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Abstract During daytime dives in July 2011 on the reefs of
Kota Kinabalu (Sabah, Malaysia), large quantities of slow-
moving salps (Tunicata: Thaliacea: Salpida) were observed.
Some of these were seen to be caught and ingested by
various mushroom corals (Fungiidae) and an anchor coral
(Euphylliidae). The predators had complete salps (2–6 cm
long) or partly digested salp remnants stuck inside their
wide-open mouths. Salps that were observed landing on
top of mushroom corals did not escape. They became cap-
tured by tentacles and were transported towards the opening
coral mouths. To our knowledge, the present in situ obser-
vation is the first record of numerous salps being consumed
by corals. All the observed predating coral species, either
belonging to monostomatous or polystomatous species, pos-
sessed large mouths. The presence of multiple mouths ena-
bles mushroom corals to become larger than those with
single mouths. Because a large polyp size facilitates the
capture of food, it is advantageous for them to be polystom-
atous, especially when they possess a large mouth.
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Introduction

In recent decades much attention has been given to the
symbiotic relationship between reef corals and their
symbiotic algae (zooxanthellae), which became particu-
larly apparent with the occurrence of coral bleaching (e.g.
Hoeksema 1991a; Brown 1997; Sampayo et al. 2008; Suggett
and Smith 2011; Hoeksema and Matthews 2011). Because of
the increasing emphasis on reef corals as autotrophs, it almost
seemed that their other role as heterotrophs (Goreau et al.
1971; Porter 1974, 1976; Bak et al. 1998; Houlbrèque and
Ferrier-Pagès 2009; Tremblay et al. 2011) became less
noticed.

Many observations regarding food intake by reef
corals resulted from experiments that focused on their
feeding mechanism (Boschma 1925; Sorokin 1981;
Clayton and Lasker 1982; Sebens and Johnson 1991;
Sebens et al. 1996, 1998; Coles 1997; Ferrier-Pages et
al. 2003). In comparison, only a few studies focused on
their specific prey, which predominantly consists of
small demersal and planktonic animals like amphipods,
copepods, nematodes, nemerteans, nereids, polychaetes,
and jellyfish, as found in their gut contents (Boschma 1924;
Porter 1974; Lewis and Price 1975; Johnson and Sebens
1993). Furthermore, it is assumed that prey is predominantly
caught by corals that are active at night (Houlbrèque and
Ferrier-Pagès 2009).
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Monostomatous mushroom corals (Scleractinia: Fungiidae)
are iconic for having large polyps with a single, large
mouth. They have been used in various classic studies
on feeding mechanisms (Duerden 1906; Boschma 1924,
1926; Yonge 1930; Abe 1938; Stephens 1962; Schuhmacher
1979). Polystomatous species are usually larger owing to their
additional (secondary) mouths, which are either smaller or
equal in size compared to the primary mouth (Hoeksema
1991b; Gittenberger et al. 2011).

During a recent biodiversity survey on the coral reefs of
Kota Kinabalu, we observed several monostomatous and
polystomatous mushroom corals preying on salps (Thaliacea:
Salpida: Salpidae). To our knowledge, the feeding of corals
on salps has been reported only once before, which was
based on a single salp found in the gut contents of a colony
of Montastraea cavernosa (Linnaeus, 1776) (see Porter
1974).

Materials and methods

A faunistic study of mushroom corals was performed in
the period 16–28 July 2011 on the coral reefs of Kota
Kinabalu, the capital of Sabah, Malaysia (5° 57'–6° 5'N,
115° 59'–116° 5'E). Thirty dives, each approximately
1 h in duration, were made using SCUBA. The roving
diver technique was employed (see e.g., Hoeksema and
Koh 2009), in which species incidence data were
recorded at each reef over the whole depth range where
corals occurred, from the reef flat to the reef base, but
not deeper than 30 m. At 3–18 m depth, several mush-
room corals had their mouths wide open. Closer exam-
ination revealed that these corals had caught transparent
salps. We also encountered slow-swimming salps in the
water column. An inventory was made of which
recorded mushroom coral species appeared to prey on
salps. An additional remark is given on a non-mushroom
coral with a salp in its mouth.

Results

All but one of the observed salp-predating corals belong
to the mushroom coral family Fungiidae (Hoeksema
1989; Gittenberger et al. 2011). Nine of the 34 recorded
mushroom coral species were observed to prey on salps
(Table 1). Specimens of Cycloseris costulata, C. fragi-
lis, Danafungia scruposa, Fungia fungites, Pleuractis
moluccensis, and P. paumotensis had transparent salps
(ca. 2 cm) or their remnants stuck inside their wide-
open mouths (Fig. 1a, d–g). An individual of Helio-
fungia actiniformis had a salp of ca. 6 cm captured by
its long tentacles (Fig. 1h). Two salps that had landed

on top of D. scruposa corals were transported by ten-
tacles from the coral margin towards the opening
mouth, which was slightly hindered by some wave
action. The salps hardly moved by themselves and did
not attempt to escape. Polystomatous corals of Halomitra
pileus and Herpolitha limax had salps only in their largest
mouths (Fig 1b, c). Apart from mushroom corals, the
only other salp-consuming coral observed was a

Table 1 Records of mushroom coral species (n034) and those predat-
ing on salps present on Kota Kinabalu reefs indicated by number of
sites (total 30)

Species Number
of sites

With salp
predation

Ctenactis albitentaculata Hoeksema 1989 10 -

Ctenactis echinata (Pallas, 1766) 28 -

Ctenactis crassa (Dana, 1846) 29 -

Cycloseris costulata (Ortmann, 1889) 28 2

Cycloseris cyclolites (Lamarck, 1815) 9 -

Cycloseris fragilis (Alcock, 1893) 21 1

Cycloseris mokai (Hoeksema 1989) 27 -

Cycloseris sinensis Milne Edwards
& Haime, 1851

15 -

Cycloseris somervillei (Gardiner, 1909) 2 -

Cycloseris tenuis (Dana, 1846) 15 -

Danafungia horrida (Dana, 1846) 29 -

Danafungia scruposa (Klunzinger, 1879) 29 3

Fungia fungites (Linnaeus, 1758) 30 3

Halomitra pileus (Linnaeus, 1758) 12 1

Heliofungia actiniformis (Quoy
& Gaimard, 1833)

28 1

Herpolitha limax (Esper, 1797) 30 3

Lithophyllon concinna (Verrill, 1864) 30 -

Lithophyllon repanda (Dana, 1846) 30 -

Lithophyllon scabra (Döderlein, 1901) 19 -

Lithophyllon spinifer (Claereboudt
& Hoeksema, 1987)

7 -

Lithophyllon undulatum Rehberg, 1893 26 -

Lobactis scutaria (Lamarck, 1801) 19 -

Pleuractis granulosa (Klunzinger, 1879) 29 -

Pleuractis gravis (Nemenzo, 1955) 21 -

Pleuractis moluccensis (Van der Horst, 1919) 30 4

Pleuractis paumotensis (Stutchbury, 1833) 30 1

Pleuractis taiwanensis (Hoeksema and Dai,
1901)

2 -

Podabacia crustacea (Pallas, 1766) 23 -

Podabacia motuporensis Veron, 1990 1 -

Podabacia sinai Veron, 2000 4 -

Polyphyllia talpina (Lamarck, 1801) 28 -

Sandalolitha dentata Quelch, 1884 20 -

Sandalolitha robusta (Quelch, 1886) 29 -

Zoopilus echinatus Dana, 1846 1 -
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specimen of Euphyllia paraancora Veron, 1990 (Fig. 2).
Some mushroom corals appeared to ingest their prey by
showing barely visible salp remnants inside their wide-
open mouth (Fig. 3).

The salps most probably belong to the subfamily Salpinae
(R.W.M. Van Soest, personal communication); for salp taxon-
omy and phylogeny, see Godeaux (1998), Van Soest (1998)
and Govindarajan et al. (2011).

Fig. 1 Mushroom corals of various species feeding on transparent
salps at Kota Kinabalu, Sabah: a Danafungia scruposa (one salp in
mouth and one beside), b Herpolitha limax (two mouths sharing one

salp), c Halomitra pileus, d Cycloseris costulata, e Pleuractis paumo-
tensis, f P. moluccensis, g Fungia fungites, h Heliofungia actiniformis.
Scale bars 1 cm
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Discussion

Although it is known that many species of corals can be
active heterotrophs, ingesting organisms ranging from
bacteria to mesozooplankton, there is very little infor-
mation on what animals are eaten by corals (Houlbrèque
and Ferrier-Pagès 2009). It was recently discovered that
individuals of the monostomatous fungiid Danafungia
scruposa are able to prey on large jellyfish (diameter
up to 12 cm) in the Red Sea (Alamaru et al. 2009). In
an earlier anecdotal account based on an aquarium ex-
periment, it was reported that the mushroom coral

Heliofungia actiniformis is able to use its long tentacles
to predate on 1.5 cm long damselfish (Sisson 1973).
Because little is known about the diet of corals and
other anthozoans (see e.g., Van der Meij and Reijnen
2011), it is important that field observations concerning this
topic are reported.

It is also relevant to note that some commensal
animals are able to live in between the tentacles of
mushroom corals without being eaten, such as particular
species of fish and shrimp (Bos 2011; Hoeksema and
Fransen 2011; Hoeksema et al. 2011). It is unclear
whether they are immune to the coral venom and therefore
escape predation.

Until recently, gelatinous zooplankton, like salps,
ctenophores and pelagic cnidarians, were considered
‘trophic dead ends’ in food webs, i.e. zooplanktivores
that seemed to lack obvious top predators themselves
(Mianzan et al. 2001). However, various animals are
known to eat salps, such as sea lions (Childerhouse et al.
2001), albatrosses (James and Stahl 2000), turtles (Van Nierop
and Den Hartog 1984; Hatase et al. 2002; Eckert 2006;
Dodge et al. 2011), fish (Lyle and Smith 1997; Morato
et al. 2000; Mianzan et al 2001), and krill (Kawaguchi and
Takahashi 1996).

To our knowledge, the present report is the first record
dealing with corals in the process of capturing and eating
salps, although Caribbean corals of Agaricia agaricites
(Linnaeus, 1758) have also been observed to ingest plank-
tonic tunicates (R.P.M. Bak, personal communication). With
regard to the different growth forms of mushroom corals, the
present observations suggest that a large surface area may
facilitate catching food, while big mouths enable feeding on
large prey when available. Both traits are extra advanta-
geous when combined, like in most polystomatous fungiids
(Hoeksema 1991b; Gittenberger et al. 2011). In cases where
mushroom corals form dense aggregations (e.g. Hoeksema
2004; Hoeksema and Matthews 2011), salps may not easily
escape capture. However, if the aggregations consist of
regenerated mushroom coral fragments (Hoeksema and
Gittenberger 2010; Hoeksema and Waheed 2011), only a
few of them possess large primary mouths that may be used
to ingest large prey.

Although it is advantageous for corals to have a large
mouth if large prey is available, it is not clear whether
they are as efficient when small prey is more abundant
than large prey. In this instance, many small mouths
might be more ideal because a particular polyp (or
mouth) size may indicate a specific size spectrum of
prey (Tsounis et al. 2010). This is beneficial for various
mushroom coral species that have secondary small
mouths in addition to a large primary mouth (Hoeksema
1991b; Gittenberger et al. 2011). Prey behaviour and
environmental factors may interfere with the capture

Fig. 2 Specimen of Euphyllia paraancora with a captured salp at Kota
Kinabalu, Sabah. Scale bar 1 cm

Fig. 3 Specimen of Fungia fungites with a partly ingested salp at Kota
Kinabalu, Sabah. Scale bar 1 cm
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success of corals regardless of their polyp size (Sebens
et al. 1996; Palardy et al. 2005). The prey intake by some
mushroom corals was only slightly delayed by minor wave
action. Stronger water movement at shallow depths may in-
crease the probability of transporting the large salps away
from their predators.
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