Read remark(2) below first.

Definitions:

(E, d) be a metric space. $A, B \subseteq E$.

- 1. *B* is dense in *E* if the closure of *B* equals *E*, i.e. $\overline{B} = E$
- 2. A is nowheredense if the interior of \overline{A} is empty, i.e. $(\overline{A})^o = \emptyset$.

Claim:

If A is nowhere dense, then E - A is dense in E.

The claim above look like to be true by the following observation.

Observation:

(E,d) be a metric space. If $F, G \subseteq E$ such that $F \cap G = \emptyset$ and $E = F \cup G$, then $\overline{F} \cap G^o = \emptyset$ and $E = \overline{F} \cup G^o$.

Proof: (of the observation) $\forall x \in E$,

- 1. either $\forall \rho > 0$, the open ball $B(x, \rho)$ contains at least one element of F, then $x \in \overline{F}$ by definition (but $x \notin G^o$ since $\forall \rho > 0$, $B(x, \rho)$ is not inside G);
- 2. or $\exists \rho > 0$ such that the open ball $B(x, \rho)$ contain no element of F, then $B(x, \rho) \subseteq G$ and $x \in G^{o}$, (obviously $x \notin \overline{F}$ in this case).

Remarks:

- 1. Set $F = E \overline{A}$ and $G = \overline{A}$ in the above observation, we have $E = \overline{(E \overline{A})} \cup (\overline{A})^o$. Thus, if $(\overline{A})^o$ is empty, then $E = \overline{(E \overline{A})}$. Hence $E \overline{A}$ is dense in E, and so is E A which contains $E \overline{A}$
- 2. If we use '+' to denote disjoint union, then the above observation says $E = F + G \Rightarrow E = \overline{F} + G^{\circ}$. In this form, the claim can be easily seen to be true in the mind without going through the horribly complicated notations above.
- 3. It seems sometimes 'A is nowhere dense in E' is also defined by $(E \overline{A})$ is dense in E'.

Reference:

pp.134 and pp.159, Hausdorff, F. *Set Theory*, (Translated from the German by John R. Aumann, et al., Chelsea, 1991.