BRITISH ANTARCTIC ("TERRA NOVA") EXPEDITION, 1910.

 NATURAL HISTORY REPORTS.
ZOOLOGY. VOL. II.

COLLECTING STATIONS,
 MOLLUSCA, BRACHIOPODA, AND WORMS.

LONDON:
PRINTED BY ORDER OF THE TRUSTEES OF THE BRITISH MUSEUM.
Suld by E. Quamtich, Litw, 11 Grafton Street, New Bond Strect, W. 1 ;

ZOOLOGY. VOL. II.

CONTENTS.

1. Harmer, S. F., and Lilile, D. G. List of Collecting Stations. [Issued July 25, 1914.] Pp. 1-12, 4 maps.
2. Baylis, H. A. Oligochaeta.
[Issuced Jconuary 23, 1915.]
Pp. 13-18, 1 pl.
3. Leiper, R. T., and Atrinson, E. L. Parasitic Worms, with a note on a Free-living Nematode.
[Issued January 23, 1915.] Pp. 19-60, 5 pls.
4. Smith, E. A. Mollusca. Part I.-Gastropoda Prosobranchia, Scaphopoda and Pelecypoda.
[Issued March 27, 1915.] Pp. 61-112, 2 pls.
5. Baylis, H. A. Nemertinea. [Issued June 26, 1915.] Pp. 113-134, 2 pls.
6. Boulenger, C. L. Myzostomida.
[Issued January 22, 1916.] Pp. 135-140, 1 pl.
7. Massy, A. L. Mollusca. Part II.-Cephalopoda.
[Issued November 25, 1916.] Pp. 141-176.
S. Jackson, J. W. Brachiopoda.
[Issued. July 27, 1918.] Pp. 177-202, 1 pl.
8. Massy, A. L. Mollusca. Part III.-Eupteropoda (Pteropoda Thecosomata) and Pterota (Pteropoda Gymnosomata).
[Issued June 26, 1920.]
Pp. 203-282.
9. Burne, R. H. Mollusca. Part IV.—Anatomy of Pelecypoda. [Issued Jume 26, 1920.]
[Pp. 283-256, 4 pls.
10. Harding, W. A. Hirudinea.
[Issued January 28, 1922.] Pp. 257-260, 1 pl.

LIST OF COLLECTING STATIONS

BY

S. F. HARMER, Sc.D., F.R.S.
(Kictor of Zoolog', British Muscum)
AND
D. G. LILLIE, M.A.

(St. John's Collige, Cambridse; Member of the Expedition).

INTRODUCTION.

TIIE greater number of the localities referred to in the following list are places where specimens were eollected ly the party on lward the "Terra Nova"; a large proportion of them leing Plankton-stations. To these localities have leen added a certain number of places where specinens were obtained ly members of the Shore Party, particularly ly Surgeon E. L. Atkinson, R.N., and Mr. E. W. Nelson. The list has been veritied ly Commander H. L. L. Pemell, R.N., who was in charge of the log of the "Terra Nova."

In sorting the collection a system of numbering was adopted which has not proved snitable for more permanent use. These "provisional station-numbers" are indicated in the third column of the list, hat the numbers in the second column, corresponding with the maps, are those which should alone be used in recording results and in labelling the specimens.

The Plankton-nets are described according to the number of meshes to ome linear inch. The "Full speed " net had 180 meshes to the inch. "Bucket" indicates that the specimens were caught by means of a bucket lowered over the ship's side.

The meaning of a nautical methor of indicating the position which has heen used in "ertain cases may not he elear without a word of explanation. Station 80 , for instance, is wiven as "From summit, (it. King, N. 87° W., 11 miles." This indicates at point 11 miles firm summit, Cit. King, in a direertion 87 from the Kourth, on it, Western side; and is in fact alnmst due West. Similarly, Station 82 , which is recorded as " $\mathrm{S} .40^{\circ}$ E., 29 miles." indicates a point 29 miles from the same place along a line 40° from the Someth, on its Eastern side, and is thus not very far from Sonth-Wast. The learings are all true.

LIST OF COLLECTING STATIONS

Map 1. Map 1.
(Plate I.)
1910.

	Provisioual Station-number.	Locality.	Depth.	Net.	Time.	Nature of Catch.
1	1	$45^{\circ} 21^{\prime} \mathrm{N} ., y^{\prime} 58^{\prime} \mathrm{W}$.	Surface	Bucket	6.30 p	Plankion
2	2	$46^{\circ} 21^{\prime} \mathrm{N} ., 11^{\circ} 45^{\prime} \mathrm{W}$.	.	Full speed	5.30-6.30 p.m.	,
3	3	$43^{\circ} 54^{\prime} \mathrm{N} ., 12^{\circ} 48^{\prime} \mathrm{W}$.	,	,	3-3.30 p.m.	',
4	4	$41^{\circ} 20^{\prime} \mathrm{N} . ., 13^{\circ} 45^{\prime} \mathrm{W}$.	-	-	6.30-6.45 p.m.	,
5	5	$85^{\circ} 37^{\prime} \mathrm{N} ., 14^{\circ} 42^{\prime} \mathrm{W}$.	"	"	12.30-1.45 p.m.	"
6	6	$35^{\circ} 47^{\prime}$ N., $15^{\circ} 31^{\prime} \mathrm{W}$.	-	"	11.45-Noon	*
7	7	Flom light, Madeira, N. 60° E. 7 miles	.	"	3.15-3.45 p.m.	,
8	8	Man-o'-War's Anchorage Funehal, Madeira	$0-25$ metres	Apstein	1 p.m.	-
9	9	Do.	"	Nansen	"	"
10	10	$32^{\circ} 23^{\prime}$ N., $17^{5} 5^{\prime} \mathrm{W}$.	Surface	Full speed	12.45-1 p.m.	"
11	11	$30^{\circ} 21^{\prime} \mathrm{N} ., 18^{\circ} 14^{\prime} \mathrm{W}$.	,	-	12.30-12.45 p.m.	,
12	12	"	,	-	$3.45-4.15 \mathrm{p} . \mathrm{m}$.	.
13	13	$28^{\circ} 13^{\prime}$ N., $19^{\circ} 40^{\prime} \mathrm{IV}$.	,	,	11.40-Noon	"
14	14	$27^{\circ} 10^{\prime} \mathrm{N} ., 20^{\circ} 21^{\prime} \mathrm{W}$.	,	"	12.25-12.45 p.m.	,
15	15		"	50-mesh	10.40-10.50 a.m.	"
16	16	$26^{\circ} 17^{\prime} \mathrm{N} ., 20^{\circ} 54^{\prime} \mathrm{W}$.	-	"	6.40-7.0 a.m,	"
17	17	", "	10 metres	"	7.30-7.50 a.m.	"
18	18	$25^{\circ} 18^{\prime} \mathrm{N} ., 21^{\circ} 32^{\prime} \mathrm{WV}$.	Surface	Full speed	4.30-4.40 a.m.	"
19	19	", "	,	"	11.40-Noon	"
20	-	" "	,	-	-	Flying fish with parasites
21	20	$24^{\circ} 08^{\prime}$ N., $22^{\circ} 13^{\prime} \mathrm{W}$.	"	Full speed	12.15-12.40 p.mı.	Plankton
22	-	" "	,	-	-	Flying fish witl parasitc (dried up)
23	21	$22^{\circ} 28^{\prime}$ N., 2:3 $3^{\circ} \mathrm{W}$,	-	Full speed	12-12.45 p.m.	Plankton
24	22	,. $\cdot \stackrel{ }{ }$.	..	$2-2.10$ p.111.	,
25	23	$20^{\circ} 47^{\prime}$ N., $24^{\circ} 6^{\prime} \mathrm{W}$.	..	"	12-1 p.m.	.,
26	24	$18^{\circ} 59^{\prime} \mathrm{N} . .24^{\circ} 56^{\prime} \mathrm{W}$.	..	",	2-2.30 p.m.	,
27	25	$17^{\circ} 8^{\prime}$ N.. $25^{\circ} 41^{\prime} \mathrm{W}$.	"	"	$2.30-4.30 \mathrm{p}^{\text {, mm. }}$.
28	26		"	Hand-net	10 a.m.	.,
29	27	$15^{\circ} 38^{\prime}$ N., $25^{\circ} 24^{\prime} \mathrm{W}$.	10 metres	Full speed	2-3.30 p.m.	"
30	24	$13^{\circ} 56^{\prime}$ N., $25^{\circ} \mathrm{s}^{\prime} \mathrm{W}$.		..	1.10-3.15 p.1n.	"
31	29	$11^{\circ} 20^{\prime} \mathrm{N} ., 24^{\circ} 37^{\prime} \mathrm{W}$.		,	2.30-3.30 p.m.	-
32	30	$9^{\circ} 0^{\prime}$ N., $24^{\circ} 17^{\prime} \mathrm{W}$.	Surface	"	1.30-3 p.m.	.
33	81	$7^{\circ} 0^{\prime} \mathrm{N} ., 23^{\circ} 43^{\prime} \mathrm{W}$.	",	,	2-3.30 p.m.	."
34	32	2°; 38^{\prime} N., $21^{\circ} 16^{\prime} \mathrm{W}$.	1 metre	',	2-3 p.m.	,
35	33	$11^{\circ} 7^{\prime}$ S., $25^{\circ} 49^{\prime} \mathrm{W}$.	Surface	Bucket	Noon	

Date．		Provisional Station－12mbler．	Locality．	Depth．	Net．	Time．	Nature of Catcli．
$\begin{gathered} 1910 . \\ \text { July } 26-30 \end{gathered}$	36	－	South Trinidad Island	－	－－	\sim	Pirds and other land－animals： shore－collecting
．， 28	37	－	Off S．Trinidad Island， $20^{\circ} 28^{\prime} s ., 29^{\prime} 20^{\prime}$ W．	－		－	small shark with parasites
1913.							
Apr．1：3	38	H．V． 1 or II． 1	$52.23^{\prime} \mathrm{s} .63^{\circ} 50^{\prime} \mathrm{W}$.	125 fatl．（229m．）	$\begin{gathered} \text { Agassiz } \\ \text { trawl } \end{gathered}$	－－	Bottom fauma
．． 27	39	II． 10	six miles off mouth of lito de Janeiro Harloour	2 metres：	：0－mesil	11 1．111．－1．30 a．111．	I mankton
．． 27	40	，． 11	Do．	，	．．	2．30－5 a．m．	．．
May 2	41	．． 11 （a）	$22^{\circ} 56^{\prime}$ S．， $41^{\circ} 34^{\prime} \mathrm{WV}$.	Surface	\cdots	8 a．11．	\cdots
－． 2	42	H．V． 2 or H． 2	＂\quad ，	40 fath．（ 73 m ．$)$	$\begin{aligned} & \text { Agassiz } \\ & \text { trawl } \end{aligned}$	－	l 3 otton fama（sand）
．．：3	43	H． 12	$22^{\circ} 6^{\prime}$ S．， $39^{\circ} 40^{\prime} \mathrm{W}$ ．	Surface	50－meslı	12．30－1 $\mathrm{m} . \mathrm{m}$ ．	Plankton
．． 4	44	，．13	21° s．， $37^{\circ} 50^{\prime} \mathrm{IV}^{\prime}$ ．	．	．．	12．50－1．30＾．m．	．．
．． 4	45	．． 14	，	．	7－mesh	－，．．	．．
．． 4	46	．． 15	$20^{\circ} 30^{\prime}$ s．， $36^{\circ} 30^{\prime} \mathrm{W}$.	．	Do．	10．30－11 p．1n．	．．
．， 4	47	．． 16	＂	．	50－mesh	－\quad－	．
－． 6	48	．． 17	$18^{\circ} 51{ }^{\prime}$ S．， $833^{\circ} 40^{\prime} \mathrm{W}^{\prime}$.	．．	．，	$4.30-5 \mathrm{a} . \mathrm{m}$ ．	，
，．${ }^{\text {j }}$	49	．．1s	＂${ }^{\prime}$	．．	7－mesh	－．	．．
．． 7	50	．． 19	$18^{\circ} \mathrm{S} . .31^{\circ} 45^{\prime} \mathrm{W}$ ．	．．	50 －mesh is nets out	12．3．5－1．15 a．m．	．
．． 12	51	－． 20	is S．， $27^{\circ} 15^{\prime} \mathrm{W}$ ．	，	$50-11 e^{3} 3_{1}$	3－3．30 p．mı．	．．
．． 12	52	．． 21	．，，．	2 metres	．．	4－6 p．in．	．．
．． 12	53	－． 22	＂	2 ．．	－	6－7 p．m．	．．
．． 12	54	．．2：3	$4^{\circ} 45^{\prime} \mathrm{S}, 2^{\circ} 20^{\circ} \mathrm{W}$ ．	4	24－mesh	$9 \mathrm{p} \cdot \mathrm{mm}$－－Midnight	．．
．． 13	55	．． 24	4－30＇s．， $27^{\circ} 16^{\prime} \mathrm{W}$ ．	2 ．．	50 －meshl	1－3 a．m．	．．
．．13）	56	．． 2.	．．，．	2 ．．	．．	10－11．30 a．m．	．．
．13）	57	．， 26	．．	surface	．．	1．15－3 p．m．	．．
．． 16	58	．． 27	$0^{\prime \prime}, 25^{\circ} 15^{\prime} \mathrm{W}$ ．	．．	．．	1－1．30 a．m．	－
－． 16	59	．． 2 s		．	．．	＋	．．
．． 17	60	．． 29	$2{ }^{2}$ N．， 24 45＇W．	．．	．．	．．．，	．．
．． 17	61	．，：0	．．＂	．．	．．	．．．．	．．
．． 18	62	．．：$: 1$	$450{ }^{\circ} \mathrm{N} . .24^{\circ} \mathrm{W}$.	．．	．．	．．．．	．
．． 19	63	．．：32	$610^{\prime} \mathrm{N} . .24^{\circ} \mathrm{5} \mathrm{W}$ ．	．．	50 mesh 2 nets out	$24.30 \mathrm{a} . \mathrm{mm}$ ．	．
．． 26	64	：$: 3$	$23^{\prime} 2 s^{\prime}$ バ， 34 4 $5^{\prime \prime} \mathrm{W}$ ．	．．	50－1nes $]_{1}$	1．30－2 a．m．	．
．． 26	65	．．3． 4	\cdots	．	．．	－．${ }^{\text {－}}$	．
． 27	66	．．35	25.35^{\prime} N゙．， $34^{\circ} 10^{\prime} \mathrm{W}$ ．	．．	．．	．．．．	－
－． 27	67	．，：3i	－．${ }^{\circ}$	．．	．．	．．．．	．．
．． 24	68	，． 37	$27^{\sim} 22^{\prime}$ N．． $33^{\sim} 40^{\prime} \mathrm{W}$ ．	．．	．．	．．．．	．．
．． 29	69	．．339	$29^{\circ} 10^{\prime}$ バ．， $33^{\wedge} 36^{\prime}$ W．	．．	．＂	＂．${ }^{\text {．}}$	．．
Juns：	70	．． 40	Off Horta Ilarbour． Fayal，Azores	12 metres	24－mesh	6 p．m．－s a．m． June 2 June： 3	．

Date.

Map 2. Map 2. (Plate II.) Tnly 16 . 17
, 17
., 17
.. 17
.. 17
.. 18
.. 21
.. 21
.. 22
. 23
.. 23
.. 23
,. 23
., 24
. 25
.. 25
.. 25
.. 25
.. 25
., 26
., 27
., 28
,. 30
Aug. 2
$.1: 3$
,. $:$

Date.		$\begin{aligned} & \text { Prow } \\ & \text { Station } \end{aligned}$	isional -numiser.	Loeality.	Depth.	Net.	Time.	Nature of Catch.
$\begin{array}{r} 1911 . \\ \text { Aug. } 4 \end{array}$	98	II. ${ }^{\text {c }}$. 28	From West Island, Three lings Islands, S.W., 5 miles	0-45 metres	Apstein	Noon	Plankton
.. 4	99	..	29	1 D .	0-70 ",	"	"	."
.. 4	100	.		1).	Surface	50-mesh	1-2 ${ }^{\text {p/im. }}$..
.. +	101	..		1).	..	,.	4-5 p.m.	..
.. 4	102	..		गo.	.,	-	3-4 p.m.	.,
.. 4	103	..		1).	,	-	$5-6{ }^{\text {p/m.m. }}$..
.. 4	104	..		1%.	0-2.5 metres	Apstein	4.30 p.m.	..
.. 4	105	..		10.	0-80 ,	"	,	..
.. 4	106			Do.	surface	50-mesh	7-8 p.m.	.,
.. 4	107			Do.	,	24-mesh	$\begin{aligned} & 8 \text { p.121.-5.30 a.m. } \\ & \text { 4th } 5 \text { th } \end{aligned}$..
..	108	..	38	$34^{\circ} 15^{\prime} \mathrm{S} ., 172^{\circ} 0^{\prime} \mathrm{E}$.	..	50-mesh	Noon-4 p.m. at intervals	,
, 5	109	..	39	- ${ }^{\text {a }}$	3 metres	24-mesh		-•
.. ${ }^{6}$	110	..	40	$34^{\circ} 4^{\prime} \mathrm{S} ., 171^{\circ} 55^{\prime} \mathrm{E}$.	Surface	-•		-
.. 7	111	..	41	Off Three Kings Islands	"	"	10 a.m.-1 p.m.	,
.. 8	112		41 (a)	$33^{\circ} 37^{\prime}$ S., $171^{\circ} 30^{\prime} \mathrm{E}$.	3 metres	50-mesh	Noon-4 p.m.	.,
-. 9	113		42	$33^{\circ} 12^{\prime} \mathrm{S} ., 171^{\circ} 05^{\prime} \mathrm{E}$.	3 ,.	,,	9 a.m.-Noon	..
.. 10	114		43	$32^{\circ} 55^{\prime} \mathrm{S} ., 170^{\circ} 38^{\prime} \mathrm{E}$.	Surface	"	10 a.m. -4 p.m.	,
.. 16	115			$34^{\circ} 32^{\prime} \mathrm{S} ., 172^{\sim} 20^{\prime} \mathrm{E}$.		Full speed	3-5 p.m.	,,
.. 16	116			-	0-50 metres	Apstein	5.30 p.m.	..
.. 16	117			.. .,	0-150 ..		$5.45 \mathrm{p} . \mathrm{m}$.	-
.. 17	118		47	., .,	Surface	50-mesh	$\begin{gathered} 9 \text { p.m. }-5 \text { a.m. } \\ 16 \mathrm{fth} \\ \hline \end{gathered}$	"
.. 17	119			" \quad "	-	Full speed	9 a.m.-5 p.m.	.
.. 18	120			$34^{\circ} 26^{\prime}$ S., $172^{\prime} 14^{\prime} \mathrm{E}$.	"	50-mesh	$\begin{gathered} 9 \text { p.m. }-5 \mathrm{a} . \mathrm{m} . \\ 17 \mathrm{th} \quad 18 t h . \end{gathered}$	-•
.. 18	121		49 (a)	Off C. Maria v. Diemen	.	Full speed	Unrecorded	..
.. 19	122			From C. Maria van Diemen, S. $80^{\circ} \mathrm{W}$.. 21 miles	,	50-mesh	$\begin{aligned} & 9 \text { p.m. }-5 \text { a.m. } \\ & \text { 18th } \\ & 19 \text { th. } \end{aligned}$	"
.. 19	123			Between North Cape and Doubtless Bay	-•	Full speed	11 a.m. -4 p.m.	-•
., 233	124			1)o.	.,	"	9 a.m.-1 p.m.	..
-. 23	125		5:3	Do.	.,	Square 18-mesh	$2+\mathrm{p} \cdot \mathrm{m}$.	.
.. 24	126			$34^{\circ} 13^{\prime}$ S., $172^{\circ} 15^{\prime} \mathrm{E}$.	..	Do.	9 a.mı.-Noon	.
.. 25	127			Off Three Kings Islands	-•	50-mesh		-•
.. 26	128			Do.	.	100-mesh	$\begin{aligned} & 9 \mathrm{p} . \mathrm{ml}-6 \mathrm{a} . \mathrm{m} . \\ & 25 \mathrm{th} . \\ & 26 \mathrm{th} \end{aligned}$	*
.. 26	129	..		Do.	,	Square 18-mesh	$\begin{aligned} & 6 \text { p.m.-6 a.m. } \\ & \text { 25.th. } \\ & 26 \mathrm{th} . \end{aligned}$	*
.. 27	130		58	1).	"	Do.		.
.. 27	131	..	59	Do.	.	1) ${ }^{\text {. }}$	9 a.m.-5 p.m.	..

Map 2.

Map 2.

Date.		Provisional Station-number.	Locality.	Depth.
1911. Aug. 29	132	W. C. 60	Spirits Bay, near North Cape	10 metres
.. 30	133	, 61	-. ${ }^{\text {- }}$	20 ,
.. 31	134	New Zealand Benthos, 5	11-20 fathoms (20-37 metres)
Sept. 1	135	W. C. 62	.. ${ }^{\text {, }}$	3 metres
.. 2	136	,. 63	., ..	Surface
.. 4	137	.. 64	342^{\prime} S., $1722^{\prime} 40^{\prime}$ E.	-
.. 5	138	65	Off Three Kings Islands	"
, 6	139	.. 66	$34^{\circ} 30^{\prime}$ S., $171^{\circ} 53^{\prime} \mathrm{E}$.	..
., 6	140	.. 67	Do.	-
., 7	141	,. 68	$34^{\circ} 37^{\prime}$ S., $171^{\circ} 19^{\prime} \mathrm{E}$.	-
,. 8	142	.. 69	$34^{\circ} 45^{\prime}$ S., $170^{\circ} 45^{\prime} \mathrm{E}$.	2 metres
., 9	143	.. 70	$34^{\circ} 58^{\prime}$ S., $170^{\circ} 12^{\prime} \mathrm{E}$.	Surface
,. 13	144	New Zealand Benthos. 6	From Cape Maria van Diemen, W. by S., 7 miles (true bearing)	35-40 fathoms (64-73 metres)
., 15	145	W. C. 71	Anchorage, North Cape	24 metres
,. 18	146	,, 72		5 ,
.. 24	147	,. 74	Betweeu Doubtless Bay and Bay of Islands	Surface
1912.				
$\begin{aligned} & \text { Aug. and } \\ & \text { Sept. } \end{aligned}$	148	(None)	$\begin{aligned} & \text { Bay of Islands, } 35^{\circ} 15^{\prime} \\ & \underset{S}{\prime}, 174^{\circ} 10^{\prime} \mathrm{E} . \end{aligned}$	0-24 metres

| Net. | Time. | Nature of Catch. |
| :---: | :---: | :---: | :---: |

Whale material

2 Birds
1 Bird
1 Bird
1 Bird
1 Bird
1 Bird with parasites
1 3irl
3 Birls
Parasites, from an Albatros

Date．		Provisional Station－number	Locality．	Depth．	Net．	Time．	Nature of Catch．
1910.							
Oct．is	160		4108^{\prime} S．， $1284 \% \mathrm{~F}$	．	．．	－	1 Bird
October．	161		Melbourne Harbour． Anstralia	12 metres	Young fish trawl	－0．	l＇lankton
Oct． 21	162		$43^{\circ} 40^{\prime}$ S．， $157{ }^{\circ} \mathrm{E}$.	－	－	－	2 Hirds
．． 22	163		4t 2．＇s．， $160^{\circ} \mathrm{E}$ ．	．			：Birds
Nov． 80	164	－． 1	$47^{\circ} 34^{\prime}$ S．， $170^{\circ} 38^{\prime}$ E．	Surface	Full speed	41.111.	Plankton
（ Cnknown）	165	－	（）fi Campbell Islands， $52^{\circ} 20^{\prime} \mathrm{S} ., 167^{\circ} 30^{\prime} \mathrm{F}$ ．	－	Frld	－	larasites from a Bird
Dee． 5	166	1． 2	$566^{\prime} 41^{\prime}$ S．． $176^{\circ} 23^{\prime} \mathrm{E}$ ．	Surface	Full speed	5 p．111．	Ilankton
．． 7	167	．． 3	$61^{\circ} 22^{\prime}$ S． $1799^{\circ} 56^{\prime}$ W．	．．	＂	4 p．in．	－
．． 8	168	． 4	$63^{\circ} 20^{\prime}$ ง．177 22 W．	．．	．．	，	－
．． s	169	－	，．${ }^{\text {a }}$			．．	1 Bird
．． 3	170	A． 5	6.58^{\prime} S．， 177 40＇W．	Surface	F＇ull speed	4 p．111．	I＇lankton
．． 10	171	．${ }^{\text {i }}$	$66^{\prime} 388^{\prime}$ S． $175^{\circ} 47^{\prime}$ W\％．	$0-150$ metres	Apstein	10 a．11．	，
．． 10	172	．． 7	，	0－400 ．．	Nausen	＂	，
．． 10	173	－	$66^{\circ} 38^{\prime} \mathrm{S} .179^{\circ} 04^{\prime} \mathrm{W}$.	．．		．	3 Birds（justafter the first ice was seen）
．．1\％	174		$67^{\circ} 28^{\prime} \mathrm{s} ., 177^{\circ} 58^{\prime} \mathrm{W}$.		－	－	1 Jird
．．14	175	A． 8	$67^{\circ} 28^{\prime}$ S．， $177^{\circ} 59^{\prime} \mathrm{W}$ ．	0－400 metres	Nausell	Noon	Plankton
．．15	176	．． 9	$67^{\circ} 23^{\prime} \mathrm{S} ., 177$ 59＇W．	0－250 ．．	Apstein	$11 \mathrm{a} . \mathrm{m}$ ．	－
．．1．j	177	．， 10	－，，	0－500 ．．	Nansen	＂	－•
．．15	178	，， 11	－＂，	0－อ̄00 ．．	2t－mesh	9 p．111．	－
．．15	179	－	67 23＇$九 . .177^{\circ} 55^{\prime}$ W．			．．	2 binds
．． 22	180	A． 12	$68^{\circ} 26^{\prime}$ s．， $179^{\circ} 08^{\prime}$ W．	100 metres	24－mesh	\％p．m．	Planktou
．． 22	181	－	$68^{\circ} 41^{\prime}$ S．， $179^{\circ} 28^{\prime}$ IV．	－	－	－	s Birds（in pack－ice）
．． 24	182	A． 18	$69^{\circ} 01^{\prime} \mathrm{S} ., 175^{\circ} 29^{\prime}$ W．	2 metres	180－mesh	2 a．m．	Plankton
．．25	183	．． 14	$69^{\circ} 1^{\prime} \mathrm{S} ., 178^{\circ} 28^{\prime \prime} \mathrm{W}$ ．	surface	Hand	$1 \mathrm{a} . \mathrm{m}$ ．	＂
，． 26	184	－	$69^{\circ} 09^{\prime}$ s．， $17813^{\prime} \mathrm{W}$ ．			．．	I＇arasites，from an Adélie Penguin
．． 30	185	A． 15	$72 \quad 17^{\prime} \text { S., } 177^{\circ} 09^{\prime} \mathrm{E} \text {. }$		24－mesh	Nooll	Plankton
$., \quad 31$	186	．， 16	72 51＇S．， $174^{\circ} 55^{\prime} \mathrm{E}$.	Surface	＂	Miduight	－•
， 31	187	．． 17	,, .,	1 metre	180－mesh	＂	．．
1911.							
Tan． 1	188	，． 18	$73^{\circ} \mathrm{y}^{\prime} \mathrm{S} ., 174^{\circ} 11^{\prime} \mathrm{E} \text {. }$	Surface	Full speed		\cdots
．， 29	189	1；． 3	$7 \mathrm{~s}^{\circ} 16^{\prime} \text { s., } 175^{\circ} 55^{\prime} \text { E. }$	3）metres		$3 \text { p.m. }$	，
．，：11	190	， 4	$78 \quad 30^{\prime}$ S．， $170^{\circ} 35^{\prime} \mathrm{W}$ ．	Surface	＂	2.30 p．mı．	\bullet
F＊el） 1	191	Sntaretic lienthos， 2	Bay of Whales，Great Ice Barrier	194－250 faths． （355－457 11．）	Hredge	．	Botton fauna（114ul and stones）
．18	192	（None）	Robertson＇s Bay	Sulface	Bueket	－	Plankton
． 22	193	B． 5	69 2：3＇S．，16：3 $599^{\prime} \mathrm{E}$ ．	1 metre	Full specd	6 P．111．	－
．． 22	194	Autarctic Benthos， 4	Off Oates Land， 69 4 $4{ }^{\prime}$ S．， $16324^{\prime} \mathrm{F}$ ．	180－200 faths． （329－366 11．）	$\begin{aligned} & \text { Igassiz } \\ & \text { trawl } \end{aligned}$	．．	botton fauna（un－ decomposed ani－ mal débris）
Mar． 6	195	13． 6	$65^{\circ} 14^{\prime}$ S．， 161 24＇ 1 。	2 metres	50－mesh	5 1．11．	Plankton
．． 11	196	，． 7	$61^{\circ} 10^{\prime}$ S．，16：3 $01^{\prime} \mathrm{F}$ ．	1 metre		6 1．1m．	-•
．． 14	197	，， 8		surface	Full speed	$: \text { p.111. }$	．
	198	，． 9	56 $6^{\circ} 14^{\prime}$ S．， $16: 3^{\circ}$＋5 E ．	，	100－mesh	2 p．11．	

	Date.		Prorisional Station-number.	Locality.	Depth.	Net.	Time.	Nature of Catch.
Map 3.	1911.							
	Mar. 17	199	B. 10	$56^{\circ} 14^{\prime}$ S., $163^{\circ} 48^{\prime} \mathrm{E}$.	Surface	180-mesh	$2 \mathrm{p} . \mathrm{m}$.	Plankton
	July 11	200	W. C. 1	$42^{\circ} 06^{\prime}$ S., $175^{\circ} 13^{\prime} \mathrm{E}$.	-	Full speed	1 p.m.	"
	., 12	201	,, 2	$40^{\circ} 12^{\prime}$ S., $177^{\circ} 57^{\prime} \mathrm{E}$.	-	,	5 p.m.	-
	., 13	202	, 3	$38^{\circ} 12^{\prime}$ S., $178^{\circ} 56^{\prime} \mathrm{E}$.	-•	,	3.30 p.m.	-
	., 14	203	,, 4	$36^{\circ} 33^{\prime} \mathrm{S} ., 177^{\circ} 0^{\prime} \mathrm{E}$.	-	-	Noon	,
	Dec. 15	204	D. 1	$43^{\circ} 52^{\prime}$ S., $173^{\circ} 12^{\prime}$ E.	.,	-	11 a.m.-Noon	,
	., 15	205	., 2	,	"	"	1-4 p.m.	, ,
	.. 16	206	.. 3	$45^{\circ} 25^{\prime}$ S., $172^{\circ} 28^{\prime} \mathrm{E}$.	,	-,	9 a.m.-1 p.m.	"
	., 17	207	., 4	$47^{\circ} 44^{\prime}$ S., $173^{\circ} 2^{\prime} 5^{\prime \prime} \mathrm{E}$.	\cdots	"	9 a.m. -4 p.m.	, ,
	.. 18	208	,. 5	$49^{\circ} 40^{\prime}$ S., $171^{\circ} 45^{\prime}$ E.	"	,	Noon-4 p.m.	,
	., 19	209	.. 6	$51^{\circ} 48^{\prime}$ S., $172^{\circ} 18^{\prime}$ E.	,	"	$\begin{gathered} 9 \text { p.m. }-9 \text { a.m. } \\ 18 \text { th } 19 \mathrm{th}^{2} \end{gathered}$	"
	., 20	210	, 7	$53^{\circ} 35^{\prime}$ S., $173^{\circ} 06^{\prime} \mathrm{E}$.	-•	"	9 a.m.-Noon	\cdots
	,. 21	211	, 8	$55^{\circ} 16^{\prime} \mathrm{S} ., 173^{\circ} 02^{\prime} \mathrm{E}$.	\bullet	,	Noon	,
	,, 23	212	, 9	$59^{\circ} 6^{\prime} \mathrm{S} ., 177^{\circ} 55^{\prime} \mathrm{E}$.	"	"	9 a.m.-Noon	"
	., 24	213	, 10	$60^{\circ} 39^{\prime} \mathrm{S} ., 178^{\circ} 40^{\prime} \mathrm{W}$.	,	"	" \quad,	,
	-,, 24	214	, 11	", "	"	'"	1-4 p.m.	"
	, 25	215	,, 12	$62^{\circ} 10^{\prime} \mathrm{S} ., 175^{\circ} 38^{\prime} \mathrm{W}$.	"	,	11 a.m.-2 p.m.	"
	,. 27	216	. 13	$64^{\circ} 56^{\prime}$ S., $175^{\circ} 30^{\prime} \mathrm{W}$.	,	"	Noon-1 p.11.	,
	,. 29	217	, 14	$66^{\circ} 46^{\prime}$ 内., $177^{\circ} 48^{\prime} \mathrm{W}$.	10 metres	50-mesh	10.30 a.m.-Noon	"
	Nov. and Dee.	218	-	Cape Adare	-	-	-	8 Birds
	1912.							
	Jan. 3	219	D. 15	Robertsou's Bay	10 metres	50-mesh	$5-6.30$ p.m.	Plankton
	, 3	220	Antarctie Benthos, 5	Off Cape Adare, mouth of Robertson's Bay	45-50 fathoms (82-92 metres)	$\begin{gathered} \text { Agassiz } \\ \text { trawl } \end{gathered}$		Bottom fauna (shingle)
	,1 9	221	D. 16	North (True) of Dry. galski Glacier Tongue, Terra Nova Bay	10 metres	50-mesh	1-2 p.11.	Plankton
	, 10	222	,, 17	$76^{\circ} 3^{\prime}$ S., $165^{\circ} 55^{\prime} \mathrm{E}$.	10 ,	"	"	"
	., 11	223	, , 18	$76^{\circ} 2^{\prime}$ S., $165^{\circ} 55^{\prime} \mathrm{E}$.	10 ,	,	9-11 a.m.	-
	Mar. 9	224	., 83	60 miles E . of Cape Adare	1 ,	,	7-9 p.m.	"
	,, 11	225	,, 34	$69^{\circ} 45^{\prime}$ S., $177^{\circ} 19^{\prime}$ E.	20 ,	"	2-4 p.m.	"
	,, 12	226	., 35	$69^{\circ} 23^{\prime}$ S., $177^{\circ} 52^{\prime}$ E.	10 ,	',	$9-11$ a.m.	"
	,, 15	227	,, 36	$68^{\circ} 03^{\prime}$ S., $169^{\circ} 45^{\prime} \mathrm{E}$.	Surface	Full speed	1-2 p.in.	,
	,, 18	228	, 37	$64^{\circ} 3^{\prime}$ S., $160^{\circ} 12^{\prime}$ E.	"	"	$\begin{aligned} & 9 \text { p.m. }-4 \text { a.m. } \\ & 17 \text { th } 18 \text { th. } \end{aligned}$	"
	, 18	229	., 38	" ${ }^{\text {" }}$	80 metres	$50-\mathrm{mesh}$	8.30-9 a.mı.	"
	., 18	230	.. 39	\cdots	80 ,	"	11 a.m.-12.30 p.m.	"
	., 18	231	.. 40	', ',	80 ,	24-mesh	1.30-4.30 p.m.	*
	,, 24	232	.. 41	$55^{\circ} 51^{\prime}$ S., 165 $5^{\circ} 49^{\prime}$ E.	Surface	Full speed	10-11 a.m.	-
	.. 26	233	,. 42	$52^{\circ} 41^{\prime}$ S., $168^{\circ} 15^{\prime} \mathrm{E}$.	,	"	Noon	"
	.. 26	234	. 43	, .,	3 metres	24-mesh	2-5 p.m.	,
	,. 26	235	, , 44	", ",	10 .,	"	7-10 p.m.	"
	, 27	236	, 45	$52^{\circ} 11^{\prime}$ S., $167^{\circ} 25^{\prime} \mathrm{E}$.	80 .,	"	6-8 p.m.	\cdots
	,. 27	237	, 46	'"	10 ,	',	Midnight-8 a.m. 27th 28th	"

Dite.		Prorisional Station-11mmber.	Locality.	Depth.	Net.	Tine.	Nature of Catch.
Map 4. (Plate IV.) 1911.							
.tiln. 19	312			Parasites, from McCormick's Sku:
.. 21	313	I. 1	Off Cape Barne, Ross Island	1 metre	2t-mesh	11-11.15 a.m.	I'ankton
.. 23	314	Antarctic Benthos, 1	" miles N. of Inac. cessible Island. Mc.Mmrdo Somnd	222-2. 41 faths. (406-441 m.)	Agassiz trawl	-	Bottom fauna (mud)
.. 24	315	13. 2	L: of Cape Bird. Foss Island	is metres	Full speed	\%.30 p.m.	Plankton
F'eb. 9	316	Intaretic 13enthos. is	Ott Glacier Tongue, about 8 miles N. of Hut Point, McMurdo Sound	190-2.50 fathr. ($348-157 \mathrm{~m}$.)	Agassiz trawl	\ldots	Bottom fauna (undecomposed animal remains and mud)
Jule 7 Oct. 14	317	-	Hole in ice between Cape Livans and Inaccessible Islamd	175 metres	Townets	-	Planliton
June 1:3Sept. 16	318	.	1)0.	175 metres	Traps and tangles ou bottom	.	Bottom fauna
Alig. 7	319	--	In contraction - crack betreeen Inaccessible Island and Barme Glacier	-	Fish-trap	-	Fishes
.. 14	320	.	Inaccessible Intand	150 fathoms (275 metres)	.	.	Frice Nematodes
.. 1:-17	321	-	In contraction - crack between Inaccessible Island and Barne Glacier	180-250 metres	7-mesh	-	Bottom fauna
Sept. : 4	322	-	1)0.	20 metres	Fish-tiap. dredge	-	*
Oct. 16 I Hec. 2:3	323	-	Hole in ice betreen Cape Erans and Inaccessible Island	168 .,	Townets:	-	Ilankton
1911, 1912	324	.	Hut Point	.	.	.	Shore collecting
..	325	-	Cape Erans	-	--	-	Miscellaneous collections
.. ..	326	.	Cape Fevans and insmerliate neighbourhood, varions cracks :und holes through the ice	4-40 metres	Fishletral	.	Botton fauna and fishes
.. ..	327	-	Cape Hoyds	-	--	--	1 Bird
.. -	328	-	\cdots	.	.	.	Shore collecting
1912.							
Jan. 13	329	1). 19	Near Peanfort Island	10 metres	.0-mesh	11-p.111.	1'lankton
., 1i3	330	,. 20	:- ..	10 ,	,	3-4 p.m.	
	331	Intaretic Benthos, 6	Off Cape Bird I'eninsula, entrance to McMurdo Sound	250 fathoms. (157 meties)	Dredge	-	Botton famua (mud)

| | Provisional Station-number. |
| :---: | :---: | Locality. Depth

Net.
Time.
Nature of Catch.

Map 4.

Jan. 16	332	D. 21	$77^{\circ} 15^{\prime} \mathrm{S} . .166^{\circ} 0^{\prime} \mathrm{E}$.	0-5.50 metres	Agassiz trawl	2 a.m.	Planliton
,. 17	333	,, 22	$77^{\circ} 22^{\prime}$ S., $163^{\circ} 22^{\prime} \mathrm{E}$.	80 metres	$\begin{aligned} & \text { Square } \\ & 18 \text {-mesh } \end{aligned}$	1-5 a.m.	-
,. 19	334	(None)	Near Granite Harbour	Surface	Hand-net	-	-•
.. 20	335	D. 23	, \quad,	0-300 metres	Nansen	10 a.ın.	\cdots
,. 20	336	, 24	, ,	10 metres	50-mesh	2 1.171.	\cdots
., 22	337	, 25	Off Cape Bixd Peninsnla	80 ..	Square 18-mesh	10.30 a.m.-Noon.	-
., 23	338	Antaretic Benthos. 7	$77^{\circ} 13^{\prime}$ S., $164^{\circ} 18^{\prime}$ E.	207 fathons (379 metres)	Agassiz trawl	-	Bottom fauna (mud)
,. 24	339	1)0., 8	$77^{\circ} 5^{\prime} \mathrm{S} ., 16417^{\prime} \mathrm{E}$.	140 fathoms (256 metres)	Do.	.	',
, 25	340])0., 9	7656^{\prime} S.. $164^{\circ} 12^{\prime} \mathrm{E}$.	160 fathoms (293 inetres)	Do.	-	, \quad,
.. 25	341	(None)	Off Cape Bird l'eninsnla	80 metres	Square 18-mesh	$\begin{aligned} & 7 \text { p.in.-Noon } \\ & 24 \text { th } \end{aligned}$	Plankton
.. 31	342	1). 26	Off Cape Rovds	0-350 metres	Nansen	4 p.un.	-•
Feb. 1	343	.. 27	..	0-600 ..	-	Noon	-
,. 1	344	.. 28	,	0-400	"	3 1 3.11.	-•
,. 2	345	. 29	MeMmrdo Sound	$0-500$	"	$8.30-9.30$ a.tn.	-
. ${ }^{3}$	346	., 30	,	$0-450$	-	9 а.m.-5 p.m.	.
,, 4	347	., 31	Off Cape Barne	0-150 .,	"	\cdots	.
,, 13	348	Antarctic Benthos, 10	Off Barme Glacier, Meaturdo Somed	200 fathoms (366 metres)	Agassiz trawl	-	Bottom fauna (mud)
, 15	349	Do., 11	Off Butter Point, Western Shore of McMrurdo Sound	80 fathoms (146 metres)	DO.	\cdots	catch of glassy sponges)
Mar. 4	350	I). 32	Off Glacier Tongue, McMnrdo Sound	250 metres	24-mesh	2-4 p.m.	Planliton
$\begin{gathered} \text { Apr:. } 26- \\ \text { June } 7 \end{gathered}$	351	-	Hole in ice between Cape Evans and Inaccessible Island.	205 ..	Tormets	-	-•
$\begin{aligned} & \text { Aug. } 29- \\ & \text { Sept. } 26 \end{aligned}$	352	.	Do.	112 ,	\cdots	-	\cdots
Dec. 4-1:3	353	-	Cape Royrls	-	-	-	13 Pivds
1913.							
Jan. 20	354	E. 51	$77^{\circ} 46^{\prime}$ S., $166^{\circ} 8^{\prime}$ E.	12 metres	24-mesh	11 a.m. -2 p.m.	Plankton
.. 20	355	Antarctic Benthos, 13	," ${ }^{\text {, }}$	300 fathoms (547 metres)	Agassiz trawl	.	Bottom fama
.. 22	356	Do., 14	Off Granite Harbonx, entrance to McMurdo Sound	50 fathoms (92 metres)	To.	- (mud)
,. 22	357	E. 52	$77^{\circ} 1^{\prime}$ S., $163^{\circ} 22^{\prime} \mathrm{E}$.	12 metres	24-mesh	$2-6$ p.111.	Planliton

Brit Mus (Nat Hist)
Collecting Stations, Pl. I.

Brit Mus (Nat Hist)

OLIGOCHAETA.
A PARASITIC ENCHYTRAEID.
BY H. A. BAYLIS, B.A.
I.-GeneraI. pageOcenrenee of a species of Encliytreidee in the gill-chambers of aLand-crab in Sonth Trinidad13
II.-Systematic.
Species refered to Enchytrems-diagnosis of E. rarcimophitus, sp. n. 14
III.-Anatomical.
Exterual features 15
Internal anatomy 16

I.-GENERAL.

The "Terra Nova" was at the island of South Trinidad (Station 36, Lat. $20^{\circ} \quad 28^{\prime} \mathrm{S}$., Long. $29^{\circ} 25^{\prime}$ W.) from July 26-30, 1910. During this stay the opportunity of shore-collecting was taken by the naturalists, and Surgeon E. L. Atkinson, R.N., colleeted some of the Land-crals (Gecareinus layostomu), which were taken alive on board ship. On the 30 th some of them were dissected, and their gill-chambers were found to contain small worms, which were at first thought to he Nematodes. They prove, however, to be typical Oligochates, and clearly belong to the family Enchytræidæ.

As records of Oligochata occurring in association, either as parasites or as commensals, with other animals are by no means frequent, and more especially as only one Enehytreid appears to have been described as occurring in such association, the fact of a member of this family having chosen such a situation is interesting.

The one previous instance known to me is that of Parleydrilus: [Epitelphused] catonensis: Drago, occurring in the gill-chambers of the freshwater crab Telphusa fluciatilis in Italy.*

It is worthy of remark that the worm seems to have undergone no special modification in structure as the result of its parasitic or semi-parasitic liabit, but

[^0]remains in every respect similar to its near relatives, nearly all of which are earthworms, or to a certain extent aquatic.

The worms occur in considerable numbers, lying on and among the gills of the erab, and also upon the lining of the dorsal wall of the gill-chambers. The lining is here modified in these crabs into a richly vascular area, or "lung," by means of which oxygen can be absorbed from the air; this adaptation being in accordance with the crab's habit of living on dry land for the greater part of the year. So far as is known from observations in other localities, the land-crabs only repair to the sea for a few days at one period of the year, for the purpose of allowing the larvæ to escape from the eggs into the water. The crabs in which the worms oceurred were collected, as Surgeon Atkinson informs me, at " 1,500-2,000 feet above sea line," (i.e., within 20 feet of the highest point of the island), and were "feeding on decaying vegetation and perhaps a certain amount of exereta from sea-birds."

It would appear that the worms must be capable of withstanding exposure to seawater at least for a short time each year, unless they only migrate into the erabs' gill-chambers during the period of terrestrial life. This, however, seems improbable. Worms of various ages and at various stages of development, besides fully adult individuals, occurred in the gill-ehambers of a preserved crab in the "Terra Nova" collection,* which, by the kindness of Dr. W. T. Calman, I was permitted to examine. From this fact it may be inferred that they probably spend the whole of their lives in this situation. It would be of the greatest interest to know what advantage they derive from the crab-whether mere protection from enemies, or some special food. It is indeed impossible to state upon what nutriment they subsist; it seems improbable that they are capable of extracting blood from the crab's gills or from the vascular epithelium, their mouths being provided with no hard parts which would enable them to make punctures.

These questions must for the present remain unanswered, since answers to them can hardly be derived from the examination of spirit-specimens.

II.--SYSTEMATIC.

Morphologically, there seems to be no reasonable ground for the ereetion of a new genus for this worm. It appears to approach closely to the described speeies of Enchytraus, differing only in details of size, arrangement of bristles, and other small points ; for the present, therefore, it may be placed in that genus.

[^1]Linchytreus. ratrinophilus, sp. us.
Diagnosis:-
Length, 30-40 mm. Nimher "f sesfments, 125 . C'luete', :3 per buudle in firmt of clitellum; 2 or :3 per Imudle behind it. Brain nearly straight helhind. Nephridlie with funuel only in fromt of weptum. Spermutherep tululere, with walls popronded and folded at about the middle, and a fere ,ylamb-rolls near the paterual openinu. Sperm-dhits ver! lonif cund coiled.

Mal.-Stat. 36, South Trinidal Island, S. Atlantic. Living in the interior of the gill-chambers of a land-cral) (Getereimus leyostome, H. Milne-Edwards).

III.-ANATOMICAL.

Enchytroess retecinethilus, sp. 1 .

Exterval Features.

The largest specimens measure $30-34 \mathrm{~mm}$. in length, and have a thickness of about 0.6 mm . (In the region of the clitellum the thickness is somewhat greater.) These measurements are taken from specimens fully extended, found in a crab preserved in spirit.

The number of segments, in a large specimen, is about 125.
The preserved specimens are colourless or slightly yellow.
The chatre are short, simple and pointed; straight, or only to a very slight degree sigmoid. They are arranged in four bundles, or transversely-placed groups, in each segment. In a mature specimen both dorsal and ventral bundles, anterior to the clitellar region, contain three bristles each. Behind the clitellum each bundle (dorsal as well as rentral) contains two or three bristles. In very young specimens, only the first six dorsal bundles contain the full number of three bristles, while in somewhat older individuals, which have as yet no clitellum or genital organs, the first ten bundles were found to be complete. The first segment (peristomium) is devoid of bristles, as are also the segments occupied by the clitellum.

There is a minute "head-pore" in, or immediately behind, the groove which marks off the prostomium from the peristomium on the dorsal side. A series of dorsal pores, however, seems to be absent.

The clitellum, in mature specimens, is a band of thickened epithelium, consisting of a single layer of tall gland-cells, and oecupying segments XJ.-XII. At about the middle of its length, on the ventral side, and projecting laterathy, are two large spermiducal pores, with thick, Heshy lips (Fig. 8, ठ). These are exceedingly prominent, and conspicuous to the naked eye. They are situated in segment XII.

The oviducal pores are situated shortly behind the male pores, at the septum between segments XII. and XIII. (Fig. 8, f). The openings of the spermathecre, of
which there is a single pair (Fig. 1, Sp.), are placed far forward, just in front of the septum separating segments $I V$. and V.

Internal Anatomy.

Alimentary C'and.-The mouth is on the ventral side, and is, as usual, overhung by the prostomium. It leads into a narrow buccal cavity, whose only peculiarity is the presence of a small, pointed, tongue-like organ on its floor. This "tongue" (Fig. 12, T) lies with its point directed backwards, after the manner of the tongue of a frog. Its point is almost hair-like, and the organ is probably sensory in function.

The buccal cavity is succeeded by a pharyux, whose roof is formed by a very thick muscular pad, provided with strong retractor muscles (Figs. 1 and 12, MPh.). The whole pharynx, with its muscular pad, appears to be capable of eversion, some of the preserved worms having been found in this position. In this case, the little "tongue" on the floor of the buccal cavity is probably also carried to the exterior, and may there come into use as a feeler or gustatory organ.

Just behind the muscular pad of the pharynx the œesophagus commences, and at this point, on the dorsal side, there open into it side by side a pair of short blind tubular organs (Fig. 12, Sal.), which may be the so-called "salivary glands."

Further back, on either side of the oesophagus there are three glandular masses, the "septal glands" (Figs. 1, 10, 11 and 12, Sep.) ; the first pair attached to the anterior surface of the septum between scgment IV. and V., and the second and third pairs attached in a similar manner to the two following septa. The glands thus occupy segments IV., V. and VI.; they are massive and solid, and are L-shaped, each having a dorsal prolongation. They are not, however, continuous over the dorsal side of the oesophagus. This portion of the alimentary canal is richly lined with long cilia (Figs. 10 and 11, Oes). Behind it the intestine is continued without any marked increase in diameter, and passes down the whole length of the worm to the anus, which is terminal.

Circulatory System.-The main reservoir of blood seems to be a large bloodsinus which surrounds the gut, and is most conspicuous (in sections) in the region of the œesophagus (Fig. 11, BS).

In addition to this there is the usual system of vessels characteristic of the Enchytræidæ (Fig. 5). The dorsal vessel (DV) takes its origin at a point on the wall of the intestine at the septum between segments XIII. and XIV. Passing forwards just above the gut, it bifurcates in the first segment, forming the usual pair of lateral vesscls (LV), which pass round the pharynx and join just behind it on the ventral side, to form the ventral longitudinal vessel (VV). The dorsal and lateral vessels are connected also by two pairs of commissural vessels ($\mathrm{C}, \mathrm{C}^{\prime}$), which arise from the dorsal vessel close together in the fourtl segment. The anterior pair pass forwards and round the pharynx to join the lateral branches a little behind their
middle. The seomd pair spring fiom the moder side of the dorsal vessel, and join the lateral vessels lehind the pharynx, just before they mite into the ventral trunk. Behind these commissumal vessels, the dorsal vessel also gives off small branches to the viscera.

The blood is of a yellow or very pale orange colour-in living specimens it may perhaps be red.

Nertous system. The brain (Fig. 4) is of an ohlong shape, but slightly broader posteriorly. Its outline hehind is nearly staight (very slightly concave). The hain gives off at its two anterior corner's the usual pair of circum-pharyngeal comectives, whiel join below to form the ventral nerve-cord. The first ventral ganglion appears to send out anteriorly a hundle of nerve-fibres to the borly-wall. In other respects there is nothing worthy of remark in the nervous system.

Nepleridin.-These (Fig. 9) are of the type usual in Einchytreus. Only the ciliated funnel projects through the septum into the preceding segment, the main mass of the organ lying horizontally, and its duct to the exterior passing off at a right angle.

Male Genital Oryans:-The testes are in segment XI. on the septum X./XI. The large sperm-sales (Figs. 1 and 8, SS) oceupy segments X. and XI., and in the eleventh there is a pair of large sperm-funuels of an clegant urn-shape, for conveying sperm from the sacs to the exterior. These funnels (Fig. 7) are composed of three parts: the "funnel" proper, being a trumpet-like expanded rim lined with long cilia; a thick-walled portion in which the contents of the cells appear granular and deeply-staining, and a wider portion forming the base of the urn, with walls composed of tall cells. From the hase of this arises a very long and much convoluted spermduct (Fig. 8, SD), which finally opens on segment XII. by the conspicuous fleshy protuberances (Fig. 8, of) mentionel among the external features. Just before its external opening (Fig. G) the duct passes into a small hulhous expansion, and the orifice is surrounded by little groups of glaudular eells ("prostate glands"), arranged in transverse rows (Fig. 6, Pr.).

Female Genital Orymu.-The ovaries (Fig. 8, Or.) are in segment XII., and give rise to large eggs with a very abundant supply of yolk.

The oviducts (Fig. 8, f) are, as in other Enchytraids, mere funnel-like out-pushings of the septum XII./XIII. to meet the body-wall. The external pores are very minute.

The spermathece (Figs. 1 and 10, Sp.) open, as already mentioned, at, or just in front of, the septrm $1 V . / V$. They pass, as a pair of rather thick-walled thles, between the first and second septal glands on either side, and their inner ends open, as is (curiously enough) usual in this family, into the œesophagus (Fig. 10). At about the middle of its length each spermatheca becomes somewhat expanded, and its walls, which are ciliated, are at this point thrown into one or more pockets. Near the external opening the ducts are covered externally by a few large, stalked gland-cells (Fig. 10, G.).

PLATE I

Enchytrexs cetrinophitus.
Fif. 1. Dorsal view of the anterior end of a specimen in glyeerine.
Br, brain : MPh, muscular pad of pharynx; R , retractor muscles of pharynx; Sep, the three pairs of septal glands: Sp, spermatheca ; SS, sperm-sace.
Fha. :. Dorsal view of entire worm, $\times 3$.
Fic. :3. A small portion of the surface of the elitelhm, highly magnified, slowing the outer emls of the large glandular cells.
Fig. 4. The brain, as seen from above. Com, root of commissural nerve ; M, muscles ; NPr, nerve to prostomium.
Fice. i. Dorsel view of the system of bood-vensels in the anterior region. $\mathrm{C}, \mathrm{C}^{\prime \prime}$, the two commissural vessels of the left site; N^{\prime}, the dorsal 1 essel ; WV, the left lateral vessel ; V V', the rentral vessel.
Fie. G. Portion of a longiturinal seetion, showing the termination of the sperm-duct. Pro, "protate glands" ; SI), sperm-du*t.
Fis. 7. Lomiturlinal section througla aperm-fumel. 1), commencement of sperm-luct: S', septum.

Fig. E. Ventral view of the regin of the clitellum and fenital organs, from a glyerine prepration.
 fumel ; NS, sperm-sic ; δ, Aleshy lip of sprmidual pore; \mathcal{P}, oviduct.
Fiss. 9. I nephridium.
CF, ciliated fummel: D , duct 10 exterior : \mathfrak{s}, septum.
Fisk, 10. Transserse section in the region of the spermathece.

Fru: 11. 'Transwerse section slightly belime the spermathear.
Bi, blowd-simis smrommling the wsophasus : wher lettering as in tig. 10.
Fri. 13. Approximately median segittal section of the anterior portion of the loely.
Br , lnain; (f , gland-cells on exterior of intestine ; M, moutl, MPh, muscular pad of pharynx ; NC, nerve corl: Oes, wsphagus; li, retractor muscles of phatynx ; Sal, salivary glame : Sep, septal glants ; 'T', "tongue."

Brit. Antarcuc (Terra Nova) Exped. 1910

Brit Mus. (Nat Hist)

Zoology, Vol. II
Oligochaeta Pl.I

G.M. Woodward del. et lith

PARASITIC WORMS
 WITH A NOTE ON A FREE－LIVING NEMATODE． BY
 R．T．LEIPER，D．Sc．，
 Helminthologist to the London School of Tropical Medicine，

 ANDSURGEON E．L．ATKINSON，R．N．， Parasitologist to the British Antarctic（＂Terra Nova＂）Expedition， 1910.

しONTENT心。

INTRO1）UCTORS．

The material，comprising in all thirty－eight species，was ohtained dhefly within the Antaretic Circle．A certan mom of collecting was done．however，duning the outward voyage of the＂Temat Noval．＂A preliminay aromat is given，therefore，of the various forms and their hosts acomang to the gengraphical regions in which they were fomed．

Tropical \％oure．－On luly ：ind and thh．1910，when the ．＂Terral Nova＂wats in Latt．22： 28^{\prime} N゙．Long． $2:^{\circ} 05^{\prime} \mathbb{W}$ ．（Stat．23），and Lat． $20^{\circ} 47^{\prime} \mathrm{N} .$. Long． $24^{\circ} 06^{\prime} \mathbb{W}$ ． （Stat． 25 ），two thying fislo（ame abourl．From the contents of the alimentary canal of one a few＇Trematomes were ohtained．In the gall－hadder of the other，a thuke， apparently a form of Pulystomum，wats foumd．Of these sperimens only murecognizable fiagments remain，so that no description of them is given．The flying fish were

Thz S'tatf seized the opportmity afforded hy a day's stay to make collections of the fishes, hinds and crabs. The parasites obtained were:-
(1) Three speries of Cestode from the Trimidat petrels (EEstreluta arminjoniama and (E. trimitutiv) ;
(h) One species of Cestode from a Frigate bird (Fre!uta aquila or F. ariel) ;
(c) Two larval Tetrerhynches. from a small shark (Cercharias sp.) ;
(d) Specimens of an Oligochaete, extracted from Land-crabs (Gecarcimus luy!estomur, II.M.-E.).

The stay of the ship was so brief that the material collected is in no way indicative of the extent of the parasitic Fama of the Island.
S. Trinidad would probably afford a rich fied for the further investigation of pamsites, as many hosts, esperially hirds and fishes, ahomed and are easily procurable.

Tomprate Zont.-On the 3rd Octoher, 1910, when the "Terra Nova" was in Lat. $42^{\circ} 17^{\prime}$ S., Long. $111^{\circ} 18^{\prime} \mathrm{E}$. (Stat. 156), a Great Grey Shearwater (Pufimus rimereus) was caught, and provided one species of C'estode, Totrulhothrius hiterorlitus. On the 6th October, 1910, when the ship was in Lat. $41^{\circ} 46^{\prime}$ S., Long. $121^{\circ}: 39^{\prime}$ E. (Stat. 159), a Sooty Alhatoss or Hutton's Alhatros (Phobetriel pulpehreta) was caught. This porided two species of Cestonles, one unfortumately only in fragments am: without a head. These proved to be:-
(a) Tiftrethethrilus melvemi, n. sp.
(1) Whrecognizahle.

The following parasites were collected at the Bay of Islamds in New Zealand, in Lat. $35^{\circ} 15^{\prime}$ S., Long. $174^{\circ} 10^{\prime}$ E. (Stat. 149). by Mr. D. G. Lillie, Biologist to the Experlition, when he was on a whaling cruise with a Norwegian ship :-
(11) From a Hmmphack Whale (Mermptera) numerons specimens of a Filariid

(b) From a Rompaal (batamoptepa buratis, Lesson) one specimen of a ('estode and some pretty examples of the curious I'mulnilymelns turbindlu.
(c) From a Shark (Jhastelis. cuntarticus) a Nematode, and
(d) From a Barracouta (Lepidopme comblutus) some larval Nematonles encysted in the cacom, and with then a lanval Tetrahymehnes.
In Lat. $52^{\circ} 20^{\prime}$ S., Long. $167^{\circ} 30^{\prime}$ E. (Stat. 165), off the C'mplell Islands :-
(r) A Mohlymank (Hiomeden melanophrys) was ranght and provided some Nematodes.

Anturtir Zome.-The larger portion of the rollection of parasitic woms was made, however, in the vionity of Cape Exams in Lat. $75^{\circ} 38^{\prime}$ S. Long. $166^{\circ}-24^{\prime}$ E. (Stations
 were expedingly unfavourahle, and the collection could only be atded to very slighty.

Whring these winter monthe ats som as the husts were killed or watht ontside. their buties on expised portions fioze almost immediately. It was therefore necessary to take them back with us to our hut and thaw them ont in order to be able to examine them. lan the asse of larger ammals, like the seats, this proved umplasant for the other members of the party.
'The fishes were canght by digging a loble thomgh the iece and lowering a tral' laited with seal-meat or seal-intestine-the latter being the better bait. The trap Was mate of rablit-wire, spread wer inom hars. sceized to hoops of iron. At either eme there was a come-shaped entrance mande of wire. By this methom as many as theer hamidred tishes were callght firom one hole.
 three of Ledhumburhi, some larval Lehinomynchi, larval Nematodes, amb Cestodes, hesides parasiti, C'rustacea and Protozoa. were obtained firom these fishes.

The seats were of three kinds:- Wediells Seak, Clab-cating seak, and ShatLeoparis.

The Weddell's seals (Lyponghlotes whdelli) were for the most part ohder than the othess aml secmed more heavily inferede ; they contained at least six speries of C'estonles, one Trematode of special interest, two Nematordes, and one or two speries of Dehinortynehi. An enersted tahimerhmeluse larva is shown later to be the young of E. hummmi. Which attains matmity in Weddell's Scal. Mr. W. (r. Lillie collected two speries of Nenatorles and two of Cestodes from the Weddell's Seals carght on the Southern voyage of the "Terra Nova," 1911-1912. 'The Trematonle fo mod in the Weddell's and C'able-eating Seals tumed out to De (tymoynastor phicutus, previously
 mestrutu) in the Aretic regions. In 1891 this form was again deseribed by L. A. Jager-
 the Northern shores of Norwar: The infection of the alimeutary canal of the old Wedlell's Seals was a truly wonderful sight. The stomach contained a mass of Nematomes. Immediately after the pytoric opening there was a lomeh of large Cestonles with their heals fixed beneath the first few ralvulae commentes. The remainder of the small intestine was one felted mass of Cestonden, large anm small.

 shall and immature and were comparatively lightly infected with pamsites.

[^2]one species of Eidimorlymilhs. This seal was young and immatnre, and companatively free from parasites,

The lirds in the Mc Murdo Sonnd Quadrant of the Antaretic Circle appear to have execedingly few parasites. They were as follows:-The Emperor Penguin (Aptonotytes forsteri) provided a very interesting Cestode and several larval forms. In the majority of Emperor Penguins, ou opening the ablomen, a considerable degree of peritonitis, lonth recent and old, was discovered. The peritoneal surface of the alimentary canal was eorered in places with hard, elastie and fibrinous cysts rontaning Cestodes, larval and mature. The walls of these cysts were composed of all the elements of the nomal gut-wall. Within these were the heads of the C'estorles, while the strobila of the worm hung within the gut-eavity. The ramal connecting the cyst-cavity and the gut varied in length and direction.

The number of the oroupants of the eyst varied. If they were immatme there were several, if mature only a single worm.

The Adelie Penguin (Iyyowelis adelice) was very disappointing. The many speemens caught provided only a few small ('estodes, otherwise they were free from Entozoa. The range of those canght was from Lat. $69^{\circ} \mathrm{S}$. to Lat. $77^{\circ} 38^{\prime} \mathrm{S}$.

McComick's Skna (Medulestris marcormicki) supplied one Cestode. Tetrathothrius: rylimdrmons. These birds feed largely on the hlubher of dead seals, preferring it to any other part. In this blubber there are often eysts of C'estodes. These, unfortunately, conld not be brought hack, as they were ohserved when we were away from the base and without facilities, hut their ocemrence has been noted hy Dr. W. S. Bruce, Commander of the Scottish National Antarctic: Expedition, 1901-04.

The Giant Petrel (Oxsifretget !figuteet) was only an ocrasional visitor during the summer, and of those caught and examined none contained parasitic worms.

The method of fixing and preserving the material was as follows:-
Trematorles were phaced in a test-tube with water; they were given one or two sharp downward shakes to make them elongate, and then an equal quantity of a saturated solution of corrosive sublimate in water was added rapidly. After washing they were preserved in 70 per cent. alcohol.

C'estondes were fixed by means of Gilson's Huid, and were afterwards washed, and preserved in 70 per cent. alcohol.

Acmutentes were killed ly dropping into boiling 70 per cent. alcohol, and were afterwards preserved in alcohol of the same strength. By this method goorl, straight specimens were olotained.

To prevent any damage to the material hy the ineessant shaking on shiphoard, the tuhes were filled rompletely with 70 per cent. alcohol. Ther were then immersed in large stoppered jars filled also with 70 per cent. alrohol :med rotton-wool. The results from these methods have been excellent.

The Expedition is indehted to the Committee of the Lomdon Shool of Tropical Medicine for the opportunity provided by them to Surgeon Atkinson to obtain
pactical adpaintance with these methots before stanting on the Expedition. and for the facilites atforded in the Hehminthogegeal Department for working out the material mpon his return.

The clucidation of the anatomical structure of the varions forms and the deseriptive acemut of the C'estodes are largety the work of Surgeon Atkinson.

NEMATODA.

FREE-LIVING NEMATODES.

Lepfosememann, Bastian, 1865.

A tulo containing a large mumber of this speries oceured in the collection made hy Mr. Lillie from a depth of 250 fathoms in Mc:Murdo Sound. Specimens were also collected from a depth of 150 fathoms off Inacessible lslamd, Lat. $77^{\circ} 38^{\prime} \mathrm{S}$. (Stat. iO0)

The vitreous appearane of the ruticle distinguishes this species from parasitic forms. 'The ruticle is mot striated, hut cames fine acicular spines in longitndinal rows on the anterion part of the borly, amb, in the male. on the ventral aspert in the region of the genital papillae and the anogenital opening. Both extrenities of the woms are bimetly rommed. The heal-end is somewhat the more abruptly trumated. The lead has a sulpenticular shich of chitinons substance which gives these forms an exeedingly chatacteristie appearance (Pl. 1. tig. 3, "). This is shown in optical sertion in Pll. I, fig. 9, 1. The arrangement of the spines on the head has not been finly churdated. They extend in linear series from the tip of the head barkwards for a distance of alwout 0.12 mm . (Fig. 9,,).

In a male, 15 mm . long, the nerve-ring (Pl. I, fig. 3, d) (rosses the oesophagus at 0.65 mm . lehind the hearl. The oesophagus measures $2 \cdot:$ mm. (Fig. : $:$, b). The cesticular tule is a thick solid thle ending anteriorly at $4 \cdot 6 \mathrm{~mm}$. from the head in a hlunt digitate process. It passes directly backwards withont coiling to the anogenital apertme, which lies 0.5 mm . in front of the hlont and rounded tail. The spicule is a bent, short fhitinous structure not mulike a loot-last in

The genital papillate are sosite amb are all preanal. There ate fome on one side and. usinally, five on the other (Pl . I, fig. 6.1). (On either side of the middle line is a row of aricnlat "pines. In the male there is also a sories of diagomal muscular hands which bing abont the vental coiling of the posterior end of the bonly, extembing forward for I mm. fiom the anogenital aperture. In the midrentral
 recalling the relatively large sucker seen in Hetermbis.

In the female the genitalia are very simple. The genital aperture liss 9.8 mm. hehind the head. There is a triangulat cavity representing the vagina the apex of this is the volva, and from each hasal angle there proreeds atong the borly a straight genital tube. The one which proceeds rephalad teminates in a bluntly rounded end at 3.5 mm . from the oesophageal valves, while the candad tube ends similarly.

Mention must be marle of the pair of heautiful orelli (Pl. I. fig. B, ') which are present on either side of the oesophagus at 0.46 mm . from the head. Each is composed of a number of globules of a deep aimson colour.

PARASITIC NEMATOHES. Fand ASCARIDAE.
 Kirthlemu,* Leip. and Atk.
 Kathleena, Leiper and Atkinson, Proc. Zool. Sor., 1914, p. 226. Genotype, Ascmis osrulatu, Rud.

An Ascarid with three large fleshy lips and three interlabia. The oesophagus has a solid appendage and the intestine has an anterior eaecal prolongation.

In this genus may be placerl K. scotfi, Ascrits ratliatu, and I. merfanfula.
2. Kıetherme sentti, Leip. amd Atk. (Pl. I. figs. :2, 5, 8. Text-fig. 1.)

Kathleme spotti, Leiper and Atkinson, Pror. Zowl. Sor., 1914, p. 223.
Whitish firm round worms. Male $15 \times 0.9 \mathrm{~mm}$. Female the same size or slightly larger. Interlabia very large, pentagonal. Short curved vesophageal appendage 0.2 mm . Tntestinal eaecum 18 mm . Oesophagus $2.53 \times 0.4 \mathrm{~mm}$. Spicules $3 \times 2.7 \mathrm{~mm}$. The tail of the male terminates in a blunt digitate process.

Ihst.-Several whitish round worms varying from half to three-guarters of an inch in length were oltained from the intestine of a single sperimen of the Mollymank (Diomerlea melanoph?y, killed off the Camphell Islands, Lat. $52^{\circ} 20^{\prime} \mathrm{S}$., Long. $167^{\circ} 30^{\prime}$ E. (Stat. 165).

These worms are typical Ascaridea and show several features in common with Ascoris. ass ulatu Rud., I. radute v. Linst., and I. rectamplar v. Linst. of Weddell's Seal. They are accordingly grouped with them in a sepatate genus, of which . I. osculuter Rud. has been designated the type.

Porasite-A mature and fairly typical male measmres $15 \because \mathrm{~mm}$. in length, by 0.9 mm . in greatest hreadth. The posterior extremity curves ventrally and tapers to end in a finger-like process. The anterior end is hluntly truncated owing to the presence of three particularly stout interlatia (Pl. I, fig. 8, 倍) in addition to the manal three large Heshy lips ($\|, \prime^{\prime}$, $u^{\prime \prime}$) found in all Ascaridae. The female is straight and its posterior end is also digitate. The skin is transemsely striated. The interlahia are very large and of pentagonal ontline, measuting fom lase to apex 0.08 mm ., and

[^3]at the hromest pertion near the base 0.05 mm . The three lips are 0.135 mm . long and 0.1:3 min. bront.
 The terminal pertion is slighty differentiated to form a museular hulb with a glamelular
 posessing this structure. It measmes 0.55 mm . in length by 0.2 mm . in beadth.

The rhyle-intestine is very mhminous and its wall is markedly folded. It has an anterior raterum extending fomad for 1.8 mom. to within 0.7 mm . of the head (F゙ig. \because, \quad e). It orempies the whole of the pembiseral space between the oesophageal tulue amel the berly-wall on one side. ame attains a hearth of 0.4 mm . These dhaneters are duphirated in the female perimens: the measmen110.11ts show a slight variation in aceordance with the differener in the sizes of the complete worms:

The anuqemital aperture lips $0: 3 \mathrm{t}$ mm. in front of the tip of the tail. and two chitinomes spiontes are seen cxtemed in many of the sperimens. Thery are mey bal in si\%e, but of similar shate (Pl. I, fig. $5, * \%$). At the proximal end these picules are slighty diated. They
 The comse of the testicular tule is olsared by the folds of the chyle-intestine, hut it can he seen extending fomands at least to the level of the wesophageal appendage.

The papillate are aranged in thre sets. (iromped
 Which oermpies the posterion end of the borly are fome bairs of bapillat (text-fig. 1, 1). Half way between these and the anogenital aperture a secomel set of fome pairs (text-fig. $1, x^{\circ}$) are set on the latemal margins of

Fis. 1.-Kuthlenens somtti: ventral view of the posterior extremity of the make. ", Anosenital aporture; l, caudal process: e pestanal papillas: d, caulal group of papillae ; e, preanal papillac: f, enticular alas. the rentral aspert of the worms. A long series of papilat then commeners. extembing to a considerable distance in front of the anogenital aperture (text-fig. 1, "). These are aranged in two linear rows on eath side. Four double pairs lic beliml the level of the ams (a), but this mumber may vary. These papillate, althongh situated postanally, lelong to the preanal series. Twenty domble paise were commed in this series. This munber is to be regarded as a minimum, as it was impossible to be errain that the most mertor papillat antuall! observed were the terminal paiss of the srries.

The Fimmes are slighty larger than the mates. They present the same whate ters
in the oesophageal and intestinal diverticula, hut these are smaller: The vaginal opening is $\pm \mathrm{mm}$. from the head-end, the worm measuring 35 mm . in length. The vagina is strong and muscular, and the uterus runs caudalnards fiom this as angle narrow tube. The eggs are in very well-marked groups; they measure 0.1 mm . by 0.06 mm . The tail ends in a finger-shaped process, and the anus is 0.4 mm . from its tip.
3. Kıthlecme ruliate (v. Linst.). (T'ext-fig. 2.)

Ascuris rudiuta, v. Linstow, 1906 (?1907).
", falciferc, Railliet and Henry, 1907.
Host. -The Weddell's Seals thronghout the Antarctic Zone appear to be heavily infected with this parasite. It has been reported in large mumbers by the Scottish National Antaretic Expedition and by the first French Autaretic: Expedition. It is suggested hy Railliet and Hemry that some of the forms collected hy the Germans in South Georgia in 1882-3 helonged to this species, although ascribed to Ascoris oxculutu.

Pamesitc. The parasites are typical Ascarids when seen with the naked eye; i.e., they are stout wiry round woms of a whitish colour in the preserved state and showing a ventral hook-like twist of the posterior end in the males. 'Jhere is a wide range of size in the material at our disposal, this heing due to the relative matmity of the individual specimens. A mature male measures alont 12.0 mm . long, a female $1: 3-20 \mathrm{~mm}$. long. The horly has a diameter of from 1.5 mm . to $2 \cdot 0 \mathrm{~mm}$. The mouth is grarded hy three large lips, quadrate in outline and with a lateral cuticular ledge prolonged fiom the free angle. There are three sickle-shaped interlahia which, in specimens in sirit. showed a fine striation of the internal sulstance of the cuticle. Upon this feature v. Linstow hased the specific name.

The results of our examination confim in the man the details of structure and the mimutiae of measurements given loy Railliet and Hemy and by v. Linstow. In a smath male specimen of $12 \cdot 0 \mathrm{~mm}$. the oesophagus is 1.6 mm . long and its greatest dianeter is 0.19 mm . There is posteriorly an oesophageal appendage containing the dorsal oesophageal gland. This extends 0.7 mm . hehind the junction of the oesophagus with the chyle-intestine. This organ is stated loy v. Linstow to le of the length of the oesophagus. Railliet and Henry mention the presence of the structure, but give no measurements. From the chyle-intestine there passes forward a blind catum, $0 \cdot!$ n mum. in length, reaching just heyoud the middle of the oesophagus.

The chyle-intestine is very voluminons, and its walls are much folded. At $1 \cdot 6 \mathrm{~mm}$. behind the oesophageal valves are the closely packed coils of the testicular tube. These coils occupy the succeding $3 \cdot 0$ mmo. and thence the tulse runs directly backwards to the anogenital opening (text-fig. $2, a$) , $0 \cdot 19 \mathrm{~mm}$. from the tip of the tail. The spicules are very similar in size and shape. They are transparent and colourless rods, $2 \cdot 6 \mathrm{~mm}$. in length, and present somewhat characteristic outlines. There is a solid strengthening portion emming along the whole length of the spicule to become the bhut tip. In the

 Hemr：There are four pairs of simple papilate at the base of the acioular tip（text－fis． \because. ，Ifter a short interval，and lying well on the rentral surface，there is at paire of
 a domble series of simple papillate．which extems forwarl to berome pramal without a distinet heak．Thuse papillate continue still further in single series after about ther eighth paired set．（On wher side the cutide is rased from the bonly－wall and Hatemed domstomatratly to fom a shallow ked （text－fig．．\because. 名）not more thall 0.15 mm ．（exp）．

4．Riethlermen overenletar（Rul．）．
Isriucix usertutu，Rind．180‥
I later momber of somewhat immature ionms of this fommon species were fomm in the sem－Leropard

 of this paraite were enosted in the mesentery and unler the peritomeal coats of the pronice processes amd in the liver of Tirmmomme lermuredio．The species has previonsly heen recomed in Intaretic Soals lyy v．Lin－ stow and hy Railliet and Hemy．

Ascaris rectrmgula，r．Linstow， 1906.
．．strmorphalt，hailliet and Henry，1907．
／／asts．－In association with the previonsly describerl spercies，．I．rallitu，in the Wedells shal were a number of harger sperimens．These have alreaty been
 alout the same time ley Railliet and Hemy moner the

 rentintu．The gememb topographe is the same．There are there labial intermedia．The
 pripillare in the tail liffer mily in detail from those of バ．ratimfo．

The bemultes generally measure of and and are larger than the makes, which they resemble in most of the chatarters. The vagina is 5 mmn . from the head end. The anus is $0 \because 3$ mm. from the tail. The eggs measure $0.05 \mathrm{~mm} . \times 0.06 \mathrm{~mm}$.

Torronoce, Leip. and Atk.

Torranora, Leiper and Atkinson, Proc. Zool. Soc., 1914, p. 226. Genotype, Tcircmove cutartica, Leiper and Atkinson.

An Ascarid with three large simple lips. No interlabia. Oesophagus simple. Gut with anterior eaecal prolongation. No oesophageal appendage.
6. Terponoct rutrertica, Leip. and Atk. (Pl. I, figs. 1, 4, 7.)

Trmomove anfartica, Leiper and Atkinson, Pror. Zool. Soc., 1914, p. 226.
Female $3: \mathrm{mm}$. long. Three squat fleshy lips with paired anterior lobes. No labia intermedia. Oesophagus without appendage. The intestine has a long caecum. The anus lies at the base of a deep suleus.

Ihost. - A single female specimen of this Ascarid was found in the stomaeh of a shark (1/ustelus ruturcticus) in the region of the Bay of 1slands, New Zealand.

Paravite.-The specimen measures 32 mm . in length, and is coiled in one and a half spirals. The skin is conse and striated transversely.

The wom is very thick and opaque, having a diameter of 3 mm . in the middle third of the body, which tapers gradually to end in a rommed head and a somewhat more pointed tail. The amus lies at the lase of a deep sulcus which can be seen with the naked eye (Pl. I, fig. 4, a). Behind this the tail rapidly tapers with a slight ventral inclination. The rhyle-intestine is pigmented with dark hown granules. The characteristic features of the worm are as follows:-

There are three spuat, round, Heshy lips, eath having a pair of spheroidal lobes projecting forwards (Pl. I. fig. 7). The lips are mot markedly separated from the neck.
There are $n o$ labia intermedia.
The oesophagis is a cylindrical muscular organ without oesophageal appendage (Pl. I, fig. 1, 1t). It enters the ehyle-intestine laterally.
A large caecal prolongation of the gut extends forwards alongside the oesophagus to 1 mm . from the head (Pl. 1, fig. 1, b).

The alisence of intermediate lips and of an oesophageal appendage necessitates a separation of the species from those which constitnte the genus Kuthlecnu.

The great opacity of the worm, even after clearing in creosote, obscures the arrangement of the ovarian and uterine tubules. The vulva is 14 mm . behind the head; from it the vagiua passes almost directly backwards. The uterine tubules are filled with eggs apparently of small size, but these could not be measured in situ.

FAM. ? FILARIIDAE.

C'rassimurla, Leip. and Atk.
Crassirouda. Leiper and Atkinson, Pinc. Zool. Sin.. 1914, p. 226. Genotype, Filaria rrussirnuln, Creplin.

Filhrian mertssicturda, Creplin, 1829.
A number of protions of long white Filaria-like worms were collected ley Mr: Lillie from the renal tubules and from the stomath (wall?) of the Humplark Whale (I/r, mitera). No complete specimen was recovered : the portions. in some cases extembing to 16 inches in length, belonged to hoth males and females.

There was upon looth male and female portions a curious lallons dilatation. which appears to have served as a "loldfast," since the worms are almost all severed in the neighlourhood of one of these swellings. 'The largest worm is the posterior part of a female. This portion measures 45 cm . in length and is torn across at a holdfast. The males are similarly broken, and are likewise entirely posterior parts.

The intirle is transersely striated, hat these striae differ very markedly in various parts of the worm. At some places they appear more like rugae than striae. lout in wthers the cuticular markings are typically striae.

The longest male portion is 28 cm . long, and has a transwerse measurement of \therefore min. The posterion end is helicoid in all specimens. The tail tapers in the last halfturn to a hlunt tip. There are well-fomed nipple-like papillae armaged in paired series and mumbering on either side eight.

In no rase have we been able to discover any sign of a spicule. In view of the perfert transparenty of some of the cheared specimens it must be conchoded that in this speries the spicules are alosent.

The female also has a very permbiar feature in the armagement of the gentalia. The genital aperture lies just in front of the posterior end of the worm. The ragina is reduced to little more than the site of fusion of the two long uteri, measuring only 0.45 mm . The worm is oriparous. The ovum measures $0.05 \times 0.04 \mathrm{~mm}$. has a thick ehitinoms wall, and contains a coiled cmbryo.

The alimentary camal diselarges into a depression formed by the puckering of the pasterion eme of the wom. Nhout 3 bum. in front of the tip of the tail the borly is ronstricted. This constriction is figmed by Creplin and ustally appeans just helind the rulvar opening.
 vulvil withont kink of coil fore some distane into the lexly of the womm.

In spite of some difference in the mumber of papillate in the make and certain other
 182! ly Creplin from a Northern Rorqual. It should he pointed out, howerer, that the
terminal position of the amme, the posterion situation of the valva, and the production of thick-shelleal ergs, necositate the separation of this form from the gems tillerim in its monlern areptation. We regad the present spectes as the type of a distinct genms, for which we have proposerl the name C'mssimenth.

ACANTHOCEPHALA.

('orymosomn, liihe.

 Cor!mosomu cuturaticm, Rennie. brhimorhyurhus untacticus, Remnie. sipho, Railliet and Henry.
Most:. These thom-headed worms were found in considerable numbers in Weddell's Seal, the Crahbeating Neal, and the Sea-Leopard, attalled firmly to the mucous membrane of the small intestine.

Porrosite. The parasites are pyriform and might in haste be mistaken for Amphistomes. The rostellum (Pl. II. fig. 11, ") is partially sumken into the broader and globular end, thus producing some resemblance to the rentral surker of many of the Paramphistomidae. The speceses was alse found by the Seottish Antaretie Experlition, and has reently been the subjeet of a monograph hy Dr: Sohn Rennie. With his abeonnt our findings tally. sate in three resperts.
(11) The number of hooks upon the rostellum is, acoorling to onr reckoming, 150 to 170 , whereas Femnie states that there are about 28 rows cach having ten hooks.
A re-examination of the type-material of $i \therefore$ antrortions shows that this diserepaney is probably attributable to a different mode of comoting. Owing to their peculiar altemating armongenent. the hooks may he comoted in a spiral fashion as well as in rertical rows.
(1) We have not fomm any departure from the nomal arrangement in the male genital system.
As this has mot been previonsly portrayed, it is illustrated in Fig. 11.
(c) In dealing with its systematic position. Rennic contrasts this form with allied forms parasitice in afuatic hirds.
The species which In: Remie regarded as new would appear to be even mow
 srnonymons pussilly with E. lummmi ra. Linstow from Weddell's Seal. In all three forms the spines on the borly exteul along the whole of the rental aspect and envelop the posterion extemity (l'I. II. fig. 11. h). The number of longiturinal rows of hooks in E. semerme is stated to be twenty-fom to twenty-six; f. Linstow gives for

 Iongitudinal and difteen to sormeen tramserse mows. Thomgh the kindness of 11: WI. Miehatelsen. of the Hamburg Musemm, we have been able to examine the typer

 to Cor!thmenm, lummmi, in addition to the material which forms the basis of the present mote. A mmoner of laval stages (Pl. Il, fig. 1:2) of this specios were obtained fiom Tremutumus hemurdii; in sone cases the rostellum was not evaginaterl.

 E\&hinurhymehus turbinelh, Diesing, 1850.
//ast.- Numerous sperimens of this cmrions form were eollected ly Mr. I). (i. Lillie
 P'mornite. - The two sexes are of almost similar size amb slape : in some cases the hasa in the male is extruded from the centre of the posterior rounded end as a
 in dianeter. The boly tapers anterionly to form a narow neck $\ddot{\because}$ mon long (Pl. Il. fig. 10, \cdot), whirh teminates in an almost gholmar head. This spheroid lead lats

 peripherat pertion, hat thase lining the suldes surounding the rostellum are very imeghlar: There are about ten rows in all. Their armbement is somewhat inegular ant the exact determination of their number is ditticult. The shape of the heat and the romghed appearance. due to the spines. remind one vividly of the rose of a watering(aim. At the simmit of the heal there is a partially retracted rostellum (Fig. 10, "1), the unarmed hase of which extends throngh the hearl to the insertion of the nerk. The books wh the rostellum differ markedly from those on the head: they are smatler and mone printed. There are twenty longitudinal rows, earlo composed of thee hooks.

In the matre the prostatio grands (Figg. 10, c) are oreatly clongated amd depply pigmenter.

 the luxts.
 matively latge forms which are the en-types of the present sperter.

I'arasite.-Mate 9 mm . long. Fenale 10 mm . Both are Hattened forms, but whether this is due to treatment after death or not camot be stated. The greatest loreadth of loth mate and female is 2.5 mm . The worms are almond-shaped, the male tapering more rapidly towards the posterior end than the female. The proboscis (Pl. II. fig. 13, ") measures 2 mm . the hook-hearing portion heing 0.5 mm . long. The hooks on the rostellum are arranged in fourteen linear series,

Fig. 3.-Echinorhynchus remichi: Female, filled with eggs. Theeuticular lapels covering the hooks on the proboscis are shown. each having eight hooks. There are no cutioular swellings aromd the hooks. In these features of the proboseis these forms differ. from the succeeding species, to which they show considerable resemblance. The lemnisci (l, l^{\prime}) are stout and clul-shaped, having a length double that of the internal part of the prohoscis. The testes $\left(d, d^{\prime}\right)$ are oval, 0.2 mm . by 0.25 mm ., are diagonally situated, and occupy the third fifth of the body. The prostatic glands are aggregated into two large masses.
11. Erhinorhynchus rennicki, Leip. and Atk. (Pl. II, fig. 15. Text-fig. 3.)

Erhinorhynchus remmichi, Leiper and Atkinson, Proc. Zool. Soc., 1914, p. 223.
Nale 3.7 mm . long. Female 4 mm . Proboscis 1 mm . Hook-bearing rostellum 0.3 mm . Hooks in 12 linear series of 6 each. Those of alternate rows are in line transversely. Each hook protrudes from a transparent cuticular lapel. Lemnisei long and slender.

Ifost. - These medium sized thorm-headed worms were abtamed from Trematomus bernuchiia at Cape Evans, Lat. $77^{\circ} 38^{\prime}$ S. (Stat. 326).

Parusite.-The male and female of this species are similar in shape, and can only be differentiated by their internal structure save where, in the male, the hursa is extruded posterionly. The greatest lreadth is quickly attained in the anterior half of the borly. The posterior half tapers gradually and uniformly to the tail. The male measures $3 \cdot 7 \mathrm{~mm}$. in leugth and 0.8 mm . in breadth. The female averages 4 mm. by 1 mm . The probosicis (Pl. II., fig. 15,4), in the male is 1 mm ., in the female $1 \cdot{ }^{2} \mathrm{~mm}$. long; the hook-bearing portion being 0.3 mm . Ly 0.12 mm . There are twelve longitudinal rows of hooks with six hooks in each row. The hooks of every second row are in line transversely. A striking feature of the probosis is the presence of a tramsparent cutioular swelling from which each hook protrmbes. By this chararter atone the speries am be distingushed readily from the other forms fomm in the same host. The lemnisei (Fig. 15. / , ${ }^{\prime \prime}$) are long stenter berdies, from the posterior and of which a bundle of mosele-fiber passes batekwards amd becomes attached to the beoly-wall hatf

Wiay aboge its longth. These lemnise ane sommimes contracted, but their normal lengith appeas to be about the same as that of the proboreis. The females are filled with eges. The genital tube, ats chameteristically illustrated in text-fig. : 3 , is visible as a rule.

Wehinorhyuchus delmhemi, Leiper and Atkinson, Proc. Zowl. Sur., 1914, I. 2-23.
Male $\because-.01$ mm. lons. Female 2.0 mm. Sickle-shaped. Stout, eylindrical rostelluni with hooks in 1:- linear sories of ti each. Lemnisci has-like, extending lut little behind proboscis. Testes large, ocupying anterior half of buly-eavity, deeply lobed. Female crowded with rege.

Host. - I number of very small hat sexually matme and egorgearing Edhomphehi, of this species. were found in Trematumus bermumheio. in assiociation with the preceding forms.

Parnvite. Male z.og mm. long. Female $2 \cdot 2 \mathrm{~mm}$. All the sperimens are sickle-shaped, the dorsal aspert being consex. The rostellum is erlindrical and relatively stout. It hears twelve linear rows of six spines carch. The probosicis (Pl. II, fig. 14, ") measures $0 \cdot 2 t$ min. in length, and is 0.14 mm . in diameter ; the portion anterior to the attachment of the invagination of the borly-wall being twice the length of that which protrudes posteriorly into the bodyravity. The lemmisci (Fig. 1f, l, l^{\prime}) are bag-like and extend only at slight distance leyomd the internal end of the proboscis. In the male there are two large testes (Fig. 1t, d, d^{\prime}) vecupying the anterior half of the borly-cavity and reaching the posterior end of the proboscis. The testes are constricted in such a way as to give the impression that there are actually form separate testicular masses; they measme $0 \cdot 2 \mathrm{~mm}$. Wy 0.1 mm . There are present in this

Fıri. 4. - Echinorlynclurs debenhami: Female, showing cell-masses (e) which eventually form egegs, free in the body-cavity. form. as in \mathscr{A}. rmmithi aticular lapels upon the rostellum protecting the hooks: but they are not nearly so well developed. The eges measure 0.065 mm . in length. Gome of the specimens were filled with cell-masses from which the egges ultimately derelop (text-fig. 4. ").

TREMATODA.

DLSTOMOTDEA.

Fam. HEMIURIDAE.
Hemiurns, Rurd. 1809.
13. Heminrus antesi, Leip. and Atli. (Pl. III. fig. 17.)

Ifemimme ortesi, Leiper and Atkinson, Pror. Zorol. Sor., 1914, p. 2.2t.
Length 2 mm . Abdomen present hut retracted wholly. Nkin sharply striated. Ventral sucker 0.3 tmm . in diameter, twice that of the oral sucker. Enormous muscular sominal resicle. Tolk-masses compact, lobulaterl. Eggs exceedingly numerous and small.

Inst.- Six specimens of this speries were collected fiom the fish Tirmatomus momecralui.
 tapering more at the anterion than at the posterior extremity. The greatest heath. 0.68 mm.. orems just behind the middle of the boly. at the level of the polk-glamb. There is a well-rlefined "alumen" (Pl. III, fig. 17. i), which is wholly retracted in the preserved state. The skin is sharply striated tramsersely, and these striae, althomgh hest seen on the rentral aspect. extemi to the dorsum. The rentral sucker (h) is near the oral sucker (1), and is about twice its size. measuring $0: 04 \mathrm{~mm}$. in cxtemal amb 0.18 mm . in internal diameter: Owing to contraction the month and the mal sucker are somewhat bent rentrally. The pharynx is globmbar, measuring 0.12 mm . longitudinally and 0.1 mm . tramsersely. The two main git-limnehes (! ! !) terminate hindly some way in front of the hase of the alolomen, whereas in other species they " usually extem for a rarying distance into this structure. The genital pore (ip) opens immediately behind the lip of the oral sucker. A very noticeable feature is the enomons seminal resicle ($w<$), which has a thick muscular conat. The yolk-glands ($\because /, I^{\prime}$) are compart and lobulated. and lie in the middle region of the body between the "ablomen" amb the rentral sucker. limmetiately in front of these is a large ovary (1,0) $0 \cdot 3 \mathrm{mmm}$. transersely and $0 \cdot 16$ inm. longitudinally, and anterion to this two testes $\left(t, t^{\prime}\right)$, $0 \cdot 2 \mathrm{~mm} . \times 0 \cdot 2 \mathrm{~mm}$. situated slightly diagomally to one another. The nterus (ut) is filled with eggs. $0.05 \mathrm{~mm} . \times 0.03 \mathrm{~mm}$. anm occupies most of the interstices between the posterior lolnle of the yolk-glands and the ventral sncker. 'The eggs are very small as compared with those in the succeeding Hemiuridite.
. 1 pemurnis. Looss.
14. If mm,

Length 1 mm . The oral sucker has a characteristic Heshy lip along its dorsal rim only. Gut-hramehes seatly dilated, and extending to the posterior end of the body. The golk-glands are peculiar : two half-moon shaped solid nasses lying in apmsition, immerlately in front of the wary.

Pamsite.-Most of the specimens appear comma-shaper, owing to the rentral bending of the anterior portion of the hody. The worms taper considerably in front, having their greatest width at the level of the yolk-glands, where the body becomes thick and almost rylindrical. The posterior end is very bluntly rommed. The excretory pore lies at the lase of a small dimple. There is no abdomen. nor does the skin appear to be striated, although on the rentral aspect irregular rugae are seen, apparently attributable to the bending of the specimen. The oral surker (P). 1I1, fig. 18,1) is about half the size of the rentral sucker ((1). The suckers vary considerably in shape and in the thickness of the muscular wall in different specimens. This is due to varying amounts of contraction. A chameteristic feature of the oral aperture is a Heshy lip extembing around the dorsal but ansent from the ventral rim.

The pharynx is small and glohmar. The main gut-branches (!) are greatly dilated. They extend to the posterior end of the body, where they are almost contiguous.

The yolk-glands (. $/, y^{\prime}$) consist of two half-moon-shaped solid masses lying in apposition, one anterior to the other. The ovary (or.) is smooth and oval, with the posterior aspect somewhat indented ly the rolk-gland. The testes (t, t^{\prime}) are compact rounded bodies lying slightly diagonally to one another, immediately in front of the orary. The eggs as seen within the uterus (ut) measure 0.04 mm . by 0.02 mm ., and are brownish in colour.

LEPOCREADIINAE.

Lejodora, Odhner, 1905.

Lepodora !furardi, Leiper and Atkinson, Pror: Zowl. Sur., 1914, p. 224.
Flat fleshy forms 3 mm . by 0.9 mm . Colour brownish, due to numerous yolk-glands. skin covered with delicate spines. Ventral sucker $0 \cdot 27 \mathrm{~mm}$, oral sucker 0.37 mm . Stout pyriform pharynx, $0 \cdot 2 \mathrm{~mm}$. Eugs few but large. Testes tandem. Gut-branches wide and extending to the posterior end of the borly.

I/nst.-Two specinens from the intestine of Tremutomas bermertiii.
Parosite.-Flat fleshy forms, 3 mm . $1, y 0.9 \mathrm{~mm}$., of a brownish colour, apparently the to the large and numerous yolk-glands, which extend from the level of the lifurcation of the gut to the posterior end of the body, and inwards also to unite across the louly: Deliate spines orcur on the skin. The ventral sucker (Pl. 111, fig. 20, b), $0.2-\mathrm{mm}$. in diameter, is slightly smaller than the oral sucker (1), and hes at the junction of the anterior amd middle thind of the lowly. The oral sucker, 0.37 mm . in diameter, opens subterminally: There is a prepharyux and a stontly developed prriform muscular pharyma, 0% mm.. succeeded ly a slender oesophagus. The two gut-hanches (.1) are of wide lumen amd wach to within 0.1 mm . of the excretory opening. The genital orifice ($\left.(1 / 1)^{\prime}\right)$ lies immediately in front of the ventan sucker and is musmally whions. The eimus is short and theshy. The ghobular testes $\left(t, t^{\prime}\right)$ lie tanden, and immediately in fromt of them, and slightly to one side of the middle line, is atge
smooth ovary ($\quad 0$) 0.22 mm . The eggs are few in number but of very considerable size, and have a hrown shell measuring 0.1 mm . by 0.03 mm . while still within the body.

ALLOCREADIINAE.
Puclocotyle, Dujardin, 1845.

16. Poulveotyle pennelli, Leip. and Atk. (Pl. III, fig. 19).

Porlocotyle pemulli, Leiper and Atkinson, Proc. Zool. Soc., 1914, p. 224.
Small forms tapering from the large pouting ventral sucker. The armed eirrus extends to the posterior level of the ventral sueker. Yolk-glands large and discrete. Testes smooth, tandem. Eggs large, with a Hat knob-like protrusion at one pole.

Host.-Ahout sis members of this species were obtained from Trematomus burmucchii.

Parasite.-The specimens vary in length from 24 mm . to 2.8 mm . The greatest transverse diameter of the body is in the region of the large fleshy ventral sucker, from which the body tapers markedly in hoth directions. The skin is smooth. The position of the ventral surker (Pl. III, fig. 19, h) varies; the posterior portion of the hody may elongate so that the sucker appears to be situated in the anterior third, in other cases the sucker is ahmost in the centre. The oral sucker (a) is a spherical muscular organ, 0.18 mm . by 0.15 mm ., succeeded immediately by a round pharynx of half its diameter. The gut-branches (g) do not extend quite to the hind end of the body, hat end on a level with the posterior limit of the testes. The genital pore ((f / \prime)) opens midway between the oral and ventral suckers, always considembly to the left of the middle line. The armed cirrus is slightly extended, and can be traced backwards as a sausage-shaped mass to a level just short of the posterior rim of the rentral sucker. The yolk-glands (. $/, y^{\prime}$) are discrete and extensive, ranging from the level of the genital pore to the posterior extremity. The testes $\left(t, t^{\prime}\right)$ are smooth oval lodies which vary markedly in size in different specimens. They lie one in front of the other in the intercaecal region behind the ventral sucker ; in front of them and slightly to the right is a large ovary ($\quad \mathrm{m}^{\prime}$), which may be pear-shaped or very slightly lobate. The eggs are large, 0.06 mm . ly 0.04 mm . Each has a distinct knob-like protrusion of the shell-substance at one pole.

Allorreadium, Loosss, 1900.
17. Allecreatlium forlori, Leip. and Atk. (Pl. III, tig. 21.)

Allocreadium fomleri, Leiper and Atkinson, Proc. Zowl. Soc., 1914, 1. 224.
Tmmature forms 0.74 mm . in length, 0.4 mm . broad. Skin smooth. Cylindrical excretory vesicle with fine black pigment-granules. Large ventral sucker 0.36 mm . Three small round bodies, $0 \cdot 1 \mathrm{~mm}$. in diameter, represent the genital glands.

P'orssite.-A few microseopir Trematondes of a deep red colour oremmed with
the other Trematorles from this fish. Nome were sexually mature. The largest specimen measures only $0.7+\mathrm{mm}$. in length. The greatest hreadth is 0.4 mm ., in the region of the ventral sucker (Fig. .21. h), whence the worm becomes bhently pointed both anteriorly and posteriorly. The skin is smootl. The ventral sucker ocenpies almost the entire width of the worm, measuring 0.36 mm . transversely by 0.26 mm . antero-posteriorly. Its miscular wall. as seen in optical section, is 0.1 mm. thick. The oral sucker (1) is about one-quarter the size of the ventral sucker. A muscular pharynx succeeds the oral sucker, and the ahmentary camal then immediately divides into two dilated main gut-hranches, which terminate blindly a short way behind the rentral sucker (I) . The testes lie one in front of the other, somewhat diagonally, and the ovary is fomm on one side of the testes. These three bodies are smooth and romul, measuring alont 0.1 mm . in diameter. The extent of the yolk-glands camot be determined. No edge were present in any of the specimens. Detaik of the cirrus and other structures conld not lie made out from the material available. The excretory vesicle (ex) is rylindrical and in some specimens is rentered conspicuous by the presence of fine black pigment-granules.

MONOSTOXIOIDEA.

Oymograster. Jägerskiökd, 1891.
18. Otmoffaster flicatus (Creplin). (Pl. IH1. fig. 16. Text-figs. 5 and 6.)

Monostomum plicatum, Creplin, 1829.
Husts.-The specimens of this Monostome were obtained from both Weddell's Seal (Leptomychotes weddelli) and the Crab-eating Seal (Lobodon carcinophapres). Some oecurred lonsely attached to the coats of the small intestine, others upon the contents of the intestine.

Prorasite.-In colour the worms were nearly always a light pink. like that of some corals ind shells. The colour always disappeared on fixation, when they became isabelline to brown. The parasite is in shape exactly tike the half of a hemp-seed split longitudinally.

The size of the specimens varies considerably-those obtained from the Crabeating Seal being generally the largest. The average length is $5-6 \mathrm{~mm}$., none being ahore 8 mm .; they are, therefore, slightly smaller on the whole than those from Buluenoptera reutonostratu and 13. musculus; * described by Jägerskiöld. The greatest transverse diameter varies from 4.5 mm . to $5 \cdot 5 \mathrm{~mm}$. The rentral aspect is hollowed and eupped, the dorsal convex from end to end and from side to side. The worm is narrower at the cephalic end than at the caudal end ; its greatest diameter being at the equatorial line. The rentral surface is raised into a succession of longitudinal rugae (Pl. 1h, fig. 16, i), areraging in number fourteen to fifteen, as asecrtained from cross-

[^4]section. The mumber varies at different levels. Pl. III, fig. 16, shows the mamer of ending in the front region. In no specimen was the eirrus protruded as in the original description given ly Creplin. The dorsal surface is smooth and without spines or hooks. The anterior extremity of the worm is surmounted by the oral sucker (text-fig. 5, ९). The wavy margin of the worm separates the oral sucker as by a short intervening lip (text-fig. $5, a^{\prime}$) from the corrugated ventral surface on which, at a deeper level, is the common genital pore (Pl. 1II, fig. 16, !/p). Just within this can be seen two important structures, a large ringed vaginal aperture (text-fig. 5, d) and a smaller ringed cirrus (text-fig. 5, c).

This parasite was previously obtained by Dr. Creplin from Balcenopter" neutomostrata, in 1829, in Arctic waters, aud again by L. A. Jägerskiöld from B. rcutorostrata and B. musculus, in 1891, on the northern shores of Norway. The seals are,

Fif. 5.-Ogmogaster plicatus (Creplin.) : Ventral view of the anterior end, showing: $a, a^{\prime}, a^{\prime \prime}$, the ventral folds of the margin of the body; b, the genital sinms; c, the aperture of the male, and d, that of the female genital duct ; e, the oral sucker.
therefore, new hosts, and are both eonfined to the Antaretic region. Whales, believed to be of the same species, occur, however, in both Aretic and Antaretic seas, and are known to have similar parasites in each region.

Internal Anutomy.

Digestive Troct.-At the cephalic end is the oral sucker, measuring 0.5 mm ., with an internal aperture measuring 0.25 mm . The sucker opens immediately into the oesophagus, and this soon divides into the two gut-hranches, which rum a tortuous course down either side of the worm to end at a short distance from the caudal extremity.

Only a very few points can be added to the excellent and exhaustive description given hy L. A. Jagerskiöld.

Genital Organs.--The genital opening is in the middle line on the ventral
surface, behiml the oral sucker, from which it is separated by a lip. It is at a deeper level than the sucker. It consists of a thick ring sumounding the cirrus-opening and the wider raginal opening (text-fig. 5. h). The yolk-glands (Pl. 1[1, fig. 16, , 1) vary greatly in momber, from ten to cighteen ocemring on either side. The variation in the size and shape of the orary (lig. $16,(m)$ is also marked, ats will be seen from text-figure $6(a, b, r, f, e, f, g)$. The shell-glamd is a thin structure immediately in front of the wary, and is composed of large cells with a small muleus.

The posterior euding of the rugate seems to be in a small punctate opening.
The ormurence of this parasite may serve to throw some light on the much disemsed question of the sperifie identity of whales fomen in widely separated localities.

Fif. 6.-Ogmognstor phicatus: The ovary, outlined from seven specimens, to show variation in contonr.
The oceurrence of Crassienuld crussicauta in a Northern Rorqual, as deseribed by Creplin, and in a specimen of a Thumphack (Mequptora) caught off New Zealand, also has some bearing upon this matter.

CESTODA.

Order PSEUDOPHYLLIDEA.
Fam. BOTHRIOCEPIIALIDAE.
Dituthriocrphulus, Liihe, 1899.
19. Dilnthriompleatus moditix, Remuie and Reid, 1912.

This minute Cestorle oceured in large quantities in the stomach and in the upper part of the small intestine of all the specimens of Weddell's Seal examined.

The average length, including the head, is 1.6 mm . There is no neck, and segmentation begins immediately lehind the head. The segments increase in hreadth abont the middle, and diminish, tending to become more elongate, towards the tail-end.

The segments number from five to six: the broalest measuring 0.58 mm. transsersely, and 0.22 mm . from hefore backwards. None show genital glands.

The genital pores are placed in the middle line, nearer the head-end of each segment.

The head is peculiar. It is relatively large, measuring 0.58 mm . in length, and in its broadest part $0: 34 \mathrm{~mm}$. in width. On either side there is a large sncker, guarded by peculiar lips, and having a small opening. The sucker is $0: 39 \mathrm{~mm}$. long, and 0.18 mm . across in its hroadest part.

The worms are so immature that we are unable to give a sperific diagnosis. We place these forms, with some hesitation, under II. molilis, Renmie and Reid.
20. Dilnothriocephalus coatwi, Remnie and Reid, 1912. (Pl. V, figs. 37, 38.)

Most.-These small Cestodes were collected from the small intestine of Weddell's Seal. They come from a slightly lower level than the preceding form. The infection was in most cases an exceedingly heavy one, the whole of the inner surface of the intestine being a felted mass of these minute worms. The intestine itself did not show any macrossopic changes resulting from their presence.

Ertermal Clutacters.-The worms are from 1 cm . to 1.5 cm . long, varying in colour from dirty grey to brown. The head is narrow and is bluntly pointed at its apex. There is only a very short neck, and the segments then become clearly defined at once. These, with the exception of the first two, heeome elongated on passing backwards.

Hearl.-The dorsal and ventral surfaces of the blunt, elongated head are grooved by shallow, gaping slits or suckers, 0.75 mm . long ; these suekers do not extend on to the top of the head. The head measures 1.1 mm . in length and 0.36 mm . across in its broarlest part, whieh is, roughly, just below the upper third.

Sefments.-The fonrteenth segment (Pl. V. fig. 38) is narrow above, widens in front of the middle, and tapers again to the hind end. The segments do not overlap each other in any way. In a stained specimen there is an outer, clear and unstained portion at the periphery of the whole segment. The genital pores (c) are in the middle line, much nearer the cephalic than the caudal end of the segment. The cloacal opening measures 0.1 mm . in its greatest length, and 0.06 mm . in its greatest breadth. The cirrus was not extruded in any segment, and therefore was not measured. The uterine opening (d) is nearly circular, its diameter measuring 0.05 mm , in any direction. It is placed immediately behind the cirrus-opening. The ovary, uterus (e) and female organs are grouped for a short space behind this. The limits of the uterus are eircumscribed and do not extend far down the segment. This organ is simple and not branched, and usually contains from eight to ten eggs, which first appear in the sixth to the eighth segments, and measure 0.06 mm . in length. The testes number ahout ninety. They are very distinct and are of a regularly rounded shape. They are not armaged in any characteristic manner, but are scattered generally throughout the segments, being fewest at the anterior border.

The segment desmilued meatares $1 \cdot 0+\mathrm{mm}$ ．fiom before backwards， 0.44 mmn．in its Inoalest side to side measurement，and $0: 34$ mm．in width at the amdal end．The surfaces of the segments are not fobled．Two excretory amals run down either side of the segment ；the imner pair run down patctically alongside the female organs． while the outer pair are separated from the others hy a considerahle interval．The testes are distributed between and outside these camals．

```
21．Dituthrienephatuw lashlengi．Leip．and Atk．（Pl．V．figs．40，41．）
```


B to 4 cm ．in length．Vomg segments qualrate．Mature segments 3 to 4 times as long as broad． Head $1 \cdot \underline{2}$ min．long and 0.7 mm ．lorond．suckers situated laterally，alonost circular，and not extending fur down the head．Egers first ：1prar at the 14 th segment，and measure $0 \cdot 06 \mathrm{~mm}$ ．in diancter．The testes extend inwards in each segment in single series of three．

Hwst．－Wendell＇s seal（ Coptomychotes meddelli）．This Cestode，like the previous one，oceurs in the upper part of the small intestine in large mmbers．

Extermel Chameters．－The colomr varies；the head and some part of the anterior end are white，but where the segments begin to elongate the colour hecomes pearly grev．This Cestode is latger than the preceding and measures is cm．to 4 cm ． in length．The surfice is folded，hut this is probally due to contraction．The anterior segments are quadrate and shortened antero－posteriorly，broader from side to side than from before bickwards．The hinder segments are enormonsly elongated and their length is three to form times as great as their breatth．The head is some－ what conical，ending in a point，and is less markedly clubbed than in the preceding species．

Itorl（Pl．V．fig．40）．－The head is relatively small，measuring $1 \cdot 0 \mathrm{~mm}$ ．in its greatest length，while its greatest headth is 0.77 mm ．The central portion，between the two suckers，terminates as a mipple－shaped projection．No rostellum and no hooks are present．The sulkers are placed on either side，not on the domsal and ventral surfaces． They are ahoss circular and do not run down the head for any considerable distance． They meatme $0 \cdot \underline{2}+\mathrm{mm}$ ．antero－posteriorly and 0.17 mm ．from side to side．They are depressions．and lave not the fold found in the following species（text－fig．11）． The hearl is continuous with the nerk，which is short，the worm rapidly becoming segmented．

Sroments（Fig．41）．－la the strobila examined the eggs first appear at the fomenth segment．The anterior of the segments which are mature are hoader from side to side than firm before hackwards．The posterior are greatly elongrated． The former measure 1.4 mm ．from side to side and 0.6 mm ．from before batckards． The latter measure 1.8 mm ．from hefore backwards， 0.92 mm ．from side to side at the cephalie emd，and 0.58 mm ．at the candal end．

The genital pore is in the middle linc and is a simple opening ；it is placed nearer the eephatie than the ratulah lumber of the segment．It whsists of the eloaral epreming
(Fig. $41,{ }^{\prime}$), which is 0.13 mm . in its longest diameter, and 0.07 mm . in its broadest. The cirrus was not extruded in any segment, and therefore could not be measured.

The small uterine opening (d) is behind and slightly to one side of the cloacal opening. Its longest diameter is 0.05 mm . and its greatest breadth 0.03 mm . Behind the genital opening the ovarian and other female organs are always groupel very regularly and in a very characteristic manner. The uterus is small and simple, and only contains a few eggs, which measure 0.06 mm .

The testes are very mumerous and are grouped in a definite manner, which is characteristic. They tend to be roughly in paired columns, and there is always, rumning toward the caudal end of the female organs, a definite row of three or more testes marked off by their direction from the remainder.

The excretory canals are continuous throughout the segments, and a single one runs down on either side, just outside the junction of the middle and outer thirds. The testes are distributed on their outer side as plentifully as on their inner side. The musculature is not well marked.
22. Dihothriocephulus weheri, Leip. and Atk. (Text-fig. 7.)

Dibothriocephelus archeri, Leiper and Atkinson, Proc. Zool. Soc., 1914, p. 224.
6 to $1 \cdot \mathrm{~cm}$. in length. Large square head, 2.04 mm . broad. Lips of the suckers folded inwards. The eggs first appear in the 57 th segment and measure 0.07 mm . Testes scattered diffinsely.

Host.-Weddell's Seal (Leptomychutes weddelli); collected in fair quantities from the upper part of the small intestine.

Eatimal Churacters.-The colour of the worms is a

Fice. 7. - Dibothriocerphalus archeri: Optical transverse section of the head, showing the inward folding of the walls of the suckers. dirty white, and in length they measure from 6 cm . to 12 cm . They are flattened dorso-ventrally, and attain their greatest breadth as the candal end of the worm is reached. The anterior segments are more quadrilateral than the posterior, which tend to become broadened from side to side and shortened from hefore backwards. The genital pores are in the median line, and at about the middle of the segment.

Hecul.-The head is relatively large, and is somewhat square, its greatest brealth (2.04 mm .) being in the anterior part. Its length is 2 mm .

The central portion, between the two suckers, terminates in a slight cone suggesting a rostellum. There is no true rostellum, and no hooks are present. The suckers rum down the head for $1: 25 \mathrm{~mm}$. of its length. The central, interior, portion of the head seems to he a rod of more solid structure hetween the two suckers. On looking at the head from the front, the two suckers are seen to be cup-shaped and folded (text-lig. 7) ; the outer lapel of the shekers rumning out from the head for some distance. The suckers, at their anterior end, measure 1.02 mm . from side to side,
and 0.86 mm . dorsu-ventrally. They are placed on either side of the worm. and not on its rlorsal and ventral suffaces. The apes of the head meatures 1.56 mm . from side to side and $0 \cdot 92$ mm. from above downwards.
sammonts.-That desmibed is the ninetr-seventh segment. The segments are quallate. their hinder and latemp portions slightly owerhanging the following segment by a short nipple-shaped projertion on either side. They are bromler from side to side than from hefore backwinds, with the exception of the first few segments. There is a longe nedk. In astained specinen the outer portion of earh segment stains diffusely with hamatoxylin. Deasurements: from side to side, 1.5 mm . from before backwards. 1 min.

The genital pore is surroumled by a slight mound, which inclodes the aperture for the cirvus and the vaginal opening. The momel usually has an elongation towards the raginal pore. The opening is placed about mid-way in the segment. The cirrus is extemed in nearly all the segments that are mature. It ends in a chbhed, roughened pontion having tive lohes, hat no hooks, and measures $0 \cdot 12 \mathrm{~mm}$. in length. The opening is ahmost circular and measures 0.02 mm . The vaginal opening is very small, relatively, measuring $0.0+\mathrm{mm}$. in its greatest lnealth and 0.06 mm . in its greatest length. From it a well-maked vagina leads slantingly hackwarls to the nterus. The female organs are collected just behind the opening, forming a dark staming mass. The uterus is small and is contined to this space. The eggs legin to appear at the fifty-serenth segment, and measure 0.07 mm . The testes are numerous and are seattered throughout the tissue of the segment; there are few on the outer side of the exretory canals. There is no definite armangent as in the preceding Cestorle. The single pair of excretory canals are wide. They lie just outside the junction of the outer and middle thirds of the segment. The rentral surface of the segment seems to bear definite transverse rugae. These may have been caused by contraction, hut are more probably a permanent feature. The longitudinal muscular fibres are well marked. lout the rircular are less distinct. The shape of the genital opening is very distinetive; as is the shape of the extremity of the rimus.

2:3. Ifiphyfluhthrimen perfolintum, Railliet and Hemry, 1912. (Text-fig. 8.)
Ilost.-Weddell's seal (Leptomy/hotes medrdelli); small intestine. The parasite ocens: in a well-marked tuft at the hegiming of the small intestine. The majority of the individuals have their heals bencath the first two on three valvulae comiventes. The lieport of the French Antaretic Expedition under Dr. Chament. 1909, deseribes the same amangement of the woms at the ileocateal valve.
 there is a certain amonnt of variation in size. The heal and some pontion of the
sigments ame of a parly white ondour, varing to yellowish white at the himber emd. The segments, except those near the neck, show marked imbrication, and on the rentral surface, at the himder horder of earch, there is a marked V -shaped indentation.

Mend.-The head (text-fig. 8) is club-shaped, hoadening near its apex and then narrowing. It measures $1 \cdot 35 \mathrm{~mm}$. transversely, and 1 mm . in a dorso-ventral direction. The suckers are simple slit-like depressions which extend on to the summit of the head, where they are separated by a fairly broad ridge. One lies on the dorsal, the other on the ventral surface of the head. The lips of the suckers are narrow, with the result that there is no folding.

The lips approximate as they proceed down the head. The suckers have an extreme hrealth of 0.58 mm . in front, and are 0.05 mm . broad at the thin end. The length from the front of the head to the end of the sucker is 1 mm . There is no rostellum, and there are no hooks. The head tapers to join the neek, which extends to about 0.7 cm ., after which the first segments appear.

Fig. 8. - Diphyllobothrium perfolictum, Railliet and Henry : The head, showing the shallow lips of the sucker.

Segments.-The segments are relatively wide, and vary in breadth from 3 mm . near the head-end to 5 mm . near the tail. They are exceedingly short, and markedly imbricated.

The genital pores are in the middle line and are placed on a slight projection. The surfaee of the segment is folded around them to make a depression. The cirrus-sac is large, the cirrus itself simple and unarmed, and measuring 0.3 mm . in length and 0.1 mm . in breadth; it is anterior to the vagina, which is a narrow straight tule, 0.35 mm . long and $0.0 \pm \mathrm{mm}$. broad.

The uterus is convoluted and occupies the central and lateral portions of the segment. The testes are numerous and occupy the imbricated portion of the segment as well as the central portion ; some of them tend to le aggregated into small groups. Later the segments berome full of eggs at the expense of the other contents.
Well-marked bands of longitudinal muscular fibres are continued down the ventral and dorsal aspects of the central portions of the segments. The circular fibres are not so well marked. A single wide excretory camal runs down either side of the segment, near its outer part.

> -4. Diphlyllobothrium rufum, Leip. and Atk.
> Diplullobothrium rufum, Leiper and Atkinson, Proc. Zool. Noc., 1914, p. 224.

3 to 6 cm . in length. The head, which is characteristically pigmented brick-red around the base of the suckers, measures $1.64 \times 1.44 \mathrm{~mm}$. The suckers are dorsal and ventral. The segments overlap markedly, as in D. profolitum. The eggs measure 0.0 .5 mm .

The worms are confined as a definite tuft to the first few valvalate commentes as
in 11．perfultintum．＇Ther were fouml by Mr．W．（r．Lillie，in as seal killed near C＇onhman 1skand．Lat． $74^{\circ} \mathrm{S}$ ．approximately，and a similar set was seen at flut loint in Lat． $7 \sigma^{\circ} 45^{\circ} \mathrm{S}$ 。
 length being abont 5 cm ．The strobila is shaped like an Indian chab，being narow in front，hoadest behind the middle，and tapering slightly to the hinder end．The colome is a yellowish white．The head，aromm the sumers，contans a very characteristic scarlet pigment．

Hond．The head measmes 1 （i4 mm，from before bakwards，and 1.44 mm ．from side to side in its lnoadest part．Anteriorly there are two deep sumers lying rentrally and dorsally：The surker measures 0.52 mm ．internally． 1 mm ．externally，and 1.45 mm ．from lefore backwards．Its hinder part is surrombled by a free edge．A lnight swallet pigment－hamd on the onter side of the fold smrommang the surker is very haracteristic．It mbly monches partially on the imer side and measures 0.11 mam．at its hoarlest part．
sefments．－The segments immediately surceed the head without the interposition of ：neck．They vary in size，measuring 2 mm．transersely at the head－end， 5 mm ． at the hoadest portion，and 3 mm ．at the tail－end．The segment described is from nean the head－end of the worm．The dorso－ventral measurement is 2.14 mm ．The seghent consists of a central portion，measuring 0.32 mm ．from lefore barkwards． and two lateral portions．There is marked imblucation of the segments，ats in In．perfolinfom．The genital openings are central and are placed partly on the anterion surfate of the overlapping edge．The cirrus is faily large，measuring 0.41 mm ．in length and 0.11 mm ．in lnealth；it is anterion to the vagina，which is a slender tube measuring 0.24 mm ．in length and 0.02 mm ．in width．The testes are numerous and extend out into the lateral portions of the segment．The uterns is also extensive，the eggs，which measure 0.025 mm ．，leing present in the later segments to near the periphery．Two winding excretory canals rum down either side of the segment close to the junction of the central and lateral portions．The musculature is not so well marked as in II．perfolitum．The longitudinal hands are small and are not contimons wrer a large number of segments．The fibres are small and insignificant．The eirenlan fibres are leetter marked．

A few larvac，apparently of Bothriocephatid＇Jipeworms，were fomble ancysted
 It is impossible to associate them with any partioular speries．lont there is every probalsility that they are the yang stages of one or other of the speries of Diluthero－

Orber TETRAPHYLLIDEA.
 Fam. PHILLOBOTIIRILDAE.
 Anthumethrium, Van Beneden, 1850.

26. Anthohotlecium "yytti. Leip. and Atk.

Authobothrium rymiti, Leiper and Atkinson, Proc. Zool. Soc., 1914, 1. 225.
Scolices small, unsegmented. Four large auricular appendages, each occupied by two tandem suckers A brightly pigmented band crosses the neck in the living state.

Attached to the wall of the rectum of the fish Trematomus bermucheii were a large number of small C'estode scolices characterised in the living state by the presence of a hright red ring of pigmentation in the neck. There are four auricular dises, each carrying a pair of round suckers. The rostellum also is oceupied by a muscular sucker.

These parasites bear some resemblance to the forms figured by Van Beneden in 1861 as typical of his genus Anthobothrimm, and they are accordingly referred to that genns. The scolex measures 1.18 mm . in length by 0.5 .3 mm . in breadtl. There is uo indiation of segmentation. The auricles measure 0.3 mm . hy 0.18 mm . The suckers on each side lie one in front of the other ; the anterior measumg 0.1 mm . in diameter, the posterior being slightly larger, viz., 0.12 mm .
(riantr, Leip. and Atk.
Oriamt, Leiper and Atkinson, Proc. Zool. Soc., 1914, p. 226.
A Tetraphyllid with large quadrate discoidal head carrying four round suckers. Rostellum absent.
27. Oriama wilsomi, Leip. and Atk. (Pl. V, figs. 32, 33, 34.)

Oriant wilsmi, Leiper and Atkinson, Proc. Zool. Soc., 1914, p. 225.
Fegments all immature. Strobila 13 cm . long. Head discoidal, 3 mm. in diameter, quadrato in outline, 4 round suckers present terminally. Neck very sleuder. Testes arranged in two definite groups of 7 - 8 ant 17-18. Near to Diplobothrium.

Host.-These Cestorles were obtained by Mr. D. G. Lillie from the intestine of a Rorrual (Bulaenoptem borealis, Lesson), caught off the Bay of Islands, New Zealand (Stat. 149).

Eirternal Appentance.-The worms vary very greatly in size and length and in the number and shape of their segments. None rontain eggs. The length of the unsegmenter part, or nerk, varies also very greatly, sometimes leing as much as 3 cm . The description is of an average specimen and will hold for the majority obtained.

Menel. -The length of the strobila is 13 cm . to 14 cm . The head is discoidal, anteriorly thatened and square-sided, varying from $2 \cdot 8 \mathrm{~mm}$. to $3 \cdot 2 \mathrm{~mm}$. in diameter. The nerk is exceedingly narow and is attached to the hem moneh as is the stem to the howl of a champagne-glass. The four suckers, which almost completely occupy the anterior surface of the liead, are nearly circular. They have a dimeter, outside, of 1.35 mm . and, inside, of 0.76 mm . They are fairly deep and are embedded for some distaner in the substane of the head. There is no rostelhm and there are no hooks.

The margins both of the head and of the orifies of the surkens are rounded (Pl . V, figs. $\therefore 3,3: 3)$.

Serfments. - The segments tigured (Fig. 34) are about the 221st and 222nd. The shope of the hinder segments usmally varies considerably, hut in genemal conformation the remaning segments are the same. A trpical segment measures $1 \cdot 35 \mathrm{~mm}$. transverwely, hat is only 0.47 mm . long. The genital pore opens marginally near the anterior horder of the segment. There is a slender, elongate, marmed and sometimes priform dirms, mosaring $0 \cdot 14$ mm. The vas deferens makes its way as a straght moniled tulne to the centre of the segment, where it ends in a slight dilatation. ('ambal. lat in close proximity to this, is a marrower tube, the vagina, which runs to the middle of the segment, ending in a small punctate mass which possibly represents the shell-gland. The testes are rombled and are armanged very definitely in two sets, divided by the vas deferens amd vagime. The set on the side of the pore usually numbers seven to eight, and that on the opposite side 17 or 18 . The total number of testes is $\ddot{2}+$ to 25 , of which the majority (fiom 17 to 18) occupy that side of the segment distant from the cirms. They are situated internally to the excretory camals. The semments do not werlap in any way, and their latemb borders are rounded. A fatr number of chalk-hodies are present. Even in the most caudal segments there are no eggs, and the uterus is not fully developed.

The infection of the Rorgual was evidently a recent and a very heavy one.
This species has been made the type of a new genus Urimun near to Diphotherium, a preocrupied gemus, in the family Phyllohothriidae.

> ORDEL (ICLOPHILLIDEA.
> FAM. TLTRABOTHRIDDAE.
> Temmbthrius, Rud., 1819.
28. Tetralutherius: heteromlitus, Dies.

Ihnst.- (ireat Grey Shearwater (Pu!finus. cinereus) ; small intestine.
Eirtermal Chametors-These Cestodes are exceedingly long and slender and are from 10 cm. to 18 cm . long. The segments are faily uniform in shape, but towards the candal end they become broader from side to side and decrease comparatively in depth. They are lnomler in front than behind and each overlaps the succeeding segment for a short portion. Their hinder ends are carried out as sharp points beyond the margins of the snceeding segments. The worms were in a tangled mass in the intestine. and were thas exceedingly difficolt to separate.

Itend. The head is shaped like a truncated cone bluntly rounded off. From the sides hang the form surkers with well-developed anricular appendages. The lips of the suckers are hroad amd folded inwards. The cavities widen posterionty. The suckers do not appear on the anterior surface of the head.

in length. The apex is 0.24 mm . across, while the lower and broadest part is 0.45 mm . There is no rostellum and there are no hooks. The neck is hroalest at its junction with the head and gradually narrows to the first segment.

Segments.-The following information regarling the segments is derived from stamed specimens, from near the head-end and near the tail-end of the worms.

Maturity is late. The gencral size and shape of the segments, which are broader than long, does not vary mueh. Antero-posteriorly they measure 0.32 mm , the cephalad horder heing 0.5 mm . in width and the caudad border 0.62 mm . The staining of the segments is diffuse. The genital openings are on the side and are unilateral: they vary considembly in formation in varions parts of the worm. Thus in immature portions there is $n o$ projecting ring, while in those which are more mature there is a well-marked ring ontside the border of the segment, while at a deeper level there is a second ring containing the openings of the cirus and ragina. The cirus is simple, rounded and unarmed. The straight vas deferens which runs from it ends in a slight dilatation. The ragina is below the dirus-opening. The small and rounded testes are arranged in a circular manner around the dilated end of the vas deferens, and this is a characteristic feature of the species; they number from twenty-two to twentyfour. In the more mature segments they are displaced to one side by the uterus. In front of them, and some distance from the anterior border, are the ovary and yolkgland. These are of 10 great size, but can easily be differentiated by their staining. A single excretory canal runs down each side, externally to the testes. The canal is narrow and is internal to the genital atrium.
29. Tetraluthrius rylindracons (Rud.). 1819. (Pl. IV, fig. 3i.)

Host--McCormick's Skua (Meyulestris murormirki); intestine. These birds feed largely on blubher, and on the excrement of seals. They also feed on fish. Although a large number of binds were examined only a very few Cestodes were olitained.

Lertermel Apmermomer.-This is a fairly slender worm. The longest specimen is $8 \mathrm{~cm} . \operatorname{long}$, and the segments are at first uniform in size, but gradually lengthen towards the caudal end. The rolour is a dirty bown. Unfortunately, all the specimens had lost the scolex.

Inespiptiom of Serment.-The segments drawn (Pl. IV, fig. 31) are from fairly near the anterior end of the fragment. They are quatrate, and measure 0.64 mm . from side to side, and 0.45 mm . longitudinally. Eath segment is slightly narower at the eephalice end than at the caudal border. In a stamed specimen the outer portions remain unstained.

In the middle, oreupying the more eephatie portion of the segment, is a deeplystaining mass romposed of the testes (Fig . $31, t$). These are mumerous-fifteen to thirty-and are generally aranged in a horse-shoe shape, with the concavity catad. The owary and yolk-gland (!!!) are in front of these, fitirly large, and immediately lechimd the cephatic bomer.

 whole lorder of the segment. The outer measurement of the atrime is 0% mm.. while
 warls in neaty every segment. It measmes 0.05 mm ., and its surface is ronghened ly ridges. 'The homb vagina crosses the segment. and, after turning once upon itself. runs towimes the centre. Two exretory amals rum down either side, immediately internally to the genital atrimm, thromghout the segments. The onter camal is small, the inner ne:rly twice as wide.
:30. Titmonthrius furestleyi, Leip. and Atk. (Pl. IV, fig. 28.)
Totmbuthrius priestleyi, Leiper and Atkinson, Ponc. Zovel. Sire., 1914, p. 2e.5.
Strobila 10 cm . long, excessively slender, with large tulip-like head. Testes 17-20. Near to T'. pelecteni, Fuhrmam.

Host.-A Frigate hirl (formutu aruila or F. ariel), shot at South Trinidad (Ntat. :36) ; intestine.
 the greater part are exeedingly slembler. The segments become eularged only towards the candal eml. They are pealy white in the anterior thin part, changing to yellowishwhite pusterionly. The woms were removed from the intestine in a tangled mass, and owing to their long slember neeks were difticult to separate from one another.

Hend. - The head is comparatively large, and is armed with four surkers placed on the sides and not showing on the top of the heal. The suckers are namow in front amd expand to their greatest width behind. The head is 0.55 mm . long, and attains 0.44 mm . in breadth at its hroadest part. Each sucker is 0.42 mm . long and $0 \because 2 \mathrm{mmm}$. wile at its loromlest part. The head-region is well-rlefiner. There is a slight ronstriction lehimd the suckers, and this is suceeded by a fainly long neck, before the segments make their appearance.

Sraments. - The segments figured (Pl. IV, fig. 28) are from about the middle of the worm. Iaturity is late. The segments stain diffusely with haematoxylin. They are lonaller than long, measuring 0.6 mm . 1 y $0 \because 3 \mathrm{~mm}$. Their shape does not vary mand h, hut they berome thirker and homer toward the posterior end. The genital atria are unilateral, large amd roumderl. measuring $0.1+\mathrm{mm}$. They open laterally. The eirrus is roumed and unarmet, measuring 0.1 mmm . in length and 0.06 mm , in its greatest hrealth. A short vagina lies behime it. The testes are relatively large and form abont seventeen to twenty groups. They are confined to the central part of the segment. In some of them the lonk is inereased markedly, and stained muldei are fomm only romm the periphery: The polk-glaml is plated in front of them. in the midelle of the eephalie lemeter. It is large, circular, and stains deeply, measuring $000+\mathrm{mm}$. aross. I single experory camal runs down either side, externally to the testes. The camal is hroal amb rims internally to the genital atrimm. A most

Characteristic feature in a staned specimen of this worm is a series of ahout fifteen strong bends of musular fibres which run down the ventral aspect of the worm. They are continuous from segment to segment.

Apart from the momber of the testes, this form appears to be similar to that recorded by Fuhrman in 1908 under the name Tetrathothius pelerani (Rud., 1819), a hinomial abbreviation for Themin pelecomi mqulae Rud. The names Turnia heterosomate and T. sulae fuscte had previously been given by Baird (as nominu muld) to specimens in the British Mnsemm, which hoth Monticelli and Fuhrmann, on re-examination, have pronomnced to be identical with T. pelecomi (Rud.)*
31. Tistrubuthrius nelsomi, Leip. and Atk. (Pl. IV, fig. 25.)

Tetraboflhius nelsmi, Leiper and Atkinson, Proc. Zool. Soce, 1914, p. 226.
Fragments only. Head absent. Testes 6 to 8 , aggregated at the side of the segment remote from the cirrus.

Host. - Sooty Alhatros or Hutton's Alhatros (Phemetsim pulpelmuth) ; intestine.
Extermal A/prectrate - Only fragments of the strobila were obtained. The anterior portions are white, the more mature segments grey and ahost transparent.

Sefments. The figure represents the posterior end of a fragment, where the segments measure 2 mm . transversely and 0.4 mm . in length. The hinder lateral borders of each segment overlap the snceeding segment considerably. The staining is diffuse. The genital cloaca (Pl. I^{V}, fig. $2 \boxed{2}, 4$) is large and thick-walled; it is always on the same side of the strolila and opens directly on the side. The cirrus (r) measures $0.32 \mathrm{~mm} . \times 0.20 \mathrm{~mm}$. From it there proceds across the segment a very slightly coiled vas deferens ((b). The vagina ((c) rums an erratic comrse just behind the vas deferens to almost the middle of the segment, where it turns hackwards to end in a large dilatation which varies considerably in the different segments. The eontents give a chromatin staining and appear to be spermatozoa. Immediately in front of this is a large ovarian mass measuring 0.15 mm . in its greatest diameter. The testes (t). which momber from six to eight, are large, measuring 0.09 mm ., and they are aggregated together in a small area on the side of the segment remote from the genital opening. Two narow excretory canals run down either side: they are external to the testes and internal to the genital openings. The muscmature is poorly marked.
32. Totrechothrius remeni, Leip. and Atk. (Pl. [V. figs. 26. 27.)

Tetrobufllurius rreemi, Leiper and Atkinson, Proc. Zool. Soc., 1914, p. 225.
Strohila 4.5 em . Head 0.84 mm . hroad, carrying four suckers but no rostellum. Testes numerous. Yolk-gland large. Cirrus 0.06 mm .

Host.-This Cestomle was obtained from the small intestine of (Extrelata trinitatis and (E. armiugomiana. These two Petrels in all probability are only one species, the

[^5]variation in coloms heing due to age. The hirds were taken at South Trinidad (Stat. 36).

Erternal Churuters.-The worm is of a dirty white colour. The head is followed hy a short neck. The strohila measures from 4.5 cm . to 5 cm . Each segment slightly overlaps its suceesson: Ahout the middle of the body the segments are almost as long as they are homl. hut towards the posterior end the breadth considerably exceats the length.

Hecul.-The heal (Pl. IV, fig. 26) caries four suckers, which occupy ear-shaped projections on its sides. They are not visible from the top, as in the two other speries ohtained from this hirl. The head measures $0.8+\mathrm{mm}$. from side to side, and 0.92 mm . antero-posterionly. Each sucker is longer than it is hroal and measures 0.94 mm . longitudinally and 0.62 mm , transversely. There is no rostellum and there are no hooks.

Sergments.-The segments described (Pl. IV, fig. 27) are from about the middle of the worm. Each is slightly welge-shaped, being narrower in front than behind, the hinder margin overlapping considerably. They measure 0.62 mm . antero-posteriorly, 0.6 mm . from side to side in front, and 0.82 mm . from side to side behind.

The genital pores are marginal and unilateral. They measure 0.14 mm . in length and are somewhat rounded. The cirrus is well developed, marmed, and measures 0.06 mm . in length. The outer portion of each segment in a stained specimen remains clear and unstained. The testes and the female organs are confined to the space internal to this. The testes are numerous, numbering $35-50$ or more, and are of medium size. The yolk-gland is relatively large and is placed in front of the testes, at the anterior border of each segment. The uterus is a simple sac containing the eggs. Eggs are found only in the latter segments. Two well-marked excretory canals run down either side, externally to the testes and just internally to the cirrns-opening.
33. Tetrelhothrius cetherinue, Leip. and Atk. (Pl. IV, figs. 29, 30. Text-fig. 9.) Tetrubothrius cutherimute, Leiper and Atkiuson, Proc. Zool. Soc., 1914, p. 225.
stouter than the preceding speeies. Head comparatively small. Suckers mostly on the top of the head. The segments overlap their suecessurs by one-third. Testes 30 to 45 , bunched in the middle of the segment. (ienital organs very characteristic. Cloaca divided into outer and imer portions. There is a large pyritorm seminal vesicle internally to the cirrus.

Most.-Trimilaul Petrel (Estrolutatrinitutis) ; small intestine.
firtermel Clumberm.-The eotour is white. The worm is stonter and thicker than the preceling (estode. The segments are brod from side to side, and short from hefore hackards; and this shape is uniform throughout. There is a comparatively small heal, no neek being present, and the segments immediately follow it. These gradnally increase in breadth until the worm ends caudally. The genital pores are unilateral and open nearer the ventral than the dorsal ispect.

Heed.-The head (Pl. IV, fig. :29) is comparatively small, and is without hooks or rostellum. There are fonr suckers, which are placed mostly on the top of the head,
and do not extend for any great distance down the sides. They are not deep and have no overhanging lorder.

The head measures 0.9 mm , in breadth and 0.9 mm . in an antero-posterior direction. The outside measurement of a sucker in its loroadest part is 0.42 mm ., and in its longest axis 0.62 mm . The greatest inside measurements are 0.2 mm , hy 0.34 mm . There is no neck, the head being immediately followed by the segments.

Serments.-The segments described (Fig. 30) are those from the head-end of the worm, and later, segments cut in serial sections from nearer the caudal end. Each segment measures 1.14 mm . from side to side amd 0.42 mm . antero-posteriorly. The hinder border of the preceding segment overlaps it for over a third of its ventral surface, and it in turn overlaps the following segment. The musculature is exceedingly well developed. There is a clear outer space in astained specimen and a more deeply staining interior containing the generative organs. The testes are numerous, 30 to 45 , and are found internally to the excretory canals. They

Fig. 9.-Tetrabothrius cutherinae: the terminal organs of the genital apparatus. $e c$, muscular external portion of clonea; ir, internal portion ; s, cirrus; $s b$, eirrus-sac. are bunched more closely together in the middle of the segment and are there difticult to count. A small ovary and yolk-gland are placed in front of them near the anterior border of the segment. The genital openings are peculiar. They are unilateral and open on the side of the segment, but more on the ventral than on the dorsal aspect. There is a small punctate opening or depression showing signs of striation (text-fig. 9, er). lnternally to this there is a wellmarked ring (ic) containing the male and female openings, and behind that a very large cirrus (s) and cirrus-sac (sh). The outer opening has an internal measurement of 0.02 mm . and an external diameter of 0.04 mm . The inner ring has an internal aperture of 0.04 mm . and an external opening of 0.06 mm . The cirrus measures 0.16 mm ., and is marmed.

In sections of more mature segments the whole of the interior is taken up by a mass of eggs in a sac-like uterus, which is simple and mudivided. Well-marked broad hands of muscular fibres are present. Two excretory canals run down either side of the segments. The outer and smaller lies very near the eige. The imner, a far wider canal, rums down at a short distance from it internally.
34. Tetrolothrius redresmi, Leip. and Atk. ('Text-fig. 10).

Tectrabothrius aichesmi, Leiper and Atkinson, Iroce: Zool. Sore, 1914, p. 225.5.
Strobila 3 em., more slender than in the preceding species. Segments more uniform, mily worlapping slightly. Testes arranged in three distinct sets, very numerous, far in excess of those of the previous forms.

Most.-Trinidard Petrel (Esstrelata trinitatin) ; intestine.
Eatermal Choractors.-This Cestode is of a dirty white colomr, and measures 3 cm . to 3.5 cm . in length. It is a more slender worm than the preceding, and the segments
are more unform in size and shape. The head is suceceded ly a very shont nerk. and segmentation begins almost at onee. The segments are mifom nearly the whole way down the hody: The genital pores are single and milateral.
/tomb-The hear is large. It expands from its namow junetion with the neck to its hollous end. It has four lange sumers, which are deeply hollowed. They open ahowe on its upper surface, and run for some distance along its sides (text-fig. 10). There is a fiee border formed ly the flap making the calge of the sumer. The head measmes 0.92 mm . fiom side to side and 1 mm . from before barkwark. It is roughty spuare when looked at from in front. Earh surker has an outside measurement of $0+t \mathrm{~mm}$. and an inside measurement of 0.24 mm .

Sorments.-Ithlike the last Cestode, the uniformity of the shape and size of the segments is marked. They measure 0.49 mm . from hefore harkwards, and 0.76 mm . from side to side. The borders are rounded, and they slightly overlap one another. ln a stained specimen the outer portion of the segments remains unstained. The genital openings are unilateral and ocror at the sides, rather upon the ventral surface. The opening measures 0.04 mm , and is rounded. The cirrus-sat measures $0.1+\mathrm{mm}$. and is also rombded. The vagina is farly wide. The testes, whirh number 30 to 40 , are small and rommed; they are confined definitely to the space between the exretory canals on either side. They are also generally arranged in thee distinet sets- the nmmber in the middle set heing far in exress of that in either of the other two. In

Fis: 10. - Tefrabothrius aichessmi: view of the anterior extremity of the scolex. front of these and near the rephalic end of the segment are the deeply-staning yolk-gland and ovary. The ovary is 0.06 mm . across and is rommed. The uterus is a simple sate, and the eggs oceur late in the hinder segments. Two excretory canals run down either side, internally to the cinus but externally to the testes, and are continuous thronghout the segments.

The main differences from the previous Cestode are in the genital openings, the momber, distribution and arrangement of the testes, the shape of the head and suckers, and the uniformity of the segments in shape and size.
:35. Tetreducthrins: mrighti, Leip. and Atk. (Pl. IV, fig. 22.)
Tefrabulheine rrighti, Leiper and Atkinson, Pror. Zool. Sor., 1914, 1. 225.
Strolipla $2 \cdot 2 \mathrm{~mm}$. long, none of the segments containing eggs. Head 0.4 mm . in length. Testes constantly twelve. Auricular almendages of suckers well developed.

I/ust.-A few of these minute Cestorles were obtained from the gut of the Adelie
 any kimel.

Hend. - The short merk is smmoment by a large heal with fomr surkers and a peouliar roumder amatme. 'Threr is no rostellum, now do looks orem: The head
measures 0.4 mm . in length. The suckers attain their greatest breadth, $0 \% \mathrm{~mm}$., posteriorly. They lave overhanging edges and ear-like prolongations.

Segments.-The neek is followed by twenty segments. The segments gradually increase in length from behind the head without diminishing in transverse measurement. The last segment has a breadth of 0.3 mm ., and a length of 0.15 mm . The internal organs begin to develop at the eleventh segment. The genital pores are marginal and on the same side. There is a large thick-walled cloaca. The cirrus is large and muscular. The vagina leads into a wide straight tubc. The testes are few in number (twelve in each segment); their staining qualities markedly diminish in the last segments. The ovary is situated in the middle line, and near the antcrior border of the segment. In front of this is a small, decply-staining yolk-gland. The cirrus-pouches are external to the excretory canals and are situated marginally, in the middle third of each scgment.

In all the matcrial obtained from Adclic Penguins the strobila had the extraordinarily small size above noted. The number of testes is constantly twelve, and the auricular appendages are well developed.

Three specics of Tetrabothrins have been found hitherto in Pcnguins, viz., T. joulmi, Raill., T. eudyptidis, Lönberg, and T. lutzi, Parona. T. urighti scems to correspond in many points to the description given by Fuhrmann for T. monticellii. The limited number of testes is especially remarked upon by Fuhrmann as peculiar to this species. T. joulimi is reported, however, to have only five to cight testes. The type-material of that species is said to be immature and poorly preserved.

Fam. DILEPINIDAE.

Anomotaenia, Cohn, 1900.
36. Anomotuenia sederi (Baird). (Pl. IV, figs. 23, 24. Text-fig. 11.)

Tuenia zederi, Baird, 1853. Tetrabothrius zederi, Monticelli. Prosthecocotyle zederi, Fuhrmann.
Most.-Emperor Penguin (Aptenorlytes forsteri); intestine.
External Aprearance.-The worms measure 4 to 5 cm . in length. The head bears a rostcllum and four suckers, and is pointed, while caudad from the suckers there is a well-marked pyriform swelling which subsides after a course of 0.7 cm . to join the segments (Pl. IV, fig. 23).

Hearl.-The head (text-fig. 11) is pointed, and there is a well-marked rostellum (r) measuring 0.24 mm . by 0.15 mm . transverscly. The rostcllum is retractile within a well-marked groove on the surface of the head. Its centre, distally, is marked by a small opening, and communicates with a hollow interior whieh forms a bind sucker situated within the rostellum. There are two series of well-marked hooks ($/$) , uine in earch scries. The hooks measure 0.09 mm . from end to end ; 0.04 mm . from the tip there is a well-marked guard. They are 0.01 mm . thick. The four
other suckers (s) on the head are cirenlar, and have an external measurement of $0.2+\mathrm{mm}$. and an internal diameter of 0.1 mm . Their surface is fleshy, and they are mamed. The leat is succeded ly a large globular neck measming 0.7 (fm. in length and 0.5 cm . tramsersely. In the interion two wide way excretory canals run toward the segments.
siaments.-The segruents are very peculins. There is a central portion, romuled dorsally and eaped ventrally. From the outer borders of each segment there is a wellmarked lapel or apron which crosses from either side toward the centre. It is divided ly a deep rleft in the middle line from its neighbour of the opposite side. The edge is arenated and suggests the machicolations on ramparts. Only in the latter segments were there any genitalia developed. The testes number 30 to 40 , and are confined letinitely to the dorsal portion of the segment. They are large and show a renated outline. Two wide exeretory ranals run down either side, at the junction of the lapels with the segments. No egg's were present in any of the segments. The longitudinal museular hands are very marked. The genital pore is peculiar and opens on the border of the lapel ventrally; the pores probably alternate. The anatomy of the segments is exceedingly difticult to make out.

Encysted in the Emperor Penguin, and

Fig. 11.--Anomotaenia zederi (Baird): anterior portion of scolex. h, hooks; r, rostcllum ; s, suckers. completely closed off, occur forms consisting of only the head and neck (Pl. IV, fig. 23). Other cysts oceur (Fig. 24) in which several individuals are present and the cyst is comected with the gut of the host. These worms consist of a head and a varying number of Hat immature segments, the berimning of the genital apertures heing risible on the sides. There also occur more mature forms in the cysts showing the peculiar conformation of the segments. In detall the heads and necks of the three forms are identical. An almost analogous case is mentioned by Railliet and Hemry. These parasites were obtained by the French Antarctic Expedition from Pyyoscelis polpur, and the author's assribe the mature form to Anomotarnia zederi.

Order TRYPANORHYNC'HA.
 Fam. TETRARIONCHDDAE.

87. Tetmothynchus sp. (harva). (19l. V, fig. 35.)

This interesting little Tetrerhynchus was collerted together with some larval Nematorles, encysted in the wall of the eacemm of a Barraconta (Lipillopuse coulutus) at
the Bay of Islands, New Zealand. The specimens are minute, pearly white and almost spherical bodies, measuring, on the average, 1.02 mm . long. The greatest hreadth is 0.96 mm .

On the outer aspect of the anterior half of the body are four large fleshy suckers surrounding a depression from which four rostella emerge. The lorders of the suckers project beyond the body at their posterior limits. The muscular fibres of the suckers give the walls an appeame of coarse striation.

The rostella are long and slender, slightly bulbons at their distal ends, and well armed with series of hackwardly curved hooks. They measure 0.45 mm . in length, 0.06 mm . in breadth at their distal ends, and 0.04 mm . at their proximal ends. In vertical series the hooks number eleven rows, and in horizontal series eight rows.

From the posterior end of each hook-bearing rostellim, a cylindrical portion, possibly muscular, proceeds hackwards and is surrounded by a short kidney-shaped sat. These sacs are 0.37 mm . long and 0.14 mm . hoad.

Into the posterior half of the hody a hroad but short "abdomen" or tail is countersunk, and the tail shows a slight median depression. There are always a large number of chalk-hooties contained in the interior. The surface of the body is smooth and the whole cyst appears to be enclosed in a delicate transparent capsule probably secreted by the host.

Abothros, Welch, 1876.
38. Ibutleros curchurius, Welch, 1876. (Pl. V, fig. 36.)

This worm, a larval form, was obtained from the stomach of a small shatk (Carchurius sp.) caught in 1910 at the Island of S. Thinidad (Stat. 37). It consists of a clubbed anterior portion, and a longer and more slender tail "telescoped" into the fore-body somewhat after the mamer of the "abromen" of Hemiurus. The total length is 21 mm ., the anterior portion measures $7: 3 \mathrm{~mm}$., and the tail-end is 13.7 mm . long. The tail-end is in part protrusible.

The body is surmounted anteriorly by four slender rostella armed with hooks. The length of the rostellum is 0.7 mm . ; the breadth, which is miform, being 0.12 mm . The vertical number of hooks is twenty-seven, and the horizontal number is eight in each row. The hooks are sharply down-curved, sharp-pointed, and with a broad hase ; they measure 0.03 mm . from tip to base. There is a striking diminution in the size of the hooks of the proximal rows. There is a well-marked sac for each rostellum. To each are attached long bumdles of muscular fibres which run lack, to become inserted into the line of attachment of the abdominal portion of the boly. The excretory camals run down into the tail-portion. The skin is smooth and marmed. In the interior of the bullous anterior end there are a large number of gramules of liown pigment.
somewhat similar forms have been deseribed by Welel from the stomach of a slark (Cimrletries sp.) and hy Rennie and Reid from the muscles of the Bonito.

Owing to the abseme of suckers，Wekh reated a separate gems Amothros for his specimen．Our material does not appear to differ from his speries A．rarchurins． Welch merely states that the number of hooks on each rostellum is alont 200 ．

SLMMARY AN1 CONCLUSIONS．

We now summarise the speries that have been collected by the various Antaretic Expeditions up to the present time．The species described as new in the corresponding Reports are indicated hy an asterisk．

Ross＇s Antarctic Expedition，1841－4．르speeies（both new）． Clistoda：
＊Inhothriunephultus unturetichs（Baird），1＊53．
＊Tuenia zederi，Baird，18．53．
National Antarctic Expedition，1901－4（＂Discovery＂）．\＆species（3 new， 1 previously known）． CESTODA：

Mibothrinerylutus autareticus（IBard），1853．
＊\quad＊scotti，Shipley， 1907.
＊\quad ，wilsomi，Shipley，190т．

```
NEMATODA：
＊Leptusomatern ansticule．
```

Scottish National Antarctic Expedition（＂Scotia＂）． 17 species（8 new， 5 previously known， t doubtful）．
CESTUDA：－
＊Dibothriocephahus scotions，Rennie and Peid，191．2．
＊\quad＊coutsi，liemic and Reid，1912．
＂，\quad（nturctir＂ns（Baird），I85：3．
＊\quad mobilis，liennie and Reid，1912．
＊．，\quad ！！guscelis，Rennic and Reid，191\％．
Auchistroerphahus microrephahes（Rud．）， 1819.
Hyburuchlyises s．？
Plyllobothrima s．？？
T＇etrarhyurhus sp．？
NEMATOD．I：－
（parasitic）：
＊Iscorris radlinta，v．Linst．， 1906 ．
＊＂rerflugula，v．Linst．， 1906 ． oscolatu，Raul．1ぶo：－． diommedeas，v．Linst．，IN゙s．
，s． p ．？
＊Mnumry！min deututum，v．Jinst．，I90t．
（tree living）：－
Thoracostomut sifoxilu，vi．Linst．， 1896.
ACANTHOCEPHALA：－
＊Echinorhymchus autarctions，Rennie， 1 not．

Expédition Antarctique Française ("Pourquoi Pas?"). Is speeies (4 doubtful, 8 new, 6 previously known).
CESTODA:-
*Diphyllobothrium resimmm, Railliet and Henry, 1912.
,, wilsomi (Shipley), 1907.

* , perfoliutum, Railliet and Henry, 1912.
* ", clavatum, Railliet and Henry, 1912.
", anturcticum (Baird), 1853.
,, sp.?
Anomotaenia zederi, Baird, 1853.
*T'etrabothrius joubini, Railliet and Henry, 1912.
* Choonotaenia domimicana, Railliet and Henry, 1912.

Tetrabothrins heteroclitus, Dies., 1850.
" sp. (?)
? \quad, \quad sp.
? \quad, sp.
NEMATODA :-
Ascaris decipiens, Krabbe, 1878.
", oseulata, Rud., 1802.

* ". fulcigera, Railliet and Henry, 1907 (=A. rudiata, v. Linst., 1906).
* ", stenocephala, Railliet and Henry, 1907 ($=$ A. rectangula, v. Linst., 1906).

ACANTHOCEPHALA:-

* Corynosoma sipho, Railliet and Henry, 1907 ($=$ C. autarcticts, Rennie, 1906).

British Antarctic Expedition (" Terra Nova") 1910-13.

A. 9 Forms previously recorded from the Antaretie Zone, represented in the eolleetion.

NEMATODA:-
Leptosomatum setosum, v. Linst., 1906.
Ascuris osculate, Rud. [Kathleena] . . . (Hosts, Mydrurga leptonyx, Lobodon carcinophayus and (larvae) Trematomus bernacchii).
" radiata, v. Linst. [Kathleena] . . (Host, Leptonychotes weddelli).
" rectangula, v. Linst. [Kathleena] . (", ",).

ACANTHOCEPHALA:

Echinorhynchus humami, v. Linst. [Cory- (Hosts, Leptomychotes weildelli, Lobodon careinonosoma]. jhagus, IIydrurga leptomy.x).
CESTODA:-
Titenia zeteri, Baird [Anomotaeniu] . . . (Host, Aptenodytes forsteri).
Inibothriocphtulus mobilis, Rennie and Reid, (, Leytonychotes veddelli). 1912.

Dibothriocephahtus coutsi, Rennie and Reid, (,. ," ,"). 1912.

Diphyllobothrium perfoliutum, Railliet and (,, ,",). Henry, 1912.
B. 3 Forms previously recorded from the Aretic Regions, now found in the Antarctic Zone.

NEMATODA :-
Filtaria crassicanda, Creplin [Crassicauda] . (Host, Meguptera).
ACANTHOCEPHALA:-
Echinorlynchus tmbinella (Dies.) Porta. (,, ",).
[Pomporlunchus:].
TREMATODA :
Momostomum plieatum, Creplin [Ofmogastei] . (Hosts, Leptonychotes weddelli, Lobodon carcinophagus).
（．I Form previously reorkal elsewhere and now found within the Antaretic（ivele． CESTODA：－

1）．New species，\dagger coblected in the Antaretic：Zance．

＊Kinllicerna siotli

（Host，Trementamus bermurdhii）．
＊，．riuniclis．

ふくODA：

＊Diluollritnerplulus：lashluryi

＊Orierner reilsumi
＊Tretrabutherins arcieghiti

（Host．Leptougrhotiss medrdili）．
．．，．．，）．
＂，＂，＂，
（ ：．
（ ．．Tromatomme berturchiii）．

F．Forms collected in Tropienl and＇Temprate Zones during the voyage of the＂Terra Novan．＂
（1）Previously reanderl：
CENTOII：

Trdrabothions levororlifus．Dies．，1850 ．．（ ，P＇uffiuns riurrens）．
（2）New species．
CENTODA：
＊Totrubuthrins rercomi
＊．，airhesomi
＊＂，ruthrrinte
＊－，priostlogi
＊＂，utisomi
（Husts，Trinidad Petrels，Qesfrelata frimitulis and（E． arminjoniana）．
（Host，E．friuitutis）．
（＂，, ）．
（＂．Frigate Dird，Freyula aquila or F ．ariol）．
（ ，，Souty Albatros，Phoebetrif palpehrata）．
（3）Undetermincol．
CESTODA：－

F．N゙ゃw Genera．
NEMATODA：

 1914.
（3）Kullherú
ClintobA：

 society， 1914 ，pp．22．2－226．

LITERATURE OF ANTARCTIC PARASITIC WORMS.

1853.-Bard, W. "Catalogue of the species of Entozoa, or Intestinal Worms, contained in the collection of the British Museum."
1853.- Barrd, W. "Descriptions of some new species of Entozon from the collection of the British Museum." Proc. Zool. Soc., Part XXI, pp. 18-25.
1892.-Linstow, O. von. "Helminthen von Süd-Georgien. Nach der Ausbeute der Deutschen Station von 1882-3." Jahrh. Hamburg. Wiss. Anst. LX, pp. 59-77.
1896. Linstow, O. non. "Nemathehinthen." Hamburg. Magalhaensische Sammelreise, Lief. I, pp. 1-21.
190f.-- Linstow, O. von. "Nematodes of the Scottish National Antaretie Expedition," 1903-4. Proc. Roy. Soc. Edinl. Vol. XXVI, pp. 464-472.
1904.-De Man, J. G. "Nématodes libres." Rés. Voy. S.Y. "Belgica," 1897-99. (Zoolugie.)
1907.-Ralllet and Heney. "Nemathelminthes parasitcs." Expéd. Antarct. Franç., 1903-5.
1912. Ralllet and Henry. "Helminthes reeneillis par l'Expédition Antaretique Française du Pourquoi-Pas." Bull. Mus. Hist. Nat. XVIII. No. 1, p. 35 ; No. 2, p. 153.
 Seotic, 1902, 1903 and $1904 . \mathrm{V}$, Part IV.
1912.-Renve, J., and Renb, A. "The Cestoda of the Scottish Antaretic Expedition [Sontim]." Trans. Roy. Soc. Edinb. Vol. NLVIII., pt. II. No. 22, pl. 441-4.3.
1907.—Smpley, A. E. "Cestoda." Nat. Antaret. Exped. [Diseovery]. 1901-4. Nat. Hist. Published by the British Mnseum. Vol. III.

OTHER LITERATURE (ONSULTED.

1861. r. Beneben, P. J. "Mémoire sur les vers intestinaux."
1899.-Fuimmanx, O. "Das Genus Prostherocotyle." Centralbl. f. Bakt., XXV, pp. 863-67.
1908.-Fuhrmann, O. "Dic Cestoden der Vögel." Zoolog. Jahob., Suppl. No. 10, Heft 1, pp. 1-232.
1888.-Linstow, O. Yon. "Report on the Entozoa collected by H.M.S. Challenger during the years 1873-6." "Challenger" Reports. Vol. 23. \%ool., p'p. 1-18.
1900.-Linstow, O. von. "Die Nematorlen." In Römer and schaudimn, Fauna Aretica. Bd. I, 1. Lief., PP. 117-132. (Pulbished Jan.).
1905.-Linstow, O. von. "Helminthen aus Ceylon und aus Arktischen Breiten." Zeitschr. f. wiss. Zool. LXXXII. Festschr. Ehlers. Vol. 1, pp. 182-193.
1905.-Linstow, O. vox. "Helminthen der russischen Polarexperlition, 1900-03." Rés. Sci. Expéd. Polaire russe en 1900-03 sous la direction du Baron E. Toll, Mém. Acad. Imp. Sci. St. Pétersb., phys. mat. (8). Vol. XVIIT, No. 1, pp. 1-17.
1905.-Odiner, T. "Die Trematoden des Arktischen Gelsietes." In Rämer and Schaudinn, Fama Aretica. Bd. IV, pp. 291-372.
1905.-Porta, A. "Gli Echinorhinchi dei Pesei." Arehivio Zool., Napoli. II, pp. 149-214.
1906.-Ponta, A. "Ricerche anatomiche sull" Echimorlyn-hus r"pitntue, v. Linst., e note sulla sistematica demli echinorinchi dei cetacei." Zool. Anz., XXX, pp. 235-271.
1909.-Porta, A. "Erli Acantocefali dei Mammiferi." Arehivio Zool., Napoli. IV, pp. 239-85.
1909.-Ransom, B. H. "The Tamoid Cestodes of North American Birds." U.S. Nat. Mus., Bull. 69.
1862. Welcn, F. H. "The Anatomy of two parasitic forms of the family Tetrarhynehidae." Journ. Linn. Soc. (Kool.). Vol. Xİl, ll. 329-34.3.

Parasitic Worms, Pl. I.

PLATE I

> Figis. $1,4,7$. Terrenuea autarctica.
> $" \quad 2,5$, ¿-Kathleena sotti.
> $" \quad 3,6,9$. Leptosomatum setosum.

Fis. 1.-Terrenove tutarctica, Leiper and Atkinson ; ex Mustelus antarctichs. Anterior portion showing a, simple cesophagus, and b, caecal prolongation of the intestine.
Fı:. 2.-Kintlepme seotti, Leiper and Atkinson ; ex Diomeden melanmheys. Anterior portion showing a, esophagus, with b, posterior appendage, and c, the caccal prolongation of the intestine.

F14. 3.-Leptosomatum setosmm, v. Linst. Anterior end, showing a, cephalic armature; b, wesophagus; r, ocelli ; d, nerve-ring.
Fig. 4.-Terannea antartico. Posterior end of female. r, anus.
Fif. 5. Kuthlerm scotti. Posterior extremity of male, showing sp., spicules. The papillae are illustrated in text-fig. 1.
Fis. 6. L'pitosometnm sitostm. Pusterior end of male showing four papillae, 1 ', and the peculiar spicules, sp., accessory piece, ap., and sucker, s.
Fif. 7.-Tertanom antartica. Anterior end, showing outline of the lips. Interlabia are absent.
Fig. 8.-Kıthlecma sooti. Anterior end, showing the lips, a, a $^{\prime}$, $a^{\prime \prime}$, from the ventral aspect. There is a large interlabium, b, separating the two ventral lips, $\prime, ~ r^{\prime \prime}$. The other two are not visible in this position.
Fig. 9.-Leptosomatum setosm. Head, showing (1, cephalic armature in optical section, and b, cuticular spinés.

Brit Antarcuc (Terra Nova) Exped 1910 Zoology, Vol II

Brit Mus. (Nat. Hist

2

Cambridge University Press

PLATE II.

Fis. 10.-Pomporlynchas tudimella, Dies., complete male ; ex Balacmotera borealis: a, mstellum ; b, head, hearing large hooks; c, neck; d, d^{\prime}, testes: e, prostatic glands; f, cirrus; $!$, bursal sac ; I', sac partially protruded.
Fis. 11.-Corgnosomulumomui, s. Linst., male; ex Leptonyrlotes weddelli: a-y, as in lig. 10 ; h, h, spines on skin of body.
Fis. 12.-Corynosmun hummui, v. Linst. ; larval stage ; ex Tremutomns bermaceluii: t-y, as in Fig. 10. Enlarged 43 diameters.
Fıs. 13.-Echinorhynchns complemi, Leiper and Atkinson, male; ex Tremutomes bernatchii: a-!, as in Fig. 10. ; l, l^{\prime}, lemnisci.
Fif: 14.-Echinorhymelus debenhami, Leiper and Atkinson, male; ex Trematonas bermucchiii: a-y, as in Fig. $10 ; l, l^{\prime}$, lemnisci.
Fifi. 15.-Echinomhychus remichi, Leiper and Atkinson, male; ex Tremutomes bernucchii: a-y, as in Fig. 10 ; l, l^{\prime}, lemnisci.

Brit Antarctic (Terra Nova) Exped 1910

.

PLATE III.

Fis. 16.-Oymogustor plicatus (Creplin) ; ex Lepfougchotes meddolli. Ventral view; a, oral sucker; l, wavy margin of borly ; $!p$, genital pore ; $n v$, ovary ; r, rugae : t, t^{\prime}, testes ; ut, uterus ; $!$, yolk-glands.
Fis. 17.-Hominrus outcsi, Leiper and Atkinson ; ex Trematomus bernuchiii. a, oral sucker; b, ventral sucker ; r, cirrus ; d, ablomen ; e. , excretory vesicle : !, branch of gut ; ! ${ }^{\prime}$, genital pore ; $o r$, ovary : $p^{\prime \prime}$, pharynx ; sr, seminal vesicle ; t, t, testes ; ut, uterus; y, y, yolk-glands.
Fig. 18.-Apomurus boucrsi, Leiper and Atkinson ; ex Tremutomus bermuchiii. Lettering as in Fig. 17.
Fis: 19. Podocotyle pemelli, Leiper and Atkinson; ex Trrmutomms brruuccluii. Lettering as in Fig. I7.
Fif. 20.- Leporlorn !furardi, Leiper and Atkinson ; ex Tromutomus bermucchii. Lettering as in Fig. 17.
 ing as in Fig. 17.

Brit Antarctic (Terra Nova) Exped 1910

18

21

Parasitic Worms, Pl. IV.

PLATE TV.

Fig. 22.-Tetrabothrius wrighti, Leiper and Atkinson ; ex Pyyoscelis adelice. Complete but immature strobila, showing characteristic suckers, and the arrangement of the testes in the segments.

Fic. 23.-Anomotaenicu zederi, ex Aptenodytes forsteri. Immature form from cyst.
Fir. 24.-A.zederi. Cyst dissected nut from intestinal wall and showing long neck and opening into lumen of the gut of the host.

Fif. 25.-Tetrabothrius nelsoni, Leiper and Atkinson; ex Phoebetria pulpebrata. Segment, showing u, genital atrium ; l, vas deferens; c, cirrus; t, testes; v, vagina ; $v s$, vesicula seminalis.
Fir. 26.-Tetrabothrius crenni, Leiper and Atkinson ; cx Estrelatı trinitatis; head, showing suckers.
Fig. 27.-T. creami. Segments.
Fig. 28.-Tetrabothrins priestleyi, Leiper and Atkinson; ex Frigate Bird (Fregata aquila or F. ariel). Immature segments ; c, cloaca; sp, cirrus; t, testes.
Fig. 29.-Tetrabothrius cutherimae, Leiper and Atkinson ; cx Estrelate trinitatis ; scolex.
Fig. 30.-T. catherinue. Segments ; c, cloaca ; sp, cirrus; t, testes.
Fir. 31. Tetrubothrius cylindraccus, ex Megatestris maccormicki. Segments, showing horse-shoe arrangement of testes ; r, cloaca ; sp, cirrus ; t, testes ; $y g$, yolk-gland.

Brit Antarctic (Terra Nova) Exped 1910

PLATE Y

Fif. 32.-Oriant wilsoni, Leiper and Atkinson ; ex Balaenoptrra borealis. Head, anterior surface, slowing four round suckers ; no rostellum.

Fig. 33.-O. wilsoni. Head seen laterally, showing mode of attachment of slender neck.
Fig. 34.-O. wilsmi. Segments.
Fig. 35.-Tetrurlymeluts sp., ex Lepitopues coudatus. Larva removed from cyst.
Fig. 36.-Abothros rurcharias, Welch, ex Carcharias, sp. Complete specimen; only three of the four rostella are shown.
Fig. 37.-Dibuthrioceplutus coutsi, ex Leptonychotes uceldelli. Complete strobila.
Fic. 38.-D . coctsi. Mature segment; c, cloaca; d, uterine pore; e, uterus, containing eggs ; t, testes.
Fig. 39.-Plerocercoid larva, ex Tremutomns beruacelai.
Fig. 40.-Dibothrinephelus lashleyi, Leiper and Atkinson; ex Leptomychotes weddelli. Head.
Fir. 41.-D. luslleyi. Segments; lettering as in Fig. 38.
Fig. 42.-Plerocercoid larva, ex Tremetomus bernacchii.

Brit Antarctic (Terra Nova) Exped 1910

$$
\begin{aligned}
& \text { 6 } \\
& \text { +ndit } \\
& \text { n }
\end{aligned}
$$

PART I.-GASTROPODA PROSOBRANCHIA, SCAPHOPODA, AND PELECYPODA.

BY EDGAR A. SMITH, I.S.O.,
Latel! Assistumt Keeper of Zoology, British Musemm (Netmral IIstory).

Pare
I.-Introduction (6)
II.-Descriptions of Species.

1. Antaretic 62
2. New Zcaland 78
3. West of Falkland Islands 91
4. Off Rio de Janciro 94
5. South Trinidad Island 105
Index 106

I.-INTRODUCTION.

The following descriptive account deals only with a part of the Mollusea ohtained by the "Terra Nova" Expedition, namely, the l'rosobranchs, Scaphopods, and Pelecypods.

Athough the amount of material is not large, the number of undescribed species is considerable, but it is rather disappointing that no new generic forms were distovered.

1. Anong the Antarctic series (fifty-eight speries) twelve are new to the region explored by the "Terra Nova." The paucity of new species in such a remote region is, of course, in a great measure due to the fact that almost the same part of the Antaretic had previously been investigated by the "Southem Cross" and the " Discovery."
2. From off the north of New Zealand only thirty-four species were ohtained, including four undescribed forms, and at Port Lyttelton, in the Gouth Istand, a specimen of Dylotryu sernlii was extracted from the hull of the "Terra Nova."
3. Seven species from Station 38 (west of the Falkland Islands, in 125 fathoms) include three new species of Gastropods, an undescribed C'urdinm, and the C'uspuideriat (Comdiomy, simillimu, described as new, from Station 42, off Rio de Janciro.

VOL. 11.
I. At 内人ation 42 , off lio de Jameino, in 40 fathoms, twelve interesting new forms were ohtaned. This scems a large proportion of the thirty-two species dredged at this station. lont this is arcounted for from the fact that comparatively little dredging has hitherto heen lone off the Brazilian coast, and it certainly wonld offer a fauna well worth investigation.

As is well known, a West Indian facies ohtains along this eoast, and in the present collection nine of the thirty-two species recorded oceur in the Autillean region.
5. From Sitation 36, Sonth Trimidad Island, in the South Atlantic, 700 miles east of Brazil, only two speries were obtamed, one of which, Morliolaria luteralis, is of spectial interest as showing the exteuded geographical range of this well-known European species.

II.-DESCRIPTIONS OF SPECIES.

1. ANTARCTIC.

LIST OF STATIONS.

```
Station 194. Off Oates Laml, 69 43'S., 163' 24' E., l80-000 faths.
    ," O20. Oft Cape Adare, mouth of Robertson's Bay, 45-50 faths.
    " 294. Ross Nea, 74 25's., 179 3' E., 158 faths.
    ,, 314. 5 miles N. of Inaccessible Island, McMurdo Sound, 222-241 faths.
    , 316. Off (lacier Tongue, about 8 miles N. of Hut Point, McMlurdo Sound, 190-250 faths.
    ," 3.31. Off Cape Bird Peninsula, entrance to McMurdo Sound, 250 faths.
    ,, 338. Mc\lurdos sound, iT 13' S., 164 18' E., 207 faths.
    , 339. McMurdu sound, it 5's., 164 1% E., 140 faths.
    , 340. Romss Nea, T6 56' S., 164 12' E., }160\mathrm{ faths.
    , 348. Off Barnc Glacier, Mc\lurdo sound, 200 faths.
    " 349. Ofl Butter Point, Western shore of McMurdo Sound, 80 faths.
    ,, 355. McMlurdo Sound, 7% 46'S., 166 8' E., 300 faths.
    " 356. Ofl Granitc Harbour, entrance to MeMurdo Sound, 50 faths.
```

1. Lepeta rely inuperi (Smith).

Tertura (I'ilitiam) coppingeri, Smith, Proc. Zool. Soc., 1881, 1. 35, pl. IV, figs. 12, 12A. Leprft (Pilidiem) antartict, Smith, "Discovery" Lamellibranchiata, p. 1̇, pl. II, figs. 11, 11A (1907) ; Medley, Brit. Antarct. Exped. 1907-9, Biol., vol. II, Mollusea, p. 3. Lepeta (Pilidinm) roppingeri: Thicle, Deutschc Sïdpolar-Exped., vol. XIII, p. 185.

Stations $2: 20,: 340.348$. Depth $45-200$ fathoms.
In deseribing the single specimen oltained by the "Discorery" I noted that it was " hamrower than L. compingeri from the Staits of Magellan," and had "fewer radiating lire." I now find that the chancters refened to are somewhat variable.
2. Mm?!nitrs: !rmmm, n. sp. Pl. I, fig. 1.

Nhell turbinate, moderately molbilicated, thin, greenish-irideseent, finely spirally linate thonghout, the threads upon the hase helow the periphery finer than those
above, sculptured also with fine armate lines of growth, which are conser towarls the suture, giving a somewhat cancellated appearance to the shell at this part; they cross the four or five spirals below the narowly chanmed sutme, producing mime sharp points or nohlules upon them: whorls $5 \frac{1}{2}$, the nucleus globse, white, smooth. porcellanous; the next whom with fom spirals; the third with seven, not all equal in thickness; the pembltimate with eleven ; and the last having alont fourteen abowe the periphery and ahout twenty-five below; the umbilical area is smooth, dirty white: peristome thin, sulcircular, intermpted on its junction with the whorl, the columellar margin slightly thickened, expanded upon the whorl and very narrowly reflexed; aperture iridescent and fincly sulcate, the grooves corresponding to the external lire. Greater diameter 22, smaller diameter 19 , height 18 mm .

Station 194, off Oates Land, $180-200$ fathoms.
Only a single specimen of this heautiful shell was ohtained. M. chonopmes, Watson, ${ }^{*}$ from Kerguelen Island, is an allied form, but differs in colour and details of sculpture.
3. Ifor!qurites dulcis (Smith).

Velvatella dulcis, simith, " Discovery" Gastropoda, p. 10, pl. II, fig. \& (1907).
Margarites dulris: 'Thiele, Dentscle Siüpolar-Exped., vol. XIII, p. I90, pl. XII, fig. 21.
Stations :316, :3:31: 190-250 fathoms.
The figure of this species in Thiele's work is much better than that in the "Discovery" Report. The characters distinguishing this form seem to be fairly constant, but one specimen from Station 331 has the uppermost lia rather nearer the snture than nsual.
4. I/tramerites eredrilimelata (smith).

Valcetella crebrilirulata, Smith, "Discovery" Gastroporla, p. I1, II. II, fig. 9 (1907).
Sulmargaritu? crebrilinhtate: Thicle, Deutsche Südpolar-Expeal., vol. XIII, 1. D5s.
Station 3.11: 250 fathoms.
The angle upon the body-whorl above the periphery is more apparent in the two specimens in the present collection than is indicated in the fignre in the "Disovery" Report.
5. Ifrirforites, sp.

Station 194: 180-200 fathoms.
A single dead shell with a broken spire from the above station differs from all the known Antaretie forms. It would probally consist of abont five convex whors, increasing rather rapidly. The last is suborbicolar, roumded at the periphery, and ornamented with numerons spiral threads of unequal thickness. Altogether there are twenty-seven, of which abont nine are finer than the rest, and in places they are
altermately coarse and fine. Lines of growth very fine. Aperture obliquely subcircular; peristome thin, margins joined ly a thin callus. Columellar margin somewhat expanded.
6. Mar!eterellar refultpens (Smith).

Valuatlla refulyens, Smith, "Discovery" Gastropoda, p. 11, pl. II, fig. 7 (1907) ; Hedley, Brit. Antarct. Exped. 1907-1909, Biol., vol. II, p. 4.
Maryarella refulyens: Thiele, Deutsche Südpolar-Exped., vol. XIIT, p. 188.
Stations 194, 316, 331, 340, 355: 160-300 fathoms.
A specimen from Station 13 is rather larger than the type, being 6 mm. both in height and greatest width.
7. Epitomiom antercticum (Smith).

Secala antarctica, Smith, "Discovery " Gastropoda, p. 8, pl. I, figs. 10-10ı (1907).
Station 294: 158 fathoms.
Ouly a single specimen, agreeing in all respects with the type from much shallower water.
8. Eulima emulatu, n. sp. PI. I, fig. 2.

Shell subulate, generally a little eurved or excentric towards the apex, white, glossy; whorls 9 , slowly increasing, slightly convex ; suture a little oblique, narrowly liyaline-marginate ; aperture inversely auiform; labrum (viewed laterally) prominently curved, obscurely sinuate near the suture; columella a little thiekened, united to the end of the labrum by a very thin eallus.

Length, 9 mm . ; diameter, $2 \cdot 75$.
Station 316: 190-250 fathoms.
Nine specimens containing the reddish animals. This is the largest of the Antarctic species. The former lips are not olservalle unless very carefully looked for. Although the spire is tapering, the apex is not acuminate.
9. Eulima soliteria, n. sp. Pl. I, fig. 3.

Shell small, white, shining, somewhat curved, consisting of seveu slightly eonvex whorls which increase gradually and are separated by an almost horizontal suture, very narrowly hyaline-margined beneath. Spire slightly arcuate with an oblique obtuse apex; aperture inversely auriform, alout one-third the length of the shell ; columella straightish, united above to the outer lip ly a thin callus.

Length, 4 mm ; diameter, $1 \cdot 5$.
Station 331: 250 fathoms.
A single specimen. Differing from the known Antarctic forms by its eurved growth, form of the aperture, etc.
10. Rissuia ularensis, Smith.

Risson udurensis, Smith, "Sonthern Cross" Mollnsca, p. 205, pl. XXIV, fig. 17 (1902) ; "Discovery" Gastropoda, 1. 8, pl. II, fig. 2; Melvill mul Standen, Voy. "Scotia," Zool., vol. V, p. 102 ; Lamy, Denxieme Exped. Antact. Framé, Gastropades, p. 10 ; Hedley, Brit. Antaret. Exped. 1907-9, Biol., vol. II, Mollusca, p. 5.
Stations $220,316,331,340: 45: 250$ fathoms.
A synonym of Rissom is Apmothomes, Gistel (Naturgesch. 'Thierreichs. 1848, p. x.).
11. Rissmin !flucirlis, Smith.

Rissoin glacialis, Smith, "Discovery "Gastropodit, 1. 9, pl. II, fig. 4 (I907) ; Hedley, Brit. Antarct. Exped. 1907-9, Biol., vol. H1, Mollusea, 1. 5.

Stations 220, 316, 331, 340: 45-250 fithoms.
Twenty-three specimens, obtained at the above stations, show that the characters pointed out in the original deseription, drawn up from only two examples, are quite constant. Their surface is not so glossy however, due prohably to their having been in spirit for some time.
12. Rissomin yeliclu, Smith.

Rissoin gelida, Smith, "Discovery" Gastropoda, P. 9, H. II, fig. 5 (1907); Hedley, Brit. Antaret. Exped. 1907-9, Biol., vol. II, Mollusca, P. 5; Thiele, Deutsche Südpolar-Exped., vol. XIII, p. 195, pI. XT, figs. 37, 38.
Stations 220, 316, 331: 45-250 fathoms.
This species is closely related to R. tromsemm, Watson,* from 140 fathoms, between Marion Island and Prince Edward Island. It is, however, larger and more coarsely spirally lirate.
13. Rissonia demisst, n. sp. Pl. I, fig. 4.

Shell imperforate, white, smooth, slightly glossy; whorls $4 \frac{1}{2}$, convex; the apex large, obtuse, flatly arched at the top; last whorl rounded at the periphery; aperture subeircular, obscurely pointed above; peristome continuous, the ends being joined by a callus on the whorl, colmmellar margin thickened and reflexed.

Length, 2 mm . ; diameter, $1 \cdot 33$.
Stations 220, 316: $45-250$ fathoms.
I'his species may be the R. columm, Pelsencer, \dagger but the spire appears to be shorter, and the aperture rounder.
14. Rissomin repulturis, n. sp. Pl. I, fig. 5.

Shell ovately conical, narrowly rimate, of a greyish colour; whorls 6, regularly increasing, a little convex, smooth, exhbiting only delicate growth-strixe; spire

[^6]conical ; aperture rather round : peristome thin at the edge, columellar margin slightly thickened and reflexed, united above to the onter margin ly a thin callus.

Length, $3 \cdot 5 \mathrm{~mm}$; dianeter, 2 .
Stations 220, 316: 45-250 fathoms.
This species differs from R. chlarensis, R. glacialis, R. desprta, and some others, by the conical spire and less convex whorls.
15. Sublacuma imdecora, Thicle.

Sublacuna indecort, Thicle, Deutsche Sïdpolar - Exped., vol. XIII, p. 195, pl. XII, fig. 4, shell ; pl. XV, fig. 19, radula (1912).

Station 340: 160 fathoms.
Two specimens, the largest 4.5 mm . in height, and 4 broad. These shells agree exactly with Thiele's description, but their penultimate whorl is not quite so high as represented in the figure. Allowing for some variation, this is not of much importance. The operculum is concave ahove, and consists of about four whorls, separated by a thread-like suture.
16. C'aphlus suluminessus, Pelsencer.

Capulus subcompressus, Pclseneer, Voy. "Bclgica," Mollusca (1903), p. 20, pl. V, figs. 52-54; Hedley, Brit. Antarct. Exped. 1907-9, Biol., vol. IT, Mollusca, P. 5; Thiele, Deutsche Südpolar-Exped., vol. XIII, p. 199, pl. NII, figs. 13, 14.

Stations 316, 331, 355: 190-300 fathoms.
The figure given by Pelsencer is that of a young shell, as pointed out by Thicle, whose illustration exactly represents the specimens in the present collection.
17. Marsenionsis mollis (Smith).

Lamellaria mollis, Smith, "Southerm Cross" Mollusca, p. 205, pl. NXIV, figs. $19-21$ (1902).
Stations 194, 338: 180-207 fathoms.
Seven small specimens of Marseniopsis or allied genera from Stations 314, 340, 348 , and 355 have still to he determined, lout these had better be left to the anatomist for investigation.
18. Marseniopsis comicel (Smith).

Lamellaria conica, Smith, "Southern Cross "Mollusca, 1. 206, pl. XXIV, fig. 4.
Station 356, off Granite ILarhour, entrance to McMurdo Sound : 50 fathoms.
The genus Mrorsemin of Leach has been used by Bergh instead of Lamellaria of Montagu, on the grounds that Leaeh limited the first section of Montagu's genns to Oscamius, Leach, and the second to Marsemin, Leach. The latter author's generic names, however, were not puhlished in 1820, lut first appeared in the Amm. Mag. Nat.

Hist., 1847 , vol. $\mathrm{NX}, \mathrm{p} .268$. The aireulation of " more than one "opy of the Proofs" (Gray*) of 116 pages of his posthmons work, "Moll. Brit. Syuopsis," about the year 1820, does not constitute publiation. These names, therefore, camon date earlier than 1847. In the meantine, in 18:30. Menkit had limited the name Lamellarin to the second section of that genus, and therefore molouhtedy it shouk be emphoyed instead of M Inrseniu.
19. Trichutmpis antaration, Thicle. Il. I, fig. 6.

Trichotropis antarctict, Thicle, 1eutnche Südpolar-Exped., vol. X1II, p. 197, pl. XII, fig. 6 ; pl. $\overline{\mathrm{K}} \mathrm{V}$, fig. 21 , radula (1912).

Station 355: 300 fathoms.
A single specimen, much larger than the shell described by Thiele, which was probably young. It is 8.5 mm . in its greater diameter, and $7 \cdot 75$ in height. The soft, thick periostracum is very remarkable, forming a close, spine-like coronation upon the spiral ridges. The form of the aperture in this more adult specimen is roumded and not quite so murh produced as shown in Thicle's figure. In a younger shell the form wouk, I think, be as depicted by him.
20. Trichutropis pleminpirel, 11. sp. Pl. I. fig. 7.

Shell depressed, ordicular, flat ahove, rather widely umbiliated, with three thick kech 1 pon the body-whorl, clothed with a thick, soft, dirty white periostracum, except upon the two white apical whoms; volutions threc, very rapidly enlarging, the first a little roumded, the rest flat alove. separated by a chameled suture; last whorl with a strong keel at the shoulder, ant a similar one at the periphery. bordering the base, upon which is the third carina; the periostracum consists of chosely packed threads of growth ; aperture subeirentar, white within; peristome waved by the ends of the three carine, expanted, subcontinuous, the columellar margin united alove to the outer lip by a thin callus. Greater diameter 9 mm., height $5 \cdot 5$. The opereulum is triangular, and is romposed of fine curved lines of growth, the unclens heing terminat, as represented by the fig. 6a on plate XNXI of Adams' " (ienera of Mollusca."

Station 314: 222-241 fathoms.
This remarkable species, of which only one specimen was obtained, differs in its depressed orbicular shape from all other known forms of Tridhotropis, and rather calls to mind the general aspect of Lippistes.

Trichomogise usuatly exhinits a very slight noteh or molimentary camal at the base of the columella, hut this feature is scarcely indirated in the present species. The rather large umbiliens is not peculiar, since T. lirögrer is also openty mbilicated, whitst, on the contrary, some other speries are imperforate.

[^7]21. Torellia (Tricheremcha) mirabilis (Smith).

Trichoconcha mirabihis, Smith, "Discovery" Gastropoda, p. 6, pl. I, figs. 7-7c (1907).
Torellia (T'richuconcha) mirabilis: Thiele, Deutsche Südpolar-Exped., p. 197.
Station 316: 190-250 fathoms.
One adult and two half-grown specimens. The latter have the peristome formed like the full-grown shell, but the spire is more sunken at the apex. Dr. Thiele has suggested that this form approaches Torellia too closely for generic separation, and that beyond the greater elevation or sunken character of the spire there is little to distinguish the northern and Antarctic genera.
22. Nememcher restitu, Smith. Pl. I, fig. 8.

Neoconcha restita, Smith, "Discovery" Gastropoda, p. 6, pl. I, figs. 11-11c (1907).
Stations 194, 340, 356: 50-200 fathoms.
"It has the appearance of being the young state of a shell that might grow to a considerable size, judging from the large apical whorls." This supposition is now confirmed by the series of adult shells in the preseut collection. The largest example is 28 mm . in its greater diameter, and 23 in height. Even at this stage the shell is thin and flexible, and consists of four to four and a half volutions, the last being very large and inflater.

The remarkable, very thick, spongy periostracum is not produced into a sort of coronation, a little below the suture, in any of the specimens, as described in the type, but its growth in oblique, closely packed lines of increment is maintained. It is so thick that the outer margin of the peristome appears to be incrassated, but in fact the shell itself is quite thin. The columella is rather broadly expanded, and is united above to the outer lip by a thin callus. The aperture is of a very pale olivaceous tint inside. lut the peristome is hordered within by a reddish brown colour, the extreme edge heing paler. The umbilicus is more open in the adult stage than in young specimens.

This remarkalle form is one of the gems of the collection, and does not appear to he eireumpolar, since it has not been discovered ly any other Antaretic expedition.

It seems to be fairly constant in its general features, but one specimen exhibits a spiral constriction or sulcus at the upper part of the body-whorl. Another example, somewhat smaller, has four such sulci, marking off five spiral rounded bands on the body-whorl.
23. Netronelate insi!mis, n. sp. Pl. I, fig. 9.

Shell glohose, thin, namowly umbilicated, covered with a thick, light, dirty olivaceous, horny periostracum, which is produced into five prominent, equidistant, acute, and delicately fringed keels upon the body-whorl, of which the uppermost revolves up the short spire; whorls four, very rapidly increasing, the last very large ;
apical whorls whitish beneath the periostacum, the embryonir one heing glossy and very finely spirally striated; the periostracum exhibits closely parked, obligue lines of growth; apertne large, with a very thin, whitish, calcareons lining, somewhat roundish; peristome olive bownish, not thickened on the outer margin. hat having the little curved cohmellar edge expanded and reflexed, a thin callosity upon the whor uniting it with the outer lip.

Greater diameter, 22 ; height. 20 mm . Aperture, 14 mm . long, 12 in width.
Station 355 : 300 fathoms.
The animal has a small oblong font, squarish in font, and the tentacles are long. slender, tapering to a shap point, having the eyes at their outer hases. As the soft parts are to be investigated by an anatomist, the radula hats not been extratered. Having the gencral features of Voromelen and a similar kind of operahmm, it may for the present be left in that genus.

It is a most remarkable shell, and is quite distinct from any other Antaretie form excepting Seocomelue cestitn, from which it differs in the remakable mamer in which the perinstracum is prohnced into the conspicuous carines. C'an this be only variation! Three similar specimens were obtained.
24. Natich imised, Martens.

Natica !risca, Martens, Sitz.-Ber. Gesell. Natur. Freunde, Berlin, 1878, p. 24; Watson, "Challenger" Gasteropoda, p. 43", pl. XXVIII, fig. 5; Strebel, Schwedisch. SiidpolarExperl., Gastroporlen, 1. 61, pl. V , fig. 66 ; Hedley, Brit. Antarct. Exped. 1907-9, Biol., vol. II, Niollusca, 1. 7 ; Thiele, Deutsche Tiefsee Exped., vol. V11, pl. 1V, figs. 2, 3 ; pl. VIII, fig. 44, radula.
Natica delicatula, Smith, "Southern Cross" Mollusca (190\%), p. 206, 1". XNIV, fig. 6 ; "Discovery" Gastropodit, p. 5; Thiele, Dentsche Südpolar-Exped., vol. XIII, p. 199, pl. XTI, figs. 16, 17.
Station 316: 190-250 fathoms.
In the "Discovery" Report I expressed an opinion that X. delicatule would eventually prove to be merely the young state of I. !risen, Martens, from Kerguclen Istand. An alult shell from Station 316 of the present collection confirms that suggestion, and there appear to he several other deseribed forms from these cold regions which are scarcely separable.
25. Amenoropsi: rossicmu, Smith.

Amauropsis rossitha, Smith, "Discovery" Gastropoda, p. 5, pl. I, figs. 6, 6. (1907): Hedlow, Brit. Antaret. Exped. 1907-9, Liol., vol. 11, Mollusca, 1. 7.
Stations 314, $316,381,: 338,339,: 348,: 355: 140-300$ fathoms.
Young sperimens were olotaned at cach of these stations. At this stage of growth, with one exception, they do not exhihit the peculiar oblique ridges mpen the last and penultimate whorls noted in the alult form. The operenlum is horny and paucispiral, as might have been expected. In every instance, as in the type, the tip of the spire is invariably eroded.
vol. 11.
26. Corithionsilla rentaretiora (Smith).

Lovenella untarctica, Smith, "Discovery" Gastropoda, p. 10, pl. II, figs. 6, 6a (1907); Hedley, Brit. Antarct. Experl. 1907-9, Biol., vol. 1I, Mollusca, p. 5.
Cerithiopsilla anturctica: Thiele, Deutsche Südpolar-Exped., vol. XIJI, p. 205, pl. XIL, fig. 28.
Stations 316, 331: 190-250 fathoms.
The generic name Lomemellw, Sars (1878), being preoceupied for a genus of Hydroids described by Hincks in 1869, was changed to Corithirlla ly Verrill in 1882. According to Thicle the radula of this and two allied species differs from that of Cerithiella.
27. Piosijho elomyntus, Thiele.

Prosipho elonyahs, Thiele, Deutsehe Siidpolar-Exped., vol. XIII, p. 2 I0, pl. XIII, fig. 5 (1912).
Station 338 : 207 fathoms.
A single specimen, rather larger than the type, measuring 14.5 mm . in length and 6 in diameter. The periostracum is yellowish, thickish, and in the dried condition more or less deciduous. The shell is white externally, also within the aperture.
28. Prosijho similis, Thiele, var.

Prosipho similis, Thiele, Deutsche Südpolar-Exped., vol. XIII, p. 207, pl. XII, fig. 32; pl. XVI, fig. 7, radula (1912).

Station 194: 180-200 fathoms.
A single specimen agreeing in form with the figure, but differing in having three spiral threads instead of four on the upper whorls. In this respect it agrees with P. fracilis, Thiele, figured on the same plate (fig. 3:3), but that species is much more slender, and its aperture much shorter in proportion to the whole length of the shell.
29. Prosipher mumhlus, n. sp. Pl. I, fig. 10.

Shell shortly fusiform, dirty whitish ; whorls $5 \frac{1}{2}$, first one and a half smooth, convex, forming a mammillated apex; three following whorls with four spiral lire, the last with thirteen, of which the two or three uppermost, like those on the spire, are finely nodulous through being crossed by longitudinal threads, ahout twenty in number, on the penultimate whorl ; fine lines of growth cover the entire surface ; aperture pyriform, smooth, and white within, less than half the length of the shell; columella arcuate above, ohlique below; anterior canal moderately broad, oblique, and slightly recurved.

Length, $7 \cdot 5 \mathrm{~mm}$. ; diameter, $3 \cdot 5$. Aperture, 3.5 mm . in length.
Station 381: 250 fathoms.
Only a single specimen, hut quite distinct from the other known forms of the genus.
30. P'rosiphn tutherculutus, 11. sil. Pl. I, fig. II.

Shell ovately finsiform, whish; whorls $4 \frac{1}{2}$, the first one and a half large, convex, smooth, forming a mammillated apex, the two following convex, with thee strong spiral lime, the last with five similar lire, with well-marked (about eighteen) acute tubercles upon them, and also mon those of the spire; about eight fimer smooth lire encircle the lower part of the last whorl ; longitudinal plice, corresponding to the tubereles, not strongly developed in the interstiees; lines of increment rery fine, closely packed; aperture pyriform, half the kength of the shell; columella gently arcuate above, a little obligue below: camal rather brom, recurved.

Length, 5 mm : diameter, 2.75.
Station 316: 190-250 fathons.
Allied to P. comepllutus, but separable on acomut of having three instead of two lire on the spire, and, like those on the lody-whorl, they are coarser abo and closer together.
31. Prosipho ramerllatus, 11. sp. Pl. 1, fig. 13; Pl. Il, fig. 15.

Shell ovately fusiform. dirty white, consisting of $4 \frac{1}{2}$ whorls; the one and a half apical smooth, forming a rounded muclens, the tro following convex, with two spiral line around the middle, and the last with about twelve lire, eight of which on the anterior part of the shell are fincr than the four above, which, like those on the spire, are acutely nodulons throngh being arossed ly tine longitudinal threads, about eighteen on the penultimate whol; extremely fine strie of growth are ohservable between these threads; aperture ahost half the length of the shell; anterion "anal moderately hroad, a little recurved ; columella rather straight, not quite perpendicular, smooth, covered with a thin white callus.

Length, 5 mm . ; diameter, 3.
Station, $840: 160$ fathoms. Also Station 42 , off Rio de Janciro, 40 fathoms.
This species, of which only a single specimen is at hand from Sitation 340 . must be closely related to I. mullosus of Thiele, hut the spiral linae appear to be fince, the tubercles mote acute, and more momerous. The longitudinal threads are more delicate, and are continued farther over the botly-whorl, thus produring a cancellated appearance. The specimen from station 42 is figured on Plate II.. fig. J 5 . It agrees in every respect with that from station : 40 , and consequently it seems probable that some mistake in comection with the loralities hats ocrurred. It is not likely that this species lives in sucli remotely distant regions.
:32. Prosijflur romifritus, n. sp. Pl. I, fig. 12.
Shell shortly fusiform, whitish; whorls 5 , first two smonth. convex, forming a dome-tike apex, two following consex, with four spiral lire, of which the uppermost is finer than the rest; last whorl with five primeipal lire, and ahout thirteen murlh
finer oncs below them ; the stronger lire, like those on the spire, are more or less nodose by being crossed by rather faintly developed longitudinal plicae, about fifteen on the penultimate volution; aperture pyriform; columella arcuate above, oblique auteriorly; canal oblique, recurved.

Length, $7 \cdot 5 \mathrm{~mm}$. ; diameter, $3 \cdot 5$. Aperture, 3.5 long.
Station 194: 180-200 fathoms.
In general features rather like P. mumdur, but having less pronounced cancellation, a different apex, and finer spirals on the lower part of the body-whorl.
33. Pareuthria innocens (Smith).

Theskia innocens?, Smith, " Diseovery" Gastropoda, p. 4, pl. I, figs. 1-1s (1907) ; Hedley, Brit. Antaret. Exped. 1907-9, Biol., vol. II, Mollusea, p. 6.
Pareuthria innocens: Thiele, Deutsehe Südpolar-Exped., vol. XIII, p. $21 \stackrel{2}{2}$, pl. XIII, fig. 23 : pl. XVI, fig. 22, radula.
Stations 316, 331: 190-250 fathoms.
This species was originally doubtfully assigned to the genus Theshin, but the study of the radula hy Thicle shows that it is practically the same as that of Pareuthria.
34. Nealucecimem catomi, Smith.

Neobuccinum eatoni, Smith, 1875. For full synonymy see Lamy, Deuxième Expéd. Antarct. Franç., Gastropodes, p. 5 (1911) ; Hedley, Brit. Antarct. Exped. 1907-9. Biol., vol. II, Mollusea, p. 6, pl. I, figs. $11-1 』$.
Station :30: 160 fathoms.
Although only one dead shell was hrought home by the expedition, it is said to be "abundant in five to sixty fathoms" (Hedley).
35. Neoluccinum temerum, Smith.

Neoluceinum tencrnm, Smith, "Discovery" (iastropoda, p. 2, pl. 1, figs. 2, 2A (1907).
Probuccinum tenerum: Thiele, Dentsche Siidpolar-Exped., vol. NIII, 1. 211, pl. XIII, fig. 21, shell, 21_{A}, rperculum ; pl. XVI, fig. 21, radula.

Stations 331, 340, 356:50-250 fathoms.
Three specimens rather older and more thickened than the type, and consequently hardly pelhocid. The very slight modification in the radula, form of the shell and operculum does not seem sufficient to warrant generic distinction.
36. Voluthervie chucorti (Lamy).

Buccinum churcoti, Lamy, Deuxième Expéd. Antaret. Franç., Gastropodes, p. 4, pl. I, figs. 1-2 (1911).

Station 194: 180-200 fathoms.
Two specimens, the larger much hroken, 22 nnm. in length; the small one, evidently young, only 13 . Buth have the spire more or less eroded, and even more ohtuse than ats represented by Jamy's fig. 1.

The soft parts acompany the shell, and since they present no operculum, and taking into ronsideration also the genemb form of the shell, 1 an inclined, until the ammal has heen investigated, to place this species in the gemus Volulhmya.
37. Trophon Iom!stu!if, Smith.

Trophon Iomystali, Smith, "Discovery" Gastroponla, 1. 3, pl. I, fiys. 3-31, (1907) ; Helley, Brit. Antarct. Exped. 1907-9, Biol., vol. II, Mollusea, 1.8. , 1l. I, fig. 14.

Station 3:31: 250 fathoms.
A single specimen was found by Mr. R. E. Priestley, at "Lians Cove, Terra Nova Bay, Victoria Land, in glacier 30 feet above sea level." Possilly carried to this place by a hird, or, heing very light when devoid of the amimal, hown there by the high winds which prevail in that indement region.
38. Trophum comlmamensis, Smith. Pl. I, fig. 14.

Trophon coumanensis, Smith, "Discovery" Gastropoda, p. 3, pl. I, figs. t-43 (1907) ; Thicte, Deutsche Sidpolar-Exped., vol. XIII, p. 212.

Station 194: 180-200 fathoms.
A single sperimen from this station contaning the amimal is rather larger than the type, and some of the lamella on the back of the body-whorl are produced into hook-like hollow spines.

It is 195 mm . in length, 10 in diameter, and consists of six rolutions.
39. Trophou shuckilitomi. Hedley. Pl. I, fig. 15.

Trophon shuchletoni, Hedley, Brit. Antarct. Exped. 1907-9, Biol., vol. II, Mollusca, 1. 7, pl. I, fig. 13 (1911).

Stations: : $16.340,355$: $160-300$ fathoms.
This species is quite distinct from T. comlmemensis, differing in having the whorls at the shoukder just below the suture rounded, and not talulated or angulated. In

40. Tropltum dry!twlakii, Thicke.

Trophon dryghlifiii, Thiele, Dentsche Suidpular-Exped., vol. XIII, p. 21:3, pl. XIII, fig. 25: (1912).
Stations 316, 340: 160-250 fathoms.
One specimen from Station 340.8 mm . long, and $3 \cdot 5 \mathrm{in}$ width, and a smaller one from Station :iff. Remarkalle on acoment of the very mumerous, delicate, and somewhat wary lamella, abont twenty-six on a whorl. Nowe the shoulder the rolutions in these specimens are less sloping than as representer by Thiele's figure, and the columella is not so staight, inclining to the left anteriont:
41. Mar!inella luytina, Thiele.

Marginella hyalina, Thiele, Dentsche Suidpolar-Exped., vol. XIII, p. 213, pl. XIII, fig. 26 (1912).

Stations $316,331,339,340: 140-250$ fathoms.
This species was described hy Dr. Thiele from very young specimens, only $3 \cdot 5 \mathrm{~mm}$. in length. The largest "Terra Nova" shell is 14 mm . long and 7 in width, and the aperture is 11.5 mm . in length, and 3 wide. Although this specimen may be adult, it does not exhilit any thickening of the labrum.
42. Volutomitra firayillima, Watson.

Volutomitra fragillima, Watson, "Challenger " Gasteropoda, p. 263, pl. NIV, fig. 7 (1885).
Paradmete typica, Strebel, Schwedisch. Südpolar-Exped., Gastropoda, p. 22, pl. III, figs. $35 A-35 \mathrm{~F}$; Melvill and Standen, Voy. "Scotia," Zool., vol. V, p. 131.
Station 194: 180-200 fathoms.
The Kerguelen shell figured by Watson has a much shorter spire than other specimens from the same locality which agree perfectly with Strebel's figure of Parudmete typiar. The specimen in the present collection is of the same form, having the produced spire.

With regard to the generic position of this shell it appears to me to agree in all respects with Volutomitre grönlandica, and consequently the genus Paradmete was not required. The animals of these Antarctic forms are as yet unknown, but it is possible that, when they have heen investigated, they may be foum to offer characters sufficient to separate them from their northern allies, in which case the genus Paradmete will become available for their reeeption.
43. Almete delicutula, Smith.

Admete delicatula, Smith, "Discovery " Gastropoda, p. 4, pl. I, figs. 5, 5a (1907).
Station 316: 190-950 fathoms.
A single dead shell only, hut agreeing in all respeets with the type.
I. entercticu, Strebel (Schwedisch. Siidpolar-Expen., Gastropoden, p. 21, pl. IV, figs. $4 t \mathrm{~A}-\mathrm{c}, 1908$), is closely allied to the present species, but the spire is rather shorter and the spiral sculpture finer.
44. Dentalium majorimum, Mabille and Rochehrune.

Dentalium majorium, M. and R., Mission S'cientifique du Cap Horn, Zool., vol. V I, Mollusques, p. 100, pl. TV, tig. 10 (1889) ; Pilsbry, Man. Conch., vol. NVII, p. 27, pl. XII, figs. 98, 99 (copy of Mab. and Roche.).
Station 194: 180-200 fathoms.
The specimens from the above station agree exactly with the figme, but the largest of them is only 24 mm . long, whereas the type appears to be ahout 50 mm . The longitudial costre are about 18-20 in number anteriorly, fine, yet not acute, rather miform in thickness, and a trifte narrower than the intervening grooves. The fine stribe of growth are a little oblique.
45. Lismoted motnendensis. Melvill and Standen, var. Pl. I, figs. 16, 17.

Lissarca notrearlensis, 11. and ふ., Voy. "Scotia," Zool., vol. V, p. 114, pl. figs. 14, 14a (1909).
Stations 194, 314, 316, 8:31, 339. 340. Depth ranging from 140-457 fathoms.
The specimens from the above stations differ slighty from typical examples from the Gouth Orkney lskmls. They are thimer amd not quite of the same form, the hinge-line being a little shorter, so that the valves have a less bomd-shonldered appearance.

The momber of the hinge-teeth is variable. Melvill and Standen state that there are "five on each side of the hinge-plate." I have carefully examined two examples from the sonth Orkneys, and find in both valves six in front of the central ligament and four behind.

In the "Tera Nova" specimens also similar variation as regards the hinge-teeth is observalle, as indicated helow.

Right valve		Anterior.		Posterior.	Three speeimens from Station 331.
	-	- 5		$3)$	
", "	.	- 5		3	
" \quad "	.	- 5		5	
Left ,"	.	- 5		3	
" "	.	- 5		3	
" , "	-	- 5		3)	
Right .,	.	6		5 \}	A speeimen from Station 194.
Left		6		5	A specimen from Station 194

The inner margin of the valves is described as "crenulate," bint it shonld have been stated that on the rentral side, where the hyssns would pass hetween the valves, the edges are smooth. The denticulation in the "Scotia" specimens is a little stronger than that of the "Terra Nova" shells.

Lissarct fommeni (Lamy*), if not a variety of the present species, is very closely related, and L. kergulensis (Thiele \dagger) is hardly separable. The species is probably circumpolar, and exhibits slight modifications in different localities, as indicated by the variation in the "Terra Nova" specimens, from those described from the South Orkneys.
46. Limupsis. marionerusis, Smith (?).

Limopis murionensis, Smith, "Challenger" Lamellibranchiata, p. 254, pl. XVIII, tigs. 2-2ß (1885).

Stations 316,349 : 80-250 fathons.
Unly two worn dead ralves were obtained, and it is consequently diffoult to determine with certainty to which speries they lelong.

[^8]
47. Limopsis lilliei, n. sp. Pl. I. fig. 18.

Shell quadrately rommed, rather convex, a little inequilateral, very slightly noader hehind than in front, covered with a yellowish pilose periostracum ; hairs very short, glossy, golden, crowded, arranged in concentric and ladiating series, some of the latter, $\frac{1}{2}-\frac{3}{4}$ millim. apart, having coarser setae than the very delicate intervening series; valves rather thin, a little shorter in front than hehind, broadly curved anteriorly, a little higher and less curved posteriorly, ventrally very broally areuate, white within, very delicately radiately striated, exeept a narrow smooth band along the lower margin, and a smooth space on each side defined by a faint ridge enclosing the large sulpyriform adductor-scars ; margins smooth, not crenate; hinge-plate narrow, with three or four denticles on each side of the elongate triangular ligament; umbones obtuse, eroded at the tip.

Length, 14 mm . ; leeight, 13 ; diameter, 7.
Stations 331, 339. Mcllurdo Sound, 250 and 140 fathoms.
This species is apparently quite distinct from any of the known Antaretic forms of Limopsis, and is chefly distinguished by its beautifully and delicately setose periostracum, and also by the unsually liroad form. A single valve from Station $3: 39$ is rather narrower posteriorly than the type from Station 331.
48. Limopsis gromelis, Smith.

Limopsis grandis, Smith, "Discovery" Lamellibranchiata, p. 5, pl. III, figs. 7-7̄ (1907); Thiele, Deutsche Siidpolar-Exped., vol. NIII, p. 228.

Station 355. Mc.Murdo Sound, 300 fathoms ; also off new land, south of Ballene Island, in 200 fathoms.

A number of specimens in fresh condition, showing that the periostracum is light brownish rather than "yellowish," as originally described.

It has been suggested by E. Lamy* that this species is the same as L. joussenumei, Mab. and Rochebr., but on the other hand Dr. Thiele has shown that they are distinct, on account of certain hinge-characters.
49. Aldacnarea nitens, Pelsencer.

Aducnarca nitens, Pelseneer, Voy." Belgica," Mollnsca (1903), pp. 2f, 41, pl. VII, figs. 83-88; Smith, " Discovery" Lamellibranchiata, p. 5, pl. TII, figs. 6-6c ; Lamy, Expéd. Antaret. Franç., Pélécyp., p. 19 ; iu., Deuxième Expéd., Pélécyp., 1. 27 ; Thiele, Deutsche Südpolar-Exped., vol. N1II, 1'. 228 ; Hedley, Brit. Antarct. Exped. 1907-9, Biol., vol. I I, Mollusea, p. 3.

Stations 194, :316, 338, 339, 340, 356. Depths, 50-350 fathoms.
Apparently a circumpolar form.

[^9]50. Philourne limuides, Smith.

Philobrya limoides, Amith, "Discovery" Lamellilnamehiata, 1. \&, f1. IH1, figs. 2-2B (1907) : Hedley, Brit. Antarct. Exped. 1907-9. Biol., vol. I1, Mollusca, p. B.

Stations $194,294,314,316,331,339,340$.
Mr. James Murray, in his preface to Mr. Modley's report, states that this speries and Limu horlfsemi were abumbant. The largest sperimen from Station $3: 39$ exeede: the dimensions given in the "Diseovery" report. It is 9.75 mm . in length, $10 \cdot 25$ high, 5 in diameter.
51. 'Wlomyl: collueckit (Smith).

Pecten colberki, Smith, Report "太outhem Cross" Mollusca (190\%), p. 212, pl. IXV, firs. 11 ; "Discovery" Lamellibranchiata, p. 6, pl. IIT, figs. 9, 9A: Lame, Deuxiome Experd. Antarct. Française (1908-1910), p. 2̈:"; Melvill and Standen, Voy. "Scotia," Kooll., vol. V, p. 116; Hedley, Brit. Antarct. Experl. 1907-9, Biol., vol. I1, Mollusca, P. 3: Thiele, Deutsche Siidpolar-Exped., vol. XIII, p. 225.
Pecten racoritzai, Pelsencer, Voy. "Belgica," Mollusca (1903), p. 27, pl. VIII, figs. 101-102 ; Lamy, Expécl. Antaret. Framę., Pélécyp., 1. 16, pl. I, tigs. 19-21.
Station 35 and on shore Evans Cove, Terma Nova Bay.

52. Limu (Limutulı) Lort!semi, Smith.

Lima (Limatula) hodgsoni, smith, "Discovery" Lamellihranchiatin, p. 6, pl. TIT, figs. 9-9A (1907) ; Helley, British Antarct. Experl. 1907-9, Biol., vol. II, Mollusea, 1. 3; Thiele, Deutsche Siirlpolar-Experl., vol. NIII, p. 226.
Stations 194, 316, 331, 339, 348, 355, 356: 50-300 fathoms. and " Evans Cove, Terra Nova Bay, in glacier, 30 feet above sea level " (R. E. Priestley).

Apparently very abmidant. "The Limm is constantly present at depths of twenty-five to eighty fathoms. Very commonly the animal is embeded in a sponge, usually in one of the softer horny kinds" (J. Murray in the preface to Mr. Heclley's report).
53. C'arditu ustartoides, Martens.

Carditu usturtoides, Martens, Sitzungslerichte Gesell. Nat. Fremulc, Berlin, 1sis, p. 2. : Smith, "Challenger" Lamellibranchiata, 1. 212, p. XV, tigs. -̈-2c; Lamy, Expécl. Antarct. Franç, Péléeyp., p. 14 : Smith, "Diseovery" Lamellilnanchiata, p. 2: Aamy, Deuxième Expéd. Antarct. Frauçaise (1908-1910). p. 21 : Thiele, Deutsche SiidpularExped., vol. XIIT, p. 230, pl. XVTII, fig. 10.
Stations 194, 294, 316, 331, 339, :340, 355: 140-300 fithoms.
54. Kellir simulums, Smith.

Kellin simulans, smith, "Discowery" Lamedlihrancliata, p. ㄹ, pl. III, fiss. 1 (1907): Lailuy, Heuxième Expél. Autarct. Frangaise (1908-1910), p. 20.
Stations 194, 331: 180-250 fathoms.
Only five sperimens were obtained. The largest of them is a trifle larger than the type, heing 8 mm . long, 575 high, and 3.75 in diameter. In describing this speries vol. 1.
it was stated that there were two small cardinal teeth in the left valve. One of these, immediately beneath the umbo, shoukd perhaps be regarded rather as a thickening of the hinge-line than a tooth. The second distinct denticle is just in advance of the mubo.
55. Tellimya anterctica, Smith.

Tellimyı antarctice, Smith, "Discovery " Lamellibranchiata, p. 3, 11. 1I, figs. 16-16в (1907).
Station 331. Off Cape Bird Peninsula, entrance to McMurdo Sound, 250 fathoms.
Only two specimens obtainel. ''ycmium suldqualratum, Pelsencer,** is the same size and very similar in form, but is deseribed as llattened and reddish brown. Montrumin rlumoti, Lamy, \dagger and Tellimya mimimm, Thiele,\ddagger are also closely allied to the present species.
56. - Inctime elliptier, King and Broderip (1831).

For references and synonymy, see Lamy, Deuxième Expéd. Antarct. Française (1908-1910), Moll. p. 21.

Cape Evans. MeMurdo Somel, Fehrary 8th, 1911, in 5 fathoms (1. (. Lillie).
A single specinen contaning the animal. The species has a circumpolar range, and also occurs at Kerguelen Istand. Mr. Hedley (Brit. Antarct. Exped. 1907-9, Moll. p. 3) states that it was found "abundant from $7-30$ fathoms."
57. Throncin meridionulis, Smith.

Thrucia meridionalis, Smith, "Challenger" Lamellibranchiata, p. 68, pI. VI, figs. 4-4s (1885) ; "Discovery" Lamellibranchiata, p. I ; Lamy, Expéd. Antarct. Franç., Pélécyp., p. 15 ; id., Deuxième Expéd., p. 2.2 ; Hedley, Brit. Antarct. Experl. 1907-9, Biol., vol. II, Mollusca, p. 3.
Stations 316, 3:31, 348, 349, 356, and Evans Cove, Terra Nova Bay, Victoria Land, $: 30$ feet above sea level in glacier (R. E. Priestley).

A single dead valve only from the last locality, prohahly hlown there.
2. NEN ZEALAND.

1. Helcimiscols rediens: (Gmelin).

Patella rudiuns, Gmelin, Syst. nat., p. 3720 (1790).
Helcioniscus radians: Pilsbry, Man. Conch., vol. XIII, 1'. 139, pl. LXIX, figs. 25-39, pl. XXIII, figs. 4, 6-8; Suter, Man. N.Z. Moll., p. 81, pl. VII, fig. 13.
Station: Bay of Islands.
One sperimen The species is very vaiahle, very common, and widely distributed throughout New Zealand. /1. ontipmelem (Smith), regarded by Suter (Manual, p. 79) as a separate species, I now regard as a variety of II. rodians. The figures illustrating

```
* Voy. "Belgica," Mollusca (1903), p. 15, pl. IN, fig. 124.
\dagger Expéd. Antarct. Franç., Pélécyp., p, 13, pl. T, figs. 13, }14
\ddagger Deutsehe Sürlpolar- Experl., vol. N゙III, p. 2St, pl. XVIll, fig. 13.
```

Suter's work, although here guoted in the text. have mot yet been issuted, but were "expected to he available be the end of 1914 ."
2. Cintharihles mefnzoma, A. Adams. Pl. I, fig. 19).

Cunthiridus rufuzona, A. Adams, Proc: Zone. Soc., 1851, 1. 170.
 id., Man. ※゙.\%. Mohl, p. 12T, pl. NXNT, fig. 16.
Station 134, near North Cape, New Zealand: $11-20$ fathoms.
This shell is described lyy suter as "rather thin," hut this is not the fact. since. for athell of such small size. it rertainly is rather solid. It varies in form. some specimens leing natrower than others, and the spiral liae are sometimes fewe and coarser.
3. Sollevirlle rgeme, Gould.

Solarinn eqewm, (Gould, Proc. Bost. Soc. Nat. Hist., 1849, vol. III, 1. 84; id., US. Explor.

Monilen egena: Pilsbry, Man. Concho, vol. XI, p. 253. pl. XXXVII, fig. 13; Suter, Man. N.Z. Moll., 1. 141, pl. XXXVII, fig. 25.

Margarite dilertr, 1. Adams, Proc. Zool. suc., 185t, p. 40 : Pilsbry, op, cit., p. 4 il.
Station 1:34, near North C'ape. New Zealand: 11-:20 fathoms.
This speries, miginally described as a soldrimm, has since heen plateed in the genus Tomimin hy W. B. Marshall,* in Jhmiten by Pilsbry and Suter, and now is referred to sholevirlle. Huttont has desoribed this shell as Jhmilon zrlamlied, and sowerlof has figured it with the same sperific name, but placed it in the gemms IFer!ureritu.
 is undoulstedy incorrect, and is merely one more instance of the many errors of this kind met with in the Cuming collection. The genus Minolue, A. Allams, 18fi0, with IV. pumbtura, A. Al... as the type, is apparently equivalent to Solmivelln of Searles Wood, $18 t^{2}$. The hatter hats been retained by Pilshry for vertain northern forms. Momilen. Swainson, should be regarded as heyond recognition, being foumded mpon some maknown precies, and not upon the 'Truchns culliferus, Lamark, as stated hy P'ilshry:
4. Sollmiella micotula (Murdoch amd Suter), var.
 figs. $47-49$ (1906).
Monilea plicatulu: Suter, Man. N.Z. Moll., p. 142, pl. XXXII fig. 12.
Station 13t, near North Cape. New Zeatand: 11-20 fathoms.
Two specimens differing from the typieal form in having the longitminal

* 'Tryon's Man. Conclı, vol. 1X, 1. 22, pl. V'1, figs. 2:2, 23.
\dagger Cat. Marine Moll. N.Z.. 1י 40 (1873).
\pm Conch. Icon., vol. XX, ןl. H. fig. 17 .
plications upon the upper part of the horly-whorl amost obsolete, and the two "iremmmbilical carine are almost smooth, whereas in the type they are described as "headed."

5. Astreer helintropiull! (Martyn).

Troclus leliutropium, Martyn, Univ. Conchol., vol. I, pl. XXX (1784).
Astralium leliotropium: Pilshry, Man. Conch., vol. X, p. 228, pl. LVI, fig. 87.
Astrea helietropinm: Suter, Man. N.Z. Moll., p. 166, pl. XLI, fig. 1.
Station 134, near North Cape, New Zealand: 11-20 fathoms.
This species should be regarded as the type of Bolten's genus Astrom,* since (as 1. imperialis, Gmelin) it heads the species he quoted.
6. Litorima mauritiene (Lamarck), var:

Phasionellt muuritiana, Lamarck, Anim. s. Vert., vol. V II, p. 54 (1822).
Litorina mauritirma: Suter, Man. N.Z. Moll., p. 188, pl. XXXV1II, fig. 28.
Mal.-Bay of Islands, New Zealand.
The type of L. mouritiana, tigured by Delessert, was an inch long, but the New Zealand form of the species, according to Suter, does not exceed half that length. However, heyond this difference in size, there do not appear to exist any features by which they can he separated. L. umifosecter, Gray; L. diemenensis, Quoy and Gaimard ; L. ucutu, Menke ; and L. antiporlon, Philippi, are synonyms.
7. Turritella cittute, Hutton.

Turritella (Hurstator) vittatu, Hutton, Cat. Marine Moll. N.Z., p. 29 (1873) ; id., Man. N.Z. Moll., p. 84 (1880).
Turritclla curlottre, Watson, J. Limn. Soc., vol. XV, p. 222 (1881) ; it., "Challenger "Gasteropoda, p. 478 , pl. XXX, fig. 5; Suter, Man. N.Z. Moll., p. 266, pl, XXXIX, fig. 19.
Station 134, near North Cape, New Zealand: 11-20 fathoms.
The name cittrtu, Hutton, has heen discarded by Murdoch and Suter \dagger on the ground that Lamarck had already used that term for another species. Since, however, I have failed to find any reference to such a species, either in Lamarck's or any other author's writings, I here adopt Hutton's name, which has eight years' priority over Watson's comlutce.

Mr. Hedley's observations \ddagger upon the "Challeuger" specimens are altogether incorrect with regard to two out of the four specimens probably being from Bass Straits. The two shells referred to are examples of T. symmetrica, Hutton, and doubtess were dredged with the two other specimens on the same tablet in Queen Charlotte Soumd. The shell from East Moncour Island, Bass Strait, quoted by

[^10]Watson，is preserved in a lox hy itself，amd is distinet．It writently wats not seen ly Mr．Hedley．

T．rittuta attans much harger dimensions than those given ly Juton or suter． The latter guotes a suerimen from Chamel latand， $5:$ man．hong ；hut a shell presented to the British Musemm in 18.50 ly the Rev．R．＇Taytor has a length of 85 mm ．．and the last whorl is $1!$ mm．in diameter at the periphory．

8．Crepichula mumnxyla（Lesson）．
Calyptrean（Cropidula）momoryln．Lesson，Voy．＂Cixpille，＂p． 391 （1830）．
 Quoy and Gaimard；Harris，Cat．Tertiary Moll．Anstralasia，p． 246 （1897）．
Crepitula contorta，Quoy amd Gamarl，Voy．＂Astrolabe，＂Zool，vol．III，p．H1s，pl．LXXII， figs．15， 16 （1835）．
Crypta profemic，Hutten，Cat．Tertiary Moll．N．Z．，1． 14 （187：3）．
Crepiduln arepidula，Hutton（non Linn．），Index Fauna N：Z．，1． 79 ：Sinter．Man．N．Z．Moll．． 1．286，pl．XLJ V，fig．5，5a（1901）．
Crepidula（Ianarus）unguiformis，Harris（non Lamarck），opp．cit．p． 248 ．
Station 134．near North Cape，Now Zealand：11－20 fathoms．From mouths of shells inhabited by Hermit C＇rals．

Although this species has a very elose resemblance to the Meditermean （ $:$ ．r epmblut there is one feature．at least，hy which these two forms may be distinguished．Deshayes＊hats pointed out that in 1＇．＇rophluln the shells present a notch at the right extremity of the internal septum where it joins the wall of the shell．This is not met with in C：mmoryln．The septum is described by Lesson ＂rectiligne ì son hord libre，＂and Quoy and Gamard＂haracterise it as＂lisse et droite．＂

I have examined a large series of the New heatand shell，and have not found a trace of a noteh．

The shells are very variable in form，according to the olject to which they are attached．When the surface is Hat or convex the Ciepliduln assumes an arehed form，lint when resting on a concare surface，such as the interion of Gastropod shells， then it heromes almost that．It may be notired that in convex sperimens the septum is ahmost that or even concare，wherens in Hat examples it beemes are hed or convex．

9．Creppichula costuta，Sowerly．
（＇repidula costata，Sowerby，（ienera Rece and foss．shells，part 23．pl．152，fig．3（1824）；Suter， Man．N．Z．Moll．，p．2si，pl．NLIV，figs．f，ga ；Quny and Camarl．Voy．＂Astrobale，＂ Zool．，vol．III，p．+14 ，ן1．LAXII，figs．10－1…
Crepidulu costata，Deshayes，Encyelop．Méthon．，Vers，vol．IT．part シ̈．1．obf（1830）；inl．，Anim． sans Vert．，ed．-2 ，vol．V＇II，1．644．
On beach，Spirits Bay，near North Cape，New Zealamd．

A very common shell, which has been referred to the C. "rulenta of Gmelin by Hutton. Harris, and Tryon. and Siter also appears to be of the same opinion, although he adopts Sowerby's name because, he says, it "was first figured." This, however, is not trme. since Gmelin's C. aruloutn was figured by Chemmitz in 1788. The latter, however, is a very different shell from C. costutn, and does not oecur in New Zealand. It differs from the New Zealand species not only in its form and prickly scupture, hut also in the chanacter of the internal septum, which has a waved free margin, and not an almost straight margin, as in rostutn.
10. Sígepatella morer-zelandiar (Lesson).

Culyptran (Sigapatella) norx-zelandix, Lesson, Voy. "Coquille," Zool., vol. I1, p. 395 (1830).
Calyptrea novezeelandix: Suter, Trans. N.Z. Inst., vol. XXXVIII, p. 326 (1905).
Crepitula maculatu, Quoy and Gaimard, Voy: "Astrolabe," Zool., vol. III, p. 422, pl. LXXII, figs. $6-9$ (1835).
Calyptraa maculata*: Deshayes, Anim. sans Vert., ed. ٌ. 2 , vol. VII, p. 628 ; Suter, Man. N.Z. Moll. p. 28.5, pi. XIV, figs. 3, 3A (subgen. Sigaratecla).

Station, on the beach. Spirits Bay, near North Cape, New Zealand.
Although Mr. Suter ardmits that Lesson's name has prionity over that of Quoy and Gamarl, he adopts the latter beause the speries was first figured by these anthors. But this conclusion is not admissible, since a species, if recognisable from an unillustrated destription, most always be aecepted.

With regard to the generic position of this shell it seems to me to differ from C'ulyptrone sufliciently to warrant its separation. The whacter of the septum in C. chinensis, Limn., the type of Calyptrem, is different.

The genus Sibuyathla has the septum with a simple curved free margin, whereas in Calyptiond starting from the rentre or umbilical region, it juts out to a point and then recedes.

In the Cuming collertion there are three very fine specimens (the largest 36 mm . in diameter) labelled "rommm-notutu, Sowh." These sperimens passed through Gray's hamds when preparing his revision of the ('alypitapidn,t and without referming to Sowerhy's deseription \ddagger and roncluding that these shells were correctly named, he naturally placed the species in the synonomy of mombutu, Q . and G . They certainly are quite distinct from (: commm-notutu, said to have a central apex and to come from the coast of C Guinea.

[^11]
11．Siguputella collyptrafommin（Lamarrk）．

Calyptrea lomarrki，Deshayes，Entyol．Mithont．，Vers，wol．II，1＇．170（Lぶ30）．
 11．LA゙ざII，tigs．1－．i（1がす）．
Trorhitn colyptreformis：Receve，Conch．Icon．，vol．S゙1，tis． 11 （septum tow decply areuate）．
Culyptreat colyptraformis：Pritehard and（iatlill，Proc．IR．Sow．Victoria，vol．XII，1． 199

Station 1：3t．near North Cipe．New Kealand：11－20 fathoms．
This species，which also oceurs on the const of New somtly Wates and somth
 ＂rather more spirally comvoluted．＂Other differences are the barger prombtimate whorl， the spire nearer the centre and the mombilion lese marked and not so near the side．The periostram are not quite the same，and althongh the interion of the shell is misually tinted with a purphish flesh－oolour，it is not marked with dark puplish hrown or purple，like nore－zelumble．The septum is usmally of a more or less lilac tint．whereas in Lesson＇s species it is white．The largest specimen is 30 mm ．in diameter．


```
    Clypeola temuis, (iray. Proc. Kool. Suc., 1867. 1. 735.
    Trochita tenuis: Hutton, Cat. Marine Moll. N.Z., 1. in (187:3).
    Trochitu scutum: Hutton, Jurn. de Conch.. vol. XXV1, p. 30 (1ぶか).
    Colgptrea xrefum: Hutton, Index Famme N.Z., p. i! (1904); suter, Man. N.Z. Moll.,
        1. 284, pl. KLN. fig. 4 (191:3).
```


Station 1：34，near North Cape．New Zealand：11－20 fathoms．
This ppecies has been considered the same as Culyptrom（心̈yn！utella）srutum of Lessun，＊but it semo very doubtfal whether that supposition is comere．There are seremal features mentioned in Lesson＇s deseription which are nat ohservable in the shell before us．Lut the first plare the size niven by Lesson（ 11 lines $=2.2$ mm．）is never reached hy．sto tomis．It is described as＂a touts de la spire plus marpués et phus gramds＂than in Sigmptelle moro－zdmmite．As a matter of fact the whols are traceable with much mode difficulty in tomis．The epidermis is satid to lee＂hlomel dore＂，the colamella＂courte，un peu dilatée at sat base．＂the septum＂echancree em devant．＂and the umbilicus＂prestge nut．＂

Now in s．tomis the perisestmom is so thin that it is gemerally worn off，the columella is hardly diated at the base，the septum is anver，not motehed in fiont amd there wertainly is 10 trame of an umbitionl chink．Lason twion refers to the

[^12]his worls " nacrée, très-lisse" and "nacré brillant" probably are merely descriptive of a highly glossy and perhaps slightly inidescent surface.

It is of conrse possible that a mistake has occurred, and that the specimens he described c:ame, not from New Zealand, but were obtained elsewhere during the same royage.

The South Austratian shells which have been callen Cillyptrom scutum by Gatliff and Gabriel are separable from the New Zealand species, since they have not the hollow axis of that form. They appear more depressed and spread out, and they do not exhilit the finely tubereulous or pustulose external sculpture of the true s. temis.

The septum also in the Australian shell is curved outward, whereas in the New Zealand form it is incurver.

Gray's inadequately describerl types were from New Zealand, and are in the British Museum rollertion.

Since Mr. Hedley was the first to call attention to the difference in the axis of these two forms I have associated his name with the Australian shell.
13. Sithuputella halleyi, n. sp. Pl. 1, figs. 2:3-25.

Gulerus pellucidus: Angas, Proc. Zool. Soc., 1867, p. 211.
Culyptrea pellucida: Tate, Trans. R. Soc. S. Aust., vol. XVII, J. 199 (1893) ; Tate and May, Proc. Linn. Soc. N.S.I'., vol. AX'I, p. 376 (1901).
Culyptrea scutum: Gatliff and Gahriel, Proc. R. Soc. Victoria, vol. XXII, p. 38 (1909).
Culyptreat tenis: Hedley, Proc. Limu. Soc. N.S.W., vol. XXXVTII, p. „89 (1913).
Culyptreet calyptreformis, partin: Watson, "Challenger" Gasteropoda, p. 460.
The Tirmhitu pellucidn of Reeve confused with this species is atrue Cillyptron, having the same kind of septum ats 1^{\prime}. chimmsis, the type of the genus.

A single specimen from off East Moncour Island, Bass Strait, named by Watson C. calyptraformis, helongs to the present species.
14. ('mromi",", sp. juv.

Station 134, near North Cape, New Zealand: 11-20 fathoms.
A single young specimen of a "Triton" in perfect comdition, allied to the carly stage of the well-known ('. tritmix (Limn.). It consists of six and a half whorls, of which the first fom and a half form the protocond. These are lirownish, corncous, smooth, convex. The last two volutions are rosaceons, less convex, with spiral series of small pustules and spiral striae between them. There are five rows of nodules on the penultimate whorl and eight or nine on the last, which has an ollique curved rounded varix on the left side and a similar one ontside the labrum, which is thickened within with a fine whitish riblet bearing twelve very small notules. The columella is
straightish above then whinge at the manal, atme which there is a slight callus and two or three obligue wrimkes. The aperture is of the same rose tint as the exterior, irregulaty oval, and abont half the lemgth of the whole shell.

Length, 11.5 mman : diametere, 6 .

 nomal whons are finely pinally strated. and withont rews of pustuks.
15. I Brillum ('Msira) hicomicmm (Murdoch and Snter).

Tulpecula (Posia) biconian, Murloch aml Suter, Truns. N.Z. Inst., vol. NXXVIII, p. D89, 1l. ANIII, fig. 2シ (1906).
Station 134. near North ('ape, New Zealiand: 11-20 fathoms.
 Ihaton, it tertiary fossil from Winganu, hat judging from his desspiption and figure there seems sutficient difference to separate these two forms. Moreover, an allied fossil species of Witrithe had aheady been desoribed by Lamanck \ddagger muter the name llitro mur!:!imetro.

1fi. Vimomille dilatutn (Quoy and (iamard).
Fusus dilatatus, Quoy anl Gamard, Voy. "Astrolabe," Zool., wol. 1I, p. 498, pl. XXXIN, figs. 15, 16 (18:33).
Vercomella dilututh: Iredale, Proc. Malac. Soce, vol. XT, p. 175) (1914).
Station.-New Zealand.
17. I'tromella norloser (Martyon).

Buccinum uodosum, Martyn, Univ. Conch., vol. I, fig. : 5 (1784).
Station.- Mouth of Bay of Islands. New Zealand: 20 fathoms.
18. ('mumimella retspersish (Bruguière).

Bucinum adspersum, Bruguière, Encecl. Méthod., Vers, vol. I, p. 265 (1789).
İncrimn! muculatun, Martyn (nec Linné), Univ. Conch., vol. II, tig. 49 (1784).

Station 134, near North C'rpe, New Zealand: 11-20 fathoms.
19. . Wretheriar curmeta, vill: I'l. I, fig. :38.

Buciomm cormutum, Bruguière, Encyel. Itéthot., Vers, vol. 1, p. 277, no. 46 (178:9).

Station 1:34, near North ('upe, New Zatand: $11: 0$ fathoms.
The single deat shell is mather marower than typical examples, has flattish whoms

```
* Man. N.Z. Moll., 1, 36:3.
\dagger Trans, and l'roe. N.Z. Inst., vol. N`\I1, p, 315 (1885).
```


and rather a feehle eolumellar callus. This species has not been recorded from New Zealand. It has a wide distribution from South Africa to the Pacifie.
20. T'oluta (1leithue) arohbich, var. depressas. Pl. 1, figs. 26, 27.

Buccinum armbirum, Martyn, Univ. Conch., vol. II, fig. 52 (1784).
Fulguraria (Alcithoe) arabien: Suter, Man. N.Z. Moll., p. 445 (for synonymy), pl. XLVIII, fig. 5.
Var. Fulguraria (Alcithoc) depressa, Suter, op. cit., p. 447, pl. XLVIII, fig. 7.
Station 134, near North Cape, New Zealand : 11-20 fathoms.
Beyond the fact that the spire is less produced, I do not olserve any distinguishing feature in Mr. Suter's I. demessor. The character of the markings, nodulation of the whorls, and the columellar folds are precisely the same as in the typical form.
21. Voluta (Acithre) ! mrucilis, Swainson.

Voluta gracilis, Swainson, Quart. Journ. Sci. Lit. Arts, vol. XVII, 1. 32 (1804).
Cymbiola grecilis, Swainson, Exotic Conch., ed. 2, p. 20, pl. XLII.
Fulguraria (Alcithne) !rracilis: Suter, Man. N.Z. Moll., p. 448, pl. XLVIII, fig. 8.
Station.-Mouth of Bay of Islands, 20 fathoms; Station 90, Three Kings Islands, 100 fathoms; Station 134, near North Cape, New Zealand, 11-20 fathoms.

The generic name used by Mr. Suter is given Fulgororia by Sehumacher, not Fulyuroriu; and the species described in 1824 apparently was not figured in the first edition of the "Exotic Conchology."
22. Ancilla mucromuta (Sowerby).

Ancillaria mucronata, Sowerby, Species Conchyl., p. 8, figs. 47, 48 (1830); Kiencr, Cor. Viv., p. $7, \mathrm{pl}$ III, fig. 3 (1843).

Ancillaria pyramidalis, Reeve, Conch. Tcon., vol. XV, pl. IV, figs. 11 a-11в (1864).
Var. Ancillaria mucronata: Sowerby, jun., Thesturus Conch., vol. I11, 1.63, 11. 211, fig. 11 ; Reeve, op. cit. pl. IV, figs. 10A-10B.
Station 134, near North Cape, New Zealand : 11-20 fathoms.
The figure 47 in Sowerby's "Species Conchyliorum" is a good representation of A. pmpromidalis, Reeve. It shows the acuminate spire of that so-called species, and not the more olotuse and callose spire of A. mumomutn, as depicted in the "Thesaurus Conchyliorum" (fig. 11), and hy Reeve (figs. 10a-10b).

However, I consider that these two forms are not specifically separable. The type ($=1$! $/$ romidulis) is rather hroader than the variety ($=$ mucromutu, auct.), hesides having the more acute spire; lut in the British Museum collection intemediate examples occur.

Weinkauff* and Suter \dagger have placed Reeve's I ? \quad ramiddis in the synonymy, or as a

[^13] there does not appear to be any important distinction.
23. Ameilla mere-zeltuntin (Sowerlay).

Station 134, near North C'ape, New Kealand: 11-20 fathoms.
A. trioulor, Suwerloy,* ner Gray, aml A. mome, Watsom, ame symmyms of this speries. By a slip of the pen or misprint Mr. Suter has given the bame hirolon instead of tricolor.
24. Maramella musurniar, Lamarek.

Murginella muscurin, Lamarek, Anim. sans Vert., vol. VIl, p. 329 (18:2) : Suter, Man. N.Z. Moll., p. 463 (fur synonymy), pl. NL'IT, fig. 21.
Station 134, near North Cape, New Zealam: 11-20 fathoms.
Only a single immature specimen.
25. C'ulumburium suteri, n. sp. I'l. I, tig. 30.

Shell slenderly fusiform, with angular coronate whorls, dirty whitish, with pate hrown spots between the short spines which atorn the middle of the whons; periostracum pale straw colour, deriduous; the two apical whorls large, smooth, whtuse at the top, the rest sloping aloove the middle, which is prominently caminate, the keel heing produced into short spines or acute tabereles. ten on the last whorl. Below the keel the rolutions are contracted to the suture, which is obligue: above the carina, on the last and penultimate whorls, there are three fine spinal thrads, and below it, on the last whorl, there are three rather conser threads, lelow which the rest of the slender rostrum is covered with ohligue, very much finer threads. The keel has one or two spiral striæ upon it, and the whole surface exhibits fine lout distinct striee or lines of growth ; aperture somewhat triangular aloove, produced below into a very slemer straight canal ; outer lip thin, angled at the keel, faintly or shallowly simmated above it; columella covered with a thin glossy callus, which extends from the tip of the canal to the outer lip alose.

Length, 17 mm . ; diameter, 6. Aperture, with canal. 11 in lengtl.
Station 134, near North Cape, New Zealand: 11-20 fathoms.
The minue specimen, julging from the protoconch, is merely the yomg stage of a shell which attains larger dimensioms. It consists only of six whorls, hut its thatacters are so striking that I have not hesitated to found a new series non it.

In general form it considerally resembles (. spmimindu. Martens. from biast Anstralia, hut it differs cousiderally in the details of its omamentation.

[^14]The genus Columbmimm, which, as far as at present known, consists of a very few speries, has not hitherto been recorded from New Zealand. I have associated with this species the name of Mr. Henry Suter, as a mark of appreciation of the immense industry displayed in the production of his "Manual of the New Zealand Mollusca," published in 1913. Although it may he necessary to revise the nomenclature in a considerable number of instances, and occasionally to correct the synonymy, there can be no doubt that this will always remain "standard work, or even the standard work, on New Zealand Mollusea. To have produced such a volume of 1120 pages, without the advantage of eonsulting such complete libraries and collections as we have in this country, reflects the greatest credit upon the author.
26. Irmyilia huttomi, n. sp. Pl. I, fig. 29.

Shell ovately fusiform, whitish, with a pale brown zone round the middle of the hody-whor between the costre, a pure white thread above it, another pale brown hand below the suture, and the anterior extremity stained reddish; whorls $6-7$ probably (tip broken off), convex; the first normal volution with four spiral threads, the rest obliquely eostate, costre about twelve in number, narrowed alove at the suture, extending below the middle of the last whorl, hut not to the extremity; ribs crossed Iy a number of spiral lire (5-6 on the penultimate whorl), and excessively fine strie letween them ; aperture narrow, half the length of the shell ; labrum thickened outside with the last rib, smooth within, faintly sinuated towards the suture ; columella arcuate above the middle, ohlique below; anterior canal oblique, mather narrow, scarcely recurved.

Length, 9 mm . ; diameter, $3 \cdot 75$.
Station 134, near Nortl Cape, New Zealand: 11-20 fathoms.
Allied to M. sinclairii, Smith, hut more fusiform, with less convex whorls, the last being longer in proportion to the length of the spire. The scupture also is different, that of $1 /$ s. surlaivii leing coarser. Named J. huttoni in remembrance of the late Captain F. W. Hutton, F.R.S.

```
27. Area (IBamatiol) moma-zealamdiar, 11. sp. Pl. 1I, figs. 1, 2.
    Arcu decussuta of New Zealand authors (non Sowerby).
    Arcat (Barbrtia) dernssuta: Suter, Man. N.Z. Moll., p. 848, pl. LVI, tigs. 2, 2A (1913).
```

This species, hitherto confused with A. dechssutt, may be recognised by the minute crenulation on the anterior and posterior imer margins of the valves, and also by both the exterior and interior heing more or less stained with a reddish tint. Neither of these features is met with in the true dechssoth, which is always pure white within and without, and its lateral margins are broader, flattened, and invariahy smooth. Although very similar externally, it may be olserved that the radiating seupture upon

Length． 67 mmo．：height， 36 ：diameter：：24．
Station 96 ，morth of New \％ealand： 70 fathoms．
 （シ）colour；（3）fine posterion donsal sonpture－shomh，I think，he sufficiont to separate this species fiom A．dectssemfor of sowerl？
 Dimker，is a symonym．

28．Cilycimeris laticostata（Quoy and（iamard）．
 （ 18.35 ）．
Glycimeris luticostatu：Suter，Man．N．Z．Moll．，p．851，pl．LVT，figs．：3，3．．
Station 1：34，Spirits Bay，near North（＇ape，north of New Zealand：11－20 fathoms．
Two dead ralyes with some egg－capsules of a Gastroporl attached，also incrusting Polyzoin cete．

Whell allied to I ．zolmmlior．Gray，hut flatter，with smaller cars，esperially the anterior anticles：valves thimer，with about twenty－four delicate primeipal costie，with one or two still finer onces in the interening grooves ；all minntely splannose，the sales more＂losely parked in some sperincms than in others ；interior anricle of left valve having about eight theat－like spmate rathating lirae，the one forming the dorsal line stronger than the rest：the posterior auricle similarly seulptured，hut lire fewer： anterion call of right value with a monlemately deep lassal simus，with five ratiating liae alowe，the upper marginal one twice as strong as the rest ；colom pak pinkish or reddish，sometimes showing a few irregula＂paque white matings；interion of the valver ghossy，whiter than the outsible，madiately growed and ridged．

Length． 29 mm ：height， $26 \cdot 5$ ；diancter． $6 \cdot 5$.
Stations 90 and 96, nowth of New Zealand： $70-100$ fathoms．
There is a marked differenee in the size of the anterior ambeles in this speries aml I ．ardmulier，ant besides being Hatter，and more deliate in texture，the present form has a tendency towards aldignity in growth．

 Suter，Man．N．Z．Moll．，p．sis．pl．W＇T，figs．8．8．s．

Station 90，north of New Zabame： 100 fathoms．
Only a few dead values motered with Polyzon，ede．
31. Vemericomelien purpmontu (Deshayes).

Vencricarlin unstralis, Lamarck?, Anim. sans Vert., vol. V, p. 610 (1818).
Tenericardie "ustralis (Lamk. ?), Quoy and Gaimard, Voy. "Astrolale," Zool., vol. Ill, p. 480, pl. 78 , figs. 11-14.
Corditu purpuratu, Deshayes, Proc. Kowl. Suc. 18523, p. 100, pl. X V II, figs. 12, 13.
('arlita quoyi, Deshayes, l.c., p. 103.

Station 134, near North Cape, New Zealand: 11-20 fathoms.
I have not adopted Lamark's name for this common New Zealand shell, although it has been employed in all works on that fama. We have no proof that the specimen ($4-5 \mathrm{~mm}$. in diameter) described by Lamarck is, in fact, the young of this species. It appears to have been considered as such by Quoy and Gamard, but these authors do not state that they had seen Lamarek's type said to be from "Nouvelle Hollande." Moreover, Deshayes distinctly says that the Quoyian species is different, and has given to it the name Carditu gumyi. The shells he had hefore him (now in the British Museum), said to be Australian, belong undoubtedly to the same speries as the New Zealand shells in question.

Mr. Hedley * has made some observations upon this sulject, and in pointing out Deshayes' misquotation of Quoy and Gaimard's plate and figures has fallen into a similar error himself. The rorrect reference is given above, and is not pl. 70, figs. 12-14, but pl. 78, figs. 11-14.
32. Merctra (1/uctrotoma) elongutn, Quoy and Caimard.

Mactra elongutu, Q. and G., Voy. "Astrolabe," Zool., vol. ILI, p. 51s, pl. 83, figs. 1, ᄅ (1835) ; Suter, Man. N.Z. Moll., 1. 965, pl. LX, fig. ㄹ.

Station 184, Spinits Bay, near North Cape, north of New Zealand: 11-20 fathoms.
Two dead valves, encrusted with Gastropod egg-capsules, Polyzoa, worm-tubes, etc.
33. Chione ($\%$ /homelea) xpixson (Deshayes).

Station 134, near North Cape, New Zealind: 11 -20 fathoms.
For syonymy and references see Suter, Proc. Malac. Soe., vol. V1, pp. 202-5; Smith, loe. cit., p. 206 ; Suter, Mannal New Zealand Moll., pp. 991-2, pl. LXII, fig. 4.

A common and variahle New Zealand shell. Mr. Suter still mantains his opinion
 hand, a further study has failed to convince me of the correctuess of that conclusion.
34. C'indium (Nemmedrdium) puldillhm (Giray).

Carlium pulchellım, Gray, Dieffenbach's New Zealand, vol. 15, p. 252 (1843); Reeve, Conch. Icon., vol. II, pl. V IIT, fig. 4:2.
Station 134, near North Cape, New Zealaul: 11-20 fathoms.

[^15]For other references amblowities see suter, Mannal New Zaalaml Mollusian p. 1000 (191:3). This is the only speries of cokte fomm in New Katant.

 (183.5) : Suter, Man. N.Z. Moll., p. 1013, pl. LXil, figs. 10, 10..

Station 134. Spirits Bay, near North Cape. north of New Zealamd: 11-20 fathoms.

36. Tylutryu sumlii (Wright).

Nensitorn sanlii, Wright, Trans. Limn. Soce, vol. 犬゙XV, p, 567 , pl. 6i5, figs. 9-15 (1865)).
Tercilo (Nylotrya) sanlii: Suter, Man. N../. Moll., 1. 1021, pl. 1, V, figs, sa-8b (1914).
The single sperimen in the collection wis taken from the luall of the "Terrat Nova" in Lyttelton Ifarhomr. The general strmetme of the shell agrees with sperimens of N . semlii, presented to the British Museum hy Mr. Suter, hut the charmeter of the pallets is somewhat different, the joints being drawnout and arranged elosely together.

:3. WEST OF FALKLANO ISLANON.

1. Jenelurites iris, n. sp. Pl. II, fig. 4.

Shell depressed turbinate, namowly mmbiticate, thin, whitish, opalescent: whorls 5 , the apical one smonth, ghossy, roumed, opaque white, the rest mather convex, ornamented with spiral thread-like cords, four on the second whol, about six or seven on the next, eight or nine on the penultinate. and about forty on the borlywhol; the threads vary in thickness. some being very much more slender than others; the hody-whorl is obtusely sumangled at the periphery and in the umbilical region is oparue white, smooth exept for some growth-lines; the whole surface of the shell exhibits eurved lines of growth, lint thes are not strong emough to make the spiral lire distinctly granose : the aperture is pearly within, large, subcircular' outer lip thin: columella ohliquely arenate, thickened, white, rethesed, appersed to the umbilical region.

Greater diancter, 14 mm. ; lesser lianneter, 12 ; height. 12. Aperture, 7 mm, across. Station 38. West of Falkland Islands: 125 fathoms.
Three specimens of this beantiful shell were obtaned. The manner in which the columella is reflexed and appressed to the shell is a peculiar feature.
2. Glyptenthriat armmimutu, 11. sp. Pl. Il, fig. 5.

Shell slender, with a long acuminate spire, dirty whitish, spotted irregularly with a light redelish colour: whonls sit first one and a half smooth, romuded, pate brown. forming a mammillated apex. the following whorls ahmst fat at the sides.
slowly increasing, senlptured with slightly curved longitudinal fine costa and spiral lire, the points of intersertion forming small rounded norlules ; costa about twentysix on the penultimate whorl, liaze six or seven; body-whorl contracted below the middle, beneath which the shell is scarcely affected by the longitudinal costa, so that the transverse lire are smooth, and not nodulous; aperture narrow, suboval; lahrum thin at the edge, a little thirkened exteriorly, with about seven slemer, short liae within, a short distance from the margin; columella arcuate above, obligne below, covered with a thin callus.

Length, 15 mm . : diameter, $5 \cdot 5$. Aperture, with camal, 6 mm . long, 2 hroad.
Station 38, West of Falkland Islands: 125 fathoms.
Remarkable for the slender acuminate form. Although the obscure colour markings are somewhat irregular, the light redish spots are mostly at the upper part of the whorls, and the body-whor has an obscure band just below the periphery.
3. Trophton pelsenepri, n. sp. Pl. II, figs. 6, 7.

Shell fusiform, dirty white: whorls $7 \frac{1}{2}$. The apical two and a half, forming the embryonic shell, convex, smooth, the rest sloping above, then angled and contracted below, having longitudinal lamelle, produced alove into hollow backwardly curved spines, spirally lirate rather strongly, and also sculptured with very finely lameliform lines of growth. The longitudinal lamella are about eleven in momber, smooth on the front side, lout sculptured behind with the lines of growth and the spiral lire; aperture pyriform, produced into a rather narrow, oblique, anterior canal; onter lip thickened by the last lamella; columella arouate above, covered with a thin, white callus, joining the outer lip above, and extenting along the camal in front.

Length, 20.5 mm . ; diameter, $9 \cdot 5$. Aperture, with canal, 11 long, 4 in width.
Station 38, west of Falkland Islands: 125 fathoms.
Two specimens. Remarkable for the strong spiral lire and the longitudinal lamella, produced upward into hollow curved spines. The gencral form of the shell is rather like that of T. corduelis, Watson, * foumd in 410 fathoms oft Sydney. Named after Professor Pelsencer of Gheut.
4. Typhis belcheri, Broderip.

Typhis betheri, Broderip, Proc. Zool. Soc., 1832, p. 178; Sowerby, Thes. Conch., vol. IlI, pl. 284 , figs. 8,9 ; in., Conch. Icon., vol. XIX, ${ }^{1}$ I. II, fig. 9 ; Tryon, Man. Conch., vol. II, p. 137, pl. XXX, figs. 300, 301.

Mure.c (Typhie) cleryi, Petit, Rev. Zoul., 1840, p. 327 ; id., Mag. de Zool., 1842, pl. 54.
Station 38, west of Falkland Islands: 125 fathoms.
A splentid series of sixty-seven specimens of this very remarkable shell was

[^16]obtamed. Athongh originally deseribed as from ('ape Blanco. West Afrish, it seems very likely that this locality was incorven, and the Cape blano may have been the prominence with that mame on the cast coast of Patagomia. This seems to be probable. sine I have not motieed any other recond of its orrurenee on the West African const. Moreover, Petit gave the locality " ('ape Saint 'Thomas, Brazil," and now it hats been collected still further south, west of the Falkland Istands.

Most of these specimens are mathed with somewhat intermpted, spiral. redidish, broad lines, alout six on the back of the bobly-whorl. The uper ents of the varices are so much hooked that they anve over and tond the whorls above.

6. Arert (. Inculara) chermmitzi, Philippi.

For syonymy and references see Lamy. Jomrn de Concli., 190t. vol. LV., p. 27.2.

Station 38. West of Falkland Islamels: $1: 5$ fathoms.
Only a single deal valve obtained. It agrees very closely with A. dompigmpi, Kobelt, from the West holies. This species, accorling to Lamy, is the same as rhrmmitzi, Phil. Its known range is from the West Indies to South Brazil. and consequently I am donbtful whether this valve really came from Station 38 ($=$ II.V. 1) . but think it more likely it occurred at Station $42(=$ H.V. 2) off hio de Janeion.
7. C"urdien" deliratulum, 11. sp. Pl. II, fig. 9.

Shell roumlish, a little inequilateral, longer than high, thin, greyish white, with obscure red lish markings ; raliating coste fine, about 38 in mmber, not prominent, those down the middle portion of the valves slightly rommed. with a series of minute tubereles down the midille of each of them, almost three times as broad as the intervening grooves. Eight to ten of the costae on the posterior side are ornamented with distant prominent prickles. and an equal momber of ribs in front exhibit prickles. but not quite so strong as those behind; humbar area lanceolate, smooth, the hingemargin in both valves being reffexed in front of the umbones. Which are smooth at the tip and contignons; interior of the valves whitish. but faintly tinted with pale red or vellow towards the umbones, fincly sulcate ratiately; hinge normal, delisate.

Length. 22 mm . ; height, 20 ; diameter; 14.
Station 38, west of Falkland Islands: 125 fathoms.
This species probaloly attains much larger dimensions than those given above. Joung shells of ('. muricatmm, Limn., which oeeur at the West lndies and along the Brazilian coast as far somth as lio de Janciro, must be rather like the present speries. Their costa. however, would be more clevated, amt the tubereles upon them are attached to the sides amd not down the middle.

4. OFF RIO DE JANEIRO.

1. Turris formensissima 11. sp. Pl. II, fig. 10.

Shell elongate, fusiform, white, excepting a reddish keel below the suture, and a faint reddish zone below the convex part of the boly-whorl ; whorls 13 ? ; apex broken oft: remaining volutions slightly convex, with three spiral keels, of which the central one round the middle is thicker than the other two; between the keels the shell is seulptured with oblique divergent lines of growth, and a spiral thread in each interrarimal space; the suture is also bordered ahove ly a spiral thread; last whorl with five principal keels, and numerous other less pronounced lire below them. The strong raised lines of growth become much finer on the rostrate part of the whorl ; aperture oval above, produced anteriorly into a long, narrow, straightish canal ; lahrum thin, shortly sinuated above at the prineipal carina; columella straightish, smooth.

Length, if complete, about 26 mm . : liameter, $7 \cdot 5$. Aperture, with canal, $11 \cdot 5 \mathrm{~mm}$.
Station 42, off Rio de Janeiro: 40 fathoms.
Only two specimens. Allied to T. antillarm", (Grosse).* but differing apparently in the interearinal sculpture. The uppermost keel also is not so strong as the central one, whereas in the West Indian species they are described as equal.

2. Drillia hraziliensis, n. sp. Pl. II, fig. 11.

Shell slender, fusiform, light brown, with whitish nodules; whorls 11, slowly increasing, the two apical smooth, forming a large rounded protoconch, the rest longitudinally obliquely costate, the costa most prominent at the middle of the whorls, where they are erossed by two spiral lire, which form transversely elongate nodules upon them ; a wavy carina passes along the upper margin of the whorls, and a finer thread borders the lower suture. On the body-whorl the costre are produced downwards below the middle, lont do not extend quite to the end of the rostrum ; the spirals are about eighteen, and about seven of the upper ones are more or less nodulous on crossing the costa, the rest below are finer and smooth; between the nodulous lire, both on the spire and on the last whorl, there are fine thread-like lines, and the whole surface exhibits delicate wavy growth-stria; aperture brown within, not quite one-third the length of the shell ; labrum thin at the edge, distinctly sinuate below the sutural keel, and having a costa or varis, larger than the other costa, on the outside; eolumella straightish, covered with a pale callus, formed into a tuberele at the sinus.

Length, 21 mm . ; diameter, 6.
Station 42, off Rio de Janeiro: 40 fathoms.

[^17]This species, of which two specimens were dredged, is closely allied to II. bilimen, Smith,* hut has about twelve finer costre, and the protoconch is larer. The spiral thread-like lines also are mueh more distinct.
:3. Mrillia rionesis, n. sp. Pl. Il, fig. 12.
shell fusiform. pale brown, with whitish costa ; whorls 9, two apical smooth, convex, forming a mammillar apex, the rest concave above the convex, oblique costa (ten on the penultimate whorl) with transerse tubereles on the middle (ansed hy spiral lire passing over them; the tubercles are more pronomed upon some of the upper volutions than upon the last two or three ; in the upper concavity the threals are finer than those below; last whorl attemated in front. finely lirate throughout ; aperture white within ; labrum with astrong external varix a little way from the thin hrown finely denticulate edge; posterion sinus mordately deeprounded : columella smooth, with a thin callus united above to the end of the outer lip; anterior canal slightly recurverl.

Length, $2 \cdot 2 \cdot 5 \mathrm{~mm}$. ; di:meter, 7 . Aperture 10 mm . long, width in the midale $2 \cdot 5$. Nation 42, off Rio de Janeiro: 40 fathoms.
Two of the spiral lira around the middle of the whorts are more wompionoms than the rest, and much more distinctly nodulous. The fine growth-lines are sinure, and most evident at the upper part of the whorls.

4. Margimelle freterculus, n. sp. Pl. 11, fig. 1:3.

Shell subeylindrical, pale straw-colour, smosth, shining; spire very short, pale reddish at the rounded tip; whorls $4-5$, the last with gently curved outlines; suture marked with a thin white line; aperture ahmost as long as the shell ; lahrum thickened extemally, white, a little incurved ; columella with four white plaits; in one specimen there are five, the fifth being less pronounced than the rest, and situated ahove them.

Length. 30 mm . ; diameter, 15.
Station 42, off Rio de Janciro: 40 fathoms.
I am somewhat in doubt whether this may not be a dwarf variety of I/ cutiont, Jonsseanme. \dagger from which it differs in its rather narower form and more distinct and clevated spire. One of the four specimens from Station $4 \cdot 2$ is of an opalescent hrown colour, rather similar to that of II. Imllatu, Born.
5. Jtwigimella jumeinuenvis, n. sp. Pl. II, fig. 14.

Shell small, fusiformly ovate, white smooth, shining ; whorls four, ipex ohtuse; last and penultimate whorls sloping alove, then faintly angled; aperture narrow,

[^18]more than half the length of the shell: labrum thickened, with seven suall denticles on the imme margin, the most posterion one leeing the largest; columella with four equidistant plaits.

Length, $4 \cdot 25 \mathrm{~mm}$. ; diameter, $2 \cdot 25$. Labrum, 3 mm . long.
Station 42 , off Rio de danciro: 40 fathoms.
This species appears to be very like $1 /$. salriris, of Jousseame,* in some respects, lout differs in the absence of very fine longitudinal strie. Considering the larger size and absence of colour, it does not seem probable that J. staturis is the same as 1/. striuta. Sowerly, as suggested hy Tryon.t
6. Amilla dimidirta (Sowerly).

Ancillari, dimidiatn, Sowerby, Thesamms Conch., vol. III, p. 62, pl. 213, figs. 55, 56 (1859); Reeve, Conch. Tcon., vol. XV, pl. X, figs. 39a-39p; Tryon, Man. Conch., vol. V, p. 96 , pl. XXXIX, fig. 50, after lieeve.
Station 42, off Rio de Janeiro: 40 fathoms.
This species was said to be from the Red Sea, which evidently was an error, since specimens of it from Rio de Janciro are in the Museum from three different sourees. One example was dredged in three fathoms by J. Macgillivray during the voyage of the "Rattlesmake" in 1845. A second example was obtained by Captain D. W. Barker between Pai Island and Maricas Islands, oft Rio de Janeiro, in 36-41 fathoms. The third specimen is that from Station 42 .

It is Guoted by Sowerby \ddagger as a South African species, but he does not say upon what evidence. Until some ronfirmation of this statement ran be adduced I am inclined to regard it as incorrect.
7. Persiphluramepllatus, n. sp. See p. 71.
8. Turritellu howlisri, Reeve.

Turritella hookeri, Reeve, Conch. Icon., vol. V, pl. XI, fig. 61 (1849) ; Tryon, Man. Conch., vol. VIII, p. 206, pl. LXIV, fig. 9, after Reeve: Kiobelt, Conch. Cab., 1••29, pl. VI, fig. 11.
Station 42, off Rio de Janeiro: 40 fathoms.
The locality of this species has not hitherto been recorded, although the types described ly Reeve were labelled "Cape Frio," which is east of hio de Janeiro, where Captain Ross tonched in June, 1843 , on the royage home from the Antaretic. The species attains a comsiderably larger size than the specimen figured by Reeve, which was only 20 mm . in length. The largest shell from Station 42 has the upper part of the spire booken off, hut when perfect it must have been fully 30 mm . long, and consisted of about nincteen whoms.

[^19]The apical whon is smonth, romuded at the top, and the rest have two prominent keels round the midde, and a third adjacent to the lower suture. They are concave between the wamad and exhibit some rather obseme spiral lines in the interstices, more visible on the bwer that on the upper whorls.
9. ('reppidula arnlertu (fimelin).

P'atellu aculenta, (imelin, Syst. nat.. p. 3693 (1790).

station 42 , off Rion de Jameiro: 40 fathoms.
The specimens from this station are smath, thim, white extemally, delimately spinose, with a red stain within in the depth of the shell. Chemmit\% gave West Indies as the locality for his sperimens.

If ('. h!satrir, Broderip, and ('. shimis, Broderip, as suggested by Carpenter, Reeve, and Tryon, helong to this species, it has a very remarkable distribution. DOrligny* has quoted it from l'atagonia, Rio de Jameiro, and the West Indies. It is also known from Cape Colony.
10. Tromhilime comentu (dobrigny).

Infundibulum ramdeunm, d'Orbigny, in Ramon de la Sagra's Hist. Cuba, Mollusques, vol. II, P. 190, pl. XXIV, figs. 28,29 (1846).

Chlyptrat rondeana: Tryon, Man. Conch., vol. VIII, ph. XXXTY, figs. $76, ~ i t ~ i c o p y ~ o f ~$ (JOrligny).
Station 42 , off Rio de Janeiro: 40 fathoms. West Indies (dorbigny).
This little spectes in general aspect resembles the young of the European 'intyptrom chimensis (limn.). but is separable on amome of the perforate axis and a smaller proto(onch. Donhigny mentions very fine radiating stribe, but after a careful examination of his types and the numerous specimens from station 42 , I have failed to observe any such marks.
11. C'ulliwstomu' mulbilum (Plilippi).

Trochus nulilus, Philippi, Zeitsch. Malak., 1848, p. 110: Conch. Cab., p. 255, pl. XXXVIII, fig. $\stackrel{\imath}{ }$.
Calliostoma nubilis (sic) : Pilshry, Man. Conch., vol. XI, p. 344, pl. XVIII, fig. 22. copry of Philippi.
Station 42 , off lio de Janeiro: 40 fathoms.
A single specimen, with a rather taller spire than the type, but agreeing in other respects. ('alliostomm riomive, Dall, is a closely allied species.
12. Truenl" urıy!uyensis, smitlı.
 Lamellibranchiata, 1 . 299, pl. XVIII, tigs. 1:-102.
Station 42, off Rio de Janeiro: 40 fathoms.

[^20]Only a dead valve obtaned, hat showing that the speries occurs much farther north than the original locality.
13. Viculemur (Idremi) dectu (A. Adams).

Lede electf, A. Adams, Proc. Zool. Soe., 1856, p. 48 ; Hanley, Thesaurus Conch., vol. III., 1. 109, pl. $2 \cdot 27$, figs. 40, 41 ; Sowerby, Conch. Icon., vol. XVIII, pl. I, figs. 2A, 2b.

Nucula lanceolata (Lamk.?), Sowerby, Genera, pl. 8:2, fig. 1.
Ledn (Adrana) electa : H. and A. Adams, Genera Moll., vol. II, p. 547.
Station 42. off Rio de Janeiro: 40 fathoms. One broken valve only. Santos, Brazil (A. Ad.).

Larger, smoother, and whiter than $N_{\text {. jumeiroensis, also differently sculptured. }}^{\text {a }}$.
14. N'ıculanи (Alrama) jomeirnensis., n. sp. Pl. II, fig. 16.

Shell elongate lanceolate, acuminately rounded anteriorly, rostrate behind, a little inequilateral, dirty white, concentrieally finely striated or very delicately seulptured with threadlike lire, which are rather stronger near bit not npon the anterior dorsal slope, which is more finely striated; they are also coarser at the rostrate end. There is a smooth linear lumule defined by a delicate keel extending from the umbo a considerable way towarts the end of the dorsal margin; posteriorly there is a rather broader smooth escuteheon bounded by a rounded carima, which is strongly seupptmed with close lamellie; a second keel radiates from the umbo at a little distance from the other, both terminating at the end of the rostrum ; the valves are moderately strong, convex, and glossy white within; teeth numerous, ereet, extending ahout the same distance on both sides of the small, hroadly triangular resilinm-pit.

Length, $28 \mathrm{~mm} . ;$ alt., 8 ; diameter, 5.
Ifot.-Off Rio de Janeiro in 40 fathoms. Lat. $22^{\circ} 56^{\prime}$ S., Long. $41^{\circ} 34^{\prime} \mathrm{W}$.
At first sight this species exhibits a close resemblance to N. crenifern, Sowerly, ${ }^{*}$ from Xipixapi, on the west coast of South America. It is, however, less acuminate anteriorly, the hinder dorsal margin is more concavely curved, the concentrie seulpture at looth ends is a little coarser, the valves are a trifte more convex, and the distinct ridge or keel which borders the front dorsal margin of N. crenifera is absent in this species. The hinge-teeth in the former are both finer and more numerous-quite fifty on each side the resilinm-pit-whereas in N. jumeiruensis there are only about thirty-eight.
N. decort (A. Ad.) is similarly sculptured, but is shorter, a little more convex, with a shorter hinge-line and fewer teeth than the present species. I feel in some doubt whether they ought not to be considered forms of the same species. However, jurging by the amount of material at hand, there is no difficulty in distinguishing them.

[^21]15．Whellotin ramimgii（Hamley）．
bolenella cumingii，Hanley，Proc．Zool．Soc．，1＊60，P．4．11；itl．，Thesaurus Coneh．，vol．III， 1． 164 ，fi．2．2i，tig． $3:$ Sowerby in Reeve＇s Conch．Icon．，vol．XVIII，fig． 3 （much overcoluured）．
Station 42 ，off Rio de Janciro： 40 fathoms．
Described by llanley from the Falkland lslands，it hats not since been recorded further north．Gne dead ralse only in the present collection．

16．Limmимін jemeirmosis，n．sp．I＇l．II，fig． 17.
Shell obligne，prohmed posteriorly，rather solid，white，moderately convex， concentrically striated with lines of growth crossed ly very fine close－set radiating strie：anterior outline prominently convex．posterior side obligue，ahmost straight，in some young shells a little exemved；dorsal edge straight：area narow；central ligament－pit triangular and subequilateral in each vatve；hinge－tecth about eighteen， a few in the middle under the ligament－pit small or obsolete，seven or eight on the posterior side arranged in a downward curve those in front not so obliguely disposed； interior of the valves very faintly and minutely radiately striated near the pallial line． be gond which the margin is smooth and glossy ；anterior adductor small，wal，close to the end of the hinge－plate，posterior very much larger，and considerably remote from the end of the row of teeth．

Length， 19 mm ．height， 17 ；dianeter． 9.
Station 42，off Rio de Jameiro： 40 fathoms．
Allied to L．peltergierl，Smith，＊from mid－Athantic，but more solid，more finely radiately striated，and having rather different hinge－teeth．

L．Incinsmin，Pelseneer．\dagger has a curved posterior outline．and the himder margin of the valves is peculiarly thickened behind the addurtor scan：

17．Plichtuln romosere，Lamarck．
Plicutula romosif，Lamarck，Anim．sans Vert．，vol．V1（1），p． 184 （1N19）；Hanley，Recent Bir．Shells，1． 288 ；Smith，＂Challenger＂Lamellibranchiata，p．ご 6.
Station 42 ，off Rio de Janciro： 40 fathoms．
This West Inrlian shell orcurs along all the const of Brazil as fan as Rio de Janciro，acomding to d＇orhgnet who recorded it as Plichtuln burmensis，l＇etiver，a nom－binomial anthor，whose conchologieal names are not armissible．

Ostrea ziczac，Linneus，Syst．nat．，ed．1ン，p．1144？
Pectenziczac：Reeve，Conch．Icon．，vol．V＇II，，II．I I，fig．o9．
Station 42 ，off Rio de Janciro： 40 fathoms．


```
\dagger Voy: "Belgica," Mollusca (150:3), 1'.24, pl. VII, figs. 31, 92.
\ddagger In Ramon de lat Nagra's Hist. Cuba, Mollusques, vol. II, !', 3G0.
```

Two small broken valves only.
This species oreurs throughont the West Indies. hat has not heen reeroded so far sonth ats Ro de Janeiro. The localities" Red Sea and Philippine lstands," given ly the monomaphers Sowerty. Reeve, Hanley, and Kobelt, evidently do not apply to this speries.

Pecten tehuctchus, dOrbigny, Voy. Amérique Márid., Moll, p. 662, pl. LXXXV, figs. $21-24$ (1847) : Bavay, Journ. de Comeh., 1906, pp. 1-10.

Perten darwinii, Reeve, Conch. Icon., vol. VIII, fig. 62 (1853).
Station 42, off Rio de Tanciro: 40 fathoms.
This species has heen recorded by d'orligny and Reeve from the east coast of Patagonia, and loy M. Bavay from the shores of Argentina. M. Bavay atsomentions its oreurrence in a fossil state in several places on the const of the Provine of Buenos Aires. Only young specimens were ohtained at Station 42 and these exhihit the variation in the number of costre and seupture indicated by M. Bavay.
20. (Vlım! /.s mulusu: (Limmeus).

Pecten morlosus (Limn.) : Reere, Conch. Icon., vol. VIII, fig. 15 ; Sowerby, Thesiurus Conch., vol. I, p. 6f, pl. XV, fig. 115, pl. XVII, fig. 147 ; Kïister, Conch. Cab., pp. 11,112 . pl. XI, figs. 3-5, p^{μ}. AXNII, fig. 2.
Station 42 , off Rio de Janeiro: 40 fathoms.
One right valve, an inch long.
This common West Intian shell has not been known previonsly from so southern a locality. The sperimens I recorded from St. Ihelena* as I '. comellinoides, d'Orhigny, I now consider small examples of the present species.
$\because 1$. Lencime costrite, d'Orhigny.
Lucina rostata, d'Orhigny, Voy. Amér. Mérid., Moll., 1. 586 ; it. in Ramon de la Sagra's Hist. Cuba, Moll., vol. II, p. 296 , pl. XXVII, figs. 40-4こ (1846).
Lucina awtillarmm, Reeve, Conch. Icon., vol. VT, pl. X, fig. 37.
Station 42 , off Rio de Janeiro: 40 fathoms.
A few odd valven differing from the typiral form in exhibiting only concentric sonlpture on the posterior donsal area, and in having the anterior adductor impression a little shorter than usmal in this speries, which also oceurs in the West Indies.

 Cuba, Moll., vol. TI, 1. 294, pl. XXVII, figs. 34,36 ; Smith, "Challenger " Lamellibranchiata, p. 177.
Lucina cburnea, Reeve, Coddi. Icon., vol. VI, pl. VIII, fig. 49.
Lucina americtma, C. B. Adams, Contrib. Couch., p. 24.\%.
Station 42 , off Rio de Janeiro: 40 fathoms.

Origimally described by donhigny from Rio de Jameino. He alson quoted it from vations islands in the West Indies. The hahitats "St. Elena, West Colmmhia and Panama," given her Reeve for C. dmrmen, reyuire contirmation.

 (1847).

Loripes putagomien: Tryon, Proc. Acad. Nat. Sci. Philad., 1872, p. 90.
Station 42 . off Rio de fanciro: 40 fathoms.
Dorhigny describes this shell as "albida." and as inhahiting the "sahle vasemx, all nivean des marées lasses" at San Blas, north of Patagomia. This may acoount for the pale hownish tint of his types in the British Mnseum, which have the appearanee of being mud-stained. Beyond being muth whiter the shells in the present collection agree in all other respects. Difhutonta hrasiliensis, Mittre (1850), Lurimm jumeinmensis,
 appear to belong to the same species. lut differ in form from $\%$. putaymira. They are all recorded from Brazil, excepting sulghalusu, said to he W est Indiant.
24. Tellime petitiom, dOrhigny.
 27 (1847) ; Bertin, Nouv. Arch. Mus. Paris, séric 2, vol. I, pp. 21F, 299, name only.
Station 4:2, off Rio de Janeiro: 40 fathoms. Off Cape Saint-Thomé, Brazil, at a depth of 80 metres (l Orligny).

This speries appears to have heen overlooked in the monographs by Sowerhy * amd Röncr, \dagger and was merely noticed by Bertin as non-existent in the laris Museum. It is of a very elongate form. rounded at the anterion emb amb pointed at the other extremity. The right valve has two divergent cardinal teeth, of which the himder one is hifich. The laterals are stender, that on the anterior side, slighty divergent from the dorsal margin, is commected above with the oblique anterior cardinal. The posterior tooth is more remote and passes into the nymph which supports the ligament. The anterior of the two cardinals in the left valve is thick, triangular, and lifit; the posterior slender and inclined backwards. The anterior ahluctor-ssar is priform, the posterior rounder. The pallial sinus is rery deep and extends almost across thee-fourths of the shell, which is pure white within aml without.

Several ond valves were ohtained by the "Terra Nova," the langest being 36 minn. in leugth and 16 in height.

[^22]
Shell oblong, inequilateral, longer in fiont than behind, white, rounded anteriorly, narowed, shortly rostrate, and obliquely truncate posteriorly; valves thin, finely concentrically striated, the right a little less comvex than the left; the front dorsal margin longer than the posterion, a little curved, but not much descending; hinder margin oblipucly sloping, somewhat concave; in both valves there is a faint keel extending from the umbo to the extreme point at the hinder end ; two cardinal teeth in each ralve; in the right the anterior tooth is thicker than the posterior, which is lifid; in the left the anterior is bifid, and much stronger than the hinder one, which is quite slemler, and directed backwards; interior of the valves glossy, faintly radiately striated at the ventral margin; anterior addurtor-scar elongate, posterior roundly pyriform ; pallial sinus extending three-fourths arross the valves, rounded in front.

Length, $16 \cdot 5 \mathrm{~mm}$. ; alt., 9 ; diameter, 4.
Station 42, off Rio de Janeiro: 40 fathoms.
Iharomu ussimilis, Hanley,* from the Philippine Islands, closely resembles the present species as regards form ; it is, however, rather more obtuse in front, and the valves are more tumid and more glossy:

```
26. Semele rondiformis, Chemnitz.
Tellina rortiformis, Chemn., Conch. Cab., vol. XI, figs. 1941-2 (1795).
Amplidesma corliformis : Reeve, Conch. Tcon., vol. VITI, pl. V, fig. 30. Semele cordiformis: Smith, Proc. Kool. Soc., 1890, pJ. 301, 321.
```

Station 42, off lio de Janeiro: 40 fathoms.
One small valve only.
Some remarks on the synonymy and distribution of this species are given hy the present writer in the place cited above.
27. Mation (Ihetrimula) juneiromsis, n. sp. Pl. II, fig. 20.

Shell lomadly subtrigonal, a little inequilateral, longer behind the umbones than in front, white, subpellucid, thin, concentrically plicate upon the umbones, and finely striated with the lines of growth upon the lower half of the valves; a rather sharp keel rumning from the tip of the mmbones to the posterior end of the valves marks off the hinder dorsal area; there is also a smooth lumbar area; the concentric ridges or plice do not extend into either the lumbar or the posterior area; in the latter, one or more faint radiating keels or ridges are also usually ohservable ; domsal margins ohligue, at first nearly rectilinear, then combing downwarls at the ends; anterior end shaply roumbed. posterior rather more acuminate, ventral margin very widely arelate; mombones smooth at the extreme tip, inclined towards the front, a little
antemedian. approximated, lut not 'guite towhing: interion of the valves showing traces of the external soulpture, white rather glossy; hinge momal. somewhat delicate ; anterior adductor impression narowly priform, posterior largex, round; pallial sims long, rommed at the emb, extending abont half-way aross the valves.

Length, :31 mm.; height, 20 ; diameter: 12.
Station 42, off Rio de Janciro: 40 fathoms.
 so trigonal in shape, being loroater at the anterior end. The plice on the mmbones are less developed, and the hinge is rather more delicate.
28. Mncrorallista mencelaten (limmeus).

Vemus mueruluta, Limı, Syst. nat., erl. N, p. fisiti.
Venus (Cytherea, Callista) macolutu: Rä̈ner, Monog. Vomus, Callista, p. 46, pli. XVI, figs. 1 -1c.
Station 42. off Rio de Janciro: 40 fathoms.
Only one small valve obtained.
For references and synonymy see Romer and Dall. \dagger A very rommon West Sudian shell, and already recorded hy domigny from Rio de Janeioo.

The late Mr. Jukes-Browne (Proc: Malac. Sor., vol. X., p. 344) upheld the use of the genus C'ullixta of Poli as restricted by H. and A. Adams in 1857, hut as pointerd out by Dall this name of Poli's had already in 1852 been applied to quite a different group of Veneride.

Mr. Jukes-Browne's argument (l.c. p. 336) upon this sulject appears to me unconvincing, and I fail to see that in this instance " the rule of priority is breaking down from the shear weight of alsurlities," ete.
29. Pitaria rostrutu (Koch).

Station 42, off Rio de Janciro: 40 fathoms.
For shomymy, references, and some remarks, see Smith. "Chatlenger" Lamedlibranchiata, P. $1: 37$. Only a mumber of odd valves were whaned at the alove station. They are rather longer in proportion to the height than the typiral form figured by Philippi, and the pallial sinus is wider and not so pointed.

Lengtl of largest specimen, :33 mm, ; of Koch's type, 39 mm . Ileight of largest specimen, 2 (m mı. ; of Koch's type. 3 ; mm .

[^23]30. ('umbla try!mi, Smith. Pl. II, figs. : 1, :2.).

Corlula tryoni, Smith, Amm. Mag. Nat. Hist., 1880, vol. VI, p. 321.
Station 42, off Rio de Janeiro: 40 fathoms.
Only a single lower valve was dredged at the above station. The speries was originally desribed from 48 fathoms in $39^{\circ} 45^{\prime} \mathrm{S}$. lat., $50^{\circ} 39^{\prime} \mathrm{W}$. long., east of (rugnay. The figures now given are taken from the type specimen.

Shell not very thin, elongate, rounded in front, prolonged and rostrate behind, moderately globose, exhibiting fine growth-lines and minnte rowded gianules upon the entire surface, those upon the npper slope of the rostrum heing arranged in - losely packed transverse series; dirty white, surface dull, not glossy; dorsal margins oblique, anterior straight at first, then curving into the rounded end, posterior longer, a little concave; lower margin sinuated below the heak, then widely curved. Umbones antemedian. An oblique fant depression from the umbones to the simus in the ventral outline marks off the rostrum, the upper part of which is feebly defined by an oblique obscure ridge. Character of the hinge normal. Interior of the valves white, somewhat glossy, exhibiting some rather faint irregular radiating striæ, which are more or less interrupted ly a subpunctate impression from the anterior adductor-scar to the broal, romeded, pallial sinus; anterior impression ovate, posterior semicircular, truncate above.

Length, 27 mm. ; height. 15 ; diameter, 11.
Station 42, off Rio de Janeiro: 40 fathoms.
This species is at once distinguishable from others, more or less similar in form, by the minutely granose surface, a most uncommon feature in the genus.

Shell ovate, posteriorly mather shortly rostrate, inequilateral, longer in front of the umbones than behind, white, very conver; valves thin, with about twenty-five curved radiating costelle upon the greater part of the surface, but not upon the rostrum ; a few of the posterior costie are stronger than the rest, the hindmost one marking off the comparatively smooth beak; this, lowever, exhibits a few (nine or ten) very fine curved lira, some of whiclı near the dorsal margin are rather indistinct, heing crossed liy rowded growth-striae; the rest of the surfice of the valves is also covered with very fine lines of growth ; anterior dorsal margin obliquely arched, posterior more obliquely imdined, and a little concave; anterion end slarply rounded, rentral edge widely aronate, but slightly incurved at the rostrum ; momen smootlo at the tip, ahonost contignous, inclining hackwards; lunuar area withont radiating lire, and there is also a lanceolate, smooth, smben escutcheon posteriorly; interior
of the values faintly raliately sulcate, except towards the lower margin, where the grooves are deeper. prokheing a pertinate edge; hinge normal, amd posterior adductorsam lownded by a rounded ridge passing from moder the hinge-line.

Length. 15 mun. : height, $10: 25$; diameter. $8 \cdot 5$.
Station 42 , off Rion de Janeim, 40 fathoms; and station 38 , west of Falklamd Islands. 125 fathoms.
 and more distinctly costate upon the anterior half of the valves. The anterior domal outline is not so humcherl up as in rometo.

5. NOUTH TRLNIDAD LSLAND.

1. Arcil (Burlutice), sp.

Station 36 , South Trinidad Istand: on the shore.
Two specimens, in sonnewhat decomposed condition, appear to be very closely related to the Mediterramean Area burbent, but owing to the had state of preservation it would he hazardous to pronounce a definite opinion.
2. Ifuliolerian luteralis (Say).

Mytilus laternlis, Say, Journ. Acad. Nat. Sci. Philad., vol. II, p. $264(1 \times 2.2)$.
Modiola marmorata, Forbes (1838) ; Forbes and Hanley, Brit. Moll., vol. 11, p. 198, pl. XL' fig. 4.

Station 36, South Trinidad Islamd: on the shore.
Originally described by Say from Florida, this species occurs further north along the coast of the United States. It is also known from Bermula. On romparing British with American specimens I fail to find any real distinguishing features. M. romerta, Gould, and I/. camolita, Vaillant, may be regarded as forms of this species.

INDEX.

aculeata, Crepidula, 82, 97. Patella, 97.
acuminata, Glyıteuthria, §1.
acuta, Litorina, 80.

- dacnara nitens, 76.
adarensis, Rissoia, 655, 66.
Almete antarctica, 7.t.
,, delicatula, 7t.
adspersa, Cominella, 85.
adspersum, Buceinum, 85.
Amauropsis rossiana, 69.
americana, Lucina, 100.
Amphidesma cordiformis, 102.
Anatina elliptica, 78.
Ancilla bicolor, 87.
dimidiata, 96.
". mucronata, 86 .
" nana, 8 т.
" nova-zelandier, 87 .
Ancillaria australis, 87.
,, dimidiata, 96.
", mucronata, 86 .
" nover-zelandie, 87 .
," pymanidalis, 86.
," tricolor, $\underset{\text {, }}{ }$ t.
angusta, Macoma, 102 .
Mactra, 103.
antarctica, Armete, 74.
" Cerithiopsilla, 70.
" Lepeta (Pilidium), 62.
,, Lovenella, 70.
" Scala, 64.
,, Tellimya, TE.
,, Trichotropis, 67.
antarcticum, Epitonium, 64.
antillarum, Lucina, 100.
," Turris, 94.
antiporlum, Helcioniscus, 7 .
Litorina, 80.
aralvica, Fulguraria (Aleithoe), 86. Voluta (Alcithoe), 86.
arabicum, Buccinum, sig.
Arca (Anadara) chemuitzi, 93.
" barbata, 10\%.
" (Barlatia) novar-zealaudie, ss, s9.

Area (Barbatia) sp., 10 .
,, (Bathyarea) gourdoni, 75.
," decussatal, 88.
", l'orlingiyi, 93.
,, fusca, 89.
", roxlatzi, *!
Arcularial coronata, 8.).
assimilis, Macome, 102.
astartoides, Cardita, 77.
Istrea, 80 .
", heliotropium, 80.
," imperialis, 80.
Astralinm heliotropium, 80.
australis, Ancillaria, 87.
Venericardia, 90.
barbadensis, Plicatula, 99.
barbata, Arca, 105.
belcheri, Typhis, 92.
bicolor, Ancilla, 87.
hiconicum, Vexillum (Pusia), 85.
bilirata, Drillia, 95.
brasiliensis, Diplodonta, 101.
braziliensis, Cuspidaria, 104. Drillia, 94.
Huccinmm adspersum, 85. arabicum, 86 .
charcoti, 72.
coronatum, 85.
maculatum, ถis.
nodosum, 85.
hullata, Mlarginella, 95.
calliferns, Trochus, 79.
Calliostoma mubilum, 97 .
riomse, 97.
Calyptraci, 8コ, st.
calyptrafomis, si; st
calyptraiformis, 82 .
candeana, 97.
chinensis, 82, 84, 97.
comma-notata, $x \cdot 2$.
(Crepidula) monoxyla, 81
lamarcki, 83.
maculata, 82 .
nover-zeelandiar, so.
pellucida, 84.

Calyptrata seutum, s:3, 8t.
" (Sigapatella) novae-zelandiar, ぶ.
", scutum, 8:3.
" temuis, $83,84$.
calytraformis, Calyptran, 83.
" Sigapatella, 83.

$$
" \text { Trochita, }, 3.3
$$

Calyptraqidec, 83.
calyptraformis, Calyptraa, 8.2.
cancollatus, Prosipho, 71, 96.
candeana, Calyptrea, 97.
" Tnfundibuhum, 97.
" Trochilina, 97.
Cantharidus rufozona, 79.
Capulus subeounressus, GG.
Cardita astartoides, 77.
" purpurata, 90.
", quayi, 90.
, tridentata, 90.
Cardium relieatulum, 93.
", muricatum, 93.
,, (Nemoeardium) pulchellum, 90.
" pulchellum, 90.
carduelis, Trophon, 92.
earlottex, Turritella, so.
Cerithiella, 70.
Cerithiopsilla antarctica, 70 .
charcoti, Buccinum, 72.
", Montaguia, 78.
", Volutharpa, 7 .
Charonia rubicunda, 85.
", sp. јur., st.
" tritonis, 84.
chemnitgi, Area (Anadara), 93.
chinensis, Calyptrea, 8:, 97 .
Chione (Chamelea) spisssa, 90.
" crassa, 90.
". mesodesma, 90.
Chlanys collrecki, $\overline{7}$. consociata, 83. notosus, 100. (Pallium) convexus, 89. tehuelehus, 100.
cleryi, Murex (Typhis), 92.
Clyprola tenuis, 8\%.
cenobita, Morliolaria, 105.
colbeeki, Chlamys, 77.

$$
\text { Pecten, } 7 \text { I. }
$$

Columbarium, is.

$$
\text { spinicincta, } 87
$$

suteri, 8 i.
Cominella arlspersia, 85.
", maculata, 85.
comma-notata, Calyptrea, 8.3.
congenitus, Prosipho, 71.
conica, Marseniopsis, 66.
consociata, Chlamys, 89.
contorta, Crepidula, 81.
convexus, Chlamys (Pallium), 89.
," Pecten, 89.
coppingeri, Lepeta, 62.
corallinoides, Pecten, 100.
Corlmula tryoni, 104.
eordiformis, Amphidesma, 102.
" Semele, 10.
" Tellina, 102.
coronata, Arcularia, 8.). Nassa, 85.
coronatum, Buccinum, 85.
costata, Crepidula, 81.
,, Lucina, 100.
coulmanensis, Trophon, 73.
crassa, Chionc, 90.
crebilirulata, Margarites, 63.

$$
\begin{aligned}
& \text { " Sulmargarita ?, } 63 . \\
& \text { " Valvatella, } 63 .
\end{aligned}
$$

crenifera, Nuculana, 98.
Crepidula, 81.
" aeuleata, 8:2,97
" contorta, 81 .
" costata, 81 .
", erepidula, 81 .
" eehinus, 97.
" hystrix, 97.
,, (Ianacus) ungniformis, 8 l.
, maculata, 8.2 .
", monoxyla, 81 .
", tomentosa, 83.
Crypta profunda, 81.
cumingii, Malletia, 99.
", Solenella, 99.
ceuneata, Mudiolaria, 105.
curta, Cuspidaria, 105.
Cuspidaria braziliensis, 104.
(Cardionya) simillima, 61,93, 104.
eurta, 105.
cuvieri, Marginella, 95.
Cyamium subquarlratum, 78.
Cymbiola gracilis, 86.
Cytherea rostrata, 103.
darwinii, Pecten, 100.
decora, Nuculana, 98.
decussata, Arca, 88, 89.
delicatula, Almete, it. Natica, 69.
delicatulum, Cardium, 9:3.
demissa, Rissoia, 6.).
Dentalium majorinum, 7.
depressa, Fulguraria (Alcithoe), 86. Voluta, 86.
deserta, Rissoia, 66. diemenensis, Litorina, 80.
dilatata, Verconella, 85.
dilatatus, Fusus, 85.
dilecta, Margarita, 79.
dimidiata, Ancilla, 96. ,, Ancillaria, 96.
Diplodonta brasiliensis, 101. ", patagonica, 101.
d'orbignyi, Area, 93.
Drillia bilirata, 95.
,, brazilicusis, 94.
,, rioensis, 95.
drygalskii, Trophon, 73.
dulcis, Margarites, 63.
,. Valvatella, 63.
eatoni, Nerbuccinum, 72.
eburnea, Lucina, 100, 101.
echinus, Crepidula, 97 .
egena, Monilca, 79.
,, Solariella, 79.
egenum, Solarium, 79.
clecta, Leda, 98.
,, ", (Adrana), 98.
,, Nuculana (Adrana), 98.
elliptica, Anatina, 78.
elongata, Mactra, 90.
" ", (Mactrotoma), 90.
elongatus, Prosi ho, 70.
Epitonium antarcticum, 64.
Eulima exulata, 64.
,, solitaria, 64.
exulata, Eulima, 64.
formosissima, Turris, 94.
fragillima, Volutomitra, 74.
fraterculus, Marginella, 95.
Fulgoraria, 86.
Fulguraria, 86.

$"$	(Alcithoe) arabica, 86.	
$"$	$"$	depressa, 86.
$"$	$"$,	gracilis, 86.

fusca, Arca, 89.
Fusus dilatatus, 85.
Galer'us pellucidus, 84.
gelida, Rissoia, 65.
genma, Margarites, 62.
glacialis, Rissoia, 65, 66.
Glycineris laticostata, 89.
Glypteuthria acmminata, 91 .
gourdoni, Arca (Batliyarca), 75.
Lissarca, 75.
gracilis, Cymbiola, 86.
gracilis, Fulguraria (Alcithoc), 86
,, Prosipho, 70.
", Voluta, 86.
",, (Alcithoe), 86 .
grandis, Limopsis, 76.
grisea, Natica, 69.
grönlandica, Volutomitra, it
guaraniana, Lucina, 101.
hedleyi, Sigapatella, 84.
Helcioniscus antipodum, 78. radians, 78.
heliotropium, Astrea, 80.
", Astralium, 80.
,, Trochus, 80.
hodgsoni, Lima, 77.
hookeri, Turritella, 96.
huttoni, Mangilia, 88.
hyalina, Marginella, 74.
hystrix, Crepidula, 97.
imperialis, Astrea, 80.
indecora, Sublacuna, 66.
Infumdibulum candeanum, 97 .
innocens, Pareuthria, $7 \because$. Thesbia, 72.
insignis, Neoconcha, 68.
iris, Margarites, 91.
janeirocnsis, Limopsis, 99. " Lucina, 101. " Mactra (Mactrinula), 102.
" Marginella, 95.
" Nuculana (Adrana), 98.
jousseaumei, Limopsis, 76.
Kellia simulans, 77 .
kerguelensis, Lissarca, 75.
krïyeri, Trichotropis, 67.
laciniatus, Trophon, 73.
leeviuscula, Limopsis, 99.
lamarcki, Calyptreea, 83.
Lamellaria, 66, 67.
mollis, 66.
lanceolata, Nucula, 98.
lateralis, Modiolaria, 62, 105. Mytilus, 105.
laticostata, Glycimeris, 89.
laticostatus, Pectunculus, 89.
Leda (Adıana) electa, 98.
,, electa, 98.
Lepeta coppingeri, 62 .
(Pilidiun) antaretica, 62.
lillici, Limopsis, 76.
Linna hodgsoni, 7 .
limoides, Philobrya, $7 \overline{7}$
Limopsis grandis, 76 .
„, janciroensis, 99.

Limopsis jousseanmei， 76.
， lariuseuli，9！
， lilliei， $\mathbf{7} 6$ ．
＂，marionensis．75．
，\quad relagica， 99.
Lippistes， 67 ．
Lissarea gemrloni， 7 ．
，kerguclensis，汭．
＂notorcadensis， 7.
Litorina acuta， 80.
＂．antiporlum，so．
＂diemenensis，so．
，＂manritiana，スัO．
，，mifasciata，so．
lungstatli，Trophon， 73.
Loripes Imagronica， 101.
Lovenella， 70.
＂antarctica， 70.
Lucina americana， 100.
，，antillarum， 100.
＂，costata， 100.
，，（Divaricella）quadrisulcata， 100 ．
，，eburnea，100， 101.
＂．Enaraniana， 101.
＂，janciroensis， 101.
＂patagonica， 10 ！．
＂，subglobosa， 101.
Macoma angusta， 102.
＂assimilis， 102.
Macrocallista maculata， 103.
Mactra angusta， 103.
＂elongata， 90.
＂（Mactrinula）janeiroensis， 102 ．
＂（Mactrotoma）elongata， 90.
maculata，Calyptrata，82．
Cominella， $\mathrm{i5}$ ．
＂Crepidula，\＆ョ．
，＂Macrocallista， 103.
，，Venus， 103.
maculatum，Buccinum， 85.
majorinum，Dentalium， 74.
Malletia cumingii， 99.
Mangilia huttoni，st． sinclairii，ぶ．
Margarella refulgens， 64.
Margarita， 79. dilecta， 79.
Margarites crebrilimuata， 63. dulcis， 63. gemma，62． iris， 9 ．
marginata，Mitra， 85.
Turricula， 85.
Marginclla bullata，9\％．

Darginella convieri，9\％）．
．，fraterculus，5． 5.
＂hyalina，It．
＂janeiroensis，！9．
，＂muscaria，вT．
＂scalaris， 96 ．
＂striata， 96 ．
marionemsis，Limopsis，7．
marmorata，Modiola，10\％．
Marscnia， 66.
Marseniopsis conica， 66.

$$
\text { " mollis, } 66 \text {. }
$$

mamitiana，Litorina，N0． Plasianclla，so．
meridionalis，＇Thracia，T＊．
mesodesma，Chione， 90.
minima，Tellinya，$\underset{\text { T }}{ }$
Minolia， 79.
＂plicatula， 79.
＂，punctura， 79.
mirabilis，＇lorellia（Trichuconcha）， 68.
＂Trichoconcha，68．
Hitra marginata，85．
Mitridax， 85.
Modiola marmorata， 105.
Modiolaria cumobita， 105.
，＂cuneata，105．
．，lateralis，6：，105．
mollis，Lamellaria， 66.
，，Marseniopsis， 66.
Monilea， 79.
＂egrena， 79.
＂plicatula， 79.
＂，zelandica， 79.
monoxyla，Calyptreea（Crepidula）， 81.
Crepidula， 81.
Montaguia charcoti， 7 ．
mucronata，Ancilla， 86.
Ancillaria， 86.
mundus，Prosipho， $70,7-$ ．
Murex（Typhis）cleryi， 92.
muricatum，Cardium， 93.
muscaria，Marginella， 87 ．
Mytilus lateralis， 105.
nana，Ancilla， 87.
Nassa coronata， 85.
Natica delicatula， 69.
，，grisea， 69.
Nausitora satulii，9I．
Neobuccinum eatoni， $7=$ ．
tenerum， $7:$ ．
Neoconchas， 69.
，insignis， 68.
vestita， $68,69$.
nitens, Adacnarea, 76.
nodosa, Veronella, 8.5.
nodosum, Buccinum, 85.
nodosus, Chlamys, 100.
". Pecten, 100.
" Prosipho, 71.
notorendensis, Lissarea, is.
nova-zealandie, Area (Barbatia), 88 .
novex-zeelandix, Calyptram, sz.
nover-zelandix, Ancilla, 87.

$$
\begin{array}{lll}
" & " & \text { Ancillaria, } 87 . \\
" & " & \text { Calyptraa (Sigapatella), } 82 . \\
" & " & \text { Sigapatella, } 82 .
\end{array}
$$

nubilum, Calliostoma, 97.
mubilus, Trochus, 97.
Nucula lanceolata, 98.
Nuculana (Adruna) electa, 98.
", ", janciroensis, 98.
,, crenifera, 98 .
„ decora, 98.
Nucula uruguayensis, 97 .
orbignyi, Arca, 93.
Oscanius, 66, 67.
Ostrea ziczac, 99.
Panoprea zelandica, 91.
Panope zelandica, 91.
Paradmete, 74.
," typica, it.
Pareuthria, 7. imocens, $7:$.
patagonica, Diplodonta, 101.
", Loripes, 101.
," Lucina, 101.
Patella aculeata, 97. radians, 78.
Pecten colbecki, 7.
", convexus, 89.
". corallinoides, 100.
" darwinii, 100.
", nodosus, 100.
", racovitzai, 77.
", tehuelchus, 100.
,, zelandixe, 89.
," ziczac, 99.
Pectunculus laticostatus, 89.
pelagica, Limopsis, 99.
pellucida, Calyptrea, 84.
Trochita, 84.
$l^{\text {elllucidus, Galerus, }} 84$.
pelsenceri, Trophon, 92.
petitiana, Tellina, 101.
Plasianella mauritiana, 80.
Philobrya limoides, 77.
Pitaria rostrata, 103.
planispira, Trichotropis, 67.
Plicatula barbadensis, 99.
plicatula, Minolia, 79.
Monilea, 79.
Plicatula ramesa, 99.
plicatula, Solariella, 79.
Probuccinum tenerum, 7.
profunda, Crypta, 81.
Prosipho cancellatus, $71,96$.
" congenitus, 71 .
" elongatus, 70 .
," gracilis, 70.
", mundus, $70,72$.
", nodosus, 71.
", similis, 70.
" tuberculatus, 71 .
pulchellum, Cardium, 90.
",\quad (Nemocardium), 90.
punctura, Minolia, 79.
purpurata, Cardita, 90.
,, Venericardia, 90.
pyramidalis, Ancillaria, 86.
quadrisulcata, Lucina (Divaricella), 100.
quoyi, Cardita, 90.
racovitzai, Pecten, 77.
radians, Helcioniscus, 78.
" Patella, 78.
ramosa, Plicatula, 99.
refulgens, Margarella, 64.
," Valvatella, 64.
regularis, Rissoia, 65.
rioense, Calliostoma, 97.
rioensis, Drillia, 95.
Rissoia adarensis, 65, 66
", demissa, 65.
,, desertal, 66.
,, gelida, 65.
", glacialis, 65, 66 .
," regularis, 65.
rodatzi, Arca, 89.
rossiana, Amauropsis, 69.
rostrata, Cytherea, 103. Pitaria, 103.
rubicunda, Charonia, 85.
rufozona, Cantharidus, 79.
saulii, Nausitora, 91.
", Teredo (Xylotrya), 91.
" Xylotrya, 91.
Scala antaretica, 64.
scalaris, Marginella, 96.
scutum, Calyptrea, 83.
(Sigapatella), 83.
" Trochita, 83.
Semele cordiformis, 102 .
shackletoni, Trophon, 73.
Sigapatella, 82.
,, calyptreformis, 83.
", hedleyi, 8t.
" novat-zclaudiar, 80,83 .
," tenuis, 8:3.
similis, Prosipho, 70.
simillima, Cuspideria (Cardionya), 61, 93, 104.
simulans, Kellia, 7 i.
sinclairii, Mangilia, 88.
Solariella, 79.
", egenn, 79.
" plicatula, 79.
Solarium, 79 .
,, egenum, 79.
Solenella cumingii, 99.
solitaria, Eulima, 64.
spinicincta, Columbirium, 87.
spissa, Chione (Chamelea), 90.
striata, Marginella, 96.
subcompressus, Capulus, 66.
sulglobosa, Lucina, 101.
sublacuna indecora, 66.
Submargarita? crebrilirulata, 63.
subyuarlratum, Cyamium, is.
suteri, Columbarium, 87.
symmetrica, Turritella, so.
tehuelchus, Chlamys, 100.
Pecten, 100.
Tellimya antarctica, 78.
,, minima, 78
Tellina cordiformis, 102. ,, petitiana, 101.
tenerum, Neobuccinum, 72.
Probuccinum, 72.
tenuis, Calyptrea, 83.
," Clypeola, 83.
", Sigapatella, 83.
", Trochita, 83.
Teredo (Xylotrya) saulii, 91.
Thesbia, 72.
innocens, 7ン.
Thracia meridionalis, 78.
tomentosa, Crepidula, 83.
Torellia, 68.
(Trichoconcha) miralilis, 68.
Torinia, 79.
Trichoconcha miralilis, 68.
Trichotrol is, 67.
, antarctica, 67.
", kröyeri, 67.
" planispira, 67.
tricolor, Ancillaria, $8 \overline{7}$.
tridentata, Cardita, 90.
tritonis, Charonia, 84.

Trochilina candeana, 97.
Trochilum scutum, 8:3.
Trochita calyptreformis, 8.3 .
", pellucida, s.4.
" tenuis, 83.
Trochus calliferus, 79.
", heliotropium, 80 .
, nubilus, 97.
Trophon carduelis, 92.
coulmanensis, 73.
drygalskii, 73.
laciniatus, 73.
longstathi, 73.
pelsenceri, 92.
shackeltoni, 73.
tryoni, Corbula, 104.
tuberculatus, Prosipho, 71.
Turricula marginata, 85.
Turris antillarum, 94.
" formosissimal, 94.
Turritella carlottar, 80.
" hookeri, 96.
", symmetrica, 80 .
", vittata, 80, 81.
Typhis belcheri, 92 .
typica, Paradmete, it.
unguiformis, Crepidula (Tanacus), 81.
unifasciata, Litorina, 80.
uruguayensis, Nucula, 97.
Valvetella crebrilirulata, 63.

$$
\text { ", dulcis, } 63
$$

" refulgens, 64.
Venericardia australis, 90.

$$
\text { , purpurata, } 90 .
$$

Venus maculata, 103.
Verconella dilatata, 85. nodosa, 85.
vestita, Neoconcha, 6s, 69.
Vexillum (Pusia) biconica, 85.
vittata, Turritella, 80.
Voluta (Alcithoc) arahica, 86.
,",\quad gracilis, 86 .
" depressa, 86. gracilis, 86.
Volutharpa clarcoti, 72.
Volutomitra fragillima, 7. grönlandica, 74.
Xylotrya saulii, 91.
zelandie, Pecten, 89.
zelandica, Monilea, 79.
" Panoprea, 91.
", Panole, 91.
ziezace, Ostrea, 99.
„ Pecten, 99.
london:
PRINTED SI WHLLIAM CLOWES AND SONS, LIMITED, HEKE STREET, STAMFORD STREET, S.E., AND UREAT WINDMILL STREET, W.

PLATE 1.

Fig. 1. Margarites gemma, n. sp.
,, 2. Eulima exulata, n. sp.
" 3. ," solitaria, n. sp.
,, 4. Rissoia demissa, n. sp.
".5. ", requlteris, n. sp.
, 6. Trichotropis antarctica, Thiele.
, $7 . \quad, \quad$ planispira, n. sp.
,, 8. Neoconcha vestita, Smith.
" 9. ", insiynis, n. sp.
, 10. Prosiplo mundus, n. sp.
," 11. ., tuberculatus, n. sp.
,, 12. ,, comfenitus, n. sp.
," 13. ", cuncellatus, n. sp.
", 14. Trophon coulmenensis, Smith.
, 15. ", sluarliletoni, Hedley.
, 16, 17. Lissacren notorralrusis, var.
18. Limopsis lilliei, n. sp.
, 19. Cantluritus meforonte, A. Ad.
, 20-2.2. Sigeqratelle temuis, Gray.
,23-25. ,, liedleyi, n. sp.
, 26, 27. Foluta aralica, var. depressa.
28. Avcularín corouata, var.
29. Mangilia luttomi, n. sp.
, 30. Columburium suteri, n. sp.

Brit.Antarctic (Terra Nova.) Exped. 1910.

PLATE TI.

Figs. 1, 2. Arcu (Bubutia) nova-zenlaulix, n. sp.
,, 3, 8. Cllumys comsoriata, n. sp.
, 4. Margarites iris, n. sp.
", 5. Glypteutlria armminatu: n. sp.
," 6, 7. Trophon pelsenceri, 1. sp.
," 9. Curdieu delicatulum, n. sp.
", 10. Turris formosissimu, n. sp-
, 11. Drillia brazilieusis, n. sp.
, 12. ," rioensin, n. sp.
, 13. Marginelln fraterculus, n. sp.
14. ,, jumeiroensix, n. sp.
15. Piosiple rameellutus, 11. sp.
16. Nurnlemи (Adrum) janeiror'usis, 11. sp.
17. Limopsis janeivocrosis, n. sp.

18, 19. Macomac angusta, 11. sp.
20. Mactra (Martrimula) jucurvensis, n. sp.

21, 29. Conbulu tryoni, Smith.
23. Cuspidaria braziliensis, n. sp.
24. , (Cardionya) simillima, н. sp.

NEMERTINEA.

BY H. A. BAYLIS, B.A.
WITH FOUR FH:URES IN TUE TEXT AND PLATES I-II

I. General. PACli:
Ramarks on the rollerdion. With Summary 11:3
Methorls of sturly 114
Table of Collewting stations and species taken 11.5
II. Systematic and Morphological.
Fiom. Amphiperilas116
.. Prostomatidie 118
.. Basemdisorida 120
Lincide $1 \because 2$
III. - Literature $1: 34$

I. GENERAL.

The Nemertinea mollected by the "Terral Nova" wame, for the most pritt, from the Antaretic and subantaretic regions, ehiefly from dredgingestations in the lioss hea and Ilcelomedo Gound.

Three speries. each represented ly a single specimen, were captured off Now Zealand.

The total number of speries in the collection is smatl, and of this number vere few are certanly now to sebence. A surver of the whole collection gives the following results:

Total number of speries, 10.
Previously despribed species. 5.
New pecies, 2.
boubtful speries, :3.
The previously described speries are the following:-
(1) From the Antaretic regions:-

I Impliipurnes moseleyi, Huln:
I Im, lifíntu: multiluatutus., Ioubin.

Prostumn milimeatm", (.Joubin).

(h) From New Zealand :-

Basporlisern: !iondiii (Hubne).
The two forms described as new are:-

Limeus siotti, sp. 11.,
both from the Antarctic regions.
The three doultful forms are:-
(1) From the Antarctic regions:-

A very small speeimen, apparently belonging to the genns (ievebratulus, and probably very young.
(1) From New Zealand :-

Two species probably belonging to the gems Limmes, earli represented by one sperimen only. They are referced to in the sequel as Limets, spp. " A" and "B.'

The material on the whole is very well preserved, and no difficulty, on the ground of preservation, has been experienced in making out microscopic details by means of sections or otherwise. On the other hand, the mumber of specimens in some cases is so small that it was thought undesirahle to disseet them to any great extent, and the acrounts given of their structure must be regarled as sulpect to morlification at some future time, when more ahmolant material may be available.

It is a matter for regret that almost no reard appears to have been kept of the colours and markings of the varions speries during life. The sperimens, hy the time that they were handed over to me for study, were all, with a very few exceptions which will be mentioned in their appropriate places, deprived of all traces of their natural molous by the spinit in which they had heen stored.

Transverse sections taken by hand were employed as a means of assigning many of the specimens to their position. 'This method was found extremely valuable for rapidly sorting individuals which were so contracted, or of such nondescript external "ppearance, as to be inseparable by mere inspection. The sections were lightly stained with laratarmine or Pierocarmine, and rapidly differentiated, dehydrated, deared (preferably in Xylol) and mounted in Balsam. In the cases where serial sertions were made, the hest results were ohtained hy staining on the slide with Hamalum. or with Delafield's Damatoxylin followed by Eosin.

Creosote was found useful in dearing some prepurations, surh as the pobsuris of
the Amphiporide，in order to see details of structure without making permament monnts．

The following Thble gives a conspectus of the varions colleeting stations．and the
 correspond with the numbers in thisk type in the gencral＂Lixt of Colle ting stations＂ of the Experlition（Vol．Il．，PI．1－12）：－

$\begin{aligned} & \text { station } \\ & \text { No. } \end{aligned}$	Position．	Nature of Bottom．	Depith（int fathoms ：ud métres）．	Species．
91	From Summit，Great King，Three Kings Islamls，\＆ $10^{\circ} \mathrm{W}^{2} .2 .5$ miles（New Zealand）	Rock．	300 fins． $\text { (.) } 18 \mathrm{ml} .)$	jBitscorliscus ！！emriii． （line＂s，sl．＂13．＂
1：1	Spirits Bay，near North Capre，New Zealand．	Nlelly：	$\begin{aligned} & 11-30 \text { tims. } \\ & (30-37 \mathrm{~m} .) \end{aligned}$	Linc＂s，s1，＂ 1.
200	Off Cape Adare，month of Rolort－ son＇s Bay（Antarctic）．	Shingle．		Amıhipurns muselcyi． A．multilustutus． Prostomn milimentmm． Liuens corruyntus． L．scotti．
$\because 94$	lioss sea，Lat．it $2 ⿹ 勹 口 ⿱ 夕 夕 㐄 亍$ ，Lang． 179 $3^{\prime} \mathrm{E}$ ．	（？）	$\begin{aligned} & 1: 58 \mathrm{fms} . \\ & (289 \mathrm{~m} .) \end{aligned}$	$\left\{\begin{array}{l} \text { Amphiporns moselryi. } \\ \text { Lincus corrogatus. } \\ \text { L. scoth. } \end{array}\right.$
：314	5）miles N．of Tnaccessible Istand， McMurdo Sound（Antarctic）．	Mud．	$222-241$ fms． （ $406-441 \mathrm{~m}$ ．）	〔Basforlisches antarctirus． SLiurns srotti．
316	Off Glacier Tongue，about 8 miles N．of Hut Point，McMurdo sound．	Undecomposed animal re－ mains and mud．	$\begin{aligned} & 190-250 \mathrm{fms} . \\ & (348-457 \mathrm{~m} .) \end{aligned}$	Amphiporns multihastutus． Liueus corruyatns． IL．scotti．
331	Off Cale Bird Peninsula，contrance to McMurdo sound．	Mud．	2.50 fins． （ 457 m ．）	$\left\{\begin{array}{l} \text { Amphipmeи: umltihnstutus. } \\ \text { Limens comurgetus. } \\ \text { L. srotti. } \end{array}\right.$
338	McMurdo Sound，Lat．নi $133^{\text {S．，}}$ Long． $16418 \mathrm{~S}^{\prime} \mathrm{E}$ ．	＊	207 fms． （ 379 m ．）	\｛Liumes rortugutus． IL．scotti．
339	Entrance to McMurdo Sound，Lat． 	，	140 fins． $(2.56 \mathrm{~m} .)$	$\left\{\begin{array}{l}\text { Amphipnrus moseleyi．} \\ \text { Linnmes corrugntus．} \\ \text { L．scotti．} \\ \vdots \text { Crrelutulus，sp．，jus．}\end{array}\right.$
340	loss Sea，Lat．if jof S．，Lons． $164^{\prime} 12^{\prime} \mathrm{E}$ 。	，	160 fins． （ 293 m ．）	¡Linrns corvgutus． 1L．smotti．
3．5．）	Me Durdo Sound，Lat．IT 10^{\prime} 心， Long． 166 ®＇$^{2} \mathrm{E}$ ．	（？）	$\begin{aligned} & 300 \text { fins. } \\ & (5+8 \mathrm{~min} .) \end{aligned}$	S Brascorliserus enturctions． l Liuens sentti．
0.36	Ofi Granite larbom，cintrance to Mc．Murdo somel．	Mud．	$\begin{aligned} & .50 \mathrm{fm} 4 . \\ & (92 \mathrm{mm.}) \end{aligned}$	－A＂thiparus multilustutus． i Liurus sorvagatus．

II.- SYSTEMATIC AND MORPHOLOGICAL.

Order METANEMERTINI.
Fan. AMPHIPORIDE.
Amphiqu'и": Ehrenberg. 18:31.

1. Am, hifm".n moselemi, Hubrecht.
 Pl. X, fig. 3 ; Pl. KV, figs. 11, 12, 20.

Stations 220, 294, 339: 45-158 fathoms.
The collection contans three small specimens and varions fragments, including pieces of the prohnsicis, which 1 assign to this species, not, however, without some hesitation. The material being so scanty, and the specimens not attaining to the large size of the types in the "Challenger" collection, though some of them are sexually mature, it may be questioned whether we are not here dealing with a new form. But on comparing the details of the proboscis-armature, and hand-sertions taken through the whole animal, with the "Challenger" preparations and figures of this species, the resemblances are so great, and the differences so slight, that I do not feel justified in making a specitic distinction.

With so small a number of specimens at my dixposal, I was mable to cut a series of sections. and have therefore no important contribution to make to the anatomy of the species. It may be remarked, however, that in the varions transverse sections taken hy hamd. Whiefly in the middle or posterior region of the lorly. the lateral nerve-stems do not appear to be situated quite so fiar domally as in the type material. Hubrecht, indeed, lays particular emphasis on the point that the nerve-stems lic alone the lateral gnt-cera in I. moseleyi, and notes this as one of the characteristir features of the secies. In the examples now mader ansideration the nerves do, apparently, lie at some distance fiom the lateral margin of the body, and nearer to the dorsal than the vential side, but they are not entirely dorsal to the gut-aca, parts of which extend outwards both ahove and below them, and may he said to envelope them, as it were, on three sides. This slight discrepancy may, of course, he due merely to different states of contration. or to a difference in the level at whieh the sections were cut.

The nerve-layer of the proboscis, as I find is the case in the "Challenger" material. rontains fourteen longiturinal nerves.

The genital organs are also arramged as stated in Hubrecht's ancount.

The only other point "pecially ohserved was the great development, in some
 rentral direction. These muscless pasis though the longitndinal mastle-layer. and are comereted with the eirenlar musele-layer dormatly and ventrally:


``` Pl. I, figs. i, 8 .
```

Stitions $\because 200$. $316,: 3: 31 .: 356:+5-250$ filthoms.

 of the "Ter'al Nova" material comes fiom the same locality. The eotlection rontains thirtecn specimens and some fiegments helonging to this speries. As it has hecru possible to eut some serial sections: aml to examine the probnseis calrefully, a few points in the strueture of the speries, wheh have not previously been described, mat. now le notioed. and a few mosmurements given.

Extersal Fbatches.

 (1) the state of contraction, is very valialle.

The alimentary amal amd prohnsels-sheath have a common opening on the heart, in the form of a median vertical slit (I'l. I, fig. -2, M.). The exterual epeninge of the cerchat organs are in the form of cercentie slits, manly transwerse in dirertion (Pl. I, fig. : ('s.) Numerous eyes were fomm to be present: they are situated rather deep

INTERENAL INATOMy.

 very harlow. Goon, however. it expands into a vohuminons stomadel, with mucls folded walls. This is sucoerder agian by a hatrower pyloric eanal (Pl. I. fig. 5. l'y.) whirle opens into the mirl-gut at about t mon. (in a spirit specimen, as calloukated firom serial seotions) from the tip of the hearl. There is a harge caecum (l'l. 1. fig. 5. Cer.) extembing formants fiom this point, ventrally to the pylorio ranal. as far as the posterior emb of the fobled stomatel, with which it aprears to he in rlose contact. This catemm sembls ont mumerons lateral porkets (I'l. I, fig. 5. L.1'.), which remve upwiarls within the museles of the louly-wall.

Promsors.-Tha most stribing feature of the probosis in this speries. ins II. Jombin notioes, is its vory grat tharkness in proportion to the anmal's borly. Its antrion portion is excealingly muscular. and its diameter is aloont eynal to half that
of the berly (Pl. I. fig. 5, Pr:). The nerve-layer of this portion of the organ contans sistecn longitudinal nervers.

The armature of the proboscis ($\mathrm{Pl} . \mathrm{I}$, fig. 7) is quite distinctive. The stylets are of a hlunter and stonter shape than is usual in the genus, and are particularly hrom at the base. The functional stylet measures $0.28 \mathrm{~mm} .-0.40 \mathrm{~mm}$. in length, and in width, at the point of attachment, $0.12 \mathrm{~mm} .-0.22 \mathrm{~mm}$. The basis of the functional stylet is also very hroad and stout, and is of a somewhat triangular outline. It measures $0.70 \mathrm{~mm} .-1.3 \mathrm{~mm}$. in length, and $0.4 \mathrm{~mm} .-0.8 \mathrm{~mm}$. in width at its thickest part, which is posterior:

The reserve stylets are contaned in twenty-eight or thirty pockets, armaged in a sircle round the bulbous expansion of the probosicis (Pl. I, fig. 7). Each pocket contains one, or at most two, stylets.

Borly-urall.-The external epithelium stands on a comparatively thick basementmembrane (Pl. I, figs. 5 and 9, B. M.). The circular muscle-layer is not very thick, but the longitudinal layer (Pl. I, figs. 5 and 9, L.M.) is well-developed, amt about equal in thickness to the external epithelium and hasement-membrane together.

C'ephalic Orgoms.-Each of the crescentic apertures learls into a cavity which is wide at first, lat soon becomes a narrower tule, circular in section, ruming backwards and inwards to come into comection with the anterior part of the hrain. The inner end of each organ is surrounded by the ustal ganglionic and glandular structures.

Genital Organs.-In both sexes the gomads are arranged in a maner very similar to that of I. moseleyi ; ie., they are distributed round the inside of the body-wath, so that several may be seen in the same transverse section (Pl. I, fig. 9, (4.), and without any definite alternation with the gut-raca. Their durts open, for the most part, at the sides of the body, but towards the hinder end. Where the genital sace are more numerons, some of the openings are dorsal and ventral.

Fam. PROS'JOMATIDA.

```
        Prostoma, Ant. Dugès, 1828. [= Tetionstemma, Ehrenberg, 18:31.]
    8. Prostoma unilimentum (Joubiu). (Pl. I, figs. :3, 8. Text-figs. 1-2.)
        Trftrastenmun unilineatum [Pumett (in lift.)], Joubin, 1910, p. I2; PI. I, tig. 9.
```

Stations $220,339: 45-140$ fathoms.
Of this pretty little species there are nine examples in the present collection.* The type specimens in the "Southern Cross" collection are in poor contition, but there can he little doult of the determination of these individuals. One of them (Pl. I, fig. : ${ }^{\text {a }}$)

[^24]is somewhat latge than the trpe spermens. the body measming 8 mm. in length, and \therefore mmen. from side to side at the widest part, which is about the middle. The amimal tapers towath the heald amb tail. The domsal surface is comsex. the rentral surfare connave. The prolnsef was extmated to a distaner of $: 3$ mm., hut is now lowken off. and a miconsophe preparation has been made of it to show the amature.

Several of the specimens are rery minnte. measuring "uly ahout 2 mm , in length.

The colonation (in spirit) is as follows: the dorsal side is of a yellowish flesh-colour, with a distinet reddish-lmown pignented median stripe: the rentral side is of a pale orhreous yellow.

The four lage eves have been made out by clearing in creosote. The two on cither side lie chose together, one behind the other. (Textfig. 1.)

Firs. 1.-Prostomu unilincutum: dorsal view of the anterior end, magnified, showing the eyes (E.)

The allatomy has not been fully worked out, as serial sections have unt been ant. A few transverse seations taken hy han teveal the following characters:

Bonl!-mall.-- The extermal epithehim (Pl. I, fig. 8, Ep.) consists of very tall cells, interspersel with matur micellular glands and their serretions, which are seen escaping to the exterior. It rests on a thin basement-membrane, which separates it from the rircular mustle-layer. Both this latter layer and the sureeding longitudinal layer are thin alld hut feehly developed.
(Hor.-The largest specimen is a female, and the entire space within the longitudinal hody-museles, where not ocoupied by the gut and its lateral diverticula, or by the proboscis-shath, is tilled with eggs of relatively enomoms size (Pl. I, fig. 8, (ov.). measuring almut 0.4 mm . in diameter. Their muclei are also large ($0.08 \mathrm{~mm} .-0.1 \mathrm{~mm}$. in diameter) and contain many refringent globules.

Prabustis-sheath and Probuseris.- The proboseris-sheath

 frm: the functional stylet of the froboscis, and its basis, highly magnified. is proportionally large, and is supplied with stronge ciroular musiles.

The prolnoseis is relatively very stout, hat its armature is mimute, in acoortance with the small size of the whole amimal. The form of the central stylet amb its basis is represented in text-fig. 2 . The hasis measures 0.15 mm . in lengeth. There are two porkets containing reserve stylets to the momber of alont four in eid.h.

Order HETERONEMERTINI.

Fam. BASEODISCIDAE.

Bespodismes, Diesing, 1850. [= Enpulin, Mnhrecht, 1887.]
4. Basentisens anturticus. sp. 11. (Pl. I, figer. 4, 6.)

Stations 314 and 355 : McTurdo Sound, 22.300 fathoms.
A fairly distinct constriction immediately behind the mouth, when the head is not retracted. Cephalie grooves lateral and vertieal. Mouth small and circular. Primary hasement-membrane of cutis deep, but lonse, and with many radial muscle fibres. A well-developed layer of gland cells in comection with the cutis. Bundles of tibres in outer longitudinal musele-layer of loody separated ber much gelatinous tissue. Circular muscle-layer thin. Walls of gut not folded. Prohoscis slender, and proluscis sheath thin-walled.

Two sperimens which I refer to this form orrur in the rollection.
The larger of the two measures $5 \cdot 5 \mathrm{~cm}$. in length, and las a maximum thirkness of 9 mm . The smaller, which is apparently a romg female, measures muly 2 cm . in length and 5 mm . in thirkness.

There is no trace of mone on markings upon either individual.

External Features.

In the small specimen the characters of the hear (Pl. I, fig. 4) can be fairly well made out ; it is marked off from the body by a moderately distinct eonstriction, immediately behiml the mouth. The prohoscis-pore (P.P.) is a well-marked vertical slit just below the apex of the hearl. The shallow eephatic grooves (G.) are lateral and vertion, and apparently do not form a complete ring. The mouth (M.) is small and eireular, with regularly wrinkled margin.

In the larger example the head is murh retracted, and little of these featmes can be made out witl certainty.

Interval Inatomy.

A small piece was taken from ahont the midtle of the boty of the small specimen. and cut into transerse sections (Pl. I, fig. 6). These reveal the following featnes:-
'The extermal epithelium of the borly (Lip.) consists of tall cells. resting on a secondary hasement-membrane (B.M2.), succeded by two thin layers of muscle-fibres. an outer circular and an imer longitudinal. Bencath the latter is a well-dereloped layer (Gll.) of large ghandular cells. Next comes the thick primary basementmembrane ($\mathrm{B} . \mathrm{Il}^{1}$.) consisting of a rather loose comnertive tissue. throngh which many bundles of mosele-fibres pass outward radially.

The outer layer of longitudinal body-museles (L. II^{2}.) comes next in orter: The
lamoles of fibres belonging to this layer are somewhat sattered, and are emberded in a comsiderable ammont of gelatinons and solid-lowking ammertive tissue.

The cirular maste-layer (C.M.) is thin. between it and the onter lomgitudinal musices lie the latige lateral nervestems (L.N.).

The imner later of longitulinal muscles (L. I^{1}.) is comparatively thick and dense.
 connertive tissue. In this commertive tissure, between the museles and the gut. there are numerons large spares, sombe which are probably homesinuses. hat others appeat to be the gromatial sams. The fommere situated domatly and ventrally. the latter at the sides. Lat the anterion part of the series of sectons these gonarlial sares are cmpty, hat more posterionty wa are begiming to be dereloped fiom their walls. The Wat alwas appear on that siste of the sate which is towarls the exterior. The sex of the larger serimen was not detemined. and 1 am unable to give any partioulats as to the arrangement of the gonals in the mate.

The gut (Pl. I, fig. 6, lut.) is simple and spacions, and its wall is not folded.
The probsicis is feehly developed. and its sheath is thin-walled, and not ahmodatly provided with muscles.

With surh seanty material avalable, nothing further an le saicl at present of the anatomy of this species. Its chief interest lies in the fact that it is the only member of the genus as yet recomed from truly Antarcti- watems, muless we ancept limplin fmemetti as a "good" species. I shall further state my views with regard to this Guestion under the heading of Limens compurntux ; hat 1 may be permitted to remark lice that 1 can see n ne reason for referming that form to the gemus Vinmelin (or Bearentisus. If this view be conrect, the present species will be the only one. I leliese, hitherto recomed firom a latitule further south than 4.2 .
5. Binsmentisers: girardii (Huln:)

Station 91: : 000 fathoms.
A single sperimen taken near Three Kings lstands, New Kealand, appans 10 helong, in all probability, to this species. It measures about (if an, in lengrth, and hats a thickness of of man. The head-end tapers somewhat, and shows a faint sumomuling grower, as described and figured ly Huherht. The tail is comically pointed, and thieker that the heme.

The suectimen is a femath:
Nos trates of entone ran now lo make ont.

FAM. LINEID.E.

Sub-Fim. LINEINAE.
Limens, Sowerby, 1806.
6. Limens: comr!!utus. M‘lat. ('Text-tigs. :3-4.)

Lineus corrugutus, M‘Intosh, 1876, P1. 329-323. M‘Intosh, 1879, p. 262; Pl. XV, figs. 17, 18. Studer, 1879, p. 123. Bïrger, 1904 (1), pp. 96-97. Joubin, 1910, pp. 2-8; Text-figs. 1-10; Pl. 1, figs. 1-5.
Cerebratulus corrogetus, Hubrecht, 1887, pp. 11-43; Pl. I, fig. 17; Pl. XI, fig. 9 ; Pl. XII, figs. 3, 4; Pl. XIII, figs. 1-6 : Pl. XIV, figs. 2-4. Joulin, 1908, p. 6.
? Cerelrutulus rlarreoti, Joubin, 1905 (1), pp. 315-318, and text-figure. Joulhin, 1905 (\because), p. 432. Jouhin, 1908, pl. 2-6 ; Fig. 1.

Lineus hunseni, Joubin, 1910, pp. 8-9; Fis. 11.
Eupoliu pumnetti, Joulsin, 1910, 1p. 9-10; Figs. 13, 14.
Stations $220,294,316,331,338,339,340,: 356: 45-250$ fathoms; Station 324 , Mr. Murdo Somml, on shore.

This fine species forms the bulk of the present collection, having heen captured at nearly all the dredging stations in the Ross Sea and McMurdo sound, where it is evidently very abmotant.

The best account of this form is still that of Hubrecht (1887) in the report on the "Challenger "rollection. His description and figures of the histologisal details of the body-wall in particular are most aceurate and complete.

The original description of the species hy Il'latosh (1876) is very hrief, and may be fuoted here in full :--
"Body (in spirit) Hattened, rather alnuptly pointed anteriorly, and more gradually posteriorly. The osophageal region is marked externally by a series of prominent and somewhat regular rugae. Which sweep from the mouth dorsally and ventrally; so that the dorsal view recalls that observed in Alom uter.
"Colour dark olive thronghout, with the exception of a white hand, which eroses the anterior border of the snout, and passes backward to the posterior third of the lateral fissure, where it bends dorsally and terminates.
"The special rhanacters are the very large mouth, with the prominent ruga, which show that the animal probahly possesses musual powers of asophageal protrusion-a supposition borne out by the great development of the external circular muscular filnes and the succeeding longitudinal coat of the organ. The internal glamdnlar lining is also very firm. The outer layers of the proboseis correspond with the type in the Lincida: hut the internal longitudinal layer is largely developed."
ln size the sperimens in the present collection vary very greatly; the smallest of the young individuals measure about 6 cm . in length, and are generally coiled ventrally in a spiral when in spirit. The largest specimen is 65 em. in length; this example was fomed "washed up on Hut beach, Feh. 28th, 1911," and is in a
very expanded wondition. Another mosures ide rm. and there are several of nearly this size.

The cotours of the large examples are mo lomger distinguishahbe some armo perfectly white, while others have apparently heen discoloured by the spinit in which they were kept.* The young, however, still show the rharacteristie mankings mentioned in M•Intosh's description. The gromm colour is now (in spirit) a dirty reddish hown atove, somewhat paler helow, and with slight intiations of a patur longitudinal stripu oll either side in some cases. The rephatio slits are efged with white. and a white streak pasmes domsally from near the himber ent of earh stit, forming a neaty mompern batul ancoss the head.

In some of the harge examples the hern is exeertingly elongite the mouth measuring e: mm. (in the "Hut heach" sperimen :30 min.) in length, ant the rephatic slits alont 6 inme.

One specinen, measuing abont 50 em. in length, exhibits a very marked Hattening of the posterior aud. Which led me to duestion whether this wats not of a different speries from the rest. It is, indeed, remarkable similar to the form deseriberd Ly Jombin (1908) as 'imbratulus rhmouti By means of sertions. howerer, I hame satisfied myself that there is 10 gromed for believing that it is mot an example of L. complytus. It is a male. and in the Hattened posterion portion the testes may be seen in sertion, disposed peripherally within the muscles of the body-wall. The vimions layers of the boly-wall are much reduced in thickness in this region, and the muselelayers in partionlar appear at this point to he very weak. Hene the probable explanation of the Hattening (which is seen in varying degrees in other specimens alsof) is that at the time of sexual maturity the body-wall becomes redured in thirkness. and less strongly muscular. in order to provide more room for the sexual products which are ripening within. The natural result of this process wonlal be that the weakened portion would participate less fully in the muscular emontration which takes plare under the action of a fixing reagent, and, if ahrearly Hattener, woukt remain so.

I have heen led, during my investigation of this species. to entertain doults as to the validity of certain other species from Antaretio waters, and it is appropriate here to make some reference to them. While working on the "Terra Nosa" mollertion I have hat at my disposal the types of the "Challenger," "Disonvery" and " sonthem

[^25]"ross" collections. Among them there are good series of sertions of Lineus corruqutus, Limens lutusemi. and Eupmlin pummeti. I have worked through all the series, paying particular attention to those (twelve in all) which were taken through the heads of the worms, and which show the arrangement of the brain, cephatic organs, and bood-spaces in that region. On carefully comparing all these series together, and also with the " Terra Nova" specimens of L. corrugatus, I can find no reason, either in the grosser anatomy, or even in the finer details of histology, for regarding any of them as distinet species. and I therefore consider them all synonymous with that originally deseribed lev M'Intosh (1876).

One of the most chatacteristic features of Timmes compugturs, as has been noticerl by M. Joubin (1910), is the arrangement of the large blood-sinuses in the hear. I have paid speeial attention to this system in all the species mentioned, and find it in every instance identical. Such slight apparent differences as there are, are evidently the result of different states of contraction, and are in no way due to any variation in structure. At the point where the blood-sinus traverses the nerve-collar it becomes so "ompressed in some sperimens as to be almost obliterated. but it can nevertheless be traced, and shown to go through essentially the same changes at different levels, in all the specimens examined, and in all the "speries" abore named.

As my conception of this hlool-sinus and its transfomations differs somewhat in details from that of M. Jouhin (1910), and as it is an important featme of the species. I have prepared a series of diagrams illustrating its appearance as it is traced hack throngh any series of transverse sertions, rommencing with the smont of the animal. These diagrams were all outlined with the camera lucida, though they were not all taken from the same scrics of sections, as the vessels in a given region were better displayed sometimes in one specimen, sometimes in another, according to its state of rontraction. In all, however, they couk be traced with more or less case, and rednced to the same plan.

Starting, then, with the tip of the animal's hearl, we find a single lowod-sims occupying a merlian position dorsal to the rhynchorlæun (Fig. 8, A.). This sinus soon widens ont (Fig. 3, B.), and becomes divided into two lateral spaces by the development of a partition from the dorsal side of the rhymbodium to the opposite wall of the sinus (Fig. : 3 C.). The blood-spaces, a little behind this point, come to embace the rhynchodæum between them, earh being of a drescentic shape in transverse section (Fig. 3. D.). This condition remains constant until the region of the lnain legins to be reached. The comective and muscular tissues in the centre now begin to increase at the expense of the hood-spaces. which become very attemated (Fig. 3, E.-H.). This development of muscular tissue is the first indiation of the proboscissheath proper, whose museles are at this point contimous with those of the probosis itself.

A space, or sates, now legin to appar in the central tissuc. These represent the leegiming of the lumen of the proboseis-sheath, which soon completely smroumbs

Fis. B.-Linens rorrugatus.- Diagrams of a series of transverse sections, illustrating the vascular system, which has been represented in solid black. The brain and nerrous structures are hatched. Pr., proboscis; P.S., cavity of probnscissheath ; R., rhymehombum, seen opening to the exterior in the first diagran (A).

A-Shows the median hlood-sims in the snout, lying dorsally to the proboscis-pore (R.). Blood-sinus represented in solid black.
B -The proboscis-pore has passed into the rhynchodicum (R.), and the blood-sinus is of wider calibre.
C -The blood-sinus becomes divided into two by a partition of comective tissue developing on the dorsal side.
D-There is now a complete wall of connective and muscutar tissue dividing the two blood-spaces, and enclosing the rhynchodieum.
E-Nerves from the anterior part of the brain are appearing laterally, and the central tissue is encroaching more and more upon the hloor-spaces, so as to rednce them in size.
F-The contral muscular tissue begins to show spaces-the beginning of the cavity of the probosis-sheath (P.S.). Blood-spaces still further reduced.
G -The cavity of the proboscis-sheath is now seen conpletely surrounding the proboscis (Pr.), and separated by a thin wall from the blood-space on either side. The blood-spaces are pressed between the brain and the proboscissheath, so as to be very narrow at this point.
H -The blood-sprees have coalesced rentmily, so as to form a C C-shaped vessel cuclosing the proboscis-sheath.
the proboscis. It has only a thin wall rentrally and laterally. separating it from the hood-sinus, which is now a single U-shaped cavity, the fwo lateral sinuses having coalesced below: (Fig. :3, I.)

The hombesinus may he regarled as a single cavity thoughout, lnoken up ly the encroaclument of loriges of comective and muscular tissule, which appear quite irregularly, and are not always symmetrical on the two sides. Immerliately after passing behind the brain, a median ventral hood-space is formed for a short distance, as shown by M. Joubin (Fig. 4, A.). This, however, is soon divided again into two lateral spares (Fig. 4, B.), which beome more and more widely separated by the intervening mass of romective tissue (Fig. $4,(\mathrm{C}$). 'This merlian space is quite distinct from the vessel of the prolosedis-sheath. and instead of passing grachatly into it, as described hy M. Joulhin, never has any romeretion with it whatever. This vessel, usually called the donsal vessel, though deaty belonging to the prohoseis-sheath, is a small cavity in the wall of the sheath itself, on the ventarl side, appearing first at the level of the hinder part of the ham, and extending, probably, thonghout the length of the sheath. Its dorsal wall anteriorly is a very thin and collapsible membrane. Posterionly the ressel sinks more deeply into the tissues below the prohoscis-sheath, so that its dorsal wall beromes much thicker. Not having eut a whole worm into sections (which would be a somewhat extensive undertaking), I am mable to state what actually becomes of this vessel at the hinder end; hut so far as my evidence goes it is not, at any rate at the anterior end, in direct communication with the other system of simuses. To contime the history of the main system, as we pass harkwards throngh the series of sections to the region where the mouth and resophagus appear, the lateral simuses, at first few and large (Fig. t, C.), are seen to spread round the outside of the asophagus, so as to embare it laterally and dorsally, except for the interuption of the proloseris-sheath. They sulsequently become more and more suldivided by the hridges of connertive tissme and mustles. and at the same time smaller and less romspienous.

Finally, behind the mouth, their condition is that of a network of quite small vessels almost completely smomoding the gut (Fig. 4, D.). They lie between the imer longitudinal body-museles and the rireular muscle-layer which surrounds the gut, and have now acquired a much more definite lining epithelium of their own. They now present, in fact, exactly the appearance described amd figured by Hubreelht (1887, Pl. XIII, fig. 6).

One other point may be mentioned in comection with the rascular system, in which I cannot entirely agree with M. Jonhin's description (1910). He states that both in L. commatus. and in L. hanseni there are certain "orifices" loy which the cavity of the rhynchorzem is in communication with that of the hood-sinus in the hearl. This rommunication is said not to be direct. but certain "anpulle" in the thickness of the wall of the rhym hordeum are said to commonicate through a kind of spongy tissue with the hood-sinus, being at their inner ends in direct

Fui. $4 .-$ Lineus rormyntus. Continuation of the series of diastams illustratime the vascular system (sulin) back). C.M., circular muscles; Int., intestine: M., mouth; Oes., osophagus; P.S., eavity of proboscis-sheath.
A - Bridges of conncetive tissne and manseles begin to cross the blood-space irregularly, breaking it up into a network of intereommuncating vessels. A small blood-vessel, with very thin dorsal wall, is now appearing in the wall of the proboscis-shenth, on the ventral side. (The proboseis is no longer seen, having been torn ont in this specimen.)
B - A median ventral blood-space has appared temporarily, but is already being eneroached upon by the eomective tissue, and scparated into two lateral spaces.
C-The branches of the blood-space are hecoming widely separated, and spreading romed to embrace the walls of the ossophagus and month, which have now appeared.
D-The final condition of the blood-space with its network of vessels. These now lie below the inner liver of longitndinal muscles, and completely surronnd the intestine. The blood-vessel of the proboscis-sheath is still seen, its dorwal wall being an excecdingly thin membrane (exaggerated in thiekness in the drawing).
commmiontion with the lumen of the rhynchodam. The figures given, however, are not altogether convincing; and on re-examining the material (which is not conspicuously well preserved). I have formed the conclusion that the "ampulle " are to a certain extent artificial results of the contraction of the wall of the rhyolhodieum. They are, in fact, a kind of "hernia" of the lining epithelium. which is here and there pushed outwards leetween the muscles, thus forming minute diverticula still in communication with the main cavity of the rhyochodæum. They do not orcur in all the series of sections examined, and are not, therefore, an essential feature of the species. Moreover, their outer commmatications with the Hood-sinus are, I believe, imaginary. In no case have I detected any actual opening, and though they sometimes come very near to the surface, I believe that this appearance is entirely due to artificial caluses.

Having ahrealy stated my conviction that Linels: hanseni and Enmolia funnetti. are synonymous with L. compugatus, J may perhaps be permitted further to add that I feel some doubt as to whether 'erehrutulus charoti, Joubin, should not rome under the same category. The author's description (1908) does not appear to me to show any very satisfactory grounds for its separation; no description or figures of its internal anatomy are given, and the main points mpon which the distinction of the species is based are (1) the marked flattening of the posterior end of the borly: (2) certain very vague features of colour: and (3) the great length and attenuation of the head. Now (1) the thattening of the borly, as I have attempted to show above, oxecurs in sperimens which I mmot regard as other than L. corrugatu*; (\because) colour, in spiritpreserved material, can hardly be said to have any importance at all, being often affected by the pigments of other specimens. \&o., which may have been immersed in the same spirit; while (3) the comparative length of the head, month, \&e, in these worms is a matter obvionsly dependent upon the growth of the individual and the mode of fixation or preservation employed, and may be extremely variable in preserved specimens of the same species.

Taking all these facts into consideration, I think the evidence points to the conclusion that in all four cases (Limens comrufatus, Limens hanseni, ('ertbratulus Thutenti, and Einmelia pumetti) we are dealing with one and the same species, amd that this is the form origimally deseribed by IlIntosh (1876) under the name of Limetes rarrituatus.

bintribution.

By the inclusion of the several speries above-mentioned in the symonymy of L. corrmotus, the range of the latter is seen to extend to the western as well as the eastern side of the sulantarctic regions. 'The specimens determined by M. Joulin ats ' 'evelrutulus coprututus and ('. churcoti came from Booth-Wandel Island. I have also to uld that some immature specimens brought from Cumberland Bay, South Georgia, by the late Major (i. E. H. Barrett-Hamilton's Expedition, 191:3-1914, belong, in
my opinion, to the same species. Combining, therefore, all these records, we hate the following :-

These localities lie in a fairly complete cirele, between the approximate latitudes of 50° N. and $77^{\circ} \mathrm{S}$., and it appears that we are dealing with a single common species which extends ampletely round the subantaretic region. It is, perhaps, somewhat remakable that the species, ocurring as near as South Georgia, should not have been recorded firm the Strait of Magellan, which lies well within its range of latitude ; aud possilly somer or later it will le found there. Its northern range, however, with the exception of Kerguelen and Hearl Island, appears to lie within the extreme limits of the pack-ice.

7. Limens stotfi. sp. 11. (Cll. 11, figes 1-6.)

Skin smooth. Head blunt and rounded. Mouth rather short. A transverse groove encireling the head behind the cephalie slits. The latter are deep, and communicate with the brain only at their hinder* cuds. Primary hasement-membrane of cutis lacking. Glandular cells in epithelium with a brownish secretion. Onter longitudinal muscle-layer very dense and thick. Proboscis with four longiturlinal neves. Its circular muscle-filmes form dorsal and ventral crosses. Cerelnal organs large, projecting into lateral head-sinuses.

Length up to $10 \cdot 7 \mathrm{em}$. (probably often greater).
Stations $200.294 .314 .316,3: 31,: 3: 38,339,3.30,: 35: 45-300$ fathoms.
The speries seems to orem together with L. comrufutues in nearly every case.
A momber of suceimens of this Limens, which is clanty distinet from L. converfutus. orom in the collections I have mamed this speries in homour of the bamenter Commander of the Expedition. The two forms, when in spirit. are generally reality separated by mere external inspection, though hy this means some sperimens of L. wotti might easily be taken for immature individuals of J. compughtus. which hat become lecolorised.

External featurbs.

The chief points in the external appearance of L. veotfi which serve to distinguish it from I. corrergutus are as follows:-

The skin is comparatively smooth, and not thrown into marked wrinkles and furrows.

The head is usually bhut and romded in frout. 'The snout is, however, evidently capable of some extension, as in a small number of individuals it has been fixed in a more tapering form.

The young specimens do not appenr to coil up ventrally in a spiral when killed, as du those of L. conrerfatus.

The mouth (Pl. II, fig. 1) is a longitudinal slit, but not nearly so clongate as in the other species. ln the largest individual it measures 5 mm . in length. The lips are thrown into regular folds transersely to the long axis of the mouth.

There is in many cases a more or less well-marked transverse groove behind the cephatic slits. This is especially noticeable on the ventral side (Pl. II, fig. 1), where it runs back in the middle line to meet the anterior end of the mouth, thus forming a V-shaped furrow.

The cephalic slits are very deep and clean-cut, measuring about 4 mm . in length in the largest individuals.

The proboscis-pore (Pl. II, fig. 1) is, as usual, a vertical slit at the tip of the snout, crossing at right angles a slight groove which joins the anterior ends of the cephatic slits.

In length, complete specimens (of which there are few) measure from 2.4 em. to 10.7 cm . The larger specimens are all fragmentary, and it is impossible to guess at the maximum leugth probably attained; but this would seem to be certainly very much smaller than that reached by L. corrugutus. In thickuess, the largest fragment measures ahout 8 mm . laterally and 6 mm . dorso-ventrally; the other specimens vary greatly in thickness according to their state of contraction.

No traces of the original coloms of the species can be mate out.
Nearly all the specimens appear to be sexually immature.

lnterial Anatomy.

Bul! !-rrull.-The outer epithelium (Pl. II, fig. 3, Ep.) consists of very tall ciliated cells, with numerons smaller interstitial cells at their lases. Between the tall epithelial cells: are seattered many large chahnshaped cells (Pl. II, fig. 3. G1. ${ }^{2}$) full of a refractive yellowish-hrown secretion.

Below the epithelium there is a thin but solid-looking basement-membane (B.M.), scarcely ats deep as the epithelium itself. Beneath this again there is a thin layer of dicular muscle-filnes (C.M2.). A well-developed and conspicuons, deeply-staining layer of large glandular cells (Gl.) succeds this, resting immediately upon, and heing partly
embetiled among. the fibres of the outer longitudinal mascle-later ($\mathrm{L} . \mathrm{Mr}^{2}$.). The deep primary basement membrane," so conspicuous in L. comronfutus, separating the glambular layer fiom the musculature, is entirely alsent.

The outer layer of longitudinal museles (Pl. 11, figs. $2.3,4,5.1 .2 l^{2}$.) is excedingly thick and well-developed. Its fibtes are separated into gromps only ly slight partitions of commetive tissue. so that under a low power of the mimeseope they appear chosely and evenly phaced together, and the whole layer has a very solid aspert. Betwen this layer and the cirenlar museles there is present the usmal mereplexus (Pl. It, fig. L. N.P.), with the two large and well-developed lateral nervo-stems amb a smatl domal nerve.
 layer, is very stout and solid in appearance. It is suceeded ly a comparatively thin inner longitudinal layer (L.MI .). The last two layers together make up a thiokness nearly equal to that of the outer longitudinal coat.

Alimentu!! ('mml. - The intestine is U-shaped in transverse section (I'I. II, fig. コ̈, Int.), and without marked lateral diverticula. It seems to be characteristio of this species that the ".rypts," or pockets, in the lining epithelium at least. in the asophageal portion of the gut-form very regular and acute angles.

Pmbesis-shenth and Proboscis. The proboscis-sheath is larger in diameter. relatively to the size of the whole ammal, than that of L. compurfus. Its lining epithelime rests on (1) a thin hasement-membrane, followed by (2) a thin longitntinal coat of muscle-fibres; (3) a thin circular coat of museles, comected dorsally with the circular musculature of the horly-wall; and (4) mother coat of longiturlinal museles, which is in reality part of the imer longitudinal coat of the borly-wall.

The dorsal hlood-vessel (Pl. II, figs. 2, 4, 5, D.V.), or vessel of the rhynchorole, ass it might more descriptively be called, lies, anteriorly, on the inside of the circular muscles of the prohoscis-sheath; more posteriorly, it sinks through the circular muscle-layer, and eventually comes to lic below it, among the outer longitudinal muscles. It has very thick walls, as compared with the corresponding vessel in L. romrityatus.

The proboscis is thin, and its musculature is not strongly developed. In transverse section (Pl. II, fig. 6) some of the circular musele-fibres are sech to eross earh other dorsally and ventrally ($\mathrm{C} .,(\mathrm{C}$), and pass outwards to the periphery, as in the common ('evelmatnlus marymatus. Within the circular layer of musices there is a nervons layer, contaming fom large longitudinal nerves (N.). There is mo imer longitudinal layer of maseles separating this nervons layer from the lining epithelimm. The latter is mainly composed of tall glamblatar cells.

Fasrular Shystem. - The hood-sinuses in the head are armanged on a plan simitan in essential points to that of $/$. comrngatus, alrealy desseribed; lut after the ['-shaperl
 dorsally and outwarks (l'l. Il, fig. 4 , B.S.), so as to cmbrare the dorsal ganglia aml
revelnal organs. They then lecome separated ly muscular tissue from the ventral portion of the " T^{\top} " (Pl. II, fig. 4, V.B.S.), just as in L. commutus, so that there are for a short distance three apparently distinct spaces. Further bark, the system of intercommunicating vessels is not nearly so elahorately developed as in the former species; the bood-spaces round the gut are hy no means so distinct or so numerous, the most conspieuous being a pair of longiturlinal vessels situated to right and left of the proshoscis-sheath, dorsal to the gut (Pl. II, figs. 2 and 5, B.S.). A few smaller and more irregular vessels can be seen laterally and ventrally.

Somsp-mrgans aul Nerous Siystem. There is a minute "frontal organ" at the tip of the sonot, and the head is very albundantly supplied with gland-cells, some of which are prohally connected with it.

The cephalic slits are very deep and straight-sided. There is very little expansion at the bottom of the furrows, which communicate with the brain only at their hinder ends. On the posterior wall of each slit there is a prominent transverse ridge, containing a groove which leads into the canal of the cerehral organ.

The upper extremity of the dorsal ganglion of the brain on either side ends immediately in front of the cerelral organ. In the anterior and upper part of the dorsal ganglia, the largest or "giant" type (Biarger) of ganglion-cells are extraordinarily well seen, and are of very large size in proportion to the whole hrain.

The cerehral organs (Pl. II, fig. 4, C.O.) are well-developen, large, and abundantly supplied with glands. On their inner and dorsal sides they are closely surrounded by the lateral portions of the cephatic blood-sinus.

The lateral nerves, with their investment of ganglionic cells, run out almost at right angles to the long axis of the animal for a considerable distance on leaving the brain (Pl. II, fig. 4, L.N.), and then turn back to run in the usual manner along the sides. They are very stout, and lie somewhat towards the ventral side of the animal (Pl. II, fig. 2, L.N.).

There is a complete plexus of nervous tissue (Pl. 1I, fig. 2, N.P.) immediately outside the circular muscles of the hody-wall, and a small dorsal nerve in this layer, in the middle line, as in L. corrugatus.

Genital Oryans.-In a female specimen examined, the gonads appear to form a continuous series along either side of the wom (Pl. II, fig. 5, G.). They compress the gut between them, and are not separated from their neighbours by any lateral gut-ceca. The eggs contained in this individual measure about $0 \cdot 0 \mathrm{~mm}$. in diameter.

I am unahle to give any account of the arrangement of the genital organs in the male.

Note :-It may le remarked that there is nothing in my deseription of this form contradietory to the supposition that it is identical with Cerelratulus rulidus, Birrser, from South Georgia. On the other hand, the description (1893) of the latter species is based upon one specimen omly, and is so brief that it would he scarcely prossible to determine the species from it, and moreover no figures are siven. Hence I have not hesitated to regard the "Terra Nova" material in the light of a new sprecies.

8, 9. Limeus, spp. " A "and " B."
"A." station 1:\%t. \quad B," Station 91.
There remain two sperimens, apparently of this gemos. from the New Zealand waters, belonging widently to two distinct sperjes; lomt as to the detemination of these I prefer to reserve jnigment. I hesitate to fomed a new species upon a single sperimen, as the description must neressamily be inmomplete, and may only lear to ronfusion. Gne of these two individuals, which I will rall Limms. sp." A." is interesting mainly on aroount of the following features: The borly is slightly flattened, and the heal is shapert like an arrow-hemb, the posterion ends of the eephatie slits projerting comsiderably at the sides, and the shout tapering to a point. The epphatic slits are 3.5 mm . long. The month is small, and measures only slightly wer 2 mm . in length. The skin is deeply pigmented, of a rather dark olive-green colour. The pigmentgramules are closely crowided together in the thick primary hasement-membrane, and in amother layer immediately ontside the rirentar mosele-layer of the hody-wall. Between these two matin layers sattered granules are ako seen in the radiating strands of connective tissue among the outer longiturtinal muscles. The snout, and the edges of the rephatie slits and mouth, are orheous, and may perhaps have heen red during life. [Length of sperimen (tailless). 5 cm .]

Sub-Fan. MCRURIN\&.

Cerethratutus, Renier, 1804.
10. ? Cemertiratulus, sp. (juv.)

Station 339.
There is a single very small specimen in the collection, with a minute tail-like appendage at the posterior end. The total length of the anmal is about 7 mm . The skin is transersely winklet, and the general colour yellowish, thickly dotted with minute reddish-lnown spots of pigment.

The smont is thick and spmare, and the whole head large in proportion to the borly. The epphatis slits measure a little over 1 mm . in length. The mouth is "ongate, lmat not large, and lies behind the cephalic slits.

It is only provisionally that I assign this specimen to the genus Cerdmotnlus. and I regard it as probahly a very young individual.

LITERATURE.

Bürcerr, O.--1893. "Südgeorgisehe und andere exotisehe Nemertinen." Zool. Jahrb., Syst., VII, pp. 207-240, Pls. 8-9.
Bürger, O.-1899. "Hamburger Magalhaensisehe Sammelreise. Nemertinen." Pp. 1-14.
Bürter, O.-1904. (1.) "Nemertini :" in : "Das Tierreich:" Berlin.
Büramr, O.-1904. (2.) "Res. Voy. S. Y. Belgiea en 1897-1899. Zoologie-Nemertinen." P1. 1-11, Pls. I-II.
Hebrecirt, A. A. W.-1887. "Report on the Nemertea." "Challenger" Reports, Zoology, Vol. XlX, pp. 1-151, Pls. I-NVI.
Joums, L.-1905. (1.) "Note sur un Némertien recueilli par l'Expédition antaretique dn Dr. Charcot." Bull. Mus. hist. nat., No. 5, pp, 315-318.
Joubin, L.-1905. (2.) "Note préliminaire sur les Nómertiens recueillis par l'Exp. antaretique française du Dr. Chareot." Bull. Mus. hist. nat., No. 6, pp. 43l-437.
Joubin, L.-1908. "Exp. Antarctique française. (1903-1905.) Némertiens." Pp. 1-16.
Jocibin, L.-1910. "National Antarctic Expedition, 1901-1904. Vol. V. Nemertinea." Published by the British Museum. Pp. 1-15; 1 Pl .
M'Intosn, W. C.-1876. "Deseriptions of some new Species of Annelida from Kerguclen's Island." Ann. Mag. Nat. Hist. (4), XVII, pp. 318-323.
M'Intosh, W. C.-1879. "Zoology of Kergnelen Tsland—Marine Annelida." Phil. Trans., CLAVVIII (extra volume), pp. 258-263.
Stuler, Th.-1879. "Die Fauna von Kerguelensland." Arch. f. Naturgesch., XLV, Bd. I, pp. 104-141.

Nemertinea, Plate I.

PLATE I.

Fisis. 1, 2, 5, 7, 9.-Amphiporus multihestutus.
3, 8.-Prostoma milinertum.
" \quad 4, 6.-Bascodiseus antarctirus.
Fig. 1.-Amphiporus multilastatus, Joubin. Dorsal view of anterior end, showing E., the two groups of eyes.
Fis. 2.-Ampiporus muttilastatus. Ventral view of anterior ent. M., single opening of the mouth and proboscis-pore ; C.S., cepphalie slits.

Fig. 3.-Prostoma unilineatum (Joubin). Dorsal view of the entire animal, $\times 8$. Pr., the partially everted proboseis.
Fig. 4.-Bascorliscus atarrticus, sp. n. Ventral view of anterior end, showing G., lateral grooves in which the openings of the cerebral organs are situated ; M., mouth; P.P., proboscis-pore.

Fic. 5.-Anphiporus multhhatatus. Transverse seetion near the anterior end. B.M., lasement-membrane ; Cæe., anterior exeum of the intestine ; C.M., circular muscle-layer ; D., a genital duct ; Ep., external epithelium ; G., gonadial sac (testis) ; I.M., longitudinal musele-layer : L.N., lateral nerve-stem; L.P., lateral pouch of intestinal ceecum; Pr., proboscis; P.S., eavity of proboseis-sheath ; Pyl., pylorie eanal.
Fic. 6.-Buseodiseus antarcticus. Transverse section at about the middle of the body. B.M ${ }^{1}$., primary basement-membrane ; B. M^{2}., secondary basement-membrane ; C.M., circular musele-layer; Ep., external epithelium; Gl., glandular layer of the integument; Int., intestine ; L. DL^{1}., inner longitudinal musele-layer ; L. I^{2}., outer longitudinal musele-layer; L.N., lateral nerve-stem; Pr., proboseis ; P.S., cavity of proboscis-sheath.
Fin. 7.-Amphiporus multilustatus. Middle portion of the proboseis, seen by transpareney, showing the armature and reserve-stylets.

Fif. 8.-Prostoma unilincatam. Transverse section in the middle region of the body. Ep., external epithelium ; Int., intestine ; L.N., lateral nerve-stem ; Ov., ova; Pi., dorsal land of pigment; l'S., eavity of proboscis sheath.
Fiti. 9.-Anphiporus multihastatus, \mathcal{F}. Transverse section in the middle region. B.M., basementmembrane ; C.M., eircular musele-layer ; G., gonadial sacs, containing ova; Int., intestine ; L. M., longitudinal muscle-layer ; L.N., lateral nerve-stems ; P.S., cavity of proboseis-sheath.

Brit. Antarctic (Terra Nova) Exped. 1910.
Brit. Mus. (Nit. Hist.) Zoology, Vol. II.

Nemertinea Pl.I.

4.
.

Nemertinca, Plate II.

PLATE 11.

Linvers scotti, sp. n.
Fig. 1.-Ventral view of the anterion end of one of the sualler specimens, magnified, and showing the montl, cephatic slits, prohoscis-pme, and the growe forming a " V " immediately in front of the month.
 layer ; J).N., dorsal nerve ; I.V., dorsal buorl-vessel ; (xl., glandular layer of the integument; Int., intestine ; L. JI^{1}., imer longitudinal monsle-layer: J. M., outer longitudinal musele-layer ; L.N., lateral nerve-stem: N.P., nerve-plexus: P.S., favity of probuseis-sheath.

Fig. :3.-Portion of the outer part of the horly-wall in transverse section, lighly magnified. B.M., (secondary) hasement-membrane: C. H^{2}.., layer of circular muscle-fibres; C.T., connective tissur
 L.M ${ }^{2}$., outer longitudinal muscles.

Fis. 4.-Transverse section immediately behind the hrain. B.S., blood-sinus; C.C., cerelnal camals: C.M., circular muscle-layer : C.O., cerehral organ : D.N., dorsal nerve; I.V., dorsal bloodvessel ; Gl., grandular layer ; L. MI^{1}., imner longiturinal musele-layer: L. M^{2}., onter longiturlinal muscle-layer; L.N., lateral nervestem passing outwards from the brain: P.s., cavity of proboscis-sheath : Y.B.S., ventral portion of blool-sinus.

Fig. 5.-Transverse section through the midulle region of the body of a female specimen. B.S., bloorlsimus: C.M., circular musele-layel ; D.V., dursal blowdressel : G., gonatial sac, filled with ova; Int., intestine ; L.M ${ }^{1}$., inner longitndinal muscle-layer ; L. \mathbf{M}^{2}., outer longitudinal musclelayer' ; P.S., cavity of poboscis-sheath.
Fiff. 6.- Transterse section through the proboscis, highly magnified. C., C., points where the circular muscle fibres eross each other donsally and ventrally; N., longitudinal nerves.

Brit, Antarctic (Terra Nora) Fixped. 1910. Zoology Vol. II

Nemertinea Pl. II.

MYZOSTOMIDA.
 BY CHARLES L. BOULENGER, M.A., D.Sc.
 (Zanlogieal Iepurtment, Unirarsity of liemingham).

WITH ONE PLATE.

I.- INTRODUCTORY.

The collection of Myzostomes hrought hark hy the "Terra Nova" Expertition is a small one, ronsisting of one free-living sperimen and five "rsts obtained within the Antaretic Cirele at Stations 294 and 355.

The mily Ityonstomida previonsly recorded from Antanetir regions are those collectad hy the National Antaretie Expedition (" Dis*overy"), 1901-4, and described
 tatives of the two species dealt with in this anthor's report, and includes no forms new to science; it is. however. not deroid of interest since the ryst-forming specimens belong to the remarkahle speries J!!anstomm rystimalle. v. Graff, and fome of the five
 not previonsly recordent as the hast of Myzostomidal.

In the structure of their ersts and in their position on the body-diste of the host these parasites differ from all previonsly known examples; their size moreover. (onsiderahly execels that of the specimens described hy v. Stmmer-Tranfels amd wther wherrers of the pecies.

II. - SYSTEMATIC.

Myzastoma muturtirmm, s. Stummer-Tramnfels. Nat. Ant. Exp. ("Discovery"), 1901-t, vol. ir, 190R, My\%ostomidies, 1'. 2.

This species was formed hys. stmmmer-Traunfels for a number of fiec-living
 represented in the "Tema Nova" mollertion by a single individual taken at a depth of
 minfortmately unknown, the worm having heen fomm loose.

The "Terra Nova" "perimen is larger than any described by v. Stummer-Traunfels, having a longth of 8 mm . The laterat margins are bent downwards so as to make the
 of nearty 9 moln.

I marrow, tamslucent marginal area is mather shaty mated off from the very thick body-dise, its borler is slightly memulated and presents distinet concavities at the anterion and posterion extremities.

As in the type sperimens the domal integument, exept in the marginal area, is movered with small, closely set tuberess, too small to be distinguished hy the maked eye, but giving the skin a very "hatateristic " warty" appearance when viewed ander a low power of the microsope. V. Stummer-Tramfets deseribes the ventral surface as smonth: in the specimen before me, lowerer, the ventral integument is soulptured in a similar bat less pronounced mamer than that of the donsal surface.

The ten pairs of cirri arise fiom little noteles in the margin, they are bilaterally symmetrical in their arangement and appoximately equidistant from one another, except in the rase of the first and last pains, the members of which are much further apart than the others.

The structure of the parapodia, suckers, and other organs is exactly as in the type sperimens.

My yostoma cysticold, v. Graff.

```
Myzostoma cysticolum, v. Graff, "Challenger" Rep', vol. x, 1884, p. 66.
    ," v. Stummer-Traunfels, op. cit., p.7.
    " ", var. oriontule, McClendon, Bull. Amer. Mus. Nat. Hist., vol. xxii,
    1906, p. 1こ0.
    sub-sp. cystilymewmess, McClendon, Proc. U.S. Nat. Mus., vol. xxxii,
                        1907, p. 65.%.
```

I have referred all the evsticolous specimens collected by the "Terra Nova" Experlition to this rery interesting species. 1/. cysticoln was first deseribed by v. (iraff in 1884 from a mmber of sperimens forming small cysts ($1-3 \mathrm{~mm}$. in length) on the arms of Actimmetromeridiomulis, var. corrimtre, from Bazil and Grenada.

The species was redescribed in 1906 by Dtclendon from a single sperimen on Lutulon discouder ohtained hy the "Albatross" Expedition off" the eastern coast of Jipen ; on aroont of the large size of this ryst (5 mm . in length) and of certain slight differences in structure it was referred by the author to a new variety mimetre.
v. Stummer-Traunfels, in his report on the " Discovery" collertion, points ont that the differenees between Me. 'lemun's and v. Graff"s specimens are mondontedy due to imlividual variation, and inchdes two large gysts (5 mm . and 6.2 mm . in length) firom Autcelon altrimi in this wilely distributed speries. The eysts and the worms "umbed in then agree in most particulans with the type perimens, apart firom size the
＂hief difterence leeing in the thickness of the＂yst－wall，which is comsibembly less in the Antaretio sperimens than in those described lyv．Graff．r．Stummer－Tramfels puts forward the view that in the eysticolous Myastomide the character of the eyst－wall is likely to vary with different hosts，and abo that large eysts may be experted to passens thimme walls than small ones：in this comertion he calls attention to b：Gaft＂s state－ ment that the smallest of the type crsts was of more solid consisteney than the rest

Whilst v．Stummer－Traunfels＇memoir was in preparation Mce（lembun published a secomel paper containing a short account of a still larger whst of this speries from the Trinity lalands：owing to its large size（ $7 \cdot 5 \mathrm{~mm}$ ．in length）and the malcified mature of the evst－wall he considers it to represent a new sul）－species which he manes 1／．cystreollum cystilymenordes：

The five crsts ubtained by the＂Terra Nova＂Experlition are，with one exeption． larger than any previously recortal ；they measure $6,8,10,11$ and 12 mm ．in length，respectively．Four of these eysts were fonm attarhed to the bely－dises of Promucherrimus Rermelemonsis，Aredged at a depth of 547 metres at Station 355 in the Mr．Murdo sound，the fifth heing fixed to a fragment of a Crinom amm from Station 294 in the Ross sea at a depth of 289 metres．

Except in size the latter sperimen very closely resembles those described by v．Stmmer－Thanfels．The cyst（Fig．5）is oroid in shape， 10 mm．long．with a maximum width of about 5 mme；it is attarhed ly its whole length to the arm of the Crimoid，along the ambularal groove．The erst－wall is thin and flexible，and is not calcified．

The two penings at the extremities of the＂yst are looth quite comspicuons． They are，however，very megual in size ；the one directed towards the dise of the host measmes a little less than a millimetre in diameter，whilst that at the opposite extremity has a diameter of nealy $:$ mom．The latter opening is not quite teminal，being set slightly ohliquely to the long axis of the exst ；throngh it the cloanal extremity of a large Myzostome projects for about 1.5 mm ．

As mentioned almoe，the four eysts from Pirnmelncrimms leerymelemensis are peculiar in being attached to the borly－diase of their hosts instead of the the ams： three sperimens of the（rinoid were fombl with the parasites，one bearige 1 worsts．

The eysts have a chameristie and apparently constant pesition on the abtinal surfaces of the dises（Fige 6），each has its anterion extremity in close proximity to the point of hifuration of one of the posterion ambularal growes，and is attached be its whole length along the hranch of the groove which lies dosest to the anal tube of the Crinoid．In the case where two cysts oedured on the sime host these oxplpied simitar positions on cither side of the anal tules．

The evsts from Promurfurvimes heromplemensis are approximately wal in shape，

[^26]but slightly depressed, the brealth, which measures about one-half of the length. being ahways a little greater than the height. The cyst-walls are thin and uncalcified. The usual openings are present nean the extremities, but, unlike the specimen described from the Crinoid arm, these are approximately equal in size, having a diameter of about 1 millimetre.

The above dessiption shows that both in structure and position on the host the four cysts from Station : 355 differ markedly from all previonsly recorded examples; the worms enclosed in them correspond, however, so closely both with those from the fifth "yst and with those described by v. Graff, v. Stummer-Tramfels, and Me.Clendon, that I have no hesitation in refering them all to the same speries.

One of the cysts on the body-diss: of Prommehorrimus liempulenemsis was left intact, all the others were opened, and cach was found to contain the usual pair of Myzostomes, consisting of a large individnal (sircalled "female") occupying the greater part of the cyst-cavity, and a small individual (so-called " male") lying in the narrow space leetween the former and the cyst-wall.

The large imdividuals all had the chatacteristic "tubular" shape, the sides of the body being bent upwards so that the lateral margins come almost to meet in the mid-dorsal line; the margins were never fonnd overlapping as in some of the specimens described by v. Stummer-'Traunfels. In their rolled up condition the measurements of these individuals are as follows:-

	Length.	Breadth.	Delith.
/	$5 \cdot 5 \mathrm{~mm}$.	2.51 mm 。	2.25 mm .
11	10 mm .	5 mm .	4.5 mm .
${ }^{1}$	$11 \cdot 25 \mathrm{~mm}$.	$5 \cdot 5 \mathrm{~mm}$.	5 m1m.
d	9 mm .	$3 \cdot 5 \mathrm{~mm}$.	$4 \cdot 25 \mathrm{~mm}$.

Specimens ", " and "are from the eysts on the body-dise of Promarhorvimus hirimulemensis. It will be noticed that these are slightly depressed in shape, in conformity with the shape of the cysts. The orientation of these large individuals within the cysts was characteristic and evidently constant ; each worm, as usmal, lay with its ventral surface downwards, but its vertical plane was not at right angles to the surface of the disc, being inclined slightly to one side, so that the mid-domsal line, represented by the groove between the berly margins, came to be directed towards the anal tube of the Crinoil host.

I have not much to add to previons accomets of the structure of the large individuals ($\%$. Figs. $1-3$). The paraporlia are quite small, almost vestigial ; suckers and cirri are absent. The ventral surface of the hody is smooth and not sculptured ; in some specimens it is divided up into a number of areas by faint grooves (Fig. 1). The month is situated at the hottom of a deep anterior concavity, the pharyux is protruded through the cystopening in the majority of cases, and appears as a stout cylinhrical organ, without pepille on the wal margin.

The size of the small individuals serms to vary with that of the lame individuats, these found in the larger "ysts fiom the "Terat Nova" collertion being eonsiderably larger than the specimens deseribed hy perions ohservers. They are appoximately
 measurements:

In structure these specimens agree perfectly with those described hy v. StummerTramfels, and the largest show no marked anduace ower the smallest investigater by previons ohservers (the "mate" individual described hy v. (iraff ham a length of . 8 mm. only).

The different individuals show considerable valiation in the morle of branching of the intestinal caeca; the latter may even differ on the two sides of the body, as shown in Fig. 4.

The exart positions of the parapodia also vary somewhat; in all the specimens, however, the third parapodium of each side is situated nearer the rentre of the borly than the rest. The other organs are exactly as deseribed by v. Stummer-Tramfels.

REFERENCES.

1. Graff, L. V.-" Report on the Myzostomida collected during the Voyage of H.M.s. 'Challenger' during the Years 1873-76." Rep. "Challenger" Exped., vol. x, Pt. 27, 1884.
2. -_ Supplement to the preceding Report. Rep. "Challenger" Exped., vol. xx, Pt. 61, 1887.
3. MrClendon, J. F.-."The Myzostomes of the 'Albatross' Experlition to Japan." Bull. Amer. Mus. Nat. Hist., vol. xxii, 1906.
4. "New Marine Worms of the Genus Myznstoma." Smithson. Tnst. U. S. Nat. Mus. Proc., vol. xxxii, 1907.
5. Stumer-Trauxfels, R. v.-"Myzostomida." Nat. Antarct. Exped. ("Discovery"), 1901-1. Nat. Hist., vol. іヶ., 1908.

PLATE I.

Myzostoma rysticola, v. Graff.
Fig. 1. Large individual ("female") from eyst on body-dise of Promachocrimus lerguclenemis, ventral view, $\times 7$.
Fis. こ. Same individual, dorsal riew, $\times 7$.
Fri: 3. Same individual, lateral view, $\times 7$.
Fic. 4. Small indivilual (" male ") from the same cyst as the specimen shown in Figs. 1-3; rentral view, as seen when cleared in cedar-wool oil, $\times 38$.
Fir. 5. Cyst on the arm of a Crinoil, $\times 7$.
Fin. 6. Part of the horly-dise of Promechorvinus lerguelenensis with attached cyst, $\times 42$.

LETTERING.

(17. t., Anal tuhe of Crinoil.
rl., Clozea.
int., Branch of intestine.
M., Myzostome protruding through cyst-opening.
m., Mouth of Crimoid.
M.c., Cyst of Myzostome.
p.. Parapocimm.
ph., Pharynx.
st., Stomach.
$t e$, Testis.
o, Male genital opening.

MOLLUSCA.

PART II.--CEPHALOPODA.

BY ANNE L. MASSY.

WITH FORTY-THREE FIGURES IN THE TEXT.
PAGE:
I.- Introduction 141
11.- Descriptions of Species 143
1II. List of References $17 \cdot 2$
Index 174

I.-INTRODUCTION.

The Cephalopoda taken ly the "Terra Nova" consist of ahout sisty-eight pecimens belonging to seventeen species and twelve genera. Hore than half of the collection, consisting of mine species and some forty sperimens, belong to the Octopoda, the abmodance of the genus Moschites being very striking. The Myopsida are represented by one species only, and, while it is not surprising to find that the sepin family is entirely ahsent, it seems rather remarkable that so few small Oegopids were taken. Geographically, the waters explored hy the "Terra Nova" in which Cephapopels orcurred may be separated into thee divisions-namely. the Atlantice from sonth of Maleira to oft Monte Video; the Parifie, to the north of North lisland, New Zealaml: amd, thirdly, rarious points within the Antaretic Circle. Joubin (1912) has remarked on our seanty linowledge of the Cephalopord fauna of this latter region, and, unfortmately, the present collection does not add any more speries to the list, only two species discovered by the Firmel Antaretic: Expeditions being met with here- namely, 1/eselitese chementi (Jonlin), [taken at $80-207$ fathoms on a varying lootom of mud,
 [taken at $220-300$ fithoms on mud]. A large damaged $1 /$ wishitis also oremped, and possibly the eyes of a large Oegopsid. particulars of which will be found in the text, are referalle to this region.
 alsent, but only six hanls of the botom famat were mate in this region. amel VOL. II.

Cephatoponk were only once present, in shatlow water on a shelly bottom, When four specinens of the very local I'olypus custrulis (Hoyle) occurred. Other species taken in plankton-nets in this region included Acfomutn luittyeri, Maltzan, which, as far as our knowledge goes, is absent from the Atlantic and Aretir regions. and ranges in Polynesian and Indian seas from China and Hawaii to Anstralia and New Zealand; Tremotopus ciolareus, Delle Chiaje, a cosmopolitan pelagie species recorded from all seas except the neighbourhood of the poles, the most northerly locality known being apparently Japan, and the most southerly the new records of the "Terra Nova"; larvae of P!!oteuthis (Pter?!!ioteuthis) !!urdi, Fischer, a species with a wide range in the Atlantic, Pacific and Indian oceans; lilnuchotenthiom, of a type recorled by Chun from the Indian and Atlantic oceans; P!ly:topsis pucificus (Issel), a species widely distributed in the Pacific, having been recorded from Japan to Tahiti: and Teuthouenia cuntarctica, (hom, the type of which was taken at $55^{\circ} 57^{\prime} \mathrm{S} ., 16^{\circ} 14^{\prime} \mathrm{E}$. This species is very nearly allied to Teuthouchia megulops (Prosich), a species of the North Atlantic which has been found at various points from Greenland to the south of the C'anaries. A specimen of Moroteuthis ingens, E. A. Smith, was taken at the surface off Three Kings lslands. Pfeffer (' 12 , p. 112) emmerates thirteen Patagonian examples of this species preserved in various museums. Hoyle (12, p. 281-282, fig. 9) records an example from the South Orkneys, and fragments of another, which were taken in the stomach of a Ross' Seal from off the same island group. The only other specimen known seems to be that brought to Cambridge loy Darwin from the royage of the " Beagle." As regards the Atlantic specimens, quite a striking group was trawled in forty fathoms on sandy ground at Station 41, off Rio de Janeiro, close to the Tropic of Capricorn. This group included the only Myopsid, Semicossia tenera (Verrill), a species limited to the Atlantic, where it has been recorded from Spitshergen to the south and west coasts of Patagonia; Polynus rufosuc: (Bose) d'Orb., a species of the South Atlantic, Indo-Malayan, Japanese and Australian regions; Polyfus lirueei, Hoyle. the type male of which was taken off 'Therra del Fuego ; and Mowehtes lopeis (Hoyle), the type of which occurred a little south of this, off Monte Video.

Moschites turqueti (Joubin) and Mosehites cluarcoti (Joubin) both extend their range from within the Antarctic Circle, and from the South Shetlands and South Orkneys to this point. Although the Rio de Janeiro specimen of J. churooti appears to be exactly like the Antarctic examples, its locality suggests the possibility that the present speries, in spite of the varions differences pointed out by doubin ('05, p. 7), may after all le only a form of Moschites vemurnsa (Verrill), a species of the north-cast coast of America. Joulin (oy. cit., p. 17) remarks of J. remmosa and J. rhacoti, " (e sont deux espéces évidemment roisines l'une de l'autre." Polypus oceidentulis (S'teenstrup MS.) was taken hetween tide-maks on the shore of Gouth Trinidad Island, and has been reorded previonsly from Ascension and the Galapagos Islands, as well as from the typr-locality of Cuba. A specimen of the cosmopolitan Onyrlotenthis buksi (Leacli) was washed on board the "Terra Nova" sonth of Mardeira, and the homed-
borlied form of lihumelutrothime was taken at the smface in a planktom-hanl made not
 captured in a young fish-trawl off Monte Video; a comeg damaged I Iistiotenthied, which
 Chmin, being also present. 'The type of this species was recorded from t° : t^{\prime} ' t , $5: 3^{\circ}+2^{\prime} \mathrm{E}$.

It will he seen fiom this summary that many sereies known to orem in one portion or another of the waters explored are anspiemons ly their ahsence: e.g. there (imotenthis species have been described by lloyle from the Pacific and Southern oreans: Polypms fontemimms (donlo), originally recorded from Pern and l'atagonias. has recently (Joulbin, '05, p. 1) been found in Antaretire regions; J'olypus puterfonimes
 cutarrticus, Lönnberg, and Crystulloteuthis altacialis. ('hum, are lut a few of many interesting forms ocemring in Gouthern seas. This list can be expanded emomonsly by a careful perusal of Dr: Hoyle's "Catalogue of liecent Cephalopoda" with its two Supplements.*

All the large secimens have heen presered in aleohol, and the smaller examples taken in plankton-hauls were preserved in formalin.

In conchsion, I wish to express my thanks to my colleague, Mr. R. Southern. for three of the drawings. and for help on various orcasions. Many of the other drawings have been done by Miss E. E. Barnes, of Dublin, in a room kindly lent for the purpose ly Miss Stephens, National Musemn, Duhlin.

II.--DESCRIPTIONS OF SPECIES.

family argonaltidate.

1. Argonemte, bütt!eri, Maltzan. Figs. 1, こ.

Argonauta Böltyeri, Maltzan, Journ. de Conch., XXIX, p. 16., pl. 9, fiy. i, 1881.
Arqonantu böttgeri, E. A. Smith, Amm. Mas. Nat. Hist., ser. S, XXI, p. 409, pl. 17, figs. $1-6,1 \times 87$.
Argonata Böttgeri, Hidalge, Ker:. R. Acad. Cien. Madrid, p. 9, 190.5.

Station 1:30, off 'Three Kings Islants. surface stame 18-mesh wet phation. Aug. : ath, 1!)l1.-Gne of.

This has a somewhat rounder loody than Berry's sperimen. which is possilsy due to some difference amsed liy preservation. There is a deep rental furmot, and the mantle-opening is very wile. The fumel reaches above the eyes, its apex lefing alout on a level with the month. The fumel-organ consists of a merlian Λ-shaped

[^27]parl. and two lateral pals, just as in Bery's ("p, cit.) text-figure 5. The web extends to about the thind sucker laterally, and to about the fourth dorsally and ventrally. The highly-elevated suckers are very

Fig. 1.-Argmanta bött!fri, radula, $\times 60$. large on the proximal two-thirds of the arms, and very small distally. Round, expanded, hrown chromatophores are present on the posterior dorsal surface, and elongated transverse chromatophores on the head. Small, contracted, round, dark chromatophores are dotted about at the base of the suckers, and are placed in two lows on the dorsal surface of the arms. Some of the arms have had the surface alnarled, so that it ramot be ascertained if the chromatophores were in two rows on all of them. The radula (Fig. 1) of the present specimen differs considerably from that of A. aro, Limn, as figured by .Jatta ('96. pl. 18, fig. 19)-e.g., the median tooth has three denticles, and the first laterals are much smaller instead of heing of

Fig. 2. - Aryon"uta büttgerí, mandible, $\times 2$. the same size : the second laterals have a longer base. which is produced both in front and belimd the denticle, and the marginal plates are not so long in proportion to their width.

Dimensions in Millimetres.

Distribution. Manritius and (hagos lshands (E. A. Smith); Mashate amd Philippines (E. A. Smith, Hidalgo): China Sea and Mustralia (E. A. Smith); Hawaiian Islameds (I)all).
2. Tremortopus violareus, Delle Chiaje. Figs. :, 4.
(?) Tremoctopms riolurens, Delle Chiaje, Memorie sulla struttura e Notomia degli animali senza vertehre del Regno di Napoli, I, pls. 70 and 71,1829 ; Descrizione e Notomia degli anmali invertebrati della Sicilia citeriore I, Molluschi Cefalopodi e Pteropodi, I, p. G, V, 1. 66, 1841.

Octupus ararilis, Souleyet, in Eydoux and Sonleyet, Voy. Bunite, Zool., p. 13, ph. T, figs. 8-9, 1852.
(?) O.top."s dubins, Soulcyet, in Eydonx and Souleyet, ' $\%$. cit., 1. 15, 11. I, figs. 10-11, 18.5.
 1904.

 pl. 49, figs. : 3 , text-figs. 8 - $10,1911$.
 1911.-Tพロ ठ, two f.

Station 129. off Three Kings Lslands, surfare, splare 18-mesh net, plankton. Ang. 2Gth, 1911.-Two 웅․

These are all young specimens, the two males having a rentral mantle measuring $t \mathrm{~mm}$. and $4 \because 25 \mathrm{~mm}$. The smallest shows the third ringt (hectorotylized) am coiled round beneath the skin. The females have a mantle measuring t to 5 mm . The largest shows the two aquiferous pores at the hase of the dorsal arms, lut those on the ventral surface camot be seen: unless, howerer. the deliate interument is quite uninjured the pores cannot be disoovered. The colour of all the specimens is pale butf, with a few rist-coloured or dark chromatophores on the mantle, and more mumerons and very dark chomatophores on the dorsal surface of the hearl. Lsmally, though not in one of the specimens, a very large dark chromatophore is present at each side of the lase of the siphon. The ehromatophores on the dorsal surface of the arms in the six examples follow a very definite plan-mamely, a single row is arranged proximally, changing into two rows distally. There is also a well-rlefined row on the outer surfice of suckers at each side of the arm, and a few are dotted alout on the imner

Fis. 3.-Tremertopms riolucrus, radula, $\times 140$. surface of the suckers. In the largest specimen fourteen to fifteen suckers are present on each of the third ams, and about forty-two were counted on each of the first arms. The wel, extends dorsally to the fifth sucker, and to the fourth ventrally. On the mantle of this female leeng slit open the visereal mavelope was fomm to be much more deeply pigmented with dark ehromatophores, both dorsally and ventially, than the onter surface. The anal aperture hats very long
 somewhat deeply imbeded in the liver, whel latter has a strong modian indentation posteriorly: The nidamental glands, which are dotted with chromatophores, are circular rather than oval, and are coiled rommd. and raised up in the eentre. The ridged grinding pads of the stomach appear like transverse bands glimmering through to the outer surface. The posterior salivary glands are somewhat triangular in outline. the anterior margin being the shortest. The radulal (lige :3) of this specimen is very like that figured ly Jata (oy. (it. pl. 능, fig. 14).

Fif. 4.-Tremoctopus violcceus, alimentary canal, $\times 27 . \quad$.., Anus ; a. "pp., anal appendages; cr., crop ; iut., intestine; L., liver ; oes., oesophagus ; $p, s, g l$., posterior salivary glands; $S_{p} . C$., spiral caecum ; St., stomacl.

Dimensims in Jillimetios.

Find of boxly to ventral mantla	margin	5
Encl of lmay to cre	-	.				S
Breatth of booly		(i.50
Prearth of hemi		7
Umbrella betwern domsal amms		:
1st left :um	. .		.	-	.				20
-nul left amm			.		.				mintilated
3 rel left arm	. .								:
4th left amm									6

Tigne lomlity--()f ciohnome the Bay of Niples, Italy; of armilis, Iong. 100° W., lat. 8° N., Pacifi- Wecan (fiele Tryom).

Distribution.-Of vimbrepu, Meditermanan (IMelle ('hiaje, latta, ete.) ; mildle.

 quey(mus:) ; between Papua amd Japan (loyle): near Mamitins (Sonleyet, as dubius) (Berry).

Famig polypondidat.

Sepict rifow, Bose, Actes Suc. d'histoire nat. Paris, p. 라, pl. 5, tigs. 1, 2, 179ㅇ.
Orfopis rugosus, d'Orhigny, Céphalopotes acétabulifores, ${ }^{1} .45, ~ p l s .6,23$, tig. 2 , 1838 ; Brock, Zool. Jahrl), 11, P1. 591-614, pl. 16, fiss. 1-4, Jena, 1887 ; Jonbin, Bull. Soc. Zool. France, CXIJ, p. 99, 1897.
Octopus aframbutus, Lamarck, Mém. Soc. d’histoire nat. Paris, p. 20, 1799; Hoyle, "Challenger" Rep. (Cephalopoda), XVI, p1. 8-81, ls86: Goodrich, Trans. Limn. Soc., VII, P. 19, I896; W ̈̈lker, Ahh. Wiss., III. Suppl. Bd. I. Abh., pp. 5, 6, Miinchen, 1910.
Octop"s boscii, var. pollidı, Hoyle, Diagnoses I, p. 223, 1885: Prelin. Rep. I, p. 97, 1885:
"Challenger" Rep., pp. 81-83, pl. 1, pl. 3, fig. 2, 1886.
Octopms polyzemin, Gray, Brit. Mus. Cat., 1. 13, 1849: E. A. Smith, Rep. Korl. Coll. InluPacific Ocem during royage of H.M.s. "Alert," p. 34, pl. 4, fig. A, 1884.
(?) Octopm: kingoshimensis, Ortmann, Kool. Jahrb., V, 1.644, pl. 21, fig. 2, 1888.
Station t2, off Rio de danciro, $22^{\circ} 55^{\prime} \mathrm{S}, 41^{\circ} 34^{\prime} \mathrm{W} ., 40$ fathoms (73 m .) , Agassi\% trawl, lottom fama (samd), May 2nd, 1913. - One ô.

This has the arms two and a half to three and a half times the length of the hard, stiff, rugged horly. The arms are so much corled up that the measurements given below must he regarted as approximate. The weh is much less than the rentral mantle-length, and about egual all round, slightly lowest between the ventral arms, and highest between the left lateral ams: it is not murh comtinued mp the arms. hut forms expamsions at the distal portion of cach, esperially on the fomrth pair. The suckers are very large, and are enlarged on the four lateral arms.

Hectocotylus very minute. A furrow is present on the ventral mantle. Funnelorgan W-shaped. Colour reddish-hrown above with ohtong dark markings, pinkish hoff behow. Surfare very rugnse even rentatly, and inside weh. Large orular einti.

This seems to have somewhat longer arms, with the dark and light coloration, between their dorsal and ventral surface, less marked than usual, and a longer umbrellas, especially between the dorsal arms, than is customary in typical examples. On the whole however, the assemblage of characters, particularly the very minute hectocotylus, point to its leemg this widely distributed species. The radula and mandibles are figured (Figs. 5, 6).

Fife. 6.- Polypus rugosus, mandibles, $\times \because$.

Dimensions in Millimetres.

Distribution.-Africa, west and south: Peru: Indo-Malayan region; Japan: Australia.
4. Pol! pus occidentalise (Steenstrup. MS. Hoyle). Figs. 7, 8.

Octopus occidentalis, Steenstrup, MS. in Mus. Harm.
Octopus vulyaris, var. amorictmus, d'Orbigny, Moll. Cuba, 1. 14, 11. 1, Paris, 1853.
Octopus occidenterlis, Hoyle, "Challenger" Cephalopoda, XV1, 11]. 7万-78, 1886.
Polypus occidentulis, Hoyle, Bull. Mus. Comp. Zool., XLIII, 1'. 14, 1904.
Station 36, South Trimiarl Island, shore le tween tidemarks, July lGth, 1910. -One

The dorsal surface of this is marla paler (a smoky grey on a light grommet) than that of the female in the British Museum, taken by the "Challenger" Expedition at

Ascension. The peculiar sculpture is the same in both-e.g'. numerous small papillae, which firm rosette-like clusters inside mubellat and on dorsal arms, are present all over the dorsal surface. The two specimens are also alike in the herat heme, constriction between it and lely. very narrow manteropening. and short when between donal arms. The funnel-organ of the present specimen is not in very good eombitim. lint appear to be W-shaped, with the median pads much namewer than the lateral mes. This may be due to contraction, however. 'The siphon is narrow and pointed. and extends about ome-thind of the distance to the margin of the umbrella. The ratula and mandibles are shown in Figs. 7. S. All the arms are mutilated, except the fourth pair. Which are about fore times the length of the mantle. The umbrella is rely soft. louse, and semitransparent, and measures about a quarter the length of the arms. and is much extended up them.

Fie: s.-Polyne orcintentelis, mandibles, $\times 2$.
Fir. T. -Polypus oecritentulis, madura, $\times 60$.
Dimensions: in Millimetres.
Find of body to ventral matle-margin 2:3
End of hotly to eye 31
Breadth of body $\because 0$
Breadth of heal 22
Breadth of constriction between head and booty. 16
Diameter of largest sucker rom.
Web between dorsal arms 18
Web between ventral arms ${ }_{2}^{3}$
Fourth left arm 102 2
Distribution.- ('una (forhigny) ; Ascension and Galapagos liniments (Hoyle).
5. Polypus mestralin (Hoyle). Figs. 9, 10 .

 Sydney, Mustr. Mus. Cat., p. $\overline{3}, 1892$.

Station 134. Spirits lay, near North Cape. New Zealand. II-20 fathoms
 immature.

The single row of large lowish spots up carlo ventral arm. extending into lars
 specimens the spots are quite round amd very dark. These serines are all without
the raised ridge on the ventro-lateral margin of body present in the "Challenger" specimens, possessing instead a very slight ventral furrow; but in all other external chatarens they are in close agreement with the type egg., arms about three times the length of mantle, and umbedtia about one-third of length of arms, and usually a little longer laterally than ventrally, mantle-opening mather narrow, siphon extending half way to mantle-margin, funnel-organ W-shaped. Branched ocular cirri are present, and there are many tubercles on body. There is a strong constriction between head and body. Hectocotylus hoad and clumsy, with the lateral margins folded over. I. australia seems to be very near I^{\prime}. globosus, Ippellof, but, compared with Bombay examples belonging to the Indian Museum, which I have referred to P.globowes, the present specimens have a more closely tubercle body, thicker and shorter arms, no enlarged suckers in make, a longer umbrella, and the alteady-mentioned row of large spots on arms. An Indian example of l. ylutasus, with mantle of only 6 mm . slow's two rows of large spots on all the arms, which are not distinguishable in the larger specimens. The colour of the ehmomaphores is redder in l. custrelis, and browner in P. globosus: The hectocotylus of the latter is much narrower, lout this may be due to the Indian specimen being younger (mantle 12 mm .).

Some specimens which I have seen of P. murropus, Piso, belonging to the British and Indian Museums, quite support M. Joubin's remark ('97, p. 99) as to the close relationship of P. globoses and 1 '. murropms. The types of P '. duplex (Hoyle) hear a strong likeness to the various sized specimens which are referred here to P. custralis. and I think it is probable they will eventually prove to be the young of that species.

Fig. 9.-Polypins austrulis, radula, $\times 60$.

Fig. 10. - Polypus anstralis, mandibes, $\times \because$.

> Dimensions in Millimetres of Mole.

End of body to mantle-margin

End of body to eye 23
Breadth of borly 20
Breadth of head 17
last right arm 5 •
Oud right arm 56
Ord right arm 46
th right arm ı 60
lIst left arm 53
end left arm 57
Bro left arm 58
th left arm in
Hectocotylus 5
Diameter of largest sucker 3

(i. Polypus brumer. Hoyle. Fig. II.
 text-fics. : (hect.), :3 (molula), 1910 .
 Agassiz trawl, bottom fama (samd), May Zul, 1913.- One of.

This is a pretty little specimen with a quite smooth surfare, short eghal web) attached as in the type, and long spidery arms, with close-set beal-like suckers. The arms are ahout four times, and the wel, about one quarter. of the mantlelength. The mantle opens just below the eve. The siphon does not extend half-way to the margin of the umbrella. Colour as in the type, "lull purplish
 alove. changing gradually into a pinkish stone colour Fig. 11. - Ponypus lurneri, radula, $\times 60$. below." The ehomatophores are very small, and of a purplish hrown tint. The radula has the median teeth withont any ansps, and closely
 chumenfi (Jombin), but the teeth next the outer lateral teeth have the hroad hases just as in Hoyle's (oy. "it.) fig. 3 [H 92t] of I '. In'urei.

Dimensims: in Millimetres.
Enul of body to mantle-margin
!
End of body to ere 12
Breadth of body 10
Breadth of head 9
Diameter of largest sucker on anm er. .75
Length of first right arm
37
Length of second right arm 38
Length of third right arm mutilated
Length of fourth light arm .
Distribution.-Off Tierra del Fuego, a male specimen (Hoyle).
7. Muschites churcoti (Joulin). Figs. 1:2-: 1 .
 190.7 ; Joubin, Deuxieme Expr. Antarctique Française, pp. : $1-37$, text-figs, $1,2,1914$.

Mowelites rharcoh, Hoyle, Trans. Royal Soc. Edinburgh, XLVIII, pit. II (no. 14). HP 2i9 280, text-figs. f (hect.) and $\overline{7}$ (radula), $191 \circ$.
 trawl, bottom finma (sand), May - mid, 1913.—One of.

 young.
 hottom fanna, dan. 15th, 1913.-Whree of.

Station :3:38, Mc.Murdo sound, $77^{\circ} 13^{\prime} \mathrm{S} ., 164^{\circ} 18^{\prime} \mathrm{E} ., 207$ fathoms (37 m m.). Agassiz trawl, hottom fama (mud), Fan. 2:3rd, 1912. Four of, six f, and four yomg.

Station 849, off Butter Point. Western Shore of McMurdo Sound. 80 fathoms ($1+6 \mathrm{~m}$.$) , Agassiz trawl, bottom fama (large cateh of ghassy ponges), Fel, 15th,$ 191~.-One ô.

Joulin ('14) has pointed out that the only important difference between this
 the dorsal arms are covered with fine cutancous tubereles. white in M. turqueti these parts of the body are smooth. The above collection of five males, ten females, and

Fic. 12.-Moschites rharcoti, male reproductive organs, skin of Needham's pouch stripped off to show sperms, natural size. " $12 \cdot / 2$., Appendix to prostate : G.,
 pen., penis; sp., spermatophores; T.D., vas deferens; V.E., vas efferens; V.S., vesicula seminalis.
five young specimens have a mantle-length varying from 40 to 7 mm . The fummlorgan consists of two V-shaped padis, which, althongh placed closely together, are distinctly separate, so as not to form the W-shaped organ seen in IV. rimpown (Imk.), and in IIS. meswlutu (Lmk.).

Three males from Station 338 (.Jan. 2:rd) were partially dissected, and are distinguished by the letters A, B, and (. The mantle-lengths of each are- $\mathrm{A}, 40 \mathrm{~mm}$., [3, 32 mm . and ($1,25 \mathrm{~mm}$. The male reproductive organs (Fig. 12) atl show a very large pouch to the penis, and possess a large prostate and small ancessory gland, and the vas efferens is very short and thick. Specimens A and B possess a genital gland measming about 25 hy 15 mm ., and show no trace of sperms in any part of the gental

Thets，the internal walls of whirh are longitudinally ridged thronghont．Sperimen $(:$ （Fig．12）has a very small genital gland，amd dommons sperms ready for exelusion are parked in the spermatophorestan：one of these（Fig．1：3），which was fomm lowse in the mantle－eavity，measures 80 man．in lengtl．The hereneotylus is hoad and thick．Sperimens A and B have card about nine transperse grooves in the hollow part，and sperimen （＇has only fomer． B has also a distinet longitudimal ridge，alsent in the other sperimens．The sperm－ ramal is well developer．The digestive system （lig．14）seems to resemble in all its main features that of $1 /$ ．rirrose figured loy Legoon（ 0 On，pl． 4 ． tis．17）．The intestine nsmally appears thicker，and the ink－sate smatler，in I／．

Fis．13．－Mrschiles clurcori， a spermatophore，\times 。． rlumooti，hut the shape of these must depend largely on whether they have been recently emptied． The anterior rena cava． the lateral venae ratyae． with their renons appent－ ages and limuchial hearts． are placed as in Isgood＇s illustration（＇09，pl．VlI，

Fif．14．－Moschites chareoti，alimentary canal，$\frac{2}{3}$ natural size．u．，Anus：u ．s．$!/$ l．． anterion salivary grands；b ．，bucca！ mass ：cr．，crop；int．，intestine；I．s．， ink－sac ；L ．，liver ：m．，mouth：＂ws．， oesophagus ；p．s．gl．，posterior salivary glands：sp．c．，spiral caecum ；st．， stomachl．
fig．52）of the same in $1 /$ cirrown．The size of the liver in sperimen A is athout 26 by of mmo，and 20 mm．in diameter：the stomach is about $1: 3$ ley 9 mm ；the

Fig．15．－Moschites charcoti，madula，$\times 3$ ．
spiral caecom ahout 10 ley 5 mm ；and the branchal heats measure about 9 mm ． in length and lorealth．The mandibles（lige 16）eall for no serial remank．The

17 min. in length. The median tooth has a central denticle, and nsmally two latemal (Alsps at cach side. The radulae of sperimens B and C^{\prime} show much the same variation in the shape of the median tooth, and the different latema teeth are in agreement with

Fig. 16.--1 Ioschites chareoti, mandibles, $\times 2$.

Fig. 18.-Moschites rhercoli, ovary, $\times 3$. orl., Oviduct ; od gl., oviducal gland; ok., ova.

Firs, 20.-Moschites sharcofi, oviducts and interion of ovary, $\times 3$. swt.od., Entrance to oviduct; orl., widuct ; od.!!l., oviducal gland ; ov., ova.

Fis. 17.-Moschites churcofi, funnelorgan, $\times 1 \frac{1}{2}$.

Fig. 19.-Muschites charcoti, ova much enlarged.

Fig. 21.-Muschites chercoti, statolith, $\times 35$.
those of sperimen A. The ovary (Fig. 18) of a femate from this haul, with mantlelength of 35 mm ., is packed with eggs (Fig. 19), the largest measuring $1 \cdot 50 \mathrm{~mm}$. in length. They have longitudinat ridges on their outer suffare, and somewhat similan
ridges are apparent on the external surfere of the ovidncal glands. l'art of the moterior of the ovary, with eggs in situ, is shown in lig. 20 . The contents of the stomath and "rop of sperimens A, B, and (', amd these of two females fiom the same hamb, were

 were taken on muddy gromm, and in no wase was there a great ynantity of foom present: ather crop or stomarlh, in some instances, being quite ampty. In a yomg
 amd crop were distemded to their utmost raparity with amimal sulstanes.

Dimbusions: in Millimetros.

Distribution.-Type, a female taken at Booth-Wandel Istand. South Shetlands, (65) 05'S. lat., among algat and shingle on the heach, Sept. 3rt, 1904 (Jouhin, 05). south Orkners, Angust, 190:3, 10 fiathoms, a male ; same lowality, May, 1903. $9-10$ fathoms, a female (Hoyle, '12). Antaretir, two specimens (Joubin, '14).
8. Mowchites turqueti (Joubin). Figs. $2 \cdot 28$.

Eledon Turquefi, Joubin, Exp. Autarctique Française, pp. 9-11, 1. 1, figs. 3-6, 1905; Jonhin, Deuxieme Expp. Antarctique Française, pp. 37-38, text-figs. 3, 4, 1914.
Station 42, off Rio de Janeiro, $22^{\circ} 56^{\prime} \mathrm{S} . .41^{\circ} 34^{\prime}$ W.. 40 fathoms (73 mm). Agrassiz trawl, bottom faluna (samd), May ?nd, 1913.-One of.

Station :314, 5 miles N. of hacecssille Islamd, Mc:Murdo Sound, 22.2 2. 41 fathoms (406-441 m.), Agassiz trawl, botom fimma (mud), Jan. 23rd, 1911.-One o +

Station 355. off Cape Evans, Mr. Mhrto Somm, $77^{\circ} 46^{\prime}$ S.. $1666^{\circ} 8^{\prime}$ E.. :300 fathoms (547 m.), Agasiziz trawl, bottom fanal, Jan. 20th. 1913.- One b, one of.

The male from Station 355 and the female fiom Station $31+$ have looth got a squat body. with a very few dorsal tuberese, dosely resembling that figured ly . Jombin ('05, pl. I, figs. 3, 4). The females from Stations 355 and 42 have a longer, narrower borly, but looth are winkled and distorted; meither has any tubereles. The colomr of the specimens varies from pinkish to pmple-grey. The chmmatophores are always

[^28]uniformly distributed in tine dots. Arms two and a half to three times of body, and wob one-thind to one-fifth of ams. The fumel-organ is very like that of $1 /$. clurreoti, and consists of two V -shaped pads of very howd ontline, especially posteriorly. The heretocotylas (Fig. : 26) is horad and chmes, and the outer elges of the spoon-shaped process have a mumber of ridges, but the hollow inner surface is almost quite smooth. The sperm-camal is very houd, and its outer surface is closely striated. The specimen

Firs. 22.-Moschites turqueti, male reproductive organs, natural size. arc.gl., Accessory gland; N., Needham's pouch ; p., prostate ; peh., pouch-like dilatation; pen., penis; I.In., vas deferens; V.L., vas efferens; T.S., vesicula seminalis.

Fte. 21. Moschites turnueti, ovary, $\times 3$. ond., Oviluct ; orloy., oviducal gland.

Fir: 23.-Moschitesturqueti, genital gland, $\times 2$.

Fis. 25. - Mosclites furqu'ti, ova, much enlarged.

Fig. 26. - Mosrhites furquefi, extremity of hectocotylized arm, slightly enlarged.
taken oft Lio de Janeio, which has the arms thee times the length of body, and a wel, extending one-fifth of their length, and almost olsolete ventrally, is referred here with some slight hesitation, is it is paler in colouring, and the arms seem a little lomger and slenderer, with more prominent suckers, than those of the wther sperimens. In the shape of the hody, howrere, it resembles the female from Station :355, and the funnel-
 harmony with the ot her specinens：the arms．momener，are longer and shemberer．and

 of I ．rotmmla is that the colour of the manella is deepest on the imer surface．whieh is the reverse of what prevalis in this sperimen．The mate repreluetive organ of J / A

Fic：．2－～．Muschites timeneti，radula，$\times 40$ ．

 of the female from tration ： 55 （Fig． $2 t$ ）was examined，and the widucts seem to lo placed closer together than in that of II．chmoroti（Fig．18）．Probably．however． this is a varialle feature anemblent upon the momber of eggs with which the wary is

B．
 view，$\times 10$ ．a．＂ty．，Anal appendages；！fr．7．．\＆romed lininge of inner wall of anus：i．f．，ink duct：$I . j^{\prime}$ ，ink duct papilla．
distended．The oviducal glands show no extemal pidges．I small yellow swelling is present ou the left aridurt．above the widucal gland and seems to have no opening． either externatly or into the widuet；the intemal wall of the latter is ridged，and its apex is a simple motian aperture．The right ovidur hats the apex folded．perlaps

pear-shaped egg's are very fantly grooved extermally, and have an aperture at the free broul end. No anatomical difference seems to exist hetween this speeies and $\quad \mathbf{M}$. chureoti (Joubin) as regards the alimentary system, gills, venae cavae, and mandibles. The anal apex of the female from Station :355 (Fig. 28) is in very good comdition, and shows that the long appeudages commonly seen in the Oegopsida and Myopsida are here limited to a short upright projection at each side, between which the ridged internal wall is seen hanging over the edge of the integument in front like a tongue, and the papilla of the ink-gland opening into the dorsal wall is observed to have its aperture slightly above the level of the anal apex. The stomach and crop of this sperimen were perfectly empty, ats was also the crop of the male of this haul: the stomach of the latter contained some much digested anmal remains, and (?) "rustacean ova. The radula (Fig. 27) is very like that of M. charcoti (Joubin) ; the chief difference seems to he that the base of the first lateral teeth has a wider projection at the side next the median teeth than in that species.

Dimensions in Millimetren.

		Station 42. 웅	Station 314.	Station 355.		
		\%		9		
End of body to mautle margin			30	12	48	44
Breadth of body	. .	27	17	61	37	
Breadth of liead	. .	26	17	47	32	
1st right arm	. -	95	4:	115	80	
2nd right arm	. .	97	mutilated	123	88	
Srd right arm	-	100	43	119	87	
4th right arm	. -	103	43	136	9.7	
Hectocotylus	. .	-	-	8	-	
Diameter of larg	t sucker	3	-	5	4	

Distribution.-Antareti• (Joubin, '05, ‘14). 'Type female, and four small eximples.
9. Moxchites brevis (Hoyle). Figs. 29-32.

Etedone brevis, Hoyle, Diagnoses I, 1. 230, 1885; Prelim. Rep., p. 106, 1885; "Challenger" Rep. (Cephalopoda), XVI, pp. 10:-106, pl. 8, fig. 7, 1886.
Station 42. off Rio de Janciro, $22^{\circ} 56^{\prime} \mathrm{S} ., 41^{\circ} 34^{\prime} \mathrm{W} ., 40$ fathoms (73 m .), Agassiz trawl, bottom fana (sand), May 2nd, 1913.-One $\hat{\text { d. }}$

This hats a raised ridge on the ventro-lateral margin of body, but no rentral furrow. The ams are noarly twice the length of the body, and the web extends nearly half the length of the arms. There are about forty-three suckers on the first right arm, and about twenty-five on the thind right arm. The hectocotylus is very minute, and as if imperfectly developed. The sperm-canal is well defined. The siphon is somewhat pointed, and reaches less than half-way to umbrella-margin, and the funnel-organ (Fig. 30) consists of two V-shaped pads. Colurr buff, with dark prople (hromatophores above and many of a meddish tint on the ventral surface. Large oenkir "ind and mumerous irregular tubereles are present on the dorsal surface. As
regares anatomy there seems th be mothing partionlar to mote, execpt that the posterion sativary glamds seem to be somewhat romuler than in IV thergmi (Jonloin) amd W. Moment (Jmbin). The amal aperture has the usmal two marmo latemal appendages. 'The genital organ is shown ats in situ in Fig. e9. The pouch of the penis is repe distinet. On breaking the wisceral envelope sumpunting the genitalia. the penis wats fomm to lead into an wall sate attached to the wenital glame ; but no trace of sperms. of of the various regions present in the adult reproductive organs of male specimens of this gemes. cond be diseovered. so that the sperimen is apparently immature. The ralula amd mandilles are figured (Figs :31, :32).

Fic. 29. Moschites brevis, male reproductive organs, $\times 5$. mh., Pouch-like dilatation ; pen., peuis; T., testes; IV. I.C., water vasculur canal.

Fig. : 0.-Moschites brevis, fnmelorgrinl $\times: 3!$

Fis. 32.- Moschites brevis, mandibles, $\times 2$.

Dimensioms in llillimetres.
Encl of body to ventral mantle-margin 25
Eint of body to eye 27
Brealth of body 26
Breadth of hear 17
1st right arm 46
2nd right arm 47
3rd light arm 39
thl right arm 46
Hectocotylus 1.50
Diameter of lingest sucker2.5u
Distribution.-Type specimens. Off Monte Viblea. Febmary 14th. 1876 ; $37^{\circ} 17^{\prime}$ s.. $53^{\circ} 52^{\prime} \mathrm{W}$.. (600 fathoms. green saml. -Three females (Hoyle).
10. I/wschites. sp. Figg. :33.

This very large sperimen wis in deplonable condition when I had the gome fortune to examine it; is il consequence of which. in the dimensions given below, the ams are
mumbered one to eight, as they had all become detached from the borly and every bestige of wod hat disappeame The fumel wist in very bad rondition and did not show fumetorgan. The anterior salivary glands were present on the bureal hall, one Wats oral, and the other somewhat heart-shaped: neither had the marginal intentation figured by lagoor ('09. pl. 4, tig. 22) for 1/. cirrosw. The sulb-lingual salivary gland is heart-shaped above, the namow end just meeting the Λ-shaped indentation of the gnlar lamina of the lower mantible. This npper part measures $25 \times 30 \mathrm{~mm}$. and the lower surfare of the gland is considerahly longer, extending to a length of abont 85 mm . The upper mandible measmes 50 mm . in length ly 37 mm . in lireadth and 40 mm . in height; the frontal lamina projects about 10 mm . beyom the palatine lamina : there is no noteh below the rostrum, hut only a moderate soop out letween it and the inner end of the ala; the lase of the palatine lamina is very straight. The lower mandible measures $42 \times 45 \mathrm{~mm}$, and is also without a notch below the rostrum, the cutting edge fomming a gentle curve along the ala. The radula (Fig. 3:3) measures about 40 mm . in length ly 5 mm . in headth. and the teeth are very dark horn-colour. The median teeth are very hroad, and without latemb denticles, and almost

Fru. :33. Muscriters sl., radula, x ahout 5 . triangular in shape : the anterion margin of the hase of each is usually marked by about nime indentations, the median three or four showing through the half of the tooth immediately above it. As will be seen by a reference to the illustration, the first laterals are some what like miniature editions of the median teeth, and. While the semond laterals call for no special remark, the outer laterals (instearl of presenting the appearance usually depicted in representations of "ephatoporl radulate of these tecth - e.g., that of claw-shaped teeth placed laterally, and projecting over the hases of the second laterals) are arranged like the metian teeth, the hase projecting equally on either side of the rentral denticle, and they rome between the median and first lateral teetl in size aml are mot malike them ins shape.
 (16, p. $2.28, ~ p .24$, tig. 10), shows much the same variation in the appearance of the wuter laterals. The only other Cephalopod linown to me presenting a somewhat similar armagement of these teeth is the large Oegopsid symplectoteuthis luminowe (Iomsal mantle-length, $120-166 \mathrm{~mm}$.) recently deseribed by Sasaki ('15. p. 148, text-fig. 4). Possibly the rontraction of the delicate membrane to which the teeth are attached wases the outer lateral teeth to appear as usially drawn, amb, molere certain conditions of preservation, of of indivilual toughess of this sulastance, or with age thirkening, the membanc beromes sufficiently stont to chable the radula to lie flat. The alsence of cusps in the median teeth, and the comparative shortness of the metian denticle, suggest that the teeth may he wom down from age. Athough the margin of the membatie of this ratula is uninjured, there seems to be no trace of marginal plates.
 "ontains half an Imphiport. and a comsideralde quantity of chopped-mp green seaweed. mante of the fragments of whish have loulyoa amd spirortios attached to them. . 111

For instance, owing to adrancel age amb the alparently worlate staf the teeth. had the amimal taken to eating seaweed insteal of hardere things ! Seromelly , whe the ambivorons animals in the Antartic have to supplement their amivorons diet leg seaweer! This is not likely, ats amimal form is apparently not defirient in ghantity in these latitudes. Thirdly, is it possilhe that, in taking in other amimals as ford.
 it would periodically get rid of when there wat an inconvenient ancumblation in the rrop !

With regard to the first and third questions, the far ts that only half the Amphipend wats present. and that the hits of seawed were neatly divided as if loy the seisoms-like antion of the mandibles. point to the food having heen methodioally gathered rather than aceidentally engulferl. and, as it shows no trate of the rasping of a ratula working forwards, backwards, and laterally, it would seem that the teeth had mot acterd materially (possibly, howerer, berause the amimal mat have hastily swallowed the form from sudden fright at the time of capture). It should also be taken into consideration that its sojourn in the rock-pool may have leen an enforcel one. owing to injury in Which abse the diet would be restricted to what conld be got in a limited area. 'The contents of the stomach amb arop of all the lage Cephalopoels dissected for the present paper were examined, and the limited amount of evidence available goes to show that animal and not regetable matter forms the nomal foon of Antaretio Cephaloporls.

Ipprorimate dimensions. in . Millimetres.

Lenostly of borly	170
Brealth of loody	-	.	.			20.5
Siphen 0
Anterior salivary	rlands			19×14
Arms*-											
1	210
2	.	-	-	.	.	.	-	.	.	.	200
:	-	.	.	.	185
4	-	± 20
\therefore	-	200
fi	-	-	-	-	.	-	.	210
7	-	-	.	.	-	.	.	20.5
'	-		180
Diameter of larg	t sucker	.	.	-	.	-	.	.	-		17

All detached from buly and numbered $1-8$ for convenience.

Famin SEPOLIDAE.

11. Semirossiat tenaru (Verrill). Fig. 34-:39.

Meterotmhis tenert, Verrill, Am. Joum. Sc., XX, p. 392, 1880 ; Proc. U.S. Nat. Mus. III.,
 :3-:3b, 1881 ; Trans. Comnect. Acad., V, p. 357, pl. 46, figs. $2-2 d, 3-3 b$; pl. 47, fiss. 5-.5l, 1881: Rep. U.s. Fish. Comm. for 1879 pp. 385-387 (175-177), pl. 33, pl. 34, fig. 1, 188.2.

Rossiq putagmier, E. A. Smith, "Alert" Exp., p. 22, pl, 3, fig. 3. 1881 ; Hoyle, Jep' "Challenger" Exp. (Cephaloporla), XVL, pp. 119-120, pl. 1-, figs. 10-18, 1886.
S'mirossitt tempot, Steenstrul', Overs. Wanske Vid. Selsk. Forh. 7, p. 89, 1887; Lünnluerg, Svensk. Akad. Handl. XVII, Afd. IV, 1. 18, 1891 ; Pfeffer, Nordisches Plankton, IV, 1p. 44-46, text-firs. 44-47, 1908.

Station 42 , off Rio, de Janeiro, $22^{\circ} 56^{\prime} \mathrm{S} ., 41^{\circ} 34^{\prime} \mathrm{W} . .40$ fathoms ($7: 3 \mathrm{~m}$.), Agassiz trawl, loottom fama (sand), May ond, 1913.—Six fo five of.

The above have a lorsal mantle-length of $18-27 \mathrm{~mm}$. The fumel-organ consists of a short Λ-shaped median pad and two long, namrow lateral pads. The long, narrow valve of the siphon, consisting of two Haps fohled towards one another (Fig. :38).

Fic. 34.-Smirossin tenera, male reproductive organs, $\times 3$. ace.gl., Accessory gland : N., Needham's pouch ; 1 ., prostate : pen., penis: sp., spermatophres; T.D., vas deferens; T.L., vas efferens; V.s', vesicula seminalis.
becomes wider posterionly, where it measures about the breath and one-third of the length of one of the lateral pads of the fumel-organ. On opening the rentrai mantle of a male, the anal aperture, with very long appendages, is ohserved situated at a short distane below the median parl of the fumel. About half-way between the anal aperture and the end of the loody the remal papillate are consponous at a little distance on cither side of the anns. 'The penis, which is shont and hroad and without a pouch, projects to a shont way below the anal aperture. The spermatophore-sat is moh
 prostate glands are very large．I spermatophome from another serimen is figume （Fig．B6）．The ink－sate is spherival．with a shont neek and spmare momth：a matow winting＂amal，openimg at the centre of the mouth，compers the ink to the dusal

Fici．36．－S＇emirnsin tenern，spermatophore，$\times 21$ ．

Fise．37．－Strmi．
rassint tenorle， wi，× …

Fige 3ั．Somionssia tomote，vilue in siphon，\times ！．

 ＂．，Anus；＂．＂pp．，anal apremdares ；b．，haceal mass i．ll．，ink duct；I．s．，ink－sau：L．，liver：m．，month nes．，nesophasus；I^{\prime} ．．pancreas ：sp．c．，spiral caccum st．，stomach．
side of the anal tube near its aperture The digestive system．showing the great development of the panceas．is represented in Fig．39．A comsiderable cartilaginous
 dissecting the former anay．Imat matigimms plates become apmant along the
outer surface of the immer lip, and form a roating over most of the rentral surface of the balls. The rim of the outer lip is also strengthened by a narow cartilaginoms belt, which expands conspicuonsly on the ventral surface of the loull. A female, with mantle-leugth of 25 mm ., possesses nidamental glands measuring about 9 mm . by f 1 mm . A very harge mmber of eggs, all with their surface atorned with a graceful honeycomb-pattern, are present, the largest measuring 4 mm . by $3 \cdot 50 \mathrm{~mm}$.

Mistribution. N.E. America (Verrill, '82) ; Spitshergen and north coast of Siberia (Lünherg, '91) ; East, South, and TVest Patagonia (E. A. Smith, '81, and Hoyle, '86).

Fammy ENOPLOTEUTHLDAE.

12. I'yroteuthis (I'ter!!inteuthis) !iutedi, Fischer.

Pterggiotethis !irurli, Fischer, Jomm. Conchyl., XLIII, p. 205, pl. 9, 1896 ; Hoyke, Bull. Mus. Comp. Zawl., XLITT, pp. 39-42, 51, pls. $7,9,190 t$; Fischer and Joubin, Bull. Mus. Paris, XTT, p. 3:4, figs. 6-8; pl. 23, figs. 6, 7; pl. 24, figs. 9-15, 1906.
Pterygiotruthis Gíurdi, Chun, Zool. Anz., XXXIII, 1. 87, 1908; "Yaldivia" Exp., part I, Oegopsida, Pp. 108-1:36, 1ls. 12-16, 1910: "Michael Sars" N. Atlantic Exp., I[T, י. :3, 1913.

P'yrotenthis (Ptrrygutenthis) Gifruti, Pfeffer, Plankton Exp., 1P1. 204-206, 1912.
Pyrotenthis (I'trvygiotenthis) Giurdi, var. Ioylei, Pfeffer, ep. cit. 1p. 206-208, 1912.
Station 80, from summit Great King, N. $87^{\circ} \mathrm{W} . .11$ miles, $0-100 \mathrm{~m} ., 24$-mesh net, plankton, July こ2nd, 1911.-One.

Station 86, off Three Kings Eslands, $: 3$ m., 50 -mesh net, plankton, July 25 th. 1911.-One.

Station : 311 , off Monte Video, $: 55^{\circ} 29^{\prime} \mathrm{S} .50^{\circ} 26^{\prime} \mathrm{W} ., 2 \mathrm{~m}$. young fish trawl. plankton, A pril 22nd, 1913.- Two.

These little ereatures seem to be obsionsly the same larval as that figured in so many stages hy ('hun ('10, pl. 12, figs. 3-15, pl. 13. figs. 9-12), and which he wats able to trace, by momerns oratations in size from newly-hatehed specimens to fullgrown examples, to l^{\prime}, gimedi. All have the large eyes and the chatacteristi- hemd near the base of the tentacles, which latter terminate in little romed rlabs. The outline of the ghadins is very distimet in all. The arm-sukers are placed two in a row, except that the most proximal is usually placed singly. Nome has any dhromatophores on the mantle, hat this may be due to ahrasion of the epidermis. I few large golden-hrown or reddish chromatophores are present on the head, and a single large one is invariahly placed on earh tentacle near the elats, and a few smaller ones are satatered on the arms.

The largest specimen (Ntation 80) has a mantle-length of 4.50 mm . Beautiful hlue, violet, and pink luminous organs shimmer on the rentral surface of carh eye, the organ 10 (Chun, '10, pl. XIY, fig. 6, numeration of eye-organs) is present on both, the right eye has also 9,1 , and $?$; the left eye seems to have $?, 5,7$, and 8 as well as 10. The third and fonth arms have wide membranes. The tentacles have each a humb of about twenty surkers with apparently smooth ring: no hooks present. The
 loely, amd muth smaller fins tham the pereding specimen: wer thity surkers, with apparently smooth ring and papillar area, are present on eath rluh: the am-sherkers
 White swelling is present ledoni card on either side of siphom, and sombe small white protuberanes are visible romat the top of eath ree these all seem to be intivative of luminens organs in the making. (hathe mantle beimg opened. two bentheotoured luminous ongans are seen on either side of the anms. and two latere similaty coloured. are sitnated hear the poot of the gills. The eperimens from station all hase a mantle-
 suckers. As is the rase with the other sperimens. the firs amme are the shorest. Laminons organs do not seem to be as yet developed.

Type.- 1 female, " Talisman" Experlition (F゙isther. "! (;).

FAMLY ONY(HOTELTHIDAE.

1:3. Iforatenthic. (Moratenthopsis) inyph.s (E. A. Smith).
Omychutenthis ingens, E. A. Smith. Proc. Zorel. Sic., ". Alert" Exp., p. 2.5. 11. :3, tiss. 1-1b,
 Nat. Mus., XV11 (Jahrl, Hamhurg. Wiss. Anst., XVII), p. 160, 1900 : Hoyle, Trans.

Murofenthis ingrous, Pfeffer, Nordiscles Plankton, 1N, 1. 6e, 190s.
Morolenthis (Morufenthopsiv) ingens, Pfefter, Mitteil. Nat. Mus., XXV (.Jalurb. 11amburs. Wiss. Anst., XXY), p. 294, 1908: Pfeffer: Ceph. Plankton Exp', pp. 108-11:, pls. 11, 12. 1912.

Station 129, off 'Three Kings Islands. surfare square 18-mesh net. Aug. 2fith. 1911. Once.

This has a dorsal mantle-length of 20 man., and the posterior end of the pen extemb 0.50 mm . fiom the extremity of hody. Only one club is pesent and it is not in very good comdition. lat shows many small surkers on the distal eme, with one hook in rentre: What appear to be the sorkets of many more hook being ako present on the mertian part of club.

Misfoilufiom.-Patagonian and sub-Antanetic regions.
14. Omyrhutruthis lumkisi (Learh).

Lolige, Jontsï, Leach,* Zowl. Miscellany, Class Ceph., 111, P. 141, 1817.

 1. 10%, 11. $1: 3.189 \%$.

[^29]rol. 11.

Teleonychoteuthis Krohuil, Pfeffer, Mitteil. Nat. Mus. NT11 (.Tahbo. Hamburg. Wiss. Anst.), 1. 158, 1900.

Toheoteuthis Carolii, Joulin, Rés. Camp. Še. Allert I. de Monaco, XVII, p. 64, pl. 11, higs. $2-10,1900$.

Wished on board the "Terra Nowa" south of Marleil:a, July, 1910. - One fo
The above has a domsal mantle-length of 140 mm . The nidamental ghambs measure $23 \times 7 \mathrm{~mm}$., and have their anterion extremity on a line with the lowest of the two luminous organs in the mantle-cavity.

Inistrihution.-Atlantie, all seas from Mammerfest to Straits of Magellan: Indian and Pacifie oreans; New Zealand.

Family omidatostrelinidat.

15. Rilymehoteuthion. Pfeffer:

Poulpe (jeune age)? Eydoux et souleyet, Voy. "Bonite," Zonl., T. 1I, 1. 17, pl. I, figs. 15-21, 185.2.

Decalodo incertre sedis, Jatta, Boll. Soc. Natural. Napoli, amo :i, p. 67, 1889.
Rhynchoteuthis, Wülker, Abh. Wiss. 1I1. Suppl.-Bd. I. Abh., p. 54, pl. 5, fig. 54, München, 1910.
Rhynchoteuthis chuni, Hoyle, Bull. Mus. Comp. Zool., XLIII, pp, 32-33, text-fig. G, 1904.
Rhynchoteuthis, Issel, Cef. "Liguria," pp. 215, 217, pl. 9, figs. 12-14, 1908.
Mhlym.hoteuthion, Pfeffer, Nord. Plankton, IV, Ceph., p. 88, 1908; Plankton Exp., pp. 38.3, 466, 1912.
Rlynchoteuthis, Chun, Zool. Anz. XXVI, 1. 716, 1903: "Valdivia" Exp., Oegopsida, Ip" $201-205$, pls. XXYIII, NX1X, 1910.
Larvae of Ommatostrephidae, Chun, "Michael Sars" Ezp., 1". 6, 1913.
Station 69, west of ('anary lslands, $29^{\circ} 10^{\prime} \mathrm{N} ., 33^{\circ} 36^{\prime} \mathrm{W}$., surface, 50 -mesh net, plankton, May 29th, 1913.-One.

Station 93, from summit Great King, 心.E. loy N., 13 miles, surface, 24 -mesh net, plaukton, July $28 t h, 1911$. One.

The sperimen from Station 69 has a mantle of $3 \cdot 50 \mathrm{~mm}$. in length by $2 \cdot 25 \mathrm{~mm}$. in brealth, and a head measuring 2 mm . in brealth. The total length is about $5 \cdot 75 \mathrm{~mm}$. All the arms are developed, hut the ventral pair are very small. About four pairs of suckers are present on the third arms, and a few, which appear to have a smooth ring, are placed on the proboscis. The latter has a median line showing where it wouh eventually have split up to form the tentacles. Three large, round chromatophones are placed in a transserse line on the dorsal surface of the head, and another oceurs near the fork of the dorsal arms.

The sperimen from Station 9:3 has a total length of about 7 mme, of which the mantle orrupies 4 mm . The fins are very small. The ventral ams are extremely minute, the others being well developed and of alont equal length, and possessing ten to fonten sumers carch. Seven or eight suckers are present on the proboscis. which is fised throghout its length, the line of future severance being, however, very distind. Two large dhomatophores are present on the donsal surfare of the heal below and eye. buth sperimens were perserved in formatin.
 and lmbian weans which he has met with helong to mone than one speries of Ommatostrephialae, whe being a tye with slember boty amd monderate-sized eves. amd the other having a phomp body and great eves. I'feffer ('12, p. 383), with regarl to this, peints ont that Verrill's name of stemotecthis is wher than the mame Ommatostrephes and that two speries of this gems are fomm in the tropiral part of
 (l.e. p. :380). s. Intrtomi is certanly present in the lnelian Ucean also, hot Pfeffer
 possesses any specimen of this species from the Indian Weean. He, therefore, arives at
 monally fluctuating conditions of cuviromment may acrome for their individual ratiation. The New Zealand sperimen in the present collertion appears to belong to ('han's type, with long namow mantle, and secms to be obsionsly a different speries fiom the sperimen from the North Atlantic, which, althongh possessing a murh shomter mantle-length, lats a wider head, and more developed eyes and arms. The mantle of this specimen is tmmed bark so that the form of attarlment. resembling exactly the fignres of Chun (l.c. pl. 29. fig.s. 3 and f) can le seen. I think that it is possible that futme material may go to prove that Clum was right in dividing lis finds into two speries. The homad-hodied form wond appear to have a wide range in the Atlantie, as a very young specimen with a total length of :3 mm.. taken off the sonth-west of Ireland lyy the " Ifelga," lelongs to this type.

Distrilution.-Both types of Chme in hatian and Itlantic oceans. Thopiral Pacifice the wide-borlied type (Issel, '08); Marquests (Hoyle, 0t); Parifir (He Blainville, firle ('hun): North Xtlantie ('lhun, '13).

16. Stigmutoteuthis chumi, Pfeffer.

Callitmulhis Moylei, Chum, "Yaldivia" Expl, part I, Degopsida, 11'. 170-17.3, pl. 1s, figr. 1 : pl. 19, fig. 6 : pl. 20, figs. 1. :2.5, 10, 1:2, 1910.
Stiymatuteutlis C'hni, Pfeffer, Plankton Exp', Pp. 286-288, 1912.
 plankton, Ipril ※2nd. 1913). (!) (One.

This is ohviously a gomng llistiotenthid, lout. mufortmately. it is a damared -perimen ; the ventral surfare of the heal has been tom away and the emd of the mantle. inchuding the fing is murd erashed. The mantle measines a litthe more than Bimm. in length. Oreme of ams: 3, 2, 1, t. The fonth pair are much the shortest and measure about 1.50 mm, in length. The shekers of the arms are minally placed two in a row, hat weasionally they appear as if plaed almost singly. It was imposilale. withont injuing the sperimen, to ohtain a view of the rings of any suckers on the first
and fonth pairs of arms. On one of the secomd arms a sutker in a good position for olservation showed a cremulated rim. and on one of the third ams similar crembations were distinctly split up to form a few heod irregular teeth on distal margin of ring. The tentacles, which measure about 5 mm ., have no suckers on the stem, and the clinh is not expanded, or grooved in the centre. The suckers are arranged about two in a row proxmally and about fon in a row distally : all are abont equal in size ; some rings appear to be smooth, hat are not in good comblion. A sucker-ring near the tip shows clearly at least four teeth on its distal part: alout twenty-seren suckers are present on one club). The ventral surface of the head is so injured that only some slight prominemes imbate what may have been the site of luminous organs. On the domal surface of the head seven luminous organs can be traced. Thee are indistinct amb form a transerse row arross the middle of the heat. Above them are four larger and heantifully iridescent orgians. two of which are placed at the hase of each second arm just below the fork dividing it from the first am, the remaining two heing placel just below the others, so as to form a line passing between the imer and outer organ of the lower row. No other laminous organs couk be traced on arms on tentarles, all of which have a few reddish chomatophores present on their dorsal surface, but nome is risible on the mantle. The whole surface is of a greenish discoloured tint.

Pfeffer ('12. p. 288) separates this from Stigmetoteuthis hombi (Goontrich). on the gromml that the fomer has only three luminous organs in the ventral middle line of the hean, and that the rings of hoth arm- and tentacle-suckers have teeth survonding the entire ring, while s. shmi has four lmmons organs in the rentral median line of the head, and teeth only on the distal half of the sucker-rings of the arms and tentades.

Famisy (RANCHIIDAE.

Zyyucnopsis pucificn, 1ssel, Cef. " Liguria," p. 223, pl. 10, figs. 3:3-44, 1908. Buzggarnu pacifict, Chun, "Valdivia" Expl, Oegopsida, pl. 354-356, pl. i2, tigs. 1-3, 1910. P'yrgusis purificus, Pfeffer, Plankton Exp., Oegopsida, pp. 661-664, 191:丷.
 18-mesh net, plankton, Aug. Z tht, 1911.-()ne.
 18-mesh net, planktom, Sept. 6th. 1911. One.

Keither of the above is in very good comelition. The ams ate extremely minate, exept those of the thind pair, which, in both specimens, measure alout thre times the longth of the fouth pair: some suckers belonging th the thind ams in the example fiom Station $1: 26$ were examined, and appeared to have smooth rings with papillary area. Th the same sperimen, the fombth left arm, meaminis alont I mm. has seren

 rastalline tubereles of the ventral mathtle. Which commener at its matem on either side of the base of the fimmel, exteme to at distance of aloont 8 mme. of about ome-third of the length of the mantle. The latter is very math ermmpled. hat alue ephemis shows indieations of a few dark rhromatophores on the dorsal surface and a few are present on the back of each chal. The ratulat (Fig. fo) is. so delicate that it was wer difficult to monnt without injury. and some of the teeth "annot le seen "learly. 'The
 and are without latemb rasp. 'The outer lateral teeth are of the equed elaw-like shape usually seen in this tooth among Cophalopots. The sperimen from station $1: 39$
 two rows. The latter were examined after a hatay thander-whorer, when the light was masually rlear, amd semed to have guite smooth rimes. The latge surkers of the club aprear to be latere in propertion to the rest in this sperimen, wheh slighty
 about nime tecth ou the distal maryiu. 'The small suckers of the rluls, which are plated in fom rows distally, hats a papillary aras. hat the actual ring appeas to be smooth. What seems to bo a minute surker is present on a tentarlestem. The tubereles extend to about it mme, and comsequently orrupy about the auterior half of the voritral mantle, thintem being at one side and sixteen at the other: A few large whong chomatophares are present wh the

 raldula, $x 330$). mantle: those on the bark of the cluh are arramged as in
 and two lateral rows of smaller chromatophores. The chief difference in these two examples from the type, and from the Japanese specimen desistined by (hm, is that the large tentacular rings have teeth only on the distal border, while lisel desoribes
 remesente them ats leing quite smooth.

Dimensions: in Millimetres.

18. Tinthomenir antarctica, Chon. Figs. 41-43.

Teuthonemia anfarctica, Chun, "Valdivia" Exp., part I, Oeropsida, pr. 376-9, pl. 56, figs. 1-5, pl. 57, figs. 3-7, 1910 ; Pfeffer, Plankton Exp., pp. 745-6, 1912.

Station 118, off North Island, New Kealand, 3:3 $12^{\prime} \mathrm{S} ., 171^{\circ} 05^{\prime}$ E., :? m., 50-mesh net, plankton, Ang. !9th, 1911 .-One and also (?) a damaged speeimen.

Station 129, off Three Kings Islands, smrface, square 18-mesh net, planktom, Ang. egth, 1911.-Two.

The damaged sperimen from Station 113 has a mantle-length of 5 mm ., and only the perluncles of the eyes are present. A few stalked suckers were observed on each of the minute arms, and also on the battered tentacles; they appear to have been arranged on the stem as well as club of the latter. The neck seems to he a little longer in proportion than in the other specimen from this haul, which has a mantle-length of 7 mm . This latter has the tentacular suckers with fom tecth on distal margin of ring, and the surkers of the stems are arranged in four rows, nearly, if not quite, to the mouth. 'Two large dark chromatophores are present on the dorsal smface of the head and eyes ; those of the mantle are more oblong than in Chun's illustration, but the ventral luminous eye-rigans are exactly as in his specimens ("1). rit., pl. 57. figs. 3, 4, 5).

The examples from Station 129 have a dorsal mantle-length of 11 and 12 mm . The funnel does not quite reach the hase of the arms in the largest specimen. but extends a little above this level in the smatler example. The fins are mutilated in the larger specimen, but measure about one-eleventh of the mantle in the other, and their attachment is very similar to that figured by Pfeffer ('12, pl. 48, fig. 9) for Truthenenin merfulops (Prosch). Order of arms in both: 8, 2, 4, 1.

The smaller specimen has about six pains of stalked suckers on the dorsal arms, dight pairs on the second, eleven pairs on the third, and about five pairs on the ventral arms. The horny rings are missing from many suckers; one or
 two present showed a papillary area and an apparently smooth ring. Eight to twelve pains of surkers oreur on the arms of the other specimen. The tentacles in both examples have the suckers in four rows, except for about the proximal two rows of the stem, where they are usually placed two in a row. Several suckers of the club showed two shamp teeth on the distal part of the ring. and others were obvionsly missing. The lower mandible of the larger specimen is figured (Fig. 41).

Ho the ralula (Figs. 42-43) the median teeth of each row possess a long central denticle, and small, blunt lateral cusps. The first and second laterals are nealy the same size as the merlian tooth. The outer lateral teeth, and the oval plates leyourl them, are like those of Desmoteuthis h!pertorea (Steenstrup), as figured by Verill ('82, pl. 45, tig. 22) muler I). tenera, Verill. Except that the first laterals have a cusp at the left side, the only indication of which, in T. antaretica, is an extension of
the base at that side. these two relate are marla alike. The largest specimen, on hoeing opened ventrally, showed the twisted vena cave, and other organ arranged as in Clam's illustration ('10, pl. 57. fig. 7). Numerous dark oblong chromatophore are present on louth sides of the mantle; those on the dorsal surface of the elul, and distal part of stem form broad stripes of orage-hown. Both specimens have the mantle much wrinkle ad along the median dossal line. so that prolnally a considerable amount of contraction should be allowed for in the dimensions given below of the largest serine.

Fut:. 42.-Tenthovenit antarctica, ratula, $\times 220$.

Pis. 43.- Teuthouenir antarctica, middle tooth of riduli, $\times 500$.
/Dimensions in Millimetres.
End of boldly to dorsal mantle-margin 12
Breadth of body 6
Breadth of head 5
Eye and peduncle - . 0
lIst right arm ra. .2
3 Pol right arm cu. :3
Distribution. One example, $55^{\circ} 57^{\prime} \mathrm{S} . .16^{\circ} 14^{\prime} \mathrm{E}$, vertical net to 2.000 m . (?) Four damaged specimens, southern Indian Ocean (Chin).

OEGODSIDA.

19. Sp. inert.

From stomarll of Snowy Petrel (probably taken off Antarctic Circle, south of New Zealand, neal $65^{\circ} 14^{\prime}$ S. $161^{\circ}-24^{\prime}$ L., 2 m.), March 5th, 1911 - Four eyes.

These appear to belong to some large Oegopsid species, and are about 28 by $\because 21 m m$., or about the size of a penny. The eyeballs measure about $121 m m$. in diameters. No station-number accompanies this find, but the birl would appear to have been taken in Antarctic regions, as on March $6 \mathrm{th}_{\mathrm{h}}, 1911$, the "Terra Nova" wats in the latitude recorded above, and on the other rate nearest to this in the list of stations

III．－LIST OF REFERENCES．

 text－fiss． $1-40, ~ p l s, ~ 45-5.5,1!14$.
Brazier，J．，1892．＂Catalugue of the Marime Nhells of Iustralia and Tasmania Part I．，Cephapora．＂ Syhey，Austr．Mus．Cat．，15， $1!1$ p．．pl．， 1892.
Cucy，C．，1903．，＂Rhynchoteuthis．Eine merkwiirdige Jugendform von Cephalopoden．＂－Zoologiseher Anzeiger，XXV］，pp． 716 － 17 ，tis．， $1!03$.
Chux，C．，190s．＂T̈ber Cephaloporlen der deutschen Tiefsee－Expedition．＂－Zoologischer Anzeiger， NXXHI，pp．N6－ネ9，May，1908．
Chus，C．，1910．－＂1bie Cephaloporlen．1．Theil：Ocgopsida．＂Wiss．Ergehn．deutsch．Tiefsee－Exp．，

Cucx，C．，191：．－＂Cephalopoda from the＇Michael Sars＇North Athatic Deep－Nea Expedition，＇2R IP．， 11 figs．in text，$\because=$ pls．，1910．Bergen， 1913.
Hade，W．H．，1908．－＂Reports on the dredging operations ofl the west coast of Central America．．．hy the U．S．Fish Commission Steamer＇Albatross，＇ete．The Dollusca and Brachioporla．＂－－Bull．

Delle Cmaje，s．， $18 \geq 8-1 \times 30$ ．－＂Momoria sulla struttura e notomia dergli amimali senza vertebre del Reguo di Napoli．＂—Naples，18：28－1＊30．
 Gagra．Mollusyues．＂Paris， $1 \mathbf{5 3} 3$.
Fisctier，H．，1896．＂Note préliminaire sur le Pterygiotenthis Giardi，Céphatopode noweau recueilli dans
 1 pl．， 1896.
Hidaleo，J．G．，1905．－＂Catalogo de los Moluseos testaceos de las islas Filipinas，Jolóy Marianas． 1. Moluseos marinos．＂Revista Lieal Acad．Cien．Madrid，t．i－iii，p．i－xvi，1－408，June， 1904 July，1905．

Hover，W．E．， 1 sis．－＂Preliminary Report on the Cephalopoda collected turing the Crunse of H．D．s． ＂Challenger．＇－I．The Octopusta．＂－Proc．Roy．Soc．Ddiuburgh，XTIT，pp．94－114，1אから．
Jover，W．E．．18w6．－＂Report on the Cephalopoda collected by H．M．S．＇Chatlenger＇during the years

Howle，W．E．，1904．－＂Reports on the dredging operations oll the west coast of Central America，etc．．．． ly the．．．Albatross．＇V1．Reports on the Cephalopoda．＂－Dall．Mus．Comp．Zool．，XLIII， pp．1－71，pls．1－12，March， 1904.
Horme，W．E．， 191^{2} ．－＂The Cephalopoda of the Senttish National Autaretic Expedition．＂－Trans．Royal Foc．Edinfmrgh，XL，VIJI，pt．2（no．14），1p．27：3－2s：，text－figs．1－9，191』．
Issoor，A．， 190%－＂Eledone．（The Octoped Cuttlefish．）＂－Proc．Liverpool Biol．Boc．，Nemonir No． XVIII，1p，469－if：, text－figs． $1-7$, pls． $1-10,1909$.
1ssma，R．，190․＂Raceolte Planctomiche fatte dalla R．Nave＇Liguria＇．．．IV．Mollusehi Part 1. Cefalopodi planctonici＂ li ．Istituto di Ntudi Superioni Firenze，pp．201－24：3，phi．9－11，figs． $1-56,190 \mathrm{~K}$ ．
Jates，G．， 1896. ＂I Cefaloporli viventi ucl Golfo di Napoli．＂－Vauna und Flom des Golfes von Neapel，

Joubin，L．，18：97．＂Observations sur divers céphatopos．Troisiene Note．Céphahomes du Musíe

 $1-11$ ，号text－figs．， 1 pl．．190． 9.
 text-ifrs. 1-t, Pirris, 1914.
Lionnbime, E., 1891 . Översigt öfice sueriges Cephatopemer. Mihang till K. suensk. Vet.-Ak. Landl.

 P1, 16:-163, pl. 6. Paris, 1s: 1.
 \because ןls.. 1916.

 of Lgr., Tohoku lmp. I'niv., s'uppor, wh. V', pt. 6, pp. 1:3-1.50, text-foss. 1-1, pl. 4, 1915.

 13. 17, figs. 1-6, Landon, 1857.

 [Pp. i-3b. pls. 1-3, written by soukeret atome, fide berry, 1914.]
 1899
 Commission Fish and Fisheries, 1879,1 ashington, $180^{\circ} 2$.

 Alh., 1910.

INDEX．

americanus，var．．Octopus viluaris，ItA．
Ancistrotenthis lichtenstemin，165．
mutarctica，Tenthowenia，14』，169，170，171
antareticus，Conatus， 143 ．
arabica，がepia， 160.
armo．Mrgonanta， 1 \＆
Argonatatargo， 1 ft ．
bütseri，142， $143,144$.
Aggnalutidae．Ifs．
australis．Octopus，14！！
Polpus，142． $149,150$.
Banksii，Loligo． 16.
banksi Ouychotenthis， $14 \ddot{2}, 165$.
bartrami，Stenoteuthis． 1 fi ．
bosecii，val．pallida，Octopus， 147.
1，0̈ttgeri，Argomanta， $1 \nmid 2,1+3,1 \nmid t$ ．
brevis，Eiedome， 15 ．
Moschites，142．15s． 159 ．
hucei，Polypus， $142,151$.
Callitenthis Iloylai， 143 ， 167.
Carolii，Teleotenthis， 1 fiti．
Whatcoti，Eledone，1．s．
Moschites， $1+1,14 \because, 151,152,153,151$. 1．56，157，15N，15！
（huni，lihynchotenthis． 166 ．
．．Stigmatoteuthis， 143 ， 167.
cirtosa，Haschites，150．153．16io．
（iirroteuthis， 14% ．
Cranchiolit．16s．
Crystalloteuthis glacialis， 1 ti3．
Becaporlo incertale sedis， 166.
besmoteuthis hyperborea， 170. ，．tenera， 170.
dubins，Octopms， 145 ， 147 ．
duplex，$\because \quad, 149$.
Polypins， 1.50 ．
Eiledoue brevis． 158.
．charcoti，lit．
turqueti，15．
－Ilipsü：（！）Loliso， $1: 3$.
Enoplatenthid：ore，161．

Eyes of Oegopside， 141 ．
fontanionms，lolyons，11：3．
sfiardi，Pterysiotcuthis，Itit．

glacialis，Crystallotenthis， 143 ．
globosus．Polypus， 150.
Gonatus antarcticus， 1 13．
gracilis，Getopus， $1+1,1+7$ ．
granulatus，Octopus， 147 ．
Heterotenthis temera， $16 \because$.
Histiotenthidace， 107.
Ilistiotconthid，143， 167.
hovelei．Calliteuthis，14：3， 16 ．
，，var．，Pterygiotenthis giarli， $1 \mathrm{i} \%$
，，Stigmatoteuthis， 1 tis．
hyperhorea，Desmotenthis， 1 万u．
ineertare sedis，Decaporlo， 166 ．
ingens，Morotenthis， $142,16.5$ ．
．．Morotenthis（Moroteuthopsis）．16．i
，．Mrehotenthis，165．
（jeune itge），（？）Ponlpe， 166.
kagoshimensis，Octopus， 147.
Krohnii，Teleonychotenthis， 166 ．
Latrae，Ommatostrephidae， 166.
lichtensteinii，Ancistrotenthis，16\％．
Loliso Banksii，16．）．
（？）．．（ellipsura， 14% ．
，pratagonica，143．
luminnsa，Symplectotenthis， 160.
macropus，Polypus． 1 ло．
megalons．＇Touthwenis，14：2， 170.
moselata，Moselhites， 1.5 ．
Moschites， 1.11.
Hosehites brevis， $14 \ddot{2}, 1$ 茂， 159.
＂charooti， $141,142,151,152,1.13,154$,
$156,157,158,159$.
，cilocir， $152,15 \mathrm{n}, 1$ tio．

，．roturula，15\％．
．．turpueti， $111,142,1.52,150,106,15 \%$ ，
159.
，vermucusa， 142 ．
，．si．，1＋1，159， 160.
Mamenenthis ingens， $14 \because 165$.
（Anroteuthnsis）ingens， 165.
3 yomsid， $14 \because$ ．
Myomsida， $1+1$ ， 1 ss
occilentalis，OCtopris， 14 s ．
，Polypus，14こ，14s， $1+9$.
Octopus anstralis． 1 ！！！
（hotopms luseii，var．pallida， 1 17．
－s（lulius， 1 15． 117 ．
．．Aluplex，1 1！．
．．Ericilis．I \＆1，117．
－ervinulatus， $1+7$ ．
－kitgoshimensis， 11 ．
．．acoidentalis， 148 ．
．．puly\％enia，ItF．
．－rusosus， $1 / \overline{\text { ．}}$

．．eves of $1+1,171$.
：，sp．incert．， $1+1,1$ il．
（ Ommatostrephes， 167.
Onmatostrephiclace， 166 ， 16. larvile， 1 lifi．

ingems， 16.5 ．
1axifica，Fizyquena， 168 ．
．，$/$ ygacnopsis， 16 ．
pacificus，Pyrgopsis， $1+2$ ， 16 が， 169.
pallider var．．Octopus loseii，lti．
patavonica，Ioligo， $14: 3$.
Iiossia， 1 （ i^{-}．
phtagonicus，Polypus， $14: 3$ ．
Polypulidae， 14 T．
Polypus australis， 1 12． $14!1$ ．15U．
＂brucei，lfッ． 151.
，，duplex，lovo．
，，fontaniamus， 14% ．
－Elubosus， 150.
，＂macropus，l．jn．
＂onecirlentalis， $142,148,14!8$.
，patagumicus． 14 ．

（！）Poulpe（jenne isfe）． 166 ．
pteromis，Stemotenthis，Ifit．
Pterysioteuthis giturli， 1 if．

Pyrgolsis pacificus， $14: 3,16 s, 16!1$.

$$
\therefore \quad, \quad \quad, \quad \text { vill luylui, llit. }
$$

－fuosianms，Tremortuphs， $145,117$.
lihronchonenthion， 142,143, lim．
Rlivouchotenthis， 166 ．
＂Chuni， $166 i$.
liossial patasomica， 16% ．
rotunda，Muschites，l．7T．
Mgos：Seplizl， 1 ti．
ringosus，（retopus， 1 ti．
［olylus，14シ，117．1ts．

Sepial， 141 ．

rllefosa， 117.

Stenosteuthis， 1 iit．
$\begin{array}{ll}. . & \text { bartrami，} 16 i^{-} . \\ \text {．} & \text { btrombs，} 16 i^{-} .\end{array}$
stigmatorathis ehuni，I 4i lif．
hoylei，Ifis．
Armblectoteuthis luminosa，lifl．
Teleonvelwonenthis Krohnii， i 16 （ ．
Telcotenthis Carulii，lifi．
tencra，Wesmoteuthis． 170 ．
lleteroteuthis， 16.3.
．，semirossia， $1.4 .3,16.3 .16 .1$
Teuthowenia antarctic： $11 \therefore$ llis，170，171．
mesalops， 142,170
Tremoctopus ynoyamus， 14.5 ， $14 \overline{6}$
violaceus． $1+2,1+4.1+5,14 i, 117$.
turqueti，Filerlone．15．5．
Maschites， $141,142,150,151,15.5,156$. 1．7， 1.59.
verrucosa，Muschiter，I \＆

vulgaris，var，americanlus，Octopus， 14 ぶ．

BRACHIOPODA.

BY J. WILFRID JACKSON, F.G.S.,

Assistant Keeper of the Menchester Musenm; Hon. Secretary of the Conchological Society of Great Britain aur Ireland.

WITH ONE PLATE.
PAGE
I.-Introduction 177
II.-Description of Species-
A. New Zealand Species 180
B. Antaretic Species 188
Bibliography 199
Index 201

I.- INTRODUCTION.

The Brachiopoda obtained lyy the "Terra Nova" Expedition in 1910 form a most interesting and valuable series. They far surpass, hoth in number of species and of specimens, the collection bronght hack loy the previous "Discovery" Expedition, and add very considerably to our knowledge of already recorded speeies. This applies more especially to certain forms from Antaretic waters, the descriptions of which have hitherto been very incomplete. In one case the excellent material so provided has enabled a fairly complete study to he made of an Antaretic Rhynchonellid previously ascribed to firynchomplla. For this form it has been found neeessary to create a new genus, viz, Compsothyris, Our linowledge of the geographical range of this and of several other forms has been increased very materially by the "Terra Nova" dredgings.

The "Terra Nora" Brachiopods come from two distinct areas, viz.-A. New Zealand, and B. Antarctic (Ross Sea region), and are deseribed under these two lieadings in the following pages.

The material from New Zealand was obtained from four stations, and comprises the four well-known New Zealand species, viz.-Memitharis nigricoms (Sow.) ; Terebratella sum!uinen (Leach) [=rmentu, Dilhwyn]; Terelnutella mulucundu (Sow.) ; and Neothyris
lenticularis (Deshayes). In addition to these there are two fragmentary valves of a Terelnatuloid, dredged off Three Kings Islands, the determination of which is not possible owing to the had state of preservation of the remains. This doubtful form is referred to in the present Report as Liothyrella sp. It may be an entirely new form. There is also from the same station a series of three very immature Brachiopods, which may he young forms of Terebratella sampuineo, and if such be the case the range of that species is considerably inereased. These young forms are described muder Merfellamia or Terelnatella sp. in subsequent pages.

The range in depth of the New Zealand species is from the shore-line to 100 fathoms, and two new northern localities-Three Kings Islands and Off North C'ape-are added for one of the forms, viz., Neothyris lenticultoris. Hitherto New Zealand Brachiopods have been mainly recorded from the southern portions of the Islands. It is interesting, therefore, to find that at least one species has a much more extended distribntion.

The species from the Antaretic region-Ross Sea area-are distinct in every way from the New Zealand forms, and comprise the following : Compsothyris (otimu Ringnchonella) rarovitze (Joubin); Liothyrelle antaretica (Blochmann); Wragellomia frayilis, Smith; and Mayellanire joubini, Blochmann [=sulcuta, Smith]. These were dredged at twelve stations, ranging in depth from 45 to 300 fathoms. Two of the species, Compsothyris racovitza and Liothyrella antarctice, are new to the Ross Sea area, though known in other parts of the Antarctic, viz., C. rucoritere in the Western Antarctic ("Belgica" Expedition) and L.antarrtica in the Eastern Antaretic-Kaiser Wilheln II. Land (" (iauss" Expedition). Mayellania frayilis is as yet only known from the Ross Sea area ("Discovery" and "Terra Nova" Expetitions). Ifrellemin joulhimi has heen previously recorded for the same neighbourhood ("Discovery") and from the Eastem Antarctic ("Gauss"). It probably also ranges to the Western Antarctic, as some fragmentary Brachiopods having some resemblance to this species were dredged hy the "Belgica" Expedition.

The collection of Brachiopods obtained by the previous British Antaretic ("Diseovery") Expedition, 1901-04, was an extremely small one, and consisted solely of Antaretic forms. These comprised two species of Magellemin, a few specimens of each being secured from the three stations where examples of this class were dredged. They were deseribed by the late E. A. Smith [1907]* as new species, but one of themM. sultatu-proved to be synonymous with an Antaretic form previonsly described by F. Blochmam [1906] under the name M. jouthini: the other of Smith's species is 11. fraegilis.

The Antarctic species are all thin-shelled forms, diftering in this respect from the well-known Magellanic species-Liothyrella w", (Brod.), Terelmatelln dorsate (Gmel.), and Mretellaniot cenow (Sol.) ; and from the New Zealand species already mentioned,

Which, in addition to being stronger shelled, are also more hrilliantly coloured. 'They belong to the Antaretic Zome (Glacial district) as defined ly Regan in his Report on the Fishes of the "Terral Nova" Expedition. Possibly all will ultimately be fomm to have a circumpolar distribution.

From the above summary it will be seen that no new forms are added to the list of species known to ocemr in Antaretie waters; lint on the other hame rertain species are absent. These are: Pelnembismus uthenticus (King), Liothyrimu howhmemi, Jackson, and Ihurambrevin diamantime, Dall, all three dredged in 1,410 fathoms, off Coats Laml ("Sontia" Experlition) ; Aucumlreciu ranhäfieni, Bloshmann, Eastern Antaretic ("(iallss" Expedition) ; ('remin lecemtri, Joubin, Western Antarctic ("Belgica" Expedition) ; Liothyrella ur" (Brol.) val. motercadensix, Jaekson, South Orkneys ("Scotia" Expedition), South Georgial (Swedish lixpedition), aml Western Antaretic: (French Expedition). The aloove localities, like those of the Ross Sea area, all lie inside the extreme limit of pack-ice. Of Antarctic speries living ontside the limit, four have been recorded from Kerguclen Island, viz, / Iemithyris f!lyidutn (Watson, MS., Davilson) (" Challenger" Expedition) ; Liuthyrime meselenf (1)avidson) ("Challenger"

Excepting Pedenodisels: uthontions, a typical abyssal form and is speries of almost (onsmopolitan distribution,* Lheromberin diammemen is the only speries which ranges any romsideralole distance ontside Antaretic waters. This spectes wats miginally described from specimens taken in deep water in the Gulf of Pamana, and was again met with in deep water off Northem Peru. The highly interesting discovery in the Antarctic of adult and very young specimens of this member of the Dallininae, a sub-family previously thought to have been restricted to horeal seats, is discussed in detail in my "Scotia" lecport [Jackson, 1912, pp. 379-383].

Before proceeding with the descriptions of the "Terra Nova" species, I must here expreses my thanks to Mr. D. G. Lillie for his kindness in supplying the surfare temperatures of the sea in the case of most of the species. He remarks that in the Autaretic region the lootom temperature is approximately either just below or just above $0^{\circ}(\therefore(=32$ だ $)$.

I have also to thank Dr. K. F. Harmer, Keeper of Zanlogy in the British Museum (Natural History), for entrusting me with this Report, and Mr. A. (. Rohson, Assistant in charge of the Brachoponla in the same institution, for supplying me with necessatry information.

A hibliography of the primeipal works consulted in the preparation of this Report is given at the end.

[^30]
II.-DESCRIPTION OF SPECIES.

The literature is restricted to the more important works.

A.-NEIV ZEALANI.
L1sT OF STATIONS.

Station 90. From Summit, Great King, Three Kings Islands, S., $14^{\circ} \mathrm{W} ., 8$ miles, 100 fathoms. Surface temperature, $59 \cdot 21^{\circ} \mathrm{F}$.
,, 96. 7 miles E. of North Cape, New Zealand, 70 fathoms. Surface temperature, $61^{\circ} \mathrm{F}$.
,, 243. Neighbourhood of Admiralty Bay, Nelson, Now Zealand, 15 fathoms, sand.
" ? On the sandy beach at Waikawa, Southland, New Zealand, 1912.

1. Memithyris nigricoms (G. B. Sowerby, 1846).

Terebratula nigricans, Sow., Proc. Zool. Soc., 1846, p. 91.
Sow., "Thes. Conch.," i., 1846, p. 34?, pl. 71, figs. 81-82.
Rlyynchonella nigricans (Sow.), Davidson, "Recent Brachiopoda," Trens. Lium. Soc., iv, pt. ii, 1887, p. 169, pl. 24, figs. 16-19.
Itemilhyris nigricans (Sow.), Dall, Proc. Acad. Nat. Sci. Plilad., 1873, p. 196.
", ", "Suter, "Manual N.Z. Mollusca," 1913, p. 1076.
Mub.--"On the sandy beach at Waikawa, Southland, N.Z., 1912" [= Otago].
Ohs.-Three live specimens of this well-known New Zealand form were picked up at the above loeality. The largest example measures: length, 22 mm ; breadth, 25 mm . ; depth, 12.5 mm .

This species seems to be restricted in its distribution to the southern part of New Zealand. It has been recorded from 5 miles E. of Ruapuke lsland, 19 fathoms; Foveaux Strait (abundant) ; off Waipapa Point, $24-26$ fathoms; $15 \frac{1}{2}$ miles E. of Shag Point, 30-40 fathoms, and the Chatham Islands [Hutton, 1873 (1), p. 87 ; 1880, p. 178. Davidson, 1887, p. 169. Suter, 1911, p. 284, and 1913, p. 1076].

In a fossil state the species is sail to oecur in the 'lertiary Rocks of New Zealand [Hutton, 1873 (2), p. 87 ; 1904, p. 480 ; Suter, 1913, p. 1076]; hut it is open to question whether the specimens so named are correctly referred to /I. mifritems. They probably represent a coarsely ribhed, imbricate, ancestral form of which the recent I/ nigricans may be a catagenetic development, and the recent /I. dïderleini, from Japan, a spinose (anagenctic) development [Thomson, 1915 (3), p. 388]. A closely related form has been obtained from the Table Cape Beds at Wynyard, Tasmana, reputed to be of Miocene Age [Jackson, 191G, pp. 25-26].

Compared with the genotype of Ifemithyris (II. /sittecen), II. mifriorous presents some interesting internal differences. The dental plates, instead of being vertical as in /I. /sittucer** (also /I. lucidn), curve lackwards into the mononal cavity. The teeth,

[^31]too, are relatively larger, and there is a stronger development of the pedicle-collar:* In the clorsal vatue the cartinaliat differ somewhat, especially in the possession of a definite hilobed cardinal process, which extends outwards from the apex of the valve as a small shelf embayed medially. This feature, which I have never observed in any example of $/ /$. μ sittucen, is present both in the "Terra Nova" specimens and in two examples in my own eollection from the Chatham lslands [Jackson, 1916, p. 25]. There is a short, low, mesial septum, which is very much stronger than that in //. pittuca. la the latter species the septum is quite rudimentary, and there is no true cardinal process, the diductor muscles loeing attached directly to the posterior ends of the crumal hases. I/. lucidn agrees with $/ /$. /sittuced in this respect, except that the muscular area is margined anteriorly by slight ridges.

Much work still remains to be done with regard to dental plates, ete., and doultless a close study of the fossil forms of the mifricome group would reveal some interesting features. Of named forms pertaning to this series the most noteworthy are: Rhandhomelle squamose, Hntton + (Tertiaries of Australasia and Antarctica); R. colutu (M'Coy MS.), Woodss (Tertiary of Tasmania); R. (?) tubuliferce, Tate (Oligocene of Muddy Creek, Victoria) ; and Hemithyris imbricutu, Buckman\|| (Tertiary of Antarctica). A further study is also desirahle of Rhynchomellu migricuns var. L'Mridutu (Watson, MS.), Davidson** (hecent off the Kerguelen Isles).
2. Liothyrella sp' I'l. I, figs. 1 A, B.

Mul).-Station 90 ; 100 fathoms.
Oh.:--Two imperfect ventral valves of a Terebratulid were dredged at the above station. Both examples are overgrown with Polyzoa and a pink sessile Foraminifer (Polytrema miminceum), iो and are so imperfect and badly preserved that it is difficult for comparisons to be made with other forms.

One specimen, A (Pl. I, fig. 1 A), is larger than the other, and seems to indicate a somewhat pyriform shell, with a maximum diameter a little anterior to the middle of the valve. The test is fairly thick. The posterior part of the valve is very convex, while the anterior part is hradly thattened atong the middle. The size of the specimen represented by this fingment is: length, $40+\mathrm{mm}$. (pobally 45 mm .) ; with, 38 mm . Portions of the exterion sumfere are covered hy very fine, almost wholete, ratial lines, and the surface generally has very pominent growth halts. The colour of the shell is dirty-white. The beak, of whith one side only is preserved, is trmeated hy a large.

[^32]obligue foramen. Part of a deltidial plate remains, and is separated from the rounded thanks of the beak by a sharp edge. There is also a slight pedicle-collar. The inner surface of the valve shows traces of two parallel furrows down the middle, such as are seen in shells of Liethypella war [see Jackson, 1912, pl. i, fig. 9; and Fischer and Uehlert, 1892, pl. viii, fig. 23].

The other specimen, B. (Pl. I, fig. 1 B), measures: length, 35 mm ; width, about $: 30 \mathrm{~mm}$. It is pyriform, with its maximum width anterior to the middle. Valve convex, and deepest in the umbonal area. The beak has rounded flanks and is truncated hy an oblique, oval foramen, which possesses a labiate prolongation over the conjoined deltidial plates. Outer sufface with somewhat coarse growth-lines, but no radial strie are apparent; interior surface quite smooth ; slight pedicle-collar.

It is possible that both specimens, A and B, helong to the same species.
The absence of the dorsal valve renders a description of the cardinalia and hrachidimm impossible. That the species belongs to the short-looped forms, however, is clearly evident from the presence in the ventral valve of a feature known only to exist in short-looped species, viz., a pediele-eollar. In a recent paper [Jackson, 1916] I called attention to the faet that in some twenty-four recent and a number of fossil species of short-looped forms which 1 had examined, a true pedicle-collar* was universally present. This feature does not appear to be developed in any of the higher long-looped forms such as: Magellamia, Tereloratella, Inallima, Macemelrevia, Toretoratalia, ete., ete. This fact seems to provide a useful criterion for separating, into their right gromp, odd ventral valves, when other evidence is not availahle.

The shell-substance of the New Zealand specimens, A and B, when viewed under the microseope, is seen to be tumelled in every direction by very fine burrows, presumably made ly organisms similar to those found in C'ompsothyrio racoritere (see p. 190), and it is difficult to get even ${ }_{1}^{1}$, th of a square mm. without these. Conserfuently it is almost impossible to study the puncte and shell-mosaic in a satisfactory manner. This is all the more unfortunate as there is much yet to learn regarding punctation. The shells are undoubtedly very finely and densely punctated, the number of pores per square millimetre, as far as can be ascertained, ranging from 272 to 304 (six counts on the same specimen yielded 288).

The species has a striking resemblance to some of the forms of Liothypella mu, \dagger figured and described from the Magellanic region, viz.-Falkland Islands (Burdwood Bank), South Georgia, and South Orkneys, as well as from the West Antarctic. Perhaps the most striking resemhlance, however, of this New Zealand species is to the gengraphic variant of L. uva, viz, var. motorcalensis, described by we in 1912 from Scotia Bay, South Orkneys [compare Pl. 1, fig. 1, with Jacksom, 1912, pl. i, figs. 1-3]. The gencral form is smilar and there is the same corious labiate probongation of the

[^33]foramen. It would be mume, howerer, with the present material, to momblute that the New Zealaml form is to be refered to the Magellamis: peries, aml its identification must awat further researhes in the neighburhood of Three Kings lalands.

Piegarding the remods of L. urem in Australian waters, Davidson [1880, p. 31, 1h. ii. figs. : --3h] refermed to this speries a dead specimen ohtained at Twofold Bay, Dumkam, N.S. Wiales, in 120 fathoms, hut this has since proved to be an crior in identification. Blochmann [1906 and 1908] lats clearly demonstrated that it is not L. Mer, hut a new spectes, to which he has given the specifie: name fulco. The same form has since been obtamed alive ofl' the East Coast of Tasmania, in 40 fathoms [Blochmam, 1914, Pp. 112-11:3, pl. x.]. In the construction of the brachidium, and from the fact that certain important spicules are alsent from the hases of the cirri, this species resembles the L. vitren series, i.e., it belongs to the true Liothyrime and not to the genus Liothyrella recently created by Thomson [1916, p. 44] for the reception of L. ưa and some others. Some remarks on the validity of this new genus have been published hy me in the Goblemieal Jhagazine for Fehruary, 1918 (pp. 73-79).

Hedley [1902, p. 289] gives Coogee Bay and Botany Bay (both near Sydney) as lowalities for L. ur, hut here again an error of determination was mate, the specimens leing Terelmatulinu cumpellutu, Koch [five Blochmann, 1912].

Hedley's later recorl [1905, p. 4: $]$ of L. ure from 111 fathoms, East C'ape Byron, Australia, may be fom ded on a similar error.

Bhohmann [1908, p. 61 (i] gives a most interesting record of L. wa at "Tahiti." The sperimen is in the Berlin Museum moder that locality. That it is L. wea there does not appear to be the slightest doubt; but the locality is open to question. Further rescarches in that part of the world would be very weleome.

No Liothyrime or Liothyrella has heen recorded for New Zealand until quite recently, when a single jnvenile example was met with in Foveaux Strait [Thomson, 1915 (2) . p. 408]. Unfortunately the specimen is too small for specific determination. Thomson also writes me (Fehmary, 1917) that he is shortly descrihing a new species, under Liutlymellu, from Cook Strait.
3. Tepelratslla sethguineal (Leach, 1814).

Terelmatula sam!miner, Leach, Zool. Mise., 1814, p. 76, pl. 33 (not Chemnitz). Terebratula cruenta, Dillwyn, Descr. Cat. Rec. Shells, ii, 1817, p. 29.). Terelrufula (Tereloratelle) crucut", Dillw., Reeve, "Conch. Icon." xiii, 1860, pl. v, fig. 20. Tereloratelle rruenta (Dillwyn), Davidson, " Fec. Brach.," Trans. Limn. Soc., is, pt. ii, 1887, p. 87, pl. 14, figs. 1-8.

Terebrutella sanguiner (Leach), Suter, "Manual N.Z. Moll." 1913, p. 1074.
/ Hef). -Station 243 ; 15 fathoms, sand.
Olw:- One live immature specimen was met with at this station.
According to Davidson [1887, p. 88] this species is very abmolant in Cook's and Foweaux Straits, New Zealand. Suter [1911, P. 284] records it "Off" Oamaru, 35 and 43 fathoms, and 23 miles S. W. of Aharoa, $24-30$ fathoms" ; and in his later

Mammal [1913, p. 1075] gives its distribution as Cook Strait to Stewart Island. Thomson [1915 (2) , p. 405] cites it from Chetwode Islands (Cook Strait), Wellington Harhour, and Foveanx Strait, and later [1916, p. 46, pl. i, fig. 3] he describes and figures an interesting variety dredged off C'ape Colville, Auckland, in 20 fathoms.

As a fossil it is recorded from the New Zealand 'Jertiaries at Wanganui, ete. [Hutton, $187: 3$ (2), p. 36 ; 1904, p. 477 ; Suter, 1913, p. 1075].
4. Tereliratella mubicmela (G. B. Sowerly, 1846).

Terebratula rubicunda, Sow., Proc. Zool. Soc., 1846, 1. 92. " ," Sow., "Thes. Conch.," vol. i, 1846, p. 351, pl. 70, figs. 45-47.
Tercbrutula (Terebratclla) rubicmula, Sow., Reeve, "Conch. Tcon.," xiii, 1861, pl. vii, fig. 27.
Terelratella rubicunda (Sow.), Davidson, "Recent Brach.," Traus. Linu. Soc., iv, pt. ii, 1887, p. 84, pl. 15 , figs. $15-29$.

Terelratclla rubicunda (Sow.), Suter, "Manual of N.Z. Moll.," 1913, p. 1075.
Mall.-" On the sandy beach at Waikawa, Southland, N.Z. 1912 "[=Otago].
Obs.-Five live specimens in various stages of growth were obtained at the above locality.

This species has been recorded from Dusky Bay, Otago [Hutton, 1873 (1), p. 86] ; Cook and Foveaux Straits [Davidson, 1887, p. 85] ; off Waipapa Point, 24-26 fathoms, and off Nugget Point, 15-50 fathoms [Suter, 1911, p. 284]; Chatham and Auckland Islands [Hutton, 1880, p. 177 ; Suter, 1918, p. 1076] ; and Chetworle Islands (Cook Strait), Wellington Harhour, and Foveaux Strait [Thomson, 1915 (2), p. 405].

As a fossil it is given by Ihutton [1873(2), p. 36 ; 1904, p. 478], and by Suter [1913, p. 1076], as oceuring in the New Zealand Tertiaries at Wanganui.
5. Teotlypris lenticuluris (Deshayes, 1839). Pl. I, figs. 2 A, B.

Terebratula lenticuleris, Desh., Revue Zool. Soc. Cuv., 1839, p. 359.
" " Desli., Sowerby, "Thes. Conch.," vol. i, 1846, p. 360, pl. 72, figs. 108-110.
Terebratula (H'alllucimia) lenticularis, Desh., Reeve, "Conch. Icon.," xiii, 1860, pl. 2, fig. 4. Neotlyyris lenticularis (Dcsh.), Douvillé, Bull. Soc. Géol. de France, Brd Sér., vii, 1879.
Waldlucimia lenticularis (Desh.), Davidson, " Recent Brach.," Trans. Limn. Soc., iv, pt. i, 1886, 1. 52 , pl. 9 , figs. $2-13$.

Magellania lenticularis (Desh.), Suter, "Manual of N.Z. Mollusca," 1913, p. 1074.
ILul. - Stations 90 and $96 ; 70-100$ fathoms.
Ols.-At Station 90, an imperfect dead specimen of this species was obtained, consisting of the dorsal and ventral valves firmly articulaterl together. Both the valves are overgrown, inside and outside, with Polyzoa, Serpulie, and sessile Foraminifera (Polytreme minitcemm). The specimen (losely agrees in size ant buik with the example figured by Davidson from Foveax Strait, New Zealand [1886, pl. 9, fig. 2]. In the interior of the dorsal valve the cardinalia are very massive, and the cardinal process is very much larger than in the specimens figured ly Thomson [1915 (1),

1. 395 , fig. 2f], and Davilson [1881, pl. 9, fig. 10]. The process. in tact, fills the whole of the hinge-trongh, very murlo ats in the Tertiary fossil specimen of Veothyris uralis (Hntton) figuren by Thumsin from Castlechitt', Wangami [1915 (1), 1. 395 , fig. : 2c].

At Station ! ! f, two apical firgments (dorsal, ventral, Pl. 1, fig. 2 A, B.) of oht shells, presmably belonging to the abowe species, were also hrought up from a depth of 70 fathoms. Both the fragments are of a dirty-grey colour, and may helong to the simme perimen. In the fragment of the ventral valse the shell structure appears to be $1114 \cdot l_{1}$ altered and no punctae are visible, lout in the dorsal valve the punctie are visible in matny places. The muscular impressions in the interior are well-defined amd very deep, lout the carlinalia are not quite as massive as in the example from Station 90 . The foramen, too, of the ventral value is much smatler. The fragments are, unfortumater, too small and imperfect to give a correat itea of the size amb contom of the specimen. from their gencral appearance, and from the fact that the muscular impressions contamed a fuantity of hard grey mut, one might be justified in regarding them as possibly fossil rather tham recent.

The discoveries marle at the above two stations are of considerable interest, as the northern range of λ. lentirularis is therehy very materially increaser. Ilitherto sperimens of this species have been recorded from more southern localities. Davidson [1886, p. 52] states that the species lives abundantly, attached to rocks in Foveaux Strait, in 15 fathoms. Hutton [1880, p. 176] and Suter [1918, p. 1074] give Conk Sitait to Stewart Island, while Suter in an earlicr Paper [1911, p. 284$]$ records it " 0 Off ($\mathrm{O}_{\text {itmarru, }}$ 35-4:3 fathoms."

In a fossil state the speries is said to oceur abmulantly in the younger 'Tertiary rocks (Wanganuian) of the North Istand of New Zealand [Huttom, 1873 (2), 1. 35 ; Dividson, 1886 , p. 52 ; aml Suter, 1913, p. 1074].
6. Magellanin or Tercturatella sp. Pl. I, fig. 7.

Ilul,--Statiom $90 ; 100$ fathoms.
Ohw. - Thee very young live examples of a Brachiopod helonging to the family Thernatellide were drealgal at this station.

The generie and specife determination of these presents nu little diftioulty owing to their small size. They are certainly to be refered to the sub-family Magellaniinæ, and not to that of Dallinine, on arount of the peculiar development of the loop.

In form the shells are longer than wide, being bondest about the middle. The beak is shont ; foramen large, indomplete ; and mettialial phates very small.

The three speedmens are milk-white in rolour, and their dimensinns. in mm., are as follows:-

Lengith

1	2	3
$4 \cdot 4$	$4 \cdot 7$	$3 \cdot 9$
$3 \cdot 6$	$4 \cdot 0$	$3 \cdot 4$

roL. in.

All three examples show incipient ventral uniplication.
The valves have a smooth surface, hut at the anterior margins of specimens No. 1 and No. 2 incipient altemate multicostation is visible as a slight crinkling of the elges of the valves. On specimen No. 2 the dorsal valve clearly shows two costre oecupying the sinns.

The shell-structure is conspicuously and evenly punctated. On the imer surface the pores are circular ; on the outer, they are slightly oval and larger than the inmer. The number of pores per square millimetre, at the middle of the ventral valve (specimen No. 1), ranges from 180 to 200 (average of ten counts $=188$).

In the interior of the dorsal valve (No. $1,3.5 \mathrm{~mm}$. long) the loop consists of two very thin deseending branches and an aseending portion in the form of a ring, which is broad below and narrower above [Pl. I, fig. 7]. Both the descending and ascending portions are united along the side of the septum, and the stage of loop-development is not unlike that designated liy Thomson [1915 (2), p. 405, fig. 6] "Magelliform" for Terelmatella rubicumla. The anterior part of the high septum, however, is produced somewhat beyond the broad base of the ring, as in the Magadiform stages of Terebratella dorsata and Neothyris lenticuluris, figured by Beecher* [1893, pl. i, figs. La and Elı].

The septum, which is extremely thin anteriorly, broadening rapidly posteriorly, reaches right back to the hinge-plates, which consist of two oblique lamellee extending from the dental socket-ridges towards the centre-line of the valve. These plates are hollowed out underneath in the direction of the apex. Between the hinge-plates is a somewhat narow depression or trough which extends forward along the upper surface of the septum as a shallow groove. In the centre of this trough, between the hingeplates, is a small clongated tubercle. The cardinal process consists of a transverse lihobed plate superimposed on the inner posterior ends of the linge-plates. The socketridges overlap the margin of the valve posteriorly as two tiny ears.

The presence of a groove along the top of the septum and of a tubercle in the hinge-trough are interesting points. I have met with the same features in juvenile stages of other species of the Mapellamim-Terelnatella group (r.!., T. dorsata). The two edges bounding the groove are distinctly connected and continous with the hingeplates; the tubercle is apparently a diseonnected part of the septum, or the begimning of a buttress to the cardinal process. In an early stage of Mayellamid flateseens the tubercle looks as if it were the posterior part of the mesial septum protruding throngh the line of joining of the linge-plates. In later stages of the same species it usnally disappears, hot occasionally in fully arlult specimens a distinctly hulbous cardinal proeess with a triangular buttress is seen extending forwand into the linge-trough. Similar features are also present in T. dorsate and $1 /$. venosce One or two of my

[^34]specimens of the last-mamed species have a type of cardinalia ahost as massive as that in speries ascribed to Parh! 1 mutures and Xenthyris.

Though the immature shells now maler diseussion were dredged along with a dead specimen of Dentharis lemtroblaris, they can searely be regarded as young forms of that sperios, owing to the fact that the latter is not known to have a multionstate stare. Seither cam they he referred to Terduratella mbicmula, as multicostation hare comes on very late in life, or not at all in some rases. There remains, therefore, only one other New Zealam form with which comparison can be marle, vi\%, Toredratelle stmyminer. In this species costation appears early ant gradually increases in intensity.

Unfortunately the smallest example of T. sempminer in my collection is one measuring $10 \cdot 7 \mathrm{~mm}$. long, ventral valve (dorsal $=9 \mathrm{~mm}$.). In this secimen the loop is apparently no further atvanced than the Magelliform stage of T. motrimder, figured ly Thomson [1915 (2), fig. $60 \mathrm{on} \mathrm{P}. \mathrm{407]} ,\mathrm{or} \mathrm{the} \mathrm{Magaselliform} \mathrm{stage} \mathrm{of} \mathrm{N}. \mathrm{lenticuluris}$, as figured by Beecher [1893, pl. i, fig. Fh]. The cardinalia are pretty much the same as in the example from Station 90, and there is also a tuberele lying in the hingetrough, lut it is mueh more elongate.

The puncte in my specimen are very evenly distributed, but are less in number than in the cxample from Station 90 , heing from 112 to 140 per square mm., about the middle of the ventral valve. It might le stated, however, that there is considerable variation in the punctation of T. wentrimen in different stages of growth. On the early (apical) parts of alult shells which I have examined, the punctat are very even, but later, as the costab become more pronomed, the puncte are deusely segregated in the mstie, leaving the furrows with considerally fewer. In one adult example cxamined I fond from 232 to 288 punctie per square $m m$. in the costa, while the furrows only contained 132 to 160 per square mm.

If the examples from Station 90 should ultimately prove to be young stages of T. semmumea. then the range of this species, like N. lenticularis, is considerably increased northwards. The most northernly locality recorded for T. songuinea appears to he Cape Colville, Auckland (some 250 mile. S.E. of Station 90), where an interesting varicty was dredged in 20 fathoms [Thomson, 1916 , p. 46, pl, i, fig. 3].

It might he stated, however, in conclusion that the advanced stage of the loop in such small specimens is suggestive of a higher form than Terebrotella. One is tempted to ascribe the shells to the well-known Australian species, Magellanim glateserns, as they resemble the young stages of that species very closely; but beyond the somewhat douhtful record of "Chatham Islands," given ly Thomson [1915 (2), p. 409], If. theresens has never heen deseribed from New Zealand waters.
*Thomsun $[1915(2), ~ p .405]$ gives 3 mm . as the length of the ventral value on which multicostation is apparent.

B.-A NTARCIIC.

LIST OF STATIONS.

Station 194. Off Oates Land, $69^{\circ} 43^{\prime} \mathrm{S} ., 163-t^{\prime}$ E., $180-200$ fathoms. Surface temprature, $29 \cdot 4$ F.
220. Off Cape Adare, mouth of Rohertson's Bay, $45-50$ fathoms. Surface temperature, 31 F .
", 294. Ross Sea, it $25^{\prime} \mathrm{S} ., 179^{\circ} 3^{\prime} \mathrm{E} ., 158$ fathoms. Surface temperature, $30 \cdot 8^{\circ} \mathrm{F}$.
", 295. Ross Sea, $73^{\circ} 51^{\prime}$ S., $17 \overbrace{}^{\circ} 57^{\prime \prime}$ E., 190 fathoms.
" 314 . 5 miles N. of Inaccessible Island, MeMurdo Sound, 222-241 fathoms. Surface tempera ture, $32 \cdot 9^{\circ} \mathrm{F}$.
,, 316. Off Cilacier Tongne, about 8 miles N. of Hut Point, McMurdo Sound, 190-250 fathoms. Temperature at 165 fathoms, $30 \cdot 5^{\circ} \mathrm{F}$.
338. 713^{\prime} S., $16 t^{\prime} 18^{\prime} \mathrm{E} ., 207$ fathoms.
,. $339.77^{\circ} 5^{\prime} \mathrm{S} ., 164^{\circ} 17^{\prime} \mathrm{E} ., 140$ fathoms.
" 340.7656^{\prime} S., $164^{\circ} 12^{\prime}$ L., 160 fathoms. Temperature near Stations $338-310$ at 110 fathoms, $28.4^{\circ} \mathrm{F}$.
,, 348. Off Barne Glacier, MeMurdo Sound, 200 fathoms.
" $355.77^{\circ} 46^{\prime} \mathrm{S} ., 166^{\circ} 8^{\prime}$ E., 300 fathoms. Surface temperature, $32 \cdot 6 \mathrm{~F}$.
" 356. Off Granite Harbour, entrance to McMurdo Sound, 50 fathoms. Surface temperature, 31^{\wedge} F.

> Compsothyris,* !en. now.

Shell resembling Frieleit, Dall, from which it differs in type of cardinalia and folding. The cardinalia consist of two divergent sorket-ridges mited to the crural bases ly transversely striated curved lamelle. From the immer sides of the crural bases two eurved lamelle extend to the floor of the vatve, where they become fused to a posterior hifuration of a short but well-defined mesial septrm. Cruma short, almuptly truncate or slightly denticulate. No ohvious cartinal process. Dental plates and a pedicle-collar present in ventral valve. Surface of valves with hair-like radii. Folding donsally miplicate. Genotype: Rhynchmella rarovitzo, Joubin.

Rhıuchonellu racovitze, Joubin, "Résultats du Voyage du S.Y. Belgiea en 1897-1898-1899"; Zoologie: " Brachiopodes," Anvers, 1901, p. 5, pl. i, figs. 1-4.
Rhyuchonella gerlachei, Joubin. ILid., p. 7, pl. i, figs. 5-9; pl. ii, fig. 10.
? Hemithyris sp., Jackson, "The Brachiopoda of the Senttish National Antaretic Experlition." Trans. Roy. Sor. Etlind., rol. 48, pt. ii, 1912, p. 370.
Mal.-Stations 194 and 316; 180-250 fathoms.
Ohs.-Several examples of a fincly-ribibed, thin-shelled Rhyuchonelirl were trawled at cach of the ahove stations. Nearly all are empty shells in the adult stage of growth, and only three or four half-grown examples contain the imperfect remains of the amimal. These latter are attached to fiagments of Polyzoa.

The sperifis: determination of this form has been considerably hampered by the inacessibility (owing to the European conflict) of certain type specinens preserved in the miseums at Paris and Brussels.

In general form the "Teral Nora" speeies is owately triangular, hroadest anterionly ; lateral margins merging into anterior margin whont angulation. The type of folding is domally maplicate (Pl. I, tigs. : © (i).

Both ratves are almot cqually intlated and perfectly rmmed in early stages, but become hroadly flattened anteriorly, later in growth. The surface of looth is densely worerd with fine regular hair-like rathii. Deheate growth-lines oremr at irregular intervals. These are more numerons and doser together towards the anterior border. The radii inerase in momber by interealation, and apparently extem from the nepionie portion, which is semi-elliptieal in outline with fine ineremental lines. They are variable in number in different specimens, and in different situations on the same intividual. They are plainly visible through the shell. One specimen from Station 194, on microscopic examination revealed nine radii per mm., alout the middle of the ventral ralve: ten (possibly eleven) nearer the beak; and an average of eight near the anterior margin. Other specimens from the same Station and from Station 316 yielded somewhat similar results-i.e., an average of nine radii per mm. in the middle, and higher numbers posteriorly: The spaces between the radii are unefual, and this accounts for some difference in their number per mm. The mosaie formed ly the calcareous prisms of the inner layer of the test is shown in Pl. I, fig. 10. This figure also shows two of the radii seen through the shell from the inside.

The ventral valve is pointed posteriorly, and has a short recurved beak; the pedicle-opening consists of two parts-a small rounded notch, permesothyrid* in position, opening into a wide ovate delthyrimm, bounded anteriorly by distrete deltidial plates; dental plates vertical, extending from below the slightly recurved tecth backwards into the beak-cavity; pedicle-oollar very distinct, occupying quite half the length of the perlicle-opening (Pl. I, fig. 4). The lateral margins of the valve are slightly curved, passing over extremely rounded angles into a rounded anterior margin. The interion of the valve is smooth, with fairly clear traces of the muscular impressions; these are chustered together in the mombonal region a little in advane of the teeth. The contlnent adductor scans are in the middle in the form of a heart-shaped mark (a little posterior to the rentre of the group), which is almost suroumded by the flabelliform diductor impressions; behind the latter and overlapping them slightly are the sears of the ventral pedunenlar mustles.

The dorsal valve is roundly pointed posteriorly; the camlinalia "onsist of two divergent socket-ridges, bomming deep and tramsversely grooved dental sockets: arual hases well marked, extemding as ridges ohliquely from the apex, and attached to the inner sides of the socketridges by means of transwersely striated ansed lamellae. which we grooed alongside the erumal hase ridges ; crum short, abruptly trumated, or very slightly denticulated, at the extremities. (On their posterior inner sides the crural hases send down strongly rurved lamellie, which are fused to a posterior

[^35]bifuration of a mesial septum (Pl. I, fig. 5). Anterior to this bifureation the septum is shapedged and well-tefined, and extends forward to ahout a thim the length of the valve, separating the forr distinct sars of the adductor museles, of which the two anterion are the largest. In some eases these muscle-scars extend slightly in front of the end of the spptum. There is 10 obvious cardinal process, the diductor muscles heing attached to the posterior parts of the crural hases and socket-ridges. In neither valve is there any trace of the furows for the pallial sinuses.

The foregoing general description is applicable to the majority of the "Terra Nova" specimens. I few others show certain deviations. In young shells the form is more regularly wate (much as in Macandretia cranium), and the folding is incipient (Pl. 1, fig. 6). An old thick-shelled example from Station 194 shows considerable caleitication in the umbonal cavity of the ventral valve, with nearly complete obsolescence of the dental plates and pedicle-collar.* In the dorsal valve of this specimen the cardinalia are similarly thirkened, and the posterior imer sides of the erural hases almost meet in the median line over the septum, leaving, however, a tiny avity helow the apex.

The valves of several of the shells are pierced with small circular holes, doubtless owing to attacks by carnivorous gastropods; others are partly overgrown by Polyzoa. Many present a chrious feature when viewed under the microscope, owing to the fact that the external surface of the shell is undermined by a network of fine strings connected with enlargements which are not uniform in shape (Pl. I, fig. 9). The nature of the organisms which form these hurows is not certain.

In 1901, Joubin destribed, as two new species, some thin-shelled, radially-striated Rhynehonellids which were dredged by the "Belgica" Experlition in 192 to 275 fathoms in the Western Antarctic. The first species, to which he gave the name of Rilynchonelle pororitze, was founded upon a single specimen containing the animal, and a fragment of a veutral valve showing interior details. The second species (R. grotachei) was based upon two small examples showing obvious juvenile features. In my opinion it possesses no definite characters which separate it from R. recovitze, and I feel convinced that it camot be regarded as more than a young stage of that species.

The types of the above are in the Brussels Museum, and are, therefore, not available for study; but from the excellent descriptions and figures given by Joubin [1901] it is evident that the "Terra Nova" Rhynthonellid is identical with R. rucncitze. The diseovery of this species in the Ross Sea area thus extends the range very considerably.

The rescmblance of this species to Rhynchonetle cornen (Fisther MS.), Davidson, is very striking. This fact was noted by Joubin, but as he was only in possession of one

[^36]perfect adnlt specimen he was mable to appreciate fully the remarkahle likeness of the two forms. Jonloin's type specimen [1901, pl. i, figs. 1-3] is owoid in form, with the ralves regularly rounded, about equally inthated, amd posscosing no flattened part such as is present in l. comen and in some of the "Terrat Nova" examples. In R. commen the two lateral angles are very much arcentuated, which gives the shell a more trimgular appearance. One of the "Terra Nova" examples (Pl. I, fig. 3 F) agrees exactly in size and form with Joulin's type, and shows the same features as those described, hat there are others which show that this species is sulject to considerable variation in outline and in the amome of flattening of the valves (Pl. I, figs. 3. 6).

In emphasizing the difference between $l d$. comen and $l i$. rumetiter doulnin remarks:"Le contour de la commissure palléale est tres différent dans les deux espéces. Antéricurement la valve supéricure [$=$ dorsal] présente unc échancrure médiane très nette, it laquelle correspond une sallie du bord de la vallve inférieure [= ventral] yni vient s'y engager. Dans R. cornen c'est le contraire; l'angle rentrant est sur la valve inféricure, et l'angle saillant sur la valve supericure," which means that in hiss opinion R. cornen is ventrally uniplicate and R. racortace dorsally miplicate. The latter is a chanacteristic feature of Phynchonellids.

I have been mahle to obtain a specimen of R. cormet in order to verify the above statement, but the illustrations given hy Davidson [1887, pl. 25, figs. 2h and 3h] wonld seem to indicate that this species is incipiently dorsally miplicate, though in his description he distinctly states that the shell is "without either fold or sims." The figures given hy Fischer and Oehlert [1891, pl. i.] show a lenticular condition with no folding. In the text they state:-"commissure palléale droite, parfois légirement incurvée au front."

Another point of difference between the Antaretie species and l. corned is the fant that the longitudinal strie in the former are finer and somewhat more nmmerous than in the latter.

 eleven radii per mm. (R. gerluchei, on an average, nine per mm.) at the calge of the valve. Is stated previously, the "Terra Nuva" examples show eight to ten (posisibly eleven) radii per mun. 'They are clearly visible even over the unlonal region, while in l. cormen, apeording to Jonlin,' they are not distingmishalde mutil further away from the beak. Possilly it will he fonnd that h. cornen will exhilnt similar differences in the number of radii present on the shell.

Regarling interion details it is diffient for a comparison to he marle in the absenee of a specimen of h. cormed. The deseriptions of the cardinalia furnished ley lividson [1887] and Fiselier and Oehlert [1891] are nut sutticiently clear as to whether the mesial septum of the dorsal valve is fused with the eardinalia, thongh from the illustration giren ly Daridson [1887, pl. 25 , fig. 4] one might assume that it was
connected at the apex. It is stated by Fischer and Oehlert [1891, p. 15] that the septum commences at the summit of the valve. Their figures [1891, pl. i, figs. 2p and $21]$ show no trace of posterior bifurcation; nor does that of Davidson.

With the above exception the interior details appear, from the figures, to he similar in the two species ; the outer surfaee of the shell, too, in R. cornea is liable to be undermined in the same peculiar mamer as in the Antaretic species (compare Pl. I, fig. 9, with Fischer and Ochlert, 1891, pl. i, fig. 2 u).

The geographical range of R. cornea is the Lusitanian Sub-region of the Atlantic Ucean, from the English Chanel to the Soudanese Coast of Africa (Cape Bojador) ; the range in depth is from 383 to 1,109 fathoms* ; the bottom temperature varies between 41° and $32^{\circ} \mathrm{F}$. [F. and O., 1891, P. 118].

The "Terra Nova" Rhynchonellid also presents a remarkable superfieial resemblance to Frielein halli, Dall, from the N.W. coast of America. A close comparison, however, of specimens with Dall's description [1895, pp. 713-716] and with two examples of H. lulli reeently received, shows structural differences which prove them to be not only specifically, but generically, distinct. The most important difference lies in the construction of the cardinalia. In F. halli the latter are characterised by the presence of a platform \dagger consisting of two hinge-plates, excavate below, extending outward from the inmer sides of the ermal bases and miting in the median line over the septum. This platform is solidly attached to the septum hy means of a widened surface, \ddagger which supports part of each lamina as well as their line of junction. An impressed mesial line is present on the upper surface of the platform, which is also indented mesially and overhangs the septum in front. A cardinal process is sometimes developed in old age. (Compare Pl. I, figss. 5 ant S.)

The outer surface of r. hulli is radially striated, but owing to the high polish the striæ are very indistinct. Owing to their fineness I have been unable to obtain a satisfactory photograph for comparison with the "Terra Nova" species.
F. lulli is evidently a mon-plicate species subject to accidental distorsion which gives the shell a Biluhtes appearance. It is also sulject to attacks of loring organisms similar to those of the Antarctic species. It ranges from latitude 47°, off Grays Inarhour, Washington, to the Pacifie Ocean, off San Diego, C'alifornia; 559 to 984 fathoms; lottom temperature, 38° to $39^{\circ} \mathrm{F}$.

Another species hearing some external likeness to the alove forms is Memithyris waneana, Dall, from the Gulf of Panama (1,175 fathoms; hottom temperature, $36 \cdot 8^{\circ} \mathrm{F}$.), but, aceording to the deseription, the deltidial lameltie are olsolete. The presence or

[^37]absenee of dental plates is also not imbicated. [See Dall, 1895, pp. 717-8, pl. 31, figs. 5-fi].

In all probability the Memithyris. sp., Aredged in 1,410 fathoms, off Coats Land, Antarction, ly the "Sontia" Expedition [Iackson, 1912] is referable to Comp.soth!pris raroritar, lout the imperfert mature of the material renders a decision on this point out of the question. The mosaic formed ly the prisms of the test is apparently larger.

The presene in Compsothyris mewitzo and brieloin hulli of features chatacteristic: of labeozoin genma of the Rhymbomellidie is partioularly noteworthy. As in C'emmentachin, the apex of the rentral valve is eneroached upen and cut into by the elliptical foramen, though the deltidial plates in Compsothyris am Frieleid are never completely united so ats to elose the lower part of the aperture. Somewhat similar conditions are also present in Rlamblutrotn. In like manner the intimate comexion in Comprothyris and Friflein of the mesial septum of the dorsal valve with the hingeprocesses recalls Cimmerotuchio, in which the crural lamine are united ley a deposit of callus to a cup-like expansion of the septum. In 6% raroritze this feature is equivalent to the part marked " d " (rostral chamber) in fig. 591C. of Comorotrechice compregata (Comrad) figured by Schuchert in Zittel [1913, p. 397].
8. Liothupella untrartica (Blochmamn, 1906).

Liothyrinu enterctica, Blochmann, Zool. Anzeiger, Bd. xxx, 1906, p. 692.
," ", Blochmann, Zeitschr. f. wiss. Zool., Bd. 90, 1908, p. 614.
", $"$ Blochmann : Eichler, " Die Brach. der Deutsch. S.-P. Exped., 1901-03," xii, Zoul. iv, 1911 , p. 89 , pl. 42, figs. 1-4; pl. 43, figs. 13, 19, 20 ; pl. 44, figs. 25-34.
Huh.-Statioms 220 ?, 294, 314, 316, 338, 339, 340, 355, 356; 50-300 fathoms.
Ols.-- In some of the above stations this species occurced in fair numbers (Station 855 -the deepest-yielded some eighty or ninety sperimens), but in others only one or two examples were dredged.

Many of the shells olitained are in a dead condition. Several have been bored by carmivorous gastropols, and one or two lave the outer layer of the shell undermined, as in C'mpothgrix moovitor. Some of the examples, from Stations 316, 338, and 355 espectially, are studded with the tests of Foraminifera, resembling Discorbima, and most of the living examples are attached to fragments of Polyzoa. In one or two cases individuals show irregularities of growth due to accident.

The almondance of individuals, in some cases, seems to be an indication of farourable conditions for existence.

The dimensions of the specimens are, in geneal, larger than those oltaned from the type station in the Eastern Antarctic. Some of the largest, from Station 355, are detailed below:

Lengtl , in mm.	$17 \cdot 1$	$17 \cdot 0$	16.8	$15 \cdot 7$	$15 \cdot 5$	$14 \cdot 6$	$14 \cdot 0$	$12 \cdot 8$
Width	$12 \cdot 8$	13.3	$12 \cdot 5$	$13 \cdot 1$	$12 \cdot 0$	$12 \cdot 3$	11.5	$10 \cdot 6$
Thickness .,	$8 \cdot 5$	$9 \cdot 5$	9. 0	$8 \cdot 0$	8.4	$7 \cdot 1$	$6 \cdot 7$	$6 \cdot 5$

The largest specimens in the collection are, one example from Station 316: Leugth, 21 ; wilth, 15 ; thiekness, 11.5 mm ., and one from Station 338 : Length, $21 \cdot 8$; wilth, $14 \cdot 7$; thickness, $11 \cdot 7 \mathrm{~mm}$. Both are elongate-oval in ontline, and are like the smaller specimen figured by Eichler [1911, pl. 42, figs. \& a-h1]. The example from Station 316 has much coarser growth-lines.

The general characters of this species have been described in detail by Blochmann and Eirhler, who state that it belongs to the gromp of Liothyrinæ characterised by the presence of certain spicules at the bases of the cirri (Cirrensockeln).

From a sturly of the "Terra Nova" specimeus I am able to add some further particulars.

In general outline the shell is pyriform, longer than broad, rearhing its greatest breadth a little in front of the middle. In a few eases the outline is more ovate. Both valves are ahout equally inflated, and on their onter surfaee very delicate ineremental lines are visible. In addition the surface is ornamented by extremely fine radial lines, visible when the shell is held in a partienlar position. These lines, or strix, are not mentioned by Bloelmann and Eichled; they are appareutly coincident with the radial arrangement of the puncta.

In the majority of the examples the anterior commissure forms a broally Hattened arch dorsalwards, the shells being incipiently miplicate. A few sperimens-not neeessarily the largest-are more dorsally uniplicate.

The beak is short with rounded flanks; the pedicle-eollar is distinct bent short; and there is a labiate prolongation of the rim of the foramen extending in some specimens over the conjoined deltidial plates.

The interion of the dorsal valve possesses a thin, thead-like, mesial septum, hut there are no indieations in this valve, nor in the ventral valve, of the radiating grooves which serve for the attachment of the pallial simuses.

In type of cardinalia and leachidium it is closely allied to L. wece, and, like that species, it pertains to the genns Liothyrella and not to Linthymimu.

The test is thin and fimely punctate. In the specimens selected for examination (from Station 339) the number of puncta per square millimetre ranges from 90 to 128 , on the inside of the ventral valve, about the middle. Eichler [1911] gives the range from 120 to 150 per square mm. The shell-structure is exactly like that figured by Eichler [1911, pl. 43, fig. 20].

The occurrence of this species in the Ross Sea area is of great interest, as it was hitherto only known from the type station in the Eastern Antarctic-Kaiser Willelm II. Land, 210 fathoms ("Ganss" Expedition). It will probably be found to have a circumpolar distribution. Liothyrina blochmami, Alescribed loy myself in 1912 [Jackson, 1912, p. 378, pl. i, figs. 4-8] from speeimens dredged by the "Sontia" Experlition, in 1,410 fathoms, off Coats Laml, Antaretica, presents some slight resemblance to L. ontwetien. It possesses a slight mesial septum in the dorsal valve; the surface of the valves is microscopically striated; and it has a short peticle-collar. It differs, however,
in its larger size, fewer punctie per square millinetre, and, to some extent, in its spicnlation. In addition to the foregoing, L. Horlommmi is easily distingnished from L. anteretica, as well as from 2 . ura from the Magellanie region, by the peculiar disposition of the limathidimm. This is of the L. sphmoilen type, with parallel descending lnanches and short, hroad, transverse band, while in L. centoretied and L. won the branches diverge and the transerse band is long and narrow-in L. mell it is longer perhaps thin in any other recent species. A full diseussion of these points is given in my paper in the Geatrefieal Jfe!nzine for Felnuary, 1918.
9. Mrefellarnie, fireyilis, Smith, 1907.

Magellenia frotilis, Smith. Nat. Hist. of National Antarct. Experl. ("1)iscovery "), 1901-04,以ol. ii, Zool., London, 1907, p. 1, figs. 1-2.
Magellunit fragilis, Smith : Eichler, " Die Brach. der Deutsch. S.-P. Rxped., 1901-03," xii, Zool. iv, 1911, p. 93.

Ilell.-Stations 316, 338, 339, and 355; 140-300 fathoms.
Ohs.-This species was first made known to science in 1907 loy the late Edgar A. Smith (op. cit.), who founded the speries on a small number of more or less damaged sperimens obtained ly the "Discovery" Expedition at Agassiz Island, 300 fathoms, mur, off the ice-barrier. Smith, however, only gives extermal views of the species, and his description of the internal features is somewhat incomplete ; details of the cardinalia and the number of puncte per square millimetre being wanting.

The specimens obtained by the "Terat Nova" Expedition at the above four stations are few in number. They are not so large as the "Discovery" examples, but appear to possess the characters of this species. A few of the examples from Station 355 are euriously malformed and notehed around the periphery, cansed through some injury to the mantle during growth.

Through the kimdness of the British Museum authorities I have had the loan of one of the original specincns upon which the species was fommed by Smith, and in the following pages I have added rertain details concerning this example, as it shows more ablutt features than any of the "Terra Nova" specimens.

In general outline the "Discovery" sperimen ($38 \times 30 \cdot 3 \mathrm{~mm}$.) is almost pentagonal with a trunated front. The early stages, however, as demonstrated ly the growth-lines on the shell, show it to have been rounded during the neanic and early ephehic perionds of growth. This is confirmed by the "Terra Nova" examples. It possesses monlerate growth-lines, which are well spaced orer the major portion of the shell, hut are somewhat crowded together at the anterion and lateral margins. The shell appears to be lenticular as regards type of fohling, lout there is some slight indication of incipient rentral miplication.

The beak, which possesses very much sulndned ridges, is truncated by a rather large cirmber fomanen, loodered anterionly loy conjoined deltidial phates. The formmen is situated ahmost entirely hehind the ridges, and is therefore permesothyrid in
position. There is a slight psendopedicle-collar, i.e., a thickened rim inside the foramen for muscular attachment.

Internally both vilves are smooth, and no dental plates are present. In the dorsal valve the cardinalia consist of two divergent and ligh-standing socket-ridges with hinge-plates extending inwards and meeting in the median line over the septum. The crural bases are slightly discernible on the surfice of the plates and are separated from the socket-ridges hy slight intervals. The imer hinge-plates descend sharply from the crumal bases to the septum, forming a rather dcep trough. A bulbous cardinal process is present at the apex of the trough. The mesial septum is sharp-cdged and extends to rather more than a third the length of the valve. Compared with the typical Magellaniform type of cardinalia, as displayed hy . I/ flovescens, the chief difference lies in the steepuess of the inner hinge-plates. In consequence of this the mesial septum is not as high as in M. flueseens.

In somewhat younger specimens in the "Terra Nova" collection the cardinal process is not so large and prominent, and the hinge-plates are much thimer. Each hinge-plate, too, is clearly divided into two parts ly the well-defined crural bases which run independently from the umbo. The type of cardinalia here recalls that seen in several Dallinoid forms.

In the "Discovery" and "Terra Nova" examples the descending branches of the loop do not curve outwards as much as in M. flowesens.

The number of punctie per square millimetre in the "Discovery" specimen is 60 ; in examples from Station 355, 50-65. On the external surface the punctie in the latter specimens are slightly oval; on the inside they are rounder and measure $45-55 \times 70-80 \mu$. They are arranged in transverse rows. more or less parallel to the contom of the shell.

Up to the present this species is only known anthentically from the neighbourhood of the type-locality. Eichler [1911, p. 93] refers to a specimen found among the material dredged lyy the Swedish Sonth Polar Experlition, in the Magellanic region, as in all probalility possessing affinities with J. framilis. The size of the puncta, however, seems to suggest that it may he an entirely new species of Margellamia [cf. Blochnam, 1912, 1. 9, pl. i, fig. 15].

Smith, in describing this species, remarks npon its close alliance with the Patagonian Mryellumin venos, of Solander, and more esperially with the M. kerquelenensis of Davidson. In fact, it was with some hesitation that he ventured to separate it specifically. It is, however, clearly distinct, in my opinion, from either of these species, both externally and internally. From the latter speries it differs entirely in type of cardinalia. Judging from specimens in my collection, dredged off Kerguelen Island in 150 fathoms, IV. kerguelenensis appears to possess a peeuliar type of cardinalia, which is somewhat different from that of typical Mafellaniar and Terebrutellu. It has a thickencd septum, apparently extending to the apex, slight linge-plates desemeling to a callus-deposit in the umbonal areat, and thick
socket-ridges, on the inner sides of which are large sears formed by the dorsal adjustor muscles. A hilohed cardinal process is present at the apex, and is supported anterionly by a bublous prolongation into the hinge-trough. I have not yet fully worked ont the relationship of this type of cardinalia, lont it is apparently Neothyod in character, and ablied to that of N. lemticularis, N. ardis, ets.
10. Whtyellomia joubini, Blochmann, 1906.

Magellania joubini, Blochmann, Zool. Anz., Bd. xxx, 1906, p. 697.
Mayellania sulcutu, Smith, Nat. Hist. of National Autaret. Expel. (" Diseovery "), 1901-04, vol. ii, Zoology, London, 1907, figs. :3-4.
Maypllınia joubini, Blochmann, Zeitschr. f. wiss. Kool., Bl. 90, 1908, p. 609.
" $"$ Bhehmann : Eichler, "Die Brach. der Deutsch. S.-P. Exped., 1901-03," xii, Zool. iv, 1911 , p. 91, 11. 42, figs. 5-6; pl. 43, figs. $17-18$; pl. 44, figs. 23-24.
Campuges joubini (Blochmann): Hedley, Zool. Results, "Enleavour," 1909-1910, Sydney, Dec. 1911, p. 114.

Muh-Stations 194, $294,395,314,3[6,338,339,340,: 348,355 ; 140-300$ fathoms.

Ohs.-At some of the aloove stations only single examples of this species were dredged; at others they were more numerons. Station 339 yich yed the largest number. The majority of the specimens consist of immature shehs.

The shells in the young stages are milk-white and almost transparent, exhibiting the mosenlar attarhments and pallial sinuses quite clearly through the test; in the older examples the shells are yellowish, or horn-colonred, and the test is much thicker, especially in the umbonal region.

The largest specimen in the collection comes from Station 338. Its dimensions are as follows:- - Length, $38 \cdot 7$; width, $26 \cdot 3$; thickiness, $27 \cdot 1 \mathrm{~mm}$. It is evidently a gerontic individual, and is murd larger than any ohtained by the "Discovery" Expedition (largest $=$ Length, 28; width, 23 ; thickness, 17 mm.), or loy the "Ganss" Expedition (largest $=$ Length, 15 ; width, $12 \cdot 5$; thickness, $7 \cdot 5$ mm.).

The alove specimen agrees ahost exactly with the exmmple figured by sinith (o\%. cit., figs. 3-4*) under the name . W. sulcata. Its conterur is somewhat pentagonat, the shell being widest about the middle. The onter surfine is firee from extrameous growths with the exeption of a few Formmifera. On the umbonal portions the strong Chatacteristic growth-lines are moderately spaced and rombled; on the middle of the valves the growth-lines are eloser together, and somewhat pointed anterionly; on the outer parts they are densely crowded together anterionly and laterally, increasing the donse-ventral diameter of the shell very materially.

The ventral valve is very deep, strongly arehed, and slighty lengitndinally (arinated; the dorsal valve is much shallower, and is Hattened posteriorly. The shell shows no folding.

[^38]The beak has romoded flanks and is strongly inemrved over the umbo of the dorsal valve, almost hiding the comjoined deltidial plates. The foramen is circular and of moderate size.

The ahove and other specimens from the various Stations exhibit very elearly through the test the vascular sinuses in the pallium.

In the ventral valve there are four of these in the mesial portion ; the two imer simuses are straight aud slightly divergent ; the two outer curve slightly outwards and possess two or three simple ramifications on their exterior sides.

In the dorsal valve two simnses only are present. These pass alongside the adductor muscles, and then diverge outwards slightly. Each bears two simple ramifications on the exterior side.

In both valves the sinuses cease alnuptly some distance from the shell-margin, no ramifieations being present at the extremities.

The vascular simuses in gencral are very much simpler than those of Mayellamin renosa, figured by Fischer and Oehlert [1892, pl. 12, figs. 5, 12, 13 and 15].

The foregoing description of the external features of this species applies generally to the majority of the smaller adult specimens in the "Terra Nova" collection, and to others obtained by the "Discovery" Expedition, received on loan from the British Museum for purposes of study and comparison. In some cases the shells show a pointed front; in others, of equal size, a truncated front.

In the younger examples the shells are either quite circular or slightly pointed anteriorly. The growth-lines, too, are not so conspienous or so mumerous.

The interior of hoth valves is concentrically suleate, like the exterior. In the ventral valve the teeth are moderately strong and situated at the basal angles of the deltidial plates: there are no dental plates, lout a slight psendopedicle-collar is present.

In the dorsal valve the cardinalia and the alult loop are of the Magethomid type. The loranches of the loop, however, are not as narrow as in Mrefllumin flotescens, the ascending branches especially being hroal, hoth in arlolt and earlier stages. Eichler's figures $[1911, \mathrm{pl} .44$, tigs. $23-24]$, of a specimen in a Terehratelliform loop-stage, show this feature clearly. This character has led Hedley [1911, p. 11t] to consider the speries as lelonging to his genus Cimprayes, but 1 am malle to agree with this conclusion,* There is a thin arute mesial septum exteming fiom the centre of the valve hack to the hinge-plates, meder which it runs to the apex. The hinge-plates consist of two lamellat extending from the socket-ridges to the median line over the septum. Each plate is distinctly separable into two parts by the erual bases, which are clearly visible on the surface ruming from the momb. Unlike J/. Alarescers, the brakets (which form the dental sockets) do not reach inwards to the crumal bases. In

[^39]1F. flatereplis, crom in pre-adult stages, these buakets are always closely applien to the crual hases. 'There is a slight transwerse matimal presess at the aper of the valve.

It is not without interest to note that the type of cartinatiat in J. joulini shows and apmath to the Datliniform type, in which the division of earlo hinge-plate ly the crumal hases, and the fathere of the supporting hrackets to reacla the latter, is seen to pertertion. The hrowd waracter of the aseenting hames of the loop is akse another feature met with in Dallima and some other speries in the Datlininee.

One of the characteristic features of J. jumbini is its punctation. On the outer surface of the shell the pores are elongate-oval; on the immer they are romblor slightly wall. The pores are clase together, and their number per square millimetre ramges from 95 to 130. 'They are arranged generally in transerse rows following the contour of the growth-lines. Blochmam [1906, p. 697] and Eichler [1911, p. 92] give a range of 116 to 182 for the specimens obtained loy the "Causs" Expedition. The shell-mosaie ant puncte of the "Terra Nova" specimens are essentially as figured by Eishler [1911, pl. 4:3, fig. 17].

Merfeltemid jumbini was founted by Blochmam in 1906 upon specimens ohtained at the winter quarters of the "Gauss" Experlition, alwot 90° E., in 210 fathoms. In the following year the same species was described ly simith umber the name M. sulectu, from sperimens oltained by the "Diseovery" Expedition in 100 fathoms. at Coulman Island ($73^{\circ} 30^{\prime} \mathrm{S} .170^{\circ} \mathrm{E}$.) , and in 178 fathoms at the winter quarters ($78^{\circ} \mathrm{S} ., 164^{\circ} \mathrm{E}$.). In 1898 the "Belgica" Expedition dreaged one very young specimen and several fragments of a Brachiopol in about 275 fathoms in the Western Antarctic ($80^{\circ} \mathrm{W}$.), lut owing to the imperfect nature of the material the form was left umamed. [See Joubin, 1901, p. 11, pl. ii, figs. 16-17]. The form in question evidently belongs to Wrogellomin, ant is regarded ly Blochmam [1906, p. 697] as pertaining to lis speries, 1/. jublini. The ascription, however, is not altogether conclusive, hut is not improbable. The fragments were itrelged along with specimens of Compsothyris racoritare.

BIBLIOGRAPIIY.

Beecher, C. E.-1893. "Revision of the families of loop-learing Brachiopoda." Trans. Conn. Acad. Sei., ix, 11. 376-391.
13bcher, C. E.--1901. "Studies in Evolution." New York and Lombon.
Blochmaxn, F-1906. "Neue Brachiopoden der Valdivia- und Ganss-Expedition." Zool. Anz., xxx, 11. 690-702.

Ibochmans, F.-lyon. "Zur Systematik und Ceographischen Verbreitung der Brachiopoden." Zeitschr. f. wiss. Zool., xe, 11' $596-644$.
Elochanyy, F.-1912. "Die Brachinhelen der Schwel. Südpularexped., 1901-1903." Wiss. Ergehn. Schwed. S.-P. Experl., vi, No. 7. Stockholnı.
Blochmaxx, F.-1914. Papers and Proc. Roy. Soc. Tasmania, for 1913, 19. 112-113.
Buckman, S. S.-1910. "Antaretie Fossil Brachiopoda colleeted by the Swedish South Polar Expedition, 1901-1903." Wiss. Ergeln. Schwed. S.-P. Exper., iii, No. 7. Stockhohm.
Buckmas, s. S. -1916 . "Terminology for Foraminal Development in Terebratuloids (Brachopork)." Trans. New Zeahand Inst., xlviii. (1915), Oct. 1916, 11P. 130-132.
Dill, Wr. H.-1873. Proc. Acad. Nat. Sei. Philad., I. 190.
D.ahe, Wr. I.-1895. Proc. U.s. Nat. Mus., xvii, PIT. T13-716.
D.minson, T". 1880. "Report on the Brachiopoda dredged by H.M.S. 'Challenger' during the years 1873-1876." Zoology, vol. i, pt. 1, London.
DAvinsox, T.-1886-1888. "A Monograph of Recent Brachiopoda." Trans. Linn. Moc. Lond., Zoology (2), ir, pp. 1-248.

Eiflhler, Paul-1911. " Die Brachiopoden der Deutsch. S.-P. Exped., 1901-1903. Deutsche SiidpolarExpedition, 1901-1903, xii, Zool. iv, l'p. 86-101.
Ficiner, P., and Oehlert, D. P.-1891. "Expéd. Scimit. du 'Travailleur' et du 'Talisman,' 1880-1883," "Brachiopodes," Paris.
Fischer, P., and Oehlert, D. P.- 1892. "Mission S'cient. du Cap Horn, 1882-1883. Brachiopodes." bull. Soc. d'hist. nat. d'Autun, V. Autun.
Hall, J., and Clanee, J. M.-1895. "An Introduction to the Study of the Brachopoda, ete.," Pt. 2. (From the Feport of the State Geologist for 1893, Albany, N.Y.)
Hedley, C.-1902. Mem. Austral. Mus., iv, p. 289.
Hedley, C.-1905. Rec. Austral. Mus., vi, No. 2, p. 43.
Hedley, C.-1911. "Zool. Results of Fishing Experiments by F.I.S. 'Endeavour,' 1909-1910." Commonwealth of Australia, Dept. of Trade and Customs, Sydney, p. 114.
Hutton, F. W.-1873 (1). "Catalogue of the Marine Mollusca of New Zealand, with Jiagnoses of the Species." Colonial Museum and Geological Survey Department, pp. 85-87.
Hutron, F. W.-1873 (2). "Catalogne of the Tertiary Mollusca and Echinodermata of New Kealand, in the collection of the Colonial Muscum." Colonial Museum and Geological Survey Department, pp. 35-37.
Hutton, F. W.-1880. "Manual of the New Zealand Mollusca, etc." Colonial Museum and Gcological Survey Department. [Brachiopoda, pp. 176-178.]
Hutron, F. W.-1904. "Revision of the Tertiary Brachiopoda of New Zealand." Trans. and Proc. New Zealand Inst., xxxvii, pp. 474-481.
Jackson, J. Whfrib.-1912. "The Brachiopoda of the Scottish National Antarctic Expedition." Trans. Roy. Soc. Edinh., xlviii, pt. ii, pp. 367-390.
Jackson, J. Wilfrid.-1916. "Brachiopod Morphology: Notes and Comments on Dr. J. Allan Thomson's Papers." Geol. Maf., Decade vi, vol. iii, pp. 21-26.
Jackson, J. Wilfrid.-1918. "The New Brachiopod Genus Lioth!relle, of Thomson." Geol. Mag., Decade vi, vol. v, 1P. 78-79.
Joubin, L.-1901. "Résultats du Voyage du s.y. 'Belgica,' 1897-1899." Zool. : "Rrachiopodes." Anvers.
Scmuchert, C.-1911. "Palcogeographic and Geologic Significance of Recent Brachiopoda." Bull. Geol. Soc. America, xxii, pl. 258-275.
Achuchert, C.-1913. "Brachioporla" in Zittel, "Text-book of Palaontology," vol i, translated by C. R. Eastman, 2nd Ed., L.oudon.
Smiti, E. A.-1907. National Antarctic Expedition (" Discovery"), I901-1904. Zoology, ii, "Brachiopoda," London (British Museum).
Suter, H.-1911. "Brachioporla" in "Scientific Results of the N.Z. Government Trawling Expedition, I907." Records of the Cinterbury Museum, i, p. 284.
Suter, M.-I913. "Manual of the New Zealand Mollusca." Appendix : "Brachiopoda," Pp. 1074-1076.
Tate, R.-1899. "A Revision of the Older Tertiary Mollusca of Australia, Part i. (Class Palliobranchiata)." Traus. Roy. Soc. S. Aust., xxiii, pt. ii, p. 257.
Tenison- Woons, Rev. J. E.-1877. "On the Tertiary Deposits of Australia." Journ. and Proc. Roy. Soc. N.S. Wales, xi, 1p. Ti-79.
Thomson, J. Allan.-1915(1). "Brachiopod Genera: The Pusition of Shells with Magaselliform loups, and of Shells with Bouchardiform beak characters." 'Trans. New Zealand Inst., xlvii. (1914), July 1915 , pp. 392-403.
Thomson, J. Allan.-1915 (2). "Additions to the Knowledge of the Recent Brachiopoda of New Zealand." Op. cit., xlvii. (1914), July 1915, P1. 404-409.
Themson, J. Aldan.-191.5 (3). "The Genera of Recent and Tertiary Rhynchonellids." Geol. Mag., Decade vi, wol. ii, plp. 3×7-:39:.
Thomson, J. Aldan.-1916. "Additions to the Knowledge of the Recent and Tertiary Braehiopoda of New Zealand and Australia." Trans. New Zealand Inst., xlviii. (1915), Oct. 1916, P1. 41-4̄.

INDEX．

antarctica，Lintlyyella，15か，193－5．
Linthyrina，193．
atlanticus，Pelagonliseus， 16.
Bilubites，19？．
bluchmanni，Liothurina，179，194，195．
Camarotrechis， 193.
＂\quad cres， 198.
＂，furcifera，19R．

$$
" \text { joubini, } 197
$$

cancellata，Tereloratulina，ls3．
colata，Rhynchonella，1sl．
Compoothyris， $17 \mathrm{~T}, \mathrm{IER}, 19 \%$ ．
racovitze，1－8，1Eン，188－193， 199.
congregata，Camarotuchia， 193.
cornea，Rhynchonella，190，191， 192.
craneana，Hemithyris，19\％．
Crania lecointei， 179.
cranium，Macandrevia， 190.
cruentir，Terebratella，175，1＊3．
，＂Terebratula，1：3．3．
Dallina，1s゚－， 199.
diamantina，Macamlrevia， 179.
dülerleini，Hemithyris，lะ0．
dorsata，Terelratella， $17 \mathrm{~N}, 179,1: 6$ ．
enzenspergeri，Terebratella，179．
flavescens，Magellania，186，1s7，196，192， 199.
fragilis，Magellania， $17 \pm, 195-\overline{7}$ ．
Frieleia，1s： 193.
halli，162， 193.
fulva，Lintlyrina． $18: 3$.
furcifera，Camproce， 19 ．
gerlachei，Fhyuchonella，18x，190， 191.
halli，Frieleia，19：2， 193.
Hemithyris craneana， 192.
döderleini，1－0．
imbricata， 181.
$"$ lucida， $1 \times 0,181$.
＂，nigricanc，177，1 $\times 0-1$ ．
VOL．II．

Hemithyris pittacea， $1 \sim 0,1 心 1$.
＂PVidata，179， 181.
，＂sp．，lis， 19% ．
imbricata，Hemithyris， 1×1.
jaffachsis，Magrase liar，195．
joubini，Campages， 197.
，Migcllanis，17尺，197－9．
kerguelenensis，Magcllaniar， $179,196$.
lecointei，Cramia， 179.
lenticularis，Magellinia， 184.
．，Neothyris，178，1N：－185，186，187， 197.

Terebratula，lst．
＂，Wildheinia，list．
Liuthyrella， $183,191$.
＂antarctica，15心，193－5．
＂uva， $178,179,18:, 183,194,195$.
，＂sp．，178，181－3．
Linthyrina， $1 \times: 3,194$.
，，antaretica， 1 ！）\％．
，，blochmanni，179，194，19\％．
：fulva，le：
＂moseleyi，179．
＂sphenoidea，195．
，，vitran，18：\％．
lucida，Hemithyris，180，1sl．
Macandrevia， 183.
craninm， 190.
＂dimmantina， 179.
：，vanhüfeni，17！．
Magasella jatticensis， 19 R．
Magellania，18： $186,196,198,199$.
，，Havescerns， $186,187,196,198,199$.
＂fragilic，lis，195－7．
，，juulni，li尺，197－9．
＂，kerguclenensis， 179,196 ．
＂，lenticularis， 184.
＂sulcata，1\％心， 197.
，，renosa， 1 隹， $186,196,198$.

moseleyi，Liotlyyrina， 179.

$$
\because \text { н }
$$

"TELRRA NOVA" EXPEDITION.

Neothyris, 187.
", lenticularis, 178, 184-185, 186, 187, 197.
walis, $185,197$.
nigricams, Memithyris, 177, 180-1.
Rhynchonella, 180, 181.
,, Terebratula, 180.
notoreadensis, Liothyrella uva, var., 179, 182.
ovalis, Neothyris, $185,197$.

Pachymagas, 187.
Pelagodiscus atlanticus, 179.
Pentamerus, 192.
psittacea, Hemithyris, 180, 181.
pyxidata., Hemithyris, $179,181$.
racovitze, Compsothyris, 178, 182, 188-193, 199.
,, Rhynchonella, 178, 188, 190, 191.
Rhyuchonella, 177.
" colata, 181.
" cornea, 190, 191, 192.
" gerlachei, 188, 190, 191.
, nigricans, 180, 181.
", racovitzie, $178,188,190,191$.
" squamosa, 181.
", tubulifera, 181.
Rhynchotreta, 193.
rubicunda, Terelratella, 177, 184, 186, 187.
., Terebratula, 184.
sanguinea, Terehratella, 177, 178, 183-4, 187
Tereloratula, 183.
sphenoidea, Liothyrina, 195.
squamosa, Rhyncbonella, 181.
suleata, Magellania, 178, 197.

Terebratalia, 182
Terebratella, 18:, 186, 187, 196.

```
" cruenta, 177, 183.
", dorsata, 178, 179, 186.
", enzenspergeri, 179.
" rubicunda, 177, 184, 186, 187.
,, sanguinea, 177, 178, 183-t, 187.
," sp., 178, 185-7.
```

Terebratula cruenta, 183.
lenticularis, 184.
", nigrieans, 180.
" rubicunda, 184.
", satuguinea, 183.
Terebratulina cancellata, 183.
tubulifera, Rhyuchonella, 181.
uva, Liothyrella, $178,179,182,183,194,195$.
vanhöffeni, Macandrevia, 179.
venosa, Magellania, 178, 186, 196, 198.
vitrea, Liotlyrina, 183.

Waldheimia lenticularis, 184 .

PLATE I.

Compsotlyris racovitza. Figs. 3, 4, 5, 6, 9, 10.
Frieleia halli. Fig. 8.
Liothyrella sp. Fig. 1.
Magellania or Terelratella sp. Fig. 7.
Neothyris lenticuluris. Fig. 2.
Fig. 1.-Liotlyrella sp. Station 90. Off Three Kings Islands, New Zealand, 100 fms . A, B, rentral valves. Nat. size.
Fig. 2.-Neothyris lenticularis (Desh.). Station 96. 7 miles E. of North Cape, New Zealand, 70 fms. A, dorsal valve; B, ventral valve. Nat. size.
Fig. 3.-Compsothyris racovitze (Joubin). A, C, E, Station 316 . Otf Glacier Tonguc, McMurdo Sound, Antarctica, $190-250$ fms. B, 1), F, Station 194. Off Oates Land, Antaretica, 180-200 fms. Dorsal views showing variation in shapc. Nat. size.
Fig. 4.-Compsothyris racovitze (Joubin). Station 194, as above. Interior view of apical portion of ventral valve showing foramen, deltidial plates, pedicle-collar and dental plates. $\times 6$.
Fig. 5.-Compsothyris racocitze (Joubin). Station 194, as above. Interior view of apical portion of dorsal valve showing type of cardinalia. $\times 7$.
Fig. 6.-Compsoflyris racovitze (Joubin). A, C, E, Station 316, as above. Anterior vicws of the three specimens A, C and E of Fig. 3, showing folding and rariation in inflation of valves. Nat. size.
Fig. 7.-Magellania or Terebratella sp. Station 90. Off Three Kings Islands, New Zealand, 100 fms. Interior view of dorsal valve of specimen No. 1, showing young stage of loop (unfortunately broken) ; also crinkling of shell margin. $\times 6$.
Fig. 8.-Frieleiu lialli, Wall. California, 822 fms. (Brit. Mus. 1918.6.8.1. Presented by J. W. Jackson.) Interior view of apical portion of dorsal valve showing type of cardinalia. For comparison with Compsotlyuris racovitze, Fig. 5. $\quad \times 7$.
Fır. 9.-Compsollyris racoritzæ (Joubin). Station 194. Off Oates Land, Antarctica, 180-200 fms. View of portion of dorsal valve showing the undermining of extcrnal surface by boring organisms (see p. 190). $\times 100$.
Fig. 10.-Compsotlyris racocitze (Joulin). Station 316. Off (Xlacicr Tongue, McMurdo Sound, Antaretica, 190-250 fms. View showing shell-mosaic and two radii (seen through the shell from the insidc), about middle of ventral valve. $\times 175$.

Brit. Antarctic (Terra Nova) Exped. 1910.
Brit Mus. (Nat Hist)
Zoology, Vol II.
Brachiopoda, Pl. l.

1.

3

6

9.

2.

4

5

7

8.

10

MOLLUSCA.

PART III.-EUPTEROPODA (PTEROPODA THECOSOMATA) AND PTEROTA (PTEROPODA GYMNOSOMATA.)*

BY ANNE L. MASSY.
WITH NINE FIGURES IN THE TEXT.

Abstract

pack I.-Introduction II.-List of Species taken by the "Terra Nova" Expedition . . 205 III. List of Stations at which Pteropods were obtained . . . 206 IV.-Descriptions of Species 208 V.-List of References 227

Index 229

1.--INTRODUCTION.

Ths collection although not containing any species new to science is nevertheless of great interest, especially from a geographical point of riew.

Vayssiere (1915 , pp. $4-\overline{5}$) has shown that the two groups of Pteropoda. those with and without shells, are in reality not closely related to one another, and, consequently, lie suggests that the names selerted ly Boas for the two groups shall be revived, namely that of Eupteroporla for the first group and Pterota for the maked species. These names have the adrantage of separating the two gromps whilst indicating alwats the existence of the most apparent external character, the fins.

The seventeen species of Eupteropoda in this report comprise five genera and two subgenera and consist of some thirty thousand individuals. The Pterota number three species belonging to as many genera and included moter three thousand fon hombed individuals. The area explored by the "Term Nova" included sixty-six hauls in the Atlantie, at or near the surface in the region from the Bay of Biscay to off Rion de Taneiro, and representatives of looth gromps were taken in about one third of the hauls.

[^40]Amother seeme of the artivities of the "Terra Nova" oncurred in the waters around New Kealand, especially to the north of North Islamd. Aloont one hundred hands were made here at soundings of $0-10 \mathrm{~m}$, and specimens were captured in about one fourtl of these and they oecurred in about the same proportion in hauls to a depth of 50 m . In thirty-three hauls in deep water in these regions specimens oecurred in only three hauls. In the Antaretic regions from $65^{\circ} \mathrm{S}$. latitude, forty-two hauls occurred in deep water and specimens were present in nearly half of these. Tow-nettings which were made in holes in the ice between Cape Evans and Inaccessible Island, over soundings of deep water, proved to be very fruitful in the number of individuals loat poor in species. Specimens were taken in about one-third of nearly fifty hauls made (in Antaretic waters) at the surface or at moderate depths ($0-40 \mathrm{~m}$.).

Bomerie ($1913, \mathrm{p} .24$) has emphasized the fact that some arecies freyuent the surface and others seem to lelong to the deeper layers of the ocean. Many notable absences in this list helong expecially to the latter region and their absence in the Atlantic hanls is not therefore so surprising. C?ymblia promi de Blainville, four species of Thlij,torlom and other interesting I'terota, as well as Chodrure fulcate (Pfeffer) Peractis dibersu, Monterosato and Limacima helicoüdrs, Jeff., have all been fomd daring the cruises of the "Michael sars" and " Helga" to lee confined to the cold bottom water or the layers immediately above it (Bomevie, 191: : Massy, 1909, 1917). Of the present collection Curolmia meinata, Rang, Cavolimia implexa (Les.), (leorlort lyramidata (L.), Cuvierina cotumnella (Rang), Styliola subula, Q. \& (G., Crespis virgula, Rang, Limucinu retronersa (Flem.) and Pmetmoderma athonticum, Bonn. were olserved in the Atlantic, and all except the last named two species also oceurred in New Zealand waters, where their presence was angmented by Carolinit longirostris, Les., Cavolinua giblosa, Rang. Hiacrin trispimosa (Les.),* Cleadona sulcata (Pfeffer), 'Hendora compressa, Souleyet, Limacina helicina (Phipps), L. implata (d'Orls), L. Imtimö̈des (d’Orts), L. butea, Möller, Porrelis sp. and Spongiolmanchuen australis, dorls. The last-mamed speeics and L. helieme (Phipps) shared the antaretic waters with Cliome antaretict, E. A. Smith, and into these regions, L. imflatn, hitherto considered to be an exelusively warm water speries, also penetrated. That this species should have been fomm within the Antarctic ('irele and that \therefore. umbimata, Rang, should have been captured so firl from the equator as south of South Island, New Zealaml, constitute two of the most remarkal)le features of the present collection. As regarls the vertical range of the different species,
 L. butimä̈des, L. retroversa, and P. athonticum were all found only at or near the surface.
 the sufface and rarely at $80-100 \mathrm{~m}$. L. baleo was taken on three occasions at soundings of $20-30 \mathrm{~m}$. L. helicina and $1 \therefore$. \quad atarction, which were the only species except L. implatn momming in large shoals, were taken at varions depths firm the surface to

600 m . Poth speries were fomm in abmatane near the surfate and also in deep water
 specmens which are referred with some douht to this species. The fise species taken ly the "Discovery" Expedition are all represented here.

1 am indebted to my wolleagne Mr. Fiaran for one of the drawings, and most of the others have heen dome he Miss L: Bames of the National Xiusemm. Muhlin.

II.- LIST OF SPECIES TAKEN BY THE "TERRA NOVA" EXPEDITION.

Eupteroporla (Pteroporda Thecosomata).

1. C'arolinin longirostris, Les.
$\because . \quad$.. gillowa, Rang.
2. ., meinuta, Rang.
3. :, implexu (les.).
4. .. sp.
5. Diacria trispimest (Les.).
6. ('leoctoral p!ypumidatu (L.).
7. ., sulcalu (Pfetfer).
8. ,, compressa, Souleyet.
9. Cucierina columnelle (Rang).
10. Stylicles subula, Q. \& (i).

1®. Cireseis virgula, Rang.
13. Limmoine luticima (Phipps).
14. ." impletu (d) (Orl).).
15. ,. bulimë̈des ($\mathrm{d}^{\prime} \mathrm{O}_{\mathrm{r}}^{\mathrm{H}} \mathrm{h}$.).

1 (6. .. buter, Moller.
17. .. retrorersat (Flem.).
18. Permelis sp.

Pterota (Pteropoda (iymmosomata).

1. ('loum untaretica, E. 1. Smith.
\because. P'neumoderma utlentirum, Bonnevie.

III.-LIST OF STATIONS AT WHICH PTEROPODS WERE OBTAINED.

North Athantic:

Station 2. Jnme $18,1910,46^{\circ} 21^{\prime} \mathrm{N} ., 11^{\circ} 45^{\prime} \mathrm{W}$. , surface, $5.30-6.30 \mathrm{p} . \mathrm{m}$.
Gouth Atlantic (Equator to neimbourhood (hf Rio de Janifio).
Station 39. April $26 / \pm 7,1913$, 6 miles off Rio de Jineiro, 2 metres, 11 p.m.-1.30 a.m.

Nortif Atlavtie.
Station 61. May $17,1913,2^{\circ} \mathrm{N} ., 24^{\circ} 45^{\prime} \mathrm{W} .$, surface, $1-1.30 \mathrm{a} . \mathrm{m}$.

$$
\begin{array}{ccccccc}
" & 62 . & " & 18, & 4 & 4^{\circ} 50^{\prime} \mathrm{N} ., 24^{\circ} \mathrm{W} ., \\
" & 67 . & " & 27, & " & 25 & 35^{\prime} \mathrm{N} ., 34 \\
\hline
\end{array} 0^{\prime} \mathrm{W} ., \text { surface, } 1.30-2 \text { a.m. }
$$

New Zealand (off north end of).

．．221．Jan．2，191：2，North of Orygalski Glacier Tongue，Terra Nova Bay，lU metres， $1-2$ p．m．

．．224．Mar．9，，， 60 miles E．of Cape Adare， 1 metre， $7-9$ 1．1n．

Nibw／abland ro Antabchic Ubele．

．，238．．，ご，．．52 11＇S．，I67 25 E．， 30 metres， $10-10.30$ a．m

， $256 . \quad, \quad 21, \quad, 2438^{\prime} \mathrm{s} ., 17624^{\prime} W ., 20$ metres， $10 \mathrm{p} . \mathrm{m}$ ．

ANTarctic（Neighbourhood of hoss Ses）．
Station 269．Dec．28，1912，6s＇ 37^{\prime} s．， $16614^{\prime} W^{\prime}$ ，surface，6－8 1．m．
 27－2．Jan． $1,1913,7133^{\prime} s ., 16601^{\prime} \mathrm{W} ., 80$ metres， 4 p．m． 274．，$\quad 3, \quad, \quad$ il $29^{\prime} \mathrm{S} ., 1660^{\prime} \mathrm{W}$ ．， 80 metres， 9 a．m．－noon． 275．，$\quad 3, \quad ., \quad 7 I^{\circ} 29^{\prime} \mathrm{S} ., 166 \mathrm{u}^{\prime} \mathrm{W} ., 160$ metres， $1-5 \mathrm{p}$ p．m．
，284．， $8, \quad, \quad 71^{\circ} 49^{\prime} \mathrm{S} ., 167^{\circ} 32^{\prime} \mathbb{W}^{\prime} ., 80$ metres， $5.15-7.30$ p．11．

New Zealand to Antarctic Cirelle．
Station 298．Feb．1，1913， 6311^{\prime} S．， $158^{\circ} 52^{\prime}$ E．， 12 metres， 8.30 p．m．
Antarctic（McDIurdo Sound，Ross Sea）．
Station 317．June 7－Oet．14，1911，Hole in iee between Cape Evans and Inaccessible Island，10－20 metres．＊

```
,, 32:%. Dee. 3, 1911, Hole in ice between Cape Evans and Inaccessible Island, }10\mathrm{ metres*
                                    (tow-net down a month).
    326. Mar. 15, ,, Cape Evans and immediate neighbourhood, various cracks and holes
                                    through the ice, 4-40 metres.
    333. Jan. 17, 1912, %T 2. S., 165 22' E., 80 metres, 1-5 is.11.
    336. " 20, ,, Near (iranite Harbmar, 10 metres, `2 p.m.
    337. ,. 22, „, Ofl Cape Bird Peninsula, s0 metres, 10.30 a.m.-nom.
    342. ,, 31, ,, Orl Cape loyrls, 0-3.0) metres, 4 p.m.
    343. Feb. 1, ,, Off Cape lioyds, 0-600 metres, noon.
    344. ,, 1, ,, Off Cape Royds, 0-400 metres, 3 p.m.
    345. , , 2, ,, McNlurdo Sound, 0-500 metres, 8.30-9.30 a.m.
    346. ,, 3, ," McNurdo Sound, 0-450 metres, 9 a.m.-5 p.m.
    350. Mar. 4, „ Ofl Gbacier Tongue, d50 metres, ב-4 p.m
    351 Apr. 26-June T, 191こ, Hole in ice between Cape Bwams amm Inaccessible Island, O05
                metres.
    354. Jan. -0, 1913, 7T +6'太., 166 8' E., 12 metres, 11 a.m.-- p,m.
    357. ,, 2.3, ,, 7T 1's., 163 2.2' E., 12 metres, 2-6 p.m.
```

[^41]
IV.-DESCRIPTIONS OF SPECIES.

EUPTEROPODA.

```
                        Family CA\OLINIHANE.
    Genus CAVOLINIA, Giveni, 1783-Alildgaaml, 1791.
1. (incolimia lom!imostris (Lesmemr). Figs. 1-z.
    Myyluen longirostris, Lesueur (after Blainville), 1&2l.
        ,, limbatu, d'Orl, 1836.
    Catoliniu lomgirostris, Gray, 1850.
    Hyaluca lungirostris, Lesueur (in Sonleyet, 1852).
        ", rugulata, suuleyet, 1852.
        ,, fissirostris, Benson, 1861.
        ,, whtnsu, Sow. 1877 (in Reeve, Conchol. Icon. tome xx, fig. 8).
    Cavolinim lomirostris, P. Pelseneer, 1888; Tesch. 1904; J. Meisenheimer, 1906; A. Vayssière,
        1913, 1915.
```

New Zealand (off North end of).

Station 92, two.
, 101 , one.
,, 106 , three.
,, 107 , one.
.. 108 , one.
:, 109, fourteen.

Station 110, ten.
,, 111, one.
,, 118, one.
,. 125 , twelve.
.. 126 , forty-cight.
,, 129 , four.

Station 130, two.
,, 131 , nincteen.
,, 137 , three.
,, 138 , two.
,, 141 , two.

The above hauls were all made at or near the surfice.
This seems to be an ahost cosmopolitan species, occuring in all seas between $40^{\circ} \mathrm{N}$., and $40^{\circ} \mathrm{S}$. It has been observed exeeptionally as far as $47^{\circ} \mathrm{N}$. M. Vayssière (1915, p. 44) was unable to indicate the position of the caecum, having only had two examples for examination. On dissecting the liver away the caccum was found at the commencement of the intestine (Fig. 1), The gonad (Fig. 2, B), accessory glamds (Fig. 2, A) and copulatory organ (Fig. 2, C) are also shown here.
2. ('acolinia giblosa, Rang, 1836 (aceording to d'Orb.).

Hyrluea flaca, d’Orb., 1836.
Cavolinia giblosa, Gray, 1850.
Hyaluea gibbosa, Souleyet, 1852.
". gegenloari, Pfeffer, 1880.
" yilluasa, Boas, 1886.
Cuv. yilbosa, Tiberi, 1879 ; Locard, 1886 ; J. Tesch, 1904 ; J. Meisenheimer, 1905 and 1906 ; K. Bonnevie, 1913; A. Vayssière, 1913 and 1915.

Station 126, off North end of New Zealand, one.
This is a warm water speries avoiding the immediate neighbourhood of the equator (Buas 188f, 'Teseh, 1904, Meisenheimer, 1905).
 alimentary canal, $\times 20$: a., anus: c., caecum ; g., gizzard ; i., intestine; oes., vesophagus.

Mistrilution.-Atlantic: 27 N. to $41^{\circ} 40^{\prime}$ N. (Bomevie, $191: 3$, Vayssière, 1915). Sargasso Soa (Schiemenz, 1906). $33^{\circ} \mathrm{S} .16^{\circ} \mathrm{E}$. to $37^{\circ} \mathrm{S} . .17^{\circ} \mathrm{K}$. and $10^{\circ} \mathrm{S} .97^{\circ} \mathrm{E}$. to 27° S. 91° E. (Meisenhemer, 1905). Mediterranean, off Manleira, Sokohama to Sambich Islands, Itclbmme tu Sylney, ete. (Pelsenem: 1887).
3. C'rnolimin uncimetu (Rang).

Hyctuet umeinate, Pang, 18:36.
Carolinin uncinatn, Gray, $1 \approx 50$.
Hyalaea uncinatiformis, Pfeffer, 1sso.
Cinolinia uncinuta, Pelseneer, 1888.
Station 50, N.E. of Rio de Janeiro, two.
Station 2:36, S. of New Zabland. one.
This is an essentially wam water speries, and the sperimen from the Gonth of New Zealand apparently constitutes a record as regards the distance from the eynator.

Instrilution.-Atlantic from $41^{\circ} \mathrm{N} .$, to $43^{\circ} \mathrm{S}$. Indian Ocean from Bay of Bengal to $40^{\circ} \mathrm{S}$. Red Sea, sonth-east Arabia to near Austrahia, $111^{\circ} 40^{\prime} \mathrm{E}$. Pacific Orean ; Yellow Sea, China Seat, aml from $\ddot{\circ}^{\circ} 0^{\prime} N$. to $8^{\circ} 8^{\prime} S$. (Pelseneer, 1887, and Deisenheimer, 1905). $1^{\circ} 15^{\prime} \mathrm{N} .123^{\mathrm{C}} 37^{\prime} \mathrm{E}$., and near Samau Island (Tesch, 1904).
4. Cravelinia inflexa (Lesueur).

Hyalaea infle: a, Lesueur, 1812-1813.
depressa, d'Orb., 1836.
., inftext and labiata, Souleyet, 1852.
", raginellina, Cantraine, 1840 ; Gegeubaur, 1855.
", inflexa, Boas, 1886.
", (s.g. Diacria) labiuta and inflexa, Sowerby (in Reeve, Conchol. Iconica), 1877.
Cuvolinia intlexa, Tiberi, 1879 ; Locard, 1886 ; Pelseneer, 1889 ; Tesch, 1904 ; J. Meisenheimer, 1906 ; A. V'ayssière, 1913.
N.E. of Rio de Janeiro.

Station 47, three.
,, 49, three.

New Zealand (off N. end of). NewZealand (off N. end of).

Station 80, one.
.. 89 , onc.
North Atlantic. -. 92 , seven. ", 111 , one.

- 93 , tifty-sevell. 118 , two

Station 61. two.
., 62 , three.

- 9:3, hifty-seven.
,. 106 , one.
.. 107 , thirteen.

Station 109, six.
,, $\quad 110$, fourtecn.

The specimens taken at Nitation 93 were chiefly young.
Distribution.-A widely distributed species in all seas between about $40^{\circ} \mathrm{N}$., and about $40^{\circ} \mathrm{S}$. Not observed in large swarms further than $30^{\circ} \mathrm{N}$.
5. Carolinia, sp.

Station 61, N. Atlantic, one.
Station 93, off N. end of New Zealand, one.
These are young specimens, minus shells, and an attempt to isolate the radula, in the specimen from Station 61, failed. Both have the blunt end to the body rharacteristic of C. Immirostrix, Les., and C'. quadridentutu, Les. The specimen from the north of New Kealand measures :s mm. in total length and the median tooth of the ralula agrees very well with that of Vayssiere's illustration (1915, table II, fig. 51m) of the median tooth of C. Iom, inowtris, Les. It has ten denticles at each side. There are twelve rows at least in the radula although the specimen is so young. The radula of ('. quarbidentute seems to bear a close resemblance to that of C. Iongirostris and the lateral teeth of the present sperimen agree better with the figures of that tooth given hy Vayssière (op. rit., pl. 1II, fig. 52 l) of (. qumbicilentutu, Les. As, however, two examples of r . lomitiostris were taken the previous day at a few miles distance, and \therefore quadridentrita is not represented in the "Terra Nova" collection, it is more likely that this little specimen belongs to the former species. The lateral appendages are thicker in proportion to their length than in the adult specimens of C. Tomefrostris.

6．Iliueria がixpinusa（Lestum）．
Myalaea trispinosa，Lesueur（in Blainville，Dictionn．d＇Hist．Nat．tome 22，p．82）， 1824.
Hyaluea murrometa，Quoy and Gamard，1尺e2．
：，cuspuitata，Delle Chiaje，1841．
Plourpus trispinosus and mueronatus，A．and H．Adanns，1x5s．
Diurria trispinsst，Gray，1850；Tiberi， 1879 ；Lacard， 1886 ；P．Pelseneer，188s；Da！l， 1889；；．Tesch， 190 ；．J．Meisenheincr， 190.5 and 1906 ：A．Vaysiere， 1913 and 1915.

N．Atlantic（off Bay of Biscery）．
Station ：－．shell．
New Zatand（off N．cul of）．
Station 92 ，four．
．．9：3，cight．
．．101．ome．

New Zealand（off N．end of）．
Station 108．two．
．．109，three．
．， 110. onc．
，111，one．
：． $1: 30$ ，seven．

As in the case of C．lomgirostris，with which it was often associated，this was only observed at or sear the surface．With the exception of the shell taken off the Bay of Biscay，the species was only collected to the north of New Zealand．

Distributiom．－In all seas，especially the Atlautic，as far north as $55^{\circ} 183^{\prime} \mathrm{N}$ ． （Virssiere，1915，and Bomevie，1918）．

Chendion，Porron ant Lesucur， 1810.
Clio，Browne，1756，Limé， 1767.
7．Clemtor＂j’yramidutu（Linné）， 1767.
Clio pyrumiluta，Linné， 1767 ；Pelseneer＇，1887，J．Tesch， 1904 ；and Meisenheimer， 1905 and 1906.

Myalapa lanceulata，Lesueur， 1913.
，，pyramidata，dorb．， 1836.
CTportora exacuta，Gould， 1852.
，，lamreolata，Souleyet， 1852.
＂Iabiatn，Sow．（in Reeve，Conch．Tconica），187．
．，lemartinieri，Rang（in d＇Orb．Mollusques de Cuba），18tl． mattensi，Pfeffer， 1880.
prlomidata，Péron and Lesueur， 1810 ；Souleyet，1852；Tilseri，1s7！）；Poas，1886； A．Yayssière， 1913 and 1915．

Off Rio de Jancim．
Station 45 ，onc．
North Atlantic．
Station（ī，nne．
New Zealam（off N．eml off）．
Station 80，one．
sfi, mic.

The above were all small and mostly whomb shells．The batula was examinel vol．II．
in specimens from stations 80 and 89 , and the shells were compared with a large series of G. pyramiduta from the west of Ireland.
mistribution.-Cosmopolitan.
8. Cleoclura sulcutn (Pfeffer). Figs. 3-5.

Clio sulcata, Pfeffer, 1879 ; Pelseneer, 1888 ; and Eliot 1907.

Antarctic (S. of New Zealand to Ross Sea).
Station 224, six.
New Zealand to Autaretic Circle.
Station 236, twenty-two.

New Zealand to Antarctic Cirele.
Station 241, twenty.

$$
\begin{aligned}
& , \quad 267, \text { eight. } \\
& , \quad 298, \text { two. }
\end{aligned}
$$

Fig. 3.-Cleatora sulcatu (Pfeff.). A, Alimentary canal, $\times 12$; a., anus ; c., caecum ; g., gizzard; i., intestine ; oes., ocsophagus ; B, C, Entire animal without shell. B, ventral aspect, $\times 4$; a., apron; ace., accessory glands; f., fins; !., gizzard; h., heart and organ of Bojanus; m., mantle-margin; p.gl., pallial glands; r.m., retractor muscle. C, dorsal aspect, $\times 4$; c.l., ccphalic lobe; g.gl., genital gland; l., liver ; o., ova ; t., tentacles ; ucc., $f ., g ., r m .$, as in B.

The above ocenred from about 5° south of New Zealand to far within the Antaretic Circle. Only the specimens from station 298 possess shells, and these are in fragmentary condition. They are bluish, and distinctly furowed transversely, as well as having
longitudinal folds and lateral keeks. The rathla has been examined in specimens from all the hauls. The teeth (Fig. 4 B) are withont semulations, and the median tooth is narrower, and the lateral teeth possess hroader bases, than the figures of Sars (1878) and Vayssiere (1915), of the teeth of C. p! !rmmidute (L.). The jaws (Fig. 4, A) are of the

Fig. 4.-Cleodora sulcutre (Pfefl:). A, part of jaw, $x: 20 ; B$, two median and two lateral teeth of radula, $\times 2.20$.
nsual Clendore type. The fins are shorter, and have more undulating borders than in ('. Igramidutu, and the apron is proportionately higher (Fig. 3, B). The dorsal (A) and ventral (B) aspects of the accessory glands are shown in Fig. 5 A, B. The alimentary camal (Fig. 3 A) has a short caecum. The largest sperimen measures 22 mm .

A.

Fif. 5. Cleulora sulculu (Pfefl.). Accessory glands, $\times 16 ; \lambda$, dorsal aspect, s., seminal furrow; li, ventral aspect ; C, part of the gonad, $\times 220$.
in total length. The examples from stations $2: 36$ and $2+1$ consist entirely of young specimens from $4-12 \mathrm{~mm}$. in length. In some of these the retractor musele, instead of exteming 1-2 mm. heyond the end of the gonad, stretches to 4.50 mm . leyond this organ, dragging the visceral envelope with it, so that the animal presents an extra-
ordinarily attennated appearance compared with the other specimens. The radula, however, in both forms agreed with these of other hatuls.

Distribution.-Antarctic waters to $46^{\circ} \mathrm{S}$. in the Pacific, and to about $50^{\circ} \mathrm{S}$. in the Indian Ocean (Meisenheimer, 1905).
9. Cleodoru compressa, Souleyet.

Cleorora compressa, Suuleyet, 1852 ; Boas, 1886 ; A. Vayssière, 1913 and 1915.
N.E. of Rio de Janeiro.

Station 47, two.
Atlantic (Equator).
Station 58, three.
,, 61, (?) one.
New Zealamd (off N. end of).
Station 80, two.
" 85 , eight.

Only the examples from Station 93 possess shells. The specimen to whith a query is affixed is in bad condition and abont 1 mm . in length. Pfeffer, Pelseneer, Tesch and Bonnevic have considered this to be a young form of Cacoliniu (Diucria) trispinose. Specimens in the present collection, when compared with examples of T. trispinosc, present such a very different appearance to the latter species that I have had no ditficulty in taking Vayssière's view. Like him I have found that the younger specimens are proportionately more elongate in form than older examples. Adult shells of D. trispinosa measuring 10 mm . in length by 7 mm . in brearth represent very average measurements for this species. If C. rompresse were only a young form of D. trispinose it would seem very strange that it shouk still be only at the C. compressen stage when the shell measures from $8-12 \mathrm{~mm}$. in length by $4-5 \mathrm{~mm}$. in brearth (Vayssière, 1915, p. 81). About 2 mm . of the breadth given above of an adult shell of D. trispinuse is occupied by the lateral "thorns," of which 6 . compressa never exhibits any trace. In (\because compresse the apron is only about half the height of the fins and has a straight border. In D. trispinosu the apron extends above the fins and the free erge takes a semi-circular sweep. The presence of gills in the lateral ratvity, two lateral appendages, a well-developed apron and a much reduced cephatic lobe are characters of the genus Cavolinia, whilst the genus Cleorlore possesses a very distinct cephatic lobe, a small apron, and no gills or lateral appendages. The present examples have a distinct cephalic lobe and no trace of gills. The only lateral appendages are the up-turned peaks at the sides of the mantle-horter.

Distribution-Atlantic to about 39° N. (Tayssicre, 1915). Pareific (Buas, 1886). It is difficult to give more exart geographical limits on acount of so many authors having considured this to be D. trispinose. It did not ocew in any of the hauls made
by the Fisheries Branch off the west coast of Ireland (Massy, 1909), in which D. trispinose was represented by thirty takes extending to is: $7^{\prime} \mathrm{N}$.
10. (wierinu columnelle (Rang).

Meodore obtusa, Quoy and (Gaimard, 1824.
Cucieriu colummella, Range, 1827; Souleyet, 1552; Pelsencer, 1857 ; A. Vayssière, 1913 and 1915.

C'uriria oryze, Benson, 183.).
" urceolaris, Mörch, 185\%.
Triptern columuclla and cancelluta, Pfeffer; 1879.
C'urierinu culumnella, Boas, 1ss6; J. Tusch, 1904 and 1910; Mcisenheimer, 1905.
Station 49, N.E. of Rio de Janeiro, one.
Station 86 , off N. end of New Zealand, one.
The above measure $5-8 \mathrm{~mm}$. in length and both have lost their shells; but the blunt end of the boly, the large salivary glamds, the formation of the radula and pallial gland, and the presence of the peculiar organ believed hy Pelseneer ($1888, \mathrm{p} .17$) to be an ancessory copulatory organ render it easy to identify the specimeus with C. columnella.

Distribution.-This species is an abmbant dweller of the warm waters of the Atlantic, Pacific and Indian oceans. In the Mediterranean it has only been found living near Gibraltar, but it has been taken as far north as $44^{\circ} \mathrm{N}$. in the Atlantic. In the Pacific it has been observed as far south as $42^{\circ} \mathrm{S}$., but in the Atlautic and Indian oceans the southern limit seems to he about $35^{\circ} \mathrm{N}$.

> Subgenus s'lYLIOLA, Lesucur, $18 \geq 6$.
> Cleudum, pars.
> C'reseis, pars.
11. Stylinte subulu (9. and (i.) 1827.

Cleorlorte subule, Q. and (i., 1827.
Clemtor" (Creseis) spinifera, Rang, 1828; Sow., 1×7 -
Hyaluera sulula, d'Orb, 1836.
Cleorlora sulmluta, Souleyet, 1852: (Styliwla), Dall, 1889) Tiberi, 1859.

A. Vayssiere, 1913 and 1915.

Clio (Styliola) sululu, Bonnevie, 1913.
()ff Rio de danciro.

Station 45, two. 47 . three.

New Zcatand (ofl N. eml of).
Station 86, there.
., 9:3. five.
.. 110, five.

Distribution.-A wam water form on both sides of the Equator, hat apparently aroiding the wamest water (Mhisonheimor, 1!050, and bonnevie, 191:3). Northern limit about $40^{\circ} \mathrm{N}$. ; southern limit between $20^{\circ} \mathrm{S}$. and $40^{\circ} \mathrm{S}$.

Subgenus CRESEIS, Rang, 1828.

Clemdora, pars.
Clio, pars.
12.-Creseis cirgula, Rang, 1828.

Creseis virgula, J. Tesch, 1904; Meisenheimer, 1906 ; A. Vayssière, 1913 and 1915.
,, unguis, cormucopiae and caligule, Eschscholtz, 1829.
Hyclitea cornifornis, d'Orb., 1836.
Cleodora viryulu, Souleyet, 1852; Boas, 1886.
Styliola virgula and corniformis, Gray, 1850.
Cleodora munda, placila, and falcata, Gould, 1852.
flexa, Pfeffer, 1879.
Clio (Creseis) virgula and conica, Pelseneer, 1888.

Off coast of Brazil.
Station 39, eighteen.
" 40 , ninety-eight.
". 52 , one hundred and two.

New Zcaland (off N. end off).
Station 92, one.
,, 93 , five.
= 110, four.
N. Atlantic.

Station 61, nine.
The specimens from Station 40 measured from $2-9 \mathrm{~mm}$. in length, and those from Station 52 measured from $2-3 \mathrm{~mm}$., with the exception of one example of $5 \frac{1}{2} \mathrm{~mm}$.

Distribution.-This is a cosmopolitan species with a strong preference for the warmest water. Atlantic, $36^{\circ} 30^{\prime} \mathrm{N} . ; 39^{\circ} 50^{\prime} \mathrm{S}$., in Pacific (Munthe, 1887).

Family LiMaCinidae.

Genus LIMACINA, Cuvier, 1817.
13. Limacinue helicint (Phipps). Fig. 6.

Clio limacinu, Phipps, 1774 ; Gmelin, 1788-97; Bose, 1802.
Argomenta arrtica, O. Fabricius, 1780.
Limereina leclicialis, Lamarck, 1819.
Spiratella limacina, Blainville, 1824 and 1825.
arctica, G. Deshayes, 183%.
Limacina arctict, J. Ross, 1819 ; P. J. Van Beneden, 1841 ; Lovén, 1847 ; Gray, 1850.
helicinu, Souleyet, 1852 ; G. O. Sars, 1875 ; Boas, 1886 ; Pelseneer; 1888 ; Vanhöffen, 1897 ; J. Meisenheimer, 1905 and 1906 ; A. Vayssière, 1913 ; K. Bonnevie, 1913.
," pacifict, Dall, 1872 and 1885.
(?) " untarctica, Woodward, 1856 (nomen tantum) ; Pelseneer, 1887 ; Eliot, 1907.

New Zealand to Antarctic Circle.
Station 238, eleven.
240 , twelve.
264 , sixteclı.
267 , ra. cighty, average 2 mm .
and many smaller.
298, eleven.

Antaretic (Ross Sea and neighbourhood).
Station 217, twenty-eight.
.. 222 , three.
.. 223 , five.
,. 269 cet . three thousand.
.. 270 , two.
.. 272 , two.

Antaretie (Ross Seat and meighbourhood).
Station 274, one.
.. 275 , two.
.. 284, thirteen.
285, three.
.. 289, col. one hmotred and eleven. .. 290 , twenty-three.
Antaretic (McMurdo Sombd).
"Discovery" Exp., 1901-4, 3 metres, Felı. 19, 1904, one.
Station 317, June 28, ca. four hundral and twenty, arerage 1 mm .
Station 317, Ang. 8, cif. nine humber and fifty, average 1 mm .
Station 326, ca. fifty, about 1 mm .
333 , three, $: \begin{aligned} & \text { mm. }\end{aligned}$
342, thirty-two, 2-.3 mm.
350 , sixteen, about $\cdot 75 \mathrm{~mm}$.
351, Apr. 30, 10 metres, col. three thousand.

Antaretir (Mc. Imrdo Somed).

The above thirty-four hauls, comprising a rich material of some twenty-seven thousand individuals would certainly seem to he sufficient for the most exhaustive study. As in the case of the specimens obtained hy the "Discovery" Expedition, and referred by Sir C. Eliot to L. auturtica, Woodward, the shells are, however, in many cases either absent or partially eroded, or much broken. Boas (1886, p. 42) considered the shells of this species to be more friable than that of any other species of this group known to him. The "Terra Nova" specimens varied in size from 50 to 6 mm , the vast majority, however, measured from $1-2 \mathrm{~mm}$. The shells (hyaline with faint spiral striac) were only present on specimens up to a size of $2 \cdot 50 \mathrm{~mm}$. In no case was there a trace of the umbilical border typical of well-preserved shells of morlerate sized sperimens of L. helicina. Sars (1878 , p. 329) mentions and figures the umlilical border, and states that none of the specimens which were seen by him exceeded 4 mm . Meisenheimer (1905, p. 410) found with regarl to the Aretic sperimens which he examined that the umbilical border was very well marked in the shells of adult ammals, hout in the aise of younger (of alout 3 mm . in diameter) it was, on the contrary, only very feedy developed. Sir C. Eliot (1907, p. 7) drew np a table containing six points of difference which he ohserved to be constant between the Antaretic specimens ohtained hy the "Discovery," which he referred to L. cunteretiro, and a large collection of specimens of I. helicirn from Davis Straits and the North Pacific. In the first place he fomm that L. centerctice wats smaller and possessed fins
smaller in proportion to the size of the shell. It secms to me that the fins must be capahle of great expansion aml retraction, as a vast number of specimens occurred with long, dclicate, filmy fins, and very many others were characterized by short, thick, muscular fins. Of course the various preserving fluids* wouk have a considerable effect as regards this. Gradations between the two forms could, however, be traced in various hauls. The second and third differences (op. cit. p. 7) referred to the striation and umbilical borter of the shell, characters which have already been notcd with reference to the "Tcrra N"ova" specimens. It may, however, he added here that some of the larger examples, without shells, have a furrowed appearance just where the early whorls would have rested, suggesting that the shell might have been impressed with deep spiral striae. The fourth difference ($o p$. cit., p. 7) affected the distribution of colour. The present collection is comprised mainly of more or less lemon-coloured specimens. A small minority, about three hundred, are dark brown. This is the hue of all the larger specimens and also of a few quite small ones. The dark colour seems to peel off easily, especially from the edge of the fins and the last whorl of the body which then become white. No yellow specimens cxceeded 2.50 mm . in size. The only haul in which quite dark specimens were associated with the yellow ones occurred at Station 317, August 8, 1911, when four very small dark specimens were observed amongst about a thousand light colourch specimens. One, however, which was dissected seemed to be shrivelled as if it had been allowed to get dry before being put into the tube, and perhaps the dark colour in this instance may be so accounted for. All the other specimens taken from holes in ice, and all occurring in large shoals were light colourch. It seems probable that the dark huc is developed with age, as some of the larger yellow specimens were fawn-coloured, tending towards brownish, particularly at the base of the fins. The species seems to attain its full devclopment, in these regions, during the Antarctic summer from Docember to Fehruary, at which season probably a greater abundance of food is obtainable. All the dark coloured large specimens occurred at this season, and young pale specimens during the months of March, April, May, June and August. An exception to this occurred at Station 269 (end of December) when a large take of small pale specimens oceured. Spawning specimens were observel in a January haul (Station 284). The spawn-masses consisted of a transparent glutinous material connecting many white oblong bodics each of which avcraged 182μ by 88μ.

The fifth difference noted by Sir C. Eliot (op. cit., p. 7) referred to the posterior lobe of the foot, which he found to be "more deeply and distinctly divided" in L. anturctied than in L. heticina. In "Terra Nova" specimens this is certainly the case compared with Boas' (1886) figure 70 of Table 5, but the figures of Vayssiere (1913, pl. V1I, figs. 185 and 136) of the examples of L. helirinn from Spitsbergen which he has studied, closely resemble many of the specimens in the present collection. The

[^42] bease of the median tonth in L. anturation to lere fiaill smaight. While in L. lielicime it was hollowed out almost into a lomse-shoe shape. With regram to this I fomm that even in the same specimen the median teeth vary between these two forms arombing to the position in which they happen to he placed on the slide. Vapssime (1915. pl. XI, figs. 248 and 248 his) shows the comvex and comeand aspert of a merlian tooth of L. helicmëdes. Joff.; which indirates very wedl the difference which orems in regard to the hasal part of this tooth in L.. helicime. areording to the pasition in which it is placed on the slide. A sperimen of $t^{\circ} 50 \mathrm{~mm}$. in diameter showed at radnlat containing fifteen rows with eleren lateral teeth on either side. A merlim tooth measured 198μ and a lateral ome 164μ. With regarl to the shells of the present speries it may lo worth noting that some were fuite transparent and

Fıg. 6.--Limarinu lelicint (Phipls). Individual with abnormal fins joined at the tips, $\times 32$; 13., halancer ; ${ }^{\text {F., fins : T., tentacles. }}$ some quite opaque even when ownpied ly their owner: In the whole of this rast collection only one case of almomality was observed. A rery young specimen from Station 22:3 possessed fins joined togrether at their tips (Fig. (i).

Distribution. - Aretic and Antarctic regions. This species seems only able to exist in very cold water but follows the Labrador anrent down to $38^{\circ} \mathrm{N}$. It has been recorded as Limucinu furifiter. Dall, fiom Neah Bay, $48^{\circ}-49^{\text {N., and at } 30 ~ N . ~ a t ~}$ Monterey, having evidently followed the cold Vancourer stream which stretches along the coast of California. Munthe (1887) hels recorded it from the middle of the Atlantic at $35^{\circ} 30^{\prime} \mathrm{N}$.. and $43^{\circ}: 30^{\prime} \mathrm{W}$. Neisenheimer (1905, p. 7) suggests that this exceptional circumstance is probably due to the melting of ice from southwarlly drifting icehergs which, mixing with the water of the warm currents of this regiom. would caluse especially farourable conditions. In the Antaretic regions, where Vilyssiore (1915, p. 124) thinks it is not indigenous lont has been werdentally intromeed by marine eurrents. it has been observed as far north as 35° to $31^{\circ} \mathrm{S}$. (Acisenheimer. 1905).

Allanta inflate, d'Orb, 18 t 7.
Sipirulis rostrulis, souleyet, 1840 .
Limucime screphoidera, A. Gould, 1852.
Protomedea clite, Costa, 1861. rostrulis, P. Fischer, 188:
Limarina inflate, Boas, 1886: P. Pelseneer, 1888; Tesch, 1904: Meisenhemere, 190.) amb 1906 ; Bonnevie, 1913 ; Vayssiere, 1913 and 1915.
N.E. of Rio de Janeiro.

Station 47 , eighty-three.
North Atlantic.
Station 61, fa. two hmidred. ,, 62, forty-two.
New Zealand (off N. end of).
Station 80, fonl.
,, 93, ct. four hundred and eighty.

New Zealand (off N. end of).
Station 94, cight.
,. 107, ca. fifty.
,, 111, ten.
New Zealand to Antaretie Circle.
Station 231, af, seventy.
Antaretic (near Ross Sea).
Station $22 \overline{7}$, rat eighty.

The ahove sperimens, amounting to about one thonsand. measure fiom about $\cdot 50-1 \cdot 30 \mathrm{~mm}$. Amost all possess shells, which in many cases are in good condition and easily recognizahle by the excellent figures of M. Vayssiere ($1915, \mathrm{pl}$. VIII, figs. 153-5). Sometimes the shell is in poor condition and gelatinous, but the prolonged lip with reddish or white streak is generally more or less extant. A speemen with a shell of 75 mm . in diameter had abont twelve rows in the radula. The triangular-shaped median teeth seemed to be fewer in number than the lateral ones. When sorting specimens of the present species without shells, they could be discerned at a glance from shell-less L. Inticim of similar size by their delicate pink and green appearance, nore depressed spiral coils, and broader pallial gland. L. helicine was, however, not taken in any of the same hauls, hut was the only other Limacina in the collection olserved in shoals. The above hauls add considerably to the previous known range of L. inflata. Hitherto Schéeles' 'aptures (Ammthe, 1887) from off Cape Horn, $58^{\circ} 45^{\prime} \mathrm{S} ., 66^{\circ} 56^{\prime} \mathrm{W}$., constituted the most sontherly record. Now we find that it is not only aboudant in the waters around New Zealand but ventures far south of that region, and even into the Antarctic circle to the north of Victoria Land. Meisenheimer (1905, p. 6) states that it is a warm water form affecting the warm cmrents of zones from $40^{\circ} \mathrm{N}$. to $40^{\circ} \mathrm{S}$. Schiemenz (1906) records it (as an exceptional ocenrence) from $60^{\circ} 2^{\prime} \mathrm{N}$. It will be olserved that eight out of the ten hanls were made at or near the surface, and in six of these it was ahmondant. Abont seventy were raptured in a hat at 80 ml . at $64^{\circ} 3^{\prime} \mathrm{s}$. latitude, while at $68^{\circ} 03^{\prime}$ s. latitude eighty were captured at the surface. These two hauls would seem to show that the species does not affeet any special layer of water in Antarctic latitudes.
15. Limucina bulimö̈des ($\mathrm{d}^{\prime} \mathrm{Orb}$.).

Atlanta bulimöndes, d'Orb, 1835-47.
Spiriulis bulimoïles, Eydoux and Souleyet, 1840 ; Sonleyet, 1852.
Limucinu bulimoides, Gray, 1850 ; Boas, 1886 ; Pekseneer, 1888 ; Meisenheimer, 190: and 1906 ; J. Tesch, 1904 and 1910 ; A. Vayssière, 1913.

Station 93 , off N. end of New Kealand, one.
 Bermanda, between C'ape Verde lelamds amd West Indees, Guinca Sitream, off Monte-

 Newfommland bank and Azores, and off Canaries (Bomevie, 19:3).
16. Limurcima luden, Moller.

Limacime balen, Mäler, 1841 : Gray, 1850 ; and Locard, 1897.
Spirinlis gouldii, Stimuson, 1851.
Sturinh austrate, Eydoux amb Sonleyet, 185?.
Heterofustes bulet, Mörch, 1857; Gomhd, 1870.
Spirialis retroversu*, (pars). Jeffreys, 1869.
," bulea, sars, 1878.
Limacimu balea, (pars), Boas, 1886 ; Mmithe, 1sis ; Posselt, 1898 ; Lenz, 1906. retrourrsu, (pars), Pelseneer, 1888: Meisenheimer, 1905; Massy, 1909.

New Zealand (N. of).
Station 238, one.
.. 250 . six.
,. 259 . five.
M. Vaysicre (1915, p. 143) thinks that the different types of Limmime called
 differences of the shell are the in reality only to the differences of age in the individuals studied. As far as the "Terra Nova" sperimens are concemed there are ton few individuals, and these are not in sufficiently goorl eondition to make a comparative investigation of such minute forms possible. The shells are completely destroyed in all, but as regards the external appearance of the animal the specimens noted above possess characters which agree so closely with the deseription and figures of Bomevic (1913) of L. belen, and are so very different in appearance to the specimens referred in this report to L. retrorepsen (Flem.), that I think it is better to keep the two forms apart here, partienlarly as they oremred in widely different localities. It may he remarked, however, in support of It. Vayssiones view, that the specimens refered
 of the latter, from station -56 , the spire varies considerally in the proportion it bears to the last whorl, hut the whors are much more gracefind in gencral contour and blend with one another more imperceptibly than in the almpety-spired. squat L. retronerace.

The specimens taken off the west of Ireland and referred (Massy, 1909) to L. retroners, (Flem.) were manly, if not entirely, referable to the present species.

Distribution. - "In the temperate zones letween the Aretir and Antaretic and circumtropical zone" (Bonnevie, 1918).
17. Limacinu befromenal (Fleming).

Mitprofusus retrocersus, Fleming, 1828 ; Gould. 1870.
Atlentu trochiformis, dOrb., 1835-47.
Spiritlis flemingii, Forbes and Hanley, 18.0. retroversus (pars), Jeffreys, 1869.
Limucina balen (pars), Boas, 1886.
. (unstralis, Pelseneer, 1888.
.. truliformis, (Gray, 1850 ; Boas, 1886 ; Pelsencer, 1888; Tesch, 1904 ; Vayssière, 1913.
„. retrocersa, Bomevie, 1913 ; Vayssière, 1915.
Near Rio de Janeiro.
Station 40, six.
.. 47 , five.
These are smaller and darker than the specimens of L. baler, Moller, in the present collection, and the spire is much shorter in proportion to the width of the last whorl. Bonnevie (1913, text-fig. 9, A \& B, p. 16) has shown clearly the prineipal difference between this species and L. butors.

Distribution. "Restricted to the warm and temperate waters of the Pacific and Atlantir Oceans" (Bomerie, 1913). Mediterranean, British Isles, and occasionally off Norway (G. O. Sars).
18. Permplis, e].

Station 93, off N. end of New Zealand, one.
This is a very small specimen, and the shell is in very bad condition. It consists of $2 \frac{1}{2}$ whorls, and has radial furrows on the suture of the last whorl. It is more like Pernclis lurvispirt, Pels., than any other species of the genus as yet described, but as the shell is very soft it is impossible to ascertain if the general surface is smooth. The sub-circular operculum is striated obliquely. Both animal and shell are white, and there are two white symmetrical tentacles. Bonnevie (1913, p. 7) thinks that probably P. brevispira, Pels, and P. lispinost, Pels., will prove to be Pertelis diverse, Monterosato, with which species she identifies the P. retionlata of Meisenheimer (1905, p. 12). P. diversa, should this view prove to be correct, will then be found to be a widely scattered species in the Atlantic and Indo-Australian waters from about $40^{\circ} \mathrm{N}$. to $30^{\circ} \mathrm{S}$.

PTEROTA.

Famis (LloNilade

Ginús CLTONE, Pallas, 1771.

1. Clime anturetien, E.. A. Simith.

Clione antartict, E. A. Smith, 1902 ; Kliot, 1907.
Clione limarina var. antarctict, Meisenheimer, 1906.

The ahove specimens, mounting to about three thomsand three humbed, were taken at practically all seasons of the year, the only months in which they were not fished being July, September, Octoler and November. Eliot (1907, p. 12), notes that the specimens taken hy the "Discovery" were all captured letween the months of November and Mardh. The "Terra Nova" specimens varied in size from 0.75 mm . to 9 mm . In each haul they usually consisted of very small examples of an areage of $2-3 \mathrm{~mm}$., with a few larger individuals. In the months of December and Jannary the larger sperimens seemed to be predominant. There is no evidence to show that the species habitually affects any special layer of the water either at one season or another. As Eliot says (op. cit. p. 13) with regard to this species and ('. limmem, Phipps, there is no doubt that the two are nearly allied. As, howerer, all the above specimens occurred only in Antartic waters and, moreover, hear out very fully the differences noted by Eliot (19. cit. p. 13) between C. limacimand r^{\prime}. (mfturction, it seems as if the latter should be entitled to specific rather than rarictal rank. The presence of larval rings to a late age and the white prominences composing the anterior one are very
persistent characters in the present specimens. The thickness of the integuments is also very evident, while there is a distinct neck behind the fins instead of between or above them as in 6 . limmem. In the large haul at Station 323 , when the tow-net was down for a month. there were about a dozen specimens which were quite different in appearance to the rest. They were narrower and very transparent, and with a crimson instead of an orange coloured gonad, and were without larval rings, although not large. Their radula and hooks were just like those of the others, however, and a careful seareh amongst these revealed a few forms partly intermediate between the two types. Probably the transparent form was the result of overcrowding and want of sufficient nourishment owing to the net having heen down for a month, so that the earliest caught specimens were likely to have been hemmed in and pressed down by later arrivals.

Distribution.-Antarctic seas.

Family PNEUMODERMATIDAE. Genus Pneumoderma, Cuvier, 1804.

2. Pneumolerma utlanticum, Bonnevie. Fig. 7.

Pneumoderma atlantica, Bonnevie, 1913.
Station 62, N. Atlantic, near Equator, one.

Fic. 7.-Pnemmoderma atlantirum (Bonn.). A. entire animal, ventral aspect, $\times 16$; l.g., lateral gill ; p.g., posterior gill. B , posterior gill, cnlarged.

This measures 4 mm . and is nearly colourless, with white opaque spots. The posterior lobe of the foot possesses a tubercle. The radula is $4-0-4$ and the suckers number at least fifty on each appendage. The latter are somewhat triangular and the largest suckers (which are about four times the size of the smallest) are placed towards the middle. The specimen is much contracted, and in the effort of disseeting out the buecal parts I failed to find ont how the appendages are attached to the proboscis. Bonnevie (191:3, p. 69) states that P. athouticum " is distinguished from other species of the genus, inter aliu, by the acetabuliferous appendages heing fixed to the proboscis." This statement is not very clear, as the appendages in question are usually fixed to the proboscis in all the Pterota (Pelscncer, 1887, p. 6, fig. 1. Pneumometerma) ; and on p. 81 "p. cit., under Preumonodermm, we read " Buccal appendufes.'Two symmetrical appendages latero-ventrally inserted on the proboscis." From Mlle. Bonnevie's illustrations (op. cit., pl. VI, figs. 49 and 50) of I '. athuticum, the appendages
would appear to be more or less malencent with the proboscis, insteal of treing free thronghout most of their lemgth. The sperimen has no extemal genital organs ats in the type, but this seems to be an ahmomal state ofewring sometimes in various speries of Pterota (Teseh, 1904, 1. 73: Massy, 1917. 1. 231*). The lateral gill has two (rests without fringes and the posterior gill has fom small crests. The fact that there are at least fifty suckers on cach appendage instead of forty as in I '. cindocrmu, d'orl). seems to render it advisable to refer the sperimen to this speries. Kwietniowski ($1902, \mathrm{p}, 15$) mentions that in the Mediteramean examples of P. cioluerm whirls he has studied, specimens of $: 3-4$ mm, in length (exchuling the prolnoseis) ponsess ten to fifteen suckers on carh am, amd that larger individuals of $\overline{5}-\mathrm{f}$ mom. possess almont twenty. and that adult, on ahost alult examples of the largest specimens (8 mm.) gathered ly lim pussess about thity-fire suckers on earla inm. The ventral aspert of the present sperimen is shown in figure $\overline{\text { - }}$

Histrilution.- $36^{\circ} 52^{\prime}$ N.. $39^{\circ} 55^{\prime} \mathrm{W}$. Surface. 'Type specimen (Bomevie, 191:3).

"Cliontitu cuducens," Quoy and Gaimard, 1825. Spongiobranchaea australis, dOrbigny, 1840.

New Zealand to Antarctic Circle.
Station 235, eleven. 240 , one.
,. 251 , eight.
., 256 , one.

Antaretic (Ross Sea and neighlourhood).
Station 269, one.
,. $270,(!)$ two.
,. 32.), one.
"Discovery" Collection, 19011904, Now. 12, 1901, ome.

These measured from 2.50 mm . to 16 mm . The largest specimens were usually taken in Decemher and the smallest in March hauls. The smallest specimen, 2.50 mm . in length (Station 240), possessed an extenal genital gland, but the radula proved to he that of the present species. All the specimens examined possessed seven or eight suckers un each arm. They were on very short stalks and berame much larger distally. The example fiom Cape Evans had one arm exserted, but the specimen, althongh apparently in perfect combition, had a flared and more transparent appearanere tham the other examples. An examination proved that it han lust all its intemal organization except the above-mentioned arm. Probally the jaws being widely everted in the effort to capture pres some larger amimal came along and smpped up both jaws and prey, and the jaws leing ranght pulled the stomarh, ete, out of the body. This whole mass of organs is usually very firmly eonnected, and cam gencrally lee got out for examination, without injuring the appearance of the specimen, loy mang a

[^43]small slit at the hark. In this individual there was mothing to indicate a remonstructionprocess of any of the organs.

Fig. 8.-Spongiolvanchnea rustralis
(d'Orb.). Entire animal, ventral aspect, $\times 14$.

Fig. 9.-Sponginbranchaea australis (d'Orb.). B, hook-sacs, $\times 220$.
J.

A, isolated teeth of radula, $\times 220$;

The specimens to which a query is affixed are very small and measure about 3 mm . in total length, and, as will he seen in fig. 8, larval rings are present, and the entire boty is thickly strewn with dark chromatophores. The posterior gill is represented by fom folds of skin, but the fringes are not formed, and the only indication of the lateral gill consists of a cluster of cells in the integument. The gonad is brown and is enclosed in a transparent visceral envelope, which latter is dotted over with many dark spots, as is also the liming of the buccal cavity. The chromatophores and the presence of large cone-like tentacles give these specimens a resemblance to Clione punctutu, Tesch, a species of Indo-Anstralian waters known as yet solely by its external appearance. \therefore punctata has, however, a more pointed end to the body, and the radula, fig. 9, A, and hook-sacs, fig. 9, B, seem to agree very closely with those of s. australis. The arrangement of the jaw-spines is also similar. Many gullet-handers were olserved in hoth specimens.

Distribution.-Antaretic regions to about $50^{\circ} \mathrm{S}$. in the Pacific, in the Indian Ocean to $41^{\circ} \mathrm{S}$, and in the Atlantic to $36^{\circ} \mathrm{S}$. (Meisenheimer, 1905).
Pages 227-232 follow nuxt article at end of volume.

MOLLUSCA.

 PART IV.--ANATCMY OF PELECYPODA.*

 PART IV.--ANATCMY OF PELECYPODA.*}

BY R. H. BURNE, M.A.,
Plysiological ('uratur, Royal College of Surgeons Museum.
WITH FOUR PLATES.

pace:
1.-Introduction 2::3:
11.-List of Stations 234
11I.-List of Species Investigated 23.4
IV.-Anatomical Descriptions $2: 35$
V.- List of References 255
Index 250

I. - INTRODUCTION.

The: animals whose anatomy forms the sulbect of this Report fall within ten generafive belonging to the sub-order Areacea, and one each to the sub-mrlers Pertinateat Ostraeacea, Submytilacea, Veneracea and Anatinacea.

Of these ten genera six, namely, Lissuch, Aldurmen, Limupsis and Philndmy, of the sub-order Arcacea, and Limutuld and Anutime, were obitained in the Antaretic in the region of Mcaturdo Somm, and with the exception of A dutime were dredged from comsiderable depths, varying from 50 to 250 fathoms.

The rest of the specimens were collerted off New Zealand (r'hlomy.", Vommichalir, (liome), or from S. Trinidad Island (Babution).

The condition of the tissues was, in ahmost every case, remarkahly goorl, especially when one considers the surroundings amidst which the work of preservation hat to he done.

[^44]
II．－－LIST OF STATIONS．

Station 36．South Trinidad Tsland，on the shore．
，，96．North of New Zealand，seven miles E．of North Cape， 70 fathoms．
．．134．New Zealand，Spirits Bay，near North Cape，11－20 fathoms．
＂194．Antaretic，off Oates Lamd，699 $4.3^{\prime} \mathrm{S} ., 16.3^{\circ} 24^{\prime} \mathrm{E}, 180-200$ fathoms．
，．316．，＂off Qlacier Tongue，alout 8 miles north of Hut Point， Mc．Murdo Sound，190－250 fathoms．
 fathoms．

．．339．，．\quad, \quad ，$\quad 5^{\prime}$ ふ．， $164^{\circ} 17^{\prime}$ E．， 140
， 840 ．，Rosss Sa， $77^{\circ} 56^{\prime}$ K．， $164^{\circ} 12^{\prime} \mathrm{E}, 160$ fathoms．
， 35 G．＂，off Granite Jarhonr，entrance to MeMurdo Sound， 50 fathoms．

III．－LIST OF SPECIES INVESTIGATED．

FILIBRANCHIATA

ARCACEA，ARCIDF．
Lissamen motoredemsis，Meky．and Stand．
Station 3：31．Smith（18），p． 75.
Adurmorra nitons，Pelsencer．
Stations 194，316，388，339，340，356．Smith（18），p． 76.
－1rar（Barbatia）sp．
Station 36．Smith（18），p． 105.

> LIMOPSHDA.

Limopsis gramlis，Smith．
Station 194．Smith（18），p． 76.
PHITOBJYIJAF．
Mhitulnya limoides，Smith．
Stations 331， 340 ．Smith（18）．p． 77.
PECTINACEA．
PECTINHDA.
（＇hltmys．consuciatr，smith．
Station 96. Smith（18），1． 89.

US＇TRおさCEA．

LIM以天。

Limu（Limetula）horl！soni，smith．
Station 331．Smith（18），1．7．

ELLAMELLIBRANCHIATA．
 SU゙BMYTILACEA，CARDITIDA．

Station 134．Smith（18），p． 90.
VENERACEA，VENERIDAS
（＇hione（Chrrmeler）spisser（Deshayes）．
Station 18t．Smith（18），p．90．

ANATLNACRA，ANATUNTDA．

Anatima elliptice，King and Broderip．
Off Cape Evans，McMurto Nombl，in 5 fathoms．Smith（18），p． 78.

IV．－ANATOMICAL DESCRIPTIONS．

FILIBRANCHIATA．

MRCACEA，ARCIDIK
1．Lissemen whtorculensis，Mels：and Stand．Pl．I，figs．1－7．
Station 331．Numerous sperimens（in two separate hottles）dredged fiom the entrance to Mc．Murdo Sound，in 250 fathoms．The specimens in one of the bottles were dhstered upon a piee of wed，tirmly attached to it by their hyssus．

It will he sern from the diagram，Pl．I，fig．I，that in general the animal approaches in structure to the type characteristie of the Areas，though the anterior adductor，instead of being as in some species of the fanily merely medned in size．is entirely absent．

Jomtle．The mantle is open from end to emd．Its horder is guite simple，without tentacles or eve－spots．In section it shonss three simple folds，ats in other members of the family．The middle of these（fig．$\dot{2}$, ，$m: f$ ．），which seceretes the periostracm，is very slightly expressed，the inner（i．f．）is thisk and swollen．

Wusche－There is only one ahductor（the prostemor），the anterior being eminely absent．Thore are the pars of pedal mustes－－two anterion and one posterion of

 and the ecrehal ganglia；the other pain of muscles（e．p．）．the clevatores pertis，which

$$
\because 0 \because
$$

are really mothing more than local coneentrations of the ordinary museles of the borlyWall, lie further hark and pass, from their origin upon the shell on a level with the astphagns, down the surface of the visceral mass on either side of the pedal ganglia, inte the base of the lysisal papilla.
fout.-This is of the type commonly met with in the Areida, laterally compressed, with prominent toe and heel and with the ventral surface eleft hy a deep byssal groove into which protrudes a tongue-shaped papilla (Fig. 1, by.p.), beset upon its surface ly a series of low longitudinal lamine. The hyssus consists of several (three in the speeimen examined) short flattened filaments.

Tervous Siystem and Sense- Orguns.--The cerebral and visceral ganglia are respectively widely separated, the pedal coalesced. Abdominal sense-organs and otocysts are well developed and ocernpy the usual positions.

In addition to these sense-organs there is, upon the anterior extremity of each imer gill-lamella, where it merges with the hinder end of the inmer labial palp, a wellmarked "cephalic" eye similar to those deseribed by Pelseneer (11,16) and Thiele (19, p. 380) in certain Mytilacea and Arcaeea (Figs. 1, 3, c.e.). *The eye consists of a deeply pigmented open anp (Fig. 4) oreupied by a homogeneous cuticular plug. The nervesupply to the organ was not traced.

It was ohserved by Pelseneer (16. p. 776) that anong Mytilida and Areida, "cephalic" "yes, thongh common, did not oceur in species inhabiting a depth of more than $250-300$ metres-a depth to which light does not penetrate. In view of this ohservation, which is of some importance in estimating the probable functional value of these organs, it is of interest to find that the present specimens of Lisserrd were obtained from a depth of 250 fathoms, those of Philduy/y (in which also "cephalic" eyes occur) from 160 and 250 fathoms, and those of Adumareu from depths ranging from 50 to 250 fathoms.

Digestice Oryuns.-The lipsand palps are ribhon-like as in other Arcas. The free part of the outer palp is for most of its extent very narrow (Fig. 58, w. l_{p}.) and represents only the extreme margin of the organ, its basal parts being adherent to the mantle.

Mesial to the inner lip, in the angle between the lip and the body-wall, and at a short distance behind the mouth, there is on either side a pore that leads into a fingershaped caecal tuhe (Figs. 1, 5A, and 5b, l.c.). The caceum (Fig. 6, l.c.) is lined by a deep columnar epithelium, and is occupied by a homogeneons material, probally in the nature of a serretion. I have not come across any description of similar catea in this position in other lanellibranchs, but in the present colleetion I have observed them, as will be mentioned later, in Iddacmerce and Philubrye. There seems little doubt that these tubes are glandular, lout what their purpose may be, and with what organs in other groups of Molluses they may be compared it is difficult to suggest.

[^45]In comection with these caecal tuhes, it is of interest to note that in the three species in which they have been ohserved (ie., Lisservet, Acturned, Philubrye) there is a moditioation of the epithelime along the imer margin of the gill-axis. In this position, starting from a point in abont the same transverse plane as the pedal grangha, is an elevated ridge of deep columar epithelimm. At its commencement (Fig. 7, ep,r.) the ridge is narrow and sharply defined, resembling closely, when ent transversely, a cross section of an ablominal sense-organ. Fmother bark it gralually heromes homler and Hatter, and finally merges in the epithelimm rovering the bromblial nerve. Without further knowlelge one hesitates to suggest what the finction of this band of elevated epithelimm may be, but the fact that it oreurs, so far as observed, only in the same "pecies as possess the above-mentioned labrial caccat is certainly of interest, and possibly may mean that the two organs are in some way functionally related to one another.

The alimentary canal (Fig. 1) is 'quite similar to that of other members of the family (see Matthias, 6, p. 363). The stomach is in wide commmication on either side with the lobules of the hepato-pancreas. The latter, as seems to be the case in all the more primitive Lamellibunchs, are large, simple, and very loosely packed together. The desureming arm of the stomach (gastro-intestine, ligg. 1, !/imi.) is capacions, and closely resembles in its internal structure that of A Pea bubretu, figured ly Matthias (6, l'l. VIII, Figs. 13, 17). The upward hemd of the intestine passes below and behind the heart on its way to the upper surface of the adductor.

Meart and Pericardium.--The auricles are not united behind the ventricle, as they are in some species of Arra. The ventricle, although slightly expanded in a transverse direction and bifid at either end, is not markedly drawn out to either side and separaterl, as in so many members of this family in which, owing to the development of the retractor pedis, the width of the back is excessive.

The pericardium also (Fig. 1, pre.), though large, is single; it is produced forward on either side, forming a pair of fumels leading to the reno-pericardial ducts (Fig. 1, $r . p e . d$.). There is no development of pericardial gland-tissue upon the auricles.

Remal Organs.- The nephridimm is of the simple type characteristic of the family, and resembles in all particulars that described for Addenarca by Pelseneer (12, p. 42).

The two organs are quite scparate from one another. Each (Fig. 1, r.) is a simple sale covering the anterior face of the adductor, and wrapped romal the retractor pedis. The inner surface is for the most part plain, hut towards the anterior end of the organ is to some extent pleated. The kidney opens to the exterion close to its anterion end (Fig. 1, r.o.), and slightly behind this point receives ventrally the reno-pericardial duct (Fig. 1, r.fer.l.), which passes to this point from the perimortum acors its mesial surface.

Gomeratiee drofens.- Tha sexes are sepanate, and in the sperimens examined the gonats were ripe and actiore

The gonads of the two sides are not completely separate. lont as rerorded also hey Pelsencer (12, p. 42) in his acount of ddemamen, are in direet and open comection
with one another in the ventral parts of the visceral mass. The genital duct passes backwards along the lateral surface of the cerebro-visceral connective, and opens below it slightly in front of and quite separately from the renal aperture (Fig. 1, g.m.).
(rills.-The gills are supported on either side ly a museular axis, which extends freely behind the adductor (Fig. 1. (I.a.). They have the filamentary structure and general freedom charateristic of the Areacea. The two demibrands are mequal ; the inner, which is the larger of the two, extends forward as far as the inner palp (Fig. 3), a short distance in alvance of the anterion extremity of the outer demibranch.

The anterior filament of the imer demibranch is direct, swollen, and slightly elbowed (Fig. :, , f^{1}), as it is also in Adecmarcan and Plilohrya (see below). The rest of the filaments in both demibranchs, exept for a lew at the extreme hinder end, are reflected, hat have no inter-filammary mions of any sort, exept that possibly there may be a ciliary mion hetween them at the angles of reffexion and at the refleded free extremities, but of this I could not be quite certain. The individual filaments are remarkably short and stout, with knobbed rather than hooked free extremities, and in these particulars present a somewhat embryonic appearance. The cavity of each is divided longitudinally ly a relicate septum.
2. Adacmaret mitens, Pelseneer. Pl. 11, fig's. 8-9c:

Stations 194, :316, :3:88, 339, 340, 356. I lozen or so sperimens (in six separate bottles) taken from 50-250 fathoms in amd near Mc.Murto Sound.

The anatomy of this peetes hats been desmiberl ly Pelseneer (12. p. 41), but although in general the present specimens correspond very well with his description, there are a few points of difference sufficiently remarkable to make it a matter of some difticulty to reconcile them completely with his acrount.

For instance, the "Belgica" sperimens had two alductors, though the anterior one wats small; in these the anterior alductor is athent. In the "Belgica" pecimens the filaments of the imer demibruch were direet only; in these, except for a few at the hinder end of the demilnanch, they are reffected. In these sperimens, too, there is a well-developed "cephalie" eye, and though of conrse it is possible, it is at the same time very unlikely that this organ, if present in the " Belgi"a" specimens. shouk have escaped Pelsencer's notice, yet he makes no mention of it.

These differences of structure are difficult to explain, and if no mistake of observation or identification has been made, seem to shggest that two closely allied species may secrete shells of practically inlentical form.

The examination of two sperimens by means of serial sections, and of thre others ly partial dissediom, showed that in general strmeture . Idememen mitems very dosely

 form a definite per al elevator.
 Lissurea, hut the otorysts are smaller and lie closer to the sides of the perlal ganglia.

A rephatie ere is present in the manal prsition at the jundion of the immer lahial palp and imer demibrandh. The eye was litte more than a pigment-fleck in one instance (Fig. 8, cer.), but in another sperinem was a well-formed pigmented enp oceupied by a mass of hyaline material, larger amb better formed than the erphatio eye of Lisumeras shown in Fig. 4.
 mentioned in the deseription of Liswered are present, the latter being perenliarly well developerd and derp (Fig. 9A, B, c, ep.r.).

The rectum, though not atually perforating the rentricle of the leart, is momeded in the tissues of its rentral walls. The amioles, milike those of Lissorro, mite freely behind the rentricle below the rectum. They show no development of pericardial gland-tissile.

Gills: As mentioned alowe the tilaments of each demibathell are reflected and not, as was the case in Pelsencer's xpecimens. those of the onter one only. This was ohserved in whole preparations of the sills of three individnats from Stations : $: 16,338$, :339; and in earlo case the condition was perfectly plain and open to no douht (Fig. 8A). 'Towards the hinder end of hoth demibranehs, hat especially of the imer, the reflexion of the filaments becomes gradually less and less, some fifteen filaments of the inmer demibratel being simply direct.

In the specimens used for sections reflexion of the immer demibnand seemed to extend only about as far back as the midalle of the body, but as sections rertioal to the body cut the gills very obliguely, this is the appearance that would naturally be presented. bearing in mind that the posterior fourth or so of the filaments are in fact direct.

The forwarl extension of the two demihanchs is similar to that of Lissenre, and as in that genus and in Philoh?y the auterior filament of the imner demibranch is swollen aud without reflexion. In the details of their structure the gills bear a strong likeness to those of Philobrya (see lelow). The individual filaments are longer and more slender than those of L issomert, and are united in both descending and ascending arms by eiliated dises situated about half-way down the lamina. They are also in ciliary mion at their free ends and at the angle of reflexion. The reffected free end of each teminates in a pronounced hook. The ravity of each filament is divided by a longitulinal septum.
 separates from the immer demibranch ame shifts its attachment more or less from the body to the mantle.

In Lissemer this divergence is very slight, hat in Admmore is of considemalde extent (lig. 9A, ".d., i.d.). The portion of the mantle-ravity included between the forward ends of the demibrandis extemis npuards bevond the attarhments of the gills
(Fig. 9A, m.c.) and from the point at which both demibranchs become attached to the body still continmes backwarls (Fig. 9b, ma.), hurrowing bencath the integument above the kidney nearly to the level of the adductor (Fig. 9e, m.c.). A smimar supra-hranchial extension of the mantle-eavity oceurs, as will be mentioned later, in Philobry".

In one of the specimens examined a number of eggs had been extruded, and were lying in the mantle-eavity in front of and between the gills.* The eggs were loaded with yolk-granules of remarkable size, and were surrounded by a very delicate vitelline membrane, in striking contrast to the heavily encapsuled eggs of Venericterdia and the Anatinacea mentioned helow.
3. Arca (Barlatia) sp.

Station 36. Two specimens from a rork-pool in South Trinidad.
The animal in all essential particulars shows the type of structure characteristic of the genus Area.

The byssal apparatus is strongly developed, and, as in other Areas in which this is the case, the posterior retrator perlis is enormous, and dominates the arrangement of the other soft parts in its neighbourhood, crowding the heart and the main part of the pericardium forward, and separating the hinder part of the kidneys and pressing them downwards into the upper part of the gill-axis.

Another factor that exerts great influence upon the form of the heart and pericardium in most species of Area is the great breadth of the hody between the mombones. In the species under review this region is very broad, and the heart and pericardium are stretched transversely, separating hoth into distinct and disconnected halves, except for an extremely narow communication between the anterior extremities of the ventricles. The walls of the two pericardial chambers are mited to this transverse ventricular comection, hat the chambers themselves show no open communication with one another.

The passage between the auricles and ventricles is gmarded by valves, and not merely by a sphincter muscle as described by Matthias (6, p. 422) in A. (Barhatia) platei.

The rectum, in passing from the visceral mass to the upper surface of the adductor, lies below and behind the comection between the two ventricles, a position common to many species of Ara, thongh not miversal throughout the genus.

Nerons System and Semse-Orams.-The nervous system shows lateral concentration of hoth the visceral and the pedal ganglia. The abdominal sense-organs are, as nsual in the genus, well developed; the otocysts are relatively small, oval in shape, and situated slightly above and to the outer side of the pedal ganglia.

[^46]At the anterion extremity of the inner demilnanch，at the point where it joins the immer lahial palp．is a small cup－shaped restigial＂cephatie＂eye．similar th those
 numbers，along the moter fold of the mantle－edge particularly in the inhatent area tow：muls its himler end．

Jienal Oryans：－The kihneys are similar both in general structure and in the disposition of the reno－perieardial duct and external opening，and in the mion of the latter with the genital durt，to the type of these organs in the gemms ．A en deseribed by Odhmer（8．p．：298）．

Gills．－The gills are of the nsual Arentype．The filaments are mited be viliated dises at fom points on the deseending and thee on the reflected arm．and there is alson dose ciliary comection between their reflected extremities and at the angle of reflexiom． A short interlaminar membrame fills in the angle of reflexion of early filament．

LAMOPSHD．E．

4．Limppise ifandis，Smith．Pl．II，figs．10－1こ．
Station 194．Numerous specimens of different sizes obtained off Oates Land in 180－200 fathoms．

The animals of three speries of this gemms（ L ．peletifer，L．mimutu，and $/$ ．camerllutu） have heen figured and lnietly described hy Pelseneer（9，p．12，Pl．II，Figs． 1 and 2 ， and $16 \mathrm{~A}, \mathrm{p} .21$ ）．They are chiefly remakable for the great size and muscularity of the gill－axis．

A diagrammatic view of the arrangement of the chief internal organs of L ．！$/$ om is shown in Fig．10，to which may he adder the following notes：－

Montle and Poot．－The mantle is without tentacles．papillae，or eye－spots；its folds （in cross－section）resemble those of Burdutia．

The lyssus is small and filiform ；it is formed upon the surface and aromed the base of a long conical and longitutinally pleated papilla，springing from the base of a deep lyssal pit（Fig．10，hy． 1 ．）．

Nervors system and Sensp－Orymm：－－The visceral ganglia are coaleseed，as they are in Pectumculus，and are of considerable size and importance．The lnanchat nerves that arise from them are large and richly ganglionated，and underlic a well－marked epithelial thickening（Spengel＇s organ）．

The abdominal senseorgans and otocysts are well developerl；the latter retain indications of their orginal invagination from the exterior in the form of a minute duct．In one sperimen this duct was still apparently in open commmication with the exterior ；in another it terminated in a small dilatation before rearhing the sinface of the bode：

Digestive Organs．－The palps are directly continums with the lips；they are small，though somewhat swollen and little，if at all，Huted upon their apposed smrfares． The imner lip and palp is a simple fold similar from end to end ；the onter lip（Fig．11，
o．l．）consists of a swollen base continuons with the palp，and，like it，lined by a deep glandular epithelium，and of a thin membranous extension（Fig．11，ext．）by which its free edge is made to overhang the mouth and lower lip like a curtain．This extension is covered by a thin non－glandular epithelium，and terminates abruptly at the junction of the lip with the palp．

Heart．－The ventricle of the heart is perforated by the intestine；the auricles are voluminous and communicate with one another beneath and behind the rentricle （Fig．10，cur．r．），and show in their posterior region a feehle development of pericardial gland－tissue．

Remal Orfons．－The kidney is more complicated by labyrintline fording of its walls than in the Arcilæ．It opens elose to its anterior end loy a short duct into a small sinus common to it and to the genital duet．On a plane slightly posterior to this lies the reno－pericardial duct，which passes from the anterior region of the pericardium atross the lateral surface of the kidney to its ventral wall．The two kidneys are quite separate from each other，but towards their hinder end are closely applied and fold in between the posterior pedal retractors，differing apparently in this particular from the kidneys of Pectunculus（8，p．300）．

Gills．－The gill－axis，as noted by Pelsencer，is extremely large and musculat． The muscles，as in other Arcacea，consist of two bands situated at the base of each demibranch，and take their origin from the shell just above the anterior extremity of the gills（Fig．10，lr．m．）．Although these muscles are remarkahly well developed they constitute a small part only of the gill－axis（Fig．12，m．），which is composed mainly of a cartilaginoid comnective tissue（Fig．12，ヶ）．

The filaments of both demibnanchs are reflected，and are mited by ciliater discs at about the mid－region of both descenting and ascending arms．So far as could be olserved，there is also ciliary conneetion between the filaments at the angle of reflexion and at their free extremitics．There are no interlaminar unions．

PIILLOBRYID．玉．

5．Philubrya limoides，Smith．Pl．III，figs．1：－15．

Stations 331 and 340．A few specimens dredged in 250 and 160 fathoms off the entrance to McMurdo Sound．

The anatomy of an allied species，Phitolny，sulbuvis，has been described by Pelseneer in his Report on the Colleetions of the S．S．＂Belgica＂（12，p．42），and in most particulars of any importance his deseription of that species applies equally well to P ．limoides．The following few additional notes seem，however，of sufficient interest to le recorded：－

Mrantle and Fout．－The mantle－border has no eye－spots or tentacles；its edge in cross－section closely resembles that of Lissored（Pl．I，fig．2），except that the outer fold is smaller，the middle slightly more pronounced，and the inner more swotlen．The lyssus is strong，with a solid root broken up into about thirty filaments．

Digestier Oryans.-The lips and palps resemble those of Lissomren and Idmentren, and, as in those two gencra, the outer palp is for most of its extent confluent with the
 also wortly of record that in Phitahym, as in the two above-mentioned species, there is a woll-developed labial aecum, apparently of a glandular nature, opening to the exterion in the angle between the inner lip and the looly-wall (lig. 1:3, l. . .)

It is to be noticed. too, that in Plilhbrym, as in Lissarmand Admonmern (the only three genera in which, sofar as onserved, habial caver ocenr), the epithelimm of the inner side of the gill-axis is increased in depth and forms a prominent subh-hamolial ridge (Fig. 1t, ep.r.), similar, looth in extent, form, and structure, to that already deseribed alose in the account of Lissarce (Fig. 7, ip.r.).

Sense- Orgme:-At the extreme anterior ched of the inner demibrandla, at the point where it is attached to the imner palp, is a "cephatic" rye, well formed and of some considerable size. As is usually the case with this restigial organ, it has the form of an open chp of deeply-pigmented cells, filled in ly a mass of homogeneons tramparent sulistance (Fig. 15).

Mrort.-The rentricle of the heart is perforated by the intestine; and behind the rentricle, as described by Pelseneer for Γ. sublevis, the two anricles communicate with one another ly a wide passage (Fig. 13, om.e.). The eommection between the anricles and rentricle is puite nomal, there being no indieation of the doulde communication on the left side found by Pelseneer (probably as a variation) in his specimen of P. subluris.

Renal Orgons.- The renal organs and genital duct are closely similar in structure and relations to those of Jissurce and Idurnarea.

Grills.-The gills in their disposition and in the details of their structure resemble those of Adacmara, except that in Philderigh the reflexion of both demibranchs is more extensive, and the reffected angle of each filament is strengthened by a short inter-laminar wels. The cavity of each filament is divided longitudinally ly a septum.

In view of the several particulars just mentioned (palps, labial caeca, sub)-branchial epithelial ridge, gill-structure), in which Philubry limoides shows a marked similarity of structure to Adrmeret, it is of some interest to find that there is also a close likeness hetween these two genera in the disposition of the mantle-cavity in relatiom to the anterior part of the gills.

It was pointed ont above that in Admmaro the mantle-cavity extends upwards for some distance between the separated anterior attachments of the two deminamehs, and that further back this extension is cut off from the general mantle-cavity by the transference of the attachment of the outer demilnanch from the mantle to the bodywall, and runs hack for some distance as a blind pocket between the kidney and the
 eavity to the gill-attachment is precisely the same. There is a similar upward extension of the mantle-cavity hetween the separated anterior attachments of the
demibranchs (Fig. 14, m.c.), whieh terminates further back as a blind pocket between the body-surface and the kidney.

Without further and more extensive inquiry it is hardly possible to judge arlequately of the importance of such structural details as these; but, so far as can be seen with the material at hand, they are undoubtedly suggestive of an affinity between the animals concerned closer than that indieated by their shells, and thus lend additional support to Pelsencer's view that Plilolrye is in truth intimately related to the Areida, and particularly to Adacnarea, although the shell is usually assigned to another family of the Areacea.

PECTINACEA.

PECTINIDF.

G. Chlumy. comsoriutu, Smith.

Station 96. A few specimens from 50 fathoms off North Cape, New Zealand.
The anatomy of the amimal is of the Pecten type; although, owing to the presence of a strong hyssal apparatus, the musculature differs considerably from that of the genus Pecton, and ly its one-sided development throws the body more or less out of simmetry.

Jhoutle.-The mantle is quite similar to that of Pecten, with a large inturned inner fold or curtain, and numerous eyes of the Perten type along its free horder.

I/usples and toot.-The single adductor muscle consists of two distinct parts, which are situated. When the hinge-line is placed to the left, one above the other. The fibres of earlh part are diagonal to those of the other ; those of the upper part passing forwards from right to left, and those of the lower forward from left to right. As in Perten, the fibres of the two parts differ in histological structure: those of the lower part being transversely striated, those of the upper smooth. The posterior perdal retractors are represented loy that of the left side only. This muscle is of great size, and passes across the borly behind the pericardium to the base of the byssal papilla, into which it is inserted.

The leyssal papilla occupies a deep cleft in the ventral surface of the finger-shaped foot, and as in Area and Barbetio is broken np into a number of parallel longitudinal lamine.

Nerenes siystem and sense-Gryms.-The central nervous system resembles that of Perten, particmbrly in the extreme comdensation of the cerebral and petal ganglia, these being so closely applied to one another that they form a contimons home-shoe shaped mass without any outward indication of cerebro-petal comectives or pedal commissme. The cerehral ganglia are, as in Pecten, widely separated.

The otocysts are large, and lie above the peral ganglia, within the embate of the cerebro-pedal mass.

Digestive Oryans.-The alimentary canal, and the relation of the reetum to the heart, are the same as in Pecten.

Liemal and Generatire Oryms.-The renal organs are of the Pecten trpe, with the external orifice situated at the posterior end, and the reno-pericardial duct in front. [Jon the aurieles is a very considerable acemulation of perbardial gland-tissue.

The sexes are separate (the specimen examinel was a male), but the opening of the gonad to the exterior could not he traced.

Gillw.-The gills are of the Pecten type, filamentons and derply pleated, with ten orlinary filaments to the pleat, and enlarged chief filaments at the re-entrant angles. The filaments at the projecting angles are not modified.

The filaments of both demiloranchs are reflected, and are mited at numerous levels by cilia borne upon prominences that project towards the inter-laminar space. 'The cavity of each filament is divided by a longitudinal septum, attached on cither side to a prominent thickening of its chitinous lining.

OSTRÆACEA.

LINHDむ

7. Limu (Limatula) hodgsomi, Smith. Pl. III, figs. 16, 17.

Station 331. Two bottles, containing numerons specimens dredged off ('ipe Birl, Mc.Murdo Sound, in 250 fathoms.

Compared with other species of Lima (for instance, L. hians, L. elliptica) the anmal is relatively long from the hinge to the adductor. The organs situated in this region (heart, kidney, etc.) are therefore not so much cramped as in these and other species of Limm, and show on the whole a less specialised and apparently more primitive condition.

Mantle.-The mantle has the structure commonly found in the genus (7, p. 20), with a voluminous eurtain, heset on its imner surface with many tentacles. The tentacles, althongh well developed, are scarcely so numerons as in certain other speriest (P.!., L. himes). Nowhere do they exeed from three to four rows and anteriorly, in the region in which the curtains are unted, are reduced to a single row.

Juweles and Fowt. - Cpon the upper edge of the addurtor is a small muscle (Figss 16, $17, m$.) which, at first sight might easily, from its area of origin, be mistaken either for the retractor perlis. or for a specialised portion of the imhluctor. It is, howerer, in reality part of the mantle-mmseulature, and passes towards the midde line into the lase of the curtain a short distance in front of its dorsal closure.

The pedal retractors are remakally weak; the posterior seem to lie alsent, hut in place of them (functionally) are two small muscles (Figs. 16, 17, pr. .) that arise from the mantle-horder behind the adductor, as deseribed hy Pelsencer (16A. p. 34), and pass across its posterior surface to the hinder part of the visceral mass and foot. The anterior retractors have no cleary defined origin from the shell, lout are formed by the
aggregation of seattered musele-fibres, situated in the hody-wall in the neighbourhood of the ventral extremity of the hinge.

The foot shows upou its ventral surfuee a shallow byssal cleft, whieh deepens at its posterior extremity to form a pit oceupied by from $8-10$ longitudinal lamine, surromeded by a considerable depth of glandular tissne. There is apparently, however, no byssus.

Nerrous System and Sense-Organs.-In conformity with the relatively great length of the body, the visceral and eerelnal ganglia lie at some distance apart, and do not show the remarkable concentration towards one another that has been described by Pelseneer (15, p. 874) in certain species of Lime. The eerelral and pedal ganglia are, on the other hand, closely approximated to one another, united by short stont comectives.

The otocysts are large, and lie behind the cerebro-pedal connectives.
Digestier Oryme.- The mouth opens freely to the mantle-eavity between the lips, and is not shut in, as in many speeies of Lima (Pelsencer, 13, p. 722, and 16a, p. 34), by the fusion of the lips in front of it. The stomach, as in L. hians, lies mainly in the left umbo.

The intestine oecupies the position shown in Fig. 16, forming a simple S-slaped coil which, in its forward bend, passes to the right of the stomach and thence bends hackwards between and below the two lateral chambers of the pericardium and divisions of the heart, and above the linder connerting passage of the pericardium (Fig. 16, pe.c.) to reach the upper sirface of the adductor.

Ment.- Owing to the great breadth of the dorsal surface of the body, the heart and pericartium are drawn out to either side, as in many of the Arcida. The heart is, in fact, completely separated into two lateral halves, each consisting of a single ventricle and auricle. In front, each ventricle is continued forward as a fine aortic vessel beneath the floor of the anterior extremity of the pericardium, and may possibly form a comnection through this vessel with that of the opposite side.

No actual passage from one ventricle to the other was, however, satisfactorily traced, either by sections or dissections, and if present it must he exceedingly minute. In L. hians the ventricles, thongh widely separated laterally, are in communication, close in front of the adductor, by a connecting channel, which, though narrow, ean yet easily be traced even hy dissection.

The pericardium couforms to the shape of the heart, but posteriorly the two lateral chambers into whieh it is divided eommunicate beneath the rectum by a narrow chamel (lig. 16, fec.). Pericardial gland-cells are freely distributed noon and within the auricles.

Renal and Generative Organs. -The renal organs (lig. $16, r$) are saceular, amd ocrupy a position beneath the pericardium from a short distance behind its anterior extremity to the antero-ventral fice of the adductor, having thus a much greater anteroposterion extent than in the species of Limu described by Odhner (8, p. 307).
 pericadium some little way behind its formad extremity, and passes ictoss the mero wide of the samentar distal ame of the kiblner to rearhits sentral surface. shortle before its commmication with the main carity of the kidney it reereves the gental durt (Fig. 16. !. ll.). The two caparions distal amms of the killey are widely mited beneath, the pericurdium, mase in front of the abluctor (Fig. 16. ra. . Posterion to this commmication carth is patonged upon the surface of the ahlinetor nearly as far as the visceral ganglion and close to its termination opens to the exterior (Fig. 16, r:\%.).

The sexes are separate.
Gills.-The gills are similar in structure to those of other members of the genus.
The chief filaments resemble in cross-section most nearly those of Lime influte (Ridenood. 17, p. 215) ; there are twelve filaments to the pleat. The apical filaments are umodified. Interlaminar mions oceur between the chief filaments and extend for some little distance upwards from the angle of reflexion; interfilamentary unions are numerons and roughly alternate in position from pleat to pleat. The individnal filaments have no longitudinal intrafiamentary septum.

The gill-axis contains two stout longitudinal musele-hands, which, in front, on a level with the upper region of the stomach, become blended with the muscles of the boty-wall. Similar muscle-bands rum along the continuous selvedge that forms the free margin of the reffected lamina and along the reflected angle of each demibranch. The hinder end of the gill-axis is not attached simply to the ventral surface of the adduetor, as it is in the Arcacea, but extends to the mantle lochind the adductor (Fig. 17), learing, between its imer margin and the edge of the posterior retractor perlis, a small orifice (Fig. 17, o.) that leads into a space of considerable extent (m.l/.), situated upon the posterior and dorsal surface of the adductor, and reaching as far formard as the hinder limit of the pericardium.

This cavity, which oceurs also, though to a less degree, in L. lians, is a diverticulum of the mantle-cavity, within the substance of the mantle and gill-axis. and has apparently been developed in rekation to the excessive breadth of the adductor. filling in the lateral parts of the abnormally wide space between the rectum and the insertion of that muscle.

EULAMELLIBRANCHIATA.

SUBMYTILACEA, CARDITUDE.

8. Femericardid mopurata (Deshayes) (Vemerimedin austrelis, Lamarek?). Pl. 111, fig. 18.

Station 184. New Zealand. E. of North ('ape, $11-20$ fathoms.
So far as can be ascertaned from previously phlished descriptions of the anatomy of genera helonging to this family, thene is tittle of importanee to distinguish this. genns:
from Cientitu. A diagram of the gencral disposition of the internal organs is shown in Pl. III. Fig. 18, to which the following notes may be added :-

Finot.-The sole of the foot is cleft longitudinally by a shallow gutter sumounded by a small amount of gland-tissue. Posteriorly, the cleft terminates in a pit whose walls are pleated longitudinally and into which projects a small papilla. The gutter and pit contained a little coagulated sectetion, and were smrounded by a considerable mass of gland-tissue, hut there wats no definite byssus in any of the specimens. In some species of Cardita the byssus is peculiarly strong.

Soroous Systrm and semse-Gryans. - The pedal ganglia are coherent but superficially separate, the visceral ganglia completely fused together. There is no abdominal sense-organ, hut Spengel's organ upon the root of the lnanchial nerve is fairly promounced.

Meart and Remal Oryans.-The rentricle of the heart is perforated lyy the rectum. The surface of the auricles, and particularly their internal trabecula, are richly beset by cells of (apparently) pericardial gland-tissuc. Owing to the somewhat imperfect preservation of the tissues, Keber's organ could not be identified with certainty.

The kithey comesponds in its general structure, in the position of its external orifice, the relations of the reno-pericardial duct, and the position and extent of the intercommunication between the distal arms, with the description and figure of the renal organ of Curdite given by Odhner (8, p. 314).

Gills.--The gills resemble in their structure those of Cardita (Ridewood, 17, p. 221).

Generatice Organs.-The sexes are separate; the genital duct opens close in front of the orifice of the kidney. The ovarian eggs are surrounded by a thick hyatine capsule, the onter parts of which are dense, the deeper parts vacmolated. In the fresh state no donbt the decper layers were fluid, and owe their shrunken racuolater appearance in this prepared material to the action of the reagents used in its preservation. The whole capsule stains deeply with hematoxylin.

Althongh, as a rule. the eggs of marine Lamellibranchs are practically naked, enclosed at the most in an extremely thin vitelline membrane, a thick capsule similar to the above is common in fresh-water genera and among the Anatinacea, and is figured by Deshayes in C'ardita calyculuta and in Trigmella (1, Pl. CVI, Fig. 5, PI. LII, Fig. T) and described hy Lovén (5, p. 317) in C'entium p!gmapm.

In one of the specimens examined the eggs had been laid, and were fomed in masses in the interlaminar spaces of all four demilnanchs. In this position they were closely packed and adherent to one another ly the surfaces of their capsules: There secms no doulnt that these eggs were lodged in the gills for purposes of incubation, a hathit of somewhat rare occurrence among marine Lamellibumchs (14, p. 243), though fommon enough among fresh-water forms.

EULAMELLIBRANCHIATA．

 Zealant．

The general anatomy of the animal，as is shomin the diagram（F゙ig．19），presents： the type common to other members of the family（see limus cormonsh．Deshayes， 1 ， Pl． $\mathrm{NClI}_{\text {，ete．}}$ ）．

Fout．－The lyssal apparatus is in very much the comblition of that deseriherl atowe for Fomerioardia．
 well developed．The otorysts are large，and are situated unn the revelrodepedal comectives，adherent to their lateral surfare close above the pertal granglia．
lienul Oryans．－The kidney resembles that of lemu．（OAhner，8，p．：i40），amt is remarkalle for the slight pleating and general want of elalomation of the distal arm． This region of the kitucy is a voluminous sac（pleated a little laterally）（ommmicating freely with its fellow ly a wide passage lelow the perimatimu（lig．19，r．a．）．Its external opening lies on the same level as the reno－pericardial duet and slighty behind the genital orifice．

The reno－pericardial funnel leals into a long and perdiarly narow proximal am， which rums lackwards wraped in a fold of the distal arm parallel a the anterion surface of the retractor pedis，and enters the distal arm far hack heneath the renal commmication．A well－developed Keler＇s organ（Fig．19，ki：u．）is present in relation to the anterior cul of the pericardium．

Ciills．－The gills are very unequal in size；the plications in the inner and outer demibrachs are of about the same deptlo．The reflectel edge of the inner deminamelh is free of the body，lut that of the onter is atherent to the origin of the mantle，nearly as far back as the adductor＇；beyoud this point it is free，and is extemed upwards，as in vther Veneride，to form a thin，free，and mpleated appentage（Fig．19，＂1少．）． The intimate strueture of the gills also resembles that of other Veneride（hidewood， 17，p．-45 ）．In the outer lamella there are seventeen filaments to the pleat ；in the imer，twenty－one．

ANATINACEA，ANATLNHOE

10．Inatina cllistion，King and Broderip．Pl．IV，figs．20－23，25．
One specimen fiom 5 fathoms off Cape Evans，Mc．Murth Soumt．The epecimen （Fig．：O）was somewhat damaged in the region of the abluctor，lout was wherwise in goon condition．

Wentle－Ther mantle is similar the that of other speries of Anetime it is erme

situated helow and elose hehind the anterior adductor. The siphons are large and highly muscular, hut capahle of only partial retraction; externally they are covered by a thick rugose periostracum. No ocular tentacles were olserved.

Foot.-Although the foot was considerably shrunken, it is obviously of considerable size in the natural condition. Upon its ventral surface is a narrow byssal groove, though no lyyssus was attached to it.

The pedal museles are unequally developed. The anterior retractors, which arise in the usnal position close behind the anterior adductor, are of quite average development; the posterior retractors, on the other hand, are very much reduecd, and show signs of degeneration not only in the quantity but in the structure of their components. Their origin was destroyed, but they evidently arise as usual in front of the posterior adductor, and pass thence enfolded in the posterior part of the renal organ into the hinder end of the visceral mass. When exposed by the removal of the kidney they present a hart, sharply defined appearance more like that of a rod of cartilage than a muscle of the ortinary type. Examined microscopically, they were found to consist mainly of a peenliarly dense form of fibrous tissue, interspersed with a relatively small proportion of musclc-fibre-a structure more nearly that of a ligament than of an orlinary active muscle.

Difestice Organs.-The lips and palps are volminous, the latter being triangular and frcely pendent, with their apposed surfaces strongly fluted. The general disposition of the stomach and intestine is similar to that described and figured by Lacaze-Duthiers (4, p. 693) fur Aspergillum. The commencement of the intestine (gastro-intestine) is partially divided into right and left channels by a pair of longitudinal folds. Neither of these cavities contained a crystalline style, but within the stomach was a cuticular secretion (fleche tricuspide) of remarkable development. This secretion is stated by Pelsencer (10, p. 215) to he also highly developed in Lyonsiella.

The intestine is of large calibre, but, owing to the fact that it is flattened and considerably coiled, it appears when superficially exposed (as represented in Fig. 20) to le of variable diameter in different parts, acording as its narrow edge or flattened surface is prescntel to vicw. In its final upward hend it, in fact, narrows considerably. It enters the pericardium and traverses the heart in an ahmost vertical direction before bending backwards towards the upper surface of the adductor.

Renal and Generatice Oryans.-The bulk of the kidney (Fig. 20, r) is wedged between the pericardium and the adductor, as is common in the Anatinacea. It is compresserl antcro-posteriorly with its chief axis almost vertical, much as described by Odhner (8, p. 34!), fig. 35A) for Pandora. This orientation is musual; as a rule in this group the kidncy is much elongatel with its long axis horizontal. It is so in the genera described by Othner, with the above exeeption, and also to a marked degree in a specimen of Anatina truncata which I have had an opportunity of examining. Before, however, concluding that A. elliptica is peculiar in this respect, it must be borne in mind that the damage to the adductor in this particular specimen (the muscle appears
to have been dragged from the shell while the animal wats alive) maty have hat as one of its results an alteration of the form of the kidney by the formard shrinking of its upper parts. Whether this has been the ase or not, the possibility that the form of kidney presented may be umat urally shont in the bongitudinal direetion and distorted ly the forward and upward migration of its posterior end must not le lost sight of.

The perieardium (Fig. $20, p, e^{\circ}$) is prolonged batewards along the flow of the Kidney on either side of the mid-line ; and, on a level just in front of the month of the uringenenital canal, gives place at its extremity to the reno-pericardial fumel (ligg. 20, r.ped.). This passes mpwards towards the remams of the adduetor, parallel to the pericardium, and shortly enters the proximal arm of the kidney (Fig . $20,1: \%$). Which, in turn, upon nearing the adductor commmicates with the distal arm. Both the renopericardial fumel and the proximal arm are complicated ly pleating. The walls of the distal arms are elosely folded and lobulated, presenting in section an almost solint mass of renal tissue. In the area between the proximal amm and the pericardime they are in open communication with one another. The distal arm opens to the exterior though a long tulnlar hut dorso-ventrally flattened uringenital canal (Figs. 21,22,
 border of the kidney, at some little distance behind the termination of the attached part of the gill-axis, vertically about half-way between the attachment of the reflected lamina of the imner demibranch and the branchial nerve (Fig. 23A, B, br:n., r.l.) , and just above the cerebro-visceral connective. The camal runs directly inwards beneath the kidney, and is continued without interruption into the oriduct (Figs. 21, 22, 23s, o.d.). In its roof, vertically above the cerebro-visceral connective, is a large circular hole (the nephroproct) (Figs. 21, 22, 23b, r.o.) giving aceess to the eavity of the distal arm of the kidney, and in its floor opposite the anterior and mesial area of the nephroproct is the opening of the male genital luct (Figs. 21, 22, 23a, m.d.). The minogenital canal and both genital ducts are strongly ciliated.

The passage between the kidney and the minogenital canal is apparently perfectly open and free, and offers little himdrance to the passage of the products of generation into the kidney. In fact, in this particular specimen a bunch of ripe eggs was lodged in the renal orifiee, and others were scattered in various parts of the cavity of the kidney.

It is not, howerer, reasonalle to suppose that, muler normal conditions, eggs are discharged otherwise than down the urinogenital canal, though they evidently can, without difficulty, find their way into the kidney in the case of any abmormal convulsion of the borly, such as probably took place when the amimall wats killed.

The alove arrangement of the renal and genital orifices is not that commonly met with among the Anatinacea. Usually all three ducts open separately upon the surfine, though often quite close together (4, p. T:21. 10, p. 214, 16.A, p. 7:2). lin Pandenta ($8, \mathrm{p}, 349$) the renal duct is separate, hat the two genital ducts open ly a common orifice.

In addition 10 - Inatina elliptica, I have had the opportunity of examining a specimen of A. truncate, and find that in the mangement of its genital and renal ducts this species differs from 1. sulirostrata, in which these openings are stated by Pelseneer to be separate, and conforms more to the condition shown in A. elliptied and 1. hoschasina (20, p. 611), all three ducts opening to the exterior through a common urimogenital sinus (lig. $\because-t$, u.g.s.)

The arrangement in A. truncutu is shown quite diagrammatically in Fig. 24. Upon the dorsal surface of the cerebro-visceral comective, at some little distance below the gill-axis, is a large oval duct (Fig. 24, m. .l.) which, from the fact that it is occupied hy a granular mass (the condition of the material was such that no cell-detail could be made out), I take to be the male genital luct. As this passes backwards it diminishes in size, and upon its mesial aspect is perforated by a small hole communiating directly with one of the loles of the ovary. This, no douht, is the oviduct (Fig. 24, o.d.). Posterior to this confluence, the combined male and female ducts protrude in a pronounced papilla (Fig. 2t, \quad. $\%$.s.) from the side of the body below the attachment of the gill-axis and just above the cerebro-visceral comnective. Close to its opening the combined genital duct receives upon its mesial aspect a short duct from the distal arm of the kidney (Fig. 2t, r.d.). The pericardium, which, as is usual in the Anatinacea, lies in front of the kidney, narmows pusteriorly on cither side to a fine tube, the renopericardial funnel (Fig. 2-t, r.pe.d.) which passes heneath the renal duct, and thence (gratually enlarging) roms posteriorly along the floor of the distal arm of the kidney enveloper in its lobulations.

It will be noticed that the relative position of the genital and urinary ducts, the points at which they open into the minogenital canal, and the proportionate depth of the latter chamber, differ materially in this species from the condition observed in A. clliptica, though the two species agree in the perhaps more important fact that the genital and urinary products are discharged to the exterior through a common opening.

Keler's Orgun.-Keber's perieardial gland is highly developed, covering a considerable area of the horly-surface in front of and above the pericardium.

Gills.-As in the rest of the Anatinatea, the gills consist on either side of a complete imer demibranch with direct and reflected lamina, and of an outer demibranch upturned towards the dorsal line of the body, and eomposed of direct filaments only.

The gill-axis is expanded from its attachment to the horly-wall to the commencement of the gill-filaments to form a wide membranous sheet (Figs. 20, 25, I/a.), similar to that hy which the gills are suspended, accosting to IFancock (2, p. 289), in Mymberme and Cochlodesme. The sheet is widest half-way along its attachment to the body, amd thus has a semilunar form. In Ammina trmenta, and in an unidentified species of Inatima that I had the opportunity of examining, the base of the gill is closely attached to the broly-wall without the intervention of a membranous expansion of the axis, such as that
just described, and the same is poblably also the rase in Ametimu rostruth, Hrefly described by Woolwand (21, 1. 26).

At some distance in front of the himber limit of the visereal mass the gill-axis becomes free of the borly, and passes back to the anterion alge of the siphomal septum, to which with the rest of the hinder extremity of the gills it is attarberl.

The margins, both of the reflected lamina of the inner demitnathe and of the upturned outer demihranch, are attached throughout their length to the borly (Fig. 20, (ro.d., wi.t.). This is not the comlition usually associated with Anmime ; in this gemus the gill-edges are free as a rule, except hehind the foot, thomgh in other Anatinacea,
 (10, Pl. XYHII, fig. 69; Pl. XLX, fig. 75), they are attached to the borly, as in this phrticular species of I Inatinu.

Behind the visceral mass the edges of the reflected lamine of the inner demibranch are united; hat the edge of the upturned outer demibrameln seemed, so far as the condition of this region of the body alluwed of reliahle olservation, to be for a short distance free, learing a narow slit-like passage (Fig. 20, o.). letween itself and the mantle, through which the supra- and sulb-hanchial chambers of the mantle-cavity were in communication. Further back, the separation of these two chambers was again rompleted by the union of the edge of the outer demibranch with a forward lateral prolongation of the siphonal septum (Fig. 20, s.s.).

With reference to this passage between the two divisions of the mantle-cavity, it is interesting to notice that a somewhat similar passage is mentioned, though with hesitation, ly I Iancock ($2, \mathrm{p}$. 290), in his account of the gills of Myechomu. He says, In Ahyochomu, however, the hranchial and anal chambers are not perfectly divided, as they are in Cochlodesmin, and probably in Photulomyu. In the former', the septum, Which euts off the communication, does so only partially, there heing a ronsiderable aperture in it (Fig. 1, f.) , jnst where it joins the extremity of the gills. It is quite possible that this aperture may be the result of injury," etc.

In their minute structure the gills resemble in all important partioulars those of the Anatimea describel hy Ridewood (17, p. 261). They are deeply pleated, with a large number of filaments to the pleat (thirty in the inner demibranch, twenty-two in the onter) ; the chief filaments at the re-entrant angles of the pheats have a strongly concave frontal surfice and, where interlaminar junctions are absent, present upon their reverse fane, in place of a small acnte ridge, such as that figured hy Rideworl (17, fig. 51) for Cluctolla, a large cylindrical prominence endosing a "apacious vessel. I similar promineuce ocemes also upon all the chief filaneuts of the outer demibuath.

At the apex of cach pleat several of the filaments (nsually thee) are comsideralily larger than the nomal, hat withont any particular modification of shape. A similar condition is said ly Ridewood ($17, \mathrm{p} .265$) to he characteristic: of the gills of I^{\prime} 'enden'e
 enlarged filament in this position is figured by Hancock (3, I'l. IV, fig. 5).

Gemital Orgoms.-The sexes, as in other Anatinacea, are united in the same indivinual. The limits of the gonad of either sex are not very sharply defined, hut the greater part of the ovary is superficial, covering the upper and anterior parts of the visceral mass; the testis lies deeper, and is mainly situated in the ventral region of the visceral mass, packed amongst and around the coils of the intestine. The genital ducts communicate with the exterior, as mentioned in the deseription of the renal organs, through a minogenital canal, and in this respect differ from those of Andina subrestrata described by Pelseneer (16A, p. 72).

The egge, while yet in the ovary, are enclosed, as in other Anatinacea, in a thick capsule. In this particular individual many of them had been laid, and were found in masses in the supra-branchial chambers in the neighbourhood of the mouth of the urinogenital canal. None, so far as observed, had penetrated between the lamine of the inner demibranch. Among the Anatinacea are some of the comparatively few marine Lamellibranchs in which the eggs are lodged in the gills during a longer or shorter period of incubation. The gills themselves in this group are, however, not really well adapted to contain any great number of eggs, for their tissues are balky, their pleating is extremely close, and the interlaminar space is much restricted. On the other hand, in the present species of Anatina (and in Myochama and Cordlodesma), owing to the peculiar extension of the gill-axis just described and the fusion of the gill-margins to the body above and below it, an enclosed supra-hranchial chamber (Fig. 25, s. \%c..) is formed, roomy enough to provide accommodation for a very eonsiderable mass of eggs.

Whether this eavity is used in Myochamu and Cochlorlesma for the retention of eggs I do not know, but the presence of masses of eggs within it in Anetime elliptice leads one to suppose that it is so used in that species, and suggests further that the modifications observed in the more of attachment of the gills may be for the purpose of fitting them to serve as an efficient brood-pouch.

In concluding this Report, there are a few points that may be reapitulated, as having an interest beyond that attaching merely to the genera in which they respectively occur.

It will have been noticed that amongst the Arcacea described, three stand apart owing to their close similarity; these are the three monomyarian genera Lissarea, Addenared, and Phildmya. The similarity is not only in the broader features of their anatomy, hut also in various lesser and apparently trivial. peculiarities ; such, for instance, as the form and relations to the mantle of the outer palp, the presence of a pair of glandular eacea between the posterior lip and the body, a ridge of modified epithelinm between the gill-axis and the body, and in Adecnarea and Phildorya the details of the relatiomship of the mantle-ravity to the anterior parts of the gills.

These facts very dearly point to a somewhat close relationship between these three genera, bringing them together to form a group of Momomyarian Areida.

It shouk be noticerl that in Lissurea the gonads of the two sides are in complete union with one another, as wats seen to be the case in Alucmeron he Pelsencer. Int this is not so in Philubrya. Here each gonal is separate.

Another point of interest is the presence of vestigial cephatic eves in Lissarett Adremarca, Philubrye, and Bentuthe, members of the Arearea in which these organs have not hitherto heen moticed. The fact that some of these genera live at a depth as great as 250 fathoms, a region well beyond the limits to which light can penetrate, throws some doubt on the functional value of these organs.

Several of the genera described contained eggs either in the mathe-ravity or in the gills (in the anterior part of the mantle-earity (Ademomet), in the suma-hanchial chamber (Anotina), in the interlaminar space of the gills (Venericardia). Probably in earlo case the eggs were being incubated; if so, it is a matter worthy of record hoth hecause it is an unusual habit among marine Lamellibamohs, and atso because it is apparently more common among Antarctic forms than elsewhere. It was fonme, possilly in arlaptation to this hahit, that the relations of the gills to the borly in Anatine elliptica were quite unlike those of any other member of this genus about which information could be ohtained, but were identical with those that obtain in Myochemm and C'echlodesma.

I camot close this Report without expressing my thanks to the anthorities of the British Musenm, in the first place for entrusting me with it, and then for their patience in awaiting its completion.

V.-LIST OF REFERENCES.

1. Deshayes, G. P., 1844-1848.-."Histoire Naturelle des Mollusques" (Exploration Scientifique de l'Algirie), Paris.
2. Hancock, A., 1\&5̄3.-"On the animal of Myochama anomioides."-Ami. Mag. Nat. Mist. (2), Vol. XI, 1P. 287-291.
3. Haxcock, A., 1853.-"On the animal of Chamostrea albida."-Amm. Mag. Nat. Hist. (2), Vol. NI, рр. 106-112.
4. Lacazf-Dutimers, H. De, 1883.-"Morphologie des Acéphales." ler Mimoire, "Anatomie de l'Arrosoir' (Aspergillum dichotomum").-Arch. Zool. Expér. (2), T. 1, 11p. (i6.)-i32, 5 pl.
5. Loven, S., 1849.-"Ueber die Entwickelung der Mollusea Acephala."-Areh. fïr Naturgeseh., Jahrg. 50, Bd. 1, pp. 312-339.
G. Matrimas, M., 1914.-"Vergleichend-anatomische Untersuchungen iiber den Darmkaual und das Herz einiger Arcaccen."-Jenar. Keitschr., Bd. 45, pp. 363-44, 4 pl.
6. Nomas, D. van H., 1881.-"Die Lamellibrmehiaten, gesammelt wiilirend der Fahrten des Willem Sarents,' 1878-i9."-Niederländ. Arch. für Zool., Supl. Bd. 1, 1881-188:2, pp. 1-51, 3 pl.
7. Onhner, N., 1912.-" Morphologische mul Ihylogenetische Untersuchumgen über die Nephridien der Lamelliluranchicn."-Zeitselir. wiss. Zool., Bu]. 100, Ip. 2Si-391.
8. Preseneer, P., 1888.- "Report on the Anatomy of the Deep-sea Mollusca, collected hy M.M.S. "Challenger' in the years 18:3-18i6 (Pelecpoda)." - "Challenger" lieports, Vol. 27, 11. $2 \mathrm{If}-40,4 \mathrm{pl}$.
9. Pelsencer, P., 1891. "Contribution à l'étudo des Lamellibranches."-Areh. de Biol., T. XI, pp. 119-312, 18 pl.
10. Pelseneer, P., 1900.-" Les yeux cephaliques chez les Lamellibranches."—Areh. de Biol., T. NVI, P1. 99-105.
11. Pelsmener, P., 1903.-."Mollusques."-Résultats du Voyage dus.Y.' Bulgica,'1897-1899. Rapports Scientifiques. Zoologic, P1. 1-85, 9 pl.
12. Pelsexeer, P., 1906.-"Un genre de Lamelhinanches à bouches multiples."-C.R. Ac. Sci., T. 142, 11. $723-723$.
13. Pelsbxeer, P., 1906.-_" A treatise on Zoology" (edit. E. Ray Lankester), Pt. V, "Mullusca."
14. Pelsenfer, P., 1907.-"La concentration du systéme nerveux chez les Lamellibranches."-Bull. Ac. Roy. de Belgique (3), T. 45, pp. 874-878.
15. Pelsfener, P., 1909.-"Les jeux branchiaux des Lamellibranches," Bull. Ac. Roy. de Belgique (3), T. 46, pp. 7ヶ3-779.
16.1. Pelsexerir, P., 1911.-"Les Lamellibranches de lexpédition du Siboga."-_" Partie Anatomique." Monogr. LIILa, de Uitkomsten Zool., Botin. Oceanogr. en Geolog. Gelied, verzameld in Nederlandsch Oost-Indië, 1899-1900. 1p. 1-125, 26 pl.
16. Rimewood, W. G., 1903.-"On the structure of the gills of the Lamellibranchia."-Phil. Trans. (I), Yol. 195, pp. 147-284.
17. Smiti, E. A., 1915.-"Mollusca, Part I."-British Antarctic ("Terra Nova") Experlition, 1910, Natural History Report, Zoology, Vol. II, No. 1, pp. 61-112.
18. Thimede, J., 1902.-"Die systematische Stellung der Solenogastren und die Phylogenie rer Mullusken." —Zcitschr. wiss. Zool., Bul. 72, 1p. 249-466, 10 pl .
19. Von Jubinci, Il.-"Zur Morphologie der Niere der sogenamenten Mollusken,"-Zeitschr. wiss. Zool., Bd. 29, 1877,1 11. 58:-614.
20. Woodward, S. P., 1855.-"Descriptions of the Animals of certain genera of Conchifera."-Ann. Mag. Nat. Hist. (2), Vol. 16, pr. 22-27.

Mlaenarea nitens, 238.
Anatina elliptica, 249.
", truncata, 250, 25.2.
Area (Barbatia) sp, 240 .
,, barbata, 2:37.
Aspergillum, 250 .
australis, Yenericardia, $\because 17$.
barbata, Arca, 237.
calyculati, Cardita, 248.
consociata, Chlamys, 214.
Carlita calyculata, 248.
Cardium pygmeum, 248.
Chione (Chamelea) spissa, 249.
Chilanys consociata, 21%.
Cochlodesma, 2.52, 2.54.
elliptica, Anatina, 2 ± 9.
" Lima, 245.
standis, Limopisis, 211 .
hians, Lima, 2.15, 216, 217 .
hodgsoni, Lima, 245.
Limatula, 215.
inflata, lima, 2 t7.

Lima elliptica, 245.
, hiams, 245, 246, 217.
" inilata, 247 .
(Limatula) hodgsoni, -45.
limoides, Philolrya, 242.
Limopsis grandis, 241.
Lissarea notorcadensis, 235.
Myochama, 252, 253, 25.
nitens, Adannarca, 238 .
notorcadensis, Lissurca, 235.
Pandora, 250, 251, 253.
Philobrya limoirles, 24%.
,, sublevis, 242.
lurpurata, Venericardia, 247.
livgnaeum, Cardium, 248.
spissa, Chamelea, 249.
Chione, 249.
subleeris, Philobrya, 242.
Trigomella, 318.
truncata, Anatina, 250, 252.
Tencricardia austalis, 247.
" lurpurata, 217.

PLATE I.

Figs. 1-i. Lissarca notorcadensis.

Fig. 1.-Diagram of Lissurct notorcadensis.
u., Anus : ub.o., abdominal sense organ ; add., adductor ; a.r. μ., anterior retractor pedis; by., byssus ; by.j., byssal papilla ; c.e., cephalie eye; e.p., elevator pedis; g.a., gill-axis; g.im., gastro intestine ; g.o., genital orifice ; l., heart ; i.f., inner demilranch ; i.l., imer lip ; int., intestine ; l.c., labial cecum ; pr., pericardium ; $p \cdot l .$, pelal ganglia ; p.r.p., pusterior retractor perlis; o., otocyst ; o. 1 , outer lip ; r., remal organ ; r.o., renal orifice ; r.p.t., renopericardial duct.
Fig. -.-Mantle-edge in transverse section.
i.f., Inner fold ; m.f., middle fold ; o.f., outer fold.

Fif. 3.-Posterior end of inner palp and commencement of inner demibranch, showing position of cephatic eye.
c.e., Cephalic eye ; f^{1}., swollen anterior filament of inner demibranch; i.f., inner demibranch ; i.plp, imner palp.
Fig. t.--Transverse section through cephalic eye.
$\ell .$, Eye ; i.t., inner demibranch.
Figs. 5_{A}, 5b.-Transverse sections at different levels through the lips (Fig. 5A) and palps (Fig. 5b), showing the entry to aud position of the labial cecum.
c.!., Cerebral ganglion ; h.p., hepato-pancreas ; i.l., inner lip ; i.plp., inner palp; l.c., labial cecum : m., mantle ; o.l., outer lip ; o. p_{1}., outer palp ; ov., ovary.
Fig. 6.-Transverse section througl labial ceemm.
i.1., Inner lip; l.c., labial cacmm.

Fif. 7.-Transterse section through the anterior extremity of the sub branchial epithelial ridge.
e_{p}, x., Epithelial ridge ; i.g., attachment of inner demibranch.

Mollusca, Part IV, PI. II.

PLATE 11.

Fitis. 8-9c. Adacnarca niters.

Fig. \&.-Transverse section, showing c.e., cephalic eye ; i.d., inner demibranch ; ov. ovom.
Fis. sa.-Left gill.
d.f.i., Direct filaments of inner demibranch; i.d., inner demibranch ; r:f.i, reflected filaments of inner demibranch ; r.f.o., ends of reflected filaments of outer demibranch.
Fic. 9A.-Transverse section through renal orifiee, showing extension of mantle-cavity between the attachments of the outer and inner demibranchs.
Fig. 9b.-Transverse section through region of transference of attachment of outer demibranch from mantle to body, showing extension of mantle-eavity in body-wall above gill-attachment.
Fig. 9c.-Transverse section through visceral ganglion, showing hinder termination of extension of mantle-cavity.
Figs. 9A-c.-c.v.c., Cerebro-viseeral comective ; epr., sulb-hranchial epithelial ridge ; i.l., inner demibranch; m.c., cxtension of mantle-cavity; o.d., outer demibrancli ; r., renal organ ; v.g., visceral ganglion.

Figs. 10-12. Limopsis arundis.
Fig. 10.-Diagram of the internal anatomy.
abd.o., Adominal sensc-organ; a.r.p., anterior retractor pedis; wu., auricle; au.c., auricular communication ; lr.a., gill-axis of left side ; lu.m., branchial muscle ; by.p., byssal papilla : ext., curtain-like extension of outer lip; y.cl., genital duct; g.i. gastro-intestine ; o., otocyst ; o.l., outer lip ; p.r.p., posterior retractor pedis; r., renal organ; r.fe.d., renopericardial duct ; u.!/..., urinogenital orifice ; v. , ventricle.
Fig. 11.-Lips in transverse section.
ext., Extension of outer lij ; i.l., imner lij ; m., mantle ; o.l. outer lip.
Fig. 1コ.-- (iill-axis in transverse section.
In.n., Branchial nerve ; c., cartilaginoid tissue ; m., loranchial muscle.

HIRUDINEA.

BY

W. A. HARDING, M.A., F.L.S.

Cittle is known of the Hirudinea of the Antarctir and Subantarctic Zones. The leeches collected by the "Terra Nova" Expedition were therefore not likely to be wanting in interest ; and in fact, although few in number and representative of hut one species, this species proves to be a new one and referable to a new gemus of Ichthyobdellidate.

According to information sent with the material this leech is a fish parasite. the seven specimens having heen taken at the Winter Quarters, Victorial Land. on two occasions (May 10th and May 16th, 1911), from the gills of tishes of the genus Tremutomus. probably either T. hunsmi, or T. Vernucelai, both of which are widely distributed on the coasts of Antareticat.

I proceed to give a short diagnosis of the new lehthyobdellid genus together with a description of the new species on which it is founded.

Sub-order RHYNCHOBDELLAE

Family ICHTHYOBDELLIDAE
(RYOBDELLA, gen. nov.
[крvos, icy cold; $\beta \delta \epsilon \lambda \lambda \alpha$, leech.]
Small marine leeches parasitic on the gills of fish. Without eyes. Borly fusiform, little flattened, smooth. Without pulsating vesicles. "Complete" somite formed of three rings which in the posterior part of the body are sub-divided into six. Last pair of crop caeca partly fused together. Four pairs of testes.

CRYOBDELLA LEVIGATA, sp.u.

Body long, slender and tapering from the slightly swollen middle portion towards either extremity : oval and tending towards the circular in transvense section. The surface is smonth without tubereles or papillae, and the colour, in ateohol, is of a uniform lrownish grey, above and below, unrelieved by spots or other special markings.

$$
\text { vol. i1. } \ddot{-}
$$

Anterior sucker small, circular and narower than half the greatest width of the body. The mouth-opening perforates the upper surface of its interior cup at a point situated about midway between the centre and the somewhat thickened rim.

Posterior surker large and powerful, slightly oval, centrally attached and broader than the borly at its widest part.

There are no cyes and no lateral pulsating vesieles.
A well-marked elitellum is present, its terminal rings being separated from the anmuli eontiguous to them loy exceptionally deep grooves.

There are normally $1+$ rings between the anterior sucker and the clitellum, but in one individual 15 ammli could be counted, an extra ring apparently laving been split off from the anterior sueker.

The elitellum comprises 8 rings and is followed by 39 ammuli, each of which is distinctly divided into two by a shallow groove, representing an intermediate stage in ring multiplieation not infrequently seeu in Hirudinea.

Thus there are, in all, 22 single annuli followed by 39 double ones, behind the anterior sucker.

The anterior half of the $39 \mathrm{th}_{1}$ (double) ring is the last completely to encircle the hody.

In the absence of external metameric features, the ventral ganglia were exposed and the somites plotted gut, as seen in Fig. 1, according to the now generally adopted neuromeric standard.

The typical or "complete" somite is composed of three "primary" rings which, as alrealy stated, are sub-divided in the posterior region so that six "secondary" rings can there le comnted, a condition similar to that seen in the abdominal "complete" somites of C'alliolulella. The elitellar somites, as is usual in the Lchthyobdellidae, are modified in response, it would seem, to the comparatively hulky reproductive organs crowled within them, which tend to displace the ventral ganglia involved.

Somite XI contains but two annuli, and the anterior third of Somite XIII (contained within the elitellum) appears to show the final stage in the history of a double ring, the dividing groove, originally shallow, having deepened sufticiently to produce two definitely single rings.

The alimentary tract is shown in Fig. 2. The proboseis is relatively short; the intestine leaves the crop (stomach, thin-walled middle gut) in Somite XIX, tapering gradually to the amus, which opens in the middle of the antepenntimate double ring ; and special mention must be made of the last pair of arop diverticula or raeca, which extend posteriorly leneath the intestine throughout nearly the whole of its length.

The extent of fusion, if any, which may exist hetween these acca has been regarded ly Johansson (1898), in a valuable paper, as of considerable diagnostic importance in the lehthyoblellidac, and he cites a series of stages ranging from
 them is complete and results in a single large calermm．In 6 ．Iretynfa the fission referred to is not quite complete，the comse of the cateal are free for a shom distame and there are indieations of another gap between them ：merionly：
 glohular terminal portions of the cjacentatomy canals＂pen into a short hasa which ends exterionty in the male oritice ；and a curious fiature comsists in the reduetion of the number of testes to four pairs．

The male genital oritiee is situated in the midelle of rimg 18 ，that is，in the first ring of somite XII．The female oritice bes between rings 19 and 20．Which form respectively the secomel and thited rings of the same somite．There is mo woulatory
 female organs bear a genemal resmblane to the（ilnsersiphmit type．

The enelomie systome shows the simplification associated with the alssence of hateral pulsating vesides．As fatr as combld be ascertained，there are wo lateral simses or
 definite pronouncenent would be unwise in riew of the limitations of the material．

Of the nepheritial systern for the same reasom，little can be said．No internal openings eould be deterted and 16 infomation would he gathered regaminer the typ of nephridial network，of whel some intications were apparent．

Size．The following measmements were taken from the largest indivilual in the collection．

Total length 29 mm ：greatest width of boty $: 3.5 \mathrm{~mm}$ ；diameter of anterion sucker 1.5 mm ；length of posterior sucker 4.5 mm ；width of posterior sucker 4 mm．

Our knowledge of the lehthyoblellidae is still in an unsatisfartory state．
In this family of Hirulinea perhaps more tham in any other．an analysis of the extermal characters alone has been fomm to be insufficient for the diserimination of genera，and many of its more deliate members are extramdinaty ditheult to presere with all their diagnostic features intact．

There are a number of Idhthyohdellid genera which have not been finlly insestigated，and althongh Cryolutella lorighter presents a group of features hitherto molescribed，it is not without hesitation that 1 have called into being another new genus in which the internal structure hats not heen completely worked out．

LITERATURE．

Jomnsson，1．－1898．＂Einige systematisch wiohtige Theild der inmewn Organisation der Ichthyo bdelliden．＂Yool．An\％，XXI，1．S心l。

Benhan，W．B．－ 1909 ＂Preliminary Report on two Mirudine from the subantaretie Islamls af

Loxpon

phinted bi whiman clowes and sons, hmited,
heke street, stampord strefi, s.e. 1, ind aheat windmida strefi w 1.

EXPLANATION OF PLATE.

Fif. 1.- Cryolulelli levigata, from an example preserved in alcohol, $\times 3$. The body has been twisted so as to show part of the ventral surface antcriorly and part of the dorsal surface posteriorly.
Fif. 2.-Outline drawing of the same, life size.
Fig. 3.-Cryoldella levigata. Diagram showing external features and ventral nerve-ganglia. Somites numbered in lioman, and rings in ordinary figures. an. Anns. clit. Clitellum. c.oe.g. Circumoesophageal ganglionic mass. wth. Mouth. 1.g. Pusterior ganglionic mass. v.g. Ventral ganglion.
Fig. 4.-The same. Diagram showing the reproductive and alimentary systems. an. Anus. caf. Caeca. clit. Clitellum. cr. Crop. ej.c. Ejaculatory canal. int. Intestine. mith. Month. ov. Ovary. mb. Proboscis. te 1, te 4. First and fourtl pairs of testes. tp. Terminal portion of ejaculatory canal.

Brit. Mus. (Nat.iiist.)

Zoology, Vol. II

Hirudinea, Pl. I.

PLATE III.

Figs. 13-15. Phitobrya limoides.

Fig. 13.-Diagram of anatomy.
a.r.p., Anterior retractor pedis : au.c., amricular communication; by.p., byssal papilla . c.e., eephalic eye ; g.o., genital orifice; l.c., labial ceeum ; p.c. pericardium ; p.r.p., posterior retractor pedis ; r., renal organ ; r.o., renal orificc ; r.pc.d., reno-pericardial duct.
Fig. 14.-Diagram of mantle-cavity and sub-branchial ridge.
$e_{p} . r$., Sub-branehial ridge of modified epilhelium ; g.d., genital duct ; m.c., extension of mantle-cavity above gill-attachment ; ov., ovum.
Fig. 15.-Cephalic eye.

Figs. 16, 17. Lima (Limatula) hodgsomi.

Fig. 16.--Diagran of general anatomy.
ly.g., Byssal groove ; c., curtain of mantle ; r.g., cerebral ganglion ; y.rl., genital duct; III., pallial muscle ; m.f., diverticulum of mantle-cavity above lateral extremity of adductor : o., otocyst ; pe.c.; pericardial communication ; p.y., pedal ganglion ; p. \cdot.p., posterior retractor pedis ; r., renal organ: r.c., communication between renal organs; r.o., renal orifice ; $r . \mu^{c} . d .$, reno-pericardial duct : $v .$, rentricle : r.g., visceral ganglion.
Fig. 17.-Diagram of mantle-diverticulum from behind.
u., Anus ; ubu.o., abdominal sense-organ ; add., adductor ; br.a., gill-axis; c., united
 general mantle-cavity to diverticulum ; $\mu^{\prime} \cdot r . \mu^{\prime}$., posterior retractor perlis.

Fir. 18. Venericardia purparatu.
Fig. 18.-Diagram of general anatomy:
ly.c., Byssal cleft ; ly.p., byssal papilla ; y.o., genital pore ; ht., heart; i.p., inner palp; m.u., mantle-union : o., otocyst; p.c., pericardium : r., kidney ; r.c., renal communicatiou; r.o., renal orifice : r.pe.rl., reno-pericardial duct.

Fis. 19. Chione (Chumelcu) spissu.
Fig. 19.-Diagram of general anatomy.
app., Λ_{p} pendage to outer reflected lamina of gill; y.o., genital orifice; h., heart: li.o., Keber's organ ; o., otocyst ; p.c., pericardium ; r., renal organ ; r.c., communication between renal organs; r.o., renal orifice ; r.pe.t., reno-pericardial duct; v., siphonal valves.

Brit.Antarctic (TerraNova) Exped. 1910.

Mollusca, Part IV, Pl. IV.

PLATE IV.

Figs. 20-23, 25. Anatina elliptica.

Fig. 24. Anatine truncata.
Fig. 20.-Diagram of the gencral anatomy of Anatina elliptica.
a-b plane of section of Figs. 21, 23. a.i.d., Line of attachment of inner demibranch; u.o.d., line of attachment of outer demibranch ; u.r.p., anterior retractor pedis; b.e., hyssal cleft ; br.u., branchial nerve ; q.u., expanded gill-axis ; i.d., inner demibranch ; k.o., Keher's organ; o., passage between outer demibranch and mantle; o.f., outer demibranch; $f^{p . e}$., pericardium ; p.o., pedal orifice ; $p \cdot r . p .$, posterior retractor pedis ; r, kidney ; r.c., renal communication ; r.p., proximal arm of kidney ; r.pe.d., reno-pericardial duct ; s.s., siphonal septum ; u.g.c., mouth of urinogenital canal.
Fig. 21.-Diagram of minogenital canal and genital and wrinary ducts, from ventral (posterior) aspect (plane of section shown in Fig. 20, A-B ; lettering as in Fig. 23).
Fig. 2..-Diagram of urinogenital canal and genital and urinary ducts, postero-dorsal aspect (lettering as in Fig. 2:3).
Figs. 23 a, b, C.-Sections in plane A-b, Fig. 20, through the mouth of the male duct (A), through the renal orifice and oviduct (B), and through the urinogenital canal (C).
br.u., Branchial nerve ; c.c.c., cerebro-visceral connective ; m.d., male duct ; o., ovum ; o.d., oviduct; r., distal arm of kidney; r.l., attachment of reflected lamina : r.o., renal orifice ; ".g.c., urinogenital canal.
Fig. 24.-Diagram of genital and urinary ducts of Anatina truncuta from above (compare Fig. 2.2).
c.v.c., Cerebro-visceral connective ; m.d., male duct ; o.d., oriduct ; ov., ovary ; p.c., posterior horn of pericardium ; r., distal arm of kidney ; r.fl., renal duct; r.pc.l., reno-pericardial duct; u.g.c., urinogenital canal.
Fig, 25.-Diagram of gill and gill-axis, in transverse section, of Anatina elliptica.
g.a., Expanded gill-axis ; i.d., inner demibranch ; o.d., outer demibranch ; sp.c., suprabranchial chamber.

V．－LIST OF REFERENCES．

Abans，A．and H．－－185s．＂The Genera of recent Jlollusca，＂Vol．It．
Vax bexenex，P．J．－1810．＂Mémoire sur la Limarina arctich．＂Nour．Mén．Acad．Bruxelles， tome XIV．，p． 1.
Berson，W．H．－1861．＂Notes on the Pteropodus genus H！raluer．＂Ann．Mag．Nat．Hist．（3）VII， p． 20.
Blaintilele，Ducrotay de．－1824．＂Dict．Sci．Nat．＂NXII（article Ifyrle）et NX゙XII（article Mollusignes）．
Boas，J．F．V．－1s＊i．＂Spolia atlantica．＂Vidensk．Selsk．skr． 6 lateke．Afrl．IV，l．Kjubenharn． Bonnevie，K．－1913．＂Pteroporda from the＇Michael Sars＇North Atlantic Deepsea Expedition，1910．＂ Tol．III，Pt． 1.
Bosc．－1802．＂Histoire naturelle des conuilles．＂Vol．I，Paris．
Cintrane，F．－184．＂Malacologie méditeranceme et littorale．＂Nouv．Mém．Acad．Bruxelles， tome SIIT，p． 1.
Costa，A．－1867．＂Mémoire sur S’pirialis rocurtionstre．＂Amı．Mus．Zool．\niv．Napoli．Anno IV．
Dald，W．H．－18iこ．＂Descriptions of sixty new forms of Mollusks from the west eoast of North America and the North Pacific Ocean．＂Amer．Journ．Conch．VII，p． 93.
．，－1885．＂Report on the Mollusks，＂in：Rept．Internat．Polar Expelition to Poiut Barrow， Alaska，Wrashington．
＂－1889．＂A preliminary catalugue of the shell－hearing mone Alollusea and Brachiopoda．＂ Eull．U．S．Nat．Mus．XXXVIT，p． 3.
Dellé Cnhase，K－1841．＂Descrizione e Notomia degli Auimali senza Vertehre del Regno di Napuli．＂
Drshates，G．P．－1832．＂Histoire Naturelle des Vers．＂Tome III（Encyclopédie méthodique）．
Eeiot，Sir C．－1907．Mollusea，V＇I．Pteropola．＂National Anturetic Expelition［Discovery］，190i－ 1904．＂Natural History，Vol．111，Zool．and Bot．，London（1；ritish Museum）．
E：cuscuoltz，F．－－1829．＂Zoologischer Atlas．＂Brl Heft．
Fabricics，O－1Tso．＂Fauna Groeulandica．＂
 p． 1201.
Fleming，J．－182s．＂A History of British Animals．＂
Forbes，Euw．，and IIndify，S．－1853．＂A Histury of British Molluse：a and their shells．＂
Gerexbadr，C．－1855．＂Untersuchungen iiber Pteroporlen und Ifeteroporlen．＂
（imelis， \mathfrak{F} ．J．—1797．＂Caroli a Limé Systema Naturac．＂Tome I．p：1rs．vi．
Gotcd，A．A．－ 1852 ．＂Alollusca and shells of the United States Exploring Expedition under the command of Ch．Wilkes．＂Tol．XII，Boston．
Grat，J．E．—1s50．＂Catalogne of the Mollusca in the Collection of the british Musemm．＂Part If． Pteropoda．
Jeffrexs，J．Gwrx—1869．＂British Conchology．＂Tol．TV．
Kwietnenski，C．1902．＂Alcune Osservazioni intoruo agli Ptoropodi Gimnosomi del mare Mediter－ ranen．＂Atti Soc．Veneto－Treutinarci．Nat．（2），Vol．iV＇，Fisc．シ̈，Padova．
Lamarci，J．－F．dr．－1819．＂Histuire Naturelle des Animanx sams Vertelnes．＂ $1^{\text {re }}$ El．，Tome VI．
Leaz，H．－1906．＂Pteropoden．＂Nordisches Plankton Lief． 1 V．
Locard，A．－18s6．＂Mollusiques viranis de France．Mollusques marins．＂
Lovés，S．－18t7．＂Index Molluscorun litora scandinavi：ne necidentalia habitantium．＂

Massr, 1. L.-1900. "The Pteropoda and Heteropoda of the Coasts of Treland." Fisheries, Ireland, Sci. Invest., 1907, II [1909].
—1917. "The Gymmosomatous Pteropoda of the Coasts of Treland." Sci. Proe. Loy. Bublin Soc. Vol. XV (N.N.), No. 2.
Metaenienmer. J.-190. " Pteropoda." Wiss. Ergebn. Tief. See-Expedition "Valdivia," 1898-1899, 1Bd. TX. Lief. I.
-1906. "Die Pteropoden": in Dentsche Sül-Polar Expedition, 1901-1903. IX bd. Zool. i. Bd. Heft. ii.
Mürcir, O. A. L., 185才. "Jollusea groenlandiea." Kjühenharn.
Nuxthe, H.-188i. "Pteropoter i Upsta Universitetets Koologiska Museum samlade af Kapten G. von Schéele." Bihang K. Svensk. Vet.-Akad. Hamll. Bul. 13. Aful. IV, No. 2.
Orbignt, A. d'.-1835-1847. "Yoyage dans l'Amérique méridionale 1826-18.33"; tome V ("Pteropodes . . ")
Pelsenier, P.-lisi. "Challenger Reports," Yol. NIX. "Gymnosomata."
" -1888. op. cit., Vol. XJIII. "Theeosomata."
" - 1888. op. cit., Vol. XXIII. "Anatomy of Pteroporls."
" -1906. "Biseayan Plankton eollected during a Cruise of H.M.S. 'Research," 1900." Pt. VIT. "Mollusea (exeluding Cephalopoda)." Trans. Linn. Soe. London, (थ) Zool. X. Pt. 5.
Péron if Lescedr.-1810. " Histoire de la famille des Ptéropodes, earaetères des dix genres qui doivent la eomposer." Ann. Mus. Hist. Nat. tome NV.
Pfeffer, G.-1879. "Lebersicht der wihrend der Reise um die Erde in den Jahren, 1874-1876 auf S.M. Sehiff Gazelle it Von Herr Dr. Jagor anf semer Reise nach den Philippinen in den Tahren 1857-1861 gesammelten Pteropoden." Monatsler. K. Akad. Wiss. Berlin. p. 230.
Phipps, C. J.-1773-175t. "A royage towards the North Pole."
Quor \& (famari-1832. Yoyage de lastrolabe autour du Monde, de 1826 à 1829 . Zoologie: " Jollusques," t. I.
Ravg, S.-1824. "Notice sur quelques Mollusques nouveanx apprtenant au genre Clemdura et établissement et monugraphie du sous genre Crescis." Ann. Sci. Nat. (1), t. XIII.
Sans, C. O.-1878. "Molluseal hegionis Aretieac Norvegiae. Blotdyr."
Schiemexz, P.-1906. "Die Pteroporlen der Plankton Expedition." Plankton Exp. der Humboldt Stiftung.
Soulemp, in Eydoux aud Souleyet, 1852. " Yoyage autonr du Monde exécuté pendant les années 1836 et 1837 , sur la corvette la Ionite, emmandée par M. Yaillant." Zoologie, t. II.
Sowerby, G. B.-1877. "Pteropoda" in L. Reeves "Conchologia iconica," wol. XX, 1877.
Tescif, J.-190t. "The Thecosomata and Gymnosometa of the Siboga Expedition." Siboga Expelitie, LII.
Yanuöfrex, E.-1897. "Die Fauna and Flgra Grönlands" in Erieh v. Drygalski, Grünland Expedition 1891-1893, Bu. II.
Yayssière, A.—1915. "Mollusyues Euptéropodes (Ptéropoles Thécosones) provenant des Campagnes des rachts Hirondehe et Princesse Alice $(1885-1913)^{\circ}$ Res. Cimp. Sci. Albert ler Monaeo. Fase. XLVII.

INDEX.

ansulata, 1 yablizea, 20 .
antaretica, Climu, 201, 205, 203.
.. Clione limarina, var.. $2: 3$.
$\because \quad$ Limacina, $216,215,212,21 ?$
arctica, Argonauta, $\because 16$.
Limacina, 216 .
Sliratella, -16 .
Argonauta arctica, 216 .
Atlanta bulimoïles, 200 .
.. inflata, 219 .
,. trochiformis, 22.2 .
atlanticun, Puenmoderm:1, 204, 20.5, 224.
australe. Sliriale, 2.2l.
australis, Limacina, 는․ 22.

balea, Heterufusus, 221.
, Limacina, 204, 205, 2.21, 2.22.
" Sbirialis, 221 ,
bispinnsa, Peraclis, 22.2 .
brevispira, ", 20?
bulimoïles, Atlanta, 220.
$: \quad$ Limacina, $\because 04,205, \because \because 0$.
: Spirialis, 220 .
carluceus, Cliodita, 22.5.
caligula, Creseis, 216 .
caucellata, Triptera, 215.
Cavoliuia, 20 .
gibbora, $204,205,208$.
inflexa, $20 t .20 .5,210$.
," longirostris, $204,205,205,209,210,211$.
quadridentata, 210.
uncinata, $204,205,-205$.
sp., $20.5,-210$.
Cavolinidae, 208.
C'icodora, 211,215 .
compressa, 204, 205, 214
exacuta, 211.
falcatin, $204, \because 16$
fexa, 216 .
lalviata, oll
:, lamartinieri, 211 .

Cleorlora lanceolata, $\because 11$.
, martensi, 211 .
$\because \quad$ mund., 216 .
.. oltusa, 21.5 .
$\because \quad$ placida, $\because 16$.
.. pramidata, $204, \because 05,211.213$.
, spinifera, :15.
.. subula, 215.
.. subulata, 215.
$\because \quad$ sulenta, $204,205,212,213$.
\therefore virgula, 216 .
Clio conica, $\because 16$.
,. limacina, 2 If
, myramidata, 211 .
" subula, 215 .
,. virgula, 216.
Cliodita caduceus, -2.25 .
Clione. -2.3 .
\because antarctica, $\because 04,20.5,223$.
:- limacina, $2=3, \because \because 4$.
$\because \quad$:, var, antarctica, 223.
, punct:ata, 2.26.
Clionidae, -3.
columnella, Cuvicrina, 204, 205, 215.
,. Triptcr:a, 21\%.
compressa, Cleodora, $204,20.5,214$.
eonica, Clio, 216. Creseis, 216 .
eorniformis, Jyalaea, 21\%.
Ntyliola, 216.
cornucopiat, Crescis, 216 .
Crestis, $215,-16$.
". caligula, 216.
\therefore conica, 216 .
," cornueopiae, 210 .
,. unguis, $\because 16$.
:, virgula, 20:. 205, 216.
cuspidata, Hyalaea, 211.
Cuvieria oryza, $\because 15$.
, urceolaris, 215.
Cuvierina, -15.
columnella, $:=04,205,215$.
Cymbulia peroni, 204.
depressa, Hyalaca, 210 .
Diacria, 211 .
,, intlexa, 210 .
," labiata, 210.
" trispinosa, 204, 205, 211, 214, 215.
diversa, Peraclis, 22.2
elata, Protomerlea, 219.
Eupteropoda, 203, 205, 205 .
exacuta, Cleodora, 211.
falcata, Cleorlora, $204,216$.
fissirostris, Hyalaea, 208.
flava, Hyalaea, 208.
flemingii, Spirialis, 222.
flexa, Cleodora, 216.
gegenbami, Hyalaea, 208.
gibbosa, Carolinia, 204, 205, 208.
, Hyalaea, 20 .
gouldii, Spirialis, 221.
Gymnosomata, 203, 205.
helicialis, Limacina, 216 .
helicina, Limacina, $204,205,216,217,219,219$, $\because 20$.
helicoïles, Limacina, 204, 219 .
Heterofusus lualea, 221.

$$
\text { " retroversus, } 222 .
$$

Hyalaca angulata, 208.
., corniformis, 216.
" cuspidata, 211.
,, depressa, 210 .
,. fissirostris, 205 .
,, flava, 208.
., gecrenbauri, 208.
" siblosa, 208.
., inflexa, 210.
, labiata, 210.
,, lanceolata, 211.
2. longirostris, 208.
" limbata, 208.
:, mucronata, 211.
". obtusa, 208 .
., pyramidata, 211 .
" subula, 215.
". trispinosa, 211.
" uncinatiformis, 203.
," vaginellina, 210 .
inflata, Atlanta, 204, 205, 219.
,. Limacina, 204, 205, 219, 220.
inflexa, Cavolinia, 204, 205, 210.
". Diacria, 210.
" Hyalaea, 210 .
laliata, Cleudora, 211.
, Diacria, 210 .
", Hyalaea, 210.
lamartinieri, Cleodora, 211 .
lanceolata, Cleodora, 211.
Hyalaea, 211 .
Limacina, 216 .
, antarctica, $216, \because 27,218,219$.
, arctica, 216 .
," australis, 221,222 .
", balea, $201,205,221,222$.
", bulimoídes, 204, 205, 220.
" helicialis, 216 .
" helicina, 204, 205, 216, 217, 218, 219, 220.
helicoïdes, 204,219 .
inflata, 204, $205,219,220$.
pacifica, 216,219 .
retroversa, $204,205,221,222$.
scaphoidea, 219 .
" trochiformis, $221,222$.
limacina, Clio, 216.
," Clione, 223, 224.
". Spiratella, 216 .
limbata, Hyalaca, 208 .
Limacinidae, 216 .
longirostris, Cavolinia, $204,205,208,209,210$, 211.
,, Hyalaea, 208.
martensi, Cleodora, 211.
mucronata, Hyalaea, 211.
mucronatus, Pleuropus, $\because 11$.
munda, Cleodora, 216.
obtusa, Cleodora, 215.
,, Hyalaea, 208.
oryza, Cuvieria, 2I5.
pacifica, Limacina, $216,219$.
Peraclis, 2:2.
" bispinosa, $\because 2.2$.
", brevispira, $2 \because 2$.
" dirersa, 204, 2.2.
" reticulata, 2.2 .
,, sp., 204, 205, 222.
peroni, Cymbulia, 204 .
placida, Cleodora, 216 .
Pleuropus mucronatus, 211. trispinosus, 211.
Pneumoderma, 224. atlanticum, 204, 205, 224.
violaceum, 2.5.
Pneumodermatidae, 224.
Pneumonoderma, 2:4.

Protomedea clata, -19 . ", rostralis, 219.
Pterotal, 203, 205, 22:3.
punctata, Clione, -2 2t.
Pyramidata, Cleodora, $204,20.5,211,21: 3$.
,. Clí, 211.
., Hyalaea, 르․
(quadridentata, Cavolinial, 210.
reticulata, Peraclis, 222.
retroversa, Linacina, 204, 20.5, $231,2.2 .2$.
retroversus, $\mathrm{Hleter}^{\circ} \mathrm{l}$ sus, 223.
Spirialis, 221, 응.2.
rostralis, Spirialis, 219 .
., Protomedea, 이!.
seaphoidea, Limacina, 219.
spinifera, Cleorlora, 215.
Fpiratella arctica, 216.
, limacina, $\because 16$.
Spiriale austiale, 221 .
Spirialis halea, 221.
", bulimoides, 220 .
" flemingii, 222 .
" gouldii, 221 .
" retroversus, $\because 21,222$.
", rostralis, 219.
Spongiobranchaea, 225.

$$
\text { ", australis, } 204.205,225,226 \text {. }
$$

Styliola, $\because 15$.

Styliola, conniformis, 216.
" subulis, $\because 04,20 . \overline{5}, 215$.
., virgula, 216 .
subulia, Cleorlom, 215.
.. Clio, ㄹ․․
" 11 yalatea, it…
" Styliola, 204, 205, 215.
subulata, Cleodera, 이․
sulcat:i, Cleordma, $\because 04, \because 05, \because 12,213$.
Thecosomatia, 203, 20.5.
Thlipterlon, -04.
Triptera cancellata, 215.
columnelli, 215.
trispinosa, Diacria, $204, \because 0.5,211,214,215$.
" Hyalaca, -11.
trispinosus, Plenropis, : 11 .
trochifomis, Athanta, $\because 2.2$.

uncinata, Cavolinia, $204,205,209$.
meinatifomis, Hyalata, 209.
inguis, Creseis, -16 .
nreedaris, Cuvieria, 215.
vaginellina, Hyalaea, 210.
violaceum, Pueumoderma, 225.
virgula, Cleordora, 216.
, Clio, -16 .
, Creseis, 204, 20.5, 216.
, Styliola, 216 .

BRITISH MUSEUM (NATURAL HISTORY).

BRITISH ANTARCTIC ("TERRA NOVA") EXPEDITION, 1910. NATURAL HISTORY REPORT.

ZOOLOGY. VOL. II.-No. I, pp. 1-12.

LIST OF COLLECTING STATIONS.

BY

S. F. HARMER, Sc.D., F.R.S.

(Keeper of Zoology, British Museum)
AND
D. G. LILLIE, M.A.
(St. John's Collegr, Cambridge; Member of the Expedition).
WITH FOUR MAPS.

LONDON:
PRINTED BY ORDEI OF THE TRUSTEES OF THE BRITISH MUSEUM.
Sold by Longmans, Green \& Co., 39, Patornoster Row, London, E.C. ; B. Quaritcir, 11, Grafton Streot, Now Bond Stroet, London, W.; Dulau \& Co., Ltd., 37, Soho Square, London, W. ; and the Midland Edecational Co., Ltd.,

41 and 43, Corporation Street, Birmingham;
OR AT THE
British Mugeuay (Natural Higtory), Cromwoll Road, London, S.iV.
1914.
[All rights reserved.]

Price One Shilling and Sixpence.

BRITISH ANTARCTIC ("TERRA NOVA") EXPEDITION, 1910. NATURAL HISTORY REPORT.

ZOOLOGY. VOL. II, No. 2. Pp. 13-18.

OLIGOCHAETA.

BY

H. A. BAYLIS, B.A.

WITH ONE PLATE.

LONDON:
PRINTED BY ORDER OF THE TRUSTEES OF THE BRITISH MUSEUM.
Sold by Longmans, Green \& Co., 39, Paternoster Row, London, E.C.; B. Quaritch, 11, Grafton Streat, New Bond Street, London, W.; Delau \& Co., Ltd., 37, Soho Square, London, W. ; and tho Midland Edccational Co., Lid., 41 and 43, Corporation Street, Birmingham;

OR AT THE
Britiga Mitgeum (Nateral Higtory), Cromwoll Road, London, S.W.
1915.
[All rights reserved.]
Price One Shilling.

BRITISH ANTARCTIC ("TERRA NOYA") EXPEDITION, 1910. NATURAL HISTORY REPORT.

ZOOLOGY. VOL. II, No. 3. Pp. 19-60.

PARASITIC WORMS WITH A NOTE ON A FREE-LIVING NEMATODE. BY
R. T. LEIPER, D.Sc.,
Helminthologist to the London School of Tropical Medicine.
AND
SURGEON E. L. ATKINSON, R.N.,
Parasitologist to the British Antarctic ("Terra Nova ") Expedition, 1910,
WITH ELEVEN FIGURES IN THE TEXT AND PLATES I-V.

LONDON:
PRINTED BY ORDER OF THE TRUSTEES OF THE BRITISH MUSEUM Sold by Longarans, Green \& Co., 39, Paternoster Row, London, E.C. ; B. Quaritce, 11, Grafton Street, New Fond Street, London, W.; Dulat \& Co., Ltd., 37, Soho Square, London, W.; and the Midland Edecational Co., Ltd.,

41 and 43, Corporation Street, Birmingham;
or at the
Britige Mceeva (Natural Higtory), Cromwell Road, London, S.W.
1915.

> [All rights reserved.]

Price Seven Shillings and Sixpence.

BRITISH ANTARCTIC ("TERRA NOVA") EXPEDITION, 1910. NATURAL HISTORY REPORT.

ZOOLOGY. VOL. II, No. 4. Pp. 61-112.

MOLLUSCA.

PART 1.-GASTROPODA PROSOBRANCHIA, SCAPHOPODA, AND PELECYPODA.

BY
EDGAR A. SMITH, I.S.O.,
Lately Assistant Reeper of Zoology, British Museum (Natural History).

WITH TWO PLATES.

LONDON:
PRINTED BY ORDER OF THE TRUSTEES OF THE BRITISH MUSEUM.
Sold by Longmans, Green \& Co., 39, Paternoster Row, London, E.C.; B. Quaritch, 11, Grafton Street, New Bond Street,
London, W.; Dulau \& Co., Lid., 37 Soho Square, London, W.; the Midlakd Educational Co., Lid.,
41 and 43 , Corporation Street, Birmingham;
AND AT TRE
Britisy Meseun (Naturat History), Cromwell Road, London, S.W.
1915.
[All rights rescrved.]

BRITISH ANTARCTIC ("TRRRA NOYA") EXPBDITION, 1910. NATURAL HISTORY REPORT.

ZOOLOGY. VOL. II, No. 5. Pp. 113-134.

NEMERTINEA.

BY

H. A. BAYLIS, B.A.

WITH FOUR FIGURES IN THE TEXT AND PLATES I-II.

LONDON:
PRINTED BY ORDER OF THE TRUSTEES OF THE BRITISH MUSEUM.
Sold by Longmans, Green \& Co., 39, Paternoster Row, London, E.C.; B. Quaritch, 11, Grafton Street, Now Bond Street,
London, W. ; Dulau \& Co., Lrd., 37, Soho Square, London, W.; the Mideand Educational Co., Lrd.,
41 and 43, Corporation Street, Birmingham ;
AND $\triangle T$ THE
Britibh Mubeum (Nateral History), Crommell Road, London, S.W.
1915.
[All righte reserved.]
Price Two Shillings and Sixpence.
保

BRITISH ANTARCTIC ("TERRA NOVA") EXPEDITION, 1910. NATURAL HISTORY REPORT.

ZOOLOGY. VOL. II, No. 6. Pp. 135-140.

MYZOSTOMIDA.

BY

CHARLES L. BOULENGER, M.A., D.Sc.
(Zoological Department, University of Birmingham).

WITH ONE PLATE.

LONDON:
PRINTED BY ORDER OF THE TRUSTEES OF THE BRITISH MUSEUM.
Sold by Longmang, Green \& Co., 39, Paternoster Row, London, E.C.; B. Quaritch, 11, Grafton Streot, New Bond Street,
London, W. ; Delau \& Co., Ltd., 37, Soho Square, London, W.; the Mideand Edecatronal Co., Ltd.,
41 and 43 , Corporation Street, Birmlagham;
and at The
Britiser Mubeum (Natural Hibtory), Oromwell Road, London, S.W.
1916.
[All rights reserved.]
Price One Shilling.

BRITISH MUSEUM (NATURAL HISTORY).

BRITISH ANTARCTIC ("TERRA NOVA") EXPEDITION, 1910. NATURAL HISTORY REPORT.

ZOOLOGY. VOL. II, No. 7. Pp. 141-176.

MOLLUSCA. PART II.-CEPHALOPODA.
BY
ANNE L. MASSY.

WITH FORTY-THREE FIGURES IN THE TEXT.

LONDON :
PRINTED BY ORDER OF THE TRUSTEES OF THE BRITISH MUSEUM.
Sold by Longmans, Green \& Co., 39, Paternobter Row, E.C. ; B. Quaritch, 11, Grafton Streot, New Bond Street, W.;
Dulau \& Co., Ltd., 37, Soho Squaro, W.;
and AT THE
Bhitiby Mubegm (Natural Hibtorx), Cromwell Road, London, S.W.
1916.
[All rights reserved.]

Price Three Shillings.

BRITISH MUSEUM (NATURAL HISTORY).

BRITISH ANTARCTIC ("TERRA NOVA") EXPEDITION, 1910. NATURAL HISTORY REPORT.

ZOOLOGY. VOL. II, No. 8. Pp. 177-202.

BRACHIOPODA.

By
J. WILFRID JACKSON, F.G.S.,

Assistant Keeper of the Manchester Museum; Hon. Secretary of the Conchological Society of Great Brituin and Irelaud.

```
WITH ONE PLATE.
```


LONDON:
PRINTED BY ORDER OF THE TRUSTEES OF THE BRTTISH MUSEUM. Sold by Lononans, Green \& Co., 39, Paternoster Row, E.C. 4 ; B. Quabitce, Ltd., 11, Grafton Street, Nef Bond Street, W. 1 ; Dolau \& Co., Ltd., 37, Soho Square, W. 1 ;

AND AT THE
Britise Musecm (Natural History), Cromwell Road, London, S.W. 7.
1918.
[All rights reserved.]
Price Five Shillings.

BRITISH MUSEUM (NATURAL HISTORY).

BRITISH ANTARCTIC ("TERRA NOVA") EXPEDITION, 1910. NATURAL HISTORY REPORT.

ZOOLOGY. VOL. II, No. 9. Pp. 203-232.

MOLLUSCA.

PART III.-EUPTEROPODA (PTEROPODA THECOSOMATA) AND PTEROTA (PTEROPODA GYMNOSOMATA).

BY
ANNE L. MASSY.
WITH NINE figures in the text.

LONDON:
PRINTED BY ORDER OF THE TRUSTEES OF THE BRITISH MUSEUM.
Sold by Longmane, Green \& Co., 39, Paternoster Row, E.C. 4 ; B. Quaritch, Lid., 11, Grafton Strect, New Bond Street, W. 1 ; DULad \& Co., LTD., 34-36, 3rargaret Street, Cavendish Square, W. 1;
and at the
Britise Mubeum (Natural History), Cromwell lroad, London, S.W. 7.
1920.
[All rights reserved.]
Price Seven Shillings and Sixpence.
'1
1
$1+2$
?

BRITISH MUSEUM (NATURAL HISTORY).

BRITISH ANTARCTIC ("TERRA NOVA") EXPEDITION, 1910. NATURAL HISTORY REPORT.

ZOOLOGY. VOL. II, No. 10. Pp. 233-256.

MOLLUSCA.

PART IV.-ANATOMY OF PELECYPODA.

BY

R. H. BURNE, M.A., Plysiological Curator, Royal College of Surgeons Muscum.

WITH FOUR PLATES.

LONDON:
PRINTED BY ORDER OF THE TRUSTEES OF THE BRITISH MUSEUM.
Sold by Longmans, Green \& Co., 39, Paternoster Row, E.C. ; B. Quaritch, 11, Grafton Streot, New Bond Street, W.; Dulad \& Co., Ltd., 34-36, Margaret Stroet, Cavendish Squaro, IV. 1 ;

AND AT THE
British Mubeom (Natural History), Cromwell Road, London, S.IV.7.
1920.
[All rights reserved.]

Price Eight Shillings and Sixpence.
(1)

BRITISH MUSEUM (NATURAL HISTORY).

BRITISH ANTARCTIC ("TERRA NOVA") EXPEDITION, 1910. NATURAL HISTORY REPORT.

ZOOLOGY. VOL. II, No. 11. Pp. 257-260.

HIRUDINEA.

BY

W. A. HARDING, M.A., F.L.S.

WITH ONE PLATE.

LONDON:
PRINTED BY ORDER OF THE TRUSTEES OF THE BRITISH MUSFUM.
Sold by Longmans, Green \& Co., 39, Paternoster Row, E.C.4; B. Quaritch, Ltd., 11, Grafton Strect, Niow Bond
Street, W. 1; Dolau \& Co., Ltd., 34-36, Margaret Street, Cavendish Square, W. I;
AND $\triangle T$ THE
Britigh Museum (Nateral History), Cromwell Road, London, S.iV. 7.
1922.
[All rights rescrued.]
Price Two Shillings.
1
1

(1)

[^0]: * I am indebted to Dr. R. T. Leiper for calling my attention to the preliminary account of this species, in : Bull. Soc. Entom. Ital. Anno XLX., 1887, pp. 81-83. Drago's further account, with figures, in : Ric. Labor. Anat. Lioma, vii, Fasc. 1, 1899, I have unfortunately been unable to consult.

[^1]: * It is also worthy of notiee that I found speeimens of the same worm in individuals of Gecercinus lagostoma eollected in South Trinidad (a) by the "Discovery" expedition and (b) by the late Major G. E. H. Barrett-Hamilton's expedition to South Georgia. The oceurrence of the worms scems, therefore, to be quite common. I have no evidenee of the existence of the same worm in crabs from other localities, but a elosely-related species occurred in G. qualratus, from Clarion Island. Of this speeies 1 hope to publish an aceount elsewhere.

[^2]: * Mr. Regan has peinted out that the fishes caught in traps at the Winter Quarters belonged to two species, Tromatomu. bermorehii and T. hansomi; as is shown by Dr. E. A. Wilson's drawings and specimens (see Vol. I, No. 1, p. 3, Pl. I). The collectors of the material apparently did mot distinguish between these two species. S.E.H.
 \dagger The Common Rorqual.—s.F.H.

[^3]: * The diagnoses of the new forms collected by the Expectition have been reprinted from the Proceedings of the Zoological society, with a few merely verbal alterations, by kind permission of the Committee of Publications of the Society.

[^4]: * The Common Rorqual. S.F.II.

[^5]: *See Fuhrmamı, "Die Cestoden der Vägel," Zool. Jahrb. Suppl. x, 1909, p. 31, note \%.

[^6]: * "Challenger" Gasteropoda, p. 603, pl. NLV, fig. 9.
 \dagger Voy. "Belgica," Mollusca (1903), p. थ1, pl. V, fig. \%\%.

[^7]: * Symonsis Moll. (it. lirit. by Leach, 1852, preface.
 \dagger Syopsis method. Moll. et. altera 1830, ן. 87.

[^8]: Weuxieme Expésl. Antaret. Francaise (190s-1910), 1. 21 (1911), as Area (Buthyarca) !faurdomi.
 \dagger beutsehe südpolar-Exped., vol. N1I1, 1, 25:3, pl. XV111, fig. 7 (1913),

[^9]: * Deuxième Expéel. Antarct. Franç., Pélécypodes, p. 26.

[^10]: * Mus. Bolten, p. 79 (1798). The name Astrea was used in 1789 by P. Browne, a "non-binomial" author.
 \dagger Trans. N.Z. Inst., vol. XXXVIII, p. 292 (1906).
 ${ }_{1}^{*}$ Pruc. Limn. Soc. N.S. W. 1913, vol. XXXVIII, 1. 292.

[^11]: * Also quoted under this name by Martens and Hutton. It is the Calyptraea calyntreiformis of Tryon, Man. Moll., vol. VIII, p. 122, and of Harris, Cat. Tertiary Moll. Australasia, 1. 252. Lamarek's colyptreformis is a different species.
 \dagger Proc. Zool. Soc. 1867, p. 736.
 \ddagger Tankerville Cat. Aprendix, p. vii (1825).

[^12]: ＊Voy．＂Coruille，＂Zool．，vol．II，pt．1．p．39．（1N：30）．

[^13]: * Conch. Cal. Aurillaria, p. 16.
 \dagger Man. N.Z. Moll, p. 45:.

[^14]: * Thesaurus Conch.. vol. 1IT, p. 63. pl. 211, figs. 9, 10.

[^15]: * Australian Fisheries Report, 1911. Part I, 1p. 97-98.
 \dagger Preoccupied by Gmelin: Syst. nat. p. 32ss.

[^16]: * "Challenger" (iasteromoda, pr. IGT, pl. N, fig. 7 .

[^17]: * Journ, de Conch. 1865, vol. XIII, p. 34, pl. 1, fig. 8.

[^18]: * Ann. Mag. Nat. Hist., 1888, vol. II, p. 305.
 \dagger Revne et 1 ag . de \%ool. 1875 , vol. XXVI, P . $2: 1$.

[^19]: Revue et Mag. de Kool. 1875, vol. XXVI, p. 189, pl. VIl, fig. 9.
 Man. Conch., rol. V, p. 26.
 Marine Shells of Somth Afriea, 1. 17 (189?).

[^20]:

[^21]: * Thesaurus Comeh., vol. II 1, p. 110, pl. 227, figs. 37, 38.
 \dagger Thesaurus Conch., vol. 111, p. 111, pl. 227, figs. 47, 48.

[^22]: * Cunch. Icon., vol. XViI.
 \dagger In Martini and Chemnitz. Conchyl. Cab., 1870-3.

[^23]: * Reeve's Conch. Icon., vol. Vill, fig. 93.

[^24]: * At the time of studying the material, only two specimens were a vailable, Seven more very small individuals wrere subsequently sorted out from among dredged material from Station 220 .

[^25]: * The following note on their colouss during life has been submitted to me ly Mr: D. (f. Lillie:"The long Linews-like specimens obtained in the Antarctic were of a purplish light red or terra-cotta colour on the dorsal side, and a yellowish-ereamy white on the umler surface. The colouring was very mueh alike in all the larger specimens obtained." He adds, with regarl to this species, that "they had great power of elongating mul contracting their bodies."
 \dagger The "Hut beach" speemen is Hattened throughout its contire length, but it is probable that this individual was in a moribund condition when collected, and I do not attach any importance to its exceptional appearance.

[^26]: ＊The fragment can harily lo determined with certanty，hat Prof．F．d．Fell helieves it to have belonged to Autedou mdritui．．．．S．F．H．

[^27]: * Pror. Royal Phys. Noc. Edinburgh, '86, '97, '09.

[^28]: " Less tip.

[^29]: For full swonomy ser Pfeffer, Plankton Exp, lP. $70-71,1!1 \because$.

[^30]: * Two larvie Nredmed by the "(Gauss" Expedition in the Eastern Antarctic are probably referable to this species. (See Eichler, 1911, 1, 87.)

[^31]: * Thomson [1915 (3), 1. 391] has recently called attention to the ermeons statements made by ILall and Clarke $[1895, ~ p .835]$ and sidhehert [1913, p.399] that dental plates are absent in this genus. In gerontic examples of I. psithace the dentat plates tend to become obsolete (J. W. J.).

[^32]: * See Jackson $\left.[1916,1]^{\prime 2} \cdot 24-35\right]$ and Thomson [1915 (3), pp. 390-391, fig. 2] for descriptions and figure of this feature.
 \dagger Cardinalia embrace collectively the socket walls or ridges, crural bases, hinge-plates, and eardinal process of the dorsal valve [Thomson, 1915 (i), p, 391].
 $\ddagger[1873(2)]$.
 $\dagger \dagger 1$ am indelted to Prufesson S. J. Hickson, F.R.S., of the Victoria University, for verifying this determination.

[^33]: * The "doublure sous-apicale" and "doublure sons cardinale" of Fischer aud Ochlert [1891, 1p. 44, 103, etc.].
 \dagger This species also has fine radial striee on the surface of the valyes.

[^34]: * In this stage, apparently, the descanding and ascending branches have not yet united on the side of the septum.

[^35]: * For definition of this term, see Buckman [1916, p. 131].

[^36]: * In old adult shells of Inemithyris psittacen the perlicle-collar is sometimes fused to the floor of the umbonal eavity, and the dental plates tend to beeome obsolete through excessive ealeifieation.

[^37]: * Davidson [1887, p. 172] gives 57! fathoms, off Caje St. Vincent. This is obvionsly a misprint for $575 \frac{1}{2}$ fathoms (see F. \& O. 1891 , p. 15). This error has misled Schuchert, as he remarks on the oceurrence of this cold water species in the ram unter of Cape St. Vincent [1911, p. 265].
 \dagger The term" spondylium" is used by ball, but this is strictly applied to the spom-shaped plate frequently present in the ventral (or pedicle) valve of some Articulata (Pentumerns, etc.).
 \ddagger The septum does uot bifurcate, as in the "Terra Nova" species.

[^38]: * Smith's figures are evilently twice enlarged.

[^39]: * Hedley also places in Campayes the South Australian Mayasella jaffaensis, Dl., but from his figures it is obvions that this species possesses a different type of cardinalia from the genotype, C. furcifern, Hedley.

[^40]: * М心. received December 15, 1919 (К. F. H.).

[^41]: ＊Pteropods were oltained at these depths，not at the greater depths recorded in the List of Collecting stations（Vol．1I．No．1，1p．1－1！）．

[^42]: * Most of the specimens were in formalin, a few were in alcohol, and a still smaller number in some other fluid.

[^43]: *See also prent paper under S. mustralis, 1. 22.5.

[^44]: * Manuscript receis ed Oetnber 6, 1919 [S. K. H.].

[^45]: * Cephalic eyes have been recorded in Mytilus, Modiohurin, Lithodomus, Lcicula turentine, Septifer, Mallew, Melcagrina, Anomia, Perma, Area lactea, Area spp.

[^46]: * Tncubation, though as a rule rare amongst marine Lamellibrimchs, is stated by Pelseneer (11,1 . 101) to be chatacteristic of many Antaretic species.

