
Memory management for
performance

Ramani Duraiswami

Several slides from Wen-Mei Hwu and David Kirk’s course

Hierarchical Organization
• GPU -> Grids

– Multiprocessors -> Blocks, Warps
• Thread Processor -> Threads

• Global Memory
– Shared Memory

• Registers

– Cached global memory (Texture and Constant)

• Parallel programming
– dividing job in to pieces correctly and optimize the utilizing of

available processing and memory resources
– Do it correctly so that

• Use results only when computations are complete
• No simultaneous writes, etc.

• Avoid serialization
– If compiler cannot determine if things are correct it will serialize
– Can also happen because of hardware limitations

• Two techniques
– Coalescing -> global memory reads and writes
– Bank Conflicts -> multiprocessors accesses to shared memory

CUDA Device Memory

• Each thread can:

– R/W per-thread registers

– R/W per-thread local memory

– R/W per-block shared memory

– R/W per-grid global memory

– Read only per-grid constant

memory

– Read only per-grid texture memory

(Device) Grid

Constant

Memory

Texture

Memory

Global

Memory

Block (0, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

Host
• The host can R/W

global, constant, and

texture memories

Parallel Memory Sharing
• Local Memory: per-thread

– Private per thread

– Auto variables, register spill

• Shared Memory: per-Block

– Shared by threads of the same
block

– Inter-thread communication

• Global Memory: per-application

– Shared by all threads

– Inter-Grid communication

– Results; Host communication

Thread

Local Memory

Grid 0

. . .

Global
Memory

. . .

Grid 1
Sequential

Grids

in Time

Block

Shared
Memory

SM Memory Architecture

• Threads in a block share data &

results

– In Memory and Shared Memory

– Synchronize at barrier instruction

• Per-Block Shared Memory

Allocation

– Keeps data close to processor

– Minimize trips to global Memory

– Shared Memory is dynamically

allocated to blocks, one of the

limiting resources

t0 t1 t2 … tm

Blocks

Texture L1

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

TF

L2

Memory

t0 t1 t2 … tm

Blocks

SM 1SM 0

Courtesy:
John Nicols, NVIDIA

Programmer View of Register File

• Register File (RF)

– 32 KB (8K entries) for each SM in

G80 (Compute Capability 1.0-1.1)

– (Compute Capability 1.2 has

16384 registers)

– This is an implementation

decision, not part of CUDA

– Registers are dynamically

partitioned across all blocks

assigned to the multiprocessor

– Once assigned to a block, the

register is NOT accessible by

threads in other blocks

– Each thread in the same block only

accesses registers assigned to itself

4 blocks 3 blocks

Matrix Multiplication Example

• If each Block has 16×16 threads and each thread uses
10 registers, how many threads can run on each SM?

– Each block requires 10*256 = 2560 registers

– 8192 = 3 * 2560 + change

– So, three blocks can run on an SM as far as registers are
concerned

• How about if each thread increases the use of registers
by 1?

– Each Block now requires 11*256 = 2816 registers

– 8192 < 2816 *3

– Only two Blocks can now fit on the SM,

– 1/3 reduction of parallelism!!!

More on Dynamic Partitioning

• Dynamic partitioning gives more flexibility to

compilers/programmers

– One can run a smaller number of threads that require many

registers each or a large number of threads that require few

registers each

• This allows for finer grain threading than traditional CPU threading

models.

– The compiler can tradeoff between improving performance

via instruction-level parallelism or via thread level

parallelism

ILP vs. TLP Example

• Assume that a kernel has

– 256-thread Blocks,

– 4 independent instructions for each global memory load in the thread

– each thread uses 10 registers,

– global loads take 200 cycles

– Then => 3 Blocks can run on each SM

• If the compiler can use one more register to change the
dependence pattern so that

– 8 independent instructions can be performed per global memory load

– Then => Only two blocks can run on each SM

• However, one only needs 200/(8*4) = 7 Warps to tolerate the
memory latency

– Two blocks have 16 Warps. The performance can be actually higher!

Global Memory

• global memory space is not cached

• important to follow the right access pattern to get
maximum memory bandwidth

• access is costly – 400-600 clock cycles

• For efficiency the access must result in fewer
instructions, and fewer address computations

• Device can read 32-bit, 64-bit, or 128-bit words from
global memory into registers in a single instruction.

• Structures and arrays must align on these byte
boundaries to minimize number of instructions.

Example

• To ensure that it generates the minimum number of

instructions, such structures should be defined with

__align__(16) , such as

struct __align__(16) {

float a;

float b;

float c;

float d;

float e;

};

• compiles into two 128-bit load instructions instead of five 32-

bit load instructions.

Coalescing accesses

• global memory bandwidth is most efficient when the simultaneous memory
accesses by threads in a half-warp (during the execution of a single read or
write instruction) can be coalesced into a single memory transaction of 32, 64,
or 128 bytes.

• coalescing is achieved even if the warp is divergent and some threads of the
half-warp do not actually access memory.

• global memory access by all threads of a half-warp is coalesced into one or two
memory transactions if :

– Either 32-bit words, resulting in one 64-byte memory transaction,

– Or 64-bit words, resulting in one 128-byte memory transaction,

– Or 128-bit words, resulting in two 128-byte memory transactions;

– All 16 words must lie in the same segment of size equal to the memory transaction
size (or twice the memory transaction size when accessing 128-bit words);

– Threads must access the words in sequence: The kth thread in the half-warp must
access the kth word.

• If a half-warp does not fulfill all the requirements above, a separate memory
transaction is issued for each thread and throughput is significantly reduced.

Examples of Coalesced

Global Memory Access

• Left: coalesced float

memory access,

resulting in a single

memory transaction.

• Right: coalesced float

memory access

(divergent warp),

resulting in a single

memory transaction.

Noncoalesced access

• Left: non-sequential
float memory access,
resulting in 16
memory transactions.

• Right: access with a
misaligned starting
address, resulting in
16 memory
transactions.

• In newer machines
this is fixed

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M

Memory Coalescing

• When accessing global memory, peak performance

utilization occurs when all threads in a half warp

access continuous memory locations.

Md Nd

W
ID

T
H

WIDTH

Thread 1

Thread 2

Not coalesced coalesced

Constants

• Immediate address constants

• Indexed address constants

• Constants stored in DRAM, and cached on chip

– L1 per SM

• A constant value can be broadcast to all threads

in a Warp

– Extremely efficient way of accessing a value that is

common for all threads in a block!

I$
L1

Multithreaded
Instruction Buffer

R
F

C$
L1

Shared
Mem

Operand Select

MAD SFU

Shared Memory

• Each SM has 16 kB of Shared Memory

– 16 banks of 32 bit words

• Shared Memory is visible to all

threads in a thread block

– read and write access

I$
L1

Multithreaded
Instruction Buffer

R
F

C$
L1

Shared
Mem

Operand Select

MAD SFU

Parallel Memory Architecture

• In a parallel machine, many threads access memory

– Therefore, memory is divided into banks

– Essential to achieve high bandwidth

since the bandwidth per “wire” is limited

• Each bank can service one address per cycle

– A memory can service as many simultaneous

accesses as it has banks

• Multiple simultaneous accesses to a bank

result in a bank conflict

– Conflicting accesses are serialized

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Bank Addressing Examples

• No Bank Conflicts

– Linear addressing

stride == 1

• No Bank Conflicts

– Random 1:1 Permutation

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank Addressing Examples

• 2-way Bank Conflicts

– Linear addressing

stride == 2

• 8-way Bank Conflicts

– Linear addressing

stride == 8

Thread 11
Thread 10
Thread 9
Thread 8

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2
Bank 1
Bank 0

x8

x8

How addresses map to banks on G80

• Each bank has a bandwidth of 32 bits per clock cycle

• Successive 32-bit words are assigned to successive

banks

• G80 has 16 banks

– So bank = address % 16

– Same as the size of a half-warp

• No bank conflicts between different half-warps, only within a

single half-warp

Shared memory bank conflicts

• Shared memory is as fast as registers if there are no bank

conflicts

• The fast case:

– If all threads of a half-warp access different banks, there is no bank

conflict

– If all threads of a half-warp access the identical address, there is no

bank conflict (broadcast)

• The slow case:

– Bank Conflict: multiple threads in the same half-warp access the same

bank

– Must serialize the accesses

– Cost = max # of simultaneous accesses to a single bank

Linear Addressing

• Given:

__shared__ float shared[256];

float foo =

shared[baseIndex + s *

threadIdx.x];

• This is only bank-conflict-free if s

shares no common factors with the

number of banks

– 16 on G80, so s must be odd

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

s=3

s=1

