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Hierarchical Organization
• GPU -> Grids

– Multiprocessors -> Blocks, Warps
• Thread Processor -> Threads

• Global Memory
– Shared Memory

• Registers

– Cached global memory (Texture and Constant)

• Parallel programming
– dividing job in to pieces correctly and optimize the utilizing of 

available processing and memory resources
– Do it correctly so that 

• Use results only when computations are complete
• No simultaneous writes, etc.

• Avoid serialization
– If compiler cannot determine if things are correct it will serialize
– Can also happen because of hardware limitations 

• Two techniques
– Coalescing -> global memory reads and writes
– Bank Conflicts -> multiprocessors accesses to shared memory 



CUDA Device Memory

• Each thread can:

– R/W per-thread registers

– R/W per-thread local memory

– R/W per-block shared memory

– R/W per-grid global memory

– Read only per-grid constant 

memory

– Read only per-grid texture memory
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Parallel Memory Sharing
• Local Memory:   per-thread

– Private per thread

– Auto variables, register spill

• Shared Memory: per-Block

– Shared by threads of the same 
block

– Inter-thread communication

• Global Memory:   per-application

– Shared by all threads

– Inter-Grid communication

– Results; Host communication
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SM Memory Architecture

• Threads in a block share data & 

results

– In Memory and Shared Memory

– Synchronize at barrier instruction

• Per-Block Shared Memory 

Allocation

– Keeps data close to processor

– Minimize trips to global Memory

– Shared Memory is dynamically 

allocated to blocks, one of the 

limiting resources
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Programmer View of Register File

• Register File (RF)

– 32 KB (8K entries) for each SM in 

G80 (Compute Capability 1.0-1.1)

– (Compute Capability 1.2 has 

16384 registers)

– This is an implementation 

decision, not part of CUDA

– Registers are dynamically 

partitioned across all blocks 

assigned to the multiprocessor

– Once assigned to a block, the 

register is NOT accessible by 

threads in other blocks

– Each thread in the same block only 

accesses registers assigned to itself

4 blocks 3 blocks



Matrix Multiplication Example

• If each Block has 16×16 threads and each thread uses 
10 registers, how many threads can run on each SM?

– Each block requires 10*256 = 2560 registers

– 8192 = 3 * 2560 + change

– So, three blocks can run on an SM as far as registers are 
concerned

• How about if each thread increases the use of registers 
by 1?

– Each  Block now requires 11*256 = 2816 registers

– 8192 < 2816 *3

– Only two Blocks can now fit on the SM,

– 1/3 reduction of parallelism!!!



More on Dynamic Partitioning

• Dynamic partitioning gives more flexibility to 

compilers/programmers

– One can run a smaller number of threads that require many 

registers each or a large number of threads that require few 

registers each 

• This allows for finer grain threading than traditional CPU threading 

models.

– The compiler can tradeoff between improving performance 

via instruction-level parallelism or via thread level 

parallelism



ILP vs. TLP Example

• Assume that a kernel has 

– 256-thread Blocks, 

– 4 independent instructions for each global memory load in the thread

– each thread uses 10 registers, 

– global loads take 200 cycles 

– Then => 3 Blocks can run on each SM

• If the compiler can use one more register to change the 
dependence pattern so that 

– 8 independent instructions can be performed per global memory load

– Then => Only two blocks can run on each SM

• However, one only needs 200/(8*4) = 7 Warps to tolerate the 
memory latency

– Two blocks have 16 Warps. The performance can be actually higher!



Global Memory

• global memory space is not cached

• important to follow the right access pattern to get 
maximum memory bandwidth

• access is costly – 400-600 clock cycles

• For efficiency the access must result in fewer 
instructions, and fewer address computations

• Device can read 32-bit, 64-bit, or 128-bit words from 
global memory into registers in a single instruction. 

• Structures and arrays must align on these byte 
boundaries to minimize number of instructions.



Example

• To ensure that it generates the minimum number of 

instructions, such structures should be defined with 

__align__(16) , such as

struct __align__(16) {

float a;

float b;

float c;

float d;

float e;

};

• compiles into two 128-bit load instructions instead of five 32-

bit load instructions.



Coalescing accesses

• global memory bandwidth is most efficient when the simultaneous memory 
accesses by threads in a half-warp (during the execution of a single read or 
write instruction) can be coalesced into a single memory transaction of 32, 64, 
or 128 bytes.

• coalescing is achieved even if the warp is divergent and some threads of the 
half-warp do not actually access memory.

• global memory access by all threads of a half-warp is coalesced into one or two 
memory transactions if :

– Either 32-bit words, resulting in one 64-byte memory transaction,

– Or 64-bit words, resulting in one 128-byte memory transaction,

– Or 128-bit words, resulting in two 128-byte memory transactions;

– All 16 words must lie in the same segment of size equal to the memory transaction 
size (or twice the memory transaction size when accessing 128-bit words);

– Threads must access the words in sequence: The kth thread in the half-warp must 
access the kth word.

• If a half-warp does not fulfill all the requirements above, a separate memory 
transaction is issued for each thread and throughput is significantly reduced. 



Examples of Coalesced 

Global Memory Access

• Left: coalesced float 

memory access, 

resulting in a single 

memory transaction.

• Right: coalesced float 

memory access 

(divergent warp), 

resulting in a single 

memory transaction.



Noncoalesced access

• Left: non-sequential 
float memory access, 
resulting in 16 
memory transactions.

• Right: access with a 
misaligned starting 
address, resulting in 
16 memory 
transactions.

• In newer machines 
this is fixed
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Memory Coalescing

• When accessing global memory, peak performance 

utilization occurs when all threads in a half warp 

access continuous memory locations.
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Constants

• Immediate address constants

• Indexed address constants

• Constants stored in DRAM, and cached on chip

– L1 per SM

• A constant value can be broadcast to all threads 

in a Warp

– Extremely efficient way of accessing a value that is 

common for all threads in a block!
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Shared Memory

• Each SM has 16 kB of Shared Memory

– 16 banks of 32 bit words

• Shared Memory is visible to all 

threads in a thread block

– read and write access
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Parallel Memory Architecture

• In a parallel machine, many threads access memory

– Therefore, memory is divided into banks

– Essential to achieve high bandwidth 

since the bandwidth per “wire” is limited

• Each bank can service one address per cycle

– A memory can service as many simultaneous 

accesses as it has banks

• Multiple simultaneous accesses to a bank

result in a bank conflict 

– Conflicting accesses are serialized
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Bank Addressing Examples

• No Bank Conflicts

– Linear addressing 

stride == 1

• No Bank Conflicts

– Random 1:1 Permutation

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0



Bank Addressing Examples

• 2-way Bank Conflicts

– Linear addressing 

stride == 2

• 8-way Bank Conflicts

– Linear addressing 

stride == 8
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How addresses map to banks on G80

• Each bank has a bandwidth of 32 bits per clock cycle

• Successive 32-bit words are assigned to successive 

banks

• G80 has 16 banks

– So bank = address % 16

– Same as the size of a half-warp

• No bank conflicts between different half-warps, only within a 

single half-warp



Shared memory bank conflicts

• Shared memory is as fast as registers if there are no bank 

conflicts

• The fast case:

– If all threads of a half-warp access different banks, there is no bank 

conflict

– If all threads of a half-warp access the identical address, there is no 

bank conflict (broadcast)

• The slow case:

– Bank Conflict: multiple threads in the same half-warp access the same 

bank

– Must serialize the accesses

– Cost = max # of simultaneous accesses to a single bank



Linear Addressing

• Given:

__shared__ float shared[256];

float foo = 

shared[baseIndex + s * 

threadIdx.x];

• This is only bank-conflict-free if s 

shares no common factors with the 

number of banks 

– 16 on G80, so s must be odd
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