\quad \downarrow \pi_{1} \\
\pi_{1}(V) \subset \quad \mathbb{K}^{N}
\end{gathered}
$$

The set of conditions is $\pi_{1}(\mathbf{V})$, not necessarily described by zeroes of polynomials

## Elimination Theorem

$$
\begin{gathered}
V=\left\{\left(a, x_{0}, x_{1}, \ldots, x_{n}\right): f_{1}\left(a, x_{0}, x_{1}, \ldots, x_{n}\right)=\right. \\
\left.0, \ldots f_{k}\left(a, x_{0}, x_{1}, \ldots, x_{n}\right)=0\right\}
\end{gathered}
$$

## Elimination Theorem

$$
\begin{gathered}
V=\left\{\left(a, x_{0}, x_{1}, \ldots, x_{n}\right):\right. \\
0, \ldots f_{1}\left(a, x_{0}, x_{1}, \ldots, x_{n}\right)= \\
\left.V \quad \subset f_{k}\left(a, x_{0}, x_{1}, \ldots, x_{n}\right)=0\right\} \\
\downarrow \quad \mathbb{K}^{N} \times \mathbb{P}^{n} \\
\downarrow \pi_{1} \quad \downarrow \pi_{1} \\
\pi_{1}(V) \subset \quad \mathbb{K}^{N}
\end{gathered}
$$

## Elimination Theorem

$$
\begin{gathered}
V=\left\{\left(a, x_{0}, x_{1}, \ldots, x_{n}\right): f_{1}\left(a, x_{0}, x_{1}, \ldots, x_{n}\right)=\right. \\
\left.0, \ldots f_{k}\left(a, x_{0}, x_{1}, \ldots, x_{n}\right)=0\right\} \\
V \quad \subset \mathbb{K}^{N} \times \mathbb{P}^{n} \\
\downarrow \pi_{1} \quad \downarrow \pi_{1} \\
\pi_{1}(V) \subset \quad \mathbb{K}^{N} \\
\pi_{1}(V)=\left\{p_{1}(a)=0, \ldots, p_{\ell}(a)=0\right\}
\end{gathered}
$$

## "One" Condition

$$
\begin{aligned}
V=\{ & \left(a, x_{0}, x_{1}, \ldots, x_{n}\right): f_{1}\left(a, x_{0}, x_{1}, \ldots, x_{n}\right)= \\
& \left.0, \ldots, f_{n+1}\left(a, x_{0}, x_{1}, \ldots, x_{n}\right)=0\right\}
\end{aligned}
$$

## "One" Condition

$$
\begin{gathered}
V=\left\{\left(a, x_{0}, x_{1}, \ldots, x_{n}\right): f_{1}\left(a, x_{0}, x_{1}, \ldots, x_{n}\right)=\right. \\
\left.0, \ldots, f_{n+1}\left(a, x_{0}, x_{1}, \ldots, x_{n}\right)=0\right\} \\
V \quad \subset \mathbb{K}^{N} \times \mathbb{P}^{n} \\
\downarrow \pi_{1} \quad \downarrow \pi_{1} \\
\pi_{1}(V) \subset \quad \mathbb{K}^{N}
\end{gathered}
$$

## "One" Condition

$$
\begin{gathered}
V=\left\{\left(a, x_{0}, x_{1}, \ldots, x_{n}\right): f_{1}\left(a, x_{0}, x_{1}, \ldots, x_{n}\right)=\right. \\
\left.0, \ldots, f_{n+1}\left(a, x_{0}, x_{1}, \ldots, x_{n}\right)=0\right\} \\
V \quad \subset \mathbb{K}^{N} \times \mathbb{P}^{n} \\
\downarrow \pi_{1} \quad \downarrow \pi_{1} \\
\pi_{1}(V) \subset \quad \mathbb{K}^{N} \\
\pi_{1}(V)=\left\{p_{1}(a)=0\right\}
\end{gathered}
$$

## Example 1

$$
\begin{gathered}
a_{00} x_{0}+a_{01} x_{1}+\ldots+a_{0 n} x_{n}=0 \\
a_{10} x_{0}+a_{11} x_{1}+\ldots+a_{1 n} x_{n}=0 \\
\vdots \\
\vdots \\
a_{n 0} x_{0}+a_{n 1} x_{1}+\ldots+a_{n n} x_{n}=0
\end{gathered}
$$

## Example 1

$$
\begin{gathered}
a_{00} x_{0}+a_{01} x_{1}+\ldots+a_{0 n} x_{n}=0 \\
a_{10} x_{0}+a_{11} x_{1}+\ldots+a_{1 n} x_{n}=0 \\
\vdots \\
\vdots \\
a_{n 0} x_{0}+a_{n 1} x_{1}+\ldots+a_{n n} x_{n}=0 \\
p_{1}(a)=\operatorname{det}\left(a_{i j}\right)
\end{gathered}
$$

## Example 2

$$
\left\{\begin{array}{l}
f_{1}=a_{10} x_{0}{ }^{d_{1}}+a_{11} x_{0}{ }^{d_{1}-1} x_{1}+\ldots+a_{1 d_{1}} x_{1} d_{1} \\
f_{2}=a_{20} x_{0}{ }^{d_{2}}+a_{21} x_{0}^{d_{2}-1} x_{1}+\ldots+a_{2 d_{2}} x_{1} d_{2}
\end{array}\right.
$$

## Example 2

$$
\left\{\begin{array}{l}
f_{1}=a_{10} x_{0}{ }^{d_{1}}+a_{11} x_{0}{ }^{d_{1}-1} x_{1}+\ldots+a_{1 d_{1}} x_{1}{ }_{1}^{d_{1}} \\
f_{2}=a_{20} x_{0}{ }^{d_{2}}+a_{21} x_{0}{ }^{d_{2}-1} x_{1}+\ldots+a_{2 d_{2}} x_{1}^{d_{2}}
\end{array}\right.
$$

$p_{1}(\boldsymbol{a})=\operatorname{det}\left(\begin{array}{ccccccc|}a_{10} & a_{11} & \ldots & a_{1 d_{1}} & 0 & \ldots & 0 \\ 0 & a_{10} & \ldots & a_{1 d_{1}-1} & a_{1 d_{1}} & \ldots & 0 \\ \vdots & \vdots & \ddots & \ldots & \ldots & \ddots & \vdots \\ 0 & 0 & \ldots & a_{10} & \ldots & \ldots & a_{1 d_{1}} \\ a_{20} & a_{21} & \ldots & a_{2 d_{2}} & 0 & \ldots & 0 \\ 0 & a_{20} & \ldots & a_{2 d_{2}-1} & a_{2 d_{2}} & \ldots & 0 \\ \vdots & \vdots & \ddots & \ldots & \ldots & \ddots & \vdots \\ 0 & 0 & \ldots & a_{20} & \vdots & \ldots & a_{2 d_{2}}\end{array}\right)$

## Example 3

$$
\left\{\begin{array}{l}
f_{1}=\sum_{\alpha_{0}+\ldots+\alpha_{n}=d_{1}} a_{1, \alpha_{0}, \ldots, \alpha_{n}} x_{0}{ }_{0}^{\alpha_{0}} \ldots x_{n}^{\alpha_{n}} \\
f_{2}=\sum_{\alpha_{0}+\ldots+\alpha_{n}=d_{2}} a_{2, \alpha_{0}, \ldots, \alpha_{n}} x_{0}^{\alpha_{0}} \ldots x_{n}^{\alpha_{n}} \\
\vdots \\
f_{n+1}=\sum_{\alpha_{0}+\ldots+\alpha_{n}=d_{n+1}} a_{n+1, \alpha_{0}, \ldots, \alpha_{n} x_{0}{ }^{\alpha_{0}} \ldots x_{n}{ }^{\alpha_{n}}}
\end{array}\right.
$$

## Example 3

$$
\left\{\begin{array}{l}
f_{1}=\sum_{\alpha_{0}+\ldots+\alpha_{n}=d_{1}} a_{1, \alpha_{0}, \ldots, \alpha_{n}} x_{0}{ }_{0}^{\alpha_{0}} \ldots x_{n}^{\alpha_{n}} \\
f_{2}=\sum_{\alpha_{0}+\ldots+\alpha_{n}=d_{2}} a_{2, \alpha_{0}, \ldots, \alpha_{n}} x_{0}^{\alpha_{0}} \ldots x_{n}^{\alpha_{n}} \\
\vdots \\
f_{n+1}=\sum_{\alpha_{0}+\ldots+\alpha_{n}=d_{n+1}} a_{n+1, \alpha_{0}, \ldots, \alpha_{n} x_{0}{ }^{\alpha_{0}} \ldots x_{n}{ }^{\alpha_{n}}}
\end{array}\right.
$$

$$
\operatorname{Res}\left(f_{1}, f_{2}, \ldots, f_{n+1}\right)
$$

## Effective tools

## Linear

## Polynomial

## Effective tools

## Linear Determinants

## Polynomial Resultants

## Effective tools

## Linear <br> Determinants <br> Cramer's rule

Polynomial
Resultants
u-resultants

## Effective tools

## Linear <br> Determinants <br> Cramer's rule <br> u-resultants Gauss elimination Gröbner Bases

## Effective tools

## Linear <br> Determinants <br> Cramer's rule <br> Gauss elimination <br> Triangulation <br> Polynomial <br> Resultants <br> u-resultants <br> Gröbner Bases <br> Triangular systems

## Effective tools

## Linear <br> Determinants <br> Cramer's rule <br> Gauss elimination <br> Triangulation <br> Polynomial <br> Resultants <br> u-resultants <br> Gröbner Bases <br> Triangular systems <br> $\vdots$

## How "efficient" is all this?

## How "efficient" is all this?

The size of the solutions of $\left\{\begin{array}{c}f_{1}\left(x_{1}, \ldots, x_{n}\right)=0 \\ f_{2}\left(x_{1}, \ldots, x_{n}\right)= \\ \vdots \\ f_{n}\left(x_{1}, \ldots, x_{n}\right)= \\ \vdots\end{array}\right.$

## How "efficient" is all this?

The size of the solutions of $\left\{\begin{array}{c}f_{1}\left(x_{1}, \ldots, x_{n}\right)=0 \\ f_{2}\left(x_{1}, \ldots, x_{n}\right)=0 \\ \vdots \\ f_{n}\left(x_{1}, \ldots, x_{n}\right)=0\end{array}\right.$ where size of $f_{i}=(d, L)$

## How "efficient" is all this?

The size of the solutions of $\left\{\begin{array}{c}f_{1}\left(x_{1}, \ldots, x_{n}\right)=0 \\ f_{2}\left(x_{1}, \ldots, x_{n}\right)=0 \\ \vdots \\ f_{n}\left(x_{1}, \ldots, x_{n}\right)=0\end{array}\right.$ where size of $f_{i}=(d, L)$ is bounded by and generically equal to

$$
\left(d^{n}, n d^{n-1} L\right)
$$

## Carlos D'Andrea

Introduction to Computer Algebra

## The output is already exponential!!!



## The output is already exponential!!!



And moreover:

## The output is already exponential!!!



And moreover: Complexity of
Computing Gröbner bases is doubly exponential

## Changing the model

## Changing the model

## ■ Probabilistic algorithms

## Changing the model

- Probabilistic algorithms ■ Computations "over the Reals"


## Changing the model

- Probabilistic algorithms ■ Computations "over the Reals" - Homotopy methods



## Computing over the reals: BSS-machine

## Computing over the reals: BSS-machine

## is a Random Access Machine

## Computing over the reals: BSS-machine

is a Random Access Machine with registers that can store arbitrary real numbers

## Computing over the reals: BSS-machine

is a Random Access Machine with registers that can store arbitrary real numbers and that can compute rational functions over reals at unit cost


## Steve Smale's 17th's problem (1998)



## Steve Smale's 17th's problem (1998)


is there an algorithm which computes an approximate solution of a system of polynomials in time polynomial on the average, in the size of the input?

## Homotopies



## Homotopies



## ■ Start with an "easy" system

## Homotopies



■ Start with an "easy" system "Chase" the roots with an homotopy + Newton's method

## Numerical Algebraic Geometry

## By using homotopies, one can compute

## Numerical Algebraic Geometry

## By using homotopies, one can compute ■ Irreducible components

## Numerical Algebraic Geometry

## By using homotopies, one can compute

## ■ Irreducible components

- Multiplicities


## Numerical Algebraic Geometry

## By using homotopies, one can compute

 - Irreducible components - Multiplicities - Irreducible decomposition
## Numerical Algebraic Geometry

## By using homotopies, one can compute

- Irreducible components
- Multiplicities
- Irreducible decomposition
- Dimension


## Numerical Algebraic Geometry

## By using homotopies, one can compute

■ Irreducible components

- Multiplicities
- Irreducible decomposition
- Dimension


## Popular software in Computer Algebra

■ Maple
■ Mathematica

- Bertini
- CoCoA
- Macaulay2
- SageMath
- Singular


## Maple

## Maple

## Maple

## 

## ■ Developed by MapleSoft

## Maple

## ${ }^{2}$ ² Maple

## ■ Developed by MapleSoft ■ Core Team: Waterloo (Canada)

## Maple

## Maple

# ■ Developed by MapleSoft ■ Core Team: Waterloo (Canada) ■ http://www.maplesoft.com/ 

## Mathematica

## Wolfram <br> Mathematica <br> 

## Mathematica

Wolfram<br>Mathematica<br>

■ Developed by Wolfram

## Mathematica

## Wolfram <br> Mathematica <br> 

- Developed by Wolfram
- Core Team: Champaign, IL (USA)


## Mathematica

## Wolfram <br> Mathematica <br> 

- Developed by Wolfram - Core Team: Champaign, IL (USA)
https://www.wolfram.com/mathematica


## Bertini



## Bertini



## ■ Free software

## Bertini



- Free software

■ Core Team: University of Notre Dame (USA)

## Bertini

## ■ Free software

- Core Team: University of Notre Dame (USA)
■ https://bertini.nd.edu/


## CoCoA



## CoCoA



## - Free software

## CoCoA

## COCOA

## ■ Free software

- Core Team: University of Genoa (Italy)


## CoCoA

## COCOA

## ■ Free software

- Core Team: University of Genoa (Italy)
■ http://cocoa.dima.unige.it/


## Macaulay2



## Macaulay2



## ■ Free software

## Macaulay2



## ■ Free software

■ Core Team: University of Illinois at Urbana-Champaign (USA)

## Macaulay2



## ■ Free software

- Core Team: University of Illinois at Urbana-Champaign (USA)
http://www.math.uiuc.edu/Macaulay2/


## SageMath



Carlos D'Andrea
Introduction to Computer Algebra

## SageMath



## ■ Free open-source

## SageMath



## - Free open-source ■ Core Team: Worlwide

## SageMath



- Free open-source - Core Team: Worlwide ■ http://www.sagemath.org/


## Singular

## SINGULAR $\ll$

## Singular

## SINGULAR $\ll$

## ■ Free software

## Singular

## SINGULAR $\ll$

- Free software

■ Core Team: University of Kaiserlautern (Germany)

## Singular

## SINGULAR ${ }^{*}$

■ Free software

- Core Team: University of Kaiserlautern (Germany)
- https://www.singular.uni-kl.de/


## To Learn More about this Area...

## To Learn More about this Area...



## To Learn More about this Area...



JOEL S. COHEN
COMPUTER AlgGBRA AND
SYMBOLIC COMPUTATION
Mathematical Methods


## To Learn More about this Area...



JoEl S. COHEN
COMPUIER ALGEBRA AND SYMBOLIC COMPUTATION
Mathematical Methods


## Computational Complexity



Sanjeev Arora
and Boaz Barak
ceximumes

## To Learn More about this Area...

## To Learn More about this Area...

## Coulifisvity avd Real Coniputrivion

Lexone Bun - Paimp: Cuckrr
Michush Shib - Stave Sinie


## To Learn More about this Area...



## To Learn More about this Area...

## Coulifisuty avd Real Conipuravion

Lekonk Bum - Paupe Clockr
Michel Sute - Streve Suiver

ALGORITHMS FOR COMPUTER ALGEBRA

Keith O. Gedetos
Stephen R. Crapor
Ceorge tabatin

## Undergradiate Fextsin Mathenmitic

David A. Cox
John Little
Donal O'Shea
Ideals, Varieties, and Algorithms
An Introduction to Computational Algebraic Geometry and Commutative Algebra
Fourth Edition
(2) Springer

## To publish in this area

## To publish in this area



## To publish in this area



## To publish in this area




## ank intone

## 

Algebra and
Computation

10 wond sclenifie

## To publish in this area

## To publish in this area



## To publish in this area



## To publish in this area



Carlos D'Andrea
Introduction to Computer Algebra

## Thanks!


(U)

Universitat
de Barcelona


[^0]:    54061873320649151811197715741354392510

