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ABSTRACT 
 
Previous work has shown that traditional four coordinate pseudo velocity shock spectrum is the best format for 
violent machine transient foundation motion analysis.  It emphasizes the motion severity.  This paper applies 
these results to the theoretical half sine and other simple test pulses.  It shows the simple pulses strongly related 
to actual explosive transients.  The trick turned out to be inclusion of pre and post pulse motion in the calculation.  
The calculations applied to shaker shock pulse motions are also discussed. 
 
 
INTRODUCTION 
 
Previous work has shown that traditional four coordinate pseudo velocity shock spectrum is the best format for 
violent transient foundation motion analysis if one is trying to indicate severity [1, 2, 3].  It emphasizes the motion 
severity.  This paper applies these results to the theoretical half sine and other simple test pulses, and in so 
doing, establishes three unappreciated characteristics of the simple shock pulses.   
 
Inclusion of the drop and any rebound in the pseudo velocity shock spectrum plotted on four coordinate paper 
(PVSS on 4CP) shows the simple pulses similar, as observed by Gertel and Holland [4].  
 
Shock spectra for explosive environments are shown similar to those of simple pulse tests produced on a drop 
table except for directionality.  The trick turned out to be inclusion of pre and post pulse motion in the shock 
spectrum calculation. 
 
Shock spectrum calculations applied to shaker generated shock pulse motions show that simple pulse tests 
conducted on a shaker with limited displacement do not match the low frequency severity of drop table shocks. 
 
A difficulty with this paper is as follows.  You can’t confirm what I have done unless you have a shock spectrum 
program and the ability to plot the results on four coordinate paper.  In that sense this is a "trust me" paper.  Good 
shock spectrum programs are not common.  I will give you my MATLAB program, [5, 6], and assure you that I 
have been using it for 20 years or more; I see no bugs in it.  Only recently have I programmed good 4CP, but that 
correctness is easily verified. 
 
 
PSEUDO VELOCITY AND FOUR COORDINATE PAPER. 
 
The shock spectrum is a plot of an analysis of a shock motion (i.e., transient motions due to explosions, 
earthquakes, package drops, railroad car bumping, vehicle collisions, etc.) that calculates the maximum response 
of many different frequency damped single degree of freedom systems (SDOF) exposed to the motion.  The plot 
is a graph of maximum response versus frequency.  Pseudo velocity is specifically the maximum relative 
displacement times frequency in radians.  It is surprising and not trivial, but this is the important quantity to plot for 
shock spectra when you want to indicate severity or capacity to cause damage.  The best way to plot these is on 



four coordinate paper (4CP) (also called tripartite paper).  Four coordinate paper is a logarithmic graph paper that 
has four sets of lines relating frequency, displacement, velocity, and acceleration of sinusoidal motions.  
 
The shock spectrum algorithm finds the peak relative displacement for a base excited SDOF.  That's the 
maximum energy stored in the elastic member during the transient event.  At that instant of time the velocity was 
zero, thus there was no damping force, so the force in the spring at that instant times the mass was the 
acceleration at that instant too.  If that maximum elastic energy stored in the spring during the shock were 
converted to velocity (kinetic energy) in the next or previous quarter cycle, that velocity would be (equating the 
kinetic and elastic energies): 
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Since k/m = ω2, we find: 
 
 zv ω=  (1a) 
 
That “v” is the pseudo velocity.  We calculate zmax for each frequency, and we plot ωzmax on four coordinate paper. 
 
The reasons why PV is so good are a little cloudy and difficult.  The typical engineering structures explanation is 
given in Reference [7].  It needs more thought, but I'll give you my best now.  Peak modal velocity in elastic 
structure is proportional to peak stress, and not acceleration as most still do not know [2, 8, 9, 10, 11, 12].  Say 
we have a steel chair, mounted on a shaker set to shake it horizontally and find its first mode.  The top of the back 
of the chair will have the highest modal velocity (measure the peak acceleration and divide it by the frequency in 
radians).  The peak stress is probably where one of the chair legs is welded to the seat.  That peak stress in psi 
will be a constant between 1 and 5 times 146 times that velocity in ips.  That is a fact [2, 9], and it is also true for 
second and third and all of the modes if we know for each, the peak velocity location and the peak stress location. 
 
Pseudo velocity is the best quantity to predict the potential to generate modal velocities in structure.  Relative 
velocity does not indicate modal velocity at low or high frequencies; it matches PV only in center severe section of 
the shock spectrum.  
 
The asymptotic behavior of the PVSS is summarized as follows [2, 3].  When the PVSS is plotted on 4CP, the 
displacement is exact.  One can expect to see two asymptotic values: at the high frequency end of the shock 
spectrum the curve should approach the peak pulse acceleration, and at the low frequency end of the spectrum it 
should approach the peak shock deflection.  For intermediate values of the frequency, the peak pseudo velocity is 
often almost constant. 
 
Four coordinate paper (4CP) (tripartite paper) is important to the PVSS presentation.  For a sinusoidal motion, the 
displacement, velocity, and acceleration are: 
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By equating the maximum values we have: 
 
 maxmaxmaxmax

2
maxmax zz,zz,zz &&&&&& ω==ω=ω  (2b) 

 
The four quantities: ,2,,, maxmaxmax forandzzz πω&&&  are related by Eq. 2b.  Knowing any two, you can calculate 

the other two.  By taking  logs the lines of constant ,z,z,z maxmaxmax &&&  versus ,f2or, πω are all straight lines.  
That is why we can compute the plot of Figure 1.  
 



 
THE SIMPLE PULSES HAVE SIMILAR SHOCK SPECTRA WHEN PLOTTED AS PVSS ON 4CP 
 
To make the point of simple pulse similarity, I have to calculate the PVSS on 4CP for all the simple shocks and 
there is not space to present individual plots for each shock.  The obvious way to show them similar is to 
superpose all of their spectra on a single composite plot and that is done in Figures 2 and 3.  Below I will describe 
the characteristics of each shock and the compromises I had to make to prove this point.  
 
a. Half Sine Shock 
 
Half sine shocks are usually specified by a peak acceleration and a duration, such as an 11 millisecond 30g half 
sine.  The shock has peak acceleration, mx&& , and duration td ; there is a frequency associated with this duration 
since it is half of one period of a sine wave with frequency,  fd = 1/2td . 
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The velocity change during the half sine pulse is very important.  Assume zero initial velocity and integrate over 
the half cycle to get the final velocity, which is the velocity change.  
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This result is important.  It relates three important pulse properties: velocity change, peak acceleration, and 
duration.  Two of these, ,x,x max&&&∆ are apparent on the pseudo velocity shock spectrum.  The shock spectrum of 
this pulse by itself is what is usually computed.  A package is sitting on the table and somebody belts the table 
upward with a rubber mallet in a zero “g” situation, and the package continues going off into space at constant 
velocity.  It is unrealistic, and leaves the low frequency asymptote (content or limit) out.  Yet we find this in every 
book on shock that presents the half sine shock spectrum.   
 
I am going to plot many shock spectra in this paper and I am going to select fairly severe parameters so you can 
get familiar with severe shock spectra.  I will use a velocity change of 100 ips and peak “g” level of 200gs.  Let's 
plot the above shock along with its two integrals, and then calculate the shock spectrum for this nude half sine 
shock.  Using Eq. (2) we find the duration to be 2.034 ms.  Figure 4 shows the acceleration shock and its two 
integrals. 
 
This is what I advise you to learn to expect.  The velocity change of 100 ips shows up as it should and the 
acceleration level is assympotic to 200gs, as expected.  The fact that the pulse we analyzed indicates constant 
velocity of the shock table for ever, means that an SDOF system with a natural frequency of 0.1 Hz would have a 
peak deflection of about 140 inches, or about 12 ft.  It is an excellent plot of an analysis of a dumb pulse. 
 
Now we consider a realistic half sine shock.  We drop it through a distance, such that a shock programmer 
delivering our half sine, just brings it to rest.  The velocity begins and ends at zero, thus the shock will have a zero 
mean.  A 1g fall through for a time tdrop so that the area (g x tdrop) equals the velocity change, and since v2 = 2gh, 
the drop height is also found from Eq. (3).  The time history plot and the integrals are shown in Figure 5. 
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This is a shock that could occur  Its shock spectra are shown as the red curves on Figures 2 and 3.  Notice now 
we see the 13-inch assymptote at the low frequencies.  We also see the 100 ips velocity change and the 200g 
peak assymptote clearly. 
 



b. Trapezoidal Shock 
 
We next consider a trapazoidal pulse of duration td, and maximum acceleration amplitude, Am, expressed in “gs.”  
It has a rise time, Tr , and a fall time of Tf.  These definitions are taken from Reference [13], Figure 516.5-11, on 
page 516.5-16.  For the ideal case we are calculating we will take the rise and fall times to be φ times the pulse 
duration, td.  The duration includes the ramps up and down.  The area of this pulse is equal to the velocity change 
it causes.  The linear ramp trapazoidal equation relating velocity change, peak acceleration, and duration is given 
in Eq. (4). 
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I used MATLAB to calculate the time history preceeded by 200 zeros, the 1g drop to attain the 100 ips, the ramp 
up, the flat portion, and the ramp down followed by 200 zeros.  That time history for φ = 0.1 and its two integrals 
are given in Figure 6.  The damped and undamped shock spectra are given in Figure 7.  
 
The 100 ips flat portion is severe from about 1.5 to 200 Hz.  Notice that the high frequency acceleration starts as 
asymptotic to about 400gs, and then starts heading for the 200g at 5,000 Hz.  This is due to the impulsive rise 
time of the trapazoidal acceleration.   
 
To prove this point I re-did the trapezoidal shock with a half cosine ramp with a ramp duration of φtd.  The total 
velocity change is (with a cosine ramp on the beginning and the end of the trapezoid) the same as given in Eq. 
(4).  To figure out how much of a cosine ramp woulld be reasonable within the confines of the IEC Specification, 
[14] according to Figure 3., on p40, I plotted cosine ramps inside the tolerances given in their Figure 3.  This 
easily permitted use of a a φ = 0.3.  The resulting time history is shown in Figure 8. 
 
This is sufficient rise time amelioration to be able to see the 200g asymptote of the shock spectra.  The spectrum 
is shown as the green curve on Figures 1 and 4.  Notice that this smooths it enough to permit it to dive down to 
200gs at about 2500 Hz.  The 5% damped spectrum is also as expected.  All one can say is that an abrupt rise 
doubles the peak “g” level over a range before the peak “g” asymptote appears.  
 
c. Saw Tooth Shocks 
 
In the case of these triangular shocks, the velocity change during the pulse will be its area, one half of the height 
times the duration which yields: 
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This can not be exact because when you digitally draw it, there has to be an additional area of the little triangle 
from the peak down to the first zero sample.  We will get out of this clumsy complication by adding a cosine ramp 
as was done with the trapezoidal shock.  Notice that the initial peak sawtooth will have the same velocity change.  
In these pulses we assume that shock programmers on the shock machines bring the table to zero velocity so 
that the velocity change is equal to the velocity from Eq. (5).  The cosine fall off will occur in a time interval φtd.  
Here td means the total pulse duration including the linear ramp up from 0 to max acceleration and the cosine fall 
off back down to zero.  Carrying out the integration yields the same velocity change equation, Eq. (5), 
independent of  φ.  A linear ramp has the same area as a cosine ramp.  Graphically checking the tolerance levels 
of MIL STD 810F, Figure 516.5-10 [13], shows that a φ = 0.1 cosine is easily acceptable.  
 
I will do the analysis of terminal peak and initial peaks shocks with this φ = 0.1, cosine ramp to save trouble.  Now 
using Eq. (5) to define the td for our 100 ips velocity change, 200g shock, we get the time history, and it is two 
integrals shown in Figure 9. 
 
This also requires a 12.95-inch drop.  The shock spectrum for two damping values, 0 and 5%, are given as the 
blue curves of Figures 2 and 3.  The 13-inch drop and the 100 ips severe region are right where they should be.  



The curves come down to the 200g asymptote at the lowest frequency of any of the simple pulses.  This is 
because of the gradual rise in acceleration. 
 
Trouble develops with the initial peak saw tooth and its abrupt rise.  Let’s look at the initial peak time history with a 
10% cosine ramp up to the initial peak shown in Figure 10. 
 
The 10% cosine is difficult to see but it is there.  We have trouble with the shock spectrum, shown in Figure 11, 
because of the steep initial rise.  
 
Notice an initial doubling of the acceleration assymptote in most of the high frequency region.  At 5,000 Hz it is 
definitelly heading for the 200g line, but does not get there.  If I increase φ to 0.2, we will solve the problem.  The 
time history with the 20% cosine ramp is illustrated in Figure 12. 
 
Comparing this to the terminal peak tolerance figure in Reference [13], it is clear that a 20% rise is within the 
specification.  The resulting shock spectra are shown as the black curves in Figure 2 and 3.  This is more gradual 
rise is adequate to permit the 200 Hz asymptote to appear. 
 
d. Composite plots and the similarities of the shock spectra 
 
Now we have completed the examination of the PVSS of the simple pulses: the half sine, the trapezoid, the initial 
peak and the terminal peak saw tooth.  We observed that both damped and undamped, the PVSS's are similar.  
The reason that we can see that they are similar is that I scaled them to have equal velocity change and peak 
acceleration.  The undamped and 5% damped composite plots are shown in Figures 11 and 12. 
 
This is very interesting and important.  After a huge amount of computing and plotting, the shock spectra reveal 
the similarity.  Only in the high frequency region, where the velocity levels are becoming less severe do they 
diverge.  Gertel's [4] off the cuff comment that that all the simple pulses are similar is confirmed if not proven.  The 
terminal peak saw tooth comes down to the 200g asymptote faster than the other three because it has a more 
gradual rise.  The velocity change during the pulse was the similar thing about them.  They all required the same 
drop height so they all have the same low frequency asymptote. 
 
All of the simple pulses developed on a drop table shock machine by a programmer that results in zero velocity 
when the pulse is over will have a velocity change of the square root of 2gh.  They will all have the same drop 
height or maximum displacement, hence the same low frequency asymptote.  Since they all have the same 
velocity change, they all have the same central region.  Since I adjusted the pulses to have the same peak 
acceleration, they all must have the same high frequency asymptote.  The only way their shock spectra can differ 
are at the two corners, and this can be seen in Figures 2 and 3.  I had trouble getting the acceleration asymptotes 
to appear in the trapezoid and the initial peak saw tooth.  These have abrupt rise times that cause an initial 
doubling of the peak accelerations.  I had to decrease the rise time abruptness by using a half cosine ramp rise of 
30% in the trapezoid and 20% in the initial peak wave form. 
 
Two other important conclusions have to be established.  The half sine, and hence the other simple pulses are 
related and in a sense similar to the explosive shocks, the drop is very important.  Shock simulation on shaker 
where the drop is not attainable weakens if not ruins the frequency range over which the shock is severe. 
 
SHOCK SPECTRA FROM EXPLOSIVE EVENTS ARE SIMILAR TO SIMPLE PULSE TESTS 
 
One example will be given to explain the similarity.  Figure 13 is an acceleration time history of an explosive event 
and its two integrals.  The mean has been removed from the acceleration time history to assure that the velocity 
ends at zero. 
 
The fact the extreme values are all minima makes no difference.  Figure 14 gives its shock spectra for three 
dampings. 
 
Notice on the left all three curves are asymptotic to just under 9 inches, that the center severe region is hovering 
near 300 ips, although the total velocity change on Figure 13 is close to 400 ips.  In the initial part of the shock 
there is 300 ips more or less rapid change.  At the highest frequencies the damped curves are at least heading for 



about 900gs.  I would have to calculate much higher frequencies to see the asymptote on the undamped 
spectrum.  (To do this, one has to interpolate the time history using MATLABs “Interp” function to increase the 
sampling rate)  The point here, is that a simple pulse with a peak “g” level of 918gs, and a velocity change of 303 
ips, would have a shock spectrum matching the severe and high frequency regions.  To attain the velocity change 
with only a 9-inch drop would require a bungee or spring assist, but it could be done, if a “g” level of 13.8gs could 
be obtained.  This would give the 9-inch displacement low frequency asymptote.  In this sense I make the 
statement that the simple pulse tests are similar to explosive shock spectra. 
 
 
SHAKER GENERATED HALF SINE SHOCK AND REBOUND REDUCE LOW FREQUENCY CONTENT 
 
a. The Half Sine Shock with a Rebound 
 
In the case of the half sine shock, there is often a coefficient of restitution to deal with because it can be formed 
by impact with a rubber like pad.  In examining past data, I have found values from 0.3 to 0.5.  In this case the 
required drop height is reduced because the velocity change is the sum of the falling velocity and the rebound 
velocity.  The velocity change during the half sine shock is still given by Eq. (2), but now the falling and rebound 
velocity are given in Eq. (6).  
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The drop and rebound heights, assuming the table is caught when the velocity goes to zero are given by Eq. (7). 
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The time history for our 200g, 100 ips half sine shock impacting with a coefficient of restitution of 0.33, as an 
example is given in Figure 15.  This reduces the drop height from about 13 inches to 7.32 inches.   
 
The undamped and 5% damped shock spectra are given in Figures 16 and 17 as the black curves.  The red 
curves on Figures 18 and 19 are for a half sine shock formed by a programmer with no rebound.  The 
displacement asymptote is now at 7.3 inches, and the low frequency severe velocity range is decreased or the 
lowest severe velocity increased from about 1.5 Hz to about 3 Hz. 
 
b. Shaker Generated Half Sine Shocks 
 
Half sine shock tests are also conducted on an electrically driven shaker and these have a limited displacement 
capability.  Therefore, the shock spectra of shaker generated shock will reflect this with a reduced low frequency 
capability of shaker generated shock.  Shaker generated shocks will have inadequate low frequency severity. 
 
Lang [15] considers a host of pre and post pulses that allow the shaker armature to start from its center position, 
perform the half sine shock, and return the armature to its center position.  Let’s consider a half sine with 
rectangular pre and post pulses with a magnitude of θ times the maximum acceleration of the half sine to zero the 
mean. The area of the pre and post pulses must equal the velocity change from Eq. (2), which yields the pre and 
post pulse duration, tp in Eq. (8).  The time history and its integrals are given in Figure 18. 
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From the shaker owner's point of view, this is not good.  The shaker armature motion is all in one direction, 
however the peak displacement is only about 0.2 inch, and this limits the low frequency severe portion of its shock 
spectrum.  The undamped and 5% damped shock spectra are shown as the green curves on Figures 16 and 17.  
The shock now is only severe from about 60 to 200 Hz. 
 
In Figure 7, of Reference [15], Lang shows a rectanguar pre-pre positive pulse of about 1/3 the duration of the pre 
pulse, to center shaker.  Let’s say the pre-pre, the pre, the post, and the post post pulses are rectangular and 
have magnitudes of θ times the maximum acceleration of the half sine.  For symmetry make the duration of the 
pulses tp, and tp/3.  The pre and post pulses must again accomplish the same velocity change as the half sine and 
tp is given by Eq. (9).  The time history and its two integrals are given in Figure 19. 
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The one-third estimate was not correct since I did not achieve equal positive and negative displacement.  It 
makes the point that we can reduce the shaker excursion; see Reference [15] for the exact result.  Since the 
displacement is further reduced, the shock spectrum must show a low frequency asymptote of 0.11-inch which 
can be seen in the blue curves on Figures 16 and 17. 
 
Comparing shaker shocks with the drop table shocks, one notes a reduced high velocity severe region.  Shaker 
simulated half sines would be inadequate for machinery and equipment with lower modal frequencies.  This is 
excluding the shocks synthesizing a shock spectrum with a collection of oscillatory motions.  The beauty of shaker 
shock is that the direction of the shock on its polarity, can be reversed. 
 
 
CONCLUSIONS 
 
The PVSS on 4CP (pseudo velocity shock spectrum plotted on four coordinate paper) emphasizes a velocity 
change section of the spectrum, mentioned by Roberts [16] as severe section.  The IEC Specification [14] calls 
the simple pulse velocity change the severity of the pulse, which I completely agree with.  This view of the 
spectrum was the basis of equipment installation design without actually calling it the velocity change region. [1, 
3] 
 
The shock spectra of the simple pulses are similar and have similar damage potential.  Reference [4] is the only 
reference I have found that actually makes the statement: (page 26)"...the maximax of the shock spectrum curve 
of all simple pulses have the same general shape."  They are right.  They make it so casually that one might 
assume it was common knowledge.  Most authors [17, 18] emphasize the unimportant high frequency differences 
of the undamped spectra because they plot acceleration shock spectra. 
 
The low frequency content inadequacy of shaker generated simple pulse shock tests for equipment fragility 
testing makes clear the need to include the drop height in half-sine shock calculations. 
 
The general similarity of the PVSS on 4CP of the simple shock pulse tests and explosive tests argues for their 
usefulness in general fragility testing.   
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Figure 1.  The PVSS os a 200-g, 100 ips half sine aceleration 
shock.  In the lower right corner the spectra are asymptotic to 
200gs.  From a little under 200 Hz down to 0.1 Hz the spectra 
show a constant velocity of 100 ips.  That proably can not be. 

Figure 2.  Composite undamped shock spectrum plots of the 
half sine, the trapezoid, the initial peak and the terminal peak 
saw tooth shocks. 

  
Figure 3.  Composite 5% damped shock spectrum plots of the 
half sine, the trapezoid, the initial peak and the terminal peak 
saw tooth shocks. 

Figure 4.  Acceleration, velocity, and displacement of a half 
sine acceleration shock preceded and followed by zeros.  The 
shock has a velocity change of 100 ips; and continues at this 
velocity forever.  This is an unrealizable shock; but the shock 
spectrum for it undamped and with damping of 5 %, is given 
in Figure 2. 

  
Figure 5.  A 200-g, 100 ips half sine shock preceded by a 
12.95-inch drop, and its two integrals. 

Figure 6.  Ten percent  linear ramp trapazoidal shock 
preceded by a 12.95-inch drop.. The pulse duration turned 
out to be 1.44 mili-seconds.  



  
Figure 7.  The 0 and 5 % damped shock spectra for the 10 
percent linear ramp trapezoidal shock of Figure 4. 

Figure 8.  Trapezoidal shock with 30% cosine ramp preceded 
by a 12.95-inch drop.  The time duration for this pulse came 
out to be 1.85 mili-seconds. 

  
Figure 9.  The time history of a 200-g, 100 ips, terminal peak 
saw tooth shock with a 10% cosine drop back to zero, and its 
itegrals to velocity and displacement.  Drop height is 12.95 
inches, and pulse duration is 2.59 ms. 

Figure 10.  The time history of a 200g, 100 ips initial peak 
saw tooth shock with a 10% cosine ramp up to tha maximum 
acceleration, and its itegrals to velocity and displacement.  
Drop height is 12.95 inches, and pulse duration is 2.59 ms. 

 

 

Figure 11.  The shock spectrum of a 200-g, 100 ips initial 
peak saw tooth shock with a 10% cosine ramp up to the 
maximum acceleration.  Drop height is 12.95 inches, and 
pulse duration is 2.59 ms. 

Figure 12.  The time history of a 200-g, 100 ips initial peak 
saw tooth shock with a 20% cosine ramp up to the maximum 
acceleration, and its itegrals to velocity and displacement.  
Drop height is 12.95 inches, and pulse duration is 2.59 ms. 



  
Figure 13.  The acceleration time history and its two integrals 
for an example explosive shock. 

Figure 14.  Shock spectra of an example explosive shock 
test. 

  
Figure 15.  The acceleration time history and its two integrals 
for a 200g, 100 ips half sine shock rebounding with a 
coefficient of restitution of 0.33.  The crop and rebound 
heights are 7.32 inches and 0.8 inch, respectively. 

Figure 16. Shock spectrum comparison of shaker and drop 
table 200g, 100 ips, half sine shocks for the undamped case: 

  
Figure 17. Shock spectrum comparison of shaker and drop 
table 200g, 100 ips, half sine shocks for the 5% damped 
case. 

Figure 18.  Acceleration time history with 10% rectangular pre 
and post pulses to accomplish the 200g, 100 ips half sine 
shock on a shaker. 



 

 

Figure 19. Acceleration time history with two 10% rectangular 
pre and post pulses to accomplish a 200g, 100 ips half sine 
shock on a shaker, and more nearly have equal positive and 
negative shaker displacement. 
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