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From Wikipedia (Symbolic Computation)

“...is a scientific area that refers to
the study and development of
algorithms and software for

manipulating mathematical
expressions and other mathematical

objects...”
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consists in revisiting classical algebra
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make it effective and to
discover efficient algorithms to
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“Effective” Operations

Boolean decisions: =, 6=, (>, <)

Arithmetic Operations over
“computable” rings:
Z, Q, Fq, Q[x1, . . . , xn], . . .

Finite-Dimensional Linear Algebra
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What is “an algorithm” for CA?

Given A, B ∈ Z,compute the product
A · B ∈ Z
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Example: The Multiplication Algorithm

Input: A, B ∈ Z

Output: A · B ∈ Z
Procedure:
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Effective and Efficient

Effective: the procedure must finish
after a finite number of operations,

and give the right answer

Efficient: the procedure must be as
short as possible and use as less

space as possible
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Short and less Space

Input: A, B ∈ Z

of N digits

Output: A · B ∈ Z
Output’s size is around 2N digits

High school algorithm takes around
O(N2) operations

It is effective, but is it efficient?
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Efficient Multiplication

Karatsuba’s algorithm (1960):
O(N1.585)
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Efficient Multiplication

Toom-Cook’s algorithm (1966):
O(N log(2k−1)/ log k), k ≥ 3

Schönhage-Strassen’s algorithm
(1971): O(N logN log logN)
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Efficient Multiplication

Fürer’s algorithm (2007):
O(N logN 2O(log

∗N)))

Is it the most efficient??
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Numerical vs Computer Algebra

“As numerical software are highly
efficient for approximate numerical

computation, it is common, in
computer algebra, to emphasize

on exact computation with
exactly represented data”
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Numerical vs Computer Algebra

Compute the roots of
x5 − 5x3 + 4x + 1

Numerical “solution”:
−2.0385;−0.790734;−0.275834; 1.15098; 1.95408
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Exactly Represented Data

x5 − 5x3 + 4x + 1

[−2.5,−2]; [−2,−0.5]; [−0.5, 0]; [0, 1.5]; [1.5, 2]
{+,−,+,−,+}, {−,+,+,−,+},
{+,+,−,−,+}, {−,−,+,+,+}, {+,+,+,+,+}
−2.5; −0.75; −0.25; 1; 2
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Computational Challenge

Given f (x) ∈ Z[x ], compute a set of
small approximate roots of it fast
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What is a small number?

The size of an integer N is its
number of digits: logN

The size of a fraction N1
N2

will be

max{logN1, logN2}
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Size of Algebraic Numbers

What is “the size” of
√

2?

Given α ∈ C the root of
(∗) a0 + a1x + . . . + anx

n ∈ Z[x ]
The “size” of α is(

n, max{log |ai |1≤i≤n}
)

if (∗) is the minimal polynomial of α
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With this definition...

size of 2016 : (1, log 2016 ≈ 11)

size of
√

2 : (2, log 2 = 1)

size of −1
2 +

√
3
2 i : (2, log 1 = 0)

size of 3
√

2 : (3, log 2 = 1)
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How does the size grow?

Over the integers: size of
N

= (1, logN)
Size of

N1+N2 : (1,max{logN1, logN2})
N1 · N2 : (1, logN1 + logN2)
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Size of algebraic numbers

Size of:√
2 · 3
√

2 :

(6, log 32 = 5)

(2
1
2+

1
3 = 2

5
6 ↔ x6 − 25 = 0)√

2 + 3
√

2 :???
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Computer Algebra helps!

{
x2 − 2 = 0
(y − x)3 − 2 = 0

↓{
x2 − 2 = 0
y6 − 6y4 − 4y3 + 12y2 − 24y = 4

size of
√

2 +
3
√

2 = (6, log 24 ≈ 4.5)
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In general...

if the sizes of α1, α2 are
(d1, L1), (d2, L2), the sizes of both

α1 + α2 and α1 · α2 is of the order of
(d1 · d2, d1L2 + d2L1)
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Triangulating systems of equations{
x2y + y 2 − x = 0
x3 + y 3 − xy + y = 0

{
x3 + y 3 − xy + y = 0
y9 + 2y7 + y5 − 4y4 + y = 0
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What can you get from here?

Number of solutions of a system of
equations
“Location” of the solutions
Dimension, degree, size, ...
Symbolic Integration
Factorization of polynomials,
matrices, differential operators,...
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“Triangulation” = Elimination of variables

Find “the condition” on
a10, a11, a20, a21 so that the system{

a10x0 + a11x1 = 0
a20x0 + a21x1 = 0

has a solution different from (0, 0)
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The General System with Parameters

For a = (a1, . . . , aN), k , n ∈ N let
f1(a, x1, . . . , xn), . . . , fk(a, x1, . . . , xn) ∈

K[a, x1, . . . , xn]. Find conditions on a such that
f1(a, x1, . . . , xn) = 0
f2(a, x1, . . . , xn) = 0

...
...

...
fk(a, x1, . . . , xn) = 0

has a solution
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Solution?

Depends on the ground field

There is not necessarily a “closed”
condition

Tools from Geometry are needed!
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The “simplest” example

k = n = 1,

a0 + a1x1 + a2x1
2 + . . . + adx1

d = 0

Conditions?
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Known and “universal” examples


a11x1 + . . .+ a1nxn = 0
a21x1 + . . .+ a2nxn = 0

...
...

...
ak1x1 + . . .+ aknxn = 0

with k ≥ n
Conditions: all maximal minors of

(
aij
)
1≤i≤k, 1≤j≤n

equal to zero
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Another Classical Example


a11v1 + . . . + a1nvn = λv1
a21v1 + . . . + a2nvn = λv2

... ... ...
an1v1 + . . . + annvn = λvn

Condition: CA(λ) = 0
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Geometry

V = {(a, x1, . . . , xn) : f1(a, x1, . . . , xn) =
0, . . . fk(a, x1, . . . , xn) = 0}

V ⊂ KN ×Kn

↓ π1 ↓ π1

π1(V ) ⊂ KN

The set of conditions is π1(V), not necessarily
described by zeroes of polynomials
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Elimination Theorem

V = {(a, x0, x1, . . . , xn) : f1(a, x0, x1, . . . , xn) =
0, . . . fk(a, x0, x1, . . . , xn) = 0}

V ⊂ KN × Pn

↓ π1 ↓ π1

π1(V ) ⊂ KN

π1(V ) = {p1(a) = 0, . . . , p`(a) = 0}
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“One” Condition

V = {(a, x0, x1, . . . , xn) : f1(a, x0, x1, . . . , xn) =
0, . . . , fn+1(a, x0, x1, . . . , xn) = 0}

V ⊂ KN × Pn

↓ π1 ↓ π1

π1(V ) ⊂ KN

π1(V ) = {p1(a) = 0}
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Example 1


a00x0 + a01x1 + . . . + a0nxn = 0
a10x0 + a11x1 + . . . + a1nxn = 0

... ... ...
an0x0 + an1x1 + . . . + annxn = 0

p1(a) = det(aij)
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Example 2

{
f1 = a10x0

d1 + a11x0
d1−1x1 + . . .+ a1d1x1

d1

f2 = a20x0
d2 + a21x0

d2−1x1 + . . .+ a2d2x1
d2

p1(a) = det



a10 a11 . . . a1d1 0 . . . 0
0 a10 . . . a1d1−1 a1d1 . . . 0
...

...
. . . . . . . . .

. . .
...

0 0 . . . a10 . . . . . . a1d1
a20 a21 . . . a2d2 0 . . . 0
0 a20 . . . a2d2−1 a2d2 . . . 0
...

...
. . . . . . . . .

. . .
...

0 0 . . . a20 . . . . . . a2d2
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Example 3


f1 =

∑
α0+...+αn=d1

a1,α0,...,αn
x0
α0. . . xn

αn

f2 =
∑

α0+...+αn=d2
a2,α0,...,αn

x0
α0. . . xn

αn

...
fn+1 =

∑
α0+...+αn=dn+1

an+1,α0,...,αn
x0
α0. . . xn

αn

Res(f1, f2, . . . , fn+1)
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Effective tools

Linear Polynomial

Determinants Resultants
Cramer’s rule u-resultants
Gauss elimination Gröbner Bases
Triangulation Triangular systems
... ...
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Triangulation Triangular systems
... ...

Carlos D’Andrea

Introduction to Computer Algebra



Effective tools

Linear Polynomial
Determinants Resultants
Cramer’s rule u-resultants
Gauss elimination Gröbner Bases
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How “efficient” is all this?

The size of the solutions of


f1(x1, . . . , xn) = 0
f2(x1, . . . , xn) = 0

...
...

...
fn(x1, . . . , xn) = 0

where size of fi = (d , L)
is bounded by and generically equal to(

dn, ndn−1L
)
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The output is already exponential!!!

And moreover: Complexity of
Computing Gröbner bases is doubly

exponential
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Changing the model

Probabilistic algorithms

Computations “over the Reals”

Homotopy methods

. . .
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Computing over the reals: BSS-machine

is a Random Access Machine
with registers that can store

arbitrary real numbers and that
can compute rational functions over

reals at unit cost
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Steve Smale’s 17th’s problem (1998)

is there an algorithm which computes
an approximate solution of a
system of polynomials in time

polynomial on the average, in
the size of the input ?
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Homotopies

Start with an “easy” system
“Chase” the roots with an
homotopy + Newton’s method
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Numerical Algebraic Geometry

By using homotopies, one can
compute

Irreducible components

Multiplicities

Irreducible decomposition

Dimension

. . .
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Popular software in Computer Algebra

Maple
Mathematica
Bertini
CoCoA
Macaulay2
SageMath
Singular
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Maple

Developed by MapleSoft
Core Team: Waterloo (Canada)
http://www.maplesoft.com/
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Mathematica

Developed by Wolfram

Core Team: Champaign, IL (USA)

https://www.wolfram.com/mathematica/
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Bertini

Free software

Core Team: University of Notre
Dame (USA)

https://bertini.nd.edu/
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CoCoA

Free software

Core Team: University of Genoa
(Italy)

http://cocoa.dima.unige.it/
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Macaulay2

Free software

Core Team: University of Illinois at
Urbana-Champaign (USA)

http://www.math.uiuc.edu/Macaulay2/
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SageMath

Free open-source

Core Team: Worlwide

http://www.sagemath.org/
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Singular

Free software

Core Team: University of
Kaiserlautern (Germany)

https://www.singular.uni-kl.de/
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