9. Mutación, reparación y transposición

Fundamentos de Genética Grado en Bioquímica Universidad de Granada

Prof. Ángel Martín Alganza (ama@ugr.es)

Departamento de Genética

9. Mutación, reparación y transposición

- ¿Qué son las mutaciones?
- 2 Las mutaciones son preadaptativas
- Clasificación de las mutaciones
- 4 La tasa de mutación es muy variable
- Causas de las mutaciones
 - Mutaciones espontáneas
 - Mutaciones inducidas
- 6 Mecanismos de reparación del DNA

Mutaciones espontáneas e inducidas

espontáneas se producen de manera natural

- No hay ningún agente específico asociado
- Son debidas a cambios aleatorios en la secuencia

inducidas producidas por la influencia de un factor externo

- Acción de agentes naturales o artificiales
- De naturaleza química o radiaciones

Las mutaciones son preadaptativas

Mutaciones espontáneas son la fuente de la resistencia (Prueba de la fluctuación de L-D)

THE LURIA-DELBRÜCK EXPERIMENT DEMONSTRATING THAT SPONTANEOUS MUTATIONS ARE THE SOURCE OF PHAGE-RESISTANT BACTERIA

Number of T1-Resistant Bacteria				
Sample No.	Same Culture (Control)	Different Cultures		
1	14	6		
2	15	5		
3	13	10		
4	21	8		
5	15	24		
6	14	13		
7	26	165		
8	16	15		
9	20	6		
10	13	10		
Mean	16.7	26.2		
Variance	15.0	2178.0		

Copyright @ 2006 Pearson Prentice Hall, Inc.

Clasificación basada en la localización de la mutación

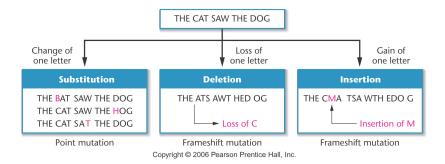
Según el tipo de tejido

somáticas No se transmiten a la descendencia germinales Son heredables

Según el tipo de cromosoma

autosómicas Enmascaradas cuando son recesivas

ligadas al X Expresadas sólo en machos o hembras homocigóticas


Clasificación basada en el tipo de cambio molecular

- Puntual o de sustitución de bases
 - (Transiciones o transversiones)
 - Silenciosa si no cambia el aminoácido
 - Sin sentido si resulta en un codón de terminación
 - De cambio de sentido si cambia el aminoácido codificado
- De cambio de fase, cuando se afecta la pauta de lectura

Mutaciones puntuales y de cambio de fase

Clasificación basada en los efectos fenotípicos

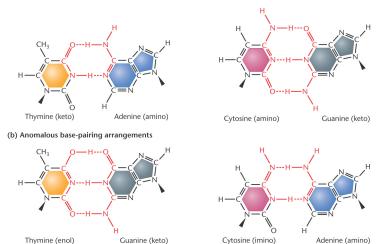
- Mutación de pérdida de función, nulas o knockouts
- Mutaciones que afectan a un carácter morfológico u observables
- Mutaciones con efectos nutricionales o bioquímicos
- Mutaciones del comportamiento
- Mutaciones de regulación
- Mutaciones letales
- Mutaciones condicionales: sensibilidad a la temperatura

Mutación Preadap Clasificación Tasa Causas Reparación

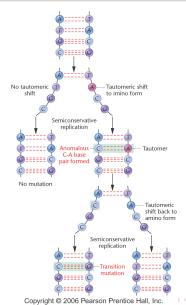
Tasa de mutaciones espontáneas

Organism	Character	Gene	Rate	Units
Bacteriophage T2	Lysis inhibition Host range Lactose fermentation Lactose fermentation Phage T1 resistance Histidine requirement Histidine independence	$r \rightarrow r^+$ $h^+ \rightarrow h$ $Iac^- \rightarrow Iac^+$ $Iac^+ \rightarrow Iac^-$ TI - $s \rightarrow TI$ - r $his^+ \rightarrow his^-$ $his^- \rightarrow his^+$	$\begin{array}{c} 1\times10^{-8}\\ 3\times10^{-9}\\ 2\times10^{-7}\\ 2\times10^{-6}\\ 2\times10^{-8}\\ 2\times10^{-6}\\ 4\times10^{-8} \end{array}$	Per gene replication
E. coli	Streptomycin dependence Streptomycin sensitivity Radiation resistance Leucine independence Arginine independence Tryptophan independence	$str\text{-}s \rightarrow str\text{-}d$ $str\text{-}d \rightarrow str\text{-}s$ $rad\text{-}s \rightarrow rad\text{-}r$ $leu^- \rightarrow leu^+$ $arg^- \rightarrow arg^+$ $trp^- \rightarrow trp^+$	1×10^{-9} 1×10^{-8} 1×10^{-5} 7×10^{-10} 4×10^{-9} 6×10^{-8}	Per cell division
Salmonella typhimurium	Tryptophan independence	$trp^- \rightarrow trp^+$	5×10^{-8}	Per cell division
Diplococcus pneumoniae	Penicillin resistance	$pen^s \rightarrow pen^r$	1×10^{-7}	Per cell division
Chlamydomonas reinhardi	Streptomycin sensitivity	$str' \rightarrow str^s$	1×10^{-6}	Per cell division
Neurospora crassa	Inositol requirement Adenine independence	$inos^+ \rightarrow inos^-$ $ade^- \rightarrow ade^+$	8×10^{-8} 2×10^{-8}	Mutant frequency among asexual spore
Zea mays	Shrunken seeds Purple Colorless Sugary	$sh^+ \rightarrow sh^-$ $pr^+ \rightarrow pr^-$ $c^+ \rightarrow c^-$ $su^+ \rightarrow su^-$	1×10^{-6} 1×10^{-5} 2×10^{-6} 2×10^{-6}	Per gamete per generation
Drosophila melanogaster	Yellow body White eye Brown eye Ebony body Eyeless	$y^+ \rightarrow y$ $w^+ \rightarrow w$ $bw^+ \rightarrow bw$ $e^+ \rightarrow e$ $ey^+ \rightarrow ey$	$\begin{array}{c} 1.2\times10^{-6}\\ 4\times10^{-5}\\ 3\times10^{-5}\\ 2\times10^{-5}\\ 6\times10^{-5} \end{array}$	Per gamete per generation
Mus musculus	Piebald coat Dilute coat color Brown coat Pink eye	$s^+ \rightarrow s$ $d^+ \rightarrow d$ $b^+ \rightarrow b$ $p^+ \rightarrow p$	3×10^{-5} 3×10^{-5} 8.5×10^{-4} 8.5×10^{-4}	Per gamete per generation
Homo sapiens	Hemophilia Huntington disease Retinoblastoma Epiloia Aniridia	$h^+ \rightarrow h$ $Hu^+ \rightarrow Hu$ $R^+ \rightarrow R$ $Ep^+ \rightarrow Ep$ $An^+ \rightarrow An$ $A^+ \rightarrow A$	2 × 10 ⁻⁵ 5 × 10 ⁻⁶ 2 × 10 ⁻⁵ 1 × 10 ⁻⁵ 5 × 10 ⁻⁶ 5 × 10 ⁻⁵	Per gamete per generation

Mutaciones espontáneas surgen de errores de replicación


- Inserción incorrecta de un nucleótido por la DNA polimerasa
- Las formas tautoméricas incrementan la probabilidad de emparejamientos incorrectos
- Desplazamiento de la replicación por indels
 - Lazo en cadena molde y se desplaza
 - La DNA polimerasa resbala durante la replicación
 - Tartamudeo de la DNA polimerasa (repetición de nucleótidos)
 - (Preferencia por regiones con secuencias repetidas)
- Cambios tautoméricos (isómeros estructurales de bases)
- Despurinación (pérdida base) y desaminación (amino \rightarrow ceto)
- Daño oxidativo
- Transposones

Cambios tautoméricos \rightarrow emparejamientos anómalos


(a) Standard base-pairing arrangements

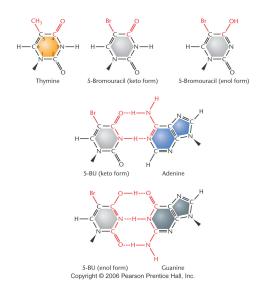
Copyright @ 2006 Pearson Prentice Hall, Inc.

Mutaciones de transición por cambios tautoméricos

Espontáneas Inducidas

Emparejamientos erróneos por desaminación

Las mutaciones inducidas se producen por daños del DNA


causados por agentes químicos y radiaciones (mutágenos o agentes mutagénicos)

- Análogos de bases (sustituyen nucleótidos durante la síntesis)
- Agentes alquilantes, ceden grupos alquilo (CH₃; CH₃—CH₂)
 - Gases mostaza, etilmetano sulfonato (EMS), etiletano sulfonato (EES)
- Colorantes de acridina (proflavina, naranja de acridina)
- Radiación ultravioleta (UV), que produce dímeros de timina
- Radiación ionizante (rayos X, gamma, cósmicos)

El 5-bromouracilo es un análogo de la adenina

Agentes alquilantes

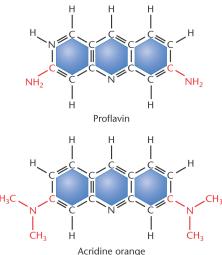
TABLE 15.3

ALKYLATING AGENTS

Common Name or Symbol	Chemical Name	Chemical Structure
Mustard gas (sulfur)	Di-(2-chloroethyl) sulfide	CI—CH ₂ —CH ₂ —S—CH ₂ —CH ₂ —CI
EMS	Ethylmethane sulfonate	CH ₃ -CH ₂ -O-\$ -CH ₃
EES	Ethylethane sulfonate	O

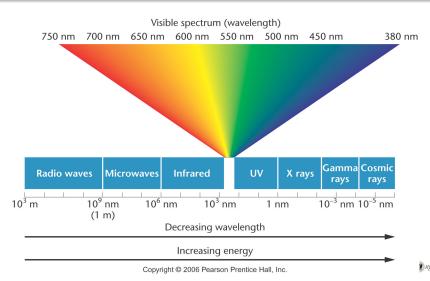
Copyright © 2006 Pearson Prentice Hall, Inc.

Acción del alquilante Etilmetanosulfonato (EMS)

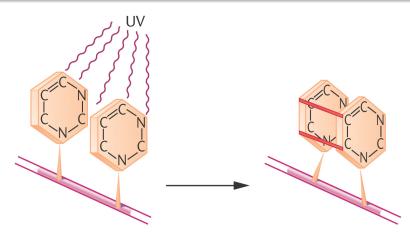

convirtiendo guanina en 6-etilguanina, que empareja con la timina

Proflavina y naranja de acridina

se intercalan en el DNA causando mutaciones de cambio de fase



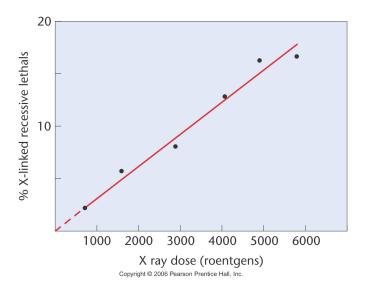
Copyright @ 2006 Pearson Prentice Hall, Inc.


Espectro electromagnético

Las longitudes de onda por debajo del espectro visible son energéticas y perjudiciales

Inducción de un dímero de timina por radiación UV

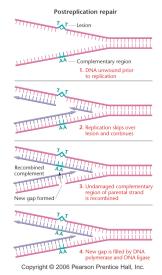
que conduce a una distorsión del DNA


Dimer formed between adjacent thymidine residues along a DNA strand

Copyright © 2006 Pearson Prentice Hall. Inc.

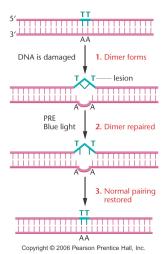
Mutaciones recesivas ligadas al X versus dosis de rayos X

Sitemas de reparación del DNA contrarrestan mutaciones


- Corrección de pruebas de la DNA polimerasa
 - Que invierte el sentido, escinde el nucleótido y lo reemplaza
- Reparación de emparejamientos erróneos
 - Se activa después de la corrección de pruebas
 - Se reconocen emparejamientos erróneos
 - Se reconoce la cadena correcta por su metilación
- Replicación postreplicativa
 - Por recombinación dirigida por la proteína Rec A
- Sistema de reparación SOS de E. coli
 - Permite replicar el DNA aún en presencia de lesiones (emparejamientos erróneos y huecos)
- Reparación por fotorreactivación; reversión del daño por UV
- Reparación por escisión de bases y de nucleótidos
- Reparación de roturas de doble cadena en eucariotas

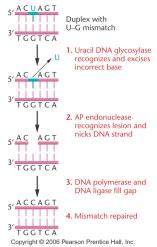
La reparación postreplicativa

se produce si la replicación se ha saltado una lesión, como un dímero de timina



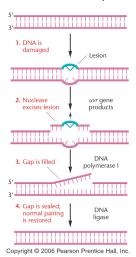
Reparación por fotorreactivación

La enzima fotorreactivadora (PRE) corta el enlace que forma el dímero de timina


Photoreactivation repair

Reparación por escisión de bases (BER)

realizada por la uracilo DNA glicosilasa, AP endonucleasa, DNA polimerasa, ligasa


Base excision repair

Reparación por escisión de nucleótidos (NER)

de un dímero de timina inducido por radiación UV

Nucleotide excision repair

Reparación de roturas de la doble cadena en eucariotas

causadas, por ejemplo, por exposición a radiaciones ionizantes

- Reparación de roturas de la doble cadena del DNA (reparación DSB)
 - Restaura la unión de ambas cadenas al nivel de la rotura
- Reparación por recombinación homóloga
 - Se recluta la información genética de la región homóloga de la cromátida hermana
- Reparación por recombinación no homóloga o unión de extremos
 - Por acción de una quinasa, que se une a extremos rotos de doble cadena
 - Restaura las uniones a nivel de la rotura con pérdida de residuos

