REPORT

Division of Mollosks upon Sectional Library

THE INVERTEBRATE ANIMALS

GF

IINEYARD SOUND AND ADJACENT WATERS,

WLTH AN ACCOLNT OF

THE PHYSIGAL FEATURES OF THE REGON.

BI
A. E. VERRILL and S. I. SMITH,


```
WASHINGTON:
```

$$
\begin{aligned}
& \text { GOVERNMENTRRINTINGFFICR. } \\
& 1874 .
\end{aligned}
$$

$$
.1
$$

THE INVERTEBRATE ANIMALS

（1）

TINEYARD SOUND AND ADJACENT WATERS，

WHTH IN゙ UCOINT OF
the physical featlres of the region．

135

A．E．VERRILL and S．I．SMITH，
（SHEFFIELI，NCIENTIFIC SCHOOL，NEW IIAVEN．CONN．）

TABLE OF CONTENTS.

[The figures refer to the inside paging of the report.]
Page.
A. Ilabits and distrihntion, (of the invertebrate animals) 295
I.-General remarks. 29.5
II.-Fama of the bays and somnds. 300

1. Animals of the rocky shores between high and low water marks 303
General remarks :30:3
Articulates :
Insects $3: 31$
Crustacea 312
Annelids:
Chietopods 317
Oligocheta 324
Nemerteans 324
Planarians 325
Nematodes 325
Mollusks :
Gastropods 30\%
Lamellibrauchs 307
Ascidians and Bryozoa 311
Radiates:
Echinoterms 326
Acalephs 327
Polyps 329
Protozoa $3: 3$
List of species 331
2. Animals of the sandy shores of the bays and sounds 334
General remarks 334
Articulates:
Insects 3.5
Crustacea 336
Annelids :
Chatopods 341
Oligochata 333
Nemerteans 349
Sipunculoides. 353
Mollusks:
Gastropods. 353
Lamellibranchs 356
Bryozoa and Ascidians 361
Radiates:
Echinoderms 361
Polyps 363
List of species 364
A. Habits and distribution of invertebrate animals-Continued.
Page.
3. Animals of the muddy shores along the bays and sounds 366
General remarks 366
Articulates :
Crustacea 367
Annelids 371
Mollusks:
Gastropods 371
Lamellibranchs $37:$
Ascidians 375
ladiates:
Eehinoderms 376
Acalephs 376
List of species 377
4. Animals inhabiting the piles and timbers of wharves and bridges, hottoms of ressels, buoys, and other sulbmerged wood-work 313
General remarks 373
Articulates:
Insects 379
Crustacea 379
Aunelids and Nemerteans 382
Mollnsks:
Gastropods 382
Lamellibranchs 383
Ascidiaus 388
Bryozoa 359
Radiates:
Echinoderms 389
Acalephs 389
Polyps 391
List of species 392
5. Animals inbabiting the rocky bottons of the bays and sounds 394
General remarks 394
Articulates 395
Mollusks 399
Radiates 406
Protozoa 409
List of species 409
6. Animals inhabiting gravelly and shelly bottoms 412
General remarks 412
Articulates 415
Mollusks 416
Radiates 420
Protozoa 421
List of species 421
7. Animals inhabiting saudy bottoms 42\%
General remarks 425
Articulates 426
Mollısks 426
Radiates 427
Protozoa 427
List of species 423
E. Animals inhabiting muddy bottoms 430
A．Kabits and distribntion of invertehate animals－Continnerl．
（ieneral remarks 4：3）
Articulatess 4：3）
Mollusks $4: \%$
Radliates 4：\％：
List of speries 4：3
9．Animals swimming free in the water or floating at the surface 4：3i
General remarks $4: \%$
Articnlates 4：－
Mollusks 4.10
Radiates 447
List of species 4.51
10．I＇arasitic amimals． 45%
Internal parasites 45.
External parasites $4: \%$
List of sprecies 4%
III．－F゙ama of the brackish waters of estmaries，harbors，se 46，1）
General remarks 460
1．Animals inhabiting the simdy shores and bottoms 40
Articulates． $46 \div$
Mollusks $46 ;$
List of sprecies 464
2．Animals inhabiting the umddy shores and bottoms 465
General remarks． 41.5
Articulates 466
Mollusks $46{ }^{\circ}$
List of species 470
3．Animals inhabiting oyster－beds 47．2
General remarks． 47°
Articulates 476
Mollusks 47.5
Radiates 476
List of species 476
4．Animals inhabiting the cel－grass $47:$
General remarks． 4%
Articulates 47！
Mollusks 475
List of species 4：0）
\therefore Animals inhabiting piles of whares，bridges，floating timhers，\＆c．． 481
General remarks． 4s1
Articnlates $4=\cdot$
Mollusks 4～2
Radiates 4－1
List of species 40：
IV．－Fanna of the colder waters of the ocean shores and onter banks and chammels 4＝1
General remarks． 4－1
i．Animals inhahiting the rocky shores $4-5$
（ieneral reuarks $4-.5$
Articulates． 4－6
Mollusks $4-.5$
Katliates 407
A. IIabits and distribntion of invertebrate animals-Continned.
Page.
List of species 487
8. Animals inhabiting the sandy shores 489
General remarks 4-9
Articulates 489
Mollusks 490
Rirliates 490
List of species 490
9. Animals inhabiting rocky bottoms 491
General remarks 491
Articulates $49 \cdot 3$
Mollusks 494
Radiates 496
List of species 493
10. Animals inhabiting sandy bottoms 500
General remarks 500
Articulates 501
Mollnsks $50:$
Radiates $50: 3$
Protozoa 503
List of species 504
万. Animals inhabiting muddy bottoms 506
General remarks 506
Articnlates 50%
Mollusks 508
Radiates 510
List of species 511
B. Lists of species found in the stomachs of fishes 514
C. Habits and metamorphoses of the lobster and other ernstacea 59:
D. Systematic Catalogne of the invertebrates of Southern New Englaud and adja- cent waters $5: \%$
Articulata 539
Insecta 539
Crustacea 545
Annelida 580
Scolecida 627
Mollnsea 6.34
Cephalopoda 6:34
Gastropoda 636
Lamellibranchiata. 6e9
Tunicata 698
Bryozoa 707
Radiata 715
Echinodermata 75
Acalephat 72
Anthozoa, or Polypi 737
Protozoa 740
Addenda 745
Errata 755
Alphabetical index 75

VIII-REPORT TPON THE INIERTEBRATE ANIDALS OP TINESARD SOUND AND THE AD.JACENT WATERS WITH AN ACCOOXT OR THE PHYSIOAL CHARACTERS OF THE RBGION.

1iv A. IV. ImHRHLI.

 ANIMALS.
1.-(iENERAl MEMARKN.

The investigation of the invertebrate life of these waters, undertaken at the request of the United States Commissioner of Fish and Fisheries, was actively carried forward during the entire summer of 1871 , and the very extensive collections then made have been studied by Mr. S. I. Smith, Mr. O. Harger, amd meself, as thoroughly as possible during the time that has been at our disposal. The work upon the colleetious is by $n o$ means complete, but is sufficiently adranced to serve the immediate purposes of the Fish Commission.

To Mr. Smith I am indebted for the identification of all the Crustacea referred to in this report and the accompanying lists, except the Isopods, which have been determined mostly by Mr. Harger, to whom my thanks are also due for several excellent drawings of those animals. To Professor A. Myatt I am indebted for the identification of some of the Bryozoa, and for most of the figures of that class. I am also under obligations to Dr. A. S. Packard, Dr. G. H. Hern, and Dr. II. A. Hagen, who have identitied the insects inhabiting salt water.

According to the plans adopted these explorations had in view several distinct purposes, all more or less counected with the investigation of the fisheries. The special subjects atteuded to by this section of the Fish Commission party were chiefly the following:

1st. The exploration of the shores and shallow water for the purpose of making collections of all the marine animals and alga living between tides, on every different kind of shore, inelnding the numerous burowingworms and crustacea, and to ascertain as much as possible concerniug their habits, relative abmolance, stations, de.
?d. The extension of similal observations by means of the dredge, trawl, fangles, and other instruments, into all depths down to the deep. est waters which were accessible to ns, and to make a srastematic surrey, as complete as possible of all the smaller hays and habors within
our reach, both to obtain complete collections of the animals and plants and to asecrtain the precise character of the bottom, special attention being pain to the localities known to be the feeding. grounds of valuable fishes, and to those animals upon which they are known to feed.

Bu. The depth of the water and its temperature, both at the surface and bottom. was to be observed and reconded in as many localities as possible, and especially where dredging was to be done, and lists of the animals and plants from special loealities or deptins were to be prepared, so ats to show the influence of temperature and other physieal features upon animal and regetable life. Nany valuable observations of this kind were made.

4th. The life of the surface waters was to be investigated by means of hand-nets and towing-nets, on erery possible occasion, and at all honrs. Towing nets of different sizes, made of strong embroiderycanvas, and attached to stont brass rings, were used with excellent results, but ver, many interesting things were obtained by hand-nets skilfully used. The surface collections are of great interest in themselres, and of special importance practically, as they show the nature of the food of those fishes that feed at or near the surface.

5th. The collections obtained were to be preserved by the best methods: 1st, for the pmose of making a more thorough stuty of them than could usually be done at the time, and for the purpose of insuring acenacy in their identification and fulness in the special lists for the final reports ; and 2d, in order to supuly the Smithsonian Institution, Tale College museum, and a number of other pubic museums, both American and foreign, with sets of the specimens collected. For this last purpose large quantities of duplicates were collected aud preserved, and will be distributed at an early day.

Gth. Those species of animals which camot be preserved in good condition for stmly were to be examined with care and minutely described while living. The colors and appearance of the soft parts of other species were to be described in the same way, and also the eggs and yomg of all kinds.

7th. It was regarded as of great importance to secure aecurate drawings of the living animats, and especially of such as greatly change their form and appearance when preserved, such as woms, naked mollusks, ascidians, polyns, de. Unfortmately the available fumds were not suffecient to emable us to employ a special artist for this purpose during the summer, but this deficienery has been partially remedied by the figures subsequently drawn by Mr. J. H. Emerton, Mr. S. I. Smith, Mr. O. Harger, and the writer.

Sth. In all these investigations the relations existing between the fishes and the lower amimals which serve as food for them were to be constantly borne in mind, and all information bearing directly upon this subject that conld be obtained was to be reconded. To this end large numbers of stomachs from fishes newly caught were examined, and
lists of the specenes fonm in them were made. Nost of those thans ascertained to be their ordinary food were trated to the matmal hamuts from whence the fishes ohtain them.

9th. The parasites of lishes, both extemal amd intermal, were to be eollected and preserved for finture stady:

A large collection of such parasites was made, hat the internal parasites, which are very momerons, have not yet been studied. The intermal parasites were collected ehiefly lyolo. Edward lahmer.

The map atcompanying the present report serves to show the localities explomed, and the extent of the labor in dreeging and sombling. The operations during the first six weeks were under the charge of Mr. S. I. Smith, whoremained matil July 2. . He was assisted by I)r. Wr. G. Falow; who also investigated the algit. Professor J. E. Todr, of Tabor, fowa, then took charge of the work for three weeks, until I was able to join the partr, on the 16 th of Angust. During the remander of the season, until September 20 , the operations were muder my immediate superintembence ; but Professor A. IIyatt, of Boston: Dr. A. S. Packarl, of Salem; Dr. Farlow, of Cambrilge ; and Protessor D. C. Eaton, of New Itaren, gave very important aid in carrying out our investigations, and onr thanks are dne to all of these gentlemen for their assistance. Several other maturalists were present, from time to time, and coïperated with our party in varions ways.

The dredging oprations in the shallow waters of Vinefard Somm and Buzzard's Bay were carried on at first by means of a sail-boat, but during the greater part of the time by means of a stean-kunch. The dredgings outside of these waters, and of Martha's Vineyard, were all done by means of a United States revenne-entter, the steamer Hoccasin, moler command of Captain J. G. B.aker. Our thanks are dne to the oftieers of the Moceasin, who were very courteons, and gave us all the facilities within their power for carring ont onr investigations suceessfally. Without this important assistance we should have remaned in complete ignomace of the temperatme and pecnlar fama of the deeper waters ofit this shore, for the localities were too distant to be reached by means of the steam-latuch or sail-boats.

The examination of the bottom was done by means of dredges of rarious sizes, constructed much like those in general use for this purpose; by "rake-dredges" of novel co sistruction, consisting of a heary A-shaped iron frame, to the ams of which bats of iron armed with long, thin, and sharp teeth, arratiged like those of a rake, are bolted, back to back; a rectangular frame of round iron, supporting a deep and tine dredge-net, follows just behind the rake to receive and retain the animals raked from the soft mod or samd by the rake; a trawlonet, with a beam abont fome teen leet lons, made of stont, iron gas-pipe, and laving a net, fine towad the end, abont forty feet deep, and provided with mumerons pockets; "tamgles," consisting of an A-shaperl iton frame, to which frayed-ont hemp-ropes are attached. The best form
has sereral small chans of galvamzed iron attached to the frame by one ent, so as to drag orer the bottom, and the pieces of fraved-ont rope are attached along the sides of the chains.

The ordinary dredges ean be used on all kimls of bottom, except where there are rough rocks and ledges, but they generally merely serape the surface or sink into the bottom but slightly. The rakedredges are nsed only on bottoms of soft mud or sand, and are intended to cateh burowing animals of all kinds, which are always numerous on such bottoms. The traml is adapted for the capture of botton-fishes, as mell as for crabs, lobsters, large shells, and all other animals of considerable size, which creep orer or rest upon the bottom. It camot be used where the bottom is rocky or rough, and does not usualls capture many animals of small size, or those that burow. It is, howerer, a very important instrument when nsed in comection with the ordinary dredge, for it will capture those species which are too actire to be caught by the dredge, and much greater quantities of the larger species than can be obtained by the dredge alone. The "tangles" are particularly useful on rongh, rocky, or ledgy botioms, where the drealge and trawl cannot be used, but they camot be depended upon for obtaining all the small species, especially of shells and worms. They capture maing those kinds of animals which have rough or spiny surfaces, such as star-fishes, sea-mehins, corals, bryozoa, rough crabs, de., and those kinds which are disposed to cling to forejgn objects, such as many of the small crustacea, which are often taken in countless numbers by this means. Star-fishes and sea-mrehins are especially adapted to be caught by this instrument, and are often bronght up in great quantities. The tangles can be used on all kinds of bottoms, wherefer there are any of those kinds of animals which they are adapted to capture.

The localities whore dredgings were made by these varions instruments were located on Coast Surver charts as accurately as possibie, and were sufficiently numerous to give a metty satisfactory knowledge of the uature of the bottom and its inhabitants throughont the region explored. The total momber of easts of the chedges made during the three months deroted to this work was about 400. A large part of these, incinding all the more important ones, have been located on the map accompanying this report. The more important points where the temperature of the water was observed have also been indicated on the map and the temperatures given, the figures above two parallel lines indicating the surface temperature, those belor such lines indicating the bottom temperature-thus: $\frac{63}{5}$.

In prosecuting our explorations we soon iom that there are, in the waters of this region, three quite distinct assemblages of animal life, which are dependent upon and limited by definite physical conditions of the waters which they inhabit. The first of these inclades all those kinds which inhabit the bottom and shores of Vineyand Somnd, Buzzard's Bas, and the other similar borlies of shallow water along this coast from

Cape Cod westwaml and southward. These shallow waters' consist of nearly pure sea-water, which has a relatively high temperature, experially in summer, for it is warmed n_{p} both by the direct heat of the sum, acting on the shallow waters spread over broad surfaces of samb, and hy water coming directly from the (inlf Stream, and bringing not only its heat, but also its peomliar pelagie amimals. The temperature at the
 of the (inlf stream these waters newer become very cold in winter, for some of the small, shallow harbors merer freeze over. The greater part of the amimals inhabiting these bays and sounds are southern forms.

The second assemblage is a very peenlar one, which inlahits the estuaries, pouds, lagoons, harbors, amb other similar places. where the water is shallow and morr or less backish, and very wim in summer, but eold in the winter. The thind eroup inhabits the shores of the outer islands amd headhands and the bottoms in moderately deep water, outside of the bars and sommes. These onter waters are romparatively cold, creu in summer, ant are no dombt derived from an offiliont of the aretic emrent, which drifts sonthward along om shomes in deep water and always has a tendemey to arow aganst and mp its submarine slopes, in which it is also aided in many casps by the tides. In Angent, the temperature of the surface was 60° to 65°, of the bottom π° to 60° loharenheit. The animals inhabiting these cold waters ate mostly northern in character and much like those of the coast of Mane aud Bay of Fundy. The surface waters in the bays and sombds, athough usually somewhat warmer in summer than those outside, differ less in temperature than the bottom waters. Consequently we find less difference in the surface animals. We have therefore fonm it most convenient to group all the surface animals together, as a spectal division of those imhabiting the bays and sommds. In each of the groups or assemblages we find that certain kinds are restricted to particular localities, depending upon the character of the bottom or shore. Thus there will be species, or erell large groups of species, which inhabit only rocky shores; others which inhabit ouly samly shores; others which dwell in the muddy places ; and still others that prefer the clean gravelty bottoms where the water is several fathoms deep, \&e.

1 have fomm it desirable, therefore, in deseribing the character of the marine life of this region, to gron, the anmals acsording to the localities which they inhabit, adopting the three primary divisions given above, lut, for greater convenience of reference, placing all the parasitic species together in one gromp. The sublisisions of these wroups will be given under each, in the suceerding pages.

The primary groups will stand as follows:

1. The famm of the bats amd sommls.
\because. The famma of the estmates amd other brackish waters.
2. The fanna of the eohl waters of the ocean shomes amel outer hank and channels.

In describing the amimals belonging in these difereut divisions and subdivisions it has not been fornd desirable to mention, in this part of the report, all the species fomm in each, but ouly those that appear to be the most abondant and important, and espocially those that are known to serve as the food of fishes. But in the general systematic list, Which accompanies this report, all the species of the region, so far as determined, will be enumerated.

II.-THE FAUNA of tile bats and sounds.

In Buzzard's Bay, Vineyard Sound, Nantucket Somnd, amd Muskeget Chamel, (see map,) the water is shallow, being generally less than 8 fathoms deep, aud rarely exceeding 14 fathoms, even in the deepest spots. It will be scen by reference to the map, on which somndings have been given and contour lines drawn, representing the zones having depths below $3,10,14$, and 20 fathoms, respectively, that the greater part of Buzzard's Bay is less than 10 fathoms deep, and that the 3 -fathom curve is nearly parallel with the shore lines, and the same is true of the 6 fathom line, which has not been drawn. The 10 -fathom curve is very irregnlar and only extends a short distance within the month of the bay ; but an irregular area, in which the water exceeds 10 fathoms in depth, the central part orer a limited area being abont 15 fathoms, is situated to the west of Penikese, Nashawena, and Cattyhunk Islands; this is inciosed on all sides by shallower water. The 14 -fathom curse is situated from four to eight miles farther off and does not enter the bay at all, showing only a very slight curvature in that direction; yet it extends.far up Narragansett Bay, and to a considerable distance within the month of Vinesard Sound, but, like the 10 fathom line, does not enter Muskeget Channel or Nantucket Somnd at any point, and shows scarcely any curvature toward those waters, which are very shallow thronghout their whole extent, and much obstructed by banks and broat shoals of moving sands. The 20 -fathom line at nearly all points is sitnated far off shore, and does not conform at all to the outline of the coast. 'There is, however', an area of water exceeding this depth oft Newport, in the mouth of Narragansett Bay.

Vineyard Sonnd is deeper and much more varied in its depth and in the character of its bottom than Buzzard's Bay or Nantucket Somd, and therefore its fama is richer in species and the facilities for collecting are much greater. In Vineyard Somn the 3 fathom curve follows the outlines of the shore very closely, and the same is true of the 6 -fathom curve, which has not been represented on the map. The 10 -fathom line when it enters the month of the somm incloses the greater part of its width and is approximately parallel with its shores, but after it passes the narrowest part of the somd, between the northern end of Martha's Vineyard and Wood's Hole, it rapidly narrows and is finally interrupted by shaliows and sandbars after passing IIolmes's Hole, hat there are beyond this sereral isolated areas of water exceeding this depth and having their long
axes mearly parallel with the central axis of the chamel, or mather parallel with the direction of the tidal cmrents. One of these areas, south of Osterville, Massaclusetts, is 15 fathoms deep, but of hu great size. These deeper depressions are surrombled ley banks and ridges of same. some of which rise nealy to the smfate and form dangrous shoals; the shoals, like the heep chamels. have their honger axes parallel with the prevailing tidal currents, lant as they are mostls composed of lonse moving samds, they ane liable to be altered in form and position by severe storms.

These moving sambls are gencmally very barren of life, and form trine submarine deserts. Included within and nemry inclosed by the 10 fathom line, there is, between Manthats Vinesard and Namshon Islamb, a large area of shallower water, which is comneeten with the shallow water of the shore at the northern end of Marthas's Vineyard, off the "West Cinop," near Holmes's Hole. In some places this shallow rises nearly to the surface and forms the "middle gromal," and other shoals parallel with the current that sets through the chamels on either side. and conseduently nearly parallel with the shore of Marthats Vinerard. it is evident that this rather extensive bank is due to the action of the tidal current which sweeps aromed West Chop towarl the month of the somnd, following the direction of the deeper channels, the projecting point at West Chop furnishing a lee in whish the morement of the water is retarded and the seliment deposited; but this action is modifiell by the tidal enrent which enters the month of the somel and flows in the opposite direction, for althongh this emrent is somewhat less rapid, its duration is longer, especially that branch of it which flows between the Middle Gromd Shoal and Martha's Vineyarl, for this flows eastward seven hours and twenty-six minutes, while the opposite current flows westward for only fonr inoms and thirty-fomr minntes; the effect of the current flowing eastwand would, therefore, be to keep this channel from filling up, by the sediments carried along by the westward currents. The same effect would be produced in the main channel, ontside of this sheal, although the difference in the duration of the flow in the two directions is there less, the eastward flow lasting six hours and fiften minutes, while the westward tide lasts five hours and fortyfive minutes.

Similar causes determine, without donbt, the position of all the other shoals and banks of saml in this region, as well as the existence of the isolated deep areas between them, but in many cases the direetion of the wind-waves produced by the more violent storms must betaken into accomnt. The 14 -fathom line extembs into the month of the somed, as far as a point opposite Nashawema Islame ; and beyond this there are several isolated areas which are of this drpth; the most extensive of these is oprosite the sonthem half of Sanshon Island and in a line with the main chamel at the mouth of the somul. Since the tides are greater in louzards Bay than in Vineyard Somed, and neither the times of low

Water and high water, nor the relative duration of the ebb and flow are coincident, very powerful eurrents set throngh the passages, between the Elizabeth Islands, connecting these two bodies of water. This is most noticeable in the ease of Wood's Hole, becanse there the channel is narrow and shallow, and much obstructed by rocks. These channels are, therefore, excellent collecting gromnds for obtaining such animals as prefer rocky bottoms and rapidly flowing waters.

The shores of Vineyard Sound and Buzzard's Bay are quite diversified and present nearly all kind of stations usually found in corresponding latitudes elsewhere, except that ledges of solid rock are of rare occurrence, but there are numerons prominent points where the shore consists of large rocks or bonders, which have been left by the denudation of deposits of glacial drift, forming the cliffs along the shores. Sandy beaches are fieduent, and gravelly and stony ones oceasionally occur. Dindly shores are less common and usually of no great extent.

In Buzzards Bay the bottom is generally muddy, except in very shallow water about some of the islands, where patehes of rocky bottom occur, and opposite some of the sandy beaches where it is sandy orer considerable areas. Tracts of harder bottom, of mad or sand, overgrown with alga, occasionally ocenr. In Vineyard Sound the bottom is more varied. It is sandy orer large districts, especially where the shoals occur, and in such places there are but few living animals, though the sand is often filled with dead and broken shells, but in other localities the sand is more compact and is inhabited by a peculiar set of animals. Other extensive areas have a bottom of gravel and small stones and broken shells; on such bottoms animal life is abundant, and the entire bottom seems to be covered in some places by several kinds of componnd ascidians, which form large masses of various shapes, often as large as a man's head. In still other places, chiefly off rocky points and in the chamels between the islands, rocky bottoms occur, but they are usually of small extent. Muddy bottoms are only oceasionally met with. They oceur in most of the deep areas which are isolated, and sometimes in the deep channels, but are more common in sheltered harbors and coves.

In Nantucket Sound and Muskeget Channel the bottom is almost everywhere composed of sand, and the same is true of an extensive area to the east and northeast of Nantucket Islaud, where shoals of moving sand are numerons and often of large size, but in the partially sheltered area on the north side of Nantucket, there is more or less mud mixed with the sand.

For greater convenience the following subdivisions have been atopteat in describing the animals of the bays and sounds:

1. Rocky shores, between high-water and low-water marks.
2. Sandy and gravelly shores.
:3. Muddy shores and flats.
3. Piles of wharves, buovs, \&e.
4. Racky bottoms below low-water mark.
5. Stony. gravelly and shelly bottoms.
6. Sand! hottoms.
s. Amddy bottoms.
7. Free-swimming and surtace animals.
8. D'arasitic animals.

It mast, howerer, be constantly horme in mind that very few kinds of anmals are strietly confined to any one of these subdivisions, and that the majority are fombl in two, three, or more of them, and often in equal abomdance in several, though each species generally prefers ons partieular kind of locality. In other cases the habits vary at lifferent seasnus of the rear, or at different homes of the day and night, and such speries mat be found in different situations aceording to the times when they are sought. The more common and characteristie species are, however, pretty constant in their habits and may be easily fomm in their respectire stations at almost any time.

Sinee those animals that inhabit the slames, letween tides, are most frequently seen and can be most easily obtained and studied by those who are not professional natmalists, I have entered into more details concerning their habits and appearances than in the case of those nbtained only hy tredging. Such species as have not been previonsly named and described in other works will be more fully described in the systematic list, to follow this report, and references will there be given to deseriptions of the others.

1I.-1. ANIMALS INIIABITING THE ROCKY NHORES OF THE BAYS AND SOUNDS.

The principal localities where these animals were studied and collected are at Nobska Point, just east of Wool's Hole; Parker's Point, between Great Harbor and Little Harbor, near Wood's Hole; the neek of land north of Wood's Hole Chamel; several localities on Naushon and the adjacent islands; and numerous localities on the shores of Long Island Sound, as at Savin Rock aud Light-House Point, near New Haven; Stony Creek; Thimble Islands, \&e.

In all these places the rocks, in a zone extending from near lowwater mark of ordinary tides to near half tide, are generally covered with an abundance of "rock-weeds," (Fucus nodosus and F. vesiculosus,) which hang in great olive-hrown elnsters from the sides of the rocks or lie flat upon their suffees when left by the tide, but are floated up by means of their abmolant air-ressels when the tide rises. Mingled with these are several other alge, among which the green" sea-cabbage" (Vlea latissima) is one of the most abundant. Below this zone of Fucus there is a narow zone which is only exposed during spring-tides; in this the Clice and many other more delicate green and red algie flomish. Abore the Facmsone there is another zone of consiblerable width which is corered for a short time by every tide ; and still higher
me another zone which is ordinarily only washed hy the waves and spray, but is in part occasionally covered by mmsually high tides. As the tides do not rise rery high in this regiou these zones are all muth narrower and less distinctly marked than on the coast further north, and especially ou the coast of Mane and in the Bay of Fundy, but yet they can always be easily recognized and distingnished by their peculiar forms of animal and regetable life. Pools of sea-water left by the tide frequently occur in each of these zones, among the rocks, and afford excellent opportunities for studying and collecting the animals.

The amimals of rocks shores are to be sought for in a variety of ways. A few oceur quite exposed, clinging to the rocks or weeds, in defiance of the surf. These are chiefly mivalve shells, larnacles, and such animals as grow like plants, firmly attached to solid oljects, among these are the bryozoa, hydroids, and sponges. A much larger number seek shelter under the roeks, or on their lower sides, or in erevices and cavities between them; these must be songht by turning over the rocks and exploring the erevices concealed by the Fucus, \&e. Nany other species conceal themselres still more effectually by burrowing in the mut, gravel, and sand beneath and between the rocks; these are often uncovered in turning over the rocks, but must also be songht for by digging with a spale, stont trowel, or some other tool, in the dirt exposed when the rocks are removed. The number of curions species of amelids, holothuians, bivalve-shells, actinixe, \&e, which can be unearthed in this way is alwass very surprising to the inexperienced in this kind of collecting. Still other kinds can be found by earefully examining the pools and discorering the smaller animals by their motions, or by the shalows that they cast when the sum shines, or by noticing their burrows, or, if time will not admit of a more careful examination, by sweeping a fine hand-uet through the weeds along the edges. Many small erustacea, shells, etc., may also be found clinging to the corallines and other alga growing in such pools, or ereu among the alga lying upon the rocks, and especially among masses of detached alga, thrown up by the wases.

In the uppermost zone the animals are of comparatively few kinds, but these usually oceur in great abundance. The most conspienons is, perhaps, the common "rock-barnacle" or "acorn-shell," Batanus batanoides, which adheres firmly to the rocks by its base and can resist the most violent surf, eren on the onter ocean shores. When left by the tide these dull white conical shells are not calenlated to attract much attention, except on acconnt of their rast mumbers, for they sometimes completely whiten the rocks for long distances along the zone in which they flomish best, and eren so crowd against each other that they camot assume their normal form, but become greatly elongated. lint when the tide romes in, each one lifts up the doubledoor which eloses the aperture at the summit of the shell and puts out an organ, beaning a cluster of gracefnlly curved and fringed arms, which
it duckly swerps formad with at grang motion amb then quickly withdraws, as if in seareh of food, and this molion will herepreated with great regulatity for a long time, maless the creatme he disturberl, when it instantly witheralws its net and closes its don's. Non one who will take the tronble to examine this litule amimal, when in atetive operation in one of the tide pools, can fall to ahmine its pertere ataphation to its mote of life and the gracefolness of its motions. The mowement refered to serves not only to obtain food, which, in the form of microsseopic amimals, is always almulant in the water, but abso $(0$ smpply fresh con'ents of water for respiration. 'This creature is also well worthy of mention here becamse it serves as food for the tantoge, and probably for of her fishes that call obtain it at high water.

Two species of small mivalue shells (Littorinu) are always to be found in abmatance clinging to the sumface of the rocks, or among the seat weeds, or creeping abont in the tide-pools. These are often fomed quite up to high-water mark, but the full-grown ones are more common lower down among the "rock-weeds." One of these (llate XXII', fig. 13s) is subglobnlar form, the spire being depressed and the aperture wide. This is the Littorina pulliatu. It varies much in color ; the most commou color is dark olive brown, not malike that of the F'ures, but orangecolored and pale yellow specimens are not meommon, while others are mottled or banded with yellow or orange and brown. The second species is more elongated and has a more elevated and somewhat pointed spire. This is Littorind rulis, and it has many varieties of form, color, and sculpture; one of its varieties is represented on Plate XXIV, fig. 137. Some specimens are smooth, others are covered with revolving lines or furrows: in color it is most frequently dull gray, olive-greeu, or brown, but it is often prettily banded, checked, or mottled with yellow or orange, or even black, and sometimes with whitish. This species is riviparous. These shells are both regetarians and feed upon the alga among which they live. Another allied shell, the Lacunu rinctu, (Plate XXIV, fig. 139,) is fonm (linging to the sea weeds at low-water mark and sometimes in the tide-pooks. This is usually pale reddish or purplish brown, ou horn-colored, and most commonly is encireled by two or more darker, chestnat-colored bands. This also feeds upon the algar. Associated with the last, two or thee other kinds of small shells are generally fomm. One of the most abmatant of these is the Bittiom nigrum,
 especially when young, but large specimens are often only dark brown or even yellowish brown below; it ocen's in great abmadaner, clinging to the sea-weeds and eel-grass at and below low-water mark, and is also to be found in the tide-pools and on the under sides of rocks. Associated with the last, and resembling it in form and colur as well as in habits, another much less common species ocems, which is remarkable for hav ing its whorls reversed, or enilel to the left, in the direetion opposite to that of most other shells. This is the Triforis migrocinctus, (Plate

XXIV, fig. 15.). This species is more at home at the depth of a few fathoms, anong alga. Another still smaller and lighter colored species. which often eccurs abmadantly in similar sitmations, both on algie and under stones, is the Rissou uculeus, (Plate XXIV, fig. 141,) lut this generally seeks more sheltered situations. All these shells feed uron the alga. With them there can usnally be found large numbers of sereral carnivorous species. The most aboulant one is a small but pretty shell, having a smooth sumface and quite variable in color, though usually reddish or purplish brown, and irregularly mottled or banded with yellowish or whitish, the light-colored spots often taking the form of crescents, and rarying much in size and number. This is the Lstyris hencte, (Plate XXI, fig. 110.) It lives among the algae, and also among hydroids, and may be fomd in almost all kinds of localities, both above and below low-water mark. It is msmally abmalant on the muder sides of rocks among hydroids, \&゙c.. and can nearly always be fomd in the tide-pools. Another allied species of larger size, and much less common, the Anachis acuru. (Plate XXI, fig. 109,) often oceurs with it. Clinging to the rocks, or sheltered in the crevices and on their under surfaces, a much larger, dull-white or grayish, ronghis-sculptured shell can nsmally le fomd in abmodance. This is the Crosnlpinx cineren, (Plate XXI, tig. 116, which the oystermen call " the drill," a name very suggestive of its habits, for it gets its living, like many other similar univalye shells, by drilling a round hole, by means of the sharp, flinty teeth that cover its tongne, through the shells of oysters and other bivalses and then sucking out the contents at its leisure. It is usually rery abmdant on the oyster-beds, and often proves very ilestructive. Another shell of about the same size, somewhat resembling the last, and having similar habits, is often found associated with it on the more exposed rocks points, as at Nobska P'oint, the Wepecket Islands, \&e. 'This is, however, a very northern and arctic shell, which extends also around the northem coasts of Europe, and is calle I Purpura lapillus, (Plate XXI, figs. 118 and 119 ;) it is here near its southernmost limits, for it is not not found in Long Island Sound or farther south; while the former is a southem shell, abundant on the whole southern coast as fier as the Gulf of Mexico, and rate north of Cape Cod, except in a few special localities of sheltered and warm waters. The Purpure is seldom fomnd living much below low-water mark, and prefers the exposed rocky headlands on the ocean shores, where it flowishes in defiance of the breakers. It lays its eggs in smooth, vase-shaped capsules, attached to the sides or under surfaces of stones by a short stalk, and usmally arranged in gromps, (Plate XXI, tig. 120.) The eggs of "the drill" are laid in similar places, but the capsnles have very short stalks, or are almost sessile, and are compressed, with an ovate outline, and angular ridges pass down their sides. The "limpet," another northern and European shell, having a low conical form, is occasionally fonnd clinging to the rocks at low-water in this region, but is far more rommon north of

Cape Corl. This shell is the Acmure testurlimulis, (l'late XXTV, diess. 159,159 ;) it is extremely rariable in color, lont is must commonly radiated, ehecked, or tesselated with hown, pale greenish, and white. It srows mach larger on the coast of Mane than here. A pecouliar narow form of this shell, (var. aliens, represented he fig. 1.s!b, lives on the leares of ecl-grass. Bemeath the rocks, and generally attached to their muder sides, :mong hydroids, brooza, d゙e. seremal species of small, slemeder, pointed, and gencrally whitish shells oceme, which belong to the gemus Olostomia. The most eommon of these are of trifide. (I'late XXIV, fig. 14.5.) (). bisuturalis, (Plate NXIV. fig. 140.) and O. finsect, (l'late XXIV, tig. 14,) but other similar speries are often to be found. These all have the singular habit of spiming a thead of mones by means of which they can suspend themselyes from any surface. In confinement they will often creep atomg the surface of the water, using the bottom of the foot as a float, in a mamer similar to that of many fiesh-water whells. On the mader sides of rocks are occasionally fomal some very beantiful and interesting naked molluskis; lont this group of amimals is far less abundant in this region than farther north. The largest and tinest species observed here is the Doris bifila, (Plate NXV, fig. 176.) which grows to be abont an inchlong. Its body is deep porple, specked with white aml bright yellow, and the beatiful weath of gills is corered with bright goldenspecks: the ends of the tentacles are also bright yellow. Its egeg are contained in convolutel gelatiuons ribbons, which are attached to the moler sides of rocks or in crevices. Another ware and emrious species, the Doridella obscura, (Plate xxt, fig. 133,) is oceasionally found on the.muder side of stones. This is a small, oral, flattened species, of a dark brows or blackish color, with small, white retractile tentacles on the back, but the gills are very small and sitnated underneath, near the posterior end of the boty, in the groove between the mantle and foot. The egos are inclosed in a delieate gelatinous string, which is coiled up something like a watch-spring, and attached to the under side of stones.

Of bivalpe shells several species are common on rocky shores, espe(rially in the erevices and muler the rocks. Three kinds of museles are usually met with. The species which lires at high-water mark, clustering abont the small upper pools and in the crevices, and having its shell ribbed with radiating ridges and furrows, is the Modiola plieatula, (Plate NXXI, tig. 238.) This species is far more abundant, however, along the botders of estnaries and on salt mashes and muddy shores, alwass prefering the repper zone, where it is covered for a very short time by the tide. The most common speeies among the rocks, toward low-water mark, and in the larger pools, is the Mytilus calulis, (I'late NXXI, tig. ©3. 4 , which is the 6 common mascle "all along our roast from North Carolina to the Aretic Ocean. It is perfectly identical with the common musele of Emope, which there forms a very important artiele of food, and in many places as on the coast of France. is exten-
sirely cultivated for the market. On our coast it is seldom used as food, although quite as good as on the European shores; but it is collected on some parts of our coast in rast quantities to be used for fertilizing the soil. It is most abnndant in the shallow waters of bays and estuaries, where the water is a little brackish, but flourishes weilin almost all kinds of sitnations where there is some mud, together with solid ob. jects to which it can attach itself. Along the coasts of Long Island and New Jersey it is taken in almost incredible quantities from the shallow sheltered haysand lagoons that skirt those shores. It grows rery rapidly and under farorable conditions becomes full grown in one season. Like all other linds of truemmseles, it las the power of spinning strong theads by means of the groove in its long, slender foot, and, by extending the foot, glnes them firmly by one end to rocks, shells, or any other solid smbstances, while the other end is firmly attached to its body. When they attach their theads to their neighbors they form large clusters. Thas a very firm and secure anchorage is effected, and they are generally able to ride ont the most violent storms, thongh, by the giving way of the rocks or shells to which they are attached, many are always strauded on the beaches after serere storms. Thes are not confined to the shallow waters, for very large specimens were dredged by me, sereral years ago, in 40 to 50 fathoms in the deep chanmels between Eastport, Maine, and Deer Island, where the tide runs with great force; and it has since been dredged by our parties in still deeper water in the same region, showing that it can live and prosper equally well under the most diverse conditions. The specimens from sheltered localities and sandy bottoms are, however, mach more delicate in texture and more brilliaut in color than those from more exposed situations. Some of the thimner and more delicate specimens, from quiet and pme waters, are translacent and very beantifully colured with brown, olise, green, yellow, and indigo blue, alternating in radiating bands of different widths; while others are nealy miform pale yellow, or translucent horn color. Those from the exposed shores are generally thicker, opaque, and plain dull brown, or bluish black, and not unferqently they are very much distorted. This species breeds early in the spring. I have found immense numbers of the yomg, about as large as the head of a pin, which had just attached themselves to algae, hydruids, \&e., on the 12th of April. These shells are not destined to remain forever fixed, howerer, for they not only swim free when first hatehed, but even in after life they can, at will, let go their anchor-threalds, or "byssms," and ereep abont by means of their slender "foot," until they find another anchorage that suits them better, and they can even climb up the perpendionar sides of rocks or piles by means of the threads of the "byssus," which they then streteh ont and attach, one after another, in the direction they wish to elimb, each one being fastened a little higher up than the last. Thus, little by little, the heavy shell is drawn up, much in the mamer employed by sone spiters when moving or suspending an
monsually latge vietim. This common musele is not only uscelll to man directly as food, and as a fortilizer, but it serees as an important artiele of food for many fishes, both in its yomge stages and when full grown. The tantog makes many a hearty meal on the fallegrown shells, ats do several other kinds of tishes, white the "semp" and others devon the yomg. The common star-fishes feed langely mon mancoles, as well as oysters, aud they also have mamy othere ememies. A small pamatio crab, J'innotheres muculutus: lives in their shells, between their gills, in the same mamer as the common Pinnotheres ostremm lives in the oyster. Another larger moscle, sometimes rabled the "horse-mascle,"
 low-water matk in the creviers between the rooks, amd usallly nearls burial in the graveland tirmly anchored in its place. Sometimes it oecous in the lager pook, well down toward low-water mark. It is. like the last, a mothern speries, and extemls to the Aretic Oeean ami North. ern Enrope. It is much more abmulat on the morthern coasts than here, and, although it is almost entirely confined to rocky shores and bottoms, it extembs to considerable depths, for we dredged it abme dantly in the Bay of Fundy, at varions depths, down to To fathoms. Lake the preceding, it is devomed ber the tantog ame other fishes. Its thick shell, covered with a gloss, chestmot epidermis, and ruldely hary toward the large end, are points bs which it can easily be recognized, and its shape is also peculiar. The common "long clam," Mya arenarid, (Ilate NXVI, fig. 179) is very often met with bmied in the sand ant gram bemeath stones and roeks, but it is far more abundant on sandy and muddy shores, and especially in estuaries, and will, therefore, be mentroned with more details in another place.

Another shell, somewhat resembling the "long clam," but never growing so large, and more cylindrical in form thongh msually much distorted, is oceasionally met with moder the rocks or in erevees. This is the surcicara arctien, (Plate XXVII, fig. 19シ.) It, is much more abundant finther north, and has a rery extensive range, being foum on most coasts, at least in the northern hemisphere. On those eoasts where limestone exists it has the habit of burrowing into the limestone, after the mamer of Lithodomus and many other shells. The ouly localities on our coast where I have observed this habit are at Anticosti Island, in the Gult of Sant Lawrenee, where the soft limestones are abmadatly perforated in this wasy. On the New Englaml coast limestones ramely occur, and they lave to be content with sach cracks ame cramies as they ean find realy manle ; conserquently their shells, in growing to fit their places, become very muth distorted. This species can also form a lyssus, when meeded, to hold its shell in position. The siphon tube is long and math resembles that of Mya, (see fig. 179.) but is divided at the emd for a shont distanee, amd gemerally has a reddish color. The "blooly chams," Scaphered transeerse, (Plate X゙NX,

met with at low water, muder or among rocks, and gencrally attached ly a byssus, but their proper home is in the shallow waters off shore, especially on muddy, shelly, and gravelly hottoms. The fishermen call them "bloody clams," becanse the gills are red, and when opened they discharge a red fluid like blood. The little shell called Fellia planulate (Plate $\mathcal{X N X}$, fig. 220) is also sometimes found under stones at low water. Attached to the sides and surfaces of rocks and ledges along many parts of this coast, young ofsters, Ostrea Virginiance, often oceur in rast numbers, sometimes completely covering and concealing large surfaces of rocks. lunt these generally live only throngh one season and are killed by the cold of winter, so that they seldom become more than an inch or an inch and a half in diameter. They come from the spawn of the oysters in the berts along our shores, which, during the breeding season, completely fill the waters with their freeswimming yonng. They are generally regarded as the young of "uative" ofsters, but I am mable to find any specifie differences between the northern and sonthern oysters, such differences as do exist being due mere? y to the eircmimstances mater which they grow, such as the character of the water, abondance or scarcity of food, kind of objects to which they are attached, age, crowded condition, \&c. All the forms occur both among the northern and sonthern ones, for they rary from broad and round to rers long and narrow; from rers thick to rery thin ; and in the character of the surface, some being regularly ribbed and scolloped, others nearly smooth, and others very rongh and irregular, or scaly, \&e. When young and grown under favorable conditions, with plenty of room, the form is generally rombl at first, then quite regularly oval, with an modnlated and scolloped edge and radiating' ridges, corresponding to the scollops, and often extending out into spine-like projections on the lower valve. The upper valve is flatter, smooth at first, then with regular lamellie or seales, scolloped at the edges, showing the stages of growth. Later in lite, especially after the first winter, the growth becomes more irregular, and the form less symmetrical; and the irregularity increases with the age. Very old specimens, in crowded beds, nsnally become very much elongated, being often more than a foot long, and perhaps two inches wide. In the natural order of things this was probably the normal form attaned by the adult indiriduals, for nearly all the oyster-shells composing the ancient Indian shell-heaps along our coast are of this much-elongated kind. Nowadays the oysters seldom have a chance to grow to such a good old age as to take this form, thongh such are occasionally met with in deep water. The young specimens on the rocks are generally mottled or irregnanly radiated with brown. They were not often met with on the shores of Vineyard Sound, for oysters do not flourish well in that sindy region, thongh there are extensive beds in some parts of Buzzard's Bay, and a few near Ilolmes's Hole, in a sheltered poud. The oysters prefer quiet waters. somewhat hrackish, with a bottom of soft mud
containing an abundance of minute living animal and vegetable organisms. In such places they grow very rapidly, and become fat and fineflawored, if not interfered with by their numerons enemies. I shall have occasion to speak of the oyster again, when disenssing the fama of the estharies, se.

Another shell, related to the oyster and like it attached by one valve to some solid object, is common, adhering to the mider sides and edges of rocks near low-water mark. This is the Anomia glabra, (Plate XXXII, figs. 241,242 ,) and it is often called "silver-shell" or " goldshell" on account of its golden or silvery color and shining luster ; and sometimes "jingle-shell" from its metallic somed when rattling about on the beach with pebbles, \&e. This shell, however, does not grow firmly to the rock like an oyster, but is attached by a sort of stem or peduncle, which goes ont through an opening in the side of the lower valve; this is soft and fleshy at lirst, but late in life often becomes ossified, or rather calcified, and then forms a solid plug.

Of the lower classes of Mollusea, several Ascidians and Bryozoa occur under and among the rocks. Among the former the Molyula Mounhattensis (Plate NXN1II, fig. 250) is the most common. This nstally has a subglobular form, especially when its tubes are coutracted, and is almost alwass completely covered over with foreign matters of ail sorts, such as bits of cel-grass and seat-weeds, grains of sand, \&e. When these are removed its color is dark or pale olive-green, and the surface is a little rongl. This species is often attached to the underside of rocks, but is still more frequently attached to sea-weeds and eel-grass, and is sometimes so crowded as to form large clusters. Another species, having some resemblance to the last when contracted, is the Cynthia partita, (Plate XXXIII, fig. 246,) but besides the great difference in the iubes and apertures, this has a rougher and wrinkled surface and a rusty color. The specimens that grow on the under sides of stoues are often much flattened, as in the figure, but it groms more abundantly attached to the piles of wharves and on shelly bottoms in shallow waters, off shore, and in such places assumes its more normal erect position, and a somewhat cylindrical form. Each aperture is marked with four alternating triangles of flake-white and purplish red. This and the preceding are eaten by the tantog. Most of the other ascidians are mach more at home on the bottom, off shore, although some of them sometimes ocenr at low-water on rocks or in pools.

A delicate and elegantly branched bryozoan, the Bugula turrita, (Plate XXXIV, figs. 255,259) is often fomd attached to sea-weeds in the pools, and it is also frequently thrown up in large quantities by the waves, after storms. A smaller kind, with slender, isory-white, and stellate branches, the Crisio eburnea, (Plate XXXIV, figs. 260, $2(1$,) also occurs on the sea-weeds in pools. And with this is a coarser species, which forms calcareous crusts and tubercles, having the surlace covered
with the prominent tips of the tubes; this is the Celleporaramulosa, and like the Crisia it is a northern species, which inhabits also the shores of northern Europe. Still other species of bryozon occur in these situations. One of the most abundant is Alcyonidium hispidum, which forms soft gelatinous incrustations around the stems of Fucus. On the under sides of the stoues several additional kinds occur, the most common of which is the Escharella variabilis, (Plate XXXIII, fig. 256,) which forms broad calcareous crusts, often several inches across, and of some thickness, composed of small perforated cells. While living this species is dark-red or brick-red, but it turus green when dried, and then fades to yellow, and finally to white. It is far more abuudant on shelly bottoms, off shore, in 3 to 10 fathoms of water, and in such places often corers every stone, yebble, and shell, over wide areas, and in some cases forms rounded coral-like masses two or three inches in diameter and more than an inch thick.

Crustacea in considerable numbers may also be found upon the rocky shores. Of crabs four or five species are common, concealed muler the rocks aud in erevices. The "green crab," Carcinus granulatus, occurs quite frequently well up toward high-water mark, hiding under the loose stones, and nimbly ruming away when disturbed. It may also be found, at times, in the larger tidal pools. Its bright green color, varied with spots and blotches of yellow, makes this species quite conspicuons. The common "rock-crab," Cancer irroratus, is generally common muder the large rocks near low-water mark and often lies nearly buried in the sand and gravel beneath them. This species is usmally larger than the preceding, often becoming three or four inches across the shell, and though less active it uses its large claws freely and with force. It can be easily distinguished by having uine blunt tecth along each side of the front edge of its shell or carapax, and by its reddish color sprinkled over with darker brownish dots. This crab also occurs in the pools, where the comical combats of the males may sometimes be witnessed. It is not confined to rocky shores, but is common also on sandy shores, as well as on rocky and gravelly bottoms ofi shore. It is widely diffused along our coast, extending both north and south, and is common eren on the coast of Labrador. Like all the other species of crabs this is greedily deroured by many of the larger fishes, such as cod, haddock, tantog, black-bass, aud especially by sharks and sting-rays. Two smaller kinds of crabs are also very abundant under the stones, especially where there is some mud. These are dark olive-brown and have the large claws broadly tipped with black. They are often called mud-crabs on account of their fondness for muddy places. One of these, the Panopeus depressus, (Plate I, fig. 3,) is decidedly tlattened abore, and is usually a little smaller than the second, the Panopeus Sayi, which is somewhat conrex above. They are usually found together and hare similar habits. A third small species of the same genus is occasionally met with under stones, bit lives rather
higher up toward high-water mark, and is comparatively rare. This is the Panoneus Harrisii. It can be easily distingnished, for it lacks the black on the ends of the big claws and has a groove along the edge of the front of the carapax, between the eyes. This last species is also found in the salt marshes, and was originally discovered on the marshes of the Charles River, near Boston. All the species of Penopeus are southern forms, extending to Florida, or to the gulf-coast of the Southern States, but they are rare north of Cape Cod, and not found at all on the coast of Maine. They contribute largely to the food of the tautog and other fishes. The lobster, Homarus A merieamus, is sometimes found lurking under large rocks at low-water, but less commonly here than farther north, as, for instance, abont the Bay of Fundy. In this region it lives also on sandy and gravelly bottoms, off shore, but in rather shallow water. It is an article of food for many fishes, as well as for man. Active and interesting little "hermit-crabs," Eupagurus longicarpus, are generally abundant in the pools near low-water, and concealed in wet places beneath rocks. In the pools they may be seen actively rmming abont, carrying upon their backs the dead shell of some small gastropod, most commonly Anachis avara or Ilyanassa obsolete, though all the small spiral shells are used in this way. They are rery pugnacious and nearly always reaty for a fight when two happen to meet, but they are also great cowards, and very likely each, after the first onset, will instantly retreat into his shell, closing the aperture closely with the large claws. They use their long slender antenne very efficiently as organs of feeling, and show great wariness in all their actions. The hinder part of the body is soft, with a thin skin, and one-sided in structure, so as to fit into the borrowed shells, while near the end there are appendages which are formed into hooklike organs by which they hold themselves securely in their honses, for these spiral shells serve them both for shields and dwellings. This species also occurs in vast numbers among the eel-grass, both in the estuaries and in the sounds and bays, aud is also frequent on nearly all other kinds of bottoms in the sounds. It is a favorite article of food for many of the fishes, for they swallow it shell and all. A much larger species, belonging to the same genus, but having much shorter and thicker claws, (Eupagurus pollicaris,) is also found occasionally under the rocks at low-water, but it is much more common on rocky and shelly bottoms in the somds and bays. Its habits are otherwise similar to the small one, but it occupies much larger shells, such as those of Lunatia heros, Fulgur carien, \&c. This large species is devoured by the sharks and sting-rays.

The Amphipods are also well represented on the rocky shores by a considerable number of species, some of which usually oceur in vast numbers. These small crustacea are of great importance in connection with our fisheries, for we have fomd that they, together with the shrimps, constitute a very large part of the food of most of our more valu-
able edible fishes, both of the fresh and salt waters. The Amphipods, though mostly of small size, occur in snch immense numbers in their favorite localities that they can nearly always be easily obtained by the fishes that eat them, and no doubt they furnish excellent and nutritious food, for even the smallest of them are by no means despised or orerlooked even by large and powerful fishes, that could easily capture larger game. Even the voracious blue-fish will feed upon these small crustacea, where they can be easily obtained, exen when menhaden and other fishes are plenty in the same localities. They are also the favorite food of trout, lake white-fish, shad, flommers, seup, \&c., as will be seen from the lists of the animals fomd in the stomachs of fishes. One species, which oceurs in comotless numbers beneath the masses of decaying sea-weeds, thrown up at high-water mark on all the shores by the waves, is the Orchestia agilis SumpH, (Plate IV, fig. 14,) which has receised this name inallusion to the extreme agility which it displays in leaping, when disturbed. The common name given to it is "beach-flea," which refers to the same habit. Its color is dark olive-green or brown, and much resembles that of the decaying weeds anong which it lives, and upon which it probably feeds. It also constructs burrows in the sand beneath the regetable debris. It leaps by means of the appendages at the posterior end of the body.

A much larger species, and one of the largest of all the amphipods, is the Gammarus ornatus, (Plate IV, fig. 15,) which oceurs in great numbers beneath the stones and among the rock-weed near low-water mark. The males are much larger than the females, and sometimes become nearly an inch and a half long. They cannot leap like their cousins that live at high-water mark, but skip actively about on their sides among the stones and gravel, mintil they reach some shelter, or enter the water, when they swim rapidly in a gyrating manner back downward, or sideways. But although they can swim they are seldom met with away fiom the shore or much below low-water mark. The zone of Fucus is their true home. This species is abundant on all our shores, wherever rocks and Fucus occur, from Great Egg Harbor, New Jersey, to Labrador. Its color is generally olive-brown or reddishbrown, much like that of the Fucus among which it lives. The only good English name that I have ever heard for these creatures is that of "scuds" given by a small boy, in reference to their rapid and peculiar motions.

Another smaller species, Gammarus annulatus Switm, frequently oceuts under stones in similar places, but usually a little higher up. This is a pale species, having darker bands, with red spots on the sides of the abdomen. Still higher up, G. marinus often oceurs.

With the Gammarus ornatus another, mnch smaller, light slate-colored amphipod is generally to be found. This is the Melita nitidet Sumtrr. Its habits appear to be similar to those of the Gammari. Another small
species, found in the same situations, is the Mora levis Sumpur this is whitish in color, with black eyes.

Two speces of the gemus A mphithoä also live muler rocks at low water, but these, like the other species of this genus, construct tubes in which they dwell. The Amphithö̈maculata (Plate IV, fig. 16) is much the larger, and constructs large, coarse tubes of gravel, bits of sea-weed, \&e., and attaches them in clusters to the under sides of stones. They often leave their tubes, however, and may be found free among the weed or under stones. The color is generally dark green, thongh sometimes reddish, and there is often a series of light spots along the back, and the whole surface is covered with minute blackish specks; the eyes are red. The second species, Amphithö̈ ralita Suith, is much smaller, being generally less than half an inch long. It is usually bright green in color, and has black eyes. It often lives among the bright green fronds of Ulea latissima, and its color is nearly that of the Uler.

Another amphipod, resembling a small Gammarus, about half an inch long, and light olive-brown or yellowish brown in color, is sometimes found in large numbers swimming actively about in the larger ticlal pools, and occasionally darting into the growing sea-weeds for rest or concealment. This is the Calliopius lectinsculus. It also often occurs in rast numbers swimming at the surface, far from land, not only in the sounds and bays, but out at sea, as for instance in the vicinity of St. George's Bank and in the Gulf of St. Lawrence, where it is equally abundant. It is devoured in large quantities by numerous fishes. The Hyale littoralis occurs near high-water, among algre, and in pools.

The Isopods are also well represented on the rocky shores. One of the most common is the Spheroma quadridentatu, (Plate V, fig. 21,) which bears some resemblance, both in forin and labits, to the "pill-bugs,' which live upon the land. This species is found in abundance under stones and rocks, or creeping slowly about among the branches and roots of sea-weeds, on their sides and upper surfaces, from lowwater mark nearly up to high-water mark. In color it is exceedingly variable, for no two can be fomel that are alike ; but the colors, consisting of irregular blotches and dashes of dark gray, light gray, slate, greenish, and white, are so blended as to imitate very closely the colors of the barnacles and gray surfaces of the rocks rhere they live, and no doubt they derive considerable protection from their enemies by these imitative colors. When disturbed they curl themselves up in a ball and fall to the bottom.

Another smaller and much more active species, which lias a more sleuder form, is fom in rast numbers creeping actively about over the rocks and barnacles, and especially beneath rocks and drift-wood. This is the Jera copiosa. It is also excessively variable in color, but shades of green, gray, and brown predominate, and canse it to imitate rery effectively the surfaces of the rocks covered with small green alger, where
it loves to dwell. It is found nearly up to high-water mark, and has a wide range both northward aud southward along the coast.

Another rery common and much larger isopod is the Idotea irrorata, (Plate V, fig. 23,) which grows to be nearly an inch long. Its colors are extremely varied. Often the general color is dark gray, light gras, dull green, or brownish, thickly specked and blotched with darker, but the colors are often brighter and the markings more definite; not unfrequently a band of white, or yellowish, or greenish, runs along the middle of the back, with perhaps another along each lateral border. This species occurs creeping among the "rock-weeds" and other algae at low water, in the pools, creeping on the under sides of stones, adhering to eel-grass, and also among floating sea-weeds, away from the shore, and in many other situations. Its colors are generally well adapted for its concealment, by imitating, more or less perfectly, the rocks and weeds among which it lives. Even those with bright green markings are thus protected when living on eel-grass or Ulca ; the dark, obsenrely marked ones when on dead eel-grass or dark Fucus ; the grays and browns when on stones and among barnacles, \&c. This protection is not perfect, however, for they often fall victims to hungry fishes of many kinds.

The Idoted phosphorea Harger, is a closely allied species, which grows eren larger. It can easily be distinguished by the tail-piece, which is acute in this, but tridentate in the last, and by its rongher surface and more incised lateral borders. Its colors are similar and equally variable, though they are frequently in larger and more definite spots and blotches, and the light spots are often bright jellow. It is, as its name indicates, decidedly phosphorescent. It lives under the same circumstances as the preceding species, but is much less common in this region, though it is abundant in the Bay of Fundy. It often occurs among the crowded stems of Corallina officinalis in the larger tide-pools.

Another related species, the Erichsonia filiformis Harger, (Plate VI, fig. 26,) also occurs among the Corallina and other alga in the tidepools. This is a smaller species than the two preceding, but is somewhat similar in its colors, which are equally variable and equally adapter? for its concealment; in this the colors are more commonly varions tints of brown, or dull reddish, or light red, which are well adapted to blend with the colors of the Corallincs. Quite a different looking creature is the Epelys montosus, which is occasionally found concealed beneath stones where there is more or less mud. This species also frequents muddy bottoms, and is pretty effectually concealed by its rough-looking back and the coating of mud and dirt that always adheres to it.

Clinging to the hydroids and delicate algae on the under sides of stones, and in tide-pools, curions slender-bodied crustacea belonging to the genus Caprella (similar to fig. 20, Plate V) may often be found in considerable numbers, but they are still more abundant on rocky bottoms off shore. They have the habit of lolding on firmly by the pos-
terior legs, and extending the borly ont at an angle, with the long, rough front legs stretched out in varions directions. While in these attitudes and at rest they often closely resemble the branches of the hydrods and alge among which they lire, especially as they also imitate them in colors, for all these species are variable in color, heing gencrally gray, with darker specks, when living among hydroids, but often bright red when living among red alge. This habit of holding themselves stiffly in such peculiar positions reealls the similar habits of many insects, especially some of the Orthoptera and the larvae of the geometrid moths, and they also recall the larva, just named, by their singular mode of climbing actively about among the branches of the hydroids and alge, for they bend the slender body into a loop, bring the hind legs mp to the tront ones, and taking hold with them stretch the body forwand again, just like those larva, thongh their legs are long and stender and differ widely in structure. These little creatures are very pugnacious and are abwas ready to fight each other when they meet, or to repel any intruder similar in size to themselves. Their large clawsare well adapted for such purposes.

The marine worms or Amelids are revenmerous mader the rocks betreen tides, and concealed bencath the surface of the gravel and mud that acemmates between and beneath the stones ant in crevices. Many kinds also live in the pools, lurking among the roots of the algie, burrowing in the bottom, or bnilding tubes of thein own in more exposed situations. Many of these annelids are very beantiful in form and brilliant in color when living, while most of them have curions habits and marrelons structures. Several species are of large size, growing to the length of one or two feet. Some are carnivorons, devouring other worms and any other small creatures that they can kill ly their powerful weapons: others are vegetarians; but many are mud-eaters, swallowing the mud and fine sand in great quantities, for the sake of the animal and regetable organisms that always exist in it, as is the case with clams and most of the biralve shells, and many other kinds of marine animals.
All these Annelids are greedify terotred by most kimds of marine fishes, whenever they can get at them, and, since many of the annelids leave their burrows in the night to swim at the surface, or do this constantly at the breeding season, they make an important element in the diet of many fishes besides those that constantly root for them in the mad and gravel, like the tantog, scup, laddock, \&ce. The young of nearly all the ammelds also swim free in the water for a considerable time, and in this state are doubtless devoned in immense numbers by all sorts of young and small fishes.

One of the largest and most common Amelids found under rocks, burroming in the sand and gravel, is the Nereis virens, (Plate XI, figs. ti-50.) It lives both at low-water mark and at a considerable distance tarther up. It grows to the length of eighteen inches or more, and is
also quite stont in its proportions. The color is dull greenish, or bluish green, more or less tinged with red, and the surface reflects bright iridescent hues; the large lamellie or gills (fig. 50) along the sides are greenish anteriorly, but farther back often become bright red, owing to the mumerons blood-ressels that they contain. It is a rery active and voracious worm, and has a large, retractile proboscis, armed with two strong, black, hook-like jaws at the end, and many smaller teeth on the sides, (figs. 48, 49.) It feeds on other worms aud varions kinds of marine animals. It captures its prey by suddenly thrnsting out its proboseis and seizing hold with the two terminal jaws; then withdrawing the proboscis, the food is torn aud masticated at leisure, the proboscis, when withlaran, acting somewhat like a gizzard. These large worms are dug out of their burows and deronred eagerly by the tantog, senp, and other fishes. But at certain times, especially at night, they leave their own burrows and, coming to the surface, swim abont like cels or snakes, in vast numbers, and at such times fall an easy prey to many kinds of fishes. This habit appears to be connected with the season of reproduction. They were observel thins swimming at the surface in the daytime, near Newport, in April, 18i2, by Messis. T. M. Prudilen and T. II. Russell, and I have often observed them in the evening, later in the scason. At Watch Hill, Rhode Island, Apmil 12, I found great numbers of the males swimming in the pools among the rocks at low-water, and discharging their milt. This worm also oceurs in many other situations, and is abundant in most places along the sandy aud muddy shores, both of the sounds and esturies, burrowing near low-water mark. It occurs all along the coast from Ner York to the Aretic Ovean, and is also common on the northern coasts of Europe.

With the last, in this region and southward, another similar species, bat of smaller size, is usmally met with in large numbers. This is the Nereis limbatu, (Plate XI, fig. j1, male.) It grows to the length of five or six inches, and can casily be distinguished by its slender, sharp, light amber-colored jaws, and by the lateral lamelle, which are small anterionly and narrow or ligulate posteriorly. Its color, when full grown, is usially dull brown, or smoky brown or bronze-color anteriorly, with oblique light lines on the sides, and otten with a whitish border to each ring, which form narrow, pale bands at the articulations; posteriorly the body and lateral appendages are pale red, and the lougitndinal dorsal bloor-vessel is conspicnons. The male, of which the anterior part is represented in fig. 51 , differs greatly from the female in the structure of the middle region of the boty, which is brighter red in eolor, and has the side appendages more complicated and better adapted for swimming. The females agree with the males very well in the form and structure of the head and auterior part of the body, but the middle region dors nut become different from the anterior, as in the male. Both sexes are often dug ont of their burows, unter stones or in the samt, but in sach places there are few males in proportion to the fe-
males. The males, however, sometimes ocem swimming fros at the surface in vast numbers. They swin with all umhatating motion, abol are quite conspienous on atecount of the hright red colne of the midhle region of their borlies. Mr. S. I. Simith ohserved them swimming in this way, in the daytime, in Augnst, at Fire lshamb, on the somthern side of Long lsamd, where they ocemmed in ineredible mumbers and were eagerly pmesned by the bhe-fish, which at such times would not take bait. We niten canght them in Vineyarl somme, in the evaning, at the surface, with towingets. These worms mast, therefine, contribute largely to the food of many fishes. It is reve common on our sandy shores as far somth as Sonth Carolina. A third speceles, Nereis
 but in this resion is chietly fombl on shelly bottoms, in the deeper waters of the sommes. These three species of Nereis are called "clamWorms" bs the fishermen. Two large species of womms belonging to the genns Rhynchobolns (formerly Glycera) are olten mot with in hurrows, in the mud beneath stones. These are pale reddish, deep fleshcolored, or dull purplish red, and rather smooth-looking worms, thitkest in the midule, and tapering to both ends. They have a large proboscis, armed at the ends with fomr hack, hook-like jaws, and are remarkable for their rapid spiral gyrations. They belong more properly to the muddy and sandy shores, and will, theretore, be mentioned mote particularly in another pace. They are represented on Plate X, figs. 43-46. Ophelia simplex occurs mader stones at half-tide, and helow.

The Marphysa Leidyi (Plate X1I, tig. (64) is a large and hamdsome worm, occasionally met with muder stones at low-water mark, hot is more common on shelly bottoms in shaliow water off shore. It grows to the length of sis inches or more, and its body is Hattened, except toward the head, where it becomes much marowed and neany cylindrical. It is gellowish or brownish red, and brilliantly ipidescent. The branchise are bright red, and commence at about thesixtrenth segment ; the first oues have only one or two branches, but farther back they become beautifully pectinated. There are six mequal cambal cirri, the lower lateral ones longest. It is furnished with powerful jaws, and is carnivorons in its habits.

A small but rery active worm, Podarke obscmut T., (Plate XII, fig. 61,) is often found in large mumbers beneath stones. These are dark brown or blackish in color, sometimes with lighter bands. They come ont at night and swim at the surface in vast numbers. They are also often met with at the surface among eel-grass, in the daytime, in large numbers. A large and rery singular worm, which burrows and constructs tubes in the mud and gravel beneath stones, is the Cirratnotus grandis V., (Plate XV, figs. S0, 81.) This is usmably yellowish brown, hall orange, or ochereolored, and is remarkable for the mumerons long, tlexible, reddish or orange cirri that arise all along the sides. Another very large and interesting worm, often associated with the last, both among and under
rocks, aud on muddy shores, is the Amphitrite ornate, (Plate XVI, fig. S2.) This worm constructs rather firm tubes ont of the consolidated mud and sand in which it resides, casting ceylinders of mud ont of the orifice. It grows to be twelve to fifteen inches in length. Its color is fleshecolor, reddish, and orange-brown to dark brown, and it has thee pairs of large plamose or arborescent gills, which are bloodred. The tentacles are flesh-colored, vers mumerons, and capable of great extension, even to the length of eight or ten inches, and are kept in constant motion in gathering up the materials with which it constrmets its tube. Two species of worms, remarkable for their soft borlies filled with bright red blood, which is not contained in special bloodvessels, are also found under stones where there is mud in which they ean burrow. The smaller of these is Polycirrus eximius, (Plate XVI, tig. 85.) Its tentacles are very momerons, and are extended in every direction by forcing the blood into them, which can be seen flowing along in the form of irregular drops, distending the tubmar tentacles as it passes along. The second species is a much larger and mudescribed species, remarkable for its very elongated body and for having very singular branching gills on the sides along the midnle region; the first and last of these gills are simple or merely forked, but those in the middle are. divided into namerous bramehes; and in either case each branch is tipped by a claster of seta. In allusion to this remarkable feature I have called it Chatobranchus sanguineus. Its tentacles are like those of the last species, but longer and more mumerons; in full-grown specimens they can be extended twelve to fifteen inches or more. Its color is bloodred anteriorly, but more or less yellowish at the slender posterior part. It is rery firgile and it is seldom that a large specimen can be obtained entire. It grows to be twelve to fitteen inches long. This, like the three species last mentioned, feeds mpon the minute organisms contaned in the mml, which it swallows in large quantities. Two species of Lumbriconereis are, also, frequently found burowing in the mud and sand beneath stones, but they belong more properly to the muddy shores. They are long, slender, reddish, and brilliantly indescent worms, readily distinguished by having a smooth, blunt-conical hearl, withont tentacles. They are carnivorous and have complicated jaws. The head and anterior part of the body of the larger species (L. opalina V.) is represented in Plate XIIl, figs. 69, 70. The other (L.temuis V.) is very slemler, thread-like, nearly a foot long, and has no eyes.

There are several kiuds of highly organized amelids which may be fomm adhering to the under side of stones or concealing themselves in crevices. Among these are three species, which have the back covered with two rows of large scales. One of these, having twelse pairs of nearly smooth scalen, is the Lepidonotns sublevis V., (Plate X, fig. 42;) the color is variable, but usually brown or grayish, with darker specks, thus imitating the color of the stomes. Another more common species is the Lepidonotus squamatus, (Plate X, figs. 40, 41,) which also has
twelve pairs of seales，but they are rough，and corered with small romoled or hemispherical tubereles ；this is usmally dark hown．＇The third species has sixteen pairs of smooth seales，and belongs to another senus．This is Harmothoë imbricuta；it varies exceedingly in color，but is usmally grayish of brownish，more or less specked，blotchenl，or striped with backish；sometimes there is ablack stripe along the midalle of the back：sometimes the general color is dark reddish．These three species of scaly worms all have a large proboscis with four powerfn］ jaws at the end，and a circle of papillie，as in figs． 40 and 41 ；they are carnivorons in their habits and rather sluggish in their movements． When disturbed they curl themselves up into a ball．They are very complicated in their appendages，and the spines and setie of these ap－ pendages are very emions in structure，when examined with a miero－ scope．Notwithstanding their mumerons sharp spines they are often hevomed by fislies，and they frequently also fall victims to their more powerful companions belonging to the Nereis tribe，and are sometimes destroyed even by the apparently inoftensive Nemerteans．Ahlhering to the under sides of the rocks and stones there are several hinds of tubes constructed by annelids．One of the most common and abundant kinds of these tube－dwelling worms is the Sabellaria culfaris V．，（Plate XVII， figs．S8，S8\％．）This worm constructs firm and harl tubes out of fine sand and a cement secreted by special glauds．These tubes are bent and twisted in various directions and are generally united together into masses or colonies，sometimes forming aggregations of considerable thickness and perhaps sereral inches or a foot across．The tubes of this worm are also common on the shells of oysters．Another very curions and beantiful worm，the Sicionopsis palmata T．，constructs much larger and coarser tubes ont of bits of sea－weeds and shells，sand，small pebbles， aud other similar materials；these tubes are long and crooked and attached for their whole length to the under side of rocks．The worm that constructs them has some general resemblance to the Amphitrite ornata，but is seldom more than three or fomr inches long and is msnally darker colored，the color being generally reddish brown or dark brown， more or less speckled with white．There are only sereuteen fascicles of setie on each side．The gills are only three in mumber，viz：an odd median one，much larger than the others，placed just behind the tentacles； ant a pair of smaller ones，but similar in form and just back of the first ； all three gills have a stalk or pedmele，and branch toward the end in a palmate or digitate manner，each of the divisions again subdividing． The gills can be retracted beneath a sort of collar which arises just be－ hind them；their color is greenish，specked with white．The gills of this worm are rery elegant in form，and quite malike those of any other known species，both in position and form．Therefore it is necessary to establish a new genus for this species．It has been found from Vineyard Sound to New Jersey；both among eel－grass in shallow water，and under stones．The Nicolen simple．is a related species，with similar habits．

The crooked, round, calcareons tubes made by Serpula dianthus V., are often to be found adhering to the under surfaces and sides of stones near low-water mark, and also in the pools in more exposed situations; sometimes they are even aggregated together into masses. When disturbed the worm suddenly withdraws its beantifnl wreath of gills into its tube and closes the aperture closely by means of a curions plug or operculum. This is placed at the end of a rather long pedicle, and is funnel-shaped, the outside longitudinally striated and the edge bordered by about thirts sharp denticles; from the middle of the upper side another smaller, short, funnel-shaped process arises, the edge of which is divided into twelve or thirteen, long, rather slender, rigid processes, which are usually a little curved inward at the top, but may be spread apart in a stellate form. A small, rudimentary, club-shaped opereulum exists on the other side. When these tubes are placed in sea-water and left undisturbed for a short time, the occupant will cautionsly push out its opercnlum and display its elegant wreath of branchie, which varies much in color in different specimens, but often recalls the varied hues and forms of different kinds of pinks, (Dianthus.) The name which I hare given to it alludes to this resemblance. Fine specimens of this Serpula may often be found, also, in the pools near low-water mark, attached to the upper surfaces or sides of rocks, and in such situation they display their charms to great advantage. The wreath of branchice is nearly circular, consisting of two symmetrical parts, each of which is made up of about eightcen pectinate branchire; these are covered on their inner surfaces with slender filaments which extend nearls to the ends, but leave the tips naked. Young specimens have fewer branchix. In the more common varieties these branchir are purple at base, with narrow bands of light red or pale yellowish green; above this they are transversely banded or amnulated with purplish brown, alternating with yellowish green, or with purple and white ; the pinnæ usually correspond in color to the part from which they arise, but are sometimes all purple. In other specimens the branchise are jellowish white, or greenish white, banded with brown. In one variety (citrina) they are bright lemonyellow, or orange-colored, throughont. The operculum, in all the varieties, is usually brownish green above, with the sides purplish brown, lined with whitish near the edge, and with a greenish white band at the base; the pedicle is usually purplish, with two or more bands of white. The body is usually deep greenish yellow, with the back lemon-yellow; the collar is broad with an mululated border, and is pale green, reined with darker green blood-ressels. This species is also often met with in dredging on shelly bottoms.

The Potamilla oculifera (Plate XVII, fig. S6) is another beantiful annelid, related somewhat to the Serpula, but its tubes are tough and flexible; they are constructed out of fine sand and other foreign matters, glued firmly together with the special secretions of the animal. These tubes are often found attached to the under sides of stoues, but, passing
around to the siles, open upward by a free extremity; they also frequently oceur in sheltered nooks in the tide-pools. The worm, when undisturbed, puts out a beantiful wreath of branchise somewhat resembling that of the Serpula, but there is no operculum. The branchite are always beautifully colored, thongh the colors are quite variable. In one of the commonest styles of coloration, the branchia are surombled at base with reddish brown ; above this with a ring of white; next by a band of reddish brown ; then for the terminal half the color is yellowish gray, with indistinct blotches of brown ; on the outer sides of the branchia there are one to three dark red eyes. There are ten or more branchie in each half of the wreath, and they are longer on one side than on the other.

Another related species, the Sabella microphthelmu V., also occasionally occurs in the pools and on the muder sides of stones, constructing tubes very much like those of the last species. This is a much shorter and stonter worm, with the branchial wreath relatively much larger and nearly half as long as the body. The brauchie are pale yellowish, greenish, or flesh-color, with numerons transverse bands of darker green extending to the pinne ; on the onter side of the branchixe there are numerons mimute ege-like spots of dark brown, arranged in two rows on each. The body is usually dull olive-green. The Fabricia Leidyi V., is another member of this group of worms, but is of very minnte size. It constructs delicate, flexible tubes, free toward the end, which usually stands upright. Its tubes may be found in the poolsand on the under side of stones. The worm itself is very small, slender, and when undisturbed protrudes a wreath, composed of six branchit, to a considerable elistance above the month of the trbe. The branchix have five to seven pinne on each side, the lowest much the longest, so that when expanded they all reach nearly to one level. At the base of the branchix there are two pulsating vesieles, alternating in their beats; and just back of these there are two minute brown eje-specks; two similar eves exist at the posterior end. Eleven segments of the body bear fascicles of setre. Color yellowish white, the blood-ressels red.

Two or more species of the minute but beautiful worms belonging to the genus Spirorbis are found attached to the fronds of sea-reeds, to shells, stones, ©ce, especially in the pools. These are related to the Serpula, and like it form solid calcareons tubes, but these are always coilerl up in a close spiral, and the coil is attached by one side. The little worms put out an elegant wreath of branchix, and are furuisbed with an operculum. Another very interesting and beantifully colored worm, sometimes found under and among the stones, where there is mud, is the Cisteniles Gouldii V., (Plate XVII, figs. S7, S7̈t.) This constructs very remarkable, conical, free tubes, of grains of sand arranged in a single layer, like miniature masomry, and bound together by a water-proof cement. This worm belongs more properly to the muddy and sandy shores and will be mentioned again.

Under stones and deeaying sea-weeds, near high-water mark, two or more kinds of small slender worms are usually found in great numbers ; these differ widely from all those before mentioned, and are more nearly related to the common earth-worms of the garden. One of these is white, slender, and about an inch long, tapering to both ends. This is Halodillus littoratis Y., apparently forming a new genus allied to Enchytreus. Another is of about the same size, but rather longer and more slender, and light red in color. It has a moniliform intestine, with a red bloodressel attached to it above and below. It belongs apparently to the genus Clitellio, (C. irroratus V.)

In addition to all these setigerons Amnelids which have been enumerated, there are quite a number of worms to be found on the rocky shores which are destitute of all these external appendages, and have the surface of the body smooth and ciliated. There are two tribes of such worms: in one of them the body is much elongated, and either roundish, or flattened, and usually rery changeable in form and capable of great extension and contraction. These are known as Nemerteens; most of them have a proboscis which they can dart ont to a great length. In the other group, known as Planarians, the body is broad, short, and depressed, and often quite flat, and their internal structure is quite different.

One of the largest of the Nemerteans, the Meckelia ingens, (Plate XIX, figs. $96,96(t$,$) is met with under stones where there is sand, but it be-$ longs properly to the saudy shores. It is an enormons, smooth, that worm, rellowish, flesh-colored, or whitish, and sometimes grows to be ten or twelve feet long and over an inch wide. The Meckelia rosea also oceurs occasionally in similar places. This is similar in form, but is smaller, less flattened, and decidedly red in color. It is often covered by adhering sand. Another species, belonging to the Nemerteans, is often found in great abundance under stones from mid-tide to near high-water mark. Many of them are often found coiled together in large clusters. This is the Nemertes socictis ; it is very slender or filiform, and often five or six inches long' when extended. Its color is dark ash-brown or blackish, a little lighter beneath, and it has three or four eyes in a longitudinal group on each side of the head. Another larger species, apparently belonging to the genus Cerebratulus, but not sufficiently studied while living, is also abundant under stones. It is much stouter and is usually dark olive-green, brownish-green, or greenish-black in color, but a little lighter below and at the borders of the head. Sereral other small Nemerteans occur under similar circumstances. In the pools, creepiug over and among the alga and hydroids, a yellowish or light orange-colored species, one or two inches long, is often met with. This species secretes an unusual amount of mucus, which is, perhaps, connected with its climbing habits, and I have on this account named it Poliniaglutinosa V., (Plate XLX, fig. 97.) It varies in the number of its eyes, according to its age, but they are always grouped in oblique clusters as in the figure.

The color is sometimess bright orange anteriorly，hat lighter posteriorly． with a faint dusky or greenish line along the middle．

Another species，closely resembling the last in form，color，and size，is quite common under stones，and especially in dead tubes of serpult，near low－water mark．This is the Cosmocephula ochracea V＇．，（1’late XLX，figs． $95,95 u ;$ ）it has mumerons eyes on the sides of the head，three or four on each side forming an anterior row parallel with the margin；the others forming two parallel oblique grouns，usually with two or three eres in each，farther back．On the lower side of the head there is，on each side，an obliquely transwerse groove．The color is usmally dull yel－ lowish－white or grayish；the anterior part is often tinged with orange and the posterior with ash－gray ；there is generally a distinct paler me－ dian line，most distinct anteriorly．It grows to be two or three inches long，when extended．

Of the I＇lanarians sereral species are also found creeping over the muder side of stones and in the tide－pools．One of the most abundant is Procerotes firequens，which is a rery small but lively species，found creeping on the muder side of stones near high－water．It is usmally about an eighth of an inch long，dark brown or blackish above and gray below，and it has two reniform eyes．The Monocelis agilis is still smaller， elliptical，with only one median eye；its color is dark brown or blackish． By some writers this genus is placed among the Nemerteans．Two larger species of this group are also occasionally found on the under side of stones．One of these，the Planocera nebulosd，（Plate XLX，fig． 100 ，）is usually about half an inch wide and three－fourths long，but may become nearly circular，or may extend into a long elliptical form．It is flat and thin，with flexuous edges．Its color is olive－green above，with a lighter median stripe behind，and yellowish green below．The tenta－ cles on the back are whitish and retractile．

The Stylochopsis littoralis V．，（Plate X゙L工，fig．99，）is also frequently found on the under side of stones．It is remakable for having a clus－ ter of eyes on each tentacle，other clusters in front of them，and two or more rows of eye－spots aromid the margin，especially in front．Its color is variable，but usially greenish，greenish yellow，or brownish yellow， often reticulated with flesh－color；there is generally a pale median streak posteriorly．The eggs were laid July 12th in large clusters，composed of many small white eggs closely crowded together，side by side，and at－ tached to the surface of the glass jar in which they were kept．

There are also representatives of the＂round worms，＂or Nematodes， to be found beneath the stones and among the roots of alge，hydroids， \＆c．The commonest of these is，perhaps，the Pontonema marinum（Plate XVIII，fig．94．）This is a small，very slender，smooth，white，round worm， tapering to both ends，and very active in its movements，constantly coil－ ing itself into a spiral and again uncoiling itself．Its head is furnished with about six minnte cirri ；in the male the tail is short，narrow，nearly straight，but one－sided，rapidly tapering．and subacute；in the female
the body is much longer, and the tail is long, slightly tapered, straight, and obtuse. The Pontonemu raeillatum also oceurs in similar places in abundance. In this species the male has a short, obtuse, incurved tail ; the female a straight, tapering, narrow, obtuse one. Both species are oviparons, and the female genital orifice is near the middle of the body. These worms are from a quarter to half an inch or more in length. Their complete history is not known ; they are closely allied to many of the parasitic worms, and it is possible that in some stages of their development these are also parasites.

Of the Radiates there are also numerons species to be fomin on these rocky shores.

Although the purple "sea-urchin," Arbaciu monetulata, and the green "sea-urehin," Strongylocentrotus Dröbachiensis, (Plate XXXV, fig. 268,) are sometimes met with, their occurrence is irregular and uncertain at low-water in this region. The former occurs in abundance on rocky and shelly bottoms in the sounds; while the latter oceurs chiefly on similar bottoms in the cold area, and at low-water on the outer rocky shores, and still more abundantly farther north.

The green star-fish, Asterias arenicola, (Plate XXXY, fig. 260,) is found in large numbers at low-water among the rocks at certain times, but at other times is seldom met with, though a few young specimens can almost always be found by careful search beneath the stones. The adults were very abundant on the shore at Parker's Point, in the latter part of June; but by the middle of July very few could be found there. Their habit of coming up to the shore may be connected with their reproductive season. They are always abundant on shelly bottoms in the bays and sounds, especially where there are beds of muscles or oysters, upon which they feed. They often prove exceedingly destructive of oysters planted in waters that are not too brackish for their comfort. They manage to eat oysters that are far too large for them to swallow whole, by grasping the shell with their numerous adhesive feet, and then, after bending their five flexible rays around the shell so as partly to inclose it, they protrude the lobes and folds of their enormons saceular stomach from the distended month, and surromding the oyster-shell more or less completely with the everted stomach they proceed to digest the contents at leisure, and when the meal is finished they quietly withdraw the stomach and stow it away in its proper place. In this way a large "school" of star-fishes will, in a short time, destroy all the oysters on beds many acres in extent, unless their operation be interfered with by the watchful owners. In one instance, within a few years, at Westport, Comecticut, they thus destroyed about 2,000 bushels of oysters, ocenpying beds about 20 acres in extent, in a few weeks, during the absence of the proprietor.

In order to stop their operations it is necessary to dredge over the ojster-grounds and destroy all the star-fishes thus brought up, by lear: ing them on shore above high-water mark; for if simply torn in pieces
and thrown overboard, as is sometimes done, each ray has the power of reproducing all the lost parts, so that cach fagment may, after a time, become a perfeet star-fish.

The color of this species is generally dark green or brownish green, with the madreporic plate bright orange; the males are more inclined to brown, and sometimes have a reddish tint. It is found all along the coast from Massachusetts Bay to Plorida.

The eges of this species, like those of most other star-fishes, produce peculiar larva, entirely unlike the parents, and provided with vibrating cilia by means of which they swim about in the water, or at the surface, for a considerable time. The young star-fish derclops within the larva and gradually absorbs the substance of the larva into its own organization.

The development of this and our other common species has been rery fully described and illustiated by Mr. A. Agassiz.

Of the Hydroids many species oceur in the pools, or attached to the lower sides of overhanging rocks, or of stones that have an open space beneath them, or growing upon the Fueus and other sea-weeds at lowwater mark. The most abundant of all is the Sertularia memila, (Plate XXXVII, fig. 279,) which grows in small tufts of delicate branches on the stems and fronds of all the larger sea-weeds, and on the sides and lower surfaces of stones. Another beantiful species, the Obelia commissuralis, (Plate XXXVII, fig. 281,) occurs at low-water mark and in tidepools, attached to stones and sea-weeds. It is very delicate and much branched, and sometimes grows five or six inches high, though usually smaller. At certain times it produces small meduse in its uru-shaped reproductire eapsules; these are discharged and swim free for some time, having sixteen tentacles when they become free. Several other species of this gemus also oceur attached to the sea-weeds at low-water. The most common of these is O. तiaphana, which grows about an inch high, attached to the stems of Fucus. The Campanuluria flexuosa is another similar hydroid, remarkable for its large reproductive eapsules, in which meduse are developed that never become free. This species occurs in the pools at low-water, on weeds and stones, and also on the lower sides of overhanging rocks or the timbers of wharves. It is much more abundant farther north, as at Eastport, Maine, where it grows in profusion on the timbers of the wharves, hanging down from their lower sides, collapsed and dripping, while the tide is low. The Pemuriu tiarella (Plate NXXVII, figs. 277,278) is a very conspicnous and beantiful species on account of its much-divided black branches and numerous bright red flower-like hydroids. It occurs occasionally in the pools, and just below low-water mark, attached to stones, corallines, \&e., but is more common in somewhat decper water on rocky and shelly bottoms. The "file-fish" feeds on this speries, and probably on other allied lyydroids, for its stomach was found full of the stems and branches, cut up in fine pieces. Its broad, sharpedged jaws are admimbly
adapted for browsing on hydroids, but yet this may not be its principal foorl, for our observations were very few on this fish, owing to its rarity. Oue of the most interesting of the hydroids, found in the rocky pools at low-water, or in other shaded places, is the Hybocodon prolifer, (Plate NXXTIII, fig. 2.2 .) This is one of the largest and most beantiful of the tubularians, and is rery conspicnous on accome of its deep orangered color. It is by no means common, and grows only in those pools where the water is pure and cool, or under the shade of overhanging rocks. It usually grows singly or in groups of two or three clustered together. The delicate hydrarimm of Bougainvillia superciliaris (Plate XXXVII, fig. 276) is also occasionally met with in the larger tide-pools near low-water mark, and the small, free medusx, which are produced by budding from the hydrarium, are freguently foum swimming in the waters in spring. The Clava leptostylu is a beautiful and apparently soft and tender species, but it grows in clasters on the fronds of Fucus at low-water mark, on the most exposed shores, and withstands the most powerful suri, mharmed. The colonies are bright light red in color and consist of numerous hydroids arising from ereeping stolonlike tubes, which interlace to form the base of the colony: Each of the hydroids consists of a cylindrical stem, slender at base and about a quarter of an inch high, at the end of which there is a thicker, clubshaped or fisiform "liead," covered with about fifteen to thirty, long, slender tentacles, but the form both of the heads and tentacles is constantly changing, owing to their contractions. The small medusa-buds are grouped in clusters below the tentacles and do not become free. This species is also to be fomnd in the pools and on the under sides of large stones close to low-water mark.

The Hydractinia polyclimu is often met with covering the dead shells inhabited by the hermit-crabs, whether in the pools or in deeper water off shore, with a soft, velvet-like, reddish coating, which is made up of hundreds of hydroids united together by their bases into a rather firm, continuous layer, corered with conical points. This basal layer sometimes not only entirely covers the shell, but extends ont considerably beyond the borders of the aperture, so as to inerease the capacity of the interior. This is no donbt a great gain to the crab, becanse he will not be so soon compelled to exchange his shell for a larger one. Each colony of these hytroids is either male or female ; the sexes differ in depth of color, the male colonies being palest. But in each colony there are also many sterile individuals, who have to do the eating and digesting for the whole community, while the sexual individuals attend to the reproduction of the race. Firther north, as at Nahant, Massachusetts, this species often incrusts broad surfaces of the rocks in the pools, but I have not observed it growing in this way south of Cape Cod; yet in one instance we dredged it growing on a rock.

The Halccium gracile V. is frequently found growing in profusion on the under side of stones, in tide-pools, and attached to oysters, dead
shells，fee，in shallow waters，both of the sommes amd restambes．It forms rather dense，palle，flexible tufts，three or foum inches high，with rery mumerous slember banches．

Of Iolyps the are sereal species belonging to the actinians，of ＂sea－imemones，＂and one sureies of gemuine coral，（Astrompin，）but the latter is seldom fomd at low－water，though common in shathow water． on rocky bottoms．The most common of the actinians is the＂fringerl sea－anemone，＂Aletridium marginutum．This may almost always be foum on the muder sides of large stones that have sufficient space be－ neath，in sheltered crevices noar low－water mark，and adhering to the rocks：along the horders of the larger tide－pools，where they are shaded and protected hy the overhanging sea－weeds．In full expausion this species has a very gracefal form．From the expanded base the body rises in the form of a tall，smooth column，sometimes cylindrical，some－ times tapering slightly to the middle，and then enlarging to the sum－ mit．Toward the top the colnmn is sumounted by a circular thickened fold，above which the character of the surface suddenly changes，the skin becoming thinner and translucent，so that the internal rarliating partitions are visible throngh it．This part expands upward and out－ ward to the margin，which is folded into numerous deep undulations or frills．and everywhere covered with very mumerons，fine，short，crowded tentacles．The tentacles also eower the upper side of the disk，half ${ }^{*}$ way to the mouth，but are larger aud less crowded in proportion to the distance from the margin．The mouth is oval and the lips divided into mmerous folds．The largest specimens are sometimes five or six inches high and three or four inches across the disk．The colors are extremely variable．Most frequently the sides of the body are yellowish brown or orange－brown，but it may be of any shade from white，thesh－color． pink，salmon，chestnut，orange，Jellow，light brown，to dark umber－ bromn；or it may be mottled and streaked with two or more of these colors． The upper part of the body and tentacles are translucent，and hare lighter colors，generally either white，pink，flesh－color，or pale salmon ： the tentacles are also frequently banded with flake－white，and often have dark tips．This species，when much irritated，throws out from minute loop－holes along the sides large numbers of long，sleuder，white threads，which are covered with microscopic stinging－organs，powerful enough to defend them from the attacks of fishes and other enemies； but they do not penctrate the human skin．

Another species，the＂white－armed anemone，＂Sugurtia leucolena， （Plate NXXVII，lig．ロSt，is also common at low－water，especially on the uuder side of large stones，and sometimes nearly buried in sand and gravel．This is more elongated and slender than the last，and has a smaller，simple and plain disk，with the tentacles much longer and more slender，and crowded together near the margin；the surfine of the body is smooth and miform，withont any thickened fold．The color is usually pale salmon or tlesh－eolor，and the skin is translucent，
so as to show the internal lamellec ; the tentacles are paler and more translucent, and usually whitish, but sometimes pale salmon. The tentacles, in full expansion, are over an inch long. A second elongated species of Sagartia (S. modesta) occurs buried up to its tentacles in the grarel and sand among rocks. This species is quite rare, and lias a much thicker and firmer skin, which is nearly opaque and dull yellowish in color ; the tentacles are shorter, with dark greenish makings at the base.
The Halocampe producta (Plate XXXVIII, fig. 985) also occurs under the same circumstances with the last, though it may also be found on sandy shores, slightly attached to a shell or pebble, perhaps a foot beneath the surface, but in expansion it stretches its body so as to expand its tentacles at the surface, above its burrow, into which it quickly withdraws when disturbed. This species is remarkable for the great length and slenderness of its body in full extension; for having only twenty tentacles, with swollen tips; and for the rows of suckers along the sides, to which it fastens grains of sand, \&e. It has no distinct disk at the base, which is bulbous and adapted for burrowing Its color is whitish, flesl-color, or pale salmon, with the suckers whitish. The tentacles usually have darker brown tips, but sometimes the tips are flake-white. In full expansion the length of large specimens is about a foot, and the diameter about a third of an inch, but in contraction the body becomes much shorter and more swollen.
The Astrangia Dame, which is the only true coral yet diseovered on the coast of New England, is occasionally fomid on the under side of overhauging rocks, or in pools where it is seldom or never left dry. The coral forms incrusting patches, usually two or three inches across, and less than half an inch thick, composed of numerous crowded corallets, having stellate cells about an eighth of an inch in diameter. The liring animals are white, and in expansion rise high above the cells and expand a circle of long, slender, minutely warted tentacles, which have enlarged tips. These coral-polyps, when expanded, resemble clusters of small, white sea-anemones, and like them they will seize their prey with their tentacles and transfer it to their mouths. They feed readily, in confinement, upon fragments of mollusea or crustacea.

Several species of sponges also occur in the rocky pools and on the under sides of stones. The most conspicuous one is a bright red species, which forms irregular crusts, and rises up in the middle into many small, irregular, lobe-like branches. Another species forms broad, thin incrustations, of a sulphur-yellow color, on the under side of stones. These species have not been identified. A small, urnshaped or 'oval species, with a large aperture at the summit, surrounded by a circle of slender, projecting spicula, occurs in the pools, and is probably the same as the Grantia ciliata of Enrope.

In addition to the mumerons species already enumerated, most of which beloug to groups that are essentially marine animals, there are
a few species of marine insects that are frequently met with under stones, or among the small green algie. Among these a small lead-colored insect belonging to the family of "spring-tails," Anurida maritima, is the most abundant. With it a spider, Tidella, and sereral species of mites (Trombidium) are often found. Several specimens of a "false scorpion," Chernes oblongus, were also found by Mr. Smith near low-water mank under stones. In the pools aud on the rocks, among the green conferva and other sea-weeds, the active green larvie of a two-winged fly, Chironomns oceanicus, is often found in abundance. This larva we have detected in the stomach of the "tom-cod," mixed with small crustacea.

List of species inhabiting the rocky shores of the sounds and buys.
In the following list the species living in these situations are brought together systematically, whether mentioned in the preceding pages or not. The lists are not to be regarded as complete, but include most of the species ordinarily met with. The references are to the pages of this report, where remarks upon the species may be found:

ARTICULATA.

Insects.

Chironomus oceanicus .	Page. 331	Bdella marina.	Page 331
			301
Anurida maritima.	331	Trombidium, several species	331
Chernes oblongus	331		
	Crus	aeca.	
	Page.		Page.
Cancer irroratus	312	Mœra levis	315
Panopeus depressus	312	Melita nitida.	314
P. Sayi.	312	Amphithoë maculata.	315
P. Harrisii	313	A. valida.	315
Carcinus granulatus.	312	Caprella, sp.	316
Eupagurus pollicaris	313	Sphreroma cuadridentata ..	315
E. longicarpus	313	Idotea irrorata	316
Homarus Americanns. .	313	I. phosphorea.	316
Orchestia agilis	314	Erichsonia filiformis	316
Hyale littoralis.	315	Epelys montosus	
Calliopius laeriusculus.	315	Jera copiosa	31.)
Gammarus ornatus.	314	Balanus balanoides.	304
G. annulatas.	314	Numerous small Entomos-	
G. Marinus..	314	traca.	

Annelids, (Chetopods.)

Page. Page.
320
320

Cirrhinereis fragilis

Cirrhinereis fragilis 397 397
Lepidonotus squamatus
Lepidonotus squamatus
320 Ophelia simplex 319
I. sublevis
321 Sabellaria vulgaris 321
Harmothoë imbricata
349 Cistenides Gouldii 323
Phyllodoce
349 Nicolea simplex 321
Eulalia
349 Amphitrite ornata 320
Eumidia
319
Scionopsis palmata 321
Podarke obscura

317 Polycirrus eximius

317 Polycirrus eximius 320 320
Nereis virens
Nereis virens
318 Chretobranchus sauguinens. 320
N. limbata
319
N. pelagica Potamilla oculifera 329
Marphysa Leidyi 319 Sabella microphthalma. 323
Lumbriconereis opalina 320 Fabricia Leidyi 323
L. tenuis 320 Serpula dianthus 322
Rhynchobolus Americanus 319 S. dianthus, var. citriua 329
R. dibranehiatus 319 Spirorbis spirillum 323
Cirratulas grandis 319
Oligochuta.
Page. Page.
Halodrillus littoralis 324 Clitellio irroratus 324
Nemerteans.
Page. Page.
Nem retes socialis 324 Cercbratulus (?) 324
Meckelia ingens 324 Cosmocephala ochracea 325
M. rosea 324 Polinia glutinosa 324
Planarians.
Page. Page.
Planocera nebulosa......... 325 Procerorles frequens 32.5
Stylochopsis littoralis 325 Monocelis agilis 325
Nematodes.
Page. Page.
Pontonema marinum 325 Poutonema vacillatum $3 \div 6$MOLLUSGA.Gastropods, (Unicalies.)

[:33] INVERTEBRATE ANIMALS OF VINEYARD SOUND, ETC. 39
l'age.
Bittium nigrum 305
Cerithiopsis Greenii 38:3
Triforis nigrocinctus 305
Crepidula formicata 5:3
C. convexa 593
C. unguiformis 5\%
Acmara testudinalis 307
Doris bifida 307
Polycera Lessonii 401
Doridella obscura 307
Nolis, undetermined.

Piage.
L. rudis 30.5 305
Lamellibranchs, (Bivalres.)
Page. Page.
Mya arenaria 309 Mytilus edulis 307
Saxicara aretica 309 Modiola plicatula :307
Kellia planulata 310 M. modiolus 309
Scapharea transversa. 309 Anomia glabra 311
Argina pexata 309 Ostraa Virginiana 310
Ascintums.
Page. Page.
Molgula ManhattensisBryozort, (or Polyzoa.)
Page. Page.
311 389
Crisia cburnea 40.5
Membranipora pilosa 406Tubulipora flabellaris. 40.5
Alcyonidium ramosum 404
M. lineata 406
Alcyonidinm hirsutum 404
Escharella variabilis 312
A. hispidum 312
Discopora coccinea(?) 424
Vesicularia gracilis 389Vesicularia cuscuta404
V. dichotoma 404
Lepralia, sp 420
Cellepora ramulosa 312
Pedicellina Americana 40.5
Bugula turrita 311
RADIATA.
Echinoderms.
Page.
Arbacia punctulata
Page. 326

Acalephs.

Page. Page.
Obelia commissuralis 327
Halecium gracile 325
O. pyriformis 390
O. diaphana 327
O. geniculata 407
Clytia Johnstoni 408
Orthopyxis caliculata 408
Platypyxis cylindrica 408
Campauularia rolubilis 408
C. flexuosa 327
Lafoëa calcarata 408
Sertularia argentea. 408
S. pumila 327
Bougainvillia superciliaris 325
Margelis Carolinensis
Clava leptostyla 328
Pennaria tiarella 327
Hybocodon prolifer. 328
Hydractinia polyclina 328
Polyps.
Page. Page.
Metridium marginatum 329
Halocampa producta 330
Sagartia lencolena 329
Astrangia Dante 329
S. modesta 330

PROTOZOA.
Sponges.

II.-2. FAUNA OF THE SANDY SHORES OF THE BAYS AND SOUNDS.

These sandy shores vary considerably in character according to their situations and composition. In the more exposed positions the beaches of fine loose sand differ but little in character from those that prevail so extensively on the ocean shores, from Cape Cod to North Florida. In more sheltered situations there is geuerally more or less mud mixed with the sand, which often forms shores with a rery gentle slope, rumning down to broad flats, bare at low-water; such flats of sandy mud are the farorite homes of large numbers of burowing creatures; but even on the exposed beaches of loose siliceous sand, which are completely torn up and remodeled by every storm, there are still to be found many kinds of animals perfectly adapted to such conditions, finding there their proper homes. In other cases there is more or less gravel and pebbles mixed with the sand, which, under some conditions of exposure, produce a firm and compact deposit, admirably adapted to the tastes and habits of certain tubedwelling and burowing creatures. In other places, especially in sandy coves or other sheltered situations, the sandy flats are partly covered by tufts and patches of eel-grass, and
there are many anmals that find congenial resorts on sheh flats. Then there will sometimes be pools or rivulets of sea-water om the samdy flats, in which certain creatnres often spend the short time while thus imprisoned by the tide.
The speeial localities where the satm-dwelling species of this region were chiefly studied, are the beaches on Naushon and adjacent ishands : Nobska lieach and several other beaches near Wool's Hole; the extensive sand-beach between Falmouth and Waruoit ; the beach at Menemsha Bight, on Martha's Vineyard; several beaches on the shores of Buzzards Bay; the beaches at South End, Savin Rock, and other local ities near New Haven; the beaches on Great Sonth Bay, Long Island ; the beaches at the month of Great Egg Harbor, New Jersey, dec., besides the outer beaches at varions other points.

Along the upper part of the sand-beaches there is generally an almost continuous belt of deal sea-weeds, broken shells, fragments of crabs, lobsters, and rarions other débris cast up by the waves. Although many of the deat shells, \&e., which oceur in this way, belong really to the sandy shores near low-water, others have come, perhaps, from deeper water and other kinds of bottom. Therefore, although such rubbishheaps mas afford good collecting grounds for those who frequent the shores after storms, it would be useless to emmerate the species that more or less frequently occur in them. Beneath such masses of decaying materials many insects and crustacea occur, together with certaiu genuine worms. Part of these are truly marine forms, ant are never found away from tine sea-shores, but many, especially of the insects, are in no sense marine, being found anywhere in the interior where decaring matters abound. The two-winged flies (Diptera,) of many kinds, are especially abuntant, ant their larve occur in immense unmbers in the decaying sea-weed. Some of these flies are, howerer, true marine species, and live in the larval state in sitnations where they are submerged for a considerable time by the tide. I have often dug such larre from the sand near low-water mark, and have also dredged them at the depth of four or five fathoms off shore. During umsualle high tides immense quantities of the fly-larve will be carried away by the encroachment of the waters, and thus become fool for fishes of many kinds, and especially for the joung ones, which fiequent the shallow waters along the shores. There are also many species of beetles (Coleoptera) which frequent these places, and several of them are gennine marine insects, living both in the larval and adult conditions in burrows between tides. Among these are two or three species of Bledins, belonging to the Staphylinide; several tiger-beetles (Cicindela,) and representatives of other families. The "tiger-beetles" are very active, carnivozous insects aud frequent the dry sands just above high-water mark; when disturbel ther rise ruickly and fly away to the distance of sereral yards before alighting. They are so wary that it is diffient to catch them without a net. Most of the species reflect bright, metallic, bronzy or
green colors, and many of them have the elytra more or less marked with white. Mr. S. I. Smith found the larva of our largest species (C. generosa) at Fire Island, living in holes in the sand below high-water mark, associated with the species of Talorchestia.

Beneath the decaying sea-weeds on the sandy shores immense numbers of the lively little crustacean, Orchestia ayilis, (p. 314, Plate IV, fig. 14,) may always be fomm. Two other relatel species, of larger size and paler colors, but having the same habit of leaping, though not in such a high degree, occur among the weeds, or burrowing in the sand, or beneath drift-wood, \&c., a little below high-water mark. In fact the sand is sometimes completely filled with their holes, of various sizes. Both these species are stont in form, and become about an inch long when mature. One of them, Talorchestia longicornis, can be easily distiuguished by its very long antenne ; the other, T. megalophthalma, by its shorter antenna and very large eyes. Both these species are pale grayish, and imitate the color of the sand very perfectly. When driven from their burrows by unsually high tides or storms they are capable of swimming actively in the water. They make dainty morsels for fishes and many shore birds, as well as for certain crabs, especially Ocyporte areriaria.

On sandy beaches near high-water mark, especially where the sand is rather compact and somewhat sheltered, one of the "fiddler-crabs," Gelasimus mugilator, is frequently found in great numbers, either runuing actively about over the sand, er peering cautionsly from their holes, which are often thickly scattered over cousiderable areas. These holes are mostly from half an inch to an inch in diameter, and a foot or more in depth, the upper part nearly perpendicular, becoming horizontal below, with a chamber at the end. Mr. Smith, by lying perfectly still for some dime on the sand, succeeded in mitnessing their mode of digging. In doing this they drag up pellets of moist sand, which they carry suder the three anterior ambulatory legs that are on the rear side, climbilig out of their burrows by means of the legs of the side in front, aided by the posterior leg of the other side. After arriving at the mouth of their burrows and taking a cantious survey of the landscape, they run quickly to the distance, often of four or five feet from the burrow before dropping their load, using the same legs as before and carryiug the dirt in the same manner. They then take another careful survey of the suroundings, rum nimbly back to the hole, and atter again turning their pedunculated eyes in every direction, suddenly disappear, soon to reappear with another load. They work in this way both in the night and in the brightest sunsline, whenever the tide is out and the weather is suitable. In coming out or going into their burrows either side may go in adrance, but the male more commonly comes ont with the large claw forward. According to Mr. Smith's observations this species is a vegetarian, feeding upon the minute alge which grow upon the moist sand. . In feedingthemales use only the small claw with which
they pickup the hits of algur reryantily; the females nse indifferently either of their small claws for this purpose. They always swallow more or less sand with their food. Mr. Smith also saw these crabs engaged in seraping up the surface of the sand where covered with their faborite algee, which they formed into pellets and carried into their holes, in the same way that they bring sand ont, dombtless storing it until needed for fond, for lie often fomd large quantities stored in the terminal chamber. Mr.'T. M. Prudden has since ascertained that one of the other species of "ficldlers" on our shores (G.minax) is also a vegetarian ant feeds upon similar alge, which grow on the muddy salt-marshes.

The Ocypode arenaria is a crab allied to the "fildlers" amd similar in some of its habits. It is a sonthern species, ranging as far as Brazil, and adnlt specimens have not get been observed on the coast of New England, but Mr. Smith has observed the young in abundance at Fire Islaml, and we have the young from Block Islame ; it ocenrs at Great Egg Harbor, New Jersey, of larger size, and therefore it may be looked for on the heaches of Nantncket and Martha's Vineyard. This crab lives on the beaches at, and even far abore, high-water mark. It digs large holes like the fiddlers, often in the loose dry sand, back from the shore, yet when disturbed it will sometimes take to the water in order to escape. though it soon returns to the shore. In digging its holes, according to Mr. Smith's observations, it works in the same way as the "fiddlercrabs," except that it is quicker in its motions, and often, instead of carrying the pellets of sand to a distance from the hole, it throws it away with a sudden and powerful jerk, seattering the sand in every direction, It is even more cautious in its movements, and is always on the alert, even the slightest movement on the part of one who is watehing them is sure to send them all into their holes instantly. In color this species imitates the sand rery perfectly, especially while young, when they are irregnlandy mottled and speckled with lighter and darker shades of gray. They also have the habit of crouching down closely mon or into the sand, when suddenly frightened, and aided by their colers will often thins escape observation. At other times they will trust to their speed and scamper over the sand with such swiftness that they are not easily captured. This crab is carnivorous n its habits and, according to Mr. Smith's observations, it lives largely uron the "beach-fleas" (Talorchestiu) which inhabit the same localities. It will lie in wait and suddenly spring upon them, rery much as a cat catches mice. It also feeds upon dead fishes and other animals that are thrown on the shore by the waves.

Another inlubitant of the upper part of the sand-beaches, just below high-water mark, is the Scyphacella arenicola Smiti, which has, as yet, been found only on the coast of New Jersey, but probably occurs farther north. It is a small, sand-colored Isopod crustacean, which has no near relatives, so far as known, except in New Zealand. It burrows in the sand, making a little conical mound around the mouth of the holes.

The only Annelid observed high up on the sand-beaches is the slender, white Halodrillus littoralis, referred to on page 324 , which lives under the decaying sea-weeds in great numbers.

On the lower parts of the sand-beaches, toward low-water mark, and especially on the broad flats, which are barely uncovered by the lowest tides, a much larger number of species oceurs.

Among the Crustacea of these sandy shores we frequently find the common Cancer irroratus, (p.312,) which is very cosmopolitan in its habits. Occasionally we meet with a specimen of Cercimus granulatus, but this is not its favorite abode; but the "lady-erab" or "sand-crab," Platyonichus ocellatus, (Plate I, fig. 4,) is perlectly at home among the loose sands at low-water mark, even on the most exposed beaches. This species is also abundant on sandy-bottoms off shore, and as it is furnished with swimming organs on its posterior legs, it can swim rapidly in the water and was taken at the surface in Vinegard Sond in several instances, and some of the specimens thus taken were of full size. When living at low-water mark on the sand-beaches it generally buries itself mp to its eyes and antenne in the sand, watehing for prey, or on the lookout for enemies. If disturbed it quickly glides backward and downward into the sand and disappears instantly. This power of quickly burrowing deeply into the sand it possesses in common with all the other marine animals, of erery class, which inhabit the exposed beaches of loose sand, for upon this habit their very existence depends during storms. By burying themselves sufficiently deep they are beyond the reach of the breakers. The means of effecting this rapid burrowing are very diverse in the different classes. Thas one of the fishes (Ophidium marginatum), which lives in these places, has a long acute tail and by its peculiar undulatory motions can instantly bury itself tail-first in the sand. Others have acnte heads and go in head-first.

The "lady-crab" is predacions in its habits, feeding upon various smaller creatures, but like most of the crabs it is also fond of dead fishes or any other dead animals. In some localities they are so abundant that a dead fish or shark will in a short time be completely covered with them, but if a person shonld approach they will all surdenly slip off backwards and quickly disappear in every direction beneath the sand; after a short time, if everything be quiet, immense numbers of eyes and antenne will be gradually aud cautionsly protruded from beueath the sand, and after their owners have satisfied themselves that all is well, the army of erabs will soon appear above the sand again and continue their operations. The color of this crab is quite bright and does not imitate the saud, probably owing to its mode of concealment. The ground-color is white, but the back is covered with anmular spots formed by specks of red and purple. It is devoured in great numbers by many of the larger fishes.

Another curious burrowing creature, living under the same circumstances as the last, is the Mippa talpoida, (Pate II, fig. 5.) But this
species burrows like a mole, head-first, instead of backward. It can also swim quite actively and is sometimes fomm swimming abont in the pools left on the flats at low-water. It is occasionally dug ont of the samd at low-water mark, and is often thrown up by the waves, on sandbeaches, hut it seems to live in shallow water on sandy bottoms in great mombers, for in seming on one of the sand-beaches near Wood's Hole for small fishes, a large quantity of this species was taken. Its color is rellowish white, tinged with pmople on the back. It is one of the farorite articles of fool of many fishes. Mr. Smith fomm the young abundant at Fire Island, near high-water, burowing in the samd. This species is still more almulant farther south.

The curions long-legged "spider-crab," Libinin canaliculata, is frequently met with at or just below low-water mark ou sandy shores, but its proper home is on muddy bottoms.

Creeping, or rapidly running, over the bottom in shallow water, or in the tide-pools on the flats, the smaller "hermit-cral," Eupagmus longicrupus, (p.313,) may almost always be observed ensconced in some dead univalve shell, most commonly that of Ilyanassa obsoleta. This species is still more abumdant among eel-grass, and on muddy shores.

The common "sand-shamp," Crangon vulgaris, (Plate III, fig. 10.) always oceurs in great numbers on the sandy flats and in the tide-pools and rivulets, as well as on the sandy bottoms in deeper water off shore. This species is more or less specked irregularly with gray, and initates the color of the sand very closely. When resting quietly on the bottom, or when it buries itself partially and sometimes almost entirels, except the eyes and long slender antenne, it cannot easily be distinguished by its enemies, and, therefore, gains great protection by its colors. When left by the tide it buries itself to a considerable depth in moist sand. It needs all its powers of concealment, however, for it is eagerly hunted and captured by nearly all the larger fishes which frequent the same waters, and it constitutes the principal fool of many of them, such as the weak-fish, king-fish, white perch, bhe-fish, flounders, striped bass, de. Fortunately it is a very prolific species and is abundant along the entire coast, from North Carolina to Labrador, wherever sandy shores occur. The young swim free for a considerable time after hatching, and were taken at the surface in the evening, in large mumbers. The common prawn, Palamonstes vulgaris, (Ilate II, fig. 9,) often occurs, associated with the Crangon, but it is much more abmulant among the cel-grass, and especially in the estuaties where it has its proper home. As this is one of the most abundant speeies and of great importance as an article of fish-food, it will be mentioned again, with more details, in comection with the fanna of the estuaries.

Several species of smaller crustacea also burrow in the sand at lowwater mark. One of the most remarkable of these is an Amphipod, the Lepiductylis dytiscus, which by its external form reminds one of Hippa, with which it agrees in habits, for it burows in the samd like a mole.

It is also occasionally found under stones in sandy places. Its color is pale jellowish white. The Uneiola irorata (Plate IV, fig. 19) often lives in tubes in the sand in abundance, but is by no means confined to such localities, for it occurs on all kinds of bottoms and at all depths down to at least 430 fathoms (off St. George's Bank, and is abundant all along the coast, from New Jersey to Labrador. It is particularly abundant on shelly and rocky bottoms, and although it habitually lives in tubes, it does not almays construct its own tube, but is ready and willing to take possession of any empty worm-tube into which it can get, and having once taken possession it seems to be perfectly at home, for it remains near the end of the tube protruding its stont claw-like antenna, and looking out for its prey, in the most independent manner. It will also frequently leave its tube and swim actively about for a time, and then return to its former tube, or hunt up a new one. It seems, howerer, to be capable of constructing a tube for itself, when it cannot find suitable ones rearly-male. Its color is somewhat variable, but it is generally irregularly specked with red and flake-white, and the antenne are banded with red. It contributes very largely to the food of many fishes, such as seup, pollock, striped bass, de.

On the moist sand-flats curious crooked trails made by the Idotea caca (Plate V, fig. 22) may generally be seen. This little Isopod burrows like a mole just beneath the surface of the sand, raising it up into a little ridge as it goes along, and making a little mound at the end of the burrow, where the creature can usually be found. This species is whitish, irregularly specked with dark gray, so as to imitate the color of the sand rery perfectly. It is also capable of swimming quite rapidly. The Idotea Tuftsii is another allied speeies, having the same habits and living in similar places, but it is much more rare in this region. It has also been dredged on sandy bottoms off shore. It is a smaller species and darker colored, with dark brown markings. The Idoted irrorata (p. 316, Plate V, fig. 23) also oceurs on sandy shores wherever there is eel-grass, among which it loves to dwell.

The well known "horseshoecrab" or "kingerab," Limulus Polyphemus, is also an inhabitant of sandy shores, just below low-water mark, but it is more abundant on muddy bottoms and in estuaries, where it burrows just beneath the surface and feeds upon various small animals. At the breeding season, however, it comes up on the sandy shores to deposit the eggs, near high-water mark. According to the statements of Rev. S. Lockwood, (in American Naturalist, vol. iv, p. 257,) the spawning is done at the time of high tides, during May, June, and July; they come up in pairs, the males, which are smallest, riding on the backs of the females and holding themselves in that position by the short feet, provided with nippers, which are peculiar to the males. The female excavates a depression in the saud and deposits the eggs in it, and the male casts the milt over them, when they again return to deeper water, leaving the eggs to be buried by the action of the waves.

In aquaria, under faromble circumstances, the eggs hatch in about six weeks, but in their natural conditions they probably hateh sooner than this; mader mfarorable conditions the hateling may be delayed for a whole year. The eges are very momerons. In addition to the interesting observations of Mr. Lockwool, Dr. A. S. I'ackard has since given more detated aceounts of the development of the embrgos and young of Limulus in the proceedings of the American Association for the Advancement of Science, 1570,1 . 247 , and in the Memoirs of the Boston Society of Natural History, vol. ii, p. 15.5, 1572.

Annelids are quite numerous on the sandy shores where the conditions are farorable. It is evident that these soft-bodied creatures would be quickly destroyed by the force of the waves and the agitation of the sand, were they not provided with suitable means for protecting themselves. This is effected manly in two ways: the sathd-dwelling species either have the power of burowing deeply into the sand with great rapidity, or else they construct long durable tubes, which descend deeply into the sand and afford a safe retreat. Many of the active burowing species also construct tubes, but they usually have but little coherence and are not very permanent, nor do they appear to be much relied on by the owners. There is, however, great diversity both in the structure and composition of the tubes of different species, and in the modes by which the rapid burrowing is effected.

The large green Nereis (N. virens, p. 317) is fomd on the sandy shores in places that are somewhat sheltered, especially if there be an admixture of mud or gravel with the sand to give it firmmess and solidity. This species burrows deeply beneath the surface and lines the interior of its large irregular burows with an abmulant muens-like secretion, which gives smoothness and some coherency to the walls, but does not form a solid tube. With this, and in greater numbers, the smaller species, Nereis limbata, (p. 31S,) is also fomnd, and its habits appear to be essentially the same. Both this and the precerling ean burrow rapidly, but much less so than some other worms, and consequently they are not well adapted to live on exposed beaches of moving sands, but prefer cores and harbors. The two large species of Rhynchobolus are much better adapted for rapid burrowing. Their heads are very small and acute, and destitute of all appendages, except four minute tentacles at the end; the booly is long, smooth, and tapers gradually to both ends, and the muscular system is very powerful, and so arranged as to enable these worms to coil themselves up into the shape of an open spiral, like a corkscrew, and then to rapidly rotate themselves on the axis of the spiral. When the sharp head is inserted into the loose mud or sand and the body is thus rotated, it penetrates with great rapidity and disappears almost instautly. Both these species are found on sandy as well as on muddy shores and flats near low-water mark, and also in deeper water. The one usually most abomdant is R. dibruachutus, (Plate X, figs. 43,44 ;) this is readily distinguished by hatr-
ing a simple gill both on the upper and lower sides of the lateral appendages. The other, R. Americanus, (Plate X, figs. 45, 46,) has gills that are more or less branched on the upper side of the appendages, as shown in fig. 46, but none on the lower side; the appendages are also longer, especially posteriorly, and differently shaped. The proboscis is remarkably long and large, and when full y protruded it shows four large, black, sharp, fang-like jaws or hooks. Both these worms are destitute of true blood-ressels, such as most of the allied worms possess, but have the general cavity of the body filled, between the rarious organs, with bright red ibood, which shows through the skin, giving a more or less red or purple color to the whole body and proboscis.

The two species of Lumbriconereis already referred to (1. 320,) occur in similar localities, and are usually associated with the two preceding species, but they are less rapid burrowers and require for their safety localities where the sand is compact and mixed more or less with mond, or where it is somewhat sheltered from the force of the waves. In sandy cores, and especially on the flats of sandy mud, close to lowwater mark, the smaller species, L. tenuis, is generally very abundant, penetrating the sand, beneath the surface, in every direction. It is often a foot or more in length when extended, and not much larger than coarse thread or small twine, and bright red in color. When the sand in these localities is tumed up with a spade, their dramn-out, red, threadlike bodies can usually be seen in large numbers, but they are so fragile that it is diffieult to obtain an entire specimen. The head is obtusely conical, a littie flattened, smooth, pale red, and iridescent, without eyes. The other species, L. opalina V., (Plate XIII, fig. 69,) is much larger, growing to the length of eighteen inches or more, and about .10 to .12 of an inch in diameter. Its color is dark bronze, or reddish brown, or pale red, the surface reflecting the most brilliant opal-like colors. It is easily distinguished from the L. temuis by its four eyes in a row across the back part of the head. Both these species, when removed from their burrows, coil themselves in a long spiral. They burrow readily and deeply, but not so rapidly as many other worms, and do not seem to have permanent tubes. Another worm, found in similar places and readily mistaken for L. tenuis on accomnt of its long, slender, almost thread-like body and red color, is the Notomastus filiformis V.; but in this species the head is very acute, the lateral appendages and sete are very different, and the color is paler red, with bands or rings of bright red. This species has, moreover, a smooth, subglobular proboscis, without jaws, while the former has a powerful set of complicated jaws, without a distinct proboscis, and they are widely different in internal anatomy. The latter feeds upon the organic matter contained in the mud that it swallows, while the species of Lumbriconereis are carnivorous, feeding upon other worms, \&c. A second and much larger species of Notomustus occurs in similar places, though apparently preferring a greater proportion of mud. This species, N. luridus V., grows
to be abont ten inches long and .10 in diameter. Its color is a dark pmplish or lurid brown, specked with white, and sometimes inclined to red. Its head is very acute, and it has a smooth, swollen, dark boodred prohoscis. It is a rapid burrower, penetrating depply into the fine mud and sand. The Maldane elongata V. is another worm allied to the last, and usually associated with it, bat this species comstruets rather firm, round tubes ont of the fine sand and mud, which are very long and descend deeply into the soil, and are often .20 to .25 of an inch in diameter. This worm is six or eight inches long, with a round body of nearly miform diameter, which looks as if obliquely trmeater at both euds, but the obliguely-placed upper surface of the heal is bordeved ly a slight ridge or fold on each side and behind. The color is dark umber-brown, or reddish brown, the swollen part of each ring often lighter glayish or yellowish brown, but usually bright red, owing to the blood-ressels showing through. The intestine is large and filled with samb. Another worm, belonging to the same family with the last and, like it, constructing long, round tubes of agghtinated sand, is the Clymenella torquata, (Plate NTV, figs. 71, 72, 73, bat this species often lives where the sand is more free from mad, or even in nearly pure, siliceous sand, and sometimes considerably above low- water mark, though it is also fomm in deep water. It generally constructs its long and nearly straight tubes very neatly, of tine white sand, withont mud. It loves, however, to dwell in sheltered spots, in coves, or in the lee of rocks and ledges, and is also partial to those spots on the sandy shores where eel-grass grows, buiding its tubes among the roots. It is a rather haudsomely colored species, being usually pale red, with bright red bands around the swollen parts of the rings, but it is sometimes brownish red or dall brown. It can always be recognized by the peculiar collar on the fifth ring, and by the peculiar fumel-shaped candal appendage, surrounded by small papillie, and preceded by three segments or rings that are destitute of setie.

The large and singular worm, Anthostoma robustum V., (Plate XIV fig. 76 ,) lives like the last, with which it often occurs, in nearly pure sand, where it is somewhat sheltered from the violence of the waves, but is also fond of places where there is more or less gravel mixed with the sand. It sometimes occurs some distanee above low-water mark, and construets a large, thick, somewhat firm tube by consolidating and cementing the sand around its burrow. These tubes descend nealy perpendicularly to a great depth, and can usually be distinguished by a slightly eleviated mound of dirt around the opening, which is usually different in color from the surromding sand; and sometimes there are reeently-ejected cylindrieal masses of such earth on the summit of the little hillocks. The worm itself, when full grown, is fifteen inches or more in length, and nearly half an inch in diameter. The head is very acute and the front part of the body is tirm and muscular, with rery small lateral appendages, and fascicles of setee in four rows; but batck
of the twenty-fourth body-segment an appendage develops below the lower fascicles of setie, and farther back beeomes broad, foliaceous, and divided into several lobes; back of the twenty-eighth segment the branchise appear in a row on each side of the back, and soon become long and ligulate; at the same time other ligulate appendages develop from the upper lateral appendages, which beeome dorsal, and these, with the gills, form four rows of processes along the back, outside of which are the elongated setae and other appendages. The posterior part of the body is more slender and much more delicate than the anterior part, and so fragile that an entire specimen can rarely be obtained, and those that are obtainel, when in confinement very soon detach fragment after fragment, until only the anterior part is left. In their natural habitations they wonld undoubtedly be able to reproduce their lost parts, like many other annelids. The color of this worm is ocheryellow, tinged with orange, or dark orange ; there are usually two rows of clark-brown spots along the back; the branchiae are blood-red; and posteriorly there is a brownish red median dorsal line. The proboscis is very singular, for it is divided into several long, flat, digitate processes, separate nearly to the base, and somewhat enlarged at the end.

Another species of this genus, of smaller size, A. fragile V., often occurs in the sandy flats in great numbers, its small holes sometimes completely filling the sand over considerable areas and extending nearly up to half-tide mark. This species grows to the length of four inches or more, with a diameter of about .10 . Its head is even more acnte than in the last species, with a very slender, translncent apex. The borly has the same form, but is more slender. The processes above and below the fascicles of seta begin to appear at the fourteenth segment, and the setre begin to be decidedly elongated at the fifteenth. The dorsal branchie begin on the sixtenth segment, and become long and ligulate at the twentieth. The color is yellowish orange to orange-brown ; the dorsal surface, posteriorly, and the branchise are red. The body posteriorly is rery slender and extremely fragile. The last or candal segment is smooth, oblong, with two long filiform eirri at the ent. The proboscis is large and broad, consisting of numerons, often convoluted, lobes or folds, united by a thinner membrane or broad web.

The Aricia ornata V . is another related species, living in similar places with the last and having similar habits. The head is acute in this speeies, but the dorsal branchie and lateral appendages commenee much nearer the hearl, and the side appendages are dereloped into crest-like, transverse series of papillx, which cover the lateral and ventral surfaces of the body anteriorly.

Two species of Spio also occur in similar situations inhabiting small round tubes or holes made in the sand near low-water, often oceuring in great numbers in certain spots. They prefer localities that are not exposed to the full force of the storms. One of these, S. setosi V. (Plate XIV, fig. 77,) is remarkable for the length of the seta in the clorsal
bundles; the two large tentacles (of which only one is drawn in the figme) are usmally folded backward between the red dorsal bamehiat, which form a row along the back on each side. The other, s. robusta V., is a stouter species, which has much shorter seta in the dorsal fascicles; the middle lohe of the head is emarginate in front and the lateral lobes are eonsex. Both species have fons small eyes on the top of the head, those of the posterior pair nearest together. In similar places, and often associated with the two preceding species, another allied worm often ocenrs in great abundance, completely filling the sand, in its chosen abodes, with its round rertical holes, and throwing ont cylinders of mul. It is so gregarions that in certain spots hmmerds may be found within a square foot, lut yet a few yards away, on the same kind of gromnd, none whatever may be fomnd. This is Scolecolepis viridis Y. This species, like the two preceding, has a pair of large tentacles on the back part of the head, which are usually reeurved over the back between the rows of ligulate branchis, and fonr eyes on the top of the head ; the central lobe of the head is slightly bilobed in front, the lateral ones convex ; the branchie are long, slender, ligulate, meeting over the back, and exist only on about one hundred segments, or on about the anterior third part of the body. The body is rather slender, depressed, and about three inches long when full grown. The color is usually dark green, or olive-green, but sometimes light green, or tingel with reddish anteriorly; the branchie are bright red; the large tentacles are light green, usually with a row of black dots, and often erossed by narrow flake-white lines or rings. This species has been fombd abundantly on Naushou Island, and other localities in that region; at New Ha reu; and at Somer's Point and Beesley's Point, New Jersey. With the last species at Great Egge Harbor, New Jerser, another more slender species of the same genus occurred, Scolecolepis temuis V. This was three or four inches long and very slemder; the body was pale green; the tentacles longer and more slender than in the last, whitish, with a red eentral line; the branchia red, often tinged with green, shorter than in the last. The head is relatively broarl, with the central lobe roumled in front. The branchias are contined to the anterior part of the body. The sete in the upper fascieles are much longer than in the last species, those of the three anterior segments longer than the others and forming fanshaped fascicles; directed upward and somewhat forward.

Another singular Amelid, belonging to the same tribe and having nearly the same habits, is represented in Plate XIV, fig. 7s, this has been fonnd by Mr. A. Agassiz burowing in sandy mud at abont halftide, both at Naushon Island and at Nahant, Massachusetts, and he has also described its development and metamorphoses, but I have not met with the alult myself in this region, althongh the young were fremently taken in the towing-nets in the evening. Mr. Agassiz regarls it as perhajes inlentical with Polydore ciliatum of Europe. It occorred in large colonies, closely crowded together, building upright tubes in the
mud. The presence of a large gronp of peculiar stont setie on each side of the fifth segment will distinguish this from all the preceding species. The young of this, like those of most of the annelids, swim free at the surface for some time, and are often taken in great numbers in the towing-nets.

The Nerine agilis V., is still another representative of the group to which the last five species belong, and like them it has two long and large tentacles on its head, but it is a far more active and hardy species than any of them, and much better adapted for rapid burrowing. It accordingly lives on exposed beaches even where the sand is loose, and can also maintain itself on the exposed sandy beaches of the outer oceanshores, exposed to the full force of the surf, its extremely quick burrowing aftording it the means of protecting itself against the action of the sea. It lives in small round holes near low-water mark; mulike the related species, already mentioned, it has a very sharp conical hearl. The two large tentacles are about half an inch long, and originate close together on the upper side of the back of the head, and are usually recurved over the back when the worm is swimming in the water, as it is capable of doing, but when it is wriggling abont on the sand they are twisted about in all directions and variously coiled; and when in their holes the tentacles are protruded from the opening. The eyes are four, small, black, placed close together in front of the base of the tentacles. The upper lobe of the lateral appendages is large and foliaceons and connected with the branchice along the anterior part of the boly, but partially free farther back. The body is two or three inches long and rather slender; the color is reddish or brownish anteriorly, greenish white on the sides, except on the anterior third; the branchie, which extend the whole length of the body, are light red; tentacles greenish white.

One of the largest and most beautiful Annelids of this region is the Dioputra euprea, (Plate XIII, figs. 67 and 63.) This species grows to be more than a foot long, with the body depressed and often nearly half an inch broal. It constructs a very curions permanent tube in which it dwells very securely. The part of these tubes beneath the surface of the sand is composed of a tongh parchment-like material, and often descends obliquely to the depth of two or three feet or more; the apper end of the tube projects two or three inches from the surface of the sand or mud, and is thickly covered with bits of eel-grass and sea-weeds, fragments of shells, aul other similar things, all of which are firmly attached to the tube, but project externally in all directions, giving this part of the tube a very rongh and ragged appearance externally, but it is very smooth within, and often it has an opening half an inch in diameter, or large enough so that the worm can turn around, end for end, inside of it. When undisturbed the oceupant thrusts its head and the anterior part of the body out of the tube to the distance of several inches in search of food, or materials to add to its tube, ex-
posing the cmrions bright red gills, which are shaped something like miniature fir trees. The central stem is long and tapering, with a bloudressel wimling spirally up to its summit, and another winding in the opposite direction down to its base ; the basal part is maked, but above this slemder branches are given off, forming spirals all along the stem and gradnally decreasing in length to the tip; each of the branches contains two shender blood-vessels. These branchie commence at the fifth segment and do not extend to the end of the bods, the last ones being mach smaller, with few branches. The first fom setigerons segments have an aronte, conical, papilliform ventral cims at the base of the lateral appendages; on the fifth and following segments these become low, broad, rounded, whitish tubereles, with longitulinal wrinkles or grooves, and with a dark spot in the middle; these appear to contain the glands which secrete the cement used in constructing the lining of the tube, for whenattachingany additional object at the end, afteradjusting it in the desired position the worm coustantly rubs this part of the lower surface backward ant forward over the edge of the tube and the object to be cemented to it, mintil a perfect adherence is effected, and a smooth coating of firm mucns is deposited, and this operation is repeated for every piece abled to the tube. It is very interesting to watch these worms, when in confinement in an aquarimm, while engaged in constrncting their tubes. By placing bits of bright colored shells, tinsel, cloth, or even pieces of bright colored feathers, near the tubes, they can be induced to use them, and thas some very curions looking tubes will be produced; but they evidently prefer the more rongh and homely materials to which they are acenstomed, when they can be had. The iridescent, opaline colors of this species are usually rery brilliant and beantifnl, especially on the back, head, and bases of the antemae. The general color of the boily is reddish brown, or deep brown, thickly specked with gray; the antenna are paler brown ; the lateral appendages yellowish brown, finely specked with white and dark brown ; the gills usually blood-red, but varcing from light red to dark brown. There are two, small, black eyes between the bases of the odd median and mper lateral antenna. This species is often quite abmdant on the samb-flats near low-water mark, especially where there is more or less mud mixed with the sand, but it is still more abundant in the shallow or moderately deep waters oft shore, on muldy and shelly bottoms. It is slifficult, however, to obtain entire suecimens with the dredge, for it usually merely ents off the upper end of the tube, while the occupant retreats below; occasionally the head of the worm is cut off in this way. On the shore, also, it is not easy to obtain entire specimens unless the tubes be cantionsly approached and the retreat of the worm prevented by a smideu amd deep thrust of the spade below it, so as to cut off the tube. This species is carnivorous and has a very powertal set of black jaws, which are unequal on the two sides of the month, (fig. (is.)

The Ifarphysa Leilyi (p. 319, Plate NII, fig. 6t) is allied to the pre-
cerling species, and has somewhat similar habits, but does not construct snch perf cet tuhes. It is oceasionally dug ont of the sand at low-water, but is much wore common in cheper water.

The Stanrocephalus pall dus. V. is a'so an inhabitant of these sandy shores, hurrowing in the sand at low-water. It is a slender species, abont two inches long and or e-tenth l road. It is peenliar in having four long, slender antenne or tentarlis on the front of the head, arranged in a cross-like manner, to which the generic name alludes. There are also four, small, dark red ejes on the upper side of the head. The comer is pale yellowish, the red blood-vessels showing throngh anteriorly. This worm is allied to the two preceding, and to Lumbriconereis, and like them it is predacions in its habits and has a very complicated set of jaws, consisting of numerous sharp, fang-like pieces of varions shapes, arranged in several rows on both sides.

The Sthenelais picta V. is another curious Annelid, which is sometimes foumd burrowing in the sand at low-water mark, but it also oceurs on sielly and muddy bottoms in deep water. It has a long, slender body, six inches or more in length, and the back is covered with two rows of thin, smooth seales, which are very numerous. The head is usually brownish, with a whitish spot on each side; there is generally a dark brown band along the back; the seales are translucent, and vary in their color-markings, but more commonly there is a border of dark brown or blackish along the inner enge, which is usnally connected with a similar border along the anterior edge, or with an anterior angular spot, and often with a dark border along the posterior edge, leaving more or less of the central part of each scale white and translneent.
The Nephthys pieta (Plate XII, fig. 57) is also sometimes found burrowing in sundy mud at low-water mark, but it is much more frequent in the deeper waters of the sommls. It ean be distingnished at once from all the other species of Nephthys found in this region by its greater slenderness, and by having the body whitish and varionsly marked or mottled on the back, toward the head, with dark brown; it sometimes has a dark brown median dorsal-line. The shape of the head and position of the tentacles are also peciuliar.

In shaltered sitations, where there is some mud with the sand, the Ciratulus grandis V., (p. 319, Plate XV, figs. S0, 81,) is often met with burrowing beneath the surface. In similar places, and also in mearly pure, compaet sand, and in sand mixed with gravel, the large tubes of Amphitrite ormuta (p. 320, Plate XVI, fig. S2) are often to be seen ; these show a round opening, a quarter of an inch or more in diameter, surromnded by a slightly raised mound of sand, often different in color from that of the surface, and sometimes there are eylinders of such sand around the opening. These tubes are searcely to be distinguished from those of Anthostoma robustum, deseribed above, and are found in
similar places. But the worms are very mulike in appearance and structure.

Several species of slemder, greenish worms, belonging to the genera, Phyllodoce, Eumidic, Eulatia, and Eteone, are oceasionally dug ont of the sand. In all these the head is well-developed and provided with four antenue at the end, and in the three last with an odd median one on its upper side, and they all have two welldeveloped eyes, and oval or lanceolate, leaf-like branchite along the sides of the back. They are rery active species, and most of them belong properly to the shelly and rocky bottoms in deeper water, where they are often very abmadant. In sheltered coves, where there is mud with the sand, Cistenides Gouldii V., (1. 323, Plate XVII, figs. 87, Sāa,) often ocem's, but it is more partial to the muddy shores. On various dead shells, as well as on certain living ones, and on the back of Limulus, Se., the masses of hard, sandy tubes, built and ocenpied by the Sabellaria yulgaris V., (p. 321, Plate XVII, figs. S8, 88a,) often oceur.

Of the Nemerteans the largest and most conspicuous is the Meckelia ingens (p .32 4 , Plate XLX, figs. 96, 96a.) This species lives in the clear sand, near low-water mark, as well as in plates that are more or less muddy, and notwithstanding its soltness and fragility, by its means of burrowing ranidly, it can maintain itself even on exposed shores, where the samds are loose and constantly moved by the waves. The yomg, several inches or even a foot in length, are quite common, but the full-grown ones are only occasionally met with. The largest that I have found were at least 15 feet long, when extended, and over an inch broad, being quite flat; but they co inl contract to two or three feet in length, and then became nearly cylindrical and about three-quarters of an inch in diameter; the body was largest anteriorly, tapering very gradually to the posterior end, which was tlat and thin, terminated by a central, small, slender, acute, contractile process one-quarter of an inch or less in length. The proboscis of the largest one, when protruded, was fifteen inches long, and about one-filth of an inch in diameter where thickest. This proboscis, which is forcibly protruded from a terminal opening in the head, appears to be an organ of locomotion, at least to a certain extent, for when it penetrates the loose sand in any direction it makes an opening into which the head can be thrust, and then, by enlarging the opening, it ean easily penetrate. But the proboscis is probably used, also, as an instrmment for exploring the sand in varions directions, either in search of food or to test its harduess or fitness for burrowing, thas economizing time and labor. At any rate, the ways in which this remarkable instrument is used by these worms, when kept in confinement with sand, suggest both these uses. But the proboscis is by no means the prineipal organ of locomotion, for the head itself is used for this purpose, urged forward by the mudnlatory movements of the muscular body, and aided by the constantly changing bulbous expansions, both of the head and body, which both erowd
the sand aside, making the burow larger, and furnish points of resistance toward which the parts behind can be drawn, or against which the head and anterior parts can push in continuing the burrow. The hearl, moreover, is extremely changeable in form, at one time being spear-shaped, with a pointed tip and thin edges, and constricted at the neck; in the next minute broadly rounded; then perhaps truncate or even deeply emarginate at the end ; then gradually losing its distinctness and blending its outlines contimonsly with those of the body; or perhaps shrinking down to a small oral form, not more than one-third as wide as the body just back of it. All these and many other changes can often be witnessed within a very few minutes, and are so effected as greatly to aid the creature in burrowiug This worm can also leave the hottom and swim rapilly in the water, the body being usually kept up elgewise and impelled forwarl by the undulations of the body, which thus become horizontal. When swimming in this way the motion reminds one of the swimming of a snake or an eel. In addition to the terminal pore, for the proboscis, there is a deep lateral slit or fossa on each side of the head, and a large ventral orifice beneath. The latter is very changeable in form, changing from elliptical, long oval, oblong, or hour glass-shape, to circular in rapid succession. There are no eyes. Along each side of the greater part or the length of the body, the voluminous, transversely-banded lateral organs can be imperfectly distinguished through the translucent integmment, as well as the median cavity, in which a dark pulsating tnbe can sometimes be seen. The lateral organs commence at about the anterior fourth in small specimens, but in the larger ones relatively nearer the head, for in the largest they originate only six or eight inches back of it. The portion in front of the lateral organs is thicker and more cylindrical than the rest of the body.

The color of the largest specimens is generally light red or flesh-color, with the lateral edges and central band translucent grayish white, the lateral organs showing throngh as dull yellowish trausverse branches, with divertieula between them; head yellowish. But one large specimen was dull brownish yellow; others are yellowish white, with the lateral organs deep chestunt-brown, crossed by white lines. The small specimens are generally paler, usually pale flesh-color or yellowish white and often milk-white. Some of the diversity in color may be due to sexual differences. This species has also been dredged on sandy and shelly bottoms in six to eight fathoms in the sounds.

Dr. Leidy has also described another similar species, from Great Egg Harbor, mader the name of Meckelia lactea, which I have not been able to distinguish, unless it be what I have regarded as the light-colored young of M. ingens; the white color seems to have been the principal character by which it was distinguished from the latter.

The Meckelia rosea is, however, a very distinct species, but it lives in similar places and is often associated with the MI. ingens. It has very sim-
ilar hatbits, but does not grow to a very large size. The largest sperimens observed are maly six or oight inches long, and about a tifth of an inch broad. The body is also more eylindrical, the flattened part being relatively thicker and namower, and not thin at the edges; in contatetion it becomes neaty cylindrical. The lateral fossab of the head are long and dere); the ventral opening is relatively much smaller than in M. ingens and msually romd. The proboscis is very long, slender ; colro, light purplish red or rose-color. The integment is mather firm and sedretes a tenacious mucus to which a thin coating of sand often adheres when the worms are taken from their burrows. This species seems to construct an imperfect tube by slightly cementing the sand with its mucus. All these speeies of Meckela when camght and when kept in confinement generally break off portions from the posterior part of the borly, one after another, mitil nothing but the head and a lot of short segments remain. Under favorable conditions they wond donbtless be able to restore the lost parts, for other Nemerteans, having the same habit, are known to do so, and in some cases even the small fragments from the central pats have been known to again become entire worms. Tarions fishes feed upon these Meckelire, and it is probable that the habit of dismembering, or rather disarticnlating themselves, may serve an important purpose, by enabling them to escape, in part at least, when seized by tishes or crabs, for if even half the body should be lost the remaining half wonld be much better than nothing, for it conld soon restore either a head or a tail.

Another Nemertean, which lises in sand at low water, is the Tetrastemma arenicola V., (Plate XIX, fig.98.) This is slender, suboylindrical, and four or five inches long when extended. The head is rersatile in form, usnally lanceolate or subcouical, and has four eyes on the upper side. There is a deep fossa on each side of the head. The rentra opening, which is behind the lateral fosse, is small, triangular. The color is deep flesh-color or light purplish.

The Balanoglossus aurantiacus is a very remarkable worm, related to the Nemerteans, which lires in the clear, siliceons sand near low-water mark. It is gregarious in its habits and oceurs abmodantly in certain spots, althongh not to be found in other similar places near by. It makes tubes or holes in the sand, twelve or fourteen inches aleep, and lined with a thick and smooth layer of mucus. It throws out of the orifice peculiar elliptical coils of sand, by which the nature of the occupant may be known. This species was found by our party on the shore of Namshou Iskanl, but Mr. A. Agassiz has foum it abundantly at Newport, and on the beach just beyoud Nobska Light, and also at Beverly, Massachmsetts. Dr. Packard informs me that he has collected it at Beanfort, North Carolina, and I have receired specimens found at Fort Macon, from Dr. Yarrow. The specimens first discovered were found at Charlestom, Sonth Carolina, by 1)r. William Stimpson, twenty years ago, but they were only briefly and imperfectly described by Mr. Girard, at
that time, under the name of Stimpsonia aurantiaca. Mr. A. A gassiz has recently deseribed and illustrated this worm, very fully, under the new name, B. Fowalerskii, in the Memoirs of the American Academy of Arts and Sciences, vol. ix, p. 421, and he has also given an account of its remarkable derelopment and metamorphoses, proving that the larva is a free-swimming form, long known as Tomaria, and generally supposed to be the larva of a star-fish. This worm, wheu full grown, attains a length of six inches or more and a diameter of abont a quarter of an inch. The bods is elongated, tapering gradnally, with a long, slender posterior portion. The body is somewhat flattened dorsally thronghont most of its length. At the anterior end it is furmished with a broad thickened collar, in which large numbers of mucus-secreting glands are situated; the anterior border of the collar is undulated, and from within the concavity, on the dorsal side arises a large museular proboscis, which has a distinct peduncle, or narrower basal stem, above which it swells ont into a somewhat flattened, long, pyriform, or elongated and subconical form, the shape constantly changing during life. The proboscis is somewhat wrinkled longitudinally, and more strongly horizontally, being furnished with muscles rumning in both these directions, and its surface contains mucus-secreting glands. According to Mr. Agassiz the cavity of the proboseis is not connected with the alimentary canal, but opens externally by a pore at the end, and by a narrow slit on the rentral side near the base, in adrance of the mouth. The month is large and situated at the base of the proboscis on the ventral side. For some distance along each side of the back, behind the collar, is a row of complex gills; these are remarkable on accomet of their strmeture and position; they are formed from diverticula of the desophagus and finally commmicate with a row of external orifices situated along each side of the median dorsal-ressel. The gills are supported by a system of solid supports, constituting a sort of internal skeleton; the base of the proboscis is also connected with a firm internal frame-work. The color of this species is somewhat variable; in young specimens the body was brownish yellow with lighter mottlings, the collar red, and the proboscis white ; in large specimens the proboscis is pale reddish yellow, the collar darker colored, the body purplish or brownish, the sides mottled with greenish and whitish, owing to the lateral organs or liver showing through. The proboseis of this worm, according to the observations of Mr. Agassiz, is the principal organ of locomotion, but the collar also ainls in the movements. The proboscis appears to be used much as certain bivalve molhsks, such as Solen, Petricolu, ©e., use their foot in burrowing; the end being contracted to a point, is thrust forward into the sand; water being then forced into it, by the museles farther back, the end expands into a bulb, enlarging the hole and giving a point of resistance toward which the rest of the body can be drawn; the front part of the proboscis being again contracted and the water
expelled, the point can be again thrnst forward and the movements repeated.

Two species of Sipmenloid worms are also found living in the sand at low-water. The largest and most common of these is the Phesseolosoma Gouldii, (Plate XVIII, fig. 93.) This species grows to the length of a foot or more, and is often neanly half an inch in diameter, thongh more commonly about a quarter of an inch. The body is round and constantly changing in size and shape, owing to its contractions and expansions ; the surface is smoothish, bnt longitudinally lined with muscular fibers anteriorly, and transversely wrinkled posteriorly. The integment is firm and parchment-like. The month is surrounded by numerons short tentacles, which are partially connected together by a thin web, and crowded together in several circles. The color is yellowish white, grayish white, or yellowish brown. It burrows deeply in the sand and gravel, using its bolly for this purpose very much as the Balunoglossus, just deseribed, uses its proboscis.

Another much smaller species of the same gemus oceurs in sand at low-water, and has similar habits, but it appears to be rather meommon and has not been satisfactorily identified.

Comparatively fers species of Mollusks naturally inlabit sandy shores, thongh the shells of many species may be found on the beaches. On the more exposed beaches of loose siliceons sand none but those which have the power of burrowing quickly and deeply beneath the surface can exist. We find, however, that quite a number of our species, both of gastropods and bivalves, possess this power in a high degree and do habitually live on the exposed beaches of loose sand.

Among the Gastropods one of the largest and most conspicuons is the Lunatia heros, (Plate XXIII, figs. 133-130.) This species ocemrs all along our coast, from the Gulf' of St. Larrence to Cape Hatteras or beyond, wherever sandy shores and pare waters are to be fonnd, and it eren seems to prefer the onter ocean beaches, where the waves break with full force, for it is abundant and of very large size on the onter beaches of the coast of New Jersey. When in motion (Fig. 13t) the white soft parts are protruded from the shell to a remarkable extent and spread out broadly on all sides, so as to nearly conceal the shell; the foot is large, flat, and broadly expauderl, with thin edges, and by means of it the animal is able to burrow, like a mole, beneath the surface of the sand, both for protection and in search of the bivalve shells upon which it press. Tie foot when well expanded is concave below and lubricated by a rery abundant secretion of mucus, and therefore, when extended beneath the surface of the moist sand, it acts like a great sucker, holding the animal in place pretty firmly by the atmospheric pressure, thms serving as a sort of anchor in the sand. But nerertheless large mumbers of these mollusks are uncovered, orerturned, and thrown high in on the beaches by the storms, especially in winter and early spring. This species, like many others of its tribe, drills romad holes through the sides of rarions
bivalve shells by means of the small flinty teeth on its lingual ribbon, which acts like a rasp, and having thus made an opening it inserts its proboscis and sucks ont the contents. All sorts of burrowing bivalves in this way fall rictims to this and the following species, nor do they confine themselves to bivalres, for they will also drill any mortmate gastropods that they mily happen to meet, not even spariug their own yonng.

A variety of this species (var. triseriata, Plate XXIII, figs. 135, 136) has three revolving rows of ehestunt or purplish spots, and has been regarded by most writers as a distinct species, and sometimes as the jomg; but both the plain and spotted shells occur of all sizes, from the the yomgest to the oldest, and they are nearly always found together. In some cases, howerer, a shell that has the spots well defined until half grown, afterwards loses its spots aud becomes perfectly plain, showing that the difference is only a variation in the color, but each style varies considerably in form.

Another allied shell, growing nearly as large and generally moch more abundant, except on the onter beaches, is the Neverita duplicate, (Plate XXIII, fig. 130.) This species has the same habits as the preceding and in this region they are often found together; but this is a more sonthern species, extending to the Gulf of Mexico and even to Texas, but it is not very common north of Cape Cod and does not extend to the eastern coast of Maine and Bay of Fundy.

The curious egg-cases of this and the last species are often met with on the sandy and muddy flats at low-water. They consist of a broad, thin ribbon of sand, coiled up into a circle and shaped something like a sancer, but without a bottom ; the ribbon is composed of innmerable little cells, each containing one or more eggs and surromuled with grains of fine sand cemented together by mucus. The cells can easily be seen by holding one of these ribbous up to the light and looking throngh it. The peculiar form of these egg-masses is due to the fact that they are molded into shape by being pressed against the body of the shell when they are being extruded, aud while they are still soft and gelatinous; they thus take the form and spiral curvature of that part of the shell, and when laid in the sand the fine grains at once adhere to and become imbedded in the tenacions mucus, which soon hardens.

The Tritia trivittata (Plate XXI, fig. 112) is also fiequently found on sandy shores and flats. When left by the tide it creeps along the surface of the sand, leaving long crooked trails, and sometimes burows beneath the surface, and when burrowing it moves with the aperture downward and the spire pointing obliquely upward, but when at rest in its burrow it reverses its position and rests with the spire downward and the apertmre toward the surface.

The Ilyanassa obsoleta (Plate XXI, fig. 113) is also generally to be found iu considerable numbers creeping over the flats, and making trails
and burows like the last, but this species has its proper home on the muldy shores and in estuaries, and will, therefore, be mentioned agatin.

At certain times, especially in the spring, multitules of the fommg shells of Bittium nigrum (p. 305, Ilate NXVV, fig. 15t) ate found ereeping on the smrface of the moist samd in sheltered places, at lowwater, and generally asociated with large numbers of the Astyris houta, (p. 30ti, Plate $\mathcal{X} X 11$, fig. 110.) But this is not the proper habitat of either of these species; the reason of this habit is not obvions, muless they may have been accidentally transported to such places. They may be fomm, howerer, on the eel-grass growing on sandy shores. The Lacuna vinctu (p. 305, Plate XXIV, fig. 139) also frequently occurs on eel-grass and sea-weeds in such places.

The Crepidula formicata (Plate NXㄴII, figs. 129, 129a) aul C. unguiformis (Plate XXIII, fig. 127) ocem on shells inhabited hy the hermit crabs as well as on the living shells of oysters, Pecten, Limulus, die; and the smaller and darker species, C. convexa, (llate XXLII, fig. 12S) oecurs both on the eel-grass, and on the shells of Ilyanassa obsoleta, especially when ocempied by the small hermit-crabs. Occasionally specimens of Fulgur canica (Plate XXII, fig. 124) and of Sycotypus canaliculatus are fomm crawling on sandy flats or in the tide pools, especialls during the spawning season, but they do not ordinarily live in such situations, but in deeper water and on harder bottoms off shore. The curious egg. eases of these two species are almost always to be found thrown up by the waves on sandy beaches. They consist of a series of disk-shaped, subcireular, or reniform, Jellowish capsules, purchmentlike in texture, united by one edge to a stont stem of the same kind of material, often a foot and a lalf or two feet in length. The largest capsules, about an inch in diameter, are in the middle, the size decreasing toward each end. On the outer border is a small circular or oval spot, of thinner material, which the young ones break throngh when they are ready to leave the capsules, each of which, when perfect, contains twenty to thirt, or more, eggs or young shells, according to the season.

Dr. Elliott Cones, who has observed F. carica forming its cases at Fort Maeon, North Carolina, states that the females bury themselves a few inches below the surface of the sand on the flats that are uneovered at low-water, and remain stationary during the process. The string of capsules is gradmally thrust upward, as fast as formed, and finally protrudes from the surface of the sand, and when completed lies exposed on its surtace. The string begins as a simple shred, two or three inches long, without well-formed cases ; the first cases are smatl and imperfect in shape, but they rapidly increase in size and soon become perfect. the largest being in the middle; the series ends more abmutly than it begun, with a few smaller and less perfect capsules. The number of capsules varies considerably, but there are usually serenty-live to one hundred or more. At Fort Macon Dr. Cones observed this species
spawning in May, but at New Haven they spawn as early as March and April. It is probable that the period of spawning extends over several months. Mr. Sanderson Smith thinks that they also spawn in autumn, on Long Island. It is not known how long a time each female requires for the formation of her string of capsules. There are two forms of these capsules, about equally abundant in this region. In one the sides of the capsules are nearly smooth, but the edge is thick or trmeate along most of the circumference, ani crossed by mumerons sharp transverse ridges or partitions, dividing it into facets. Dr. Cones states that these belong to F. carica. An examination of the young shells, ready to leare the capsules, confirms this. The other kind has larger and thinner capsules, with a thin, sharp outer edge, while the sides have radiating ridges or raised lines. Sometimes the sides are unlike, one being smooth and more or less concare, the other conrex and crossed by ten or twelve radiating, elevated ridges, extending to the edge. Thiskind was attributed to F. carica by Dr. G. H. Perkins, and formerly by Mr. Sanderson Smith, but a more careful examiuation of the young shells, within the capsules, shows that thes belong to S. cemaliculata.

Among the saud-dwelling bivalve shells we find quite a number of species that burrow rapidly and deeply, some of them living in permanent holes or perpendicular burrows, into which they can quickly descend for safety, and others burrowing in the sand in all directions, without permanent holes.

The " razor-shell," Ensutella Americant, (Plate XXVI, fig. 182, and Plate XXXII, fig. 245,) is a common inhabitant of sand-flats and sandbars, where the water is pure, generally living near low-water mark or below, but sometimes found considerably above low-water mark, as on the sand-bar at Savin Rock. This curions mollusk constructs a deep, nearly round, somewhat permanent burow, which descends nearly perpendicularly into the sand to the depth of two or three feet. These holes can generally be recognized, by their large size and somewhat elliptical form, when the tide is out. Sometimes they are very abundant in certain spots and not found elsewhere in the neighborhood. They sometimes come to the top of the burrow, when left by the tide, and projeet an inch or two of the end of the shell above the surface of the sand; at such times, if cantionsly approached, many can easily be secured by pulling them out with a sudden jerk, but if the sand be jarred the whole colony will usually take the alarm and instantly disappear. When thus warned it is generally useless to attempt to dig them out, for they quickly descend beyout the reach of the spade. They will often hold themselves so firmly in their holes by means of the expanded end of the long muscular foot, that the body may be drawn entirely out of the shell before thes will let go. When not visible at the orifice they can often be secured by cutting off their retreat with a sudden oblique thrust of the sparle below them. They are obliged to come up to the upper part of the burrow on account of the shortness of their siphons, or breathing.
tubes, which can be protruled ouly about an inch in specimens of the ordinary size, and as they depend upon one of these to bring them hoth food and oxygen, and on the other (dorsal) one to carry off the waste water and excretions, it is essential for their happiness that the orifices of these tubes sliould be at or near the opening of the burrow most of the time. In this respeet the common "long clam," Mya arenaria, (fig. 179,) and many others that have very long and extensile tubes have a great advantage. But the "razor-shell" makes up for this disadvantage by its much greater activity. Its foot, or locomotive organ, (see fig. $18: 2$, is long and very musenlar and projects directly forward from the anterior end of the shell ; at the end it is obliquely bereled and pointed, and it is capable of being expanded at the end into a large bulb, or even into a broad disk, when it wishes to hold itself firmly and securely in its burrow. In exeavating its burrows it contracts the end of the foot to a point and then thrusts it beneath the surface of the sand ; then, by forcing water into the terminal portion, it expands it into a swollen, bulbous form, and this crowds the sand aside and enlarges the burrow ; then, by using the bulb as a hold-fast, the shell can be drawn forward by the contraction of the foot; the latter is then contracted into a pointed form and the same operations are repeated. The burow thus started soon becomes deep enough so that the shell will maintain an upright position, when the work becomes much casier and the burow rapidly increases in depth. The " razor-shell," like all other bivalves, depends upon the minute infusoria and other organic particles, animal and regetable, brought in by the current of water that supplies the gills with oxygen. It is preyed upon by several fishes that seem to be able t_{0} root it out of the sand, or perhaps seize it when at the surface. In this region its principal enemies are the tantog and skates. The latter appear to eat only the foot, for in their stomachs there are sometimes many specimens of this organ, but no shells or other parts.

The common "long' clam," Mya arenaria, (p. 309, Plate NXVI, fig. 179,) is also found on sandy shores from low-water nearly up to highwater mark, but it prefers localities where there is more or less gravel or mud with the sand, so as to render it compact, and it has a decided preference for sheltered localities, and especially abounds on the shores of estumies where there is a mixture of sand, mud, and gravel. It will, therefore, be more particularly mentioned among the estuary species. Yet it is often found even on the outer ocean-beaches, in favorable localities, but not in the loose sands. It lives in permanent burrows, and on account of its extremely long siphon-tubes, which can be stretched out to the leugth of a foot or more, it is always buried at a considerable depth beneath the sand. The specimens of this shell that live on the outer sandy beaches are much thinner, whiter, and more regular in form than those fomb in the estuaries ; they are often quite delicate in textme, and covered, even when full grown, with a thin, yellowish epidermis, and look so unlike the homely, rongh, and mud-colored specimens usually
sold in the markets, that they might readily be mistaken for another species.

The "sea-clam" or "surf-clam," Mactra solitissima, (Plate XXVIII, fig. 202,) is a large species which belongs properly to the sandy shores, and is seldom found elsewhere. It is common both in the somnds and on the outer ocean-beaches, but is not very often found above low-water of ordinary tides unless thrown up by the waves. Its proper home is on sandy bottoms in shallow water, just beyond low-water mark and down to the depth of four or five fathoms. It oceurs all along our coast, wherever there are sandy shores, from North Carolina to Labrador. Its shells are extremely abmudant and of very large size on the onter sandbeaches of New Jersey and the southern side of Long Island. This species grows rery large, some of the shells being more than six inches long and four or five broad; and there is great rariation in the form of the shell, some being oval, others more oblong or elliptical, and others nearly triangular ; some are rery swollen, others quite compressed; but all the intemediate grades occur. The siphon-tubes are quite short and the creature does not usually burrow rery deeply, nor does it seem to construct aus permauent burows. But it has a very large musenlar, compressed foot, with which it can quickly burrow beneath the suface of the sand. Nevertheless large numbers are always thrown on the beaches by violent storms, and once there they are very soon devoured by crows, gulls, and other large birds that frequent the shores. This species is not rery largely used as food, and is seldom seen in our markets; partly because it caunot usnally be so easily obtained in large quantities as the common "loug clam" and "round clam," and partly because it is generally inferior to those species as an article of foorl, for the meat is usually tongher, especially in the largest specimens. But moderate-sized and young "surf-clams" are by no means ill-flavored or tongh, and are quite equal in quality to any of the other clams, either "long" or "round," that are ordinarily sold in the markets.

The Siliqua costata, (Plate XXXII, fig. 24t,) Lyonsia hyalina, (Plate XIVII, fig. 194,) and Laricardium Mortoni, (Plate NXIX, fig. 208,) are usually to be foumd on sandy shores and beaches, often in considerable numbers, but they do not naturally live above low-water mark, and, when fonnd higher up, have probably been carried there by the action of the wares. Their proper homes are on sandy bottoms, in shallow water off shore. They are all rapidly burrowing species, and can live, for a time at least, in the loose sand above low-water mark.

The Angulus tencr (Plate XXVT, fig. 180, animal, and Plate XXX, fig. 223 , shell) is a species that is partial to sandy bottoms and sandy shores, though it is also often found in soft mud. It freguently occurs living at low-water mark, but is more abundant in deeper water. It is a rapid burrower, and has remarkably long, slender, white siphons, which are entirely separate, from the base, and very flexible. On account of the length of these tubes it can remain buried to a considerable
depth beneath the surface of the sand, merely projecting the tubes upward to the surface. It is, nevertheless, like other bivalses, often rooted ont of its burrows and devomed by many fishes, espectally, in this region, by the "senp" and flommers. This spereies is fomd all along the eoast, from the Gulf of saint Lawrence to Sonth Cambina.

The Huenme fusea (late $\mathbf{X X X}$, fig. 22?) is a related species, also furnished with similar, very long, slender, separate tubes, and is, therefore, able to live deeply baried bencath the surface. This species is much mome abmand than the preceling, between tides, bat it most abomms on shores that are more or less muldy, and in esturies. But when living on the sandy shores, and where the water is pure, it becomes much smonther and more delieate, and is often of a beantiful pink-color and much larger than the specimen figured. When living in the muddy estuaries it generally has a rough or eroded surface, more or less irregular form, and a dull white or muldy color, often stained with black, resembling in color the Myu arenaria, with which it is sometimes assoriated. It is dug up and eaten by the tantog and other fishes.

The pretty little Tottenio gemma (Plate XXX, fig. 릉) is a species peculiar to samly shores, both abore and below low water mark; and it often occurs in immense nambers on the sandy flats laid bare by the tides, buried just beneath the surface of the sand. Owing to its small size it is, however, liable to be overlooked, unless particularly sought for. It is an active species and burrows quickly. It is peenliar in being viviparous, as was first observed by Mr. G. H. Perkins, who foumt, in January, from thirty to thirty-six, well-formed young shells, of nearly miform size, in each of the old ones. This shell has a lustrons, concentrically groovel surface; the color is yellowish white or resy, with the beaks and posterior end nsmally puple or amethyst-color. It occurs all along the coast from Labrador to Sonth Carolina. The common " round clan" or "quahog-clam," Femes mercencria, (Plate XXTl, tis. 1St, animal,) is also common on sandy shores, living chietly on the sandy and muddy flats, jnst beyoud low-water mark, but is often fomm on the portion laid bare at low-water of spring-tides. It also inhabits the estuaries, where it most abonuls. It burrows a short distance below the surface, but is often fomblew erang at the smeface, with the shell partly exposed. It has short siphon-tubes, united from the base to near the ends, and a large, musenlar foot, with a broad, thin edge, bey means of which it can casily burow beneath the sand when mocessary. The lobes of the mantle are separate all aromel the front and rentral erlge of the shell, and their edges are thin, white, and folder into delicate frills, some of which, near the siphon-tubes, are elongated and more prominent. Owing to the broat opening in the mantle, the foot ean be protruded from any part of the rentral side, and has an rextensive sweep, forwarl and backwarl. The foot and mantle edges are white; the tubes are yellowish or bromnish orange toward the end,
more or less mottled and streaked with dark brown, and sometimes with opaque white.

This species is taken in large quantities for food, and may almost always be seen of varions sizes in our markets. The small or moderatesized ones are generally preferred to the full-grown clams. Most of those sold come from the muddy estnaries, in shallow water, and are fished up chiefly by means of long tongs and rakes, such as are often used for obtaining oysters. Sometimes they are dredged, and occasionally they can be obtained by hand at or just below low-water mark. These estuary specimens nsually have rough, thick, dull-white, or mud-stained shells, but those from the sandy shores ontside have thinner and more delicate shells, often with high, thin ribs, especially when foung; and in some varieties the shell is handsomely marked with angular or zigzag lines or streaks of red or brown, (rar. notata.) These varieties often appear so different from the ordinary estnary shells that many writers have described them as distinct species, but intermediate styles also occur. This species is very abundant along the coast from Cape Cod to Florida; north of Cape Cod it is comparatively rare and localIt does not occur on the coast of Maine or in the Bay of Fundy, except in a few special localities, in small, sheltered bays, where the water is shallow and wam, as at Quahog Bas, near Portland ; but in the southern parts of the Gulf of Saint Lawrence, as about Prince Edward's Island and the opposite coast of Nova Scotia, where the water is shallow and much warmer than on the coast of Maine, this species again occurs in some abundance, associated, in the same n aters, with the oyster and mauy other southern species that are also absent from the northern coasts of New England, and constituting a genuine southern colony, surrounded on all sides, both north and south, by the boreal fanna.

The curious and delicate shell called Solenomya relum (Plate XXIX, fig. 210) is occasionally found burrowing in the pure, fine, siliceous sand near low-water mark, about two inches below the surface, but its proper home is in shallow water, beyond low-water mark, and it is, perhaps most abundant where there is mud mixed with sand, and it also lives in soft mud. Its shell is glossy and of a beantiful bromn color, and is rery thin, flexible, and almost parchment-like in texture, especially at the edges. It is a very active species, and has a rery curious foot, which is protruded from the front end of the shell, and can be used in burrowing, rery much as the "razor-shell," deseribed above, uses its foot; but the Solenomya makes use of its foot in another way, for it can swim quite rapidly through the water, leaving the bottom entirely, by means of the same organ. The foot can be expanded into a concave disk or umbrella-like form at the end, and, by suddenly protruding the foot and expanding it at the same time, a backward motion is obtained by the reaction against the water; or, by suddenly withdrawing the foot and allowing it to remain expanded during most of the stroke, a for-
ward motion is obtained. It is at singular sight to see this shell swim swiftly many times aromul a vessel of water, at the surface, until, finally, becoming exhausted by its violent exertions, it sinks to the bottom for rest.

The common "scollop," Pecten irrudiens, (Plate NXX゙1, fig. "43,) is also frequently found living on samdy shores and flats, or in the pols, but it belongs more properly to the sheltered waters of the ponds and estuaries, where it lives among the eel-grass. It will, therefore, be mentioned again in that comection.

The "common muscle," Mytilus edulis, (p. 307,) is frequently found in large patches on samdy flats, fastened together by the theads of byssus. Some of the most beautifully colored varieties, (fig. 23 t,) with radiating bands of blue and yellow, are often found in such places, but the species is much more abmolant and larger in other sithations, especially in the shallow and sheltered waters of the bays, where there is more or less mud.

Ascirlians are almost entirely wanting on the sandy shores, lut Molgula Manhattensis (1. 311, P'late XXXIII, fig. 250) is sometimes found evell on sandy shores, attached to eel-grass.

Of Bryozoa only two species are usmally met with, and even these do not have their true stations on the sandy shores. The delicate and gracefully branched Bugula turita (p. 311, Plate XXXIV, figs. 2.ss, 259) is occasionally found growing attached to the eel-grass, which often grows in the sandy tide-pools, or at extreme low-water. It also oceurs in great abundance amoug the masses of sea-weeds thrown up by the waves on the sandy beaches. Such specimens are often large and luxuriant, in some cases being more than a foot in length; these are derived from the bottom in deeper water, off shore.

The Escharella variabilis (1. 312, Plate XXXIII, fig. 256) is often fomm encrusting dead shells of various kinds, especially such as are inhabited by the larger "hermit-crabs." It is also cast up in abmulance, on some beaches, from deeper water.

The Radiates are not mumerous on sandy shores, yet several interesting species may be found. Among the Echinoderms we find four species of holothmians, one sea-urchin, one star-fish, and one ophiman.

The most common holotharian is the Leptosynapta Girardii, (Plate XXXV, tigs. 265, 266.) This is a long, slemder, rery delicate and fiagile species, which burrows deeply in the sand or gravel near low-water mark. The holes are romul and go down almost perpendicularly; they are usually not more than a quarter of an inch in diameter. The ereature is not quick in its motions, and can usually be fomd in the upper part of its burrow when the tide is out. The skin is thin and quite tianslucent, so that the white mosenlar bands that rum lengthwise of the body, on the inside, can be easily seen, as well as the large intestine, which is always quite full of sand and gives a dark appearance to the body. The tentacles are almost alway in motion, and are used in
burrowing as well as for other purposes. The skin is filled with minnte perforated oval plates, to each of which there is attached, by the shank, a beantifnl little anchor, (fig. 266,) quite invisible to the naked eye. The flukes of these anchors project from the skin and give it a rough feeling when tonched; they afford the means of adhesion to farions foreign substances, having a rough surface, and are doubtless useful to them when going up and down in the borrows. When kept in confinement this species will generally soon commence to constrict its body, at varions points, by powerful musenlar contractions, which often go so far as to break the body in two, and after a few hours there will usually be nothing left but a mass of fragments.

Another related species, L. roseola V., also occurs in similar places aud has nearly the same habits, but this species is of a light rosy color, caused by mmerous minnte ronnd or oval specks of light red pigment scattered throngh the skin. The anchors are similar but much more slender, with the shank much longer in proportion. The perforated plates are also much smaller in proportion to the length of the anchors.

The Cuntina arenate is much more rare in this region. It lives at extreme low-water mark, or just below, buried in the saud. Its skin is thicker and firmer than that of the preceding species, and its body is shorter and stouter, while the posterior part narrows to a long slender caudal portion. Its skin is filled with immense numbers of small, round, wheel-like plates, with an meven or mululated border, perforated near the rim with ten to twelve ronudish openings, and usually having four quadrant-shaped openings in the middle; or they may be regarded as having a large romd opening in the middle, divided by cross-bars $i_{n t o}$ four parts. This species appears to be rare in this region, and was met with only by Professor H. E. Webster, at Wood's Hole, but it is quite abundant in some parts of Massachusetts Bay, as at Chelsea Beach and some of the islands in Boston Harbor. These and all other holothurians are deroured by fishes.

The Thyone Britreus is a large purple species, often four or five inches long and one inch or more in diameter. It is thickly covered orer its whole surface with prominent papille, by which it may easily be distingnished from any other found in this region. It is more common in the shallow waters off shore, on shelly bottoms.

The "sand-dollar," Echinarachaius parma, (Plate XXXV, fig. 267,) is the only sea-urchin that is commonly met with on sandy shores in this region, and this is not often found living on the shore, except at extreme low water of spring-tides, when it may sometimes be found on flats or bars of fine siliceous sand in great mumbers, buried just beveath the surface, or eren partially exposed. It creeps along beneath the sand with a slow gliding motion, by means of the myriads of minute extensile suckers with which it is furnished. It is far more abundant on saudy bottoms at varions depths off shore. It has a very wide range, for it is fomd all the way hom New Jersey to Labrador, and also on
the North Pacific enast ; and in depth it ranges from low-water mark to 430 tathoms, ofl Saint George's Bank, where it was dredged hy Messrs. Smith and Iarger. When living its color is usmally a rich pmplish brown, but it soon turns green when taken from the water. It gives a dark green or hackish color to alcohol, which stains very injurionsly any other speemens put in with it. The fishermen on the coast of Mane and New Bronswick sometimes prepare an indelible marking-imk from these "sand-dollars," by rubbing off the spines and skin and, after pulverizing, making the mass into a thin paste with water. A number of fishes late been fomb to swallow this umpromising ereature for food, and the flom

The common green star-fish, Asterias arenicola, (1). 306, llate XXXV, tig. $\quad(69$,$) is sometimes met with on sandy shores, but is much less abm-$ dant than on rocky shores. The curions "brittle star-fish," Ophiura oliracer, is sometimes fomb among the eel-grass on sandy shores, especially in tide-pools, in sheltered localities. It may be recognized by its nearly eircular, disk-like body, about three-quarters of an inch in diameter, with five romb, rather slender, tapering, stifflooking arms, abont three inches long. The color is bright green, much like that of the eel-grass among which it lives. When at home in the water it moves abont over the sand quite rapidly by means of its arms. When taken from the water it does not usually break itself up into ummerous firgments, as readily as most of its related species do. It is rather sonthern in its distribntion, and Vineyard Sound is perhaps its northern limit. It extends sonthward at least to North Carolina.

Of acalephs there are no species known to me that properly belong to the sandy shores, but Hydractinia polyclina (p. 328) is often fomd on the shells carried about by the hermit-crabs, in such sitmations, and there are species of Obelia aud other hydroids that sometimes grow on the eel-grass in the tide-pools, but they are much more frequent in other situations.

Among the Polyps we find several speeies proper to sandy shores and specially adapted to this mode of life. One of the most interesting of these is the Malocampa producte, (p. 330, Plate XXXVIII, fig. ‘2s5,) which has already been deseribed. This often oecors in the sand at low-water mark, and makes rom holes abont a foot deep, which can sometimes be recognized by small cracks radiating from the hole when the tide leaves them meovered.

The Šagartia modesta (p. 330) is also fomd buried in the sand at lowwater, especially where there is also some grawel with the samb. The Sagartia lcucolena (p. 329, Plate XXXVIII, tig. 2St) is sometimes found in similar situations, but belongs properly to the rocky shores.

The Paractis rapiformis is a species that is still little known. It lives buried deeply in the samd at and below low-water mark. It appears to be common on the coast of North Carolina, at Fort Macon, where it is often thrown up by storms, and it has also been found at Great Eing Har-
bor and near New Haven light. The body is three or four inches long when extended, and an inch or more in diameter, and is very changeable in form. The surface is nearly smooth, slightly sulcated lengthwise, and the color is usually pink, or pale flesh-color, translucent. The tentacles are mumerons, short, taperiug, pale greenish olive, with a dark band around the base, comected with a dark line radiating from the mouth. Toward the upper part of the body the lsurface is somewhat wrinkled and is capable of attaching grains of sand to itself. When thrown u, by the waves it contracts into a globular or pyriform shape and "somewhat resembles a boiled onion or turnip."

List of the species ordinarily inhabiting the sandy shores.

ARTICULATA.Insects.

	Page.		Page.
Muscida, (larve)	335	Geopinus incrassatus.	335
Ciciudela generosa (larra).	336	Phytosus littoralis	335
C. dorsalis	335	Bledius cordatus	
C. birticollis	335	B. pallipennis.	
C. albohirta	335	Heterocera undatus	33

C'rustacea.
Page. Page.
337 Orchestia agilis 346
Ocypoda arenaria
336
336
Gelasimus pugilator. Talorchestia longicornis 336 336
338
Cancer irroratus
312
Carcinus graulatus
T. megalophthatma 336
Lepidactylis dytiscus 339
33
33
Platyonichus ocellatus
Platyonichus ocellatus
339
Libinia canaliculata
338
Hippa talpoida
313
Eupagurus pollicaris
339
E. longicarpus
339
Crangon vulgaris
Crangon vulgaris 339
Palemonetes vulgaris
Annelids, (Chatopods.)
Page. 343
Nephthys picta 348
Eteone, sp. 349
Nereis vitens 341
N. limbata $3+1$
Cirratulus grandis 345
Scolecolepis viridis 345
S. tenuis 345
Polydora ciliatum 345
Diopatia cuprea 346
Marphysa Leidyi 347
Lumbriconereis opalina 342
L. tennis 342
Stamocephalus pallidus 345
Rhynchobolus Americanns. 342
R. dibranchiatus 341
Page.
S. setosa 345
Nerine agilis 344
Aricia ornata 346
Anthostoma robustum 344
A. fragile 344
Maldane elongata 343
Clymenella torquata 3.4
Notomastus lurilus. 3.4
N. filiformis 342
Sabellaria rolgaris $34!9$
Cistenides Gouldii :3!!
Amplitrite ormata 318
Oligochetu.
Halodrillus littoralis Page. Page.
33 s Clitellio irroratus 324
Nemertens.
Page. Page.
350. Cosmocephala ochracea 325
Meckelia lactea
349 Tetrastemma arenicola 3.51
M. rosea 350 Balanoglossus auratiacus. 351
Sipunculoids.
Page. Page.
Plascolosoma Gouldii 3.33 Phascolosoma, sp. 353
MOLLUSCA.
Gustropods.
Page. Page.
Fulgur carica 35.5
Neverita duplicata
Neverita duplicata 354 354
Sycotypus canaliculatus. 350 Crepidula formicata. 35%
Astyris lumata 306
C. convexa 35.)
Ilyanassa obsoleta 354
Tritia tricittata 354
Bittium nigrum 35.5 35.5
Lunatia heros 353
L. heros, var. triseriata 354
C. mguformis 35.5
Lacman vincta 35%
Lamellibranchs.
Page. Page.
Ensatella Americana Venus mercenaria $35!$
Siliqua costata 35
Totteuia gemma 339
Mya arenaria 3π
Leronsia hyalina 35 s
Mactra solidissima 355
Macoma fusca $35!$
Angulus tener 358
Lavicantinm Mortoni 3.58
Solenomya velum 360
Mrtilus edulis 361
Pecten irradians 361

Bryozor and Ascitians.

II. 3.-FAUNA OF THE MUDDY SHORES OF THE BAYS AND SOUNDS.

The muddy shores in this region grade almost insensibly into the sandy shores; and shores that are entirely of mul, without auy admixture of fine sand, rabely occur except in the estuaries and lagoons. Therefore we find, as might have been anticipated, that it is difficult to draw a very definite line between the animals living upon the sandy shores and those living upon the muddy shores and flats. Many of the species seem, also, to be equally at home, whether living in mud or sand, and many others prefer' a mixture, although capable of living in either. But if we were to compare the animals living in pure samd with those living in clear mud, the two lists would be cuite different, althongle a considerable number would be common to both lists. Moreover, the eel-grass grows in considerable quantities both mon sandy and muddy shores, in certain localities, and a large number of speeies which inhabit the eel-grass will, therefore, be found in both lists.

In discnssing the species found on sandy shores, in the preceding pages, references hare constantly been made to other stations inhabited by many of the species, and especially in the case of those that are common to the sandyand muddy shores. Therefore it will not be necessary to repeat the facts in this connection, but the species will be enumerated in the list at the end of this section.

A considerable nomber of species have their place in this list chiefly because they occur on beds of oysters planted on mudhly shores, at and just below low-water mark. Without these artificial stations some of them would hardly be found on such shores, or at least but rarely. It is evident that the shells of oysters, when in large quantities, supply, to
a certain extent, conditions similar to those of rocky shoros, and consefrently it is natural that certain rock-shore specios should be fomed in such situations. Only the more common and most important of these have bern introduced into the list, however, for to inelude all the peceies to be fomblamong oysters would uselessly extend the catalogne.

Among the Crustacea we find a consinlerable momber of spereies which have their proper homes on the moddy shores. Of the true crabs there are at least eleven species that constantly ocem in these sitnations, but several of them, viz, Cancer irroratus, (1). 312.) P'(umpeus depressus, (p.
 greater mombers elsewhere, and depend largely upon the oyster-beds for their safety on these shores. The Carcinus granuletus, howerer, often resorte to the holes and eavernons places muler the peaty banks of the shores, or along the small ditehes and streams entting throngh the peaty marshes near the shore. The marsh "fiddler-erab," Gclusimus pugnux, is usually very abmonat in the peaty banks and along the ditehes and streams at and just above high-water mark, where it excavates great numbers of deep holes, often completely riddling the soil. This species is, however, more at home along the borders of the estualies and lagoons and will be deseribed more fully in that comection, as well as the S'serma reticuluta, which often occurs with it in both sitnations.

The "oyster-crab," Pimnotheres ostreum, (Plate I, fig. ${ }^{2}$, male, is found wherever oysters ocem. The female lives, at least when mature, within the shell of the oyster, in the gill eavity, and is well known to most consumers of oysters. The males (fig. 2) are seldom seen, and rarely, if ever, occur in the oyster. We fomm them, on several oceasions, swimming actively at the surface of the water in the middle of Vineyard Somnd. They are quite mulike the females in appearance, being smaller, with a firmer shell, and they differ widely in color, for the carapax is dark brow abore, with a central dorsal stripe and two conspicnous spots of whitish, as inclicated in the figme; the lower side and legs are whitish. The female has the carapax thin and translucent, whitish, tinged with pink. The I'innixa eylindrica (Plate I, fig. 1) is a related species which is oceasionally met with on muddy shores. It lives in the tubes of certain large Amelids in eompany with the rightful owner. The specimens hitherto met with in this region were either found free, or dhe out of the mond, and it is meertain with what worm they associate, though it is most likely to be the Nereis virens, but on the coast of Sonth Carolina it lises, accorling to Dr. Stimpson, in the tnbes of Arenicole cristatel Stmison. It has been fomed in the stomadi of the ocellated flommer.

The common edible-crab or "blıe-crab," Callinectes hastatus, is a common inhabitant of muldy shores, especially in sheltered coves anci batys. It is a very active species and can swim rapidly ; it is therefore often seen swimming at or near the surface. The full-grown individnals genexally keep away from the shores, in shallow water, fiemuenting modly lootoms, especially among the eel-grass, and are also fomm in large
numbers in the somewhat brackish waters of estuaries and the mouths of rivers. The young specimens of all sizes, up to two or three inches in breatth, are, however, very frequent along the muddy shores, hiding in the grass and weeds or unter the peaty banks at high-water, and retreating as the tide goes down; when disturbed they swim away quickly into deeper water. They also have the habit of pushing themselves backward into and beneath the mud for concealment. They are predacious in their habits, feeding upon small fishes and rarions other animal food. They are very pugnacious and have remarkable strength in their claws, which they use with great dexterity. When they have recently shed their shells they are canght in great numbers for the markets, and these "soft-shelled crabs" are much esteemed by many. Those with hard shells are also sold in onr markets, but are not ralned so highly. This crab can easily be distingushed from all the other species found in this region by the sharp spine on each side of the earapax.

The common "spider-crab," Libinia cancticulata, (p. 339,) is very common on muddy shores and Hats. It hides beneath the smface of the mud and decaying weeds or among the eel-grass, and is rery sluggish in its motions. Its whole surface is covered with hairs which entangle particles of mud and dirt of various kinds ; and sometimes hyrlroids, alga, and even barmacles grow upon its shell, contributing to its more ready concealment. The males are much larger than the females, and have long and stout claws. They often spread a foot or more across the extended legs. The females have much smaller and shorter legs and comparatively weak claws.

Another similar species, Libinia dubia, is also found on muddy shores aud has nearly the sime habits. It has a much longer rostrum, more deeply divided at the end.

The two common species of "hermit-crabs" are both found on muddy shores, especially among eel-grass, but the larger one, Eupugurus pollicaris, (p. 313, is comparatively rare. The small one, E. longicarpus, (p. 313,) is very common and usually occupies the dead shells of Ilyunussa obsoletu, though many may be fomd in other species of shells.

The Gebiuctfinis (Plate II, fig. 7) is a crustacean somewhat resembling a young lobster three or four inches in length. It lives on muddy shores and digs deep burrows near low-water mark, in the tenacions mud or clay, especially where there are decaying sea-weeds buried beneath the surface. The burrows are roundish, half an inch to an inch in diameter, very smooth within, and go down obliquely for the distance of one or two feet, and then rin off laterally or downward, in almost any direction, to the depth of two or three feet, and are usually quite crooked and winding. We have found them most abundant on the shore of Great Egg Marbor, New Jersey, near Beesley's Point, but they also occur at New Hareu and Wood's IHole, de. This species is quite active; it swims rapidly and jumps back energetically. It is eagerly devoured
loy such fishes as are able to capture it. When living the colnrs are quite elegant. Along the back there is a broad band of mottled, reddish brown, which is contracted on the mext to the last segment ; each side of this band the mottlings are fewer, and the suriace somewhat hairy. The last segment and the appendages of the preceding one are thickly specked with reddish brown; their edges are fringed with eray hairs. The C"mlemasse stimpsoni Smotr, (Plate II, fig. S, large claw, is also a burowing species, but its habits are at present little known, owing to its raity. It has been fomd in the stomath of fishes, and is probaby more common farther south.

The sipuille empuse is a very interesting creature, whose haloits are still imperfectly known. It is often thrown on the beaches by the waves, and probably it msually burrows in the mud below low-water mark, but in certain localities it has been fomm burrowing at or near low-water mark of spring-tides, forming large, irregular holes. The very chrions, freeswimming young (Plate V1l, hig. 36) were often taken in the towing-nets. Large specimens are eight or ten inches long and abont two broad. The body is not so stont bnilt as that of the lobster, and the carapax or shell is much smaller and softer, while the abdomen is much larger and longer in proportion. The legs and all the other organs are Ifite milike those of the lobster, and the last joint of the great claw, instead of forming a pair of pincers with the next, is armed with a row of six sharp, curved spines, which shat into corresponding sockets, arraged in a groore in the next joint, which also bears smaller spines. By means of this singular organ they can hold their prey securely, and can give a serere womb to the hmman hand, if handled incantionsly. It also uses the stont candal appendages, which are armed with spines, very effectively. The colors of this species are quite vivil, consillering its mud-hwelling habits. The body is usnally pale green or yellowish green, each segment bordered posteriorly with darker green and edged with bright yellow; the tail is tinged with rose and mottled with yellow and blackish; the outer candal lamellir have the base and spines white, the last joint yellow, margined with black; the imer ones are black, pale at base; the eyes are bright emerald-green; the inmer antemme are dark, with a yellow band at the base of each joint ; and the flagellum is anmulated with black and white.

The common shrimp, Crangon culfaris, (1. 339, Plate III, tig. 10.) is freducut on mudly shores, where it has a darker color than when living on samdy shores. The common prawn, I'alemonetes rulyaris, (p, ;339, Plate II, fig. 9,) is also common in such situations, especially where there is eel-grass, among which it finds its farorite resorts, bont it is still more abmant in the estnaries. Another shrimp, the Tirbins zostericole Surtu, also oecurs among the eel-grass, in similar places. It is nsually greenish in color.

Two other species of shimp-like crustacea, helonging to the genus Mysis, are also fonmon on modly shores, especially among eel-grass.

7 V

The Mysis stenolepis Sumtu, (Plate III, fig. 12, female,) is often very abundant in such situations. The small young ones have been taken in May, and the half-grown ones later in the season. In the early spring the adult females, with eggs, occur in great numbers among the eelgrass, in estuaries and ponds. Mr. Vinal N. Edwards canght a large number in a small pond at Wood's Hole, April 1. No males were found at this time with the females; the only adult males observed were taken in antumn. Possibly the males do not survice the winter. The adult females have not been observed in summer, and they probably die after hatching their young in the spring. The whole body is translucent; each segment of the body has a stellate black spot; and there is more or less blackish pigment on the caudal lamelle, telson, antennal scales, and inner flagellum and peduncle of the antennulie. This species contributes largely to the food of many fishes. The other species, M. Americama Smith, also lives among eel-grass, as well as in deeper water off shore among algre. This has been found in large numbers in the stomachs of the shad and the spotted flomder.

Of Amphipods there are comparatively few species. The Unciolu irrorata (p. 340, Plate IV, fig. 19) is pretty common here, as elsewhere. The Amphithoë valida Santm (p.315,) is often met with among eel-grass. Another species, A. compta Sintm, also ocems in the same places. It differs from the preceding in many characters, but may easily be distinguished by its red eses. A thind species of the genus, A. longimana Suitri, is also fombl among cel-grass. It has black eyes. The Corophium cylintricum and Gummarus mucronatus oceur among eel-grass and algex, often in great numbers.

Of Isopods there are several species. The Inoten irorata (p. 316. Plate V, fig. 23) is common wherever celgrass is fomm. The Erichsomia attemata Harger, (Plate Vl, fig. $\because 7$,) is also fomd clinging to eel-grass in muldy sitnations. The Epelys trilobus (Plate VI, fig. 2S) is fonnd creeping abont over the bottom or among and beneath the decaying vegetable matter and mud usually to be found in sheltered sitnations. It is usnally so covered up with adhering dict as readily to escape olservation. The Epelys montosus also oceurs in similar situations.

Whenever lumber or drift-wood has been left for some time ou the muddy shores it is found to be more or less eaten by the Limnoriu Fignorum, (Plate VI, fig. 25.) This small isopod gnaws its galleries in the wood to a depth of about half an inch from the surface, and after a time these galleries become so momerous that the sinerficial layer will be completely honey-combed, and it will then scale off and another layer will be attacked. This little creature often does great damage to the piles of whares and other kinds of snbmerged wood-work in this region, and will be mentioned again in disenssing the animals inhabiting piles, \&c.

The "horse-shoe crab," Limulus Polyphemus, (p. 340,) is also common
on muddy shores, burowing beneath the surface, at or just below lowwater mark.

Many of the Amelids foumd on muddy shores oceur also on sandy shores, especially where there is a misture of mud with the sand, and consequently they have been mentioned in the preceding pages. Among these are Nereis rirens (p. 317, 'late NI, figs. $4 \overline{-}$-50) and N. limbate, (p. :318, Plate XI, fig. .51,) both of which are common on muddy shores ; also Diopatru eupreet, (p. 30, Plate NIII, figs. 67 and 68;) Lum. Iniconereis opalint, (p. 342, Plate XILI, tigs. 69, 70 ;) L. temuis, (p. 342;) Maldane clongata, (p. 343;) Notomastus Iwridus, (1. 342;) Notomastus filiformis, (1). 342;) Cirratulues gramdis, (p. 319, Plate NT, figs. S0, 81:) Cis. tenides Gouldii, (p. 323, Plate XVII, figs. 87, 87 (e;) all of which are found both in mud and sand, but prefer, perhaps, a mixture of the two. R'hynchobolus Amerieamus (1. 342, Plate X, tigs. 45, 4i) and K. dibran. chiatus (p. :34, Plate N, figs. 43, 44) are also found in mud, though perhaps more common in tine sand, or sandy mul.

The "blood-drop," Polyeirus eximius, (p. 320, Plate XVI, fig. S5) is however, a species that belongs properly to muddy localities, and it delights in the softest and stickiest mud of the shores, near low-water mark. The larger blood-drop, Chetobrenchus senguinens, (p .320 ,) is also fomd m similar situations, and the soft mud, filled with deeaying reg. etable matter, seems to be its most congenial home.

Of Mollusks there are eomparatively few speeies that are peculiar to muddy shores, but there are many that live almost equally well in such localities and on shores or bottoms of other kinds.

Among the Gastropods, the proper mud-dwelling species are few. The Ilyanassa obsoleta (p. 354, Plate NXI, fig. 113) is the most abundant, for it occurs everywhere over the mud-flats in great mumbers, and, in cold weather, often crowds in large numbers into the pools left on the flats. The Fassa cibex (Plate NXI, fig. 114) has nearly the same habits, but is comparatively rare. It is more frequently fomm among the eel-grass, and is more common farther south.

The Euplenra caudete (Plate NXI, fig. 117) is usualls found rather sparingly in this region, but in one locality, at Waquoit, it occurred in considerable numbers in the small streams and ditches in the muddy marshes near the shore. It oceurs occasionally at low-water, but is more often met with on muldy and shelly bottoms in the shallow water of the bays and sounds, and is much more common farther south. The ('repidula convexe (1. 3\%.), Plate NXLII, tig, 1こS) is very common on the shells of Mlyanasse obsoleta, especially when they are inhabited by "hermit-crabs." It is also tiveruently found on the eel-grass, where, in Angust, it often deposits its bright yellow eggs inelosed in small, gelatinous masses, which are grouped in clusters.

The Bulla solitu: in (Plate $\mathrm{KNV}^{\mathrm{V}}$, fig. 16ii) is a species restrieted to muldy shores and bottoms, in sheltered situations, and is found also in muddy ponds and estuaries. The rolor of the animal of this species is
quite peculiar, and when it is fully extended it has a singular appearance. The general color is usually orauge-brown, and it is thickly speckled with darker brown. This shell is devomred in large mumbers by the flounders, and doubtless by other fishes.

- A momber of species which habitually live elinging to eel-grass are to be found in the localities where this plant flomishes, either in the pools or at low-water mark, but they are not peculiar to or characteristic of muldy shores. Among these the most common are Astyris lunata, (p. 306 ;) Bittium nigfiam, (p.305:) Triforis nigrocinctus, (p. 305;) and Lacuna rincta, (p, 30\%.) The Littorina irrorata is oceasionally found in sheltered situations, but this region is north of its true range, and such specimens as are found may have been introduced from farther sonth with oysters. It is very abundant on the southern coast. The Chosalpinx cinerea (1). 306) ocerrs wherever there are beds of oysters, upon which it feeds.
Most of the bivalve shells to be fomd on muddy shores have already been enmmerated as living also on the sheltered sandy shores, and the majority of them flourish equally on both kinds of shores, and on those of a mixed or intermediate character. Among these are Mya arenaria, (р. 309 ;) Macoma fusca, (р. 355 ;) Angulus tener, (p. 358 ;) Tentis morce. naria, (1. 3 .9 ;) Argina pexata, (p. 309 ;) Mytihus edulis, (1. 307 ;) Pecten irradians, (p. 361.) There are, however, other species that are almost peculiar to muddy shores, and are highly characteristic of them. The Pholas trumcata (Plate NXVII, fig, 200) excavates deep holes in deposits of tenacions elay at all elerations between tides, and is still more frequently found living in holes in the borders of peat-bogs, or marsh deposits, which have been encroached upon by the sea. In such places they sometimes ocenr nearly up to the ordinary high-water mark. Their holes are round and neally perpendicular, and increase in size from the orifice downward. They vary in depth according to the size of the shell; the decper ones are often. a foot or a foot and a half in depth and often an inch in diameter. The shell remains near the bottom and stretches ont its long siphon tubes, which are united together quite to the end, until the tips reach the external orifice of the burrow These tubes are generally yellowish white except at the end, where they are blackish or brownish; the orifices and papillie are also varionsly marked with purplish brown or dark brown. The dark coloration of the end of the siphon tubes is doubtless for purposes of protection from predacions fishes, crabs, \&e. Its foot is short and stout, obliquely trmcated, and bevelled at the end. The Pctrieola pholadiformis (Plate XXVII, fig. 199) is generally associated with the preceding species and is more abmolant. Its habits are nearly the same, but it does not make its burrows so deep; it is more active in its motions, and can easily climb up to the uprev part of its hole hy means of its long, thin, white foot, which is tongue-shaped and rery extensible and flexible. The siphon-tubes are long and slender, tapering, amd unted for abont a
quarter of their length, beyond which they are separate and divergent. They are yellowish white, more or less spotted, especially toward the ent, with orange, brownish, or backish, which, in large specimens, forms streaks near the ends or even becomes contluent, making the tips very dark colored. The branchat orifice is surrounded by a circle of munerons bipinnate papilla, which usually alternate with smaller and more simple ones ; the papilla of the dorsal tube are similar, but more simple.

The Tagelus giblus (Plate XNVI, fig. 181, animal; Plate NXX, fig. 217 , shell) is another inhabitant of muddy shores, which burrows deeply into the mud. This speries is confined, on the shores, chiefly to the zone near low water mark, but probably lives also in shallow water beyoml the reach of the tides. In this species the foot is large and muscular, thick, tongue-shaped, and has a very wide range of motion, for the manthe is open along the whole length of the rentral elge of the shell. The tubes are separate, from the base, and are round, white, and capable of rery great extension, for a specimen of ordinary size, kept in continement, extended the tubes to the length of nine inches. These tubes are translucent, and at the end have small ronnded lobes around the aperture, each lobe being furnished at its base, inside, with a small, orange, eye-like spot, which is probably an imperfect visual organ, and with two others on the inside lower down. The branchial tube has six of these lobes and ocelli; the dorsal one has eight. On each tube there is a row of small, white, slemder, obtuse papilla, corresponding to each terminal lobe, and ruming along the whole length of the tubes. The color of the animal is white throughout. This bivalye makes deep burrows in the tenacions mul, each of which has two orifices, not far apart, for the two tubes. By this peculiarity their burrows may be at once recognized, whenever seen.

The Multiniu luteralis (Plate NXIT, fig. 185, 13, animal) is occasionally found lising at extreme low-water mark, on muddy flats, hut its true lome is on the soft muddy bottoms in shallow water, where t is often excessively abmolant. In this species the foot is relatively large and muscular, more or less pointed at the end, and capable of assuming many different forms and positions; it has a wide sweep in its motions and can be thrust forward or backwand. The siphon-tubes are mited nearly to the end, but the separation is indicated by a şoove letween them for nearly half the length. The branchial tube is the largest, and its orifice is sumpomed by a circle of twelve to twenty-fomr, slender, elongated, simple papillar, each of which usually has a small, black, eyelike spot at its base ; a little below this terminal circle there is another, composed of smaller, very short, blunt papille. The dorsal tube also has a subterminal circle of simila papille, above which the tip forms a retactile cone, with the small, simple orifiee at the tip. The amimal is yellowish white, the tubes generally pale yellow. This species burows inst beneath the surface of the mud, and it is eaten in large numbers hy the scup and other fisines.

The Cumingia tellinoilles (Plate XXX, fig. 221) and Fellia plamulata (Plate NXX, fig. 206) are sometimes found living in the mud at lowwater, but are rare in such situations. They are more common at the depth of a few fathoms on muddy and shelly bottoms.
The ribbed musele, Moniola plicatule, (p. 307, Plate AXII, fig. 23S, is rery abundant near and even above high-water mark, along the muddy borders of the marshes and banks and among the roots of grass. The Modiola hamatus is occasionally met with, especially on oysterbeds, adhering to the shells, where it is sometimes rery abundant. It has probably been introduced with the oysters, from the South, where it is common. It somewhat resembles the preceding species, but it is shorter, broader, with strong radiating ribs, many of which are forked. Its color is yellow or yellowish brown.

The common "scollop," Pecten irradians, (p. 361, Plate NXXII, fig. 243 ,) oceurs among the eel-grass on muddy shores in great abundance. in many localities, especially in sheltered places. The young shells may be fonnd during the whole summer, but the adult specimens come up to the shallow waters and shores in great numbers in the antumn. This species is very active and can rise from the bottom and swim throngh the water with great rapidity by opening and energetically closing its valves, thus expelling the water from the gill-cavity, the reaction sending the shell backward. It often remains up among the leaves of the eel-grass, resting upou them, where they are matted together, but if alarmed the creature suddenly swims away in the manner described, and takes to the bottom. It is very watchful and quickly perceives its enemies. The thickened onter edge of the mantle, both abore and below, is fringed with rows of numerous tapering papillie or tentacles, the immer ones largest, and among the bases of these there is a row of very bright silvery or bluish eves, thirty to forty or more to each valve the number increasing with the size of the shell; a short distance within the onter fringe of tentacles there is a raised yellow or orange ridge, which bears another series of smaller papille, and the space between these and the outer ones is radiately striated. The central muscle which closes the valres of this shell is large and powerful. This is the portion which is sold in our markets in large quantities, and is highly esteemed by many as an article of food. Its decided sweetish taste is, howerer, objectionable to some persons. To some, also, it proves actually injurious, sometimes producing nausea and even worse symptoms. After storms this shell is sometimes found thrown upon the beaches in immense quantities.

The oyster, Ostrad Virginiana, (p. 310 ,) is often planted upon the muddy shores at and below low-water mark, in many parts of Long Islamd Somud and elsewhere, but for this purpose the muddy estnaries are preferred, where the water is more brackish and the bottom less disturbed by the storms. The mud, however, should not be too deep, and ought to have a solid substratum, a few inches beneath.

The Ascidians are generally uncommon on moddy shores, Int wherever the eel-grass flomishes, and especially in sheltered sitnations, the Molyula
 hering to it. The liotryllus Gouldii (Plate NXX゙III, fign. 259, 253) is also frequently found growing upon the cel-grass in such situations, as well as upon the piles of whares, bottoms of boats, \&e. This spectes was found in great profusion upon the eel-grass in Little Harbor, at Woods Hole, and in Waquoit Pond. In both these localities the water is nearly pure and but slightly, if at all, brackish. But it has also been fomd by Professor I). C. Eaton on the piles at Brooklyn, New Fork, where the water is more brackish. This species when young forms thin, soft, eircular or oval incrustations covered with stellate clusters of the minute animals, (fig. .2.3.) which are imbedded in it ; each of these has a small circular orifice toward the onter end, opening into the gill eavity, and another orifice opening into a larger eavity in the center of the chnster, which is common to all those in the cluster ; and it has a central external orfice, throngh which the waste water from the gills, the fieces, and the eggs are discharged. These yomg colonies begin to appear in June and grow very rapidy, new individuals being formed by buds that originate from the first ones in rapid snecession, so that in two or three weeks the small colonies will increase from a quarter of an inch in brealth u_{1} to three or four inches, if they be situated on a flat surface and have room to spread. If upon the stem or leaf of the celgrass they will extend entirely around it, and perhaps sereral inches along its length, if not opposed by other colonies. At the same time the crusts inerease very mueh in thickness. Thas by the end of the summer, the eel-grass, algie, stems of hydroids, \&e., often become completely covered up by the luxuriant growth of this curions compound animal. The colors of this speeies are extremely variable and often very elegant, and it is seldom that two colonies ean be found with precisely the same pattern of color. Growing upon the same leaf of cel-grass, many different colonies may often be fomnd, each showing a different arrangement of the colors.

In one of the most common varieties the general color of the eommon tissue between the stellate clusters is dull olive-green, thickly specked with small flake-white spots, which are formed by the enlarged terminal portion of stolon-like processes, which bud ont from the perfect indicidnals composing the clusters, and are arranged somewhat in circles around the clnsters; the lower portion of these stolons is usualls yellow or orange, and the onter part deep purple, tipped with flake-white. The individual anmals, or zoiids, composing the stellate clusters, are deep purple, with the branchial orifice yellowish white, surrounded by a cirele of orange ; a short flake-white longitudinal line rus along the middle of the upper side, interrupted by the branchial opening, bat this line is often represented only by two white spots: other tlake-white spots are usually irregularly seattered orer the outer end.

In another variety the deep purple zoöds have a circle of flake-white around the branchial orifice, a short white bar or spot beyond it on the outer end, a white spot on the middle between the orifices, and another white spot on the inner end near the anal orifice; the stolons colored as in the preceding.

In another common variety (var. bicolor) the colors are similar except that the outer half of each zooid is almost entirely eovered with Hakewhite, sometimes tinged with orange, while the proximal half is deep purple. Another has the purple zoïids spotted and blotched with Hakewhite orer the whole surface; sometimes the specks are so fine and numerous as to give a uniform silvery or frosted appearance, (var. furiпасес.)

One peculiar variety (amuluta) has a small circle of white around the the branchial opening, surrounded by another large cirele of flake-white, which incloses nearly the outer half of the zoöid. The raricty atrox has the zoïids covered to a considerable extent with flake-white, so arranged on each as to present the appearance of a skull ; the two eyes being formed by deep purple spots.

The rariety variegata is pale yellowish olive or orange-brown; the zö̈ids have a white ring around the branchial orifice, inclosed by a brown ring, which is often interrupted; and the latter is surrounded more or less completely by flake-white, there is usually also a median bar of flake-white; the inner portion is deep purple, more or less mottled with white, and there is a white spot at the inner end. In the variety albilla nearly the whole upper surface of the zoïids is tlake-white.

In another very beautiful and distinet variety (var. stella) the common tissue is translucent, pale olive, with white-tipped stolons; the zoöids are brown or purple, marked on the upper side with two parallel longitudinal hars of flake-white, whieh are separated by a narrow dark line, all of which radiate from the center of the elnster, thins producing the appearance of a many-rayed star, with the rays alternately white and dark; the white bars are sometimes interrupted near the inner ends, and small specks of flake-white are sometimes seattered over the outer end. In this form there are often ten to fifteen zooids in each eluster, and thes appear longer and less swollen than in the other varieties, owing, perhaps, to the optical effect of the radiating lines. This is the most distinctly marked rariety that was observed, and was at first thought to be a distinct species.

The Radiates are not abmulant on muddy shores. The Thyone Briarcus (p. 360^{2}) is sometimes found on shell shores, in sheltered situations, amongeel-grass. The common star-fish, A sterias arenicola, (p. 326 , Plate NXXV, fig. $\because 69$, is often altogether tooabundant on muddy shores, on the oyster-beds, where it commits great havoc.

The Hydractinia polyclina (1.328) is often found on the shells ocenpied by "hermit-crabs." Several species of Ohelia grow mpon the eel, grass, where the water is sufficiently clear. The Halecium gracile V. (p. 32S,
is frequently foum attached to the whells of oysters，amd to other solind objects．

List of species commonly foumd on the muddy shores of the buys．amd sounds．
ARTICULATA．

Crinsturen．

l＇age． Pare．
Gelasimus pugnax 367 Mysis stemolepis 370
Sesarma reticulata 367
M．Americama 370
Pinnixa eylindrica 367
Pinnotheres ostreum 367
Cancer irroratus 367
Panopens depressus 367
P．Sayi 367
Callinectes lastatus 367
Carcinus grannlatus 367
Libinia canaliculata 36
I．dubia 365
Eupagurus longicarpus 365
E．pollicaris 368
Callianassa Stimpsoni 369
Gebia affinis 365
Virbius zostericola． 369
Crangon rulgaris 369
Palゃmonetes vulgaris 369
Squilla empusa ：369
Gammarus mucronatus． ：30
Amphithoï valida ：300
A．compta $: 30$
A．longimana $: 370$
Unciola irrorata 370
Corophimu cylimtricum 370
Idotea irrorata 370
Erichsonia attemuata 370
Epelys trilobus 370
E．montosus 370
Limmoria lignormm 370
Limulus Polyphemus 370
Nimerous small Entomos－traca，of many genera．Amnelids，（Chetoporls．）

Page．
Nereis virens ．．．．．．．．．．．．．．． 371 Cistenides Gonldii 371
N．limbata 371
Diopatra euprea 371
Lambriconereis opalina $\because \overline{1}$
L．tenuis 371
Maldane elongata 311
Notomastus luridus 371
N．filiformis $: 31$
MOLLISCA．
Giastroporls．
l＇age． Page．
Ilyanassa obsoleta．．．．．．．．．．：371 3゙こ
Nassa vibex $3: 1$ 372
Sactua vincta
Eupleura caudata 371
Urosalpinx cinerea 30
Astyris lumata 372
Crepidna convexa $: 31$
Amphitrite ormata 320
Rhynchobolus Americanus． 37
R．dibranehiatus 371
Cirratulus grandis． 371
Polyeirrus eximius 371
Chatobranchus sanguinens． 371
$\therefore 72$
Triforis nigrocinctas 3ヵシ
Bulla solitaria 371

Lamellibranchs.

Pholas trincata	Page. 372	Temus mercenaria	Page. 37
Tagelus giblus	373	Kellia planulata.	374
Mra arenaria	372	Argina pexata	372
Mulinia lateralis	373	MStilus edulis.	372
Macoma fusca	37.	Modiola plicatula	374
Cumingia tellinoides.	371	M. hamatus	374
Angulus tener.	372	Pecten irradians	374
Petricola pholatiformis.	372	Ostrau Tirginiana	374
Ascilions.			

Moloula Manhattensis.... | Page. |
| :--- |
| 375 |
| Botrylus Gouldii.......... |
| 375 |

RADIATA.
Erhinorlerms.

Thsone Briareus. | Page. |
| :---: |
| 376 Isterias arenicola |
| 376 |

Acculephs.
Hydractinia polyclina...... 376 I'age. Halecinm gracile.......... $\quad 376$
II. 4.-ANIMALS INHABITING THE PILES AND TLMBERS OF WHARVES AND BRIDGES, BOTTOMS OF VESSELS, BUOYS, AND OTIIER SUBMERGED WOOD-WORK.

In these situations a large number of species may be found, but the majority of them are not peculiar to such stations. There are, howerer, duite a number of species that are nearly always found under these circumstances, and others are directly dependent for their very existence upon submerged wood. Some of these, like the Teredo, for example, are of so great importance, owing to the injuries which they do to valuable property, that it seems desirable to make a special division for the animals ordinarily found in connection with wood-work of varions kinds, whether injurious or not.

On the piles of wharres and bridges rarions kinds of sea-weeds often grow in abmonance, each species having a particular zone to which it is limited; but as these plants require light, they are found almost exclusively upon the onter rows of piles and timber, and are most abundant on the outer side of the piles and on the southern exposures, where they get the most sunlight. These alga afford congenial homes to a considerable number of animals, most of which oceur also among algee on the rocky shores and in tide-pools. Beneath the wharves, where the piles are con-
stantly sharled，very few alger，and those only of the smallest and sim－ plest kinds，such as Ocillatoria and Diatoms，are to be fomm．But in these shaded sitnations many ammals，such as T＇ubularians and other Hydroids，some Ascidians，Byozoa，d゙e．，delight to dwell．Many of these adherent amimals also live in abondance on the ontermost piles of the wharves，at or just below low－water mark，where they are more or less exposed to the smulight．

The amimals that are fomm among or attached to the seaweers growing on the piles are，for the most part，identical with those that are to be fomd in similar situations among the alger on rocks and in rocky ticle－pooks．

Among those that are nealy or quite peculiar to submerged wood－work are several species of＂ship－worms，＂（Teredo of several species，and the Fylotrya fimbriata．）which are bivalve mollnsks：the wood－eating Lim－ noria：several species of barmaces，which belong to the Crustacea； some of the tulbularians，and other hydroids，d゙e．

Of the salt－water Insects two species have been observed on the piles of whares．One of these is a small，slemder，green larva，with a dark， firm head，and sharp jaws．It is the larva of a small，two－winged tly， probably itentical with the Chironomus occonicus of Packard．

On the piles of a wharf at Menemsha，Dr．Edward Palmer fonnd，in Octolyer，a rery interesting insect－larva．It lived in a stont tube com－ posed of grains of sand firmly cemented together，and attached by its whole length to the piles；the single specimen is broken at both ends． The tube is flattened，and consists of a central，subcylindrical，tapering portion，or proper tuie，which is covered on all sides with a single layer of small grains of sand，neatly arranged；along each side of this，and partly covering its upper surface，and to fill the angle between it and the surface to which it was attached，larger grains of sand are cemented． The preserved portion of the tube is about three－quarters of an inch long and nearly one－quarter wide，at the larger end，but not more than half as wide at the small end．The larva is about a third of an inch long，rather stont，and has a pair of long，sharp，curved jaws，and three pairs of rather long，hairy legs．It belongs to the Phryganide，among the Neuroptera，and somewhat resembles some of the well－known larra of the caddis－tlies，common in fresh water，which make tubes or eases of varions kinds．Dr．Hagen，who has examined this specimen，refers it to the genus Molama，of which three North American species are known，but only in the adult state．All the larve of this genus，known in Emrope，live in fresh water，and no other species of the Phryanidar has been observed in sea－water，althongh some live in water that is slightly brackish．

Of Crustacea the most important species is the Limnoria lignorum， （p．370，Plate VI，fig．25．）This little creature is grayish in color，and covered with mimite hairs．lt has the habit of eating burows for itself into solid wood to the depth of about half an inch．These hor－
rows are nearly round, and of all sizes up to abont a sixteenth of an inch in diameter, and they go into the wood at all angles and are usually more or less crooked. They are often so numerous as to reduce the wood to mere serics of thin partitions between the holes. In this state the wood rapidly decays, or is washed away by the waves, and every neir surface exposed is immediately attacked, so that layer after layer is rapidly removed, and the timber thus wastes away and is entirely destroyed in a few years. It destroys soft woods more rapidly than hard ones, but all kinds are attacked except teak. It works chiefly in the softer parts of the wood, between the hard, annual layers, and aroids the linots and lines of hard fiber connected with them, as well as rusted portions around nails that have been driven in, and, consequently, as the timbers waste away under its attacks, these harder portions stand out in bold relief. Where abundant it will destroy soft timber at the rate of half an inch or more every year, thus diminishing the effective diameter of piles about an inch anmually. Generally, howerer, the amount is probably not more than half this, but even at that rate, the largest timbers will soon be destroyed, especially when, as often happens, the Teredos are aiding in this work of destruction. It lives in a pretty narrow zone, extending a short distance above and below low-water mark. It occurs all along our shores, from Loug Island Sound to Nova Scotia. In the Bay of Fundy it often does great damage to the timbers and other wood-work used in constructing the brush fish-weirs, as well as to the wharves, de. At Wood's Hole it was formerly found to be very destructive to the piles of the wharves. The piles of the new Government whares have been protected by broad bands of tin-plate, covering the zone which it chiefly affects. North of Cape Cod, where the tides are much greater, this zone is broader, and this remedy is not so easily applied. It does great damage, also, to ship-timber floating in the docks, and great losses are sometimes caused in this way. Complaints of such ravages in the nary-yard at Portsmonth, New Hampshice, have been made, and they also oceur at the Charlestown narr-yard, and in the piles of the wharres at Boston. Probably the wharves and other submerged wood-work in all our sea-ports, from New York northward, are more or less injured by this creature, and, if it could be accurately estimated, the damage would be found surprisingly great.

Unlike the Teredo, this creature is a vegetarian, and eats the wood which it excavates, so that its boring operations provide it with both food and shelter. The burrows are made by means of its stont mandibles or jaws. It is capable of swimming quite rapidly, and can leap backward suddenly by means of its tail. It can creep both forward and backward. Its legs are short and better adapted for moving up and down in its burrow than elsewhere, and its body is rounded, with parallel sides, and well adapted to its mode of life. When disturbed it will roll itself into a ball. The female carries seven to nine egges or young in the incubatory pouch at one time.

The destructive habits of this species were tirst brought prominomets. to notiee, in 1811, by the celebrated Robert Stephenson, who fomm it rapidly destroying the wood-work at the hell hock light-honse, erected by him on the coast of Scotland. Since that time it has been investigated and its ravages have been described by mumerous Emopean writers. It is rery destractive on the coasts of Great britain, where it is known as the "gribbte."

The remedies used to check its ravages are ehiefly eopper or other metallic sheathing: driving broadheaded iron mails, elose together, into the part of the piles subject to their attacks ; and applying coaltar, creosute, or verdigrispaint, onee a year or oftener.

Another singular crustacean, common on the piles at Woodis Hole. is the Tanuis filum. This is a very slemler, whitish species, almost threadlike in form, but has the first pair of legs much thiekened, with rery peculiar, stont claws, orate in form; the rest of the anterior legs are very slember. The antemar are short and thick, the inmer ones directed forwad; the outer ones more slender, and corred ont wand and batkard. This species lives among the adhering ascidians and bydroids on the piles, and has also been fomm in deeper water, in the bay of Fundy. Its habits are little linown, but some of the allied species have been accuset of boring in wood.

Two species of barnacles are very common on the piles of the wharves. The common barnacle of the rocky shores, Batums belumoides, (p. 30.5.) is also common on the piles of wharves and hridges, between titles, and also on the bottoms of ressels, \&c. It never grours rery large, although it may become so crowded together as to form a continnous crust. It is easily distinguished from the other species by its membranous hase, which never forms a solid plate, like that of the other species. The "ivory-barnacle," Balanus cburneus, is also common on all kinds of submerged wood-work, whether fised or tloating. It is usually abmulant on the piles and timbers of whares, bnoys, oysterstakes, bottoms of ressels, \&e. It is ehiefly fommel below low-water mark if on fixed objects, and is even more common in the brackish waters of estuaries than in the purer waters outside, and it is eajable of living even in pure fresh water, for Professor Jeffress Wyman has sent me specimens collected, by himself, abont sixty-five miles up the saint John's liver, in Florida, where the water is not at all brackish. This spectes is sometimes found allhering to the carapax of embs, the shell of Limulus, and varions molhsks. It is easily distinguished trom most species on accomnt of its low, broad form and its smooth white exterior. It has a shelly base. The B. crematus, common on shells aml stones in deep water, also ocents on ressels. Other species are often found on the bottoms of ressels that have come from warmer latitndes. Some of them are of large size. One of the most frement of these is Balemus tintinubulem.

Several speries of "goose-barmacles," Lepos, are freruently fomm
alive on the bottoms of ressels, and especially such as have recently arrived from the West Iudies and other foreign comntries. These resemble, in general appearance, L. fusciculuris, (Plate VII, fig. 33,) which is a common indigenous species, usually found adhering to floating sea-weeds and other small objects in early summer, in large numbers. It is donbtfnl whether any of those fond on the bottoms of ressels can be regarled as true natives of this region. The most common of them is L. anatifera: the valves of its shell are bordered with orange. The other common species are L. anserifera and L. pectinata. Species of the curions genus, Conchoderma, also occur on the bottoms of ressels.

Among the Crustacea that commonly oceur amoug the ascidians, hydroids, and algie on the piles of wharves, are Pomopeus Sayi, (p. 312,) P. depressus, (p. 312, Plate I, fig. 3,) Gammarus ornatus, (p. 314, Plate IV, fig. 15,) Amphithoë compta S., (p. 370,) Corophirm cylindricum, (p. 370,) Melitu nitida, (p. 314,) Carrella, sp., (p.316,) and various small Entomostraca. Jeru copiosu (p. 315) often occurs abundantly near high-water mark, on old piles and timber, living in the crevices and cracks, or under loosened bark.

Of Amelids rery few it any species occur that are peenliar to these sitnations. The Potamilla oculifere (p . 329, Plate XVIl, fig. 86) is quite common on the piles of wharves where the water is pure. I. microphthatma V. (p. 323) also oceurs muder the same circumstances, and also on the piles in harbors, where the water is brackish.

The Leprad rubra V. was found living in tubes among the ascidians on the piles of the wharves. This is a Terebelloid worm, somewhat resembling the Amphitrite ormatu, (Plate XVI, fig. S-,) bat is much smaller, and there are fascicles of sete on all the segments. There are three pairs of arborescently divided branchia, which are peltuculated, the last pair being quite small. The body is bright red, the tentacles pale flesh-color.

The Nicolec simple. V. (p. 321,) was also fonnd with the last in large numbers, but mostly of small size. Both males and females of Nereis limbata (p. 31s, Plate XI, fig. 51, male) were often found among the varnacles and ascidians on the piles of the wharres at Wood's Hole, but the males were the most abundant, while the reverse was the case with those dug out of the sand and gravel on the shores.

Numerons other Annclids were oceasionally met with among the ascidians and algie. Among these were Polycirrus eximius, (p. 320, Plate NVI, fig. 85:) Podarlie obscura V., (p. 319, Plate XII, fig. 61;) a Phyllodoce, de. Two Nemerteans were also common; one of these was an olive-green species, with a light dorsal stripe, belonging probably to the genus Cerebratulus, but it was not carefnlly studied ; the second was Poliniu glutinosa, (1. 32t, Plate NIX, fig 97.)

Of Gastropol mollusks quite a number of species oceur on the piles of wharses, and some of them in great abundance, especially the smaller kinds which live anong the hydroids and confervie. The most abun-
 which generally ocems among the small algat and especially on the Thbnlarians, in comntless numbers; Auachis arara (p. 30G, I'late XN. tig. 109) is often fomblin considerable number ; Bittium nifrum (p. 30.5,
 152) are usually common and the former often is very abundant : Cerithiopsis (ircenii (Plate NXIV, tig. 1.33) sometimes oceurs, lut is rare; Ilyamasse obsolcta (p. 355, Plate XXI, fig. 11:3) and Tritit tririttate (p.354, Plate XXI, fig. 112) are common, especially the former; Crosalpiun cineren (p. 306, Plate XXI, tig. 116) is genesally to be fomm at or below low-water mark on the piles and buoys; Bela plicata (Plate XXI, fig. 107) is sometimes met with, but is not common ; Odostomia bisuturalis (1. 307, Plate NXIV, fig. 146) and other species of the genus are often fomd near low-water mark on the piles, especially where they are somewhat decayed. Littorima palliata (p. 30.5, Plate XXIV, tig. 138) and L. rudis (p. 30.5, Plate XXIV, fig. 137) neary always oceur near high-water mark, on the piles, where there are algar. In the harbors, where the water is brackisk, and less frequently in the purer waters, the Alexia myosotis (Plate NXV, fig. 168) may be found on timbers and piles near high-water mark, and sometimes, also, slienet plenorbis, (Plate XXIV, fig. 142,) Littorinella mimuta, (Plate XXIV, fig. 140,) and Rissoa aculeus, (p. 306, Plate SXIV, fig. 141.) Among and feeding upon the Tubularians growing on the piles at and just below low-water mark, the beantiful Eolidia pilata (Plate NXV, fig. 174) may often be found, especially in the harbors where the water is more or less brackish.

Another related species, apparently the Cacolina gymmota, was found by Professor Todd, on an old wreck in the Wood's Hole passage, but it differs in several points from any form that has been described. The branchiee were arranged in sin transverse simple rows, on each side, those of the second and third longest; in the anterior rows there were four to six branchiae, the lower ones much shorter than the upper ones. In life the branchise were dark green or blackish.

Several other Gastropods are oceasionally met with in these situations, but the species above mamed are about all that ordinarily occur.

Among the Lamellibranchs, or "bivalse-shells," we find the Tercio tribe, nearly all of which are peculiar to submerged wood-work, either fixed or floating, and most of them are capable of doing great damage, both to ships and to the timber and piles of wharves and bridges, or other similar struetures. Ahhongh popularly known as the "shipworm," these creatures are not at all related to the worms, but are true mollusks, suite nearly allied, in many respects, to the common "longclam" (Mya) and to the I'holas. Like those shells the Teredo exeavates its holes or burrows merely for its own protection, and not for food; but the Teredo selects wood in which to form its holes, and when these have been exeavated it lines them with a tube of shelly material. The holes are very small at the surface of the wood, where they were formed by
the young Terchos but they gradually grow larger as they go deeper and deeper into the wood, until thes sometimes become ten inches or more in length and a quarter of an inch in diameter, but the size is generally not more than half these dimensions. The holes penetrate the wood at first perpendicularly or obliguely, but if thes enter the side of the timbers or planks across the grain, the burrows generally turn horizontally in the direction of the grain a short distance beneath the surface, unless prevented by some obstruction, or by the presence of other Terelo tubes, for they nerer cross the tubes of their companions or interfere with each other in any way, and there is always a thin layer or partition of wood left between the adjacent tubes. It is, however, not necessary that they shonld follow the grain of the wood, for they can and do penetrate it in every direction, and sometimes not more than half the tubes run in the direction of the grain, and they are often rery erooked or even tortuous. They rapidly form their burrows in all kinds of our native woods, from the softest pine to the hardest oak, and althongh they usually tum aside and go aromblhard knots, they are also able to penetrate through even the hardest knots in oak and other hard woods. The Teredos grow very rapidly, apparently attaining matmity in one season, and therefore, when abondant, they may greatly damage or completely destroy small timber in the course of four or five months, and even the largest piles may be destroyed by them in the course of two or three years.

The most abondant species in this region is the Terato naralis (cuts 1 and 2 ; Plate XXVI, fig. 183, animal; Plate N゙YIl, tig. 186, slell.)
1.

ENPMANATION OF THE CUTS.
Fig. 1. Posterior or onter ead of a living Terdo naralis, removed from its burow; c, the muscular collar by which it adheres to the shelly lining of its burrow : p, the shelly "pallets" which close the aperture when the animal withdraws; t, the two retractile siphon-tubes which project from the hole when the animal is active.

Fig. 2. Anterior end and shell of the same ; s, the front part of the shell ; f, the foot or boring organ.

This is the same species that has attracted so much attention in Emrope, during nearly two eenturies, on accomnt of the great damage that it has done, especially on the coast of Holland. Nevertheless no full description of the animal of this species has ret been published, nor diny satisfactory figures of the soft parts.

When removed from its tube (see Plate XXVI, fig. 183) the animal is
found to have a very long, slender, smooth, solt, whitish body, tapering somewhat toward the onter or posterior end, (fig .1 , which has a musenlar, circularly wrinkled collar, (c,) by which the animal is, when living, attached to the inside of the shelly lining of its tube. To the inside of this collar two shelly plates, known as the "pallets," $(p$,$) are attached$ by their slender basal prolongations; their outer portions are broad and tlat, and more or less emarginate or two-horned at the end. These are so comected with the muscles that when the amimal withdraws its thbes into its hole the free ends of these pallets are made to fold together and close the opening, thas serving as an operculam to protect the solt tubes against enemies of all kinds. Between the bases of the pallets arise the siphonal tubes, $(t$,$) which are soft and retractile, united together for$ half their length or more, but separate and divergent beyond ; they are nearly equal, but the ventral or branchial tube is perhaps a little larger than the other, and is fringed with a few small paphliae at the end ; the tubes are white or yellowish, sometimes speeked with reddishbrown. At the anterior end of the body and larthest from the external opening of the hole, is seen the small, but elegantly sculptured, white bivalve shell, (cut 2, s; and Plate XX゙VI, fig. 183, s.) The shell covers the month and palpi, liver, foot, and other important organs. The foot (f f is a shor't, stont, muscular organ, broadly truncate or roundel at the end, aud appears to be the organ by means of which the excavation of the burrow is effected. The shell is covered by a delicate epidermis, and probably does not assist in rasping off the wood, as many have supposed. The gills are long and narrow, inclosed mostly in the naked part of the body, and are redaish brown in color. The Teredos obtain their miero. scopic food in the same mamer as other bivalve mollnskis, riz., by means of a current of water constantly drawn into the branchial tube by the action of vibrating eilia within; the infusoria and other minnte organisms are this carried along to the mouth at the other ent, while the gills are supplied with oxygen by the same curent; the return current passing out of the dorsal tube remores the waste water from the gills, together with the fieces and exeretions of the animal, and also the particles of wood which have been removed by the excavating process. As the animal grows larger the burrows are deepened, the lining of shelly matter increases in length and thiekness, the shell itself and the pallets increase in size, and the terminal tubes grow longer. But as the orifices of the terminal tubes must necessarily be kept at the extemal opening of the burow, the musenlar collar at the base of the tubes constantly recedes from the entrance, and with it the pallets; at the same time imbricated layers of shelly matter are usmally deposited in the upper end of the shelly tube, which are supposed to aid the pallets in closing the aperture when the tubes are withdrawn. When the animal has completel its growth, or when it has encountered the tnbes of its companions and camot pass them, or when it approaches the exterior of a thin piece of wood and camot turn aside, it forms a rommed or
enp-shaped layer of shelly matter, eontinnous with the lining of the tubes, and closing up the burrow in front of its shell; sometimes it retreats and forms a seeond partition of the same kind.

This species produces its young in May and probably through the greater part or all of the smmmer. The eggs are exceedingly numerous, probably amounting to millions, and they are retained in the gill cavity, where they are fertilized and undergo the first stages of their development. The embryos pass throngh several curions phases during their growth. In one of the early stages they are covered with fine vibrating cilia, by means of which they ean swim like ciliated infusoria; later they lose these cilia and develop a rudimentary biralse shell, which is at first heart-shaped, and the mantle begins to appear and larger retractile cilia develop upon its edge, which serve as organs for swimming; but at this period the shell is large enough to cover the whole body when contracted. In this stage they swim actively about in the water ; later the cilia become larger, a long, narrow, ligulate foot is developed, by means of which they can creep abont and attach themselves temporarily to solid oljects; the shells become rounder, a pair of eyes and orgaus of hearing are developed; after this the little animal begins to elongate, the locomotive cilia are lost, the eyes disappear, and the mature form is gradually assumed. These joung Teredos, when they finally locate upon the surface of wood-work and begin to make their burrows, are not larger than the head of a pin, and consequently their holes are at first very minnte, but owing to their rapid growth the holes quickly become larger and deeper.

This species is very abundantalong the southern coast of New England, from New York to Cape Cod, wherever submerged wood-work, sunken wrecks, timber buoys, or floating pieces of drift-wood oceur. It alsoinfests the bottoms of ressels not protected by sheathing. It is not confined to pure sea-water, but oceurs in the piles and timbers of our wharves in harbors that are quite brackish. I have found it abundantin the piles of Long Wharf in New Haven Harbor, where the water is not only quite brackish, but also muddy and contaminated with sewerage and other impurities. At Wood's Hole it was found to be very aboudant in the cedar buoys that had been taken up from varions localities and placed on the wharves to dry and be cleaned. Captain B. J. Edwards informed me that formerly, when the buoys were not taken up, they wonld not usually last more than two years, owing ehiefly to the attacks of this Teredo, but numer the present system there are two sets of bnoys, which are alternately taken up and put down every six months. After a set has been taken up and allowed to dry thoroughly they are scraped to remove the barnacles, \&c., and then receive a thorongh coat of verdigris paint, each time, before they are put down. With this treatment they will last ten or twelve years, but they are more or less perforated and injured every year, until finally they become worthless. Inasmuch as the Teredos broduce their young all throngh the summer, and they develop
to a very large size in one season, it is evident that the best time to take up the buoys would be in midsummer, before the eaty wop of gomg have grown large, and leaving too little time for the later erop to become large, in the buogs thus put down, before winter, when most of them would probably be killed by the cold weather. In this way the damage might be materially diminished, if not ineonsistent with the other rluties of the officers of the ressels employed in this service. There are, as yet, no means of estimating the extent of the clamage done to our wharves, shipping, \&e., by this and the various other species of Terede found on om coast, but julging from their abundance along the whole coast, it is much greater than is generally supposed.

The Teredo macelis is also abmodant on the coast of Emope, from the Med terranean and Black Seas to Christiania, and the coasts of Great Britain. Its habits have been quite thoronghly investigated by several Duteh naturalists, owing to the great damage that it has done on their coast, at times even threatening a general immdation of the comntry by destroying the wood-work of the dikes. This Teredo occupies a zone of considerable breadth, for it often lives considerably above low-water mark and extends several feet below it, even to the depth of fourteen feet, according to some writers.

The best remedies in common use to resist or prevent its attacks are copper-sheathing, used chiefly on vessels; broad-headed nails, closely driven, used for piles and timbers; creosote and coal-tar, frequently applied. The varions poisonous substances that have been applied to timber for this purpose. however useful they may be in other respects, have little or no effect on the Tercilo, for it does not depend upon the wood for its food, and even protects its body externally with a layer of shell, lining its holes. The only remedies that are likely to succeed are those calculated to prevent the lodgment and entrance of the young ones beneath the surface. Even creosote, thoroaghly applied under pressure at the rate of 10 pounds per square foot, has been found insufficient to prevent their attacks, for piles thns treated at Christiania were found by Mr. Jeffress to be filled with the Teredo within two years after they were put down.

Several other species of Teredo also ocenr on this coast. The Teredo megoterd (Plate XXVII, fig. 188) has been found in floating pine wood at Newport, Rhode Island, and in cedar bnoys, \&e., at New Bedford, Massachusetts; as well as in Massachusetts Bay, at Provincetown and other places; it is also fomul as far south as South Carolima at least. This species sometimes grows to a large size, forming tubes at least eighteen inches long. It sometimes occurs, also, in the piles ot whares in this region. The Tererlo Thomsoni (Plate XXVII, fig. 1S7) has been found in great numbers in the marine railway and also in cedar boys at New Bedford. It has also been fomd at Provincetown in a whaling. ship that had cruised in the West Indies.

The Jylotrya fimbriata (Plate ŇVII, fig. 189) is very similar to the
common Teredo, except that it has long, oar-shaped pallets, with slender stalks; the blade is flattened on the inside and convex externally, and consists of ten to twelve, or more, funnel-shaped segments which set one into another ; their margins project at the sides, making the edges of the blade appear serrated. This species appears to be indigenous on this coast. It has been fonnd living in a sumken wreck in Long Islaud Sound, near New Haven, and I have also taken it from the oak timbers of a vessel, the Peterhoff, employed in the blockading service, during the late war, on the coast of the Southern States. It grows to a rather large size, often forming holes a foot or more in length and a quarter of an inch in diameter, though usually smaller. The pallets are sometimes half an inch long.

Among the kiuds of bisalse shells that do not bore in wood, there are but few species that commonly inhabit piles of wharres. The most frequent of these is the common musele, Mytilus erdulis, (p. 307, Plate XXXI, tig. 234, which sometimes adheres in large clnsters. The common oyster, Ostred Virginiana, (p. 310,) often attaches itself to the piles, but in such situations seldom survives the winter.

Ascidians often occur in large quantities attached to the piles, at and just below low-water mark, and also on the under side of floating timber. They often completely cover large surfaces and spread over the barnacles, hydroids, and algee, which have previously located. They grow very rapidly, attaining their full size during a few weeks in midsummer.

The most abundant species are usually Molgula Manhattensis (p. 311, Plate XXXII, fig. 250) and Cyuthia partita, (p. 311, Plate XXXIII, fig. 246.) At Wood's Hole, on the piles of the Government wharf, in August and September, the Perophoraviridis V. was exceedingly abundant, creeping over and covering up the other ascidians as well as the barnacles, hydroids, and algae. This is a compound or "social" Ascidian, in which stolon like tubular processes come ont from the basal portion of the first individuals and rim in every direction over the surfaces of objects to whith they are attached, produeing buds at intervals, which rapidly develop into little Ascidians like the old ones, and give out other stolons in their turn; thas they will very soon cover large surfaces, though each individual Ascidian is quite small. The body is compressed, broad oval, or more or less rounded in outline, with a terminal branchial, and lateral anal orifice, both slightly raised on short and broad tubes. The body is attached to the stolons by a short narrow pedicle, and is usually not more than an eighth of an inch high. The color is bright green or yellowish green, and the integument is soft and translucent.

On the piles of the same wharf, and associated with the last, was another componnd Ascidian, Amarocium constellatum ; this forms solid gelatinous masses, with a smooth, convex surface, usually less than an inch in diameter and about half an ineh high, but often larger. The zoüds, or individual animals, are quite small, long, and slender, and en-
tirely imbedded in the gelatinons mass that mites them together. They are arranged in cirentar, oral, or stellate gromps, with a common cloacal orifice in the center of eath cluster. The masses are usually pate oratugered, vayying to gellowish and pale flesh-color. The stomach of wach individual is bright orange-red; the branchial sac is flesh-color, pale yellow, or orange ; the tubes and upper part of the mantle bright orange or lemon-yellow.

The Botryllus Gouldii (p. 375, Plate N゙XXIII, figs. 2.52, 253) also frequently oremrs on the piles of the wharves, creeping over the stems of Tubularians, the surfaces of other ascidians, fromds of algit, or on the surface of the wood itself. It also frequently forms broad, soft incrustations on the bottoms of boats, Hoating timber, \&e.

The Bryozoa are also usually quite abmolant on the piles andi timbers of wharves, \&e.

The Bu!fula turita (p.311, Plate XXXIT, figs. 258, 259) is one of the most common as well as one of the most elegant of these. It occurs attached to the adhering sea-weeds, \&ce, forming delicate white plumes.
The Escharelle čarictilis (p. 311, Plate XXXLII, fig. :.56) usnally forms firm, coral-like incrustations, but when attached to hydroids and seaweeds it spreads out into foliaceons or lichen-like, rigid, calcareous fronds, which are dull red while living.

On the piles at Wood's Hold the Bugula flabellata was also very abundant. This forms elegant circular or fan-shaped fronds, consisting of mumerous repeatedly forked, flat, and rather narrow branches, on which the cells are arranged in about three longitudinal rows. This species, like others of the gemus, bears very singular structures, known as arienlaria, which, muler the microscope, have the form and appearance of the stout, hooked beaks of certain birds, such as the hawk, owl, parrot, \&c. These beaks are attached by flexible stems, and are provided internally with powerful muscles by means of which they are constantly opened and elosed, and can bite with considerable force. In this species these are attached to the sides of the cells, along the edges of the branches. Their office seems to be to defend the colony against small parasites, and dirt of all kinds, which, unless thus remored, would soon cover up the cells and destroy the animals. In addition to these, rarious less conspicuous species often occur in abundance, especially Tesicularia gracilis ; V. dichotoma V.; and V. cuseuta.

Of Radiata there are but few species in such localities, with the exception of the Hydroids, which are usually very abundant.

The green star-fish, Astcrias arenicola, (p. 326, Plate XXXV, fig. 269,) may occasionally occur adhering to the piles just below low-water mark, but it does not have this habit to such an extent as does the A. culgoris. north of Cape Cod, for the latter is almost always to be seen in abmdance on the piles of the wharves of the northern seaports, as at Portland, Eastport, Se., and less abundantly at Boston.

One of the most beautiful, as well as one of the most abundant, of
the Hydroids that occur on the piles of wharres, and on the under side of floating timber, is the Parypha crocea, (Plate XXXVI, fig. 274.) This species grows in great luxuriance upon the piles, especially in those harbors where the water is somewhat brackish. It forms large clusters of branching stems, often six inches or more in height, each of which is surmounted by a beantiful, flower-like, drooping liead of a pink or bright red color. These heads are often broken off, or even voluntarily cast off, when the animals are unhealthy, but new ones are soon reproduced, and, therefore, this does not seem to be a rery serious accident, though certainly a very inconvenient one, for the month, stomach, tentacles, and most other organs are all lost when these "heads" drop off. This species does not produce free-swimming meduse, but the buds, corresponding to those that develop into free medusie in many other cases, in this remain attached to the heads in drooping clusters, looking like loose clusters of light red grapes, in miniature.
The buds produced by the hydroid-heads of one colony are either all males or females, aud, while attached to the hydroid-heads, eggs or spermules are developed within them; the eggs are fertilized and develop into young hydroids, which, when finally expelled, are provided with a circle of slender tentacles, and need only to attach themselves to some solid substance by the basal end of the body to become fixed, tubularian hydroids, similar to the old ones in many respects, thongh still very small and simple in structure. These roung tubularians swim and crawl about for a time, and after attaching themselves they rapidly grow larger and produce stolons from the base, from which buds arise that develop into forms like the first one; other buds are produced from the sides of the stems, which also become like the others, and in this way the large clusters of tubularians are rapidly formed.

Sereral species of Campanularians are also to be found attached to the piles and timbers of wharres and bridges. At Wood's Hole the most abundant species was Obelia pyriformis, which grew in great profusion on the piles just below low-water mark. It is a delicate and much branched species, with elongated, pear-shaped, reproductive capsules, and is beantifully phosphorescent. On the hull of an old wreck in Wood's Hole passage, where the tide flows with great force, the Obelia flabellate was found in abundance, though it does not appear to have been noticed on this side of the Atlantic before. It has rery elongated, slender, simple, but crooked stems, with numerons, alternate, short, $f_{\text {orking, }}$ fan-shaped branches; these generally fork close to their origin, the divisions diverging in opposite directions. The bydroid calicles (hydrothece) are small, cup-shaped, or broad bell-shaped, with a smooth rim, and they are borue on slender pedicles that are of varions lengths, but mostly short and composed of only four to six rings. The reproductive capsules (gonothece) are urn-shaped, with a short, narrow neck; they are borne on short pedicles, of few rings, arising from the axils of the branches. Some of the specimens were eight or ten inches long.

On the piles of Long Wharf, at New Haven, the Obelia gelatinose of Emrope was found growing in great haxriance in September. The water at this locality was quite brackish, but it will probahly be found, also, in pure sea-water, for on the coast of Emrope it is common both in brackish and pure ocean-water. It is probable that this species has not been observed before on our coast, for althongh the name oceurs in sereal local lists, these refer, according to Mr. A. Agassiz, to other species, and he does not inchde the present species in his Catalogne of North American Acalephes. It is a large species, growing to the length of ten or twelve inches, and branches widely and very profusely. It differs from most of our other species in having a thick, compound stem, composed of many united tubes. The smaller branches are, however, profnsely divided, and the branchlets are simple, very slender, white, and translucent, their delicacy contrasting strongly with the stont, dark-colored stems. The larger branches mostly arise in pairs, close together, but immediately diverge ; the small branches and branchlets are altemate. The hydrothece are very small, deeply bell-shaped, the rim divided into ten or twelve tecth, which are squarish in form; and slightly emarginate at the end; their pedicies vary in length, and are often rather long and slender, especially the terminal ones. The gonothece are elongated, urn-shaped, with a narrow, short, tubmar neck. I also found this species in April, growing on oysters, at Great Egg Harbor, New Jersey.

Several other species of Obelia occur in similar sitmations, together with various related genera.

The Sertularia pumila, (p. 327, Plate XXXVII, fig. 279) often occurs attached to the Fucus and other sea-weeds growing on the piies.

The Halecium gracile V., (p. 328,) often grows on the piles in great abundance, especially where the water is somewhat brackish, and it sometimes also occurs in great profusion on floating drift-wood.

Of Actinians the most frequent species is the Sagartia leucolena, (p. 329, Plate XXXVIII, fig. 284,) which can almost always be found among the adhering barnacles and ascidians; not mnfrequently it attaches itself within a dead barnacle, and, in fact, seems quite partial to such a location.

The Metritium marginatum (p. 329) also frequently occurs on the piles, but is much less frequent, and generally of smaller size than it is farther north, as about Boston and on the coast of Maine.

Several sponges oceur frequentiy on the piles of the wharves, but they have not been well determined. Among them the Grantia ciliatu, or a closely allied species, is very common, and also another of the same group, which is tubular and branched, (Leucosolenia botryoides ?).

The common, red branching sponge (1.330) is frequent, and also a slender branching species of Chalinu, near C. oculata. Two or more species of Tedenia, forming irregular, massive, pale-yellow sponges of a brittle texture, are common.

List of species commonly found on piles and timbers of wharres and bridges on buoys, bottoms of ressels, and other submerged wood-work.

articulata.			
Chironomus oceanicus.	Page. 379	Molanna, sp	Page. 379
Crustacea.			
	Page.		Page
Panopens Sayi	382	Jæra copiosa.	382
P. depressus	382	Tanais filum	351
Hyale littoralis.	315	Balauns eburneus	381
Gammarus ornatus.	382	B. crenatus.	381
Melita nitida.	382	B. balanoides	351
Amphithö̈ compta	352	B. tintinabulum	351
Corophium cylindricum....	382	Lepas anserifera	382
Caprella, sp................	316	L. anatifera.	382
Limnoria lignorum........	379	L. pectinata	382
Idotea irrorata.	316	Conchoderma virgata.	382
I. phosphorea	316	C. aurita	352
Annelids.			
	Page.		Page.
Lepidonotus squamatus....	320	Nicolea simplex.	382
Harmothoë imbricata..	321	Lepraa rubra.	382
Eulalia, sp .	349	Polyeirrus eximins.	382
Eumidia, sp................	349	Potamilla oculifera	352
Podarke obscura.	382	Sabella micropthalma	382
Autolytus cornutus........	397	Euchone, sp...	416
Nereis limbata.............	382	Serpula dianthas.	322
Sabellaria vulgaris.	321	Spirorbis spirillum.	3 ± 3
Nemerteans.			
Polinia glutinosa.	Page. 382	Cerebratulu	Page. 382
Nemertes socialis...... ..	324		

MOLLUSCA.

Gastroporls.

Page.	Page.	
383	Astyris linata..............	383

Bela plicata
383
Urosalpinx cinerea......... 383
Tritia trivittata............ 383
Anachis avara............. 383
Littorinella minuta........ 383
Ilyanassa obsoleta..... ... 383 Rissoa aculens............. 383
Page. Page.
307 Triforis nigrocinetus 353
Odostomia fissea
307 Cerithiopsis terehralis 417 417
O. trifirla
O. trifirla
383 C. Greeenii :3S:3
O. bisuturalis
383 A 0 olidia pilata
383 A 0 olidia pilata 383 383
Littorina palliata
Littorina palliata
383 Cavolina gymmota (?) 38:
Bittium nigrum 383 Alexia myosotis 383
Lamellibranchs.
Page. Page
383 Mytilus erlulis 358
Tererlo navalis
357 Anomia glabra
357 Anomia glabra 311 311
T. 'Thomsoni
T. 'Thomsoni
357 Ostraea Virginiana 389
T.megotara
T.megotara 357
Ascilians.
Page. Page.
335 Botryllus Gouldii 389
Cruthia partita 388
Amarœecium constellatum 359
Perophora viridis $35 S$
Bryozoa.
P age. Page.
311 Bugula turrita 359
Crisia eburnea

389 B. flabellata

389 B. flabellata 359 359
Vesicularia, dichotoma
359 Escharella variabilis 359
V. gracilis406
RADIATA.
Echinoderms.
Page.
Asterias arenicola 359
Acalephs.
Page. Page.
Obelia gelatinosa 391 Campanularia flexnosa 3 ± 7
O. flabellata 390 Halecium gracile 391
O. commisuralis 327 Sertularia pumila 391
O. pyriformis 390 Pennaria tiarella 327
O. geniculata 407 Parypina crocea 390
Polyps.
l'age. Page
Sargatia leucolena 391 Metridium marginatum 391

PROTOZOA.

Porifera, (Sponges.)			
Grantia ciliata (?).	Page. 391	Halichondria	Page. 330
Leucosolenia botryoides (?)	391	Renieria, sp.	330
Chalina, sp.	391	Tedania, sp	391

II. 5.-ANIMALS INHABITING THE ROCKY BOTROMS OF TIIE BAYS AND SOUNDS.

In this region the proportion of rocky bottom is relatively quite small, and mostly to be found only in quite shallow water. Therefore the animal life is very similar to that of the rocky shores and tide-pools, near low-water mark.

In Vineyard Sound and vicinity the rocky bottoms examined were chiefly at the following localities, as indicated on the accompanying chart, viz.: 1st. An area south of Parker's Point and occupying a part of the bottom of the passage between Parker's Point and Nonamesset Island, on both sides of the chamel, and extending somewhat sonth of a line drawn from Nobska Point to the southeastern end of Nonamesset Island. The dredgings made in this area are, $9, a, b, c, d ; 2, a, b$; $3, a, b, c ; 4, a, b ; 5, \cdot c, d, c ; 8, a, b ; 18, a, b$. $2 d$. An area south and southwest of Nobska Point; dredgings, 21, b, e; 22, a; and others not recorded were made on this pateh. 3d. In the Wood's Hole passage, between the north end of Nonamesset Island and the opposite shores, there are numerous rocky patches, and the tides flow with great force ; dredgings, 14, $a, b, c, d, e, f, g ; 16, a, b ; 17, c, d, e ; 15, a, b$; and many others were made on this bottom. 4th. A small area between Uneatena Island and Long Neck; dredgings, 11, e, f, and 71, c, were on this patch. 5th. A small area, south of the Wepecket Islands, where the dredging, $73, d$, was made. 6th. A region of rocks and sand off West Chop, north of Martha's Vineyard; in the dredgings made here, $37, c, d, e$, some rery fine hydroids and ascidians were obtained. 7th. In Quick's Hole, the passage between Nashawena and Pasque Islands, a rocky bottom, with abundant ascidians, hydroids, and sponges, was found, where dredgings 77, a and c, were made.

In addition to these localities numerous dredgings were made on rocky bottoms off Gay Head and Devil's Bridge, and also between Martha's Vineyard and No Man's Land, but these properly belong to the cold outer region.

In the ricinity of New Haren, rocky bottoms, generally of small extent, are found off the light-house, and off South End and Branford Point, also among the Thimble Islands. All these localities have been examined by me in numerous dredging excursions made during the past eight years. Nevertheless the fana of the rocky bottoms of
this region is probably more imperfectly known than that of other kinds of bottom. This is manly owing to the difficulties enconntered in dredging upon rough rocks.

Rocky bottoms are very favorable for many kinds of Crustacea, both for those that swim free and conceal themselves among the sea-weeds that grow on rocks in shallow water, and for those that take refuge beneath the rocks. Consequently rocky bottoms are the favorite feeding. grounds for certain kinds of fish, especially tantog, striped bass, black hass, cmmers, de., in this region.

The common crab, Cancer irroratus, (p. 312,) Panopeus Sayi, (p. 312,) P. depressus, (p. 312,) the larger hermit-crab, Eupagurus pollicuris, (p. 313 , and the smaller hermit, E. longicarpus, (p.313,) are common species ou the rocky bottoms. A small species of spider-crab, Pelia mutica, occasionally occurs. The Cancer borealis has hitherto been a rare species, and little is known concerning its habits or distribution ; it appears to frequent rocky bottoms chiefly, but most of the specimens obtained in this region were found thrown up by the wases on the shores of Cuttyhunk Island, No Man's Land, and near Gay Head.

The lobster, Homarus Americanus, frequents rocky bottoms, concealing itself under and among the roeks while watching for its pres, but it is much less abundant in this region than on the coast of Maine and in the Bay of Fundy, and does not usually grow to so large a size as in the northern waters. It also occurs on the sandy and gravelly bottoms of Vineyard Sound, where most of those sent to the markets from this region are obtained. The young, free-swimming larve of the lobster, in the stages represented in Plate IX, figs. 35,39 , were often taken at the surface in great abundance, during June and Juls, in the towing-nets. The young lobsters were also found swimming actively at the surface by Mr. S. I. Smith, even after they had acquired the true lobster-like form and structure, and were nearly three-quarters of an inch long. In this stage they swim and act much like shrimp. While young, therefore, the lobster must be devoured in immense numbers by many kinds of fishes, and even when of considerable size they are still preyed upon by the tantog and black bass, and especially by sharks, skates, and rays, and donbtless by other fishes. We found the lobsters very abundant off Menemsha on a sandy and weedy bottom in shallow water. At this place over one hundred were taken at a single haul, by the trawl. The lobsters caught for the market are nearly all caught in "lobster-pots," baited with refuse fish of various kinds.

In addition to the common shrimp, Crangon rulgaris, (p. 339, Plate III, fig. 10,) another quite different species (Hippolyte pusiolu) was often met with ou the rocky bottoms. This is a smaller species, about an inch long, of a pale gray, salmon, or flesh-color, often specked with red; there is usually a white stripe along the middle of the back, and sometimes transverse bands of red or white; the antenne are aunulated with flesh-color and light red, and the legs are sometimes speeked with
brown, and often annulated with brown, or with gray and white. It differs from all the other American species in having a short, acnte rostrum, scarcely projecting beyond the eves, with three or four sharp teeth on its upper edge and none below. In form and general appearance it somewhat resembles the Virbius represented in Plate III, fig. 11, but is stonter aud quite different in color. It is a northern species, extending to Greenland and Northern Europe, and is more commou on the coast of Maine, where it is usually associated with several other larger species of the same genus, all of which are remarkable for their brilliant colors, the various shades of red usually predominating. Their bright colors are no doubt directly connected with their habit of living among the bright red alge, so abundant in the shallow waters on rocky bottoms.

A beantiful little shrimp-like Crustacean, Mysis Americana Smitn, sometimes occurs in immense numbers among the algae growing on the rocks just below low-water mark, especially in spring. This is an important species, as it is one of the principal kinds of food for the shad and other fishes. The full grown specimens are only about an inch long. It is almost transparent, whitish, with conspicuous black eyes; there is a row of more or less conspicuous, dark stellate spots along the body, hoth abore and below, and similar specks often occur on the tail ; a spot of dark brown or blackish often occurs on each side of the carapax. The intestine shows through as a greenish or brownish line.

Another small, shrimp-like species belonging to an interesting new genus, the Heteromysis formosa Surim, often occurred in small colonies, sometimes hid away in the dead shell of some large bivalve or gastropod. The females of this species are of a beautiful light rose color, but the males have the pale color and translacency common to most of the species of Mysis.

Numerous Amphipods also oceur, most of which are also found in the pools or under stones at low water, and have, consequently, been mentioned on former pages. One of the most curious Amphipods was a small species, found living among the large compound ascidians, which is probably Cerapus tubularis Say. This species constrncts a little, slender, free tube, which it inhabits and carries abont upon its back when it travels, very much as the larve of caddis-flies, common in fresh waters, carry about their tubes. One species of barnacle, the Balanus crenatus, was abmodant, often completely covering small stones aud shells. This has not been met with, as get, at lowwater, although it occurs on the bottoms of vessels.

Of Amelids a large number inhabit rocky bottoms, but as most of them live beneath the rocks, or in tubes attached to rocks and stones, it is difficult to obtain an accurate knowledge of them. Many of the species seem, however, to be found also in pools and beneath the stones on rocky shores, and have already been mentioned.

Perhaps the most characteristic Annelids of rocky bottoms are the scaly worms, of which three species are common in this region, riz.:

Lepidonotus. squamutus, (p. 320, Dlate X゙, figs. 40,41 ;) L. sullevis V.,
 close to the rough surfaces of the stones, or hide away in the cracks and crevices, or conceal themselves in the interstices between the ascidians, barnacles, roots of alge, or in the cavities of sponges, ©e. Several long, slender, and active species, belonging to the genera I'hyllodoce, Eulalia, Eumidia, and Eteone, are of frequent occurence; most of them are bright green or yellowish green in color, and all have small, leaf-like branchiad along the sides.

The Percis pelagicu (p. 319, Plate XI, figs. T2-55) is very common, living beneath the stones, and especially in the interstices between the lobes of a large, sand-covered, compound ascidian, Ammeccium pellucidum, in company with the species of Phyllodoce, \&e., just named. This species of Nereis is remakable for its brillant iridescence. It is a northern species, extemding to the Aretic Ocean amd northern coast of Emrope. It is very abundant on the coast of Maine, under stones at low-water mark.

Associated with the preceding species among the sandy compound ascidians, occurring both on rocky and gravelly bottoms, were large numbers of the Lumbriconercis opaline, (p. 320, Plate XIII, figs. 69, 70,) conspicnons on account of the brilliant iridescent colors. Several other Amelids also occurred among these ascidians. The Cirrinereis jragilis, which is a small and delicate species, fimmished with conspicnons eyes, and related to the large Cirdutus, ocoms beneath the stones. The singular Naraganseta coralii occurs burowing in the coral, Astrongia Dunc, and in this respect is similar in its habits to the allied gemus Dodecucerea, which excarates its galleries in the solid shells of C'ypmina Islandica, I'eeten temucostutus, ©e., in the Bay of Fundy. The Sabellaria vulyaris, (1). 321, Plate XVII, figs. 88, 88れ;) Nicolea simplex, (1. 321 ;) S'cionopsis palmata, (p. 321;) Potamillu oculifera, (1. 329,) Plate AVII, tig. 86 ;) Subellu microphthalma, (p. 323 ;) Serpuladianthus, (p 322;) and Fultricid Leillyi, (p .323,) all occur in tubes attached to the rocks and stones.

A species of Spirorbis, which forms a small, white, calcareons shell, coiled up in an open spiral, is commonly attached to the algideand hydroids. The Autolytus cornutus (P'late XIII, tigs. 65, 66) constructs cylindrical tubes, which are attached to sea-weeds and the branches of liydroids. This is a small Hesh-colored species, with conspichous brown eyes; the ends of the body are often tinged with green, and the dark, greenish intestine shows through as a metian line. The males amt females are widely different in appeatance and structure, and there are also asexual individuals (tig. 65) rery different from both. The asexmal ones construct the tubes referred to, but do not remain in them constantly, for they are also often taken swimming at the surface. The males and females are also taken at the surface, especially in the eremifog. hat they also occur creeping over and among the hydroids. This worm is partic-
ularly interesting on account of its remarkable mode of reproduction, for, like several other marine annelids, it presents the phenomena of alteruate generation. Its history has been well given by Mr. A. Agassiz.* The rery mumerons eggs of the female (fig. 66, e) are at first contained in the general cavity of the body, between the intestine and the outer wall, along the whole length of the body; afterwards they pass into a pouch on the lower side of the body, extending from the tirelfth to about the twenty-sixth segment; in the ponch they hatch into young worms, and soon after the sac bursts and they escape into the water. The females apparently die after diselarging the joung. The eggs do not develop into males and females, but into the asexnal or neuter individuals, (fig. 65,) which differ widely from the others in form and in the eyes and other appendages of the head, as well as in the internal anatomy and lateral appendages. After these nenter individuals become nearly full-grown, having forty to forty-five segments, a median dorsal swelling arises at about the thirteenth or fourteenth segment, most commonly on the thirteenth, and soon after two others arise from the sides of the same segment and develop rapidly; these swellings finally become the three front tentacles of a new head, ($a, a, a, f i g .65 ;$) soon a pair of eyes appears on the upper side of the segment, than a pair of tentacular cirri ; then the second pair of eyes ; then other appendages of the head, until finally a eomplete head is formed, having the structure belonging to the head of a male or fenale, as the case may be. As the new head, with its appendages, becomes more completely organized, the segments posterior to it, which are to become the body of the new individual, become more highly developed, and the lateral appendages more complicated, those back of the fiftl in the male, or the sixth in the female, acquire dorsal fascieles of long seta, and the dorsal eirris becomes longer ; at the same time some additional segments are developed; and the ova in the female, or spermatazoa in the male, are formed. Finally the new sexual individual, thus formed ont of the posterior segments of the original nenter, breaks its connection and swims off by itself, and becomes a perfectly developed male or female. The head of the female is represented in fig. 66 ; a male individual is represented as developing from an asexual individual in fig. 65 . The male can be casily distinguished from the female by the pair of large antenne, which are forked in the male, but simple in the female. Farther details concerning this curious mode of reproduction may be found in the memoir of Mr. Agassiz, together with numerons excellent illustrations, in addition to those here copied.

Associated with the preceding speeies a few speciunens were found which probably belong to another species of Autolytus. These were quite slender, light-red in color, with paler annulations, but only the asexnal individuals were observed. Another speeies of larger size also occurs among the hydroids, near New Haren, which belongs to Autolytus or

[^0]some closely allied genus, but of this only the asexual form has oceurred, and it has not yet been carefnlly studied. This becomes nearly an inch long and quite slender. The body is white, with abont fifty ammations of bright purplish red between the segments, but sometimes a red ring is absent, leaving wider white bands; the lateral appendages are simple, and each has a dot of red on the anterior side; the head is orange, with four dark red eyes.

Of Mollnsks there are but few species among the higher groups which do not also occur on the rocky shores at low-water, but of the Ascidians and Bryozon we find numerous additional species. The Gastropods are represented by the large Fulgur carica (p. 35.5, Plate IXII, fig. 124) and Sycotypus canaliculutus, (p. 350 ;) also by the "(lill," Urosulpiax cinerea, (1 . 306, Plate XX[, fig. 116,) which is usually abundant in shallow water ; Astyris lumata (p. 106, Plate XXI, fig. 110) is abmudant on the hydroids and algae ; A. zonalis, (P'late XNI, fig. 111,) which is an allied species, of larger size and with plainer colors, is sometimes met with, but is rare in this region. It takes its name from two narrow spiral zones of white that usnally surround the whorls. The Crucibulum striatum (Plate $\mathcal{N Y I I}$, figs. 125, 126) is often met with clinging firmly to the rocks and stones.

The Leptochiton apiculatus (Plate XXT, fig. 167) is one of the most characteristic and common species on rocky and gravelly bottoms; this also adheres firmly to the stones and dead shells, and its grayish or dirty whitish shell, often more or less stained, blends its color with that of its surroundings in a way that might deceive the fishes themselves. The back is covered with a series of movable plates, so that When removed the animal can curl itself into a ball, like a "pill-bug," (Oniscus,) or like an armadillo, a habit that it shares in common with the scaly annelids, Lepidonotus and Harmothö̈, which live in the same places with it. 'The flexibility of the shell also enables the chitons to atapt themselres more closely to the uneren surfaces of the rocks than they otherwise could. More rarely the Leptochiton ruber (Plate NXT, tig. 166) is met with, thongh farther north, as in the Bay of Fundy, this is a vers common species, while the apiculutus is quite unknown there, being decidedly southern in its range. The ruber is, as its name implies, a red species, and its colors are usually bright and beautifully varied with lighter and darker. Its bright color would seem at first a fatal gift, calculated to attract the attention of passing fishes, which are ahways fond of such food, but when we examine its habits more closely we find that it lives almost exclusively on and among rocks that are inerusted by the curious stons algae, known as "nullipores," (Lithothemnion polymorphum, which are red in color, but of various shades, and often completely eover the rocks with irregular red incustations, over large areas in shallow water, especially on the coasts farther north, so that this shell and a larger species, ((. marmorcus,) nsually associated with it, are admirably adapted by their colors for living and concealing them-
selves on such bottoms, while many other species, frequenting the same localities, have a similar coloration, thongh belonging to very different groups. As examples we may mention the beautifully variegated starfish, Ophiopholis aculeata, (Plate XXXV, fig. 270,) rare in this region, but very abundant in the Bay of Fundy; Crangon boreas, commou on the same bottoms in the Bay of Fundy ; several species of shrimp belonging to the genera Mippolyte, Pandalus, \&c. The bright red colors of all these animals would certainly be very fatal to them were there no red algie among which they conld conceal themselves and thas escape, to a considerable extent, from the roracious fishes, which are nearly always ready to pounce upon them whenever they expose themselves. One or two handsome species of LEolis (similar to fig. 174) were taken, but for lack of opportınity they were not identified while living, and these soft and delicate creatures cannot be preserved in alcohol so as to be identified afterwards with certainty. The handsome little Doto coronata (Plate NXT, fig. 170) occurs occasionally on the hydroids, upon the animals of which it feeds. This species is generally less than half an inch in length. The body is pale fellowish, or salmon-color, or rosy, specked with pink, light red, or clark red, which often forms a median dorsal line toward the head; the curious papillose branchiee aloug the back are pale orange, the lateral and terminal papille being tipped with bright purplish red, dark red, or carmine, with a ring of flake-white below the tip; the head and tentacles are pale and translucent. The eggs are laid upon the hydroids, in long, flattened, and convoluted gelatinons strings, at varions times during the early smmer.

Another curious and beautifully colored naked mollusk, the Polycerce Lessonii, also occurs occasionally on rocky bottoms, among hydroids and bryozoa. In this species the body is pale flesh-color, or sometimes pale orange, and thickly covered with bright, deep green specks, giving the whole surface a green color ; aloug the back is a median line of tubercles or papillie, and there are two other rows on each side, which extend as far as the gills or a little beyoud; all these tubereles are tipped with bright sulphur-yellow, except that the last ones of the lateral rows, posterior to the gills, are usually tipped with flake-white, but these have two or three irregular, lateral lobes, which are tipped with yellow; other smaller, yellow tubercles are scattered over the back, sides, head, and tail; the tentacles are also bright yellow, but sometimes specked with green and yellow, with yellow tips. The gills are three in number, in a claster on the middle line of the back, posteriorly; each one is bipinnate and delicately plumose; they are colored similar to the back, generally more or less speeked with bright yellow, and often with flakewhite; the tips are usually bright yellow.

Another small but singular species, which also ocenrs among the hydroids, as well as among dead shells, is the Doridella obscura, (Plate XXV, fig. 173;) in this the colors are not conspicnons, but seem rather intended for its concealment. The back is sometimes light, yellowish
brown, tinely mottled with white, and specked with darker brown; dorsal tentacles white and retractile; lower surface white or light yellowish, a three-lobed yellowish or brownish internal organ showing through in the middle of the foot. Other specimens are very darkbrown or almost black above, finely mottled with whitish. The anterior angles of the head are prolonged into tentacle like organs or palpi. The gills are sitnated beneath, in the groove between the edge of the foot and the mantle, on the left side, and near the posterior end of the foot; they consist of a tuft of slender filaments.

Of Lamellibranchs certain species ocen on rocky bottoms, which attach themselves firmly to the rocks, either by the side of one valve, like the oyster, Ostrued Virginictu, (p. 310,) and the Anomia glabra, (p. 311, Plate XXXII, tigs. © 41,24 ;) or by threads of byssus, which they spin and use as cables for anchoring themselves, like the common musele, Mytilus edulis, (p. 307, Plate XXXI, fig. 23t,) the "horsemusele," Modiola modiolus, (p. 309, Plate XXXI, fig. 235,) the Argime
 tig. 228, all of which are common in this region; but certain other species occur, which burrow beneath the stones, like the Suxicata aretien (p. 309, Plate XXVII, fig. 192) and Mya wemuria (p. 463, Ilate XXVI, fig. 179,) and several other less common species.

The Ascidians are usually very abundant on the rocks and stones at all depths. The Cynthia partita (p. 311, Plate XXXILI, fig. 246 , is very common, often forming large, rough chasters, much overgrown with hydroids, bryozoa, and alge. The specimens mostly belong to the erect variety, and in form are quite unlike the one figured. The body is more or less cylindrical, oblong, or urn-shaped, abont twice as high as broad when expanded, and with a wide base; the branchial orifice is largest, and situated at the summit of a broad, terminal tube, swollen at base; the anal orifice is smaller, on a short lateral or subterminal tube. Both orifices are usually squarish, and open widely, bot, when fully expander, they sometimes become nealy eircular; they are often suromuded at the edge with a narrow circle of red, and each tube has eight longitndimal stripes of white, narowing downward to a point at the base of the thbes, and alternating with purplish brown ones, which are manally specked with flake-white. The exterior of the test is more or less rongh and wrinkled, amd generally fellowish or rusty, often tinged with deep pmplish brovin on the mper parts or thronghout. The tubes are nsually ronghened by small, wart-like papillae. Unpromising as this specios looks, it is duroured by the tallog. The Molgula Mrunhettcusis (ן, :311, Jlate XXXIII, fig. 2.00) is generally associated with the former. The I'rophorel virillis (1. 38S) is often very abmudant, ereeping over and covering up the two preceding, as well as other ascillams, alger, hydroids, de. The most conspicuons species, howerer, are the massive eompound ascidians, which sometimes completely cover the bottom. One of the most abmilant of these is the Imarecium pet-
lucidum, which forms large, hemispherical or irregular masses, often six or eight inches, or even more, in diameter, with the surface more or less completely covered by adhering sand. These masses consist of a large number of lobes or basal branches, which come out from a common loase as clongated, stolon-like processes, and eularge upward to the end, which is obtusely rounded, and variable in size, but usually from a quarter to half an inch, while the length may be from one to six inches; these lobes often coalesce, more or less completely, at the upper surface, which is sometimes naked and smooth, translucent, and of a gelatinous appearance. Each of these lobes contains a central cloacal orifice, around which a colony of minute ascidians, or zoüids, are gromped, in a manner analogous to the arraugement in Botryllus, already described, (p. 389,) but in the present case the zoöids are very long and slender; the lower end of each, containing the ovaries, with the heart at its extremity, extends down toward the base of the lobe in which they are contained to varions distances, varying according to the age and state of development of each zoïid, but the full-grown ones are ofteu nearly an'inch long. Each zoöid has its own branchial orifice opening at the surface, as in Botryllus, while all the anal tubes discharge the refuse water, feeces, and eggs into the common cloacal ducts.

The Amarocium stellatum is another related species, which is nearly as abmondant as the last, and likewise grows to a very large size. It forms large, smooth, irregular plates, or crest-like lobes and masses, which are attached by one elge to the stones and gravel. These plates are sometimes one to two feet long, six inehes high, and about an inch thick, and, owing to their smooth surface and whitish color, look something like great slices of salt-pork, and in fact it is often called "seapork" by the fishermen. Other specimens will be four or five inches high, and only one or two inches broad at the base, and perhaps half an inch in thickness, and the summit often divides into broad, flat, blunt lobes; varions other shapes also occur, some of them very irregular. The larger specimens of this species are generally of a pale-blnish or sea-green color by reflected light when first taken from the water, but pale salmon or flesh-color by transmitted light. The zö̈ids are much elongated and arranged in more or less regular circular groups over the whole surface, with a small cloacal orifice in the center of each circle. If kept in water, when they grow sickly the zoïids will be forced partially or wholly ont of their cavities by the contraction of the tissues aromd them-a peculiarity seen also in other species of this gems. These zoöids lave the branchial tube prominently six-lobed, and of a bright orange-color, this color also extending over the upper or onter end of the body, between the tubes, and more or less over the branchial sac, which is pale yellow or whitish below. The stomach is longitudinally suleated, with bright orange-red ribs or glands; intestine bright orange or yellow.

This species is levoured by sharks, skates, aud the tautog, althongh
it would seem rlifitult for them to digest it, or get momb matriment from it. The supply is certainly sufficiently abundant.

A thind species of this genns, and mach more beantiful than rither of the preceding, is ako common on rocky bottoms. This is the Amarocium constellutum V . (p .388 ,) which has aheady been described as occurring on the piles of the whares. In deoper water, attached to rocks, it grows to a larger size, forming thick, hemispherical or cakeshaped masses or crusts, sometimes becoming somewhat mushroom-like by the mper parts growing out beyond the central attached portion, which then becomes a short and hroad perluncle. It can be easily distinguished from the last on account of its brighter colors, the general color inclining to orange, and by the more irregular and complicated clusters of zooids. It is less abundant than either of the two preceding.

Two other species of compound Ascidians are also abundant in this region, as well as farther north. These belong to the genus Leptoclinum; they form thin, irregular, often broad, white, or salmon-colored incrustations orer the surfaces of the rocks, shells, and other ascidians; these crusts are of a firm, coriaceous or gritty texture, and have a finely gramulous smface. Under the microscope they are seen to be filled with small, nearls globular particles of carbonate of lime, from which points project in every direction. The zoöds are very minute and are scattered orer the surface in large and scarcely distinct groups, which have, howerer, a common cloacal orifice in the middle, but the several cloacal tubes or chamels leading to each central oritice are long, with many erooked branches, reminding one of miniature rivers, and the zoïids are arranged along these ducts and their branches. One of these species, the Lcptoclinum albidum, is easily distinguished by its chalky white color; the other, L. luteolum, is buff or salmoncolor. It is possible that the last may even prove to be only a colored varicts of the former, but the very numerous specimens that I have collected and examined, in the living state, both in the Bas of Fundy and Vineyard Sound, do no not warrant their union. In these localities both forms are about equally common, but near New Haren the L. luteolum has not yet been met with, though the other is not uncommon.

The Bryozoa are very abundant on rocky bottoms at all depths. Some of these incrust the rocks directly, like the Escharclla variabilis, (p. 31ٌ, Plate XXXIII, fig. 256 ;) Alcyonidium hirsutum ; Eschuripora munetata, \&c.; but even these seem to prefer other locations, and by far the greater mumber occur attached to algae, hydroids, ascidians, and dead shells. A large part of the suecies oecur also in rocky pools at lowwater mark, or attached to the Fuci and other sea-weeds between tides, or to the muler sides of stones laid bare by low tides, and have, consequently, been previously mentionerl. Others which lase not yet been detected on the shore will doubtless he fomm there by more thorongh search.

The Alcyonidium ramosnm (Plate XXXIV, fig. 257) is one of the most conspicnous species, and is often very abundant, attached to rocks in shallow water. In such sitnations we have often found arborescently brauched specimens, twelve to fifteen inches high, with smooth, cylindrical branches about a third of an inch in diameter.

The Alcyonidium hispitum (p. 312) does not appear to have been recorded as from our coast, by previous writers, but it is one of our most common species, and may almost always be found incrusting the stems of Fucus at low-water mark, as well as the under surfaces of rocks; below low-water mark it is less abundant, generally incrusting Phyllophora, and other stout, palmate alga. It is easily distinguished by the slender, acute, reddish spines, of horn-like texture, which suround each of the cells. It forms soft crusts of moderate thickness, gradually extending over the surface of the sea-weeds to which it becomes attached.

The A. hirsutum has also been hitherto overlooked on our coast, but is common, living under the same circumstances as the last, and sometimes associated with it, both above and below low-water mark. I have found it in the greatest abondance in some of the large, rocky tide-pools on the outermost of the Thimble Islands, east of New Haven. It was there growing chiefly upon Plyyllophora mombranifolia, in some cases entirely covering and concealing the plant, from the base of the stem to the tips of the fronds. It also often grows on the "Irish moss," Chondrus crispus, on rocky bottoms in shallow water. It forms rather thin, soft crusts, which have small, soft papille scattered over the surface; from the summit of each of these papillea zoöd protrudes, when they expand, and displays an elegant little wreath of tentacles, much as in A. ramosum, (see fig. 2.7.) The A. parasiticum is also a species hitherto neglected on our coasts. It forms thin crusts on algie and hydroids, which generally become coated witl a layer of fine sand or dirt. I have not observed it at low-water, but have found it at the depth of a few fathoms on rocky bottoms in Vineyard Somd.

The Tesicularia dichotoma V. is a very common species, both on rocky shores, in pools and on the under side of stones; and in shallow water on rocky and shelly bottoms. It is also capable of living in brackish water, and is frequent on the oyster-beds. It nsually forms caspitose clusters of many erowded, slender, white stems, each of which is repeatedly forked, branching in a somewhat arborescent manner. There is a little crowded cluster of small, dark-colored, oval or pear-shaped cells just below each fork, the cells being sessile and arranged in two somewhat spiral rows in each eluster. It gencrally grows about an inch high, but sometimes two or three inches. When expanded each of the zooids protrudes from its cell-like body a delieate wreath of eight slender tentacles.

The Tesicultria cuscuta is a delieate, creeping species, which resembles, in miniatme, the "dodder-plant," (Cuscutu.) and creeps over other bryozoa and hydroids. very much as the dodder creeps ower other
plants. The stem is very delicate, filiform, jointed, and at intervals gives ofl two very slender, opposite branches, which diserge at right angles, and in their turn branch at intervals in the same way: The cells are small and oval or elliptical, mostly arranged in clusters at or near the branchings of the stems, but some are often scattered on the branches; they are attached by a narrow base. It occurs both at low-water in pools and in shallow water among rocks. The V. armata is also a creeping species, but the cells are terminated by four conical prominences, each of which bears a slender spine when perfect. This also oceurs both between tides and in shallow water, on liydroids and bryozoa.

With these species of l'esicularia, and often attached to them and ereeping over them, as well as on other kinds of bryozoa, hydroids, and alge, a very curions little species often occurs, in which the cells are small, campambate, and raised on slender pedicels, which rise from slender, white, ereeping stems. This is the Pedicellinu Americana. The zoöids, when expanded, display a wreath of twelse or more tentacles; in contraction and when young they are often clavate.

The EItea anguinca has not been recoried as from our coast, but is very common on rocky and shelly bottoms, creeping over various hydroids, alga, ascidians, brojozoa, de.; it also frequently ocenrs on floating eelgrass aud alge, in company with many hydroids. It consists of delicate, white, creeping, calcareous stolons, from which arise elongated, slender, clavate, white, rigid, erect cells, with the aperture at the end; the narrower, pedicel-like portion of the cell is surromeded by fine, ciremlar, punctate strixe.

The Encrate chelutu is also a slender, creeping species, and has somewhat similar habits, but is much less common, and has been met with only in the deeper parts of Vineyard Sound on ascidians and hydroids. In this species each cell arises from the back of the preceding one, near the end, aud bends upward and forward obliquely, the cell expanding from a marrow, pedicel-like, hasal portion to a more or less oral upper part, with the aperture oblique and subterminal. This, also, is a new addition to the fama of our coast, althongh, like the last, long well known on the coast of Europe.

The Diastopora patime grows attached to alge and eel-grass; it forms little eircular disks, with tubular cells arising from the uper surface, those in the middle being longest.

The Tubulipora flabellaris frequently ocem's attached to various kinds of slender-hranched alga, such as Ahufeltia plicute, \&e. It forms small, hhut-lobed, coral-like masses, composed of long, erooked, tubular cells, mited by a porons mass at base. Toward the borders of the lobes the cells are crowded and polygonal. In the central parts they are more exlindrical and form groups or radiating rows. Associated with the preceding on the algir, Crisia clmrnea, (p. 311 ;) Mollia hyalina, (Plate NXXIV, fig. $66+$;) Cellepora ramulosa, (p. 312;) and other species oe-
cur. The Membronipora pilise (Plate XXXIV, figs. 262, 263) is frequent on rocky bottoms, growing chiefly upon Phyllophora and other algae. It may be known by the oval cells, bordered by erect, bristle-like processes, of which the one at the proximal end of the eell is much longer than the rest.

Another species, Ml. lineatu, is also common, incrnsting rocks and shells in broad, thin, radiating patehes. In this the cells are oblong, crowded, and separated only by the linear margins. In the most com. mon variety there are eight or ten slender spinules on each side of the cells, which bend over so as to meet or interlock across the open cells. The cells are much smaller as well as narower than those of the preceding species.

Of Echinoderms only a few species occur in this region, on rocky bottoms, which eanses this fama to contrast very strongly with that of the rocky bottoms farther north, as in the Bay of Fundy or on the coast of Maine, where numerous other fine species of star-fishes and several additional Holothurians are common. The common green sea-urehin, strongylocentrotus Dröbachiensis, (Plate XXXV, fig. 268,) so very abundant farther north, and especially in the Bay of Fundy, where it oceurs in abundance at low-water mark, and on rocky bottoms at all depths down to 110 fathoms, and off St. George's Bauk even down to tio fathoms, is comparatisely rare in this region and chiefly confined to the ontside colder waters, as off Gay Head and No Man's Land, where it was quite common. But a few specimens were dredged at several loealities in Vineyard Sound. The largest ocenred on the rocky bottoms off West Chop, and oft Menemsha. It has been found occasionally in Long Island Sound, as off New Haven and Stratford, Conneetieut, but is there quite rare and small. It feeds partly on diatoms and other small algie, de., which it cuts from the rocks with the sharp points of its teeth, but it is also fond of dead fishes, which are soon devoured, bones and all, by it in the Bay of Fundy. In return it is swallowed whole in large quantities by the wolf-fish and by other large fishes. The purple sea-urchin, Arbucia punctulata, is much more abundant in Vineyard Sound and similar waters, in this region. This is a sonthern species whieh is here near its northern limit. It is easily distinguished by its rather stont, unusnally long, purple spines; by its ambulacral pores in tiro simple rows; by the upper surface of the shell being partly destitute of spines; and by the anal region, at the smmit of the shell, which is formed of only four mather large plates. It oecurred of large size, associated with the preceding species, off West Chop and Holmes's Hole; it was quite abumdant in the passage at Wood's Hole, especially on shelly and gravelly bottoms north of Namshawena Island, and it was met with at many other localities.

The common green star-fish, Asterias arenicole, (p. 326, Plate XXXV, fig. 269,) is rery common on all the rocky bottoms in this region. A smaller and more beantifnl northern star-fish was oceasionally met with
in Womblis Hole passage and several other localities on rocky or gravelly hottoms. This was the Cribrella ssmguinolenta: it is much more common north of Cape Corl, and is abumbant in the Bay of Fundy and mothwarel to Greenland ; it is also foum on the northern coasts of Eurore. It has not been fomm much sonth of Vimeyard somed on this coast. It can easily be distinguished by its tive romblapering tays, covered with small spinnles, and by having only two rows of locomotive sucker's in the grooves on the mader side of the rays, instead of fom rows, ins in the common star-fishes belonging to the gemms Asterias. Its color is fuite variable. It is often orange, or purple, or rose-color, or creamcolor, and sometimes mottled with red and purple, \&e. Unlike the preceding, and most other species of our star-fishes, this does not have freeswimming fonng. Its eggs are deposited around the month, and retained by the mother until they develop into little star-fishes capable of taking cate of themselves.

The Ifydroids are very mumerous on rocky bottoms. A few species, like Iydractinia polyclina (p. 328) and the Thammocnida tenella, attach themselves directly to the rocks, but the greater mumber alliere to ascidians, algat, or to other hydroids. Many of the species are also to be foum on the rocky shores in tide-pools, and have already been mentioned. Among those not yet detected at low water is a delicate species of Plumuluriu, with slender, alternately pimate branches, which was found growiug upon rocks in company with Hydractinic. The Thamnocnirk tenelle is a Tubularian which grows in clusters, two or three inches high, consisting of long, slender, somewhat branched stems, which are more or less crooked, and usnally irregularly and distantly annulated, with beantiful pink heads at the top. The general appearauce is like that of the Puryphu, (Plate XXIVI, tig. 274.) The Obeliu dichotome was found growing upon ascidians (Cynthia partita, \&e.) in 8 or 10 fathoms, among rocks. It is a well-known Enropean species, but has not hitherto been established as an inhabitant of our coast. It has dark, horn-colored, slender stems, with pretty long and rather erect, slender, alternate branches, which brauch agan in the same way. The hydroid cells are deeply eampanulate, with the margin slightly sinuous or scolloped, the slight notehes corresponding with faint angular ridges which ran down on the upper parts of the cells, giving the upper half a slightly polygoual form. In this respect this species closely resembles the Obelit commisuralis. The reproducsive capsules are elongated, urn-shaped, with a narow, raised, sub-conical neck.

The Obelia yeniculutu is often very abmalant on the fronds of Lamineria and other alge having flat fronds. Its creeping tubular stolons often thickly cover the surface with a complete net-work; from these the erect stems rise to the height of ahout an inch. This species mas be known by the prominent geniculation at the origin of the hydroid peedicels. The Obelie fusiformis has a similar mode of growth, but is
much less common. Its hydroid cells are comparatively small and their pedicels very short.

Several very delicate and beatiful creeping hydroids, belouging to the Campanularians, also occur attached to larger hydroids, and the algae. Among these are Clytict Johnstoni, having comparatively large, bellshaped cups, with a notched rim, each borne on a long, slender, generally simple pedicel, ringed at each end, and arising from the creeping stems. The reproductive capsules are urn-shaped and anumated. The C. intermedia is quite similar in its growth, but has smaller and deeper cups, with smaller notehes aronnd the rim. The Orthopyxis calienlata grows in the same manner; it has beantiful little bell-shaped or cup-shaped cells, with an eren rim, each borne on a loug, slender, annulated pedicel with one of the rings, just below the cup, very promiuent. Its reproductive capsules are large, oblong, smooth, and obtuse at the end. The Platypyxis cylindrica has small, very deep, somewhat cylindrical cups, with the rim divided into sharp teeth or notches; each one is borne on a small, slender pedicel, generally less than an eighth of an inch high, feebly annulated at each end. The reproductive capsules are elongated, compressed, flaring slightly at the end. The Campamularia volubilis, is also a vely small, but elegant species; it has deepeylindrical cups, which have a regularly seolloped rim, the scollops being small and evenly rounded. The pedicels are very slender, and are annulated spirally thronghout their whole length, so as to appear as if twisted ; just below the cup there is one prominent rounded annulation, or bead, the whole resembling in miniature the stem of certain wine-glasses and glass vases. The reproductive capsules are rase-shaped, attached by short pedicels, and have the neek elongated and gradnalls narrowed to the end, which thares slightly.

The Lafö̈a calcaruta is also a small ereeping hydroid, belonging to another family. It has curved tubular cells. It nearly always grows on Sertularia cornicina, which is a small species, resembling S. pumilu, (Plate XXXVII, fig. 279.) The Sertularia argentea (Plate XXXYII, fig. 280) is a large, profusely branched species, ofteu growing to the length of a foot or more. It is very abundant in this region. S. cupressina is closely related, but much less common. The Hydrallmania falcuta is also a large species very common on these bottoms. It can be easily distinguished by the spiral arrangement of its branches and the milateral arrangement of its jug-shaped cells along the branches.

The Eudendrium ramosum and E. Disper are not uncommon on rocky bottoms, and are both beantiful species, somewhat resembling the Pemaria, (Plate XXXVII, fig. 277.)

The species of Polyps are the same as those fotmol on rocky shores at low-water mark. The coral, Astrangia Dance, (p. 329,) is much more common than on the shores, and grows larger, some of the specimens becoming four or five inches across, and rising up in the middle into
lobes or irregular branches, sometimes nearly two inches high, making very elegant specimens.

Numerons sponges also ocemr, but they have not jet been carefally studied. One of the most ahmdant is a species of Chatime, which grows up in chasters of slender, soft, smooth branches, five or six inches high, and from a quarter to half an inch in diameter, of a pate yellowish or buft-color while living. It makes very delicate, white, and beantiful specimens when the amimal matter has been thoronghly washerl out and the sponge dried in the sun, which can be best done by hang. ing them up in a reversed position, owing to the flexibility of the branches when wet. This species is closely related to the Chalina oculata, which also oceurs in this region, in the outside cold waters, as off Gay Hearl, and is abmand farther north and on the coast of Emrope; but the present species is much more delicate, with more slender and rounder branches, and it seems to be a southern form, for it is common all aloug our coast as far, at least, as North Carolina.

The common, irregularly branehed, red sponge is found in abonlance, and also several light yellow, irregular, soft, massive species of Tertania, and the firm, massive, sulphur-yellow Clionu sulphurea.

List of species ardinnily foumd on the rocky bottoms of the bays and
sounds. ARTIC'ULITA.。

Insects.

Chimonomms halophilus	Page. 415	Pallene, sp................	Page. 421
	Crustacea.		
	Page.		Page.
Cancer irroratus	:395	Mora levis	315
C. borealis	395	Autonö̈, sp	415
Pamopens depressus	395	Amphithoë maculata	315
P. Sayi.	395	A. longimana	370
Pelia mutica	395	Uneiola imoratia	340
Eupagurus pollicaris	305	Cerapus tubularis (?)	396
F. longicarpus	395	Caprella geometrica	316
Homarus Americanus	895	Caprella, su	316
Crangon volgaris	89.5	Idotea phosphorea	316
Hippolyte pusiola	39.5	Erichsouia filiformis.	316
Mysis Americana	396	Balanus crenatus.........	396
Heteromysis formosa.	396	Numerous small Entomos-	
Lepidactslis drtisens	339	traca.	

Aunclids.

Page. l'are.
Lepidonoths squanatıs 397 Ophelia simplex 319
L. subleris 397 Cirrhinereis fragilis 397
Harmothoë imbricata $3!\%$ Naraganseta coralii 397
Phyllodoce, sp $397 \quad$ Sabellaria vulgaris 397
Eulalia, sp 397 Nicolea simplex $: 397$
Eumidia, sp 397 Scionopsis palmata 397
Autolytus cornutus 397 Polfcirus eximius 320
Autolytus, sp 398 Potamilla oculifera 397
Nereis pelagica 397 Sabella microplıthalıa $: 397$
Podarke obscura 319 Faluricia Leidyi 397
Marphysa Leidyi : 819 Serpula dianthus 397
Lumbriconereis opalina 397 Spirorbis, sp 397
Nemertelens.
Page. Page.
Cosingcephala ochracea. Cerebratulas? sp. 324
Iolinia glutinosa 324
MOLLUSCA.
Gastropods.
Page. rage.
Fulgar carica 399 Triforis nigrocinctus 305
Sycotypus canaliculatus 399 Crucibulım striatum 399
Tritia trivittata 354 Crepidula fornicata. 355
Urosalpinx cinerea 399 C. unguiformis 355
Astyris lunata 399 Leptochiton apiculatus 399
A. zonalis 399 L. ruber 399
Anachis avara 306 Doto coronata 400
Lacuna vincta 305 Polycera Lessonii 400
Bittium nigrum 305 Eolis, su 400
Cerithionsis Greenii 383 Doridetla olsecura 400
C. Emersonii 417
Lemellibranchs.

Mya arenaria	$\begin{aligned} & \text { Puge. } \\ & 401 \end{aligned}$	Mytilus erlulis.	Page. 401
Saxicara arctica	401	Modiola modiolus.	401
Argina pexata	401	Anomia glabra.	401
Scapliarea transrersa.	401	Ostraea Virginiana	401

Page.
Mya arenaria 401 Mytilus edulis............... . . 401
Saxicara arctica 401
Modiola modiolus.... 401
Anomia glabra............. 401
Ostraa Virginiana 401

Ascidinns.

Page. P'age.
401 L. liteolum
401 L. liteolum $40: 3$ $40: 3$
Molgula Mamhatteusis 401
Amarectiom stellatum $40:$
l'erophora vididis 401
Leptoclimun albidum 103
A. constellatım 103
A. pellucidam $4(1)$
Bryozort.
l'age. I'age.
Alcyonidinu ramosum 40t Encratea chelata 10.5
A. hispidum 404
Etea anguinea 105
A. parasiticum 404
B. flabellata 389
Vesicularia gracilis 389 Membranipora pilosa 406
V. dichotoma tot M. lineata 406
V. cuseuta 404 Escharipora punctata 403
V. armata 105 Escharella variabilis $40: 3$
Tubulipora tlabellaris 40.5 Mollia hyalina 405
Diastopora patina 10.5 Cellepora ramulosa 40.5
Crisia eburnea 40.) Perlicellina Americana $4(1)$
RADIATA.
Echinorlerms.
Page. 1 i’age.
Arbacia punctulata......... 406 Asterias arenicola 406
Strongylocentrotus Drö- 406
Cribrella sanguinolenta 407
Acctephs.
Page. lage
Campanularia Hexnosa :827
Sertularia cornicina
Sertularia cornicina 408 408
C. volubilis 405
S. argentea 408
Platypyxis eylindrica. 408
Orthoprxis caliculata 408
Hydrallmania faleata 408
Clytia Johnstoni 408
C. intermedia 408
Obelia fusiformis 407
O. geniculata 407
O. dichotoma 407
O. commisuralis 327
Lafoë: calcarata 40 S
Plumularia, sp. 407
S. cupressina 408
Halecium gracile 328
Bongainvillia superciliaris 328
Eudendrium ramosum 408
E. dispar 408
Peminaria tiarella. 327
Thamnocuida tenella 407
Hsdractinia polyelina 41%

Polyps.

		Page.	
Metridium marginatum	329	Astrangia Dana	408
Sagartia lencolena........	329		

PROTOZOA.
Sponges.

Foraminifera.
I'aye。
Numerous species.. 421
6. FAUNA OF THE GRAVELLY AND SHELLT BOTTOMS OF THE BAYS AND SOUNDS.

Bottoms composed of gravel or pebbles, often with small stones, and generally with a considerable proportion of dead and nsually broken shells. were of frefuent occurence in Vineyard Sound, and a few such localities were found in Buzzard's Bay. Similar bottoms of small extent have also been examined in Long Island Sound, near New Haven. These bottoms are generally the most productive and agreeable for the dredger, for they are the farorite abotes of large numbers of animals of all classes, and the contents of the dredge are often so clean that they require little if any washing in the sieves. They vary much, howerer, in character, some of them consisting mostly of gravel, with pebbles and perhaps small scattered bonkers; others consist largely of broken shells, especially those of Mactra solidissima and Crepidule fornicatu, mixed with more or less gravel, sand, and mod. Others are so completely overgrown with the various large compound ascidians described above, that they might well be called "ascidian bottoms." In many places, howerer, there are patches of mud or sand. scattered here and there over a bottom which is mostly of gravel and shells, so that the dredge will often bring up more or less mud or sand, with some of the animals peculiar to such patches, mixed with those peculiar to the gravelly bottoms, thas augmenting the number and variety of animals. In other cases more or less mud and sand may be mixed with the grarel throughont, or the bottom may be in process of changing from mud or sand to gravel, or the contrary, owing to frequent changes in the directions of the currents, prodnced chiefly by the action of storms upon the shoals and bars of sand. Hence it is often difficult to
distingnish with certainty the anmals properly inhabiting the gravelly and shelly bottoms from those that pertain to the moddy and samdy bottoms, but for our present purposes it is not necessary to make a very sharp distinction between the different lists, for many species are common to all, and the areas of the different kinds of botton are generally small in this region, and evidently may change their character from time to time.

After a single stom the character of the bottom, in some localities, was fomd to be greatlyaltered over witle areas, sometimes several miles in extent, at depths of two to ten fathoms, and the animal life at the bottom was always found to have changed very quickly, when the phesical character of the bottom had been modified. The most frequent eanse of change was the acemmation of immense quantities of dead seaweeds aud eel-grass orer bottoms that, a few days before, had been perfeetly free from it. Such accommations must either kill the majority of the animals inhabiting gravelly, sandy, or rocky bottoms, or else cause them to migrate. In all probability the majority of them perish, at such times, bencath the accumulations. In other cases one or two storms sufficel to change gravelly and shelly bottoms to sandy ones, causing, undoubtedly, great destruction of lite and a great change in its character orer particular areas. These changes in the ebaracter of the deposits accumnlating on the bottom, attended with extermination of life and changes in its character in particular localities, illustrate on a small seale similas phenomena that have constantly ocenred on a grander seale in the history of the past life of the globe, drming all the geological ages, from the first commencement of life. Practically it was fomed quite difficult to find, in this region, large areas of gravelly and shelly bottoms, withont some admixture with mud or sand, aud it very seldom happened that a continuous series of dredgings eould be made on such bottoms without enconntering patches of mod and sand. Therefore the accompanyiug list of species undonbtedly coutains many that belong rather to muldy or sandy bottoms than to those now muder diseussion, for species have not been exelnded muless well known, from many ohservations, to be pecular, or nearly so, to mud or sand and rarely met with on true hard bottoms.

The following are the principal lotalities where this kind of bottom was explored in Tineyard Somd and vicinity, but those belonging to the outside eold area are not included :

First. An cxtensive area extending from oft Nobska Point eastrard, nearly parallel with the shore, with some intermptions of sandy bot tom, as far as Suconesset Shoal, mostly in three to eight fathoms of water: on this botfom were the dredgings of line $6, a, b, c, d, c, f ; 21$,
 a. b, c', d. $\left.e, f^{\prime} ;: 3.\right)$,, ,,$c$, , d, e.

Secomb. Another similar resgon nearly parallel with the sontheastern shores of Manshon and Nonsmesest lslamel and extemding ont into mid
channel ; dredgings on line $5, a, b ; 7, b, c, d ; 8, c, d, e, f, g ; 42, a$, $b ; 43, a, b, c, d, e$, were mate on the shallower portion of this gromm, mostly in three to eight fathoms; $38, a, b, c ; 39, a, b ; 40, a, b, c, d$; $11, b ; 44, a, b, c, d, e ; 46, e$, were made in the deeper parts of the chanuel, in eight to fifteen fathoms.

Third. Several areas, in the deeper waters of the sound, north and northeast of Holme's Hole, and donbtless contimons with the last area; dredgings, at line $28, a, b, c, d, c, f ; 29, a, b, c ; 31, a, b, c, d, e ; 32$, र1, $b, c ; 33, a, b, c, d$, were made on these bottoms.

Fourth. A narrow strip of clean gravelly bottom, swept by the strong vorrents passing around West Chop, and situated between the "Middle Ground" Shoals and Martha's Vineyard, and extending around to East Chop, with an interruption of rocky bottom just opposite West Chop; dredgings on line $37, a, b, c, d, g, h ; 47, a$, and $48, a, b, c, d$, were made on this area.

Fifth. In the chamel, at the entrance to Great Harbor, off Nonamesset Island, and partially extending into the harbor, there is more or less gravelly and shelly bottom, frequently alternating with rocks and often composed chiefly of dead shells, (mainly Crepidula fornicata.) This place is swept by the powerful tidal currents running through Wood's Hole Passage; dredgings at line $3, \lambda, e ; 5, e, f, g ; 13, a, b$; $18, a, b, c, d ; 19, a ; 20, a, b$, and many others not indicated on the chart. were made here.

Sisth. Another area at the other end of Wood's Hole Passage, north of Hadley Harbor, and extending out into Buzzard's Bay a short dis* tance; some parts of this region had a smooth hard bottom of fine gravel and sand, or coarse sand ; in other places it was more or less stony; dredgings on line $10, e, f ; 11, a, b, c, d, e, g ; 12, b, c ; 70, a$, $b, c, d ; 71, a, b$, were on these grarelly bottoms.

Seventh. A shallow region off Cataumet Harbor, in Buzzard's Bay ; the bottom here was hard gravel and shells, minch overgrown with alge ; slredgings at line 65, a, b, and others not indicated, were made here.

Eighth. At Quick's Mole, in the channel between Nashawena and Pasque Islands, good gravelly bottom was found; dredgings at line 4. $, a, b ; 76, a, b, c ; 77, c, d, c, f$, were on this area.

Similar bottoms of small extent were also met with in other places. There are also gravelly bottoms in the sonthwestern part of Vineyard Sound, near its mouth, as off Menemsha, but as these are inhabited by the more northern species of animals, they will be gronped with those of the outside waters.

The animals of gravelly and shelly bottoms may be burrowing or tubedwelliug species, like many amelids, amphipods, bivalre-shells, \&c.; they may be species that adhere directly to the shells and pebbles, like certain hydroids, bryozoa, biralve-shells, and the nmmerons ascidians; the latter are quite as numerous here as upon the rocky bottoms, and for the anost part of the same species; they may be species that hide among.
the shefls and pebbles or between the asedians, © 0 , like many of the larger ammelids, some of the crabs, and other crustacea, de.; they may be species that live among or attached to the hyelroids, bryozoa, aseidians, and algie which grow upon the shells and pebbles; such are many of the small crustacea, some ammelids, many small gastropod shells, and most of the more delicate bryozoa and hydroids; or they may be larger kinds that ereep or swim abont over the bottom, in seareh of food, such as the lobster, the larger crabs, hermiterabs, large gastropod molhusks, star-fishes, sea-urchins, holothurians, \&e. Owing to the great abmendane of animal life on bottoms of this character they are the favorite feedinggromuds of many kinds of tishes, such as the tantog, seup, blatk bass, haddock, and cod, together with many others that are less valuable. Most of the "banks" and "fishing-grounds" resorted to by the line fishermen have either gravelly and shelly or else roeky bottoms, and those banks most frequented by tishes are almost always found to be rich dredging-grounds. The gravelly banks in this region are, in winter and spring, tishing-gromals for cod and haddock, but these fishes retreat to colder waters in the summer.

Among the Crustacea the most abundant and important species are the lobster, Homarus Americanus, (1. 395 ,) the common shrimp, Crangon culgaris, (p. 339, Plate III, fig. 10,) the common roek-crab, Cancer irroratus, (1. 312,) P'mopeus Sayi, (p. 312,) P. depressus, (p. 312, Plate I, fig. 3,) the larger hermit-crab, Eupagurus pollicaris, (p. 313,) the smaller hermit-crab, L. Iongicarpus (p. 313,) the Heteromysis formosa, (p. 396,) Mysis Americann, (p. 396,) Unicola irrorata, (p. 340, Plate IV iig. 19,) Amphithoë maculata, (p. 315, Plate IV. fig. 16,) Corophinm cylindricum, (p .370 ,) which lises among the hydroids, and a species of Autonoe, which lives in the crevices among the lobes of the sandy ascidians (Amuracium pellucidum) in large numbers. The barnacle, Bal. anus crenutus, ($\mathrm{p}, 396$,) is very abundant.

One of the most interesting of the Crustacea met with was the Heterocryptu granulata, which occurred olf Falmonth and near Snconesset light-ship. This is one of the triangular erabs in which the carapax is smooth; the cheliperls are long and triangular. It is a southern species, oceurming on the Florida coast, and is new to our fitma.

Another triangular crab, the Pelid mutica, also occurs on these bottoms, but this has a rongh canapax, and resembles a small specimen of the common spider-crabs, Libimia.

Clinging to and creeping over the hydroids and ascidians a singulaz long-legged Prenogonid is often met with on shelly bottoms. This is the Phoxichilidium maxillare, (Platr VII, fig. BJ.) It is most frequently deep purple in color, but gray and brown specimens are often met with.

The larve of a lly, Chironomus hatophilus, was dredged in five fathoms.
The Annelids are fuite mumerons, and the majority of them are the same as those found on the rocky bottoms, for the same species iuhabit the interstices of the massive awidians, fomm equally on both kimts of
bottom, and the same tube-dwelling species can attach themselves to stones and shells just as well as to rocks. Most of the additional species are burrowing kinds, and some of them probably innabited patches of inud or sand. Among the more interesting species are Nephthys bucera, (Plate XII, tig. $5 S$;) Inthostoma acutum V., a new species; Scolecolcpis cirrata, new to the American coast; Scalibregma brevicauda V., a very interesting new species; Cirratulus tenuis V., a new species; Amphurete setosa V., also a new species ; Serpula dianthus V., (p. 322.) Several rare or undeseribed species were also met with that have not yet been fully identified. Among these were a peculiar species of Nereis; a large Anthostomu ; a young Polyfora ; an apparently undescribed species of Samythu; a species of Euchone, perhaps identical with E. elegans V.; the calcareons tubes of a small worm, perhaps a Vermilie, which have two carina on the upper side.

Two species of Sipunculoids oceurred, one of which is probably undescribed. The other is the Phascolosoma comentarium, (Plate XVIII, fig. 92,) a species very common on all the northern coasts of New England in deep water. This worm takes possession of a dead shell of some small Gastropod, like the hermit-crabs, but as the aperture is always too large for the passage of its body, it fills up the space around it with a very hard and durable cement, composed of mud and sand united together by a secretion from the animal, leaving only a small, round opening, through which the worm can extend the anterior part of its body to the distance of one or two inches, and into which it can entirely withdraw at will. It thus lives permanently iu its borrowed shell, dragging it about wherever it wishes to go, by the powerful contractions of its body, which can be extended in all directions and is very changeable in form. When fully extented the forward or retractile part is long and slender, and furnished close to the end with a circle of small, slender tentacles, which suround the mouth ; there is a band of minute spinnles just back of the tentacles; the anal orifice is at the base of the retractile part ; the region posterior to this has a firmer and more granulons skin, and is furnished toward the posterior end with a broad band of scattered, blackish, acnte, recurved spinules, more or less triangular in form, which evidently aid it in retaining its position in the shell. As it grows too large for its habitation, instead of changing it for a larger shell, as the hermit-erabs ilo, it gradually extends its tube ontward beyond the aperture by adding new materials to it. Some of the fishes often suddenly cut short this labor by swallowing the worm, shell and all.
In July the common squids, Loligo Pealii, (I'late XX, figs. $10 \underset{\sim}{-105}$, were taken in considerable numbers by means of the trawl, on gravelly and shelly bottoms off Falmonth, and with them large fuantities of the eggs contained in large bunches or groups of long, gelatinons rapsules. They were apparently spawning at that time.

Althongh the Gastropod mollusks are seldom very mumerons at any particular spot on these bottoms, yet a pretty large mmber of speries
oceur, and they are quite generally diffused. Many of them have already been enmmerated as ocem'ring on rocky bottoms. 'The F'ulgur carict, (1). 355 , Plate XX, fig. 124, and the Sycotypus canaliculatus, (1). 355 , are found chiefly on these bottoms, and are often very abondant. Orer a barrel of living specimens were obtained on a single excursion. The Lanatia heros, (p. 35t, Plate XXIII, figs. 133-136, though generally found on the sandy bottoms, also oceurred in great numbers and of very large size on some of the gravelly bottoms. The pretty little Nutica pusilla (Plate XXIII, fig. 132) is often common on these bottoms; it is usually delicately painted with brown.

The Crepidula formicutu (p. 355, Plate XXXII, figs. 129, 129a) was one of the most abundant species, often occurring adhering to each other in great elusters, the lowest ones in the group adhering in turn to dead bivalve shells, pebbles, shells of living Fulgur and Sycotypus, and still more frequently to these shells when dead and oceupied by the larger hermit-crabs, (Eupagurus pollicaris.) The dead shells of this Crepidula were often found in great accumnlations, covering considerable areas of bottom, and with but little admixture, either with other shells or with sand and gravel.

The Crepidula unguiformis, (p. 355, Plate XXIII, fig. 127,) thongh very common, did not occur in such great quantities. Crucibulum striatum (p. 39!, Plate XXIII, figs. 195, 126) is also common, adhering to rarious dead shells.

The Vermetus radicula (Plate XXIV, fig. 157) is a very curious shell, looking, when full grown, very moch like the tube of an Annelid, such as Serpula or Protula, but the inhabitant is a gemuine Gastropod, and has a thin, spiral, horny operculum, for closing the aperture when it withdraws. When young this shell often forms a very regular, closely coiled, spiral shell, looking like that of a Turritella, and sometimes does not become irregular until the spire is more than an inch long, but sooner or later it goes off on a tangent and becomes in'regular and crooked. Sometimes several of these sinells interlock irregnlarly and thus form large clusters.

The curious and minute Cocum pulchellum (Plate XXIV, fig. 155) is oceasionally met with in considerable numbers, thongh very liable to be overlooked owing to its very small size. Cactum costatum V. is of less fiequent occurence, and easily distinguished by the prominent ridges or ribs that rum lengthwise of the shell.

Wherever algie gecur in abundance on these bottoms, the Bittium nigrom (p .305, NXIV, fig. 154) is found in immense numbers, and it is genesally associated with Lacuna vinctu (p. 30.5, Plate NXIV, fig. 13:) and with a few specimens of Triforis nigrocinctus, (1). 305, Piate XXIV, fig. $15 \ddot{\circ}$) Cerithiopsis Greenii, (Plate XXIV, fig. 153, Astyris lumata, (Plate XXI, fig. 110, Anachis arara, (Plate XXI, fig. 109,) \&e. On the shelly bottoms Cerithiopsis terebralis and C. Emersonii ofter occur, but they are not usmally common. On similar bottoms, sometimes adhering to

Pecten and other shells, we cften met with the various speeies of Odostomiu, among which O. semimuda (Plate XXIV, fig. 148, was much the most common ; but O. producta, (Platc XXIV, fig. 143,) O. impressa, (Plate XXIV, fig. 147,) and O. trifidd, (Plate NXIV, fig. 145,) occurred in shallow water; and also Turbonilla elegans, (Plate XXIV, fig. 155,) which is a very handsome, glossy, brown shell ; and T. interrupta, which is a similar shell, but more slender, with less convex whorls. The Eulima oleacea (Plate XXIV, fig. 149) is a very elegant, white, polisbed, and shining shell, and generally rare, but in two instances we fomd several of them adhering to the skin of the large Holothmrian, Thyone Briareus, upon which it seemed to live as a quasi parasite or "commensal."

On shelly and muddy bottoms we oceasionally found Sealarial lineata, (Plate XXI, fig. 123,) and S. multistriata, (Plate XXI, fig. 122,) both of which are rare and elegant shells. The Pleurotoma biearinatum (Plate XXI, fig. 106) occurred rarely.

The bivalve shells are also quite numerous on these bottoms. Among them the Matra solidissima (p. 358, Plate XXVIII, fig. 203) is most conspicuons on account of its great size and frequent ocemrence; its dead shells were often very abundantly seattered over the bottom, and were generally inerusted with ntimerous bryozoa and hydroids. The Gouldia mactracea (Plate XXIX, figs. 206, 207) was quite common in many localities in a living state, while the dead shells were generally diffused. Among the other species that are common or abundant are Scapharea transversa, (Plate XXX, fig. 22S,) Clidiophora trilinata, (Plate XXVII, fig. 193,) N'ucula proxima, (Plate XXX, fig. 230,) Mytilus cdulis, (Plate XXXI, fig. 234,) Modiola modiolus, (Plate XXXI, fig. 237,) Crenella glandula, (Plate XXXI, fig. 233,) Pecten irradians, (Plate XXXII, fig. 243,) Anomia glabra, (Plate XXXII, figs. 241, 242.) The Modiolaria nigra (Plate XXXI, fig. 236) ocenrred only in few localities in the deep water of the middle of the Sound, associated with the common musele. The Cumingia tellimoides (Plate XXX, fig. 2:1) was found living occasionally, but its dead shells were quite common. The same is true of Corbula contracta, (Plate XXVII, fig. 191,) which was perhaps a little more commonly found living than the last. The Cyclas dentata (Plate XXIX) fig. 211,) is a handsomely senlptured, pure white shell, which we met with only a few times in the living state, though dead valves often occurred. The same remarks will apply to Coclodesma Lcamum, (Plate XXVII, fig. 198,) of which the shells were much more common. The Kellia plamulata (p. 310,) and Montaceta elevata also occasionally oceur on shelly bottoms, but were seldom obtained alive. The Cyelocardia borealis (Plate XXIX, fig. 216) and C. Novanglix (Plate XXIX, fig. 215) were quite common in the deeper waters.

The Gastranellu tumida V., (Plate XXVII, fig. 190) is a small and rare shell, recently discovered, and has, as yet, been found only on a shelly bottom among hydroids, near New Haven, in 4 or 5 fathoms. The Angulus modestatus V. (Plate XXX, tig. 224) is a species recently
deseribed from specimens dredged by us in Vineyad Sonnd. It is often handsomely banded with light red and pale yellow. It is still a rare species, but has been dredged also near New Haven.

The Ascidians, with the exception of one or two additional species seldom met with, are the same as those of the rocky bottoms, and they olten ocenr in immense quantities, especially the massive sandy ones, Amuracium pellucidum, (1. 401,) ant the "sea-pork," A. stellutum, (p. $40 \geq$, which together often almost entirely cover the bottom over areas many acres in extent. They furnish excellent hiding-places in the openings and erevices between their lobes for mumerons Crustacea and Annelids, many of which ean be easily secured by putting the masses of these ascidians into buekets of water and leaving them mentil the water begins to get stale, when they will come ont of their retreats in large numbers and seek the surface or edges of the water for oxygen. Or they may be pulled apart directly and the various ereatures secured at once.

The Molgula arenata (Plate XXXIII, fig. 251) is a nearly globular, but olten somewhat flattened species, which covers itself over with closely adherent grains of sand or gravel. It is most common on sandy bottoms but is found also on gravelly ones.

The Ciona tenella is an elongated, erect species, attached at base to rocks, dead shells, \&e. It is remarkable for the transparency, whiteness, and softness of its integument, and for the bright orange ocelli around its orifices. It is rare in this region, but very common in the Bay of Fundy.

The Bryozoa are very abundant, especially on the shelly bottoms. Some of them grow on algie, hydroids, ascidians, $\mathbb{E} e . ;$ ant mans form inernstations on the dead shells and pebbles. The two most abundant and prominent species are Bugula turita (p). 311, Plate XXXIV, figs. 258, 259) and Escharella rariabilis, (p. 312, Plate XXXIII, fig. 2.56.) The former grows attached to the varions sea-weeds in great quantities, forming delicate white plumes, often six inches to a foot in length. The latter mostly forms calcareons incrustations over the surfaces of dead shells and pebbles, thin at first, but eventually becoming thickened by the formation of layer over layer, matil the crust may become half an inch to an ineh in thickness, with a tabulated and resicnlar structure in the interior. The masses thus formed often closely resemble gemme corals, especially some of the ancient fossil forms, and they often oceur in great quantities. When living the color is dull red, but when recently dried they have a jellowish green color, which easily bleaches out, however, by exposure to the sman and Tesich$l_{\text {arial }}$ dichotoma, (1.40t, Alcyonidinm ramosum, (p. 404, Plate X゙XXIV, fig. 257, and Crisia churnea (p. 311, Plate XNXIV, figs. 260, 261) are usually abundant. Most of the remaining speeies have also been mentioned in the previons pages as inhabitants of rocky bottoms, or else among the shore species.
Among the species not previously mentioned are Celleport seabra,
which forms branching, coral-like masses on the slender red algae; a species of Lepralia, fonnd with the last, and also on shells, whuch is allied to L. Pallasiana of Europe; Mollia hyalina, which forms eirenlar disks, with irregular, more or less oblique cells; and Membranipora temuis, which is common on the pebbles, often covering their whole surface with a delicate lace-like incrustation, made up of very small, crowded, oval or oblong cells, which have the inner part of the front partly closed over, but with an irregnlar, mostly three-lobed aperture toward the onter end, which is bordered by small, irregular spinules.

The Vesicularia fusca was also found in a few instances, in deep water. It had not been previonsly known on the American coast. Good specimens of the Caberea Ellisii were also dredged in the deeper parts of Vineyard Sound, attached to ascidians.

Of Echinoderms the number of species is not large. The common green star-fish, Asterias arenicola (Plate XXXV, fig. 269) is very common; the Cribrella sanguinolenta, (p. 407,) is comparatively rare; aud the green sea-urehin, S. Dröbachiensis, (p. 406,) is quite infrequent. The purple sea-urchin, Arbacia punctulata, (p. 326,) is, however, quite common in many localities. The largest and finest specimens were taken off Holmes' Hole, but it was quite abundant, though of moderate size, in Great Harbor and Wood's Hole passage. The Thyone Briareus (p. 362) is not uncommon in shallow water, especially among weeds; it has already been mentioned, (p. 418,) as carrying Enlima oleacea attached to its skin.

Another Holothurian, the Pentamera pulchella, seems to be quite common, judging by the numerous specimens thrown on Nobska beach by the storms, and preserved for us by Mr. Vinal N. Edwards, during the past winter, but it was dredged only in one locality, off Holmes' Hole, by Messrs. T. M. Prudden and T. H. Russell. It is a sonthern species, not previously known north of the Carolina coasts. It is easily distinguished from the preceding species by its light color, and by having the locomotive-suckers arranged in five broad and very distinct longitudinal bands, with naked spaces between them.

A very delicate little Ophimrian, the Amphipholis elegans, was occasionally met with on the shelly bottoms. This is a northern species, mnch more common in the Bay of Fundy, where it is found from lowwater mark to 80 fathoms, and it is found also on the northern coasts of Enrope. It has a nearly circular disk, covered with smooth scales, regularly arranged, and each of the seales, on the sides of the slender rays, bears three short, blunt spines. Its color is usually light gray or whitish, frequently more or less marked with dark gray or brown.

The Ifydroids are numerous on these bottoms, and mostly of the same species that have been mentioned as occuring on rocky bottoms.

The Polyps are few and essentially the same as those on the rocky bottoms. The only additional species was a small, slender, undescribed
species of Edwardsia, E. lineata V., living in the interstices among ascidians and the tubes of Sabella and Potamille.

Sponges also oceur in considerable mumbers. Among them the most conspicuons is the Cliona sulphurea, a bright sulphur-yelow species, growing into hemispherical or irregular, massive forms, of firm texture, the surface covered with seattered, low, wart-like, soft prominences, about an eighth of an inch in diameter, which contract when the sponge is dried, leaving shallow pits. The sponge commences as a boring species, on varions dead shells, and as it grows it penetrates the shells in every direction, forming irregular holes and galleries, which continue to grow larger as more and more of the substance of the shell is absorbed, until the shells are reduced to a completely honey-combed, brittle mass, or a mere skeleton ; finally the sponge begins to protrude from the surface, and grows up into mammilliform masses, or small, rounded crusts, which continue to grow and spread in every direction, mutil finally they may form masses sic or eight inches in diameter, with the base spreating over and enveloping various dead shells, pebbles, and the coral, Astrangia Dame, thongh it often happens that living specimens of the latter grow upon the sponge. Owing to the remarkable boring babits of this and other allied sponges, they are very important in the economy of the sea, for they are the prineipal agents in the disintegration and decay of the shells that accumulate over the bottoms, thus performing the same function in the sea that fungi and insects perform on the laud-the remoral of dead organisms that otherwise would aecumulate in rast quantities. In this work they are aided, in most regions, either by certain boring Amnelids, (Dodecacerea, \&ce.,) or by various boring mollusks, (Lithodomus, Pholas, Gastrochenu, \&e.,) but the greater part of this work seems to be effected by the sponges.

Numerous species of Foraminifera were obtained on these and also on the rocky bottoms, but they liave not yet been studied. The most common kind occurs attached by one side to dead shells, algre, \&e. It consists of several chambers arranged in a spiral manner, and to the naked eye resembles a minute depressed spiral shell.

List of species inhabiting gravelly and shelly bottoms of the bays and sounds.

Articulata.			
Chironomus halophilus...	I'age. 41.5	Muscidie, larva	Page. $3: 35$
Pyenogonids.			
Phoxichilidium maxillare.	Page. 415	Pallene, sp..	Page. 409

Crustacea.
Page. Page.

415

415 Lepidactylis dytiscus Lepidactylis dytiscus 339 339
Cancer irroratus
Cancer irroratus
415 Mora levis 315
Panopeus depressus415
P. Sayi
Autonö̈, sp 415
Pelia mutica 415 Amphithö̈ maculata 415
Heterocrypta granulata 415 Unciola irrorata 415
Eupagurus pollicaris. 415 Corophium eyliudrieum 415
E. longicarpus 415 Caprella, sp 316
Homarus Americanus. 415 Idotea phosphorea 316
Crangon valgaris 415 Erichsonia filiformis. 316
Hippolyte pusiola 395 Epelys trilobus 370
Mysis Americana 415 Balanus creuatus. 415
Meteromysis formosa. 415 Numerous Entomostraca.
Annelids.
Page. Page.
Lepidonotus squamatus 320 320
L. sublevis 320
Harmothoë imbricata321
Sthenelais picta 345
Nephthys picta348 Cirrhinereis fragilis
416
416
Polydora, sp
Polydora, sp
416
416
Scalibregma brevicanda
Scalibregma brevicanda 416
N. bucera. 416 Naraganseta coralii N. bucera319397
349 Dodecacerea, sp Pbyllodoce, sp 397
349 Clymenella torquata Eulalia, sp 343
349 Sabellaria rulgaris Eulalia, sp 349
Enmidia, sp 349 Cistenides Gouldii. 349
Eteone, sp 349 Ampharete setosa. 416
Autolytus cornutus 397 Samytha, sp 416
A., sp., banded $39 S$ 320
Amphitrite ornata.
Nereis pelagica319
N. limbata 318
Nereis, sp 416 Potamilla oculifera 322
321
Nicolea simplex.320
Diopatra cuprea 346 Sabella microplithalma 323
Marphysa Leidyi 319 Euchone, sp 416
Lumbriconereis opalina 320 Fabricia Leidyi 323
L. tenuis 320 Serpula dianthus. 416
Anthostoma acutum 416 Vermilia, sp 416
Anthostoma, sp 416 Spirorbis spirillum 323
Scolecolepis cirrata 416
Sipunculoids.
Page. Page.
Phascolosoma camentarium 416 Phascolosoma, sp. 416

Nemerteans.

	$\begin{array}{r} \text { Yage. } \\ 3 \ddot{3} \pm 4 \end{array}$	Cosmocephala ochracea	Page. 325
Polinia glutinosa	324		
	Mollusca.		
	Cephatopods.		
Loligo Pealii, eggs and adnlts			Page. 416
	Gastropods.		
	Page.		Page.
Pleurotoma bicarinatum.	418	Bittium nigrum	417
Bela plicata	383	Triforis nigrocinctus.	417
Fulgur carica	417	Cerithiopsis Greenii.	417
Sycotypus canaliculatus.	417	C. terebralis	417
Tritia trivittata	354	C. Emersonii.	417
Eupleura caudata	371	Vermetus radicula	417
Urosalpinx cincrea	306	Cxecum pulchellum.	417
Astyris lmata.	417	C. costatum.	417
A. zonalis.	399	Crucibulum striatum	417
Anachis arara	417	Crepidula fornicata	417
Oflostomia producta.	417	C. unguiformis ...	417
O. finsca	307	C. convexa.	355
O. trifiela	417	Natica pusilla.	417
O. seminuda	417	Lunatia heros.	417
O. impressa.	417	Scalaria lineata	418
O. bisuturalis	307	S. multistriata	418
Turbonilla interrupta..	418	Leptochiton apicnlatus.	399
T. elegans	415	Polycera Lessonii.	400
Eulima oleacea.	418	Doto coronata.	400
Lacuna vincta	417	Doridella obscura.	307

Lamellibranchs.

Saxicava arctica	Page. 309	A. modestus	Page. 418
Mya areniria, (young)	309	Gastranella tumicla	418
Corbula contracta	418	Cardium piumulatum	435
Clidiophora trilineata	418	Cyclas dentata.	418
Lyonsia lỵalina	355	Kellia planmata	418
Cochlodesma Leanum	418	Montacuta elevata	415
Mactra solidissima	418	Gouldia mactracea	415
Mulinia lateralis	373	Astarte castanea	43:
Cumingia tellinoides.	415	Cyclocardia borealis	418
Angulus tener	355	C. Novanglite.	415

RADIATA.

Echinoderms.

PROTOZOA.
Sponges.

Foraminifera.

Page.
Numerous speeies ... 421
II. 7.-FAUNA OF THE SANDY BOTTOMS OF THE BAYS AND SOUNDS.

The sandy bottoms in Vineyard Sound are chiefly found in shallow water, either along the shores or on the banks and shoals. In Buzzard's Bay they were met with only in few places, near the shore, and have no great extent. To the eastward of Vineyard Sound, throughont the greater part of Nantucket Sound, Muskeget Channel, and the waters south and southeast of Nantucket and Cape Cod, the bottom is generally sandy, sometimes passing into gravelly and shelly.
The true sandy bottoms are not favorable to many kinds of animals, and where the sands are constantly changing, as on most of the shoals in this region, the bottom is sometimes almost barren of life, though certain burrowing species may oceur.

The following are some of the special localities where dredgings were made on sandy bottoms: In Buzzard's Bats, at line 11, d, $e, f ; 64, a, b$; $66, a, b ; 67, a, b ; 68, a, b ; 71, a, b, d ; 73, a, b, c, e, f$. In Vineyard Somnd, at line 14, $g, h ; 2 \overline{5}, a, b ; 27, a, b ; 30, a, b ; 37, h, i ; 43, a, b$; $46, c, d ; 47, d, e ; 48, a, b$. A large portion of the species occurring on these bottoms have been mentioned before either as inhabitants of the sandy shores at low water, or as living upon gravelly and shelly bottoms. With the exception of a few species living attached to scattered shells or stones, nearly all the species are such as are adapted to bur-
rowing beneath the surface of the sand, though many of them may also occur creeping on its surface.

The most abundant and characteristic species of Crustacea are the lobster, Homarus Americanus, (p. 313,) the common shrimp, Crangon vulgaris, (1. 339, Plate III, fig. 10,) the "lady-crab," Platyonichus ocellatus, (p. 33s, Plate I, fig. 4,) the larger hermit-crab, Eupagurus pollicaris, (p. 313,) the smaller hermit-cral, Eupagurus longicarpus, (p. 313,) Anthura brunnea, Conilera concharum, Unciola irrorata, (p. 340, Plate IV, fig. 19.)

Of Annelids a considerable number of burrowing species occur, and also a few tube-dwelling species, which attach their tubes to dead shells; among these last are Sabellaria vulgaris (p. 321, Plate XVII, figs. 88, 88a,) and Serpula dianthus, (p. 322.)

The Gastropods are not numerous, and but few are peculiar to sandy bottoms; the majority found have their proper homes on shelly or muddy bottoms aud live in much smaller numbers in sandy places; others emmerated in the following list inhabit the patehes of eel-grass and alge that are often scattered over the sandy bottoms in shallow water. A few species, however, have their proper homes on the sandy bottoms. Among the most important of these are Lunatic heros, (p. 353, Plate NXIII, figs. 133-136,) Neveritu duplicata, (p. 354, Plate XXIII, fig. 130,) Natica pusilla, (p. 354, Plate XXIII, fig. 132,) Cylichna oryza, (Plate XXV, fig. 164,) Utriculus camaliculatus, (Plate XXV, fig. 160.)

The bivalve shells are more mumerons, and most of them are species that burrow beneath the surface. The most common and characteristic species are Ensatella Americana, (p. 356, Piate XXVI, fig. 182, and Plate XXXII, fig. 245, Siliqua costuta, (p. 35s, Plate XXXII, fig. 244,) Mactra solidissima, (p. 3ãs, Plate XXVIII, fig. 202,) Angulus tener, (p. 35s, Plate XXVI, fig. 180, and Plate XXX, 223, shell ;) Tottenia gemma, (p. 359, Plate XXX, fig. ${ }^{220}$,) Lyonsia hyalina, (p. 358, Plate XXVII, fig. 194.) In certain localities, where cel-grass grows, the scollop, Pecten irradians, (p.361, Plate XXXII, fig. 243,) occurs in considerable abondance. The common musele, Mytilus edulis, (Plate XXI, fig. 234,) occasionally occurs in patches or beds. Laricardium Mortoni (p. 35s, Plate XXIX, fig. 208) is sometimes abundant in sheltered localities. The Ceronia arctutu appear's to be abundant in some places, as it is sometimes thrown on the sandy beaches in large numbers, but it was seldom dredged. The Thracia Conradi lives on sandy bottoms, buried six inches or more beneath the surface, but is seldom obtained alive. The dead shells were occasionally dredged in Vineyard Somnd.

Very few Ascidians oceur. The most frequent one is Molgula aremata, (p.419, Plate XXX1II, fig. 251,) which lives free in the sand and covers itself with a coating of closely adherent grains of sand. Another species, M.pellucida, is occasionally met with; this also lives free in the sand, but does not attach the sand to itself. It has a clean translucent integument, a round borly, and two tubes which are large and swollen at their
bases. Where eel-grass or alge afford opportunities for its attachment, the M. Manhattensis (p.311, Plate XXXIII, fig. 250) generally oceurs.

The Bryozoa are not mumerons, muless where dead shelts are scattered orer the sand for their attachment, when many of the same species that inhabit shelly bottoms may oceur. The only species that are frequent on the true sandy bottoms are Bugula turrita, (Plate XXXIV, figs. 25s, 259,) which oceurs attached to eel-grass, \&e., and Escharella variabilis, (1. 311, Plate XXXIII, fig. ©56, which incrusts dead shells or other solid objects; with the last, Membranipora lincata, (p. 406,) and several other speeies may sometimes be found.
Several species of Echinoderms inhabit the sandy bottoms. The most abundant one is the "sand-dollar," Echinarachnius parma, (p. 362, Plate XXXV, fig. 267 ,) which oceurs in immense numbers on nearly all sandy bottoms, except on the most exposed shoals. Another related species, Mclitta testudinaria, was dredged two or three times in Vineyard Somnd, but the specimens were dead and broken. It is a very abundant species south of Caje Hatteras, and may be distinguished by having five large oblong perforations near the edge.

At least three species of Holothurians live upon the sandy bottoms. The most common one is the Thyone Briareus, (D .362 ,) conspicnons on account of its large size and dark purplish-brown color, as well as for the numerous long papillie that cover its body. It was found on a sandy bottom off Waquoit, with the Eulima oleatca (Plate XXIV, fig. 149) adhering to its surface, just as they oceurred together on shelly bottoms, (see p. 418.) The Pentamera pulchella, (1. 420,) also inhabits sandy bottoms, in shallow water. During the past winter Mr. Vinal N. Edwards collected mumerous specimens of this and the preceding species on Nobsca beach, after storms. They doubtless live in the sand, in shallow water, a short distance off the beach. In similar situations the Caudina arenata, (p. 362,) occasionally oceurs, but it is apparently rare in this region. It has a thick, yellowish white, harsh skin, without suckers, and its body tapers off into a slender caudal portion. The common star-fish, Asterias urenieolu, (p. 326, Plate XXXV, fig. 269,) is not uncommon on sandy bottoms, though more abuudant in rocky and shelly localities. The Ophiura olivacea (p.363) lives among the patches of eel-grass in shallow water on the sandy bottoms, and travels over the surface of the sand quite rapidly by means of its slender, flexible rays.

Of Hydroids very few speeies ordinarily inhabit sandy bottoms, and the only one that is usually met with is Hydractinia polyclina, (1. 32S,) which lives on the shells occupied by hermit-erabs. Others occasionally grow on the eel-grass or on dead shells.

The Cliona sulphurea, (p. 421,) is the only large sponge that is commonly wet with on sandy bottoms, but another bright yellow siliceous sponge, forming smooth, firm, crest-like lobes and plates, oceurred on Edgartown beach.

List of species inhabiting the sandy bottoms of the bays and sounds.
articulata,
Crustacea.

	Page		Pag
Cancer irroratu	312	Lepidactylis dytiseus	a
Carcinus granulatu	312	Unciola irrorata	426
Platyonichus ocellatu	436	Idotea creca	340
Hippa talpoida	338	Epelys trilobus	370
Eupagurus pollicar	426	Conilera concharum	426
E. longiearpus	426	Anthura brunnea	426
Homarus American	426	Limulus Polyphemus	340

Crangon vulgaris 426
Annelids.
Page. Page.
A. acutum 416
Nephthys picta 348
Eteone, sp 349
Neresis pelagica 319
Lumbriconereis opalina 320
Rhynehobolus dibranchiatus 341
R. Americanus 342
Anthostoma robustum 343
Scolecolepis cirrata 416
Polydora, sp. 416
Clymenella torquata. 343
Sabellaria vulgaris 426
Cistenides Gouldii 323
Amphitrite ornata. 320
Serpula dianthus 426
Nemerteans.
Page. Page.
Meckelia ingens............ 349 M. rosea 350
Sipunculoids.
Page. Page.
Phascolosoma Gouldii. 353 P. cæmentarium 416
MOLLUSCA.
Gastropods.
Page.
Page.
Odostomia seminuda
Odostomia seminuda 417 417
Turbonilla interrupta
Turbonilla interrupta 418 418
Bittium nigrum
Bittium nigrum 305 305
Triforis nigrocinctus
Triforis nigrocinctus 305 305
Cerithiopsis Greenii
Cerithiopsis Greenii 417 417
C. terebralis
C. terebralis 417 417
C. Emersonii
C. Emersonii 417 417
Cæcum pulchellum
Cæcum pulchellum 417 417
355
355
Fulgur carica
355
355
Sycotypus canaliculatus
371
371
Eupleura caudata 306 306
Tritia trivittata 354 354
Ilyanassa obsoleta. 354 354
Anachis avara 306 306
Astyris lunata 306 306
Page.
C. costatum 417
Lumatia heros
Lumatia heros 426 426
Crepidula fornicata 350
C. convexa 355
C. unguiformis 35.5
Natica pusilla 436
Neverita duplicata 426
Cylichna oryza 426
Utriculus canaliculatus $4 \div 6$
Lamellibrunchs.
Page. Page.
Ensatella Americana 426
Tellina tenta 432
Siliqua costata 426
Mya arenaria 357
Corbula contracta 418
Clidiophora trilineata 418
Lyonsia hyalina. 426
Thracia Conradi 426
Periploma papyracea 435
Cochlodesma Leanum. 418
Mactra solidissima 426
Mulinia lateralis 373
Ceronia arctata 426
Macoma fusca 359
Angulus modestus 418
A. tener 426
Vemus mercenaria 359
Tottenia gemma 426
Levicardium Mortoni 426
Cyclas dentata 418
Solenomya velum 360
Gouldia mactracea. 418
Astarte castanea 432
Myti lus edulis 426
Pecten irradians 426
Anomia glabra 311
Ascidians.
Page. Page.
Molgula arenata Molgula pellucida 426
M. Manhattensis 427Bryozoa.
Page. Page.
Bugula turrita Escharella variabilis 427
Membranipora lineata. 427
RADIATA.
Echinoderms.
I'age.
I'age. 4
Thyone Briareus Melitta testudinaria 427
427
I'entamera pulchella
427
Candina arenataAsterias arenicola427
Ophima olivacea. 427
Echinarachnius parma. 427
Acalephis.
Page. Page.
Obelia diaphana $3: 7$ Hydractiuia polyclina 427

Polyps.

Abstract

Page. Paractis rapiformis 363

PROTOZOA.
Sponges.
Page. Page.
Cliona sulphurea.......... 427 Massive siliceoussponge.... 427
Foraminifera.
Several species... Page. 421
II. S.-FAuna of the muddy bottons of the bays and sounds.

The muddy bottoms are inhabited by a considerable number of species, which find their true homes in such localities. Most of these are either burrowing or tube-dwelling kinds. A few creep or swim about over the surface or conceal themselves in the superticial layer of mud and vegetable débris.

The character of the mud itself is quite various, and the different kinds are often inhabited by different groups of animals. The mud may be very thick, heavy, and tenacious, consisting chiefly of clay; such mud is usually inhabited by few species of animals. It may consist of finely comminuted sand, mixed with more or less clay; such bottoms are more farorable to animal life. In other places it consists partly of one of the preceding kinds intimately mixed with large quantities of decaying vegetable débris, derived chicfly from eel-grass and alga; such mud, unless too fetid, is often full of animal life. In some cases, especially in well-sheltered localities, where the water is tolerably pure, the mud may eontain large quantities of living aud dead microscopic organisms, both animal and vegetable, and these may even constitute more than one-half of the bulk of the mud, which, in such cases, is peculiarly sott and floculent; such mud is extremely favorable to many kinds of animals that feed on the microscopic organisms, especially the bivalve shells, Holothurians, and many Annelids, and the "menhaden" among fishes. The last variety of bottom, when it has a substratum of sand or gravel a few inches below the surface, is the most favorable kind for oysters, which grow very rapidly and become very fat in such places.

In Vineyard Sound and Nantucket Sound muddy bottoms are not common, and are mostly of small extent, situated in coves, harbors, or in places where the tides form eddies around projecting points of land, or in the lee of shoals.

In Buzzard's Bay the bottom is muddy over the greater part of its area, except a region of sandy and shelly bottom in the central part.

In Long Island Sound the bottom is generally muddy throughout its
length and breadth, thongh small areas of rocks, gravel, and samd oceme at various places.

The special localities, indicated on the chart, where dredgings were made on muddy bettoms, not inchuding the outside dredgings, are as
 c, d, c, f^{\prime}; in Hadley I mbor, at $10, a, b, c, d$; in Great Harbor, at 17, b, c; 19, b; in Robinson's Hole, at $78, a, b, c$; in Vineyard Somm, at $47, b, c$. Numerous other dredgings were made on muddy bottoms in this region that are not indicated on the chart.

In Long lstand Sound mmerous dredgings lave been mate by the writer, with Mr. S. I. Smith and others, dming eight years. These extend from a few miles west of the entrance of New Haven Harbor to the Thimble Islands and Fanlkner's Island on the east; and from the Conneetient shore nearly across the sombl. The greater part of these dredgings were on muddy bottoms, and generally in 3 to 8 fathoms of water.

The following are some of the most common and important of the Crustacea living on these muddy bottoms: the spider erab, Libinia canaliculata, (1). 368,) L. Inbia, (1. 368,) T'anopeus depressus, (p. 312, Plate I, fig. 3,) I'. Sayi, (p. 312,) the "bhue-crab," Callinctes hastatus, (p. 307,) Mysis Americana, (p. 396,) Ptilocheirus pingmis, (p. 431,) Unciola irrorata, (p. 340, Plate IV, fig. 19,) Limulus Polyphemus, (p. 340.) Numerous thbedwelling Amphiporls, including sercral species of Ampelisea and genera belonging to the Lysiantssinue occur, some of them in great numbers, and also additional species of erabs and shrimps. All these are of special importance, because they fmonsh great quautities of food for the fishes frequenting muddy bottoms.

Of Amelids mmerons burrowing and tube-dwelling linds are to be found, some of them in great abmudance. One of the most abmudant aud conspicnous species is Neplethys ingens, (l'late XII, figs. $59,60$.$) This$ worm burrows in mud of all kinds, even in that which is so filled with decaying vegetable débris as to be very fetid. It grows to the length of more than six inches, with a diameter of a quarter of an inch or more, though most of the specimens are about half this size. The body is whitish, with a red median blood-vessel, but the lateral appendages are dark and the sete nearly black. It is very active, and wriggles abont energetically by undulating its body laterally, to the right and left ; this motion embles it to burow quickly, or to swim duite rapidly. When captured it is rery apt to break off the posterior part of its body, but can reproduce it.

The Jiopatrel cupreat (p. 346, Plate XIII, figs. 67, 6S) is often abomdant where the mud is somewhat firm ; the dredge often brings up large quantities of the projecting ends of its large tubes, but the orempant usually escapes by retreating below the sufface. The two species of Rhynchobolus are also quite common, but R. dibranchiatus (p. $3 \not 11$, Plate X , figs. 43, 44) is generally the most abumdant. The curions Tretisia cernet V. is seldom met with, and, like Bradd setosa V., appears to be rare
in this region. The Trophonia affinis (Plate XIV, fig. 75) is more common, though found chiefly in the deeper waters, and more frequently in the cold waters outside, as off Cuttyhunk Island and off Block Island. Ampharete setosa V. has been found only in Long Island Sound, near New Haven. The Mclimna cristata is a northern and European species; it was found in the deeper part of Vineyard Sound, inhabiting flexible tubes coverell with fine mud. Euchone elegans V. (Plate XVI, fig. 84) was found in the deeper parts of Vineyard Sound, living in small tubes of mud; it was much more abundant in the deeper waters ontside. The Meckelia ingens (p. 349, Plate XLX, figs. 96, 96a) occasionally ocenrs on muddy bottoms, though more common on santy ones.

Of Gastropod mollusks a comparatively small number of species occur that are characteristic of these bottoms. There are several species that occur on eel-grass, when it grows on the muddy bottoms, which are not included in the following list. They have been mentioned when speaking of the fama of muddy and sandy shores.

Among the species of special interest were Mangilia cerina, which is a rare and little-known species; Bela plicata (p. 383, Plate XXI, fig. 107) ; Turbonilla elegans, (p. 418, Plate XXIV, fig. 155), which was recently described from specimens obtained in Vineyard Sound by us; I. interrupta, (p. 418;) two species of Scalaria, (p. 418;) Cylichna oryze, (Plate XXV, fig. 164;) Amphisphyra pellucida, (Plate XXV, fig. 162;) and Utriculus canalieulatus, (Plate XXV, fig. 160).

The bivalve shells are much more numerous and are mostly burrowing kinds. Among the most abundant are Mulinia lateralis, (p. 373, Plate XXVI, fig. 184 B ,) which occurs in immense quantities, especially in soft sticky mud; Clidiophora trilineata, (Plate XXVII, fig. 193;) Tellina tenta. (Plate XXX, fig. 225.) which is often very abundant in soft mud, in sheltered places, as in Hadley Harbor; Callista convexa, (Plate XXX, fig. 219 ;) Nucula proxima, (Plate XXX, fig. 230;) Yoldia limatnla, (Plate XXX, 232 ;) Astarte castanea, (Plate XXIX, fig. 204;) and Mytilus cdulis, (p. 307.)

The last-named shell, which is the common muscle, ocen's in patches, "beds," or "banks," often of great extent. One of these innsele-beds, in which the animals were living, was found extending quite across the month of Cuttyhnnk Harbor, at line $75, f$, on the chart; another at Quick's Hole, at line 76, e, and 45, a, b; others at $77, d, e, f ; 46, b, c, d$. In several instances large beds of dead muscles were found, with few living ones, and in all these cases there were on them large numbers of star-fishes, either Astcrias arenicola, in case of those in Vineyard Sonnd; or Asterias culgaris on those in the deeper and colder waters near the entrance of the Sound and off Gay Head; and sometimes both kinds, at intermediate localities. These star-fishes had no doubt devoured the muscles. Among the localities of this kind are, 47, $a, b, c, d ; 53, b, c$; $56, b, c, d ; 55, a, b, c ; 63, a, b ; 58, d ; 54, b$. As this species of muscle grows to full size, under favorable circumstances, in one year, it is probable that these masele-beds vary greatly in size and position in different
rears. They afford habitations for vaious kinds of animals that belong properly on shelly or stony bottoms, sneh as Arbaciot punctuleta (p. 329, Cribrelle senguinolente, (D. 40̄̈,) and various shells, ascedians, hydroids,
 numbers, but of enod size, associated with the common musche, in the deeper part of Vineyard Sound.

The oyster does not msually occur on true mudhly bottoms in this region, males placed theme by hum agency, but muless attacked by the star-fishes or other enemies they will flomish well in such localities. Beds of oysters on muldy bottoms always afford lodgment for large mmbers of animals that helong properly to the shelly and rocky bottoms: these have mostly been omitted from the following list.

Among the shells of peculiar interest that live in the mud are the species of Pholus. The largest and finest species, P. costutu, has been found living in New Bedford Harbor, according to Dr. Gond. It lived buried in the mul two or three feet below the surface, and the specimens were dug out by the harhor-hredging machines. This is a southenn species, found quite commonly on the coasts of South Carolina and Florida, and in the Gnlf of Mexico. With the last, I' trmouta (1). 37, Plate SXVII, fig. 200) was also obtained, but this is quite common in mur and peat-banks, above low-water mark. Of both the preceding species we dredged dead shells at Wood's Hole and in Great Harbor, and with them we fomm fragments of another, Zirpheer crispute, which is a northern and European species. It is seldom that living adult specimens of such deep-burowing shells can be obtained by the ordinary dredge, and they are rarely thrown up by the waves.

Aseidians are not often found on the muddy bottoms, and most of those that do occur adhere to the shells of oysters, muscles, \&e., or to eel-grass. Ifydroids and Brjozoa are likewise nearly wanting on true muddy bottoms, though a few may oceur on the eel-grass and uysters.

Of Echinoderms there are but few species. The Thyone Briarens (p. 362) sometimes occurs where there is growing eel-gras. The common star-fish, Asterias arenicola, (p. 326,) has been mentioned above as inlabiting muscle-beds and oyster-beds. The Amphipholis abdita V. is a singular Ophiman, with a small body and very long, slender, flexible, greenish arms, having three spines on each side arm-plate. The arms are sometimes six inches long. The creature buries itself deeply beneath the surface of the soft mud, and projects one or more of the long arms partially above the surface of the mud. On this accomet it is seldom dredged entire; the projecting arms are usually cut off by the dredge, and the animal escapes; and as it has the power of restoring lost arms, this is only a temporary inconvenience. The same thing probably happens when a roracious fish seizes one of the arms.

List of species inhabiting muddy bottoms of the bays and somms.

ARTICULATA.

Crustacer.

	Page.		Page.
Pinnotheres ostreum.	367	Squilla empasa.	369
P. maculatus	459	Lysianassinte, several spe-	
Cancer irroratus	312	cies	431
Panopens depressus.	431	Phoxus Kroyeri	
P. Sayi	431	Melita nitida.	314
Carcimens granulatus	312	Ampelisca, two species	431
Callincetes hastatus	431	Ptilocheirus pinguis	431
Libinia canaliculata	431	Amphithoë compta	370
L. dubia.	431	Corophium cylindricum.	115
Eupagurus pollicaris.	313	Unciola irrorata.	431
E. longicarpus	313	Epelys trilobus	370
Callianassa Stimpsoni	369	E. montosus	370
Crangon vulgaris.	339	Limulus Polyphemus	431
Mysis Americana.	431	Numerous Entomostraca	
		clids.	
Nephthrs inge	Page. 431	Travisia carnea	$\begin{array}{r} \text { Page. } \\ 431 \end{array}$
Phyllodoce, sp	349	Trophonia affuis	432
Eulalia, sp	349	Brada setosa	431
Nereis pelagica	319	Cistenides Gouldii	323
Diopatra cuprea	431	Ampharete setosa	432
Marphysa Leidyi.	319	Melinua cristata	432
Lumbriconereis opalina	320	Polycirrus eximius	320
Rhynchobolus Americanus .	342	Chatobranchus sanguineus.	320
R. dibrauchiatus	431	Euchone elegans	432
	Neme	teans.	
	Page.		Page.
Meckelia ingens.	432	Cosmocephata ochracea....	325
Cerebratulus, sp........	324		

Sipumentoids.
Phaseolosoma ciementarium . \quad Page. 416

Nematodes.

MOLLU゙NCA.

Gastroyorls.

Mansilia cerina	I'age 4i:	Crepidnar fornicatar.	Pagr. 35.5
Bela plicata.	132	C. convexal.	:3\%
Tritia trivittata	351	C. unguiformis	35.5
Hyanassa obsoleta.	3.51	Scalaria lineata	$1: 2$
Euplema candata.	371	S. multistriatat	4i\%
Olostomia semimuda.	117	Utriculus camaliculatus .	13i
O. fuscel	307	Bulla solitaria	371
Turbonilla interrupta	4%	Amphisphyra pelneida	$4: 3$
T. elegims .	4\%	Cylichna ory\%a	$13 \pm$

Lamellibranells.

P. trumeata $43: 3$ Kellia plammata $: 10$
Mya arenaria 309
Moutacuta elevata 418
Clidiophora trilineata 4i3
Lyonsia hy̌alina 355
Periploma papyracea 129
Mulinia lateralis $4: 3$
Tagelas gibbus $37: 3$
'T. divisus
Cmmingia tellinoides. 418
Macoma fusca 3.9
Angulus tener 255
Tellina tenta 132
Callista convexa 43:
Venns mercenaria O.)!
Petricola pholadiformis 372
Solenomya velum 360
Astarte castanea 432
Cyelocardiat horealis 418
C. Novangliar 418
Nucula proxina $4: 3$
Ioldia limatula 432
Argina pexata 309
Mytilus edulis 432
Modiolaria nigra 433
Crenella glandula 418
Anomia glabra 311
Ostraa Virginiana 43:
Ascidians.
Pike. Page.
Molgula Manlattensis S11 Cynthia partita : 11
にADIATA.
Echinoderms.
l'age. Tare.
Thyone Briareus Amphipholis abredia $43:$
Asterias arenicola $4: 3$

Under this head I have included all the animals found swimming free, whether in the bays and sounds, or in the colder region ontside. Nor have I, in this case, attempted to separate those of the estuaries aud other brackish waters, although such a distinetion might be useful had we sufficient data to make it even tolerably eomplete. But hitherto very little surface-ollecting has been done in waters that are really brackish; and, moreorer, since every tide must bring in myriads of freeswimming creatures with the waters from ontside, it will always he difficult to distinguish between those that are thas transported and those that properly belong to the brackish waters. A distinction between the freeswimming animals of the bays or somnds and those of the open coast has not been made, partly on accomnt of the constant intermixture of the waters and their inhabitants by the tides, and partly becanse the observations that were made do not indicate any marked difference in the life or in the average temperature of the surface waters, though the waters of the shallow bays become more highly heated by the direct heat of the sun in summer. The waters of the open coast are evidently more or less warmed by the Gulf Stream, and in fact numerous species of animals that properly belong to the fana of the Gulf Stream are constantly bronght into Vinesard and Nantucket Sounds by the currents, showing conclusirely that a portion of the Gulf Stream water must also take the same comse.

In Vineyard Somd, huring Alngnst and the first part of September, the temperature of the surface water in the midlle of the day was generally from 68° to 71° Fahrenheit; September 9, of Tarpaulin Cove, the surface temperature was 66°; off to the west of Gay Hearl, in midchamel, it was 65° Fahrenheit; but farther ont, off No Man's Land, on the same day, it was 620 , (bottom, in 18 fathoms, 62.20 ;) a short distance west of No Man's Land it was 633°, (bottom, in 11 fathoms, 59°;) about sixteen miles off Newport, at the 29 -fathom locality, it was 620 on September 14, (at the bottom 59°;) off Cuttyhonk, in 25 fathoms, it was 64° at the surface on September 13, (bottom 6210.) According to the record made by Captain B. J. Edwards, during the past winter, from observations taken at $9 \mathrm{a} . \mathrm{m}$. every morning, at the end of the Government wharf at Wood's Hole, (where the temperature must be nearly identical with that of Vinesard Sonnd,) the average temperature of the surface water was 31° Fahrenheit, from December 27 to February 28. The arerage temperature for that hour during Jannary was 31.42°; the lowest was 290 on Jaunary 29, with the wind N. W.; the highest was 35° on Jannary 17 , with the wind S . W.; on the 18 th, 19 th, and 2ed it was 35°. The arerage for Febrnary was 30.75°; the coldest was 290 , on February 24 and 25 ; the highest 33°, on February S, 17 , and 19. The temperature at the bottom (at the depth of nine feet) was also taken, but rarely differed more than one degree from that of the
surfaee, being sometimes a little lower and sometimes higher tham that of the surface, but generally the same. The higher temperatures msually occomed with, or following, southerly or sontheasterly wimh, (from the direction of the (inlf Stream,) while the lowest ones gemeratly acempanied or followed mortherly wiads. The tides must obs. vionsly also have some effect in modifying the temperature.

It mast not be infermed from the preceding remarks that a distind or constant chrrent flows into these waters from the region of the Gulf Stream, for the facts do not warrant such a beiief, nor is there any dif. fienlty in explaning the phenomena in another way: All that is necessary to accomt for the higher temperatures of this region, and the frequent ocenrence of (inlf Strean anmals, is to suppose that when southerly or southeasterly wimk blow contimously for a considerable time they canse a superfial flow or dritt of warmer water from the Gulf Stream region towad these shores, which may also be aided by the tieles: such a sufface frift will giradually lose its distinctuess as it appoaches the coast and mingles more and more with the cooler waters bencath, but the anmali borne along ly it will still serve to show its direction and origin, evea after its temberature becomes iden. tieal with that of the adjacent waters. Such surface currents would necessarily be intermittent in character and variable in direction and extent, as trell as in duration and temperature. They wonld also be more frequent in summer than in winter, according with the prevalent direction of the winds. So far as known to me all the facts are in harmony with this view. Accordingly the waters of Vinesard sound are quite cold in winter, and only occasionally receive a little lieat from the Gulf Stream region, and that, probably, largely through the medium of the air itself; but in summer these waters are rery farm, for they not only receive frequent accessions of wam water from the Ginf Stream, but they are also farorably situated to be rapidly wamed by the direet heat of the sum.

The fanm of the surface in this region is rery rich and raried, especially in summer. In winter, life is also aboudant in the surface waters, but very different in character from that found in summer. Had collections leen made in spring amd antum, still other groups of animals would donbtess have been found. Ond knowletge of the surface anmals of Vineyard Somed, in winter, is wholly based on a series of surfacedredgings made by Mr. Vinal N. Edwards in Janary, February, and March of the past winter. A separate list of the species contained in these collections, so far as identified, has been prepared to follow the general list. The most notieeable feature of the winter collections is the entire absence of the larval forms of crabs, shimps, lobsters, star-fishes, sea-urchins, amelids, fe., which so ahound in the same Waters in summer. On the other hand there is areat abumbance of Entomostraca, Sagitta, several northern Amphipods, species of Mysis, Sc., together with eggs and young of certain fishes. •

In the general list of surface species only those that have been actually observed are introduced, but it must be remembered that the greater part of the crustacea, aunelids, mollusks, and echinoderms are well known to have free-swimming young, or larval forms, and that the list might easily be doubled by the introduction of such species, on theoretical grounds; but, by omitting them, the list serves to indicate how much jet remains to be done in this direction. There are large numbers of common species of which neither the somg nor the eggs are known, and there are many others of which the eggs, or joung, or both, are known, but the time requirel for the hatching of the eggs and the development of the romng is not known. The dates giren in the lists refer only to the time of actual capture of the species, aud it must not be inferred that at other seasons of the year any of the species so designated are not to be found; for, doubtless, many of those that swim free when adult may be found all the rear round. And possibly some species may breed during every month of the year. But the breeding season of most species is probably of short duration, ant therefore the larve and young may oceur only at particular seasons.

Mr. A. Agassiz has made a very large collection of the surface animals in Vinesard Sound, Buzzard's Bay, and off Newport, and to his labors we owe the knowledge of a large proportion of the jelly-fishes. He has also described the larve and joung of several Amelids and Nemerteans, and has described and beantifully illustrated the larve and young of the common star-fishes, (Asterias,) and the green seaurchin, (Strongylocentrotus Dröbachicnsis.) The Salpa Cabotti (Plate XXXIII, figs. 254,255) was also well described and illustrated by him; and also other species, but a large part of the collection has not yet been elaborated.

Our surface collections were made both in the day and erening, at varions hours, chiefly by means of towing-nets and hand-uets. The evening or night hours are generally more productive than the day-time in this kind of collecting, but we were unable, owing to lack of time and superabundance of other specimens, to do as much night-collecting as we desired.

Among the Crustacea there are a consitlerable number of species that swim at the surface when adnlt, and others till nearly half-grown, but the majority are free-swimmers only when quite joung, or even only when in the zoeia and megalops stages, throngh which they seem, from Mr. S. I. Smith's observations on several of onr species, to pass in a short time. The males of the common oyster-crab, Pimotheres ostroum, (p. 367, Plate I, fig. 2,) were often canght in the day-time swimming at the surface in the middle of Vineyard Sound. The laty-ciab, Ilatyonichus ocellatus, (p. 333 ,) of full size, was also occasionally caught swimming actively at the surface. The "blue-crab," or common edible crab, Callinectes hastatus, is well known to be an active swimmer, when adult, but most of those seen at the surface were yonug. The larva
of Cancer irroratus, (p. 312, Plate V[11, figs. 37, Bīn, and of Plutyonichus in the zoid and megalops stages, were taken in vast mumber, especially in bright smoshine, together with similar larve of many other species. The larvar and young of the lobster (I'late LX, figs. 38, 39) were also abmatant in mid-smmmer. The numerous specimens obtained have enabled Mr. S. I. Smith to describe the interesting metamorphoses of our lobster, which were entirely mannown before. The young swim atctively at the surface, like a shrimp, until more than half an inch long. The larva and young of the varions species of shrimps are also abmelant. The curions lavia of šuulla cmpusa (Plate VIlI, fig. 36) were often met with.

Several species of Amphipods are also common at the surface. The most abundant were Callioprus lariusculus, of which Mr. T. N. Edwards also took numerous large specimens in February and Mareh; Gemmarus natutor, which was usually common, and occurred iu immense numbers August 10 and on sereral other oceasions; and a Hyperia, which infests several species of large jelly-fishes, and also swims free at will. The Pluronima is a related genus, but is rery remarkable for its extreme transparency, which renders it almost invisible in water. Telotec irrorata (p. 316, Plate Y, fig. 23) and I. rounsta, Plate V, fig. 24) were rery common among masses of tloating eel-grass and sea-weeds, and the latter was also very often found swimming entirely free.

A species of Saphirina (Plate VII, fig. 33) was found in great numbers among Sulper, off Gay Head, on sereral occasions, early in September. This is one of the most brilliant creatures inhabiting the sea. It reflects the most gorgeous colors, blue, red, purple, and green, like fireopal, although when seen in some positions, by transmitted light, it is colorless and almost transparent. Under the microscope, when living, it is a splendid object, whether sceu by transmitted or reflected light, the colors constantly changing, as it is turned in different positions. When seen beneath the surface of the sea, in large numbers, the appearance is rery singular, for each one as it turns in the right position reflects a bright gleam of light, of some brilliant color, and then immediately becomes inrisible, and these scintillations come from different directions and various depths, many of them being much farther beneath the surface than any less brilliant object could be seen. In some cases one or more were formd in the branchial cavity of Salper, but whether this is normal or accidental was not determined.

The species of Argulus are parasitic on the exterior of fishes, but we found at least three species swimming free at the surface. It is, therefore, probable that they are able to Jeare their hosts for a time, and thas to migrate from one tish to another. The species of Caligus are also parasites on fishes, to which they firmly adhere, but the half-grown young of one species was taken at the surface in the towing-nets.

Numerous species of Amelids, in the larval and young stages, were taken at the surface, but many of them have not yet been identified,
for owing to the great changes ther undergo, this is often impossible, unless the specimens can be raised, or at least connected with the adults by a large series of specimens. For a few this has been done. Sereral species also swim at the surface in the adult state, especially in the evening. With some this seems to be a habit peculiar to the breeding season, and sometimes only the males are met with.

Among the species most frequently taken in the adnlt state at the surface, are Ťereis rirens, (Plate NI, figs. 47-50, chietly males: Nereis limbuta, (Plate NI, fig. 51,) mostly males, which occurred both in the evening and day-time; Nectonercis megalops, (Plate XII, figs. 62., 63, which was quite common in the erening; Autolytus cormutus. (Plate SIH, figs. 65,66,) the males, females, and asexual forms; Podurke obscurc, (Plate XII, fig. 61,) which was extremely abmiant in the erening; and several other species. The sagittu elegans was taken at Woorl's Hole, July 1, and off Gay Hearl, among Sulpre, September 8 . It is a rery small and delicate species, and so transparent as to be nearly invisible in water. A larger and stonter species of S'agitla was taken in large numbers at Wood's Hole, by Mr. V. N. Edwards, Jannary 30, Febuary 10, and February 27, and at Savin Roek, near New Haven, May 5. This species has a longer caudal portion, with a small terminal fin; some of the specimens were nearly an inch long and many contained in the eavity of the body, posteriorly, a parasitic nematode worm, about half as long as the body. This parasite is round, not rery slender; the head has three prominent angles ; tail with a small, acute, terminal mucro.

Many of the Mollnsca swim free by means of vibrating eilia, for a short time in the larral stages of growth, but as such larfie are very minute and the period often quite short, these young are not often taken in the nets.

The Cephalopods of this region are all free-swimming species, from the time when they leare the eggs through life, thongh they may rest upon the bottom when depositing their spawn. Numerous specimens of the "squid," Loligo Pealii, (Plate XX, figs. 102-10t, embryos and joung, were thus taken by the traml in July, together with large clnsters of their eggs. Later in the season the free-swimming young of this species, from a quarter of an inch to an inch in length, (fig. 10 J_{g}) were often taken at the surface and were also found in the stomach of the red jelly-fish, Cyanea aretica, in considerable numbers. The adults were frequently taken during the whole summer in the pounds. Some of these were over a foot in length, but most of them were not more than five or six inches long. The color when living is very changeable, owing to the aiteruate contractions of the color-vesicles or spots, but the spots of different colors are much crowded, especially on the baek, and the red and brown predominate, so as to give a general reddish or purplish brown color, and this is usually the color of preserred specimens. The clusters of gelatinous egg-eapsules of this species were
found in gleat abmedance off Falmonth，on a shelly and weedy hottom， as already mentioned．（b． 116 ；and near New IFaren lighthonse large clusters，apparently of the same species，were found by Profisser Todd， earlior in the satom，（Jme 1！9）Some of these masses were six or eight inches in diameter，consisting of humdreds of（＂ussules，like fig．10：2， each of which is msually three or four inches long and contatins numer－ ous eges．These last contained embryos in dificrent stages of derel－ opment，two of which are represented in Plate X゙N，figs．10：3， 10 t．Even at this early period some of the pigment resioles are already developed in the mantle and ams，and dming life，if examined under the micro－ scope，these orange and purple resicles may be seen to rapidly contract and expand and change colors，as in the adnlt，only the phemomena may be more clearly seen，owing to the greater transparence of the skin in the embryos，They are，therefore，beantifin objects to observe under the mineseope．It this stage of derelopment the eyes were brom． In these embryos the yolk is timally absorbed throngh the mouth，which corresponds，therefore，in this respect，to an＂ 1 mbilicus．＂The more adranced of these embryos（fig．10：3）were capable of swimming abont， when remored from the eggs，by means of the jets of water from the siphon．

Another species，Loligo pullidw V．，（［＇late N゙ざ，tigs．101，101a，）oceurs abundantly，in antumn．in the western part of Long Island Somed， from whence lobert Bemer，esq．，has sent me numerous speci－ mens．This is a pale，translucent，gelatinous looking species，with much fewer spots than msual，even on the back，and is nearly white beneath－ It is a stont species，commonly five or six inches long，exclusive of the arms，but grows eonsiderably larger than that．It is often taken in the seines in large mmbers with meuhaden，apon which it probably feeds． These squids are eagerly devoured，even when full grown，by many of the larger fishes，such as bhe－fish，black－bass，striped－bass，dec．When fomg they are preyed mon by a still larger varicty of fishes，as well as by the jelly－fishes，\＆c．

Anotherspecies of＂squid，＂Ommastrephes illceelrosu，has been recorded from Gireenport，Long Islamb，ly Mr．Sanderson Smith，but I have not met with it myself，south of Cape Cod．It is common in Massachusetts Bay and rery abundant in the Bay of Fundy．Messes．S．I．Smith and Osear Harger observed it at l＇rovincetown，Masablhasetts，among the wharves， in large mumbers，July $\ddot{-}^{\text {s }}$ ，engaged in capturing and devonring the joung mackerel，which were swimming abont in＂schook，＂and at that time were about form or five inches long．In attacking the mackerel they would suddenly dart backward among the fish with the relocity of an arrow，and as suddenly turn obliguly to the right or left and seize a fish， which was almost instantly killed by a bite in the back of the neck with the sharp beaks．The bite was always made in the same place，ent－ ting out a triangular piece of Hesh，and was deep enough to penetrate to the spinal cord．The attacks were not always successful，and were
sometimes repeated a dozen times before one of these active and wary fishes could be caught. Sometimes after making several unsuccessful attempts one of the squids rond suddeuly drop to the bottom, and, resting upon the sand, would change its color to that of the sand so perfectly as to be almost invisible. In this way it wonld wait until the fishes came back, and when they were swimming close to or orer' the ambuscade, the squid, by a sudden dart, would be pretty sure to secure a fish. Ordinarily when swimming they were thickly spotted with red and brown, bnt when darting among the mackerel they appeared translucent and pale. The mackerel, however, seemed to have learned that the shallow water is the safest for them and would hing the shore as closely as possible, so that in pursuing them many of the squids became stranded and perished by bundreds, for when they once touch the shore they begin to pump water from their siphons with great energs, and this usually forces them farther and farther up the beach. At such times they often discharge their ink in large quantities. The attacks on the joung mackerel were observed mostly at or near high-water, for at other times the mackerel were selfom seen, though the squids were seen swimming about at all hours; and these attacks were observed both in the day and evening. But it is probable, from various observations, that this and the other species of squids are partially nocturual in their habits, or at least are more active in the night than in the day. Those that are caught in the pounds and weirs mostly enter in the night, and evidently when swimming along the shores in "schools." They are often found in the morning stranded on the beaches in immense numbers, especially when there is a full moon, and it is thought by many of the fishermen that this is because, like many other nocturnal animals, they have the habit of turning toward and gazing at a bright light, and since they swim backwards they get ashore on the beaches opposite the position of the moon. This habit is also sometimes taken adrantage of by the fishermen who capture them for bait for cod-fish; they go out in dark nights with torehes in their boats and by adrancing slowly toward a beach drice them ashore. They are also sometimes taken on lines, adhering to the bait nsed for fishes.

The specimens observed catching young mackerel were mostly eight or ten inches long, and some of them were still larger. The length of time required for these squids to become full grown is unknown, as well as the duration of their lives, but as several distinct sizes were taken in the pounds, and those of each school were of about the same size, it is probable that they are several years in attaining their full size. A specimen, recently canght at Eastport, Maine, was pale bluish white, with greeu, bhe, and yellow iridescence on the sides and lower surface; the whole body was more or less thickly covered with small, unequal, circular, orange-brown and dark brown spots, haring cremulate margins; these spots are contimually changing in size from mere points, when they are nearly black, to spots 0.04 to 0.06 of an inch in diameter, when they are
pale orange-brown, beroming lighter colored as they expand. On the lower side the spots are more seattered, but the intervals are senerally less than the diameter of the spots. On the upper side the spots are much crowded and lie in different planes, with the edges often orerlapping, and thus increasing the varicty of the tints. Along the middle of the back the gromul-color is pale flesh-color, with a median torsal band, along which the spots are tinged with green, in fine specks. Above each eye there is a broad lumate spot of light purplish red, with smaller brown spots. The upper surface of the head is decply colored by the brown spots, which are lere larger, darker, and more crowited than elsewhere, and sitnated in seremal strata. The arms and fins are colored like the body, except that the spots apmear to be smaller. The suckers are pure white. The eyes are dark blue-black, surrom cent border, and in this genns the eyes are provided with distinct lids. In this respect, Ommastrephes differs from Loligo, for in the species of the latter gems, the integument is contimed directly over the eye, the part covering the eye being transparent.

Most of the higher Gastropods inclose their eggs in eapsules, which they attach to stones, algee, or shells, and within these the eggs hateh and the foung liave a well formed shell before they eat their way out of the capsules, ant when free they crawl about by means of the "foot," like the adult. But in the lower orders of Gastropods most of the young, when first hatched, are furnished with vibrating cilia and swim free, by this means, for a short time. These larva are very different from the adults, and in case of the naked mollusks (Nudibranchs) the larve are furnished with a beautiful, little, glossy, spiral shell, which they afterwards lose.

The Pteropols swim free in all stages. The young and adults swim by means of two wing-like appendages, developed on each side of the neck, which may be compared to the anterior lateral lobes of the foot, seen in Eolis, (fig. 174,) and many other Gastropods, if we suppose these to become enormously enlarged, while the rest of the foot remains in a rudimentary or undeveloped condition, often serving merely for the attachment of the opercultum.

The Styliola vitren (Plate NXV, fig. 1iS) was taken in the day-time at the surface, September S, among Salpa, off Gay IEad. Its shell is a thin, white, tramsparent, glassy cone, about a third of an inch long, and slightly curved toward the tip. The animal is also white. The Spiriaiis Gouldii has a lelicate, white, transparent, spiral shell, when adult having seven whorls, which turn to the left. The shell is marked by very fine revolving lines, visible only under the microscope. This species is seldom met with at the surface in the day-time, but is often abundant in the early evening. According to the observations of Mr. A. Amassiz, in confinement they rarely left the bottom of the jars cluring the day, merely rising a few inches and then falling again to the bottom. Alter dark they became very active, swimming actively near
the surface of the water. "During the day they often remain suspented for hours in the water simply by spreading their wing-like appendages, and then suddenly drop to the bottom on folding them." Mr. A gassiz captmred the specimens upon which his olservations were made, at Nahant, Massachusetts, during the summer of 1869, and judging from the figures in Binney"s Gould they were probably specimens, not quite adult, of this species. He has also taken adnlt specimens at Newport. Mr. S. I. Smith captured full grown specimens in the edge of the Gulf Stream, oft' St. Ceorge's Bauk, and we have specimens taken from the stomach of mackerel, eanght twenter miles south of No Man's Land.

The Cacolina tidentuta (Plate XXV, fig. 177) is a beantiful and carious species, with a singularly shaped, amber-colored, translucent shell, much larger than that of either of the preceding species. We dial not observe it living in these waters, but the shells were twice dredged off Martha's Vineyard, and one of them was perfectly fresh and glossy, as if just dead. It is a sonthern species which eomes north in the Gulf Stream, but it had not been found previonsly on the coast of New England. Another Gulf Stream species, the Diacria trispinosa, is oceasionally found at Nantucket, according to Dr. Stimpson, but whether it has been observed there alive is uncertain; eight or nine other species were taken in the Gulf Stream, off St. George's Bank, by Messrs. Smith and Harger in 18،2, all of which may, perhaps, occasionally oceur about Martha's Vineyard and Nautucket.

Another very interesting and beautiful Pteropod, the Clione papilionaceu, was taken in considerable numbers at Watch Hill, Rhode Island, April 13, by Professor D. C. Eaton and myself. They were swimming at midday near the surface, associated with Plewobrachia rhododactyla, and appeared to be common at that time. Mr. Vinal N. Edwards obtained two specimens in Yineyard Sound, April 30. This differs from those named abore, in being iestitute of a shell, as well as in many other characters. The body is stont, somewhat fusiform, tapering gradually to the pointed posterior end; in the largest specimens the length was about 1.5 inches. The head is romnded, with two small conical processes in front, on the upper side. Six tentaclelike organs, or "arms," bearing minute suckers, can be protruded. The wings or fins are large and broad oral in outline.

The body and wings are pale, transparent bluish, with opalescent hues; the mouth and parts around it, the "arms," and part of the head, and some of the internal organs, are tinged with orange; the posterior part of the body is bright reddish orange, for nearly half an inch. Some of the internal organs are orange-brown and olive-brown, and show through the transparent integuments as dark patches. This species has seldom been observed on our coast. Dekay, in 1843, mentioned its oceurrence in a single instance, off New York. In 1869, it was taken in considerable numbers at Portland, Maine, by Mr. C. B.

Fuller．It mas，nerotheless，ocem ammally in winter，amd yet be sel－ dom observed ；for very few matmalists go ont to collect marime anmals in winter and early suring．

The bivalve shells mostly probluce minate young，or larvir，which are at first provided with vibrating cilia and swim free for speral days，as is well known to be the ease with the oysters，clams，mascles，Teredo， \mathbb{E} ， But a few species，like the Tottenia gemma，（p．35！）prodnee well devel－ oped young，furnished at birth with a well formed shell．

The common fised Ascidians，both simple and compound，mostly pro－ duce engs that hatch into talluole shaped young，which swim about for a short time by the mblnatory motions of the tail，but fimally become tixed by the heademb，and losing，or rather absorbing，the tail－portion， rapidly develop into the ordinary forms of the ascidians．This pro－ cess，althongh often very rapl，is a very interesting and complicated one

In Molgula Mhahattensis there is，aceording to the observations of Dr． Theodore A．Tedlkampf，an altermation of gemerations．He states that the minute gellow ova were discharged July 18 ，invested in a viscid rellowish substance，which become attached to the exterior of many specimens．In a few hays the＂viscid substance＂had changed its ap＿ pramare and became contractile；the ova became larger，romd，and of different sizes；＂after two or three days the largest protruled some－ what above the surface of the common envelope，and presented a cirenlar or oral aggregation，like that of the Mammetria foum a year ago ；＂on the 11 th day，the romel ova had increased in size，with a central round or oval orifice throngh which the motion of the cilise of the branchial meshes were visible．＂The orifiee hat approached on the 1 st of August more or less to one apex；in some specimens，which were now oval，it was terminal．＂In this stage he names it Mammaria Mrankettensis， regarding the Hemmoria as a＂nurse ；＂within each of the Mrmmorire，at the ent opposite the branchial orifice，there was seen a mass of cells， which ultimately dereloped into a tadpole－shaped larva，similar to that of other ascidians．He observes that the Mammatixe increase after the discharge of the larre，and that gemmation takes place within the common envelope．＊These observations，if correct，are very interesting and important，but they need farther confirmation．The development of the larree from the Mammarite into Molgula was not traced；neither did he witness the actnal Nischarge of the ova，which prodnced the Mammarie，from the Molgula．They may possibly have no relation with one another．

Several kinds of Ascidians，howerer，swim free in the water during their entire life．The most common Ascidian of this kind is the Sulpa Cabotti，（Plate X゙XXIII，figs． $2 \tilde{5} \neq 2$ ，25J．）This，like the other species， exists under two different forms；or，in other words，it is one of those an－ imals having alternations of generations．The sexnal imlividuals（fig． $250)$ are united together into long chains by processes（c）from the sides

[^1]of the branchial sae; these chains are often a foot or even a foot and a lalf long, and coutain two rows of individuals, which are mited together in such a way that they stand obliquely to the axis of the chain, the branchial openings being all on the uper side of the chain as it floats in the water, while the posterior openings are all on the lower side of the chain, close to the edge. Each individual is connected both with its mate on the right or left side, and to those immediately in front and behind on the same side. The succecding individuals in the chain oterlap considerably. The chains do not appear to loreak up spontaneonsly, but when brokeu apart by accident the individuals are capable of living separately for several days. The chains, when entire, swim about quite rapidly by means of the streams of water passing out of all the cloacal orifices in one direction. The individuals composing the chains, when full grown, are about three quarters of an inch long. They are transparent and white, or pale rose, often with the edges of the mantle and the nuclens bright Prussian blue, and with delicate reticulations of the same blue over the surface of the mantle. Each of the individuals in the chains is hermaphrodite, and each prodnces a single egg, which develops into an embryo before it is discharged, and finally when it grows to maturity produces an asexmal individual, which is always solitary, (Plate XXXIII, fig. 25t.) These are larger than those in the chains and are quite different in form, lont the color is the same. These when mature produce, by a budding process in their interior, a series of minute individuals mited together along a tube into a small chain, (s, fig. 254 , which may be seen coiled up around the nucleus. The chain consists of three sections, those individuals in the section first formed being largest and nearly equal in size; those in the next much smaller; while new ones are just forming at the other end; as the chain grows longer, and the compouent individuals larger, it projects more and more, and fimally the end protrudes from an opening in the tunic, and the little chain becomes detached and is discharged into the sea. These chains consist of trenty to thirty pairs of individual zoïids. This operation is frequently repeated during the summer, and these chains of all sizes, from those just liberated up to the full-grown ones, may be taken at the same time. They appear to grow very rapidly. Thus by autumn these Sulpce became exceedingly abondant, at times completely filling the water for miles in every direction, from the surface to the depth of several fathoms, and are so crowiled that a bucket of water dipped up at random will often contain several quarts of Salper. They were found in wonderful abundance on September S, oft Gay Head and thronghout the onter part of Vineyard Somd, and on several other occasions were nearly as abundant.

Two species of Aprendiculariu and a species of Doliolum were also fom in these waters by Mr. A. Agassiz, but we did not observe them. These are also free-swimming Ascidians, related to Salpu, but very different in form.

Among the Echinoderms there are no species that swim at the surface when adult, lont most of them produce eggs which hateh into very remarkable larver, entirely unlike their parents in form and streture, and these swim tree in the water, often for a considerable perion, by means of vibrating cilia.

The jomng star-dish or sea-mehin develops gratually within the body of the larva, on the water-tubes, and as it grows larger it gradnally absorbs the substance of the larva into its own body. The development of the larree of A sterices culdaris (A. pellede A(t.) and A. areninola (A. berylinus Ag.) has been described by Mr. A. גgassiz, from the time previous to hatching from the eggs till they become young star fishes, with the essential characters of the adults. He has also described the young of the common green sea-urchin (under the name of Toxopmenstes Driobachiensis) in the same way. The Cribrelle saguinolenta, (p. 407,) like several other star-fishes, does not have free swimming larve, but retains and protects the eggs loy holding them by means of the suckers aromnd the mouth, curving the body arount them at the same time. In this position the eggs hatch and pass through a metamorphosis different from that of Asterias, though somewhat analogons to it. The development of this species was described by Protessor M. Sars many years ago. Some of the Ophimans are viviparous, among them the Amphipholis elegans (15.418) found in this region, but others have free-swimming larve, and pass throngh a metamorphosis similar to that of Asteries, though the larve are quite different. Some of the Holothuriams are also viviparons, while others lave free-swimming larve, but the young of most of the species of this region are still manown.

The Acalephs all swim free in one stage or another of their existence. Some of the Hydroids, like Sertuldridand allied genera, are only free-swimmers while in the early embryonic stages, when they are covered by vibrating cilia; but they soon become fixed and ever after remain attached in one place. Others, like the species of Obelie, swim free in the embryonic state, and then develop, into attached hydroids, which by budding may produce large branching colonies of similar hydroids, but nltimately they prodnce another kind of buds, which are developed within capsules or gonothec:r. These soon become elegant, little, circular, and disk-shaped jelly-fishes, which are then discharged and swim free in the water; they soon grow larger, arquire more tentacles, and ovaries or spermaries develop along the ratiating tubes, the eggs are formed, discharged, and fertilized, and each egg may develop into a ciliated embryo, which in its turn may become attached aud start a new hydroid colony. 'Thns among these animals we find an alternation of generations, complicated by different modes of budding.

In the case of the large red jelly-fish, C'yanea arctica, and the common whitish jelly-fish, Aurelia flatedula, (Plate XXXVI, fig. 271,) the history is somewhat different. These jelly-fishes produce immense numbers of minnte eggs, which are discharged into the water and develop
into minnte, oblong, ciliated larre; these soon become attached by one end and grow mp into broad-disked yomg, like hydroids with long, slender tentacles ; each of these after a time sends ont stolon-like tubes from the base, and from these tubes buds are dereloped, each of which grows up into a "seyphostoma," or hydroid-form, like the first one ; all these eventuall y become much elongated, then circular constrictions begin to form along the body, which grow deeper and deeper until they separate the body into a series of concare segments, which are held together by a pedicle in the middle of each, their borders at the same time be. coming divided into eight lobes, or four hilobed ones; in the mean time the long tentacles aromed the upper end or original disk of the "scyphostoma" gradually grow shorter and are finally entirely absorbet; then the first or upper disk breaks off, and finally all the rest, one after another, until a mere stump is left at the base; after becoming detacined each of the disks swims about in the water, and gradually develops its month, stomach, tentacles, and other organs, aud, turning right side up and rapilly growing larger, eveutually becomes a large and complicated jelly-fish, like its grandparents or great-grandparents that produced the egg from which the original "scyphostoma" was developet. The stmmp of the bydroid prodnces another set of tentacles, even before the separation of all the segments, and grows up again into the elongated or "strobila" form, and again undergoes the same process of transverse division, thus producing suceessive crops of jelly-fishes. In these cases there are alternations of generations, aceompanied both by bodding and fissiparity. The roung of this species in the "ephyra" stage were fond April 17, and at several other times during April, in abundance, by Mr. Vinal N. Edwards. These were less than a quarter of an inch in diameter, and mast have become free only a short time before. On April 30 he took foung specimens from half an inch to about an inch in dismeter. The young of varions sizes, n, to nearly three inches in diameter, were common at New Haren May 5. All these yomg specimens were taken in the day-time.

In some jelly-fishes burls may even be produced upon the proboscis of the adult jelly-fish, which develop directly into free jelly-fishes, like the parent. This is the case with the Dysmorphosu fulyurans, fomen in these waters, and with Lizzia grata, found farther north.

On the other hand there are many jelly-fishes that do not have a hydroid state, nor bud, noy pass throngh any marked metamorphosis. This is the ease with our Plewrobrachia rhododectyla, Itlyia roscola, and other Ctenophore. In these the joung, even before hatching, become perfect little jelly-fishes, and swim ronnd and round within the egg loy means of the miniature paddles or flappers along their sides. The young are, nevertheless, very different from the adults in form and structure.

It will be apparent, from the preceding remarks, that a complete list of free-swimming auimals would necessarily include all the Acalephs of the region, but, as this would uselessly swell the list, only
those that have been actaally taken at the surface will be here ineladed． Quite a mmber of the species were not observed by us，but have been recorded by Jhr．A．Agasiz，but in some cases he has given neither the time nor late of capture．

A fine large specimen of the beantiful jeily－fish，Time formosn，has been sent to me by Mr．V．N．Edwards，who captured it at Womers Hole，April 30 ．He states that the same speeies was very abundant in Febrary，187e．It has not been previonsly recorded as fomd sonth of Gape Cod．The specimen received differs from the deseription given by Mr．A．Agassiz，in having thinty－six tentacles insteal of thinty－two．

Among the most common of the larger species in smmer were Maem－ iopsis Leidyi，which oceumed in abundance at nealy all homes of the day and evening，anl was rery phosphorescent at night；Cymene ore－ tich，which ocured chiefly in the day－time，and was here seldom more than a foot in diameter；Aurelia flacidulu，（Plate XXXVI，fig．271， which was not unferpuent！y seeu in the day－time；Ductylometro quindue－ cirre，（Ilate NXXVI，fig．ロコン，which was quite common both by night and day in Angust and September；and Zygoductyla Groulumica，（Plate NCXVII，fig．2T．j，）which was common in July，both in the day and evening，but was seldom seen later in the season．

The two species last mamed，and also the Cyanea arctict，were fre－ quently foomd to be accompanied by several small fishes，of different sizes up to three inches long，which proved to be yomg＂butter－fishes，＇ P＇oronotus triacathus．These fishes swim beneath the broad disk of these jelly－fishes，survomded on all sides by the mmerons tentacles， which probably serve as a protection from larger fishes that are their enemies，for the tentacles of the jelly－fishes are capable of severely sting－ ing the mouths of most fishes，evidently cansing then great pain．As many as ten or twelve of these fishes were often fomm unter a single jelly－ fish，and in one case twenty－three were found under a Cymen about ten inches in diameter．They do not appear to suffer at all from contact with the stinging－organs of the tentacles，and are，perhaps，protected fiom them by the thick eoating of tenacions mucus which constantly covers the skin， and gives them their common English name．Mr．A．Agassiz states＊ that he constantly observed a＂Clapeoid＂fish moler the Dactylometrie in this region，which had essentially the same habits，aceording to his account，as the speceies observed by us，thongh，if a Clupeoid，it must have beell a very different fish．
lle says，howerer，that the fishes observed by him were oceasionally devomred by the jelly－dish：＂It is strange that the fish shonld go there for shelter，for erery once in a while one of them pays the penalty by being swallowal，withont this distmbing the others in the least ：they in their turn find frod in the lobes of the actinostome，and even cat the folds themselses，matil their turn comes to be nsed as food．I have seen in this way three fishes eaten during the comse of as many days．

[^2]The specimens measnred about an inch in length." The fishes found by us were from a quarter of an inch to three inches long, and we never saw them swallowed, and never found them in the stomads of ans among the several dozen jelly-fishes, of the different kinds that we found accompanied by the fishes, althongh we found foung squids and other kinds of marine animals in a half-digested condition. It is possible that the observation of Mr. Agassiz was made on them when kept in confinement, and that the fishes devomred were not in a perfectly healthy and natural condition, so as to resist the stings of the nettling organs. But if his fish belonged to a family different from onss, the difference may be peculiar to the respective fishes. Yet our observations afford only negative evidence, and it may be that this is one of the peculiarities of this remarkable companionship; though, if so, we should suppose that the race of Poronotus would soon become extinct, for we never observed the young under any other circumstances. The adult fishes of this species, when five or six inches long, were often taken in the pomds in considerable numbers.
Among the mouth-folds and lobes of the ovaries, beneath the disk of Cyanea, we very often found large numbers of living speeimens of a delicate little jelly-fish, nearly globular in form, the Margelis Carolinensis, which we alsof frequently took in the towing-nets in the evening.
In the winter season the Mnemiopsis Leidyi is often abundant in Long Island Somed, and I have also observed it in New York harbor in Febraary, in large numbers. At Wood's Hole Mr. Y. N. Edwards found the Pleurobrachice rhododactyla, both young and nearly fnll-grown, very abundant in February and March ; at Watch Hill, April 13, I found both adult specimens and young ones not more than an eighth of an inch in diameter. It probably occurs through the entire year, for we frequently met with it in mid-summer in Vineyard Sound. Mr. S. I. Smith also fomed it very abundant at Fire Island, on the south side of Long Island, in September.
In July and Angust we obtained several large and perfect specimens of the curions "Portugnese man-of-war," I"hysalia Arethusa. This species ocemers as far west as Watch Hill, Rhode Island, where it was olserved by Professor D. C. Eaton. The boatmen at that place state that it is frequent there in smmer. The float of this species was generally deep, rich crimson or purple, and the hydroids beneath it were commonly bright blue in the specimens observed by us. The float or air-bag is, however, sometimes blue and sometimes rosecolor.
Accorling to Professor Agassiz, (Contributions, vol. IV, p. 335,) the floating bag in windy weather always presents the same side to the wind, and it is upon the windward side that the bunches of very long locomotive hydroids of the lower surface are sitnated, and these at such times are stretched ont to an enormous length, and thins act as anchors to retard the motion by friction in passing through the water. The smaller locomotive hydroids, the feeding hyidroids, and the reproductive hydroids, are on the lee side.

This species is capable of stmging the hands very severely if they he bronght into contact with the hydroids attached to the lower surface of the foating air-hag.

The Iflyiar roseole, so abmodant on the coast of New England north of Cape Corl, wats onlyoceasionally met with, and in small mombers, while the Poline alata, which is one of the most abmatant species on the nonthern roast of New England, was not seen at all. The Aurelin fluridula is less common than morth of Cape Corl, but was fomd in abondance in Buzzarlls Bay, in May, by V. N. Elwards.

Many of the Polyps hare fice-swimming, eiliated embryos, but others, like many of the sea-anemones, are viviparons, discharging the young ones thengh the month. These yomg are of difterent sizes, and finnished with a small but variable number of tentacles, but in most other respects they are similar to their parents. Mr. A. Agassiz has. howerer, recently aseertained that the young of a species of Ehererlsia swims free in the water for a considerable period, or until it develops at least sixteren tentacles. In this condition it has been described as a different gemmsand species, (Arachuactis brachiolate A. AG.) Whether the other species of this gems all have free-swimming young is still meertain; if so, these yomg must differ considerably among themselves, for Edurarlsia farinacea V., of this coast, has bat twelve tentacles when adult, and E. clegues V. has but sixteen, while others have as many as forty-eight tentacles, when full grown, Among the Protozoa there are grat numbers of free-swimming forms included among those commonly known as Ciliated Infnsoria, but those of our coast have been studied but little. The germs of sponges also swim free in the water, by means of cilia. Species of Polycystiua would probably be found, if carefully somght for, but we have not yet met with any of them.
List of species tulien at the surface of the water on the southern coust of New England.
In this list no attempt has been made to ennmerate the mmerons species of free Copepod Crustacea, which are rery abundant, but hare not been carefnlly stndied.

ARTICULATA.

Crustacere.

Pinnotheres ostrem, males and foung, (438.)
Cancer inmoratus, in the zoea and megalops stages ; Jme, Jnly, (438.)
Plațonichus ocellatus, young and adnlt ; megalops; June, July, (4:8.)
Callincetes hastatns, yomg, (4:3.)
Many other species of Brachynman the zoea and megalops stanes.
Hippa talpointa, young, is or $6^{m m}$ in length; early in September, (3:3!).)
Eupagus, several speces in the laral stages ; July to Suptember.
Cebia aftinis, young, $4^{\text {mum }}$ long ; edrly in September.
Homarns Americanus, laver and yomeg ; dnle, (395.)
Crangon magaris, larve and young; June and July.

Virbius zostericola, larve and young ; July to September.
Palamonetes vulgaris, larvie and young; July to September.
Larval forms and roung of other species of Macromra.
Squilla empusa, larvie in different stages; August, (439.)
Mysis Americaua, young and adult; April, May, (396.)
Heteromysis formosa, young and ardult.
Thysanopoda, sp. Vineyard Sound; April 30, (V. N. Edwards.)
Cumacea, several species.
Lysianassinæ, several species, young and adult.
Urothoë, sp.
Monoculodes, sp.
Calliopins leviusculus, adult and young; summer and winter, (439.)
Pontogeneia inermis, full grown ; winter.
Gammarus natator, adult aud joung ; summer and winter, (439.)
Murra levis.
Ampelisca, sp., young.
Amphithö̈ maculata, young.
A. longimana, foung even 5 or 6^{mm} long.

Hyperia, species; summer, (439.)
Plıonima, sp.; September 8, (439.)
Idotea irrorata, (439.)
I. robnsta, (439.)
I. phosphorea.

Erichsonia filiformis.
Epelys trilobus.
Tanais filnm.
Sapphirina, sp. ; September, (439.)
Free Copepods of many genera and numerous species.
Argulus laticanda; August, (439.)
A. latus; July.
A. megalops; September 8 .

Caligus rapax ; September S, (439.)
Balanus balanoides, larve; April, May, June, (304.)
Lepas fascicnlaris; June and July, in Vineyard Sound, (382.)
Limulus Polyphemus, young, (340.)

Worms

Phyllodoce, sp., adult ; July 3 ; eveuing.
Phyllodoce, spl., young ; evening.
Enlalia, sp., young; September 3; evening.
Eulalia, sp., young; evening.
Emmidia, sp., joung; September 8 ; evening.
Eteone, slo, young ; evening.
Antolytus comutus, male, female, and asexnal forms; duly 29 to Angust 18 ; evening. Watch Hill ; April 13, asexual form, (440.)
Autolytus, sp., asexual individuals, (398.)

Gattiola, sp., young ; September 3; evening.
Syllis (?), spo, young ; September 3; evening.
Rhynchobolus Americams, voungs; September 3; evening.
Nereis virens, alult males; April ; day-time, (440.)
N. limbata, adult males filled with milt, September 3, evening; September 5 , at Fire Island, day. Females, September ?, (few ;) young, common, Angust, September, evening, (140.)
N. pelagica, young; Angust, Scptember; evening.

Nectonereis megalops; July 3, 11; September 3, 8 ; evening, (440.)
Podarke obscura, adult ; June 26 to Angust ; evening, (410.)
Spio setosal, young; evening.
Scolecolepis viridis, yomg; evening.
Polydora ciliatum, young; September 3; evening.
Nicolea simplex, young; August, September ; evening.
Amphitrite ormata, young; evening.
Leprat rubra, joung ; evening.
Polycirus eximins, young; August, September; evening.
Spirorbis, sp., young; erening.
Tomopteris, sp., foung ; erening.
Sagitta elegans, adult; July 1, September S ; day-time, (440.)
Sagitta, sp., adult and young; Jamary 30 to May J; day, (440.)
Balanoglossus amrantiacus ; larve in the "tornaria" state, (351.)
Meckelia ingens; specimens up to ten inches long; evening, (349.)
Pontonema marinum, adult; February ; day-time.
Several other small Nematodes with the last.
Slender round worm, up to six inches long; June 29, July 13; evening.
Young of many other worms; undetermined.
MOLLUSCA.

Cephalopods.

Ommastrephes illceebrosa, arlult ; July, August, (441.)
Loligo Pealii ; June to September ; Joung, July, August, (440.)
L. pallida, adult; October, November, (441.)

Pteropods.

Clione papilionacea, adult; April 13, A pril 30, (44.)
Styliola ritrea, adult ; September S; day-time, (443.)
Spirialis Gouldii, adult ; Angust ; evening, (443.)
Diatria trispinosa, (44.)
C'avolina tridentata, (444.)

Lamellibranchs.

Teredo navalis, larre ; May, June, (386.)
Mytilus edulis. larva; April, (308.)
Ostra:a Virginiana, larva; June, July, (310.)
Larvie of many other species, undetermined.

Ascidians.

Salpa Cabotti, adults and young; August and September, (445.)
Doliolum, sp.; summer, (A. Agassiz,) (446.)
Appendicularia, sp., (like A. furcata ;) summer, (A. Agassiz,) (4t6.)
Appendicularia, sp., (like A. longicanda; ; smmer, (A. AgAssiz.)
Larve of fixed Ascidians, (455.)

radiata.
 Echinoderms.

Strongylocentrotus Dröbachiensis, larrae, (447.)
Asterias arenicola, larvie; evening, (447.)
A. vulgaris, larvae; evening, (447.)

Acalephs.

Mnemiopsis Leidyi; February, July to September ; day-time, (449.)
Lesueuria hyboptera, adult; September; day-time.
Plemrobrachia rhododactyla, adult and joung; Jannary to May, July to September; day-time and evening, (448.)

Idyia roseola, adult ; September ; day-time, (451.)
Cyanea arctica, adult; Angust, September; day-time. Yomg in the "ephyra" stages; April; young of all sizes up to four inches across; May, (449.)

Anrelia flavidula ; Angust, September ; day-time, young ; May, (449.)
Dactylometra quinquecirra, adult and young; July to September; day and evening, (449.)

Trachynema digitale, young; Wood's Hole, July 1; day-time.
Tiaropsis diademata; Wood's Hole; April 17, (V. N. Edwards.)
Oceania languida, medusae; June to September; day-time.
Eucheilota rentricularis, joung meduse; evening.
E. Anodecimalis, medusa; July.

Obelia, several species, meduse ; evening chiefly, (447.)
Rhegmatodes temuis, meduse; September ; evening.
Zygodactyla Gremlandica, mednsix; June to September; day and erening, (449.)

Equcrea albida, meduse; September ; evening.
Tima formosa, adult; February, 1872; April 30, 1873, (449.)
Eutima limpida, meduse; September; evening.
Lafoëa calcarata, medusir; September; evening.
Nemopsis Bachei, medusat ; June to September ; evening.
Bongainvilia superciliaris, meduse, April, May, June ; evening.
Margelis Carolineusis, medusa; August and September, chiefly in the evening, (4.00.)

Dysmorphosa fungurans, meduse ; evening, (448.)
Molectia, sp., medusie.
Turritopsis nutricula, meduse; July to September; evening.

Stomotoca apicatal, medusae.
Willia ornata, foung medusie; last of September.
Dipurnea conica, merlusid; July; evening.
Gemmatian semmosat, merlused; evening.
Pemaria tiarella, medusie; Angist, september.
Eetoplenta ochacea, mednsie ; September.
Namomiar eara, Angust, September; evening.
Plysalia Arethusi, July to September ; day, (t.50.)
Velella mutica, August; day.

Polyps.

Edwardsia, sp., larvie in the "Arachuactis" stage; September; evening, (451.)

PROTOZOA.

Numerons kinds of ciliated infinsoria, (451.)
List of species tulien at the surfuce in winter, December to Murch.

Crustacea.

Crangon vulgaris, young.
Mysis Americana.
Auonyx, (?,) sp.
Calliopius levinsculus, (439.)
Pontogencia inermis.
Gammarus natator.
Monoculodes, sp.
Several species and genera of Copepods, very abumdant.
Larve of Balanns, December 21, Janary 7 and 3.

> Amelids, \&c.

Nereis virens, adult males.
Sagitta, sp., adult, abundant, (440.)
Pontonema marium, adult.
Other Nematodes, undetermined.

Acculephs.

Pleurobrachia rhodotactyla, young ant adult, aboudant, (45%.)
Mnemiopsis Leidyi, alult, abmulant, (450.)
Cyanca aretical, somns; March.
Tima formosa, adlult, (419.)

If. 10.-animals parasitic on fisites, etc.

Latge umbers of fishes were examined, both internally and externally; for parasites, and a large collection of such parasites was marle. The in-
ternal parasites were collected mainly by Dr. Edward Palmer, and will be of great interest when carefully studied and described. As yet, nothing more than a casual examination of then has been made. These internal parasites were found in nearly all kinds of fishes, chiefly in the stomach and intestines, but also very frequently in the Hesh, or among the abdominal viscera, or in the air-bladder, or even in the eyes, de. The internal parasites were mostly worms, but these belong to four very distinct orders.

1st. The "round-worms," Nemutodes.'
These are related to the round-worms so frequent in the intestines of children, and also to the notorions Trichina of man and the hog. One or more species are found in the intestine and stomach of nearly every kind of fish, and frequently, also, in the liver, peritoneum, eyes, and various other organs. One species, two or three inches long, is very frequently fome coiled uje spirally in the flesh of the cod. Another large species is frequently fomud in the flesh of the tom-cod, or frost-fish. Althongh these are not dangerons to man, they are very disagreeable when found in fish intended for food.

A species belonging to this group is very frequently found in the bodycavity of one of our species of Sagitta (see page 440).

2d. The flat-worms or "flukes," Tremutodes.
These are short, more or less broad, depressed worms, which are provided with one, two, or more suckers, for adhering firmly to the membranes. They pass through very remarkable transformations, as do most of the other parasitic worms. Species belonging to this. gromp are common in the stomach, osophagus, and intestine, and also encysted or in follieles in the month, liver, peritonemm, and various other parts of the body.

3d. The thorn-headed worms, Acanthocephata.
These have an elongated romudish body, with a proboscis at the anterior end, covered with hooks, or recurved spines. The proboseis and front end of the body can be withdrawn and thrust out at pleasure. Such worms are very common in the stomachs and intestines of fishes, and are, perlaps, the worst parasites that torment them. The young of these worms also aceur quite frequently, encysted in the liver, peritonem, throat, month, and other organs.

4th. The "tape-worms," or Cestodes.
These are long flat worms, divided into many distinct segments, and are rery frequently found in the intestines of most fishes. There are numerous species of them, ranging in size from less than an inch to many feet in length.

Although parasitic worms are found in nearly all kinds of fishes, they are most frequent and in the greatest varicty in the large and very voracious kinds, such as sharks, rays, the angler or goose-fish, samon, blue fish, corl, haddock, \&e.

Nor are other marine animals free from these internal parasites. Cer-
tain species have been fomb in ernstacea, others in mollusks, Se. Mr. A. Agassiz has briefly deseribed, but not mamed, a remarkahle worm that he found very eommon in the jelly-fish, Mnemiopsis Leidyi, and the yomng of this or a different species was observed by me in the same Acaleph. It appeared to be a species of Scolex. It was pate purple, with light yellowish orange stripes. I have previously mentioned a romul Worm (Ascuris.) Which frequently oceurs in winter in one of our species of Saryitte.

Most of the species that, in the adnlt state, inhabit fishes, live while gomge, or in the larval stages, in smaller fishes, or in other animals, unon which the larger fishes feed, and from which they thasderive their parasites.

Besides the parasitic worms there are also many internal parasites that belong to the Protozoa.
The external parasites of fishes are also mumerous. They are chiefly crustacea and leeches.

Among the Crustacea there are a fer species of Amphipods that are parasitic. One of these, Laphystius sturionis, lives upon the gills of fishes and upon the surface of the body. It was fomm on the gills of the "goose-fish," (Lophius,) in Vineyard Somml, and on the back of slates at Eastport. It is remarkable in haring large claws developed on the third and fourth pairs of legs, those of the first and sccond being small. Its color is light red.

Certain Isopod crustacea, belonging to the genns Lironed (Plate VI fig. 2!) and allied genera, live in the mouths and on the gills of fishes, clinging firmly to the membrane of the roof of the month, or other parts, by means of their strong sharp claws. These are generally unsymmetrical in form. The species of the genus Bopyrus iive on the gills, under the carapax of shrimp and other crnstacea, prodncing large tumors. A species is common on species of Hippolyte in the Bay of Fundy ; and a species has been fomm in this region. The genns Cepon is allied to the last, and our species occurs under the carapax of the "fiddler-crabs" in this region.

Among the Entomostraca the number of parasitic species is still greater, but most of these live on the external surface and gills of tishes, thongh some of them oceur also in the month. The species of Pendarus and allied genera adhere firmly to the skin, and are provided with a proboscis. They are very common on sharks, but oceur also on other tishes. A I finciarul t e VII, tig. 31) and Noytagus Latreillii (Plate VII, fig. :32) were both fimul on "Atwood's shark," the "man-eater" of this region, associated also with Nogatues tenax. The species of "Nogagns" are merely the males of sther genera, for no one has yet determined both males and females of the various species. The ronng of one species, Caligus rapax, were fomd swimming free at the surface.

The species of Argulus and allied genera are less strictly parasitic, or rather they admere less closely, and apparently leave the fishes at pleas-
ure and migrate from one to another. Three species belonging to this group were taken at the surface with the towing-nets. The Lerneans are remarkable creatures. The females are generally very curions in form and very much larger than the more active and less abnormal males, and they are very low in structure, the reproductive system being enormonsly developed at the expense of nearly all the other organs. They live mpon the exterior and gills of fishes, with the head deeply buried in the flesh, and subsist by sucking the blood of their victins. The Lerncronema radiatum (Plate VII, fig. 30) is very common on the menhaden, and is also fonnd on the alewives.

There are many kinds of parasitic leeches. One of the most remarkable is the Branchiobdella Ravenelii, (Plate XVIII, fig. 89.) This gemus is peenliar in haring broad, foliaceons, lobed or scolloped gills along the sides of the body. The large species figmed was fomed several times on the large "sting-rays," several of them usually occurring together, on a large spot which had become sore and mach inflamed by their repeated bites. It is a very active species.

The Cystobranchus vividus is a much smaller and quite slender leech, which has small, papilliform, whitish gills that alternately contract and expand along the sides of the body, each surrounded by a semicircular white spot. The colors are brownish or pmplish, with three rows of small white spots on the back. This species is frequent on the common minnow, (Fundulus pisculentus,) in autumn and winter, and lives both in brackish water and fresh water. With the last, on the minnows, is found another slender leech, destitute of gills; this is the Ichthyobdella Fimuluti. It has, like the last, four ocelli. The color is pale green with darker green and brown specks, often with whitish transserse bands anteriorly, and a white ring behind the head, at the constriction; sometimes there is a narrow pale dorsal line.

A long, slender, sub-cylindrical leech, the Pontobdella rapax T., (Plate XVIII, fig. 91,) is quite common on the upper side of the "summerflounder," (Chuenopsetta ocellaris.) It is a very active species, dark olive or brown in color, with a row of square or oblong whitish spots along each side; the suckers are pale greenish white. The young are reddish brown, without spots.

A species of Pontobdelle was fombl adhering to Mysis Americamu, near New Haven, May 5 , in three instances, but whether this be its normal habit is uncertain.

The ILalaeobdella obesa V. (Plate XVIII, fig. 90) is a large, stont, yellowish white leech, often two inches long, which is quite common in the branchial cavity of the "long clam," (Mya arenaria.)

The Malacobdella mercenaria V. is mother similar species, bnt smaller and more slender, which lives in the same way in the "round clam" (Vemus mercenaria.)

The Myzobdella lugubris is a small leech, which lives on the "edible crab" (Callinectes lustatus,) adhering to the soft membranes between the joints and at the base of the legs.

List of external parasites observerl on fishes and other marine animals of Southern S'ew E'nglamed.

In the following list 1 have incluled all the determined species observed in these waters, whether living in the sombls, or in the onter waters, or in the backish waters of the estuaries, for most of these parasitir speres are capable of living in as diverse conditions as do the animals which they infest, and most of the fishes pass from time to time into eath of the divisions named, thongh some, tike the eod, are chietly fomm in the colder onter waters, and even there only in winter.

The list is moloubtedly very incomplete for it is based chiefly on collections made during two seasons, and mainly in the summer months. In addition to the true parasites I have, for greater convenience, included in the list some that merely live on or with other animals, either for the sake of shelter, or to feed upon their excretions, or to share their food. Some of these would be properly classed as "commensals."

ARTICULATA.

Crustacca.

Pimotheres ostreum, (p. 367,) in oysters.
P. maculatus, in Mytilus edulis.

Laphystius sturionis, on goose-fish and skate, (457.)
Hyperia, speeies, on jelly-fishes, (439.)
Nerocila munda, on file-fish.
Couilera concharum.
Livoneca ovalis, on blue-fish, (4.57.)
Cepon distortus, in bramehial cavity of Gelasimus, (457.)
Ergasilus labraces, on striped-bass.
Argulus catostomi, on the sucker, (Catostomus.)
A. laticauda, (457.)
A. latus.
A. megalops.
A. alosx, on "alewives."

Caligus curtus, on cod-fish.
C. lapax, on sting-ray, (Trygon hastata.)

Lepeophtheirns, sp., on sting-ray.
Lepeophtheirus, sp., on flomider, (Chænopsetta ocellaris.)
Echthrogalus coleoptratns, on mackerel-shark, (Lamma punctata.)
E. Ilenticulatus, on Atwood's shark, (Carcharodon Atwoodi.)

Pandarus Cranchii, (?) on dusky shark, (Platyporlon obsemus.)
Pandarus, sp., on Atwood's shark, (Careharodon Atwoodi.)
Nogengis Latreillii, on Atwood's shark, (4.57.)
N. tenax, on Atwood's shark, (4.5\%.)

P'andarms simatns, on the " dog-tish," (Mnstelus canis.)
Cecrops Latreillii, on Othagorisens mola.

Ainthosoma crassum, on mackerel-shark.
Lernca branchialis, on cod-fish.
Penella phmosa, on Diodon pilosus and Rhombus, sp.
Anchorella uncinata, on cod-fish.
Lernaonema radiatum, on menhaden, (45s.)
Lernaonema, sp, on a species of Carangus.
Coronula diadema, on whales.

Leeches.

Branchiobdella Raveuelii, on sting-rays ; August, September, (4.58.)
Cystobranchas vividns, on minnows; October to December 18, (4j5.)
Ichthyobdella Funduli, on minnows ; with last, (45S.)
Ichthyobdella, sp., dredged off New London, April.
Pontobdella rapax, on floumders, (45s.)
Malacobdella obesa, in long clams, (458.)
M. mercenaria, in round clams, (458.)

Myzobelella lugubris, on the edible crab, (45S.)
Bdelloura candida, on gills of Limulus.

MOLLUSCA.
Gastropods.
Stylifer Stimpsonii, on the green sea-urchin.
Enlima oleacea, on Thyone Briareus, (41S.)
III.-Fauna of the mstuaries, harbors, ponds, and marsites.

The region about Vineyard Sound and Buzzard's Bay, like that of the entire sonthern coast of New England and the coast farther sonth, is characterized by large numbers of ponds, lagoons, and estuaries, having a more or less interrupted commmication with the sea. These are usually quite shallor, though often of great extent. The bottom is generally muddy, with oceasional patehes of sand, but at the surface usually consists largely of decaying vegetable and animal débris mixed with mud.

The "eel-grass" (Zostera marina) grows in the shallower waters in great quantities, sometimes in small scattered patches, at other times corering large areas. Some of these ponds and estuaries receive considerable, though variable, quantities of fresh water from streams flowing into them, while others receive but little, except the surface drainage of the land immediately around them; lont in most of them the fresh water is in sufficient quantities to give a "brackish" character to the waters. Owing to the narrow and often shallow channels by which the ponds commumicate with the open waters, the tide is msually irregular, and its rise and fall often much less than outside, so that the waters have little tidal motion. The shallowness of the water and the abun-
dant eel-grass also imperle the motion camsed by the wind, so that these bodies of water are companatively quiet under ordinary eiremmstances. The same callses allow the water to become highly heated dming the smmmer. It is evident that the heat and quictness of the waters are unfaromble for the rapid ahsombion of oxygen from the air, while by the rapid decay of the dead materials of the bottom large ynantities of carbonic acid and other gases mast be evolved, which would in some cases soon render the water fatal to all animal life, were it not lor the presence of the eel-grass, $C^{\prime} \neq 0$, and other phants that flomish in such waters, which, while absombing the excess of canonic acid, also help to give the requisite amomat of oxygen to the water. During stoms the mud of the botton is quickly disturbed, camsing the escape of noxfons gases, and rendering the water turbid, while the eel-grass is torn un, in large quantities, thas adding to the decaying materials of the bottom and shores. Horeover, in ease of rain-storms or spring fieshets, the sudden addition of lange volumes of fresh water often canses great changes in the density and character of the water, sufficient to kill species not adapted to such varying and peculiar conditions.

We accordingly find that althongh anmal life is usually very abundant, the number of species that habitnally live and prosper in these imgure and decidedly brackish waters is comparatively small. But such as do ocem are usually fond in great quantities, and are remarkable for their hardiness and ability to live under widely varying conditions. Many of them are strictly sonthern species, which do not extend much farther north; but there are some, like the long elam, muscle, doc., which extend even to the Arctic Ocean and the coasts of Europe.

Many of the estnaries and harbors, and some of the ponds, have a much freer commmication with the sea, and then the water is less brackish and gencrally less impure in other respects, and the umber of species of animals becomes mach greater. In other calses the water is so little brackish that the fama is nearly identical with that of the onter bays. A few of these species are almost restricted to the brackish waters, but by far the greater momber are able to live in pure seawater, and are accordingly also fomm in the bays and sombls. There are rarions degrees of preferee shown by the different species; some are rely abundant in the hatekish waters and very seldom fomm ontside; some evidently prefer the estamies but are also abmant in the somuls; some flomish equally well in both sitnations; many are common in the esturies but much more abundant in the pure waters of the sombls ; and a large number which are oceasionatly fome in the brackish Waters, especially where but little freshened, have their proper homes in the pure waters outside.

Most of our food-fishes frequent the ponds and estharies, cither for the sake of food or for the purpose of spawning, and many spent the earler part of their lives entirely in such waters. It is apparme, therefore, that among the few species of invertebrate animats living in the brackish waters, there are some that are of great importance as food for
fishes. It is true that many of the larger fishes frequent the estuaries to prey upon smaller ones, some of which are extremely abuntant in these waters. But the small fishes, like minnows, as well as the young of the larger ones, feed chiefly upon the small crustacea, worms, and shells that live in the waters that they inhabit. Therefore the eutire value of the estuaries as feeding-grounds for the larger fishes depends directly unon those species of crustacea, \&c., that natmrally live in brackish water.

In discussing the fanna of the estunries I have found it most convenient to gronp the species under the following divisions: 1 . Those of sandy shores and bottoms. 2. Those of muddy shores and bottoms. 3. Those inhabiting oyster-berls. 4. Those inhabiting the cel-grass. 5. Those attached to rocks, piles of wharves, floating timber, buoys, \&e.

The lists couk be greatly extended by iucluding all the species to be found near the months of estuaries, or in those harbors and ponds that are scarcely brackish, for in these localities the fanm is nearly identical with that of the bays and sonnds, and the lists already given on previons pages will also apply very well to such places.

As a general rule only those species that are abundant, or at least frequent, in waters distinctly brackish, have been included in the lists.

III, 1.-Animals inhabiting tile sandy shores and botrons of BRACKISII WATERS.

Sandy shores and bottoms are generally less common and less extensive than muddy ones, and occur chiefly toward the months of estnaries, or on the more exposed borders of the larger ponds and harbors, where the ware-action is greatest.

When such bottoms are covered with eel-grass, as often happens, the animals are quite numerous, but when destitute of regetation the species of animals are but few, and mostly of the kinds that burrow. Sut when there is a mixture of mud with the sand the variety is much greater.

Near high-water mark, colonies of the "sand-fiddler," Gelasimus pugilutor, (p. 336,) often oceur, as on the sandy beaches outside. In the same situations the beach-fleas, Talorchestia longicornis and T. megulophthalma (p. 336,) also ocemr, burrowing in the sand; while the Orches. tin ayilis Smitu is abundant under the vegetable débris at high-water mark.

Several species of salt-water insects also occur, burrowing in the sandy beaches at and below high-water mark. Among these are sereral beetles, which live in such situations, both in the larval and adult conditions. The Bledius cordatus is one of the most abundant of these. This is a small, dark-colored, " rover-beetle," with very short elytra. It makes small, perpendicular holes in the sand near high-water mark, throwing np a little mound of sand around the burrows. A larger species, Blerlins pallipemis, ocemrs lower down, at about half-tide mark and makes similar burrows, but they are larger and deeper. This spe-
des is yellowish brown in color. The lanva of a fly belonging to the Mascidix, and growing to the length of three-quaters of an inch, ocems bemeath the samb at low-water mark, amd was also dredged off-shore in three or fom fathoms of water.

In the shallow waters and on the flats the common shimp, Crangon rulyaris, (p. 33:), Plate III, fig. 10,) is always to be fomm in abundance where the water is not too moch freshemed by the rivers. The prawn, I'alcomonetes reulguris, (p. 339 , l'late II, lig. ! 9) is also frequent on the sandy bottoms, thongh more abmantant among the eelgrass, and this speries extends far up the esturnes into the months of rivers, where the water is but little salt.

The most abmudant Amelisls are Nereis rivens, ([late XI, figs. 47-50,)
 $43,4 t$,) R. Americtanus, (Plate X, figs. 45, 46,) and Scolecolepis rividis V., ($1.34 \tilde{y}_{\text {, }}$) all of which burrow in the sand at low-water mark in the same way as on the shores of the somms.

U'mler regetable deftris and stones, at high-water mark, the Mrelodrillus littorulis (p. : $2=4$) and Clitellio irrorutus (ן. 324) ocemr in abmdance. The Lambriculus temis burows among the roots of grass at high-water mark.

The most abundant Gastropod shells are Ilyemassa obsolete, (Plate XXI, tig. 13,) Tritiat tririttata, (Plate XXI, fig. 112,) Bittirm nigrum, (Plate XXIV, fig. 15., Astyris lunata, (Plate NXI, fig. 110,) which oecur on the flats ant on the bottom in shallow water, but all are more eommon among eel-grass. The Melempus bidentatus (Plate XXV, ligs. 169, $169 a)$ is rery abmedant amoug the grass and weeds at and just abore high-water mark. It contributes largely to the food of the minnows and other small fishes, as well as to that of many arpuatic birds. The Crepidula comrexa (Plate XXIII, fig. 128) is frequent on the dead shells occupied by the small hermit-crab, Eupagurus longicarpus, (p. 313,) which is abmelant, rmming over the bottom in shallow wates.

The most abmant biralves are the long clam, Mya arenaria, (Plate XXVI, fig. 179,) and Macoma fused, (Plate X゙XX, fig. 22.2.) These both occur burrowing in the samb between tides, and both ocemr far up the estuaries, where the water is rery brackish, but they are most abme dant where there is a mixture of sand and mud. In the estuaries the long clam is extremely abmolant all along the coast from New Jersey to the Aretic Ocean, as well as on all the northern coasts of Emope It also oecms south of Cape Hatteras, as at leanfort, North Carolina, but in greatly diminished mmbers. North of New York it is very extensively used as an article of food. North of Cape Cod it is the eommon "clam" of the fishermen ; and north of Boston it ahmost entirely displaces, in the markets, the "romit-clam," or "gnahog'," Venus mercenari, which is the common clam at New lork aud farther south. Along the sonthern coast of New England both species are abundant, and both are sold in large quantities in the markets. Sonth of New

York the long clam is but little songht as an article of food, exeept for local use. On the coast of New Jersey it is often called the " maninose clam," from the Indian name (frequently corrupted to " namy-nose.") It is also sometimes called the "soft-shelled clam," in distinction from the " ruahog," which is called" hard-shelled." The "long clams" of certain localities on Long Island Sound, as, for instance, those from Guilford, Comecticut, are of very excellent quality, and are very highly esteemed.

The Guilford clams are assorted into regular sizes, aud are bought from the fishermen on the spot by the hundrad. Those of large size bring abont $\$ 3$ per hundred ; these are retailed in the market at New Haren for 60 cents per dozen. Smaller sizes bring $4 S$ cents and 36 cents per dozen. During umusually low tides in winter clams of extraordinary size are obtained at Guilford, below the zone ordinarily uncorered by the tide; these often weigh a pound or more, and sell for about \$1.25 per dozen; occasionally the weight is as much as a pound and a half, and the shells become six or eight inches in length.

The ordinary long clams of small and moderate sizes bring 95 cents, $\$ 1.25$, and $\$ 2$ per bushel at wholesale; these retail in our markets at 50 cents to 75 cents per peck, the smallest sizes being cheapest, while the reverse is the case with the round clams.

In New Haven the long clams are chiefly sold in winter, being "out of season" iu summer, when the round clams supply the markets. But in New York the long clams are sold during the whole year.

Large quantities of these clams are also collected on the northern coasts of New England and put up for bait, to be used in the cod-fishery at the banks of Newfoundland.

The total amount collected and used ammally is probably not less than $1,000,000$ bushels.

List of speeies inhabiting sandy shores and bottoms of estuaries.
atitiolllata.

Insects.

Page. Page.
Larve of ty , (Muscidx) 463 Bledins cordatus 462
Ephydra, sp., larve 466 B. pallipennis 463
Cicindela, larve. 335 Hoterocera undatus 335
Bembidimm constrictum. . . . Phaleria testacea
Anurida maritima. 331
B. contractum
B. contractum 335
Crinstucea.
Page. Page.
Gelasimus pugilator....... 462 Orehestia agilis 462
Cancer irroratus. 312 Talorchestia longicornis 462
Carcinas gramulatus 312 T. megalophthalma. 462
Eupagurns longicanpus. 463 Epelys trilobns. 370
Palamonetes valgaris. 463 Limulus Polyphemus 340
Crangon rulgaris 463

Annelids.

	rage.		batac.
Nereis rirens.	463	Clymenella torymata.	$31:$
N. limbata	463	Cistenides Ciouldii. .	30:
Rhymehobolus Americamus.	. 463	Satucllaria vulgaris.	321
I. dibranchiatus	463	Lumbriculus temuis.	163
Spio robustus.	3.5	Clitellio irroratus.	463
Scolecolepis viridis..	463	Halodrillas littoralis	$46: 3$
S. temuis.	315		
	Neme	teans.	
Meckelia ingens	$\begin{aligned} & \text { I:are. } \\ & 3+9 \end{aligned}$	Meckelia rosea	l'ige. 3.50
	110LI	USCA.	
	Gustr	poods.	
Ilyanassa olsole	Pare. 463	Odostomin trifida	Page. 307
Tritia trivittata.	463	Bittium nigrum.	+68
Eupleura caudata	371	Crepidula conrexar.	463
Astyris lumata	463	Melampus bidentatns	463
	Lamellit	ranchs.	
Myaarenaria	Page. 46.3	Levicardium Mortoni	Page. 3.5
Macoma fusea.	463	Solenomya velum	360
Augulustener.	358	Mstilus edulis.	307
Tottenia gemma.	359	Modiola plicatula.	307
Venns mercenaria.	46	Pecten irmalians..	361

III. 2.-ANLMALS INIMABITING TIIE MUDDY SHORES AND BOTTOBS OF BRACKISH WATERS.

The bottoms of the sheltered estuaries, ponds, and harbors, are almost invariably muddy, thronghont the greater part of their extent, from lowwater mark to their greatest depths, or, in other words, wherever the waves do not act with considerable force. The shores between tides are also muddy in the more protected localities, where the wares do not have sufficient power to remove the fine sediments. The upper and narrower parts of mearly all the estmanies in this region are, on this aceome, muddy, for the rapidity of the tide is seldom sufficient to entirely remove the fine sediments bronght down by the streams.

A large part of the muddy bottoms is generally covered in summer by extensive patches of eel-grass. Orer other portions large beds of ops-
ters are always planted, thus greatly modifying the natural conditions of such localities and introducing a large number of species not properly belonging to the true muddy bottoms.

The shores of the muddy estuaries and ponds, or lagoons, are usually low, flat, and bordered by more or less extensive salt-marshes, with the surface generally just above high-water mark of ordinary tides, but liable to inundation by umusually high tides. These marshes are always traversed by winding and slnggish tidal streams of brackish water and by smaller ditches, and the sufface is often diversified by small pools or ponds of impure brackish water, in which there is generally a deep deposit of soft, slimy mud and decaying organic matter, which often becomes putrid, and exhales fetid gases. All such waters, whether in the ditches or pools, and howerer filthy they may be, are inhabited by certain kinds of invertebrate animals, and they are also frequented by multitudes of minnows and other small fishes, which undoubtedly find abundant food in such places.

In these brackish pools and ditches we find certain beetles, both in the adult and larval stages. Among these the most conspicuons is Hydrophilus quadristriatus Horn., a large, black species, which appears to be common. The larva of the salt-marsh musquito (Culex, sp..) also lives in such situations, and the adults in August, September, and October, so swarm in these marshes as to reuder it extremely unpleasant to go on or near them. The larve of an Ephydra also occurs, and many other insects will doubtless be found in these places when carefully sought for.

One Amphipod, the Gammarus mucronatus, commonly lises in the most brackish pools and among the grass on the marshes. The prawn, Pulemonetes vulgaris, (Plate II, fig. 9,) is also very abundant in these pools and ditches, even where the water is but little salt, and also oceurs in immense numbers on the muddy bottoms and among the eel-grass of the estuaries. In the pools there are also myriads of small Entomostraca of many kinds, upon which the prawn and other species feed, while the Entomostraca find an abundance of ciliated Infusoria and other microscopic animals for food.

We find several species of crabs burrowing in muddy bauks along the shores of the estuaries, as well as along banks of the streams and ditches in the salt-marshes. The most abundant of these is the marsh fiddlercrab, Gelasimus pugnax, which is often so abundant that the banks are completely honey-combed and undermined by them. These holes are of various sizes up to about three-quarters of an inch in diameter, and descend more or less perpendicularly, often to the depth of two feet or more. Occasionally in summer these crabs will leave their holes and scatter over the surface of the marshes, which at such times seem to be perfectly alive with them, but when disturbed they will scamper away in every direction and speedily retreat to their holes, but occasionally, at least, they do not find their own, for sometimes the rightful owner will be seen forcibly ejecting several intruders. It is probable that at
such times of general retreat each one gets into the first hole that ho can find. Associated with this "fiddler" another related crab, the Sesarme reticulate, is oceasionally found in considerable numbers. This is a stont-looking, reddish brown erab, with a squarish carapax; its large claws are stont and nearly equal in both sexes, instead of being very unequal, as in the male "fiddlers." It lives in holes like the "fidtlers," but its holes are msually much larger, often an inch or an inch and a half in diameter. It is much less active than the "fidders," but can pinch very powerfully with its large claws, which are always promptly used when an opportunity occurs.

The Carcinus tranulatus (1. 312) of large size may often be found concealed in the cavities under the banks modermined by the two preceding species, along the ditches and streams in the salt-marshes. On the marshes farther up the estuaries, and along the months of rivers and brooks, and extending up even to places where the water is quite fresh, another and much larger species of "fiddler-erab" occurs, often in abundance; this is the Gelasimus minur. It can be easily distingnished by its much larger size and by having a pateh of red at the joints of the legs. Its habits have been carefully studied by Mr. T. MI. Prudden of New Haren, but his interesting accome of them has not yet been published. He has also inrestigated its anatomy. According to Mr. Prudden this species, like G. pugilutor, (see p. 33G, is a vegetarian. He often saw it engaged in scraping up and eating a minute green algoid plant, Which covers the surface of the mud. The male uses its small claw exclusirely in obtaining its food and conveying it to the month. The female uses either of her small ones indifferently. In enlarging its burrows Mr. Prudden observed that these crabs scraped off the mud from the inside of the burrow by means of the claws of the ambulatory legs, and having formed the mud into a pellet, pushed it up out of the hole by means of the elbow-like joint at the base of the great claw, when this is folded down. He also ascertained that this crab often coustructs a regular oren-like arch of mul orer the mouth of its burrow. This arch-way is horizontal, and large and long enough to contain the crab, who quietly sits in this curious door-way on the lookont for his enemies of all kinds.

This species can live out of water and without food for many days. It can also live in perfectly fresh water. One large mate was kept in my laboratory in a glass jar containing nothing but a little siliceons sand, moistened with pure fresh water, for over six months. During this whole period he seemed to be constantly in motion, walking romed and round the jar and trying to climb out. He was never observed to rest or appear tired, and after months of confinement and starvation was just as pugnacious as ever.

Althougle some of the colonies of this species live nearly or quite up to fresh water, others are found farther down on the marshes, where the water is quite brackish, and thus there is a middle ground where this
and G. pugnax occur together. This was found by Mr. Prudden to be the ease, both on the marshes bordering West River and on those of Mill River near New Haven. They are abundant along both these streams. The holes made by this species are much larger than those of G. pugnax. Some of them are an inch and a half to two inches in diameter.

The "blue crab" or common edible crab, Callinectes hastutus, (p. 367,) frequents the brackish streams and estuaries, where it is often taken in large quantities for the markets. These are usually brought to market early in May, but the "soft-shelled" ones, which are more highly esteemed, are taken later. These soft-shelled individuals are merely those that have recently shed their old shells, while the new shell has not had time to liarden. The period of shedding seems to be irregular and long continued, for soft-shelled erabs are taken nearly all summer. The young and half-grown specimens of this crab may often be found in considerable nombers liding in the holes and hollows beneath the banks during the flood-tide. When disturbed, they swim away quietly into deeper water. These small crabs are devoured by many of the larger fishes. During flood-tide the large crabs swim up the streams like many fishes, and retreat again with the ebb. They feed largely on fishes, and often do much damage by cating fishes canght in set-nets, frequently making large holes in the nets at the same time.

The "mud crabs," Panopeus sayi (p. 312) and I'. depressus, (Plate I, fig. 3,) are very common in all the muddy estuaries and harbors. P. Harrisii also oceurs in similar places; it is far less common, and apparently usually lives higher up toward high-water mark, under stones, \&e., but it has been found on the salt-marshes at the month of Charles River, according to Dr. A. A. Gould.

The Orchestia palustris Sumer, is found on the salt-marshes, where it occurs under drift-wood, regetable débris, \&c., extending its range nearly or quite up to fresh water, and at times living in places that are almost dry, above high-water mark.

The Squilla empusa (p.369) burows in muddy shores and bottoms at or below low-water mark.

The Gebia affinis (p. 368, Plate II, fig. 7) also lives in similar places in deep burrows, as described on a previous page.

The "horseshoe-crab," Limulus Polyphemus (p. 340,) is also a common inhalitant of muddy bottoms, in estuaries, where it grows to great size.

The most common Ammelids are partly the same as those given above for the sandy shores. The Nereis virens is generally very aboudant; the two species of Rhynchobolus are common; and also Lumbriconereis opulina, (Plate XIII, figs. 69,70 ;) Cirratulus grandis, (Plate XV, figs. $80, \mathrm{S1}$;) I'olycirrus eximius, (1). 320, Plate NVI, fig. SJ;) Chetobrancluts samyuineus, ($1.320 ;$) and sereral other less conspicuous species.

Among the Gastroporls by far the most abundant species is the Ilya-
nassa obsolcta, (p. 3n) 1 , Plate XXI, fig. 11:3,) which crerps over the flats and muddy bottoms in comntless multitudes. sometimes almost corering the entire surface. When left by the tide, on the flats, especially in cold weather, they will creep into the small pools and depressions of the surface, where they often huddle together in great erowds, sometimes forming many layers, one above another. This is probably the most abmulant shell, of any considerable size, on the boast of the United States. It oceurs abmandly from the Gulf of Mexico to Massachasetts Bay. It is essentially a seavenger, and owing to its rast mombers its services in that line must be of great value. It ocemrs far up the estuaries, where the water is deciderlly brackish, but domishes equally well on the outer shores.

The Littorinelln mimta (Plate NXIS, tig. 140) also oceurs in vast numbers on the mud-flats, and in the pools and ditehes of the saltmarshes, but it is a small and inconspicuous species. It is, however, not orerlooked by the small lishes and varions aquatic birds, for they feed largely upon it.

The Melampus bilentatus (Plate XXV, tigs. 169, 169a) is also extremely abumlant on the mudty salt-marshes, creeping over the general surface, or in the shallow pools and ditches, and among the grass, ereeping up the stalks. In shallow water, where not too brackish, the Bulla solitaria (Plate NXT, fig. 161) is sometimes fount in considerable mumbers, creeping orer soft, muddy bottoms. It is a favorite article of foorl with* the flomaders.

Among the Lamellibranchs, one of the most common species is the Modiola plicatula, (Plate XXXI, fig. 258,) which occurs everywhere on the muddy banks at and above high-water mark, and also over the saltmarshes, along the borders of ditches and streams, and wherever there is sufficient moisture, partially imbedding its shell in the mud or among the roots of grass, and anchoring itself by means of a stont byssus. The long clam, Mya arenaria, (p. 463) and the Macoma fusca, (Plate NXX, fig. 202) are almost everywhere abundant on the shores between tides.

The "round clam," Fenus mercenarit, (p. 359, Plate X゙XVI, fig. 18t,) occurs on the muddy bottoms in shallow water, often in great abundance, especially where the mul is somewhat firm, or where there is an admixture of sand, and the water is not very much fieshened. This clam is usually taken in such places by means of loug-handled tongs, and sometimes with the dredge. It is especiallyabmotant in the estuaries and harbors opening into Long Island Sound. The quantity of this clam taken annually for food is enomons, but it is impossible, at present, to get reliable statistics, either for this or the long clam, for they are mostly taken and sold, a few bushels at a time, by individual fishermen, and the traffic is diffised along the whole coast, from Florida to Boston; but it is probable that more than $1,500,000$ bushels are annually consmmed.

In the New Haven markets the round clams retail at $\$ 2$ to $\$ 3$ per bushel for the smail ones, and $\$ 1$ to $\$ 2$ per bushel for the large ones.

The common muscle, Mytilus cdulis, (p. 307, Plate XXXI, fig. 234,) is also extremely abundant on the muddy bottoms, forming immense beds in many places. It is taken iu vast quantities for fertilizing the land, but is seldom used as food on our coast, although it is used extensively in some parts of Europe.

The muddy' bottoms of the estuaries, ponds, and harbors, especially when composed largely of organic matter in a living state, afford the best localities for "planting" oysters, and they are extensively utilized for this purpose. The oysters thas planted are mostly bronght from farther south, lout young "natives" are also transplanted on a large scale in some localities.

It is, however, very certain that the oysters did not originally grow on muddy bottoms, for the foung cannot maintain themselves during early life unless attached to some solid substance.

Therefore, where large oyster-beds have been planted, the bottom should no louger be classed as "muddy," but rather as a "shelly bottom," for a large number of animals, in addition to those of true mndly bottoms, live among or attached to the oysters.

Along the peaty and clayey bauks, especially where undermined by the waves, even nearly up to high-water mark, the Petricola pholadiformis (p. 372, Plate AXVI, fig. 199,) and Pholes truncate, (Plate XNVII, fig. 200 , are often fomd in their deep burrows in considerable numbers. The Tayelus gibba (Plate NXVI, fig. 181, and Plate NXX, fig. 217,) burrows at and below low-water mark on the mnddy and argillaceons shores of the estuaries, as well as on the shores of the bays. On muddy bottoms, toward the outer parts of the estuaries aud harbors, the Multinia laterulis (Plate XXTI, fig. 184, B) often occurs in great abumdance. And in similar places, even where the bottom consists largely of decaying vegetable matter, the Tellima tenta (Plate NXX, fig. 225) and Solenomya celum (Plate XXIX, fig. 210) are sometimes fonnd in considerable numbers. The Callista concexa (Plate NXX, fig. 219) also occurs in similar places.

The Ascidians, Bryozoa, and Radiata are almost entirely wanting on the muddy shores and bottoms of estuaries, unless in localities where cel-grass or opster-beds afford them suitable stations; but such localities will be discussed farther on.

List of species inhabiting the muddy shores and botioms of brackish waters.

ARTICULATA.

Insects.

	Page.		Page. 466
Hydrophilus quadristriatus	466	Ephydra, sp	466

[471] LNVERTEBRATE ANIMALS OF MNEYARD sOUND, ETC. 177
Crustacca.
lage. l'age.
Gelasimus pugnax 166 Orchestia agilis 314
G. minax 167 O. palustris 468
Sesama reticulata 467 Gammarns mueronatus 466
Panopens Sayi 468 Melita nitida 31.1
I. depressus t6s Ampelisca, sp 1:31
P. Harrisii 168 Amphithö̈ ralida 315
Callinectes hatstatus 468 A. compta 8.9
Carcinus granulatus. 467 Corophinm cylindricum 8.9
Libinia canaliculata 368. Spharoma quadridentata 31.5
Eupagurns longiearpus. 313 Iflotea irrorata 316
Gebiat aminis. 168 Epelys trilobus. 370
Crangon vulgaris 339 E. montosns 370
Palirmonetes vulgaris $4 ; 6$ Jerra copiosa 315
Mysis stenolepis 370 Limuoria lignormm 370
Sguilla empusa 468 Limulns Podyphemns 46.8
Inneliels.
Page. rage.
431 R. dibranchiatus. : 41
Nephthys ingens
319 Cirratulus grandis 168
349 Notomastus filiformis 342
Eteone, sp
468 Cistenides Gouldii
468 Cistenides Gouldii 323 323
Nereis virens
Nereis virens
319 Polycirrns eximins. 468
Marphessa Leidyi
46 S Chectobranchus sanguineus. 4 (is
Lumbriconcreis opalina
Lumbriconcreis opalina 342
Nemertecins.
page. I:are.
Nemertes socialis. 3 ± 4 Cosmocephala ochracea 325
N'emutorles.
N'emutorles.
Page.
Page. l'uge. l'uge.
3:- P. vacillatum
3:- P. vacillatum 326 326
mollusca.Gustroporls.
Page. Page.
Ilyamassa obsoleta 465
Littorina irrorata 3.2
Nassa vibex 371 Littorinella minnta 469
Empleura candata 371 Crepidula convexa 355
Urosalpinx cinerea :306
C. fornicata 355
Astyris lunata :306 C. unguiformis 355
Bittium nigrum 305 Bulla solitaria 469
Littorina rulis 305
Melampus bidentatns 469
L. palliata 305

- Lamellibranchs.

III. 3.- ANLIALS INIIABITING OYSTER-BEDS IN BRACIISII WATERS.

Althongh the oyster-beds are generally planted on bottoms that were originally muddy, when corered wholly or partially with living oysters or with dead oyster-shells, such bottoms may properly be regarded as "slielly bottoms" analogons to the natural shelly bottoms of the outer waters. The shells of the oysters afford snitable attachment for various shells, bryozoa, ascidians, hydroids, sponges, \&c., which could not otherwise maintain their existence on muddy bottoms, while other kinds of animals, such as crabs, annelids, \&c., find shelter beneath the shells or in their interstices. Some species have apparently been introduced from farther south with the oysters; among these are Modiola hamatus and Panopeus IIerbstii, neither of which is positisely known to be fully naturalized on our shores.

In planting the oysters they are more or less uniformly seattered over the bottom, from somewhat above low-water mark to the depth of ten or twelre feet. The oysters thus planted are brought mostly from the waters of Virginia and Maryland in spring. During the summer they usually increase greatly in size, and often become rery fat and improve in flavor. They are taken up in the fall, for if left exposed to the freezing weather of our winters, at least all those in very shallow water would be killed. They often double in bulk during the summer. Besides the immense quantities of oysters thus brought from farther sonth to be "planted" in our waters, large quantities of jomng "natices" are also collected from the localities where they naturally breed, and are planted on muddy bottoms in the brackish waters, where they grow rery rapidly, usually attaining a size suitable for the market in two or three years.

These " native oysters," although of the same species as those brought from the sonth, are more hardy, and will live throngh the winter if covered by a depth of water sufficient to prevent them from freezing. The young oysters that attach themselres to stones, ledges, \&c., between tides, often in great abundance, nearly all perish by freezing during the winter. They mostly become an inch to an inch and a half in diameter during the first summer. The period of spawning lasts for some time,
but most of it seems to be done in May, June, and July. The young, after swimming about for a short time, attach themselves to any suitable hard ohject, such as rocks, shells, timber, brush, \&c. On our coast rery few attempts lave been made to maise the young oysters by artificial means, becanse the yomg oysters, of a size suitable to plant, can generally be bonght at a price less than the actual cost of raising them. The time will doubtless come. howerer, when this will no longer be the case, and then the methods so suctessfully employed on the coast of Fance may be resorted to with great advantage.
The yomme oysters mast find some solid substance to which they can attach themselves, before losing their locomotive organs, otherwise they will fall to the bottom and perish in the mud. It is evident, therefore, that although the oysters planted on muddy bottoms of the right kind will grow most rapidly, owing to the great abmance of their microscopic food in the mud and turbid water ; yet such localities are unfarorable for breeding-groumds. because the young.or "spat," will find no suitable objects to which they can attach themselses, menless, by chance, to the shells of the old oysters. Therefore, if it be desired to have the oysters in such loealities prohuce the young ones necessary to maintain the bed permanently, it will be necessary to place lard objects on the bottom, to which they may adhere. Stones, broken bricks, \&e., may be used for this purpose, but nothing is better than old oyster-shells, and they are generally cheaper than anything clse.

On the coast of France bundles of twigs or fagots, prepared tiles, and other objects have been used to catch the jomg, and they are allowed to remain on such objects until they become large enough to be remored and planted elsewhere.

It is obrious that the best breeding-grounds are on hard bottoms, where there are large quantities of dead shells, pebbles, se., to which the young will be sure to adhere. But such bottoms are not the best localities for the rapid growth and fattening of the oysters. Therefore it is always found profitable to transplant the joung oysters, when large enough, from hard bottoms to the muddy bottoms of the estuaries, where their natural food most abounds.

All muddy bottoms are not equally adapted for this pupose. The great difterences to be foumd in the muddy bottoms of varions localities have already been mentioned on a previous page. (See p. 430.) Those bottoms that are composed mainly of tenacions clay are unsuitable, both because the oysters hecome imbedded too deeply in the clay, and because such mud contains but little organic matter. Those that consist of clay or samd mixed with deeaying vegetable matter, and have a black, patrid layer just beneath the surface are also unsuitable and should be avoided. Those that consist of rery deep, soft, pasty mud, though the mud itself may be of good quality, are apt to allow the oysters to siuk too deeply beneath the surfice and thas become smothered in the mul.

The most suitable localities are those sheltered places where there is a firm substratum of sand or gravel, overlad with a few inches of soft,
floceulent mud, consisting largely of living microscopic animals and plants, Infusoria, Diatoms, \&e. Such localities are to be found in most of our shallow estuaries, harbors, and brackish ponds, and on such grounds the oysters grow and become fat with surprising rapidity.

The character of such bottoms is very liable to be changed by storms, especially in winter, either by the removal of the organic mud to some other part of the bottom or shore, or by the washing in of silt or clay in quantities sufficient to eover the bottom and destroy the living organisms. Thus it happens that a locality may be an excellent ofs-ter-ground one year and comparatively worthless the next, or a poor locality may in the next year become a good one. And on this accomet the great reputation that the oysters of a particular loeality often aecuire in a favorable jear may not belong to them in subsequent years, for the quality of the oysters changes with the character of the food and bottom where they grow. I have ahready mentioned sereral of the more important enemies of the oysters on former pages. (See Ip. 306, 326.) The star-fishes, which are among the most destructive of these, do not flowish in brackish waters, and this is, therefore, a great advantage.

The quantity of oysters taken from our waters is far greater than is generally supposed by those not familiar with this iuportant business. The best statisties are necessarily very incomplete, but they are sufficient to show the almost incredible magnitude of this industry. Which is, moreover, rapilly increasing as the facilities for transporting the oysters to all parts of the comtry, even to the Pacific eoast, are multiplied.

Aecording to the official report of Hunter Davidson, commissioner, upon the oyster-fisheries, \&c., of Maryland, Janmary, 18i2,* the quantity of oysters takeu in Maryland waters in the year 1869-70 was $11,233,475$ bushels, which, at an arerage value of 35 cents per bushel, would amount to $\$ 4,031,716$. To catch and consey these to market $\$, 070$ men were employed on the water; $7,190,400$ bushels were taken by 642 ressels (tonnage 14,436) engaged in dredging, and employing 4,000 hands. The balance, $2,043,075$ bushels, were taken by 1,647 boats or \cdot canoes, " using tongs and rakes, and employing 3.410 hands.

In 1870-'71, 597 ressels, (tomage 13,405 .) engaged in tredging, and employing 3,755 hands, took $6,686,400$ bushels ; and 1,649 "canoes" took, with tongs, $-, 261,403$ bushels, employing 3,507 hands; making the total amome for the year, $10,947,803$ bushels, valued at $83,831,731$. Miny of these oysters were sold at $\$ 1$ to $\$ 1.50$ per bushel, while others were sold for less than twenty-five cents, but it is probable that the estimated arerage value (thirty-five cents) is considerably below the actual value.

The quantity taken in the waters of Virginia is probably quite as large as that from Maryland.

Large quantities are also takeu along the coast of New Jersey, Long

[^3]Island, and Connecticut. It is, therefore, probable that the total amonnt taken on the coast north of Cape Hatteras is not less than $30,000,000$ bushels amually, having a value of more than $\$ 20,000,000$. In making this estimate we should allow for the great increase in bulk and ralue of many of the Maryland and Virginia oysters that are transplanted to northern waters, and allowed to grow before using. The arerage value of the northern oysters, both mative and transplanted, is probably more than serenty-five cents per bushel. It is, therefore, probahle that the abore estimate is considerably too low.

The great oyster-markets of the comntry are Baltimore and New Sork. In Baltimore immense quantities of oysters are put up in kegs and eans to supply the distant parts of our own country and also to ship to nearly all foreign combtries. In 1867 it was estimated that more than 10,000 persons were employed in this branch of the business. There were then thirty packing-houses, employing 4,500 openers. In adt dition to the packing business great quantities of orsters are sold at Baltimore and sent away in the shell. The total quantity sold at Baltimore exceeded $\bar{\sigma}, 000,000$ lonshels, of which about $5,000,000$ bushels came from Maryland waters, and the balance from Virginia. Of these orer $1,000,000$ bushels were sent to New Fork, 700,000 to Fair Haven, Connecticut, where an extensive packing business is carried on, 150,000 to Philadelphia, 350,000 to Boston.

The oyster trade of New York, several years ago, was estimated at orer $\$ 8,000,000$, employing,- 500 ressels, and it has greatly increased since that estimate was made.

Among the most common shells that are fomm attached to oysters are Crepidula fornicata (Plate XXIII, figs. 129, 199a) and C. unfuiformis, (Plate XX゙LII, fig. 127.) They both ocenr together on the upper as well as the under ralves, and in all cases retain their ordinary characters, except that the latter is more regular in form, and usually has the upper surface slightly convex, insteal of being much distorted and with a concare upper surface, as the larger specimens that live on the inside of dead mivalves msially are. Its color, when living on the oysters, is always white, while the C. formicata is always more or less marked with brown.

The common muscle, Mytilus etutis, (p. 307) frequently occurs attached to oysters, and when it accumulates on the oyster-beds in large quantities it is very injurious. The Motiola hematus (p. 37 t) is a rery pe-cular-looking musele, having a broad, often hatchet-shaped, distorted shell, covered with prominent radiating ribs, many of which are forked. Its color is yellowish or brownish. It somewhat resembles Mortiote plicatula, but is broader and has coarser ribs. This musele is sometimes found in New Haven Harbor, living on the oyster-beds in considerable numbers, and of full size, attached to the oysters, either singly or in clusters, by .the byssal threads. It has been observed only in the summer and fall and it may not have survired the winters, for it is possible
that all the individuals may hare been brought from the south, in the spring, when quite small, attached to the ojsters. It may be, however, that it has really become naturalized on our shores. It is rery common in the Gulf of Mexico, and on other parts of the sonthem coast. The Anomia glabra (p. 311, Plate NXII, figs. $241,242,242(i)$ is also very commonly found adhering to oysters.
The hard sandy tubes of Sabcllaria vulgaris (p. 321, Plate XVII, figs SS, SSa) and the calcareous tubes of Serpula dianthus (p .322) are very frequent upon oyster-shells, and occasioually those of Potamilla oculifera, (p 322, Plate XYII, fig. S6,) Scionopsis palmata, (p.321,) and other species are met with. Many other Annelids are to be found burrowing or hiding beneath the oysters. The common green star-fish, Asterias arenicola, (p. 326, Plate XXXT, fig. 269,) occasionally oceurs on the oyster-beds near the mouths of estuaries, but is seldom sufficiently abundant in the brackish waters to do serious damage to the oyster-beds.

In the brackish waters the "drill," Vrosalpinx cinerca, (p. 306, Plate NXI, fig. 116,) is the worst enemy of the orster, and is sometimes so numerous as to do very serions damage.

Several species of Hydroids grow adhering to oysters. The most abundant of these, in brackish water, is usually Hatccium gracile V., (p. 328,) but two or three species of Obelia and some other forms occnr.

Of Bryozoa, one of the most common species is the Escharella rariabilis, (p. 312, Plate XXXIII, fig. 256,) which forms calcareons incrustations. The Bugula turvita, (p. 311, Plate XXXIV, figs 25s, 259,) and Tesicularia dichotoma Y. (p. 401) are also common. The Alcyonidium hirsutum, (p. 40t,) which forms soft fleshy crusts orer the surface of the shells, is quite frequently seen.

The common red sponge (p. 330) is often abundant on the oyster-beds where the water is not much freshened.

List of species inhabiting oyster-beds in brachish waters.

ARTICULATA.

Insects.

Chironomns oceanieus.. \quad| Page. |
| :---: |
| 379 |

Crustuceu.

age.
E. longicarpus 313

Crangon vulgaris........... 339
Mysis Americana 370
Melita nitida. 314
Ampelisca, sp............... 431
Unciola irrorata 340
Corophium ejlindricum. ... 370
Epelys trilobus 370

Annelids.

Lepidonotus sifummatus...	Page. 320	Cinratulus gramlis.	Page. 319
L. sublevis	300	Sabellaria vulgaris.	476
Pliyllodoce, sp.	319	Cistenides Gouldii.........	39:3
Eulalia, sp.	319	Nicolea simplex...........	321
Iteone, sp.	$3 \cdot 19$	Scionopsis palmata........	476
Podarlie obscura.	:319	Polycirrus eximius........	:30
Nereis vireus.	317	Chetobranchus sanguineus.	320
N. limbata.	$\therefore 15$	Potamilla oculifera.	46
Marpliysa Leidyi.	:19	Sabella microplıthalma...	323
Lumbriconereis opalina	320	Fabricia Leidyi.	329
Rhynchobolus Americanus.	319	Serpula dianthus,	476
R. elibrancliatus.	319	Spirorbis, sp	329
Nemorteans and Manurians.			
Nemertes socialis.	I'age. $3: 4$	Monocelis agilis.	Page. 325
Cosmocephala ochracea	325	Procerodes frequens.	325
Polinia glutinosa.	324		
Nematorles.			
Pontonema marinum	Page. 325	P. Vacillatum.	Page. 326
MOLLUSCA.			
G(tstromods.			
	Page.		Page. 30^{-}
Urosalpinx cincrea	476	Odostomia fusca	307
Fulgur carica.	355	O. trifida	307
Sycotypus canaliculatus..	355	O. bisuturalis	307
Ilyanassa obsoleta	3.54	Crepidula fornicata.	475
Astyris lmatim	306	C. unguiformis	455
Rissoa aculcus.	306	C. convexa	355
Littorinella minuta.	469	Doridella obscura.	307
Bittium nigrum.	305		

Lamellibranchs.

Ascidians.

Cyuthia partita	Page. 311	Molgula Manhatteusis	Page. 311
	Bryozor.		
	Page.		Page.
Bugula turrita	476	Vesicularia dichotoma	476
Esclıarella variabilis.	476	Alcyonidium hirsutum.	76
Membranipora lineata	406	Pedicellina Americana.	405

RADIATA.
Echinoderms.
Asterias arenicola 476

Acalephs.

O. diaphana 327
O. pyriformis

390
Polyps.

	Page.			Page.
Metridinm marginatum....	329	Sagartia leucolena........	329	

PROTOZOA.

Sponges.
Page. Page.
Tedania, species. 330 Red branching sponge.... 476
Halichondria, sp 330
III. 4.-ANIMALS INHABITING EEL-GRASS IN BRACHISH WATERS.

A large portion of the shallow parts of nearly all the harbors, estuaries, and ponds is occupied by a dense growth of cel-grass, Zostera marina, in summer. This plant flourishes both on sandy and muldy bottoms. During the fall and winter it is mostly torn up and drifted away by storms, but in the spring a new erop starts up and grows very rapidly, the narrow, ribbon-like leares often becoming six feet or more in length during the summer.

These tracts of eel-grass are the farorite resorts of a considerable number of animals, which seek these places either for food or concealment and shelter, or for both combined. Other species, including certain hydroids, bryozoa, and ascidians, grow attached to the leaves of the eel-grass.

Many small fishes frement the patches of eel-grass, and find there abundance of food and unusual safety from their enemies.

Among the most common Crustacea found among the eel-grass are the edible crab, Callinectes hastatus, (p. 367;) I'anopeus suyi, (p. 312;) P. depressus, (Plate I, fig. 3;) Euparurus longicarpus, (p. 313 ;) the prawn, Palcomonetes rulgaris; (p.369, Plate I1, lig. 9;) the common shimp, Crangon vulgaris, (1. 339, Plate 111, lig. 10;) the green shrimp, Tirbius zostericola, (p. 36!), Plate IIl, fig. 11;) Mysis stenolepis, (p. .370, I'late III, fic. 12;) M. Americana, (1. 370 ;) Itlotea imorata, (p. 316, Plate V, tig. 23;) Mclita nitida, (p. 314.) The common prawn (Plate II, fig. 9) has its true home among the eel-grass, and here it occurs in comntless mumbers. Its translncent body, marked with irregular, ill-defined, dark blotches and spots, admirably adapts it for concealment among the discolored and dead leaves of the plant, at or near the bottom.

Where the eel-grass grows on sandy bottoms the common shrimp is scarcely less abundant. The Tirlius is often abmedant, associated with the common prawn, and having similar habits. All these shimps and prawns are eagerly devomed by the fishes. The Idotea irrorata is gencrally rery abundant, and dings firmly to the leaves of the eel-grass lengthwise. Its body is generally euriously and rariously colored with green and brown, \&e., and these colors are often so arranged as to imitate very perfectly the colors of the eel-grass when partially dead or discolored. Sometimes the right or left half of the body will be bright green, while the opposite half will be dark brown. In other cases there will be a dorsal bright green stripe, while the sides will be dark brown, just like one of the leaves of the eel-grass that is discolored at the edges, but green in the middle. Nore commonly these colors are irregularly disposed in blotches.

The Erichsonia attenuata Harger, is a remarkably slender species, which also lives clinging to the eel-grass. Its colors are green and brown, and quite variable.

Several species of $A m p h i p o d s$ are also abundant among the eel-grase One of the most common of these is the Gammarus mucronatiss, (p. 466,) which is easily distinguished by the dorsal teeth on the abdominal segments. Microdeutopus minax Sumtr, is a very small species, which sometimes occurs in great abundance in the small brackish ponds. It is remarkable for its relatively large and very broad hands, armed beneath with three prominent teeth. The hands are nearly as large as the entire body.

Among the Mollnsks several interesting species occur. The Ilyanassa obsoleta, (p. 3 ¹, Plate XXI, fig. 113;) Bittium nigrum, (p.305, Plate XXIV, fig. $15 \pm$;) and Astyris lumuta, (p. 306, llate XXI, fig. 110,) are generally the most abundant species. The Nossa vibex (p. 371, Plate XXI, fig. 114) is met with oceasionally, living on and abont the roots of cel-grass, but it is an uncommon shell in our waters, though quite abondant on the sonthern coasts. The Cropichula convexa (p. 371, Plate XXIII, fig. 12S)
may be found, both adhering to the leaves of eel-grass and attached to shells occupied by the smaller liermit-crabs.

The curious little naked mollusk, Elysiella catulus, (Plate XXV, tig. 171,) is often quite common on the leares of cel-grass in our harbors. It also has the power of floating with the bottom of the foot at the surface of the water. Its small size and bright green color, like that of the growing leaves of the Zostera, cause it to be easily overlooked.

The related species, Elysia chlorotica, (Plate XXV, fig. 172,) appears to have similar labits, but is much less common. Its color is also green. The pretty Doto coronuta (p. 400, Plate NXT, fig. 170) also occasionally occurs on the leaves of eel-grass.

A green Planarian is frequent on the eel-grass, and also a bright red species.

List of species inhabiting the eel-grass in brachish waters.

ARTICULATA.

Insects.

Nemerteans and I'lanarians.

MOLLTESA.
Gierstroporls.

	Pagr.		Page:
Illyamassa obsoleta	479	Littorinella minuta.	416
Nassal vibex	17!	Crepidula convexa.	$47!$
Astruris lumatal	479	1) oto coronata.	180
Anachis aviara	3018	Elysia chlorotica	480
Bittium nigrum.	459	Elysiella catulus	180
Triforis nigrocinct	30.5		

Lamellibranchs.

Mytilusedulis............. 470 Ostrata Virginiana 42
1 scirlians.
Molgula Manhattensis..... Trage. 811 Botryllus Gouldii............ Page. 3 3ij

Bryozoa.
Pagr. Page.
Bugula turrita............. 311 Escharella variabilis 312

Vesicularia dichotoma..... $40 \pm$ Membranipora, lineata.... 406
RADIATA.
Acculephs.
Page. Page.
Obelia diaplıana $3: 7$ Hydractinia polyclina...... $3 \pm S$

Obelia, sl................... 46
Polyps.
Sagartia lencolena . \quad Page. $\quad 3 \geq 9$
 Floating thmmer, rocis, ETC., in blackish waters.

The piles of wharves in brackish Larbors are often inhabited by an abundance of animal life. The same species are mostly to be fonnd also on piles of wharses in the purer waters of the somds, and many of them have, therefore, already been mentioned in a previons place, (p. 375.) There are some of these species, howerer, that appear to flomish best in waters that are decidedly brackish.

Among the most conspicuous of these is the beautiful Tubularian $1 \pm \mathrm{V}$

Parypha crocet, (p. 390, Plate, XXXYI, fig. 27-) which grows in large tutts, several inches in height, and often corers large surfaces of the piles and timbers at and just below low-water mark. Associated with this the Obetia gelutinosu (1. 301) often occurs in large quantities. This is a large and very beantiful species, having a large dark colored stem, composed of numerons mited tubes, but the terminal branches are white and delicate, aud the cells have an elegant bell-shaped form, with a toothed margin. It grows to the length of a foot or more. This species occurs on the piles of Long Wharf, in New Haren Harbor, in great abuudance, associated with the preceding; at this place the water is not ouly quite brackish, but is rery impure, on account of sewerage, \&e.

Other species of Obelict also oceur in similar places. The Balanus eburneus is a very abundant barnacle in brackish waters, growing upon piles, timbers, oyster-stakes, and every other kind of fixed wood-work, and also upon the bottoms of ressels and floating timber. As already remaked (p. 3S1) it is capable of living even in fresh water. The Balanas halanoides also occurs where the water is less brackish. The piles and timbers of the wharves are often badly damaged by the perforations of Teredo naralis (p. 35t, Plate XXVI, fig. 183) eren where the water is rery brackish.*

The Limnoria lignorum (p.379) also attacks wood-work in waters that are somewhat brackish.

Lists of species inhabiting piles of wharces, floating timbers, de., in brackish ruters.

ARTICULATA.

Insects.

[^4]Annclids.

Turbellarians.

Polinia glutinosa 321
Nematodes.
Page. Page.
Pontonema marinum P. vacillatum 326
mollusca.
Gastropods.
Page. Page.
Bela plicata 383 30.5
Ilyamassa obsoleta 468 Ollostomia bisuturalis 307
Tritia trivittata 354
Bittium nigrum 305
Urosalpins cinerea 306 Cerithiopsis Greenii 383
Astyris lumata 306 Triforis nigrocinctus. 305
Anachis arara 306 Alexia myosotis 383
Rissoa aculeus 306 Telampus bidentatus 469
Skenea planorbis 383 Eolidia pilata 383
Littorina rudis 305
Lamellibranchs.
Teredo navalis
Page. Page.
Modiola plicatula 307
Argina pexata 30?
Mytilus edulis 30^{-}Ostrea Virginiana 310
Ascillians.
Page. Iage.
Tolgula Manlattensis Botryllus Grouldii 389
Cynthia partita 311Bryozoa.

aria dichotoma.	$\begin{gathered} \text { Page. } \\ 389 \end{gathered}$	Bugula turrita	Page. 311
Escharella rariabilis.	312	Pedicellina Ame	405

RADIATA.
Hydroids.

	Pave.		Page.
Obelia gelatinosa.	+5:	Halecium gracile	32
O. prritormis	390	Parypha crocea	182
O. diaphana .	32%		

Page. Page.
Sagartia lencolena........ 329 Metridinm marginatum.... 329
IV.-FatTA of the ocean shores and outer cold waters.

All along this cuast, from Cape Cod to Stonington, Comecticnt, there is a belt or current of cold water which impinges directly against the outer islands and the open coast, especially where there are points of land projecting outward toward the deeper waters. This is especially noticeable at Gay Mead, on Martha's Vineyard, No Man's Land, Cuttyhumk Island, Montank Point, Block Island, Point Judith, and Watelr Hill. This cold water is undonbtedly derived from the Aretic current, which passes slowly southwarl in deep water off our coast, but whether an actual curent, distinguishable from the tidal eurrents, exists in the waters of moderate deptl along the coast is still meertain. The tidal currents apparently hare the effect of bringing the cold water of the ontside regions inp into the shallower localities along the shores, and it is probable that the presence of the cold water in moderate depths is due to the joint action of the tides and the slow-moring Arctic current, which impinges more or less against and mpon the slope of the submerged eastern border of the continent. But the position, extent, and temperature of this cold water along our shores varies greatly, according to the direction of the tidal currents and the surtace currents cansed by the wind. We have shown, on a former page, that at times these local winds and tidal curents are able even to bring Gnlf Stream water and its characteristic animals directly mpon this coast, even as far westward as Watch Mill, Rhorle Island, where the Phystlit is often cast ashore in snmmer. At such times the cold eurrent must necessarily be wholly displaced, or disguised by intermixture with the warmer waters. When the tide is flowing from Long Island Sound, Vineyard Sound, or other large bodies of warm water, the cold waters will also be displaced and the temperature raised even at the distance of twenty or thirty miles from the shore in summer. In winter there is eomparatirely little effect from the Gulf Stream, owing to the prevalence of northerly winds, and there is also far less effect from the warm waters of the shallow bays and sombls earried by the tides. Therefore the full effect of the northern current is felt only in winter, and it doubtless adds to the cold proper to the season and land climate.

In winter and early spring we arcordingly find mumerous speeies of northern animals and algie which disappear partially or wholly in many
of these localities in summer．In April，May，amd Jme，the cod and haddock resont in large mmbers to the banks amd reafs off stonington， Wrateh Hill．No Man＇s Lam，and other similar pataces，but are quite maknown there later in the stmmer．

In consegmence of the ranying temperatures of the chmonts whind altemately pass ower certain of these lowalites，there is a rey peroliar admistare of northere abl sonthern specese，side ly side．This is par－
 where the sonthern Astrongice Doner is associated with the borthern Aleymime cornewm，Cribrelle sangminolenta，and many other northern forms．

The temperatne of the bottom－water during the last of Angist and
 twenty－nine fathoms off Marthas Vineyad and Buzzard＇s lbas，（see chart．）The surface temperatures were at the same time（ 623 to 640 ，anti oceasiomally as high as 66° ，when affected by warmer curents．

The principal localities mader this head at which we have mate eon－ lections are No Man＇s Land，Cuttyhunk Island，Gay Mean，and Wateh Hill，Rhole Island．Dr．J．E．Letidy has pmblished a partial list of the species fomm at Point Jutith，＊and we have more or less information concerming the fama of sereral other similar localities．In all these places the assemblage of animals is nearly the same，and in gemeral not rery different from what we find on the rocky shores of the sommds and bays，（see p． $30: 3$ ．）A large part of the species of these shores have， therefore，already been mentioned in comection with the fama of the bays and somuds．

There are，however，many species that are characteristic of the latter， which are found but rarels，or not at all，on the colder and more ex－ posed outer shores ；and these are characterized by the abmatane of some northern species which are rare or wating on the inmer shores，or which oectur there only in winter．

Among the most abmolat speeses of shells are Pumpera lapillues，（p． 306，Plate NXT，tigs．118，119：）Littorima pallata，（p．30．5，Plate NXIT， fig．138：）L．rudis，（p．30．5，P＇late NXIV，lig． 1.37 ；）Acmore testulinulis， （1．307，Plate N゙N゙IV，figs．15s，159；）and Latumu vinctu，（p．30．7，Plate
 in the mosit exposed situations．These are all hardy northern speeies， which extron their range to Greenland or beyond，and althongh all of them are to be fommd，more or less frecpmenty，on the immer shores，they are there less almodant and gemerally of smaller size．The Littorime palliuta is extremely abmedant on the Fuens，and individuals were fomd at Wrateh Hill，copulating，April 12．The Lacena rincte breeds still

[^5]earlier in the season, for its eggs were found attached to algat and celgrass at the date named. The eggs of this species are small, yellowish white, imbeded in a gelatinons mass, having an anmular form, but showing a break or suture on one side. These ammlar egg-masses are attached by one side to the sufferes of flat alge or eel-grass in large numbers; they are from. 12 to 20 of an inch in diancter.

The Eolis prapillosit was found at Watch Hill, under stones, April 12 , and with it were long, much convoluted, gelatinous cords, filled with minute pale red or sammon-colored eggs, which probably belong to this species, which is a northerin one, and has not hitherto been recorded as from south of Cape Col. It is very abundant in the Bay of Funds, and similar egg. chasters are found there under rocks during the entire summer.

Among and between the stones the northern purple star-fish, Asterias vulgaris (1. 432) is often found at low-water, and also the green seamrehin, Strongylocentrotus Dröbachiensis (p. 406, Plate NXXV, fig. 268) during the spring tides.

The Bulants balanoides (1). 305) is ruite as abundant on the most exposed rocks as elsewhere. The minute biralve young of this species were found just attaching themselves to the lower surfaces of rocks in immense nmmbers at Wateh Hill on the 12th of April.

Beneath the stones the rock-cralb, Cancer irroratus, (p. 312,) is very common, ant occasionally the much rarer Cancer borealis is found dead on these shores. It was thus fomd at Gay Head and No Man's Land, but it is doubtfal whether it lives above low-water mark. In the lower part of the fucus zone the large Gammarus ornatus (p. 314, Plate IV, fig. 15) is always to be found in great abmilance muler stones, and in the upper half of the fucus zone the smaller species, Gammarus anmulutus (1. 314) and Gammarus marimus often oceur in great numbers, associated with Jara copiosa (p. B15) and Idotea irorata (p. 316, Plate V, fig. 23.) The Gammarts marimus oceurs higher up than either of the other species, and is sometimes abundant even near high-water mark, where the soil beneath the stones is barely moist at low water. The Amphiihoë maculata (1. 315, Plate IV, fig. 16) is also a common species under stones; and both green and reddish brown rarieties oceur.

Another species of Amphithö̈, of smaller size, was found swimming free in the rocky pools at Watch Hill, April 12. In this the general color was red, or brownish red; the body was transversely banded with pale flesh-color or whitish, alteruating with bands of dark red or brown, which are made up of minnte crowded specks; the antennge are annulated witlo pale red, and are thickly specked, on the bands and at the base, with a larker red. The Hyale littoratis (p. 315) is a small but very active Amphiporl, whieh is often abnndant near high-water mark on the rocky shores, clinging to the Fucus and other alga, or swimming in the tidepools. It is capable of leaping actively like the beach-Heas, (Orchestia
agilis.) which it somewhat resembles in form. The color is very variable; it is often bright yellowish .green, but freguently dark green, brownish green, or brown.

The Nereis virens (p. 817, Pl. XV1, figs. 17-19) is very abmotant in hurrows beneath the rocks. The males of this species, six to ten inches of more in length, and of a dark green color, were found at Wrateh Hill, April 12, in great momber's, swimming about in the pools of water among the rocks, with an medulatory motion, and discharging their milt in large quantities. Varions other Amelids burrow or build tubes beneath the stones. A.planaria and Leptoplente folinm ereep over their lower surfaces.

Attached to the stems of Fucus at low-water, seremal Hydroids may
 279) is hy far the most abumlant. The Obelia geniculate is also very common, attached to Lamineria and other alge. Various Bryozoa necur attached to stones and to Fucus and other alga. The Alcyonirlium hispidum (p. 31:) is one of the most abmdant species, and usually inrests the stems and fronds of Fucus vesiculosus, but also often covers broad surfaces of the rocks. The A. hirsutem is often associated with the preceding species on the rocks; it forms broad, thin, soft cunstr, cosered with small soft prominences, but is withont the spines or bristles seen in the latter. The Zö̈ids are also much smaller.

The Eurrelle fumiliuris is a singular and delicate species, which ocen's both on the under side of rocks and on alge. The body is small, fusiform, attached by a long and very slender, flexible pedicel. When it survonds the stems of small alga, the whitish pedicels project outward in all directions, and this produce the apparance of a delicate chenillecord. This is a northern and European species. It was also dredged on Saint George's bank in 1872.

List of species found on the outcr rockiy shores.

	ARTICULATA.		
	Crustucea.		
Cancer irrozatus	Page. 456	Gammarus marinus	Pare. 406
Cancer borcalis	486	Amplıithoï marulata	456
Tanopens depressus.	:11"	Amphithoii, sp	$4-6$
Panopeus Sisyi.	31~	('aprella, sp).	$: 316$
Homarus Americanus.	49.2	Jiera copiosa.	1,96
Orelıestiat agilis	315	Hotea irrorata.	4 Sc
Hyale littoralis	486	I. phosphorea	316
Calliopins lervinsculus.	:17	Erichsonia diliformis	$\therefore 16$
Gammarus ornatus.	4 Eli	Balamms balanoides.	450

Annelids.
Page. 1 Page.
Lepidonotus squamatus Cirrhinereis fragilis 397
Harmothoei imbricata 301 Clymenella torquata $3+3$
Phyllodoce cantemula 404 Polycirrus eximins $3: 0$
Eteone robnstal 349 Sabellaria vulgaris. 321
Autolytus cormitus 397 Potamilla oculifera 32
Nereis virens 487 Fabricia Leidyi 3:3
N. pelagica 319 Serpula dianthus 322
Ophelia simplex 319 Spirorbis, sp 323
Turbellaria.
Page. Page.
Planaria, species 487 Nemertes socialis $3: 4$
Leptoplana folium 487 Nemertes, s1 498
Procerodes frequens. 3 ± 5 Monocelis agilis $3 \geq 3$
Nematodes.
Page. Page.
Pontonema marinnm........ $3 コ J$ Pontonema vacillatum. 326
MOLLUSCA.
Gastropods.
Page. Page.
Buccinum undatum 494 L. neritoidea 495
Tritia trivittata 354 Bittium nigrum 30.5
Urosalpinx cinerea 306 Acmara testudinalis 485
Purpura lapillas 485 Doris bifila 307
Astyris lunata 306 Polycera Lessonii 400
Littorina palliata. 485 Dendronotus arborescens 495
L. rudis 485 Eolis papillosa 486
Lacma vineta 45.) Tergipes despectus. 495
Lamellibranchs.

	lange.		Page.
Saxicara arctica.	309	Mytilus cululis	307
Mra arenaria	309	Modiola modiolus...........	309
Kellia plaunlata	310	Anomia glabra.	311
Ascidions.			
Crathia partita.	$\begin{array}{r} \text { Page. } \\ 311 \end{array}$	Amarecium pellucidum....	$\begin{array}{r} \text { Page. } \\ 401 \end{array}$

Cッй partita311
［4－9］INVERTEBRATE ANTMALS OF VHNEVARD SOUNU，ETC． 195
Bryozoc．
Pare。 Jagr．
Alçonirlimm hirsutum 1.57 Bugula flaluellata ：311
A．hispidum 457
Tesicularia gracilis $38!$
V：enscuta 401
V．fuscal 4：0）
Membramipora pilosa 4010
Mr．lineata 4116
Lseharella variabilis 31：
Fanvella familiaris 4157
Diseopora corénea 333
Tubulipora dabellaris 40 Cellepora maniona 81：
Crisia comonea． 311 Pedicellina Americana． 403
RADIATA．
Echinoderms．
Page． Pace．
Strongylocentrotns Dröbachi－ Asterias volgaris $4!6$
chisis 496 Cribrella samğumolenta 407
Acalephs．
Page． Pagn．
Obelia pruiformis 390
Sertularia pmonila
Sertularia pmonila 45% 45%
O．geniculata 487
S．argentea 405
O．flabellata $3!0$
O．diaphtana $3: 7$ Clav゚a leptostyla 8こら32
Campanularia flexuosa 327 Hydractinia polyclina． 2ご
Polyps．
Page． Page．
Metridinn marginatmm 3：9 $3 \geq 9$
IV．2．－SPECHES INHABITING THE SANDY Shores of the nirin coast．

Owing to the force of the waves the sand and gravel of the exposed shores are kept in constant motion in stormy weather，and are often dis－ turbed to a considerable depth．especially in winter．Therefore the con－ ditions are very unfarable for the existence of animal life．The fama of such shores is，accordingly，very meager，as compared with that of the more sheltored sandy shores of the bays and sommds．

It often happens that one may examine these samly beaches fora mile or more at low－water withont dimbing more than half a dozen species of animals that actually live on them，though many may be fonnd thrown up by the wases from below low－water mark．

In rovesor other localities that are somewhat shelteren，the momber of species is greater，aml most of them are identical with those fomm on the samd？shores of the sommels．

Tuward high－water mark the Tulorchestia longicornis（p．933i）and T ．
megalophthalma (p .336) are everywhere common, burrowing in the sand. The Cancer irroratus (p.338) and Platyonichus ocellatus (p.338) are rather common at and just below low-water mark. The Hippa talpoida (p. 338 , Plate II, fig. 5) is oceasionally found, and the young sometimes occur in large numbers, burrowing in the sand at low-water mark. The common shrimp, Crengon rulyaris, (p. 339, Plate III, tig. 10,) is usually abundant where there are sheltered sandy flats.

The Annelicls are less numerons than on the sandy shores of the sounds, but such as do occur are mostly of the same species. One of the most interesting is the Nerine agilis, (p. 346,) which is very remarkable for the rapidity with which it burows in the sand.

The Mollusks are few in nmmber. One of the most abundant of the Gastropods is the Lunatia leros, (p. 353, Plate XXIII, figs. 133-136,) which burrows just beneath the surface of the sand, at and below lowwater mark. The Nevcrita duplicata (p. 355, Plate NXIlI, fig. 130) is also occasionally found, but is much less abundant than in the bays.

Of Lamellibranchs there are but few species that can maintain themselves in such situations. Among these the "long clam," Myu arenaria, (p. t63,) the "razor-shell," Ensutelle Amcricant, (p. 356,) and the "strfclam," Mactra solidissima, (p. 358,) are the most common.

Very few, if any, Radiates are to be found on the exposed sandy shores, unless thrown up by the waves from deeper water. In places that are somewhat protected from the violence of the surf, the Leptosynapta Girardii (p. 361, Plate NXXV, figs. 265,266) is often fond burowing in the sand at low-water mark. Sometimes, in similar places the "sanddollar," Echinaruchnius parma, (1. 363, Plate XXXV, fig. 26\%.) is found in large mumbers at extreme low-water mark.

There are no Mydroids and Polyps that properly inlabit such shores.
List of species inhubiting the sandy shores of the open coast.

ARTICULATA.

Crustacea.
Page. Page.
Ocypoda arenaria, (yomg)... 337 490
Cancer irroratus 490
Orchestia agilis 336
Cancer borealis............... 486 Talorchestia longicornis.Platyonichus ocellatus490
Mipıa talpoida 490
T. megalophthalma. 459
Unciola irrorata 340
Eupagurus pollicaris 313 Idotea caca. $3 \not 10$
Amelids.
Page, Page.
Nereis rirens 317 Scolecolepis viridis. 345
N. limbata 318
Clymenella torquata 34.3
Rhynchobolus Americanns. 342
Serine agilis
± 90 Polycirrus eximius
± 90 Polycirrus eximius 320
Amplitrite ornata 320 320

MOLLCSCA.
Gastroporls.

Lamellibranchs.

RADIATA.
Echinoderms.
Leptosynapta Girardii...... $490 \mid$ Echinarachnius parma..... 490
IV. 3.-Anmals inhabiting rocky bottons off the open coast.

The fanna of the rocky bottoms in these outer waters is rich and interesting, and decidedly northern in character, thoigh there is usmally an admixture with sonthern species.

The prineipal localities where dredgings were made on this kind of ground are: First, oft' Gay Ilead and Devil's Bridge, at localities marked on the chart, $53, a, b, c, d ; \quad \pi 5, a, b, c ; 56, a, b, c, d ; 57, a, b, c, d ; 5 s$, u, b, c; 59, a, b, c: $60, a, b, c ;(11, a, b, c ; 62, a, b, c ; 63, a, b ; 83, a, b, c$. Second, between Gay Head and No Man's Land, and to the westward of the latter island, at localities $S_{2}, a, b ; S t, a, b, c, d$; at these localities cod are eanght in the spring. Third, on and about the rocky reef extending from Wateh Hill, Rhode Island, to Fisher's Island, and forming, in part, the physical boundary of the eastern end of Long Island Somd; this is also a locality where cod and haddock are canght in spring. The dredgings at this place were made by Professor D. U. Eaton, Mr. C. A. Burt, and myself, April 13, 1873. Fourth, a locality off Cuttyhunk Island, where dredgings were made, April, 1Sio, by Mr. T. M. L'rudden, Mr. T. H. Russell, and others.

The four localities named are characterized by a simjlar fanma, but each one yielded some species not fombl in the others, though more numerons dredgings might have revealed them. The reef off Wateh Mill is of peculiar interest on acconnt of the singular blending of the northern and sonthern famme at that place, as mentioned above. It seems to be nearly at the extreme western range of many northern species, though some of them may occur sparingly in certain fivomable localities still farther westward, in Long Island Somm itself. Many northern algie were also collected there by Professor Laton, in abund-
ance, and some of them have not been found farther westward, and others but rarely. Among these were Ptilota elegans and Delesseriu simusa, both of which were abundant on the reef in four or fire fathoms, associated with large quantities of Phyllophora Ibrodial, and I^{\prime}. membranifolia; Euthoru cristatu and Lithothemmion polymorphum also occurred. The "dnkse," Tihodymeniu preimuta, Laminaria digituta, L. saccherinu, and L. Iongicrura, all of which are decidedy northern species, were large and abumbant.

A similar assemblage of algex was also found on the rocks, in shallow water, off Gay Head, though some of the species just named were not found there.

Among the Crustacea of these localities, the most important is the lobster, Homaries Americames, (p. 395,) which finds its proper habitat in such places. It is rery abundant off Gay Head, and among the reefs and rocks off Watch Hill and Stonington, Comecticut. It also occurs plentifully in similar localities off New London, Comecticnt, and still farther west in Long Island Sound. At all these and many other localities, large quantities are caught for the markets. They are nearly all taken in "lobster pots" baited with refnse fish, \&e.

The lobster fishing begins in this region in the latter part of March or early in April, according to the season. By the middle of April they are usually taken in large quantities and shipped alive to New York, New Haren, and other cities. The extent of this trade is enormons even in this region, while north of Cape Cod, along the whole northern coast of New England, and on the shores of Nora Scotia, the lobster is taken in still larger quantities. At present we have no reliable data for estimating the number annually caught, but it probably amounts to several millions.

In winter the supply comes from the northern coasts of Massachusetts and Maine, where they may be taken in moderately deep water at all seasons. According to Captain N. E. Atwood* they do not come into shallow water at Provincetown mutil Jme and remain there until October, wheu they disappear again. He also states that those that risit that locality are nearly all females; "they appear to come near the shore for the purpose of depositing their young, after which they pass away and others in turn take their places, as is indicated by the change that is constantly taking place, for when the fishermen are catching great quantities of large, good hard-shell lobsters, and they are umsually abmdant, perhaps the next day there will be a new kind, smaller and not of so good quality, the former ones having passed away and others come to take their places." "In Boston the number of lolosters sold annually canuot be much short of a million. The male lobster is preferred and is the most salable, as this city has always been supplied from the northern shore of Massachusetts and coast of Maine, where the

[^6]males are most plemtilul. It is a great adrantage to the fishermen that the people prefer males. la Xew York it is very difforent in this particular, that city being supplied from Cape Cod after Jume, and the femate lobster thus comsidered murh the best. I have sold many lob sters in New Vork, amb males sell at only abont half priee; the male is much poorer than the female in meat." Captain Atwood states, in the same place, that northwarl amd eastward of Plymonth, Massachusetts, "three-fuarters at least are males at all seasons of the year." Among those that I have examined from New Lombom, Waterford, amd Stonington, Connectiont, in our markets, 1 have not noticed any marked inequality in the mumber of the sexes. Mr. Smith examined the lobsters in the market at Provinertown on two oceasions in Angust and September, without fimling any decided difterences in the ummber of males and females. He also repeatedly examined those in the fish-makets at Eastport, Mane, in summer, with the same result. It is possible therefore, that the fishermen do not enrectly distinguish the sexes, when the femalos are withont eges, and that an erroneous opinion has thas become cmrent among them.

There is a great difference in the breeding season on different parts of the coast. The lobsters from New London and Stonington often lay their eggsas early as the last of April or first of Jay ; while at IIalifix, Mr. Smith found femaleswith recently laid eggs in September. At Eastport, Maine, the females carry their eggs in mid-summer. In the mate the genital orifices are in the bases of the last pair of legs ; in the fomale they are at the bases of the middle pair. This will always sore to distinguish the sexes, but they also differ in the structme of the abdominal appendages.

The rock-crat, Cancer iroratus, (p.312.) is very common on these bottoms, and C. boreulis (1. 395) also inhabits them, fulging from the large dead specimens fom on the adjacent beaches, bat we only dredged a few small living specimens. One of these was taken on the reef between Watch Hill amb Fisher's lsland, in 4 or 5 fathoms, among algie. It is more conrex, and much more hairy than the precerling species, and the teeth along the sirles of the carapax are quite different.

A large and handsomely colored shrimp, I'andelus annulicornis (Plate II, tig. (f,) often ocem's in the deeper waters, ontsile, but is far more common farther north, as in the Bay of Fumly. The common shimp, Crangon zulyaris, (p. 33:), Plate 111 , fig. 10,) is common, especially where there are spots of sand among the rocks. The lit tle bright colored shrimp, Hippolyte msiola, (1. 395,) is frequently met with among the reel alge. The Cruciola irroratu, (p. 340, l'late IV, fig. 1!, and Amphithoe: maculata, (p. 315, I'late IV, fig. 16,) together with several other Amphipods, are common, especially among the red alge, and some of them are handsumely marked with red and other bright colors.

Among these are Porlocerus. fucicole, which is a small species and quite variable in color' some of those trom the reef at Wateh Hill had a
transverse dorsal band of red or orange on each segment, and similar ones on the epimera, and were mimtely specked with dark brown ; the antenne and legs were ammated with white and light red or orange. Another species of Podocerus was still more abundant among the red algæ; in this the males and females differ greatly in size, form, and color. The females are much smaller and stouter than the males; their colors were generally red and white, in strong coutrast, though some were purplish and more like the males in color ; most of the females hare the head and few anterior segments dark red; then a band of white; then three or four bands of dark red, on the middle of the body, which are often confluent into a large dorsal spot of red or brown ; these are followed by a broad white band or spot ; the abdominal rings are alternately banded with red and white; part of the epimera are red. The antemme and legs are more or less ammlated and spotted with red. The eyes are black. In the male the color is generally reddish or purplish brown, but irregularly speeked with darker brown, and with the intervals between the segments pale red.

Species of Caprella oceur in considerable numbers, clinging, in grotesque attitudes, upon the delicate alge and hydroids. The Idotea irrorata, (p. 316, Plate Y, fig. 23,) is also rery common, living among the alge, and Erichsonia filiformis (p. 316, Plate VI, fig. 26,) is often associated with it.

The Annelids living mon such bottoms are diffent to obtain, since they mostly burrow beneath the stones or live in tabes attached to the rocks. The few species obtained are, with few exceptions, not differeut from those found in the somuls, on similar bottoms. The Autolytus cornutus, (p.397. Plate XIII, figs. 65, 66,) and another species of the same genus were foum in abundance, living in tubes attached to the fronds of Laminaria among hydroids, (Obelia geniculata.) On the same fronds were long, crooked tubes, formed of grains of sand and small bits of shells, belonging to Nicolea simplex, (p. 397.)

Burrowing in the corals of Astrangia Dance we fomm, on the reef oft Wateh Hill,the singnlar Annelid named Taragunsetu coralii by Dr. Leidy, Who obtained his specimens at Point Judith. The specimens found by us were mostly rery dark greenish brown or black, but some had dark, orange-colored branchie. The Lepidonotus angustus, Phyllodoce gracilis, P. catemla, and Eumidia Americana are new and interesting species. Nereis fucuta oceurs rarely.

Of Gastropods many species already enumerated as inhabitants of the rocky shores occur also on the rocky bottoms in abundance, but there are a mumber of additional speeies. One of the largest is the "whelk," Buccinum umlutum, (Plate XXI, fig. 121.) This is a decidedly northern and arctie shell, found also on all the northern coasts of Europe, though several anthors believe that the American and European shells are distinct species.

One of the most interesting of the northern shells that occur here is
the Leptochiton ruber. (p. 399, Plate NXT, fig. 166.) This adheres to rocks and stones that are incrusted by the red mullipore Lithothemmions polymorphem, with which its red color, of varions sharles, agrees very closely. It is a far more abmadant shell in the layy of Fimdy, where it alsolives among the same mullipore. Among the other less common northern suecies, met with on these bottoms, are Rissoac cxurata; Lacuna noritoideu: : And Astyris rosacea.

Several rery interesting species of naked mollusks (Nudibrenchs) oceur on these bottoms, creeping over algate and hydroids, and feeding mpon the latter. One of the most comspienons of these is the Demelronotus arboresens, which is a northem form, and had not been found sonth of Cape Corl until this spring, when we dredged it on the reef off Watch Hill, in fomb or tise fathoms. It can be easily distinguished by the two rows of large arborescently-branched gills along the back; by the branched lobes of the tentacle-sheaths and the arborescently divided branch on their onter side, near the base ; and by the very narrow and almost linear foot, which is adapted for creeping over liydroids.

The Onchyndoris pallida was dredged by Messis. Prudden and Russell, off Cuttyhmk Island, in April, 1s:2. It has not been previously recorded from south of Cape Corl, but it is common in the Bay of Fundy. It can easily be recognized by its pale yellow color, and the long, bluntconical papillae that cover its back.

The ALolisponillose and Toryipes Aespectus were both found at Whatch Hill this spring, April 13 , and are new additions to the fama of sonthern New England. The former was found, with its eggs, among the roots of Laminaria; the latter was abundant in four or five fathoms, creeping orer Obelicu geniculuta, which was abmudant on the fronds of Laminariu. Its eggs, inclosed in small masses of gelatinons matter were attached to the Olelia in large numbers. The Doto coronatu, (Plate XNT, fig. 170,) was associated with the Tergipes on the Obeliu. An undetermined species of Eolis, with bright red branchiae, was dredged off Gay Head, on a rocky bottom.

The Lamellibranchs are not of much interest, and scarcely any are peculiar to this kind of bottom. The Modiola modiolus (p. 309, Plate XXXI, tig. 237) is one of the most common and characteristic species. The northern scaly or spiny Anomia aculeata (Plate XXXII, figs. シ3!, $240)$ is common ; it adheres to rocks, shells, and the roots and stems of large algu.

Among the Ascidians there are sereral northern species, not before found so fir south. The Cynthiu carmea (Plate XXXIII, tigs. $\because 45, \geq 48$) was found off Gay Head in ten fathoms. The young specimens were mumerous on the stomes and shells. In contraction they are low and that, with a thin margin; the color is light red, or flesh-color. With this a few young specimens of Cymthin cchimatu were fomb. These are peculiar in being eovered by stellate spines. The color of the young specimens is pink, the alertures rose-red. The Molgula pupillosa also occured spar-
ingly with the last two species. This is also a northern species, common in the Bay of Fundy. Among the compound Ascidians the only species found here that did not occur also in Vineyard Sound was Amarocinm pullidum, a small species, which forms small rounded or turbinated Whitish masses, of a firm gelatinons appearance, but with fine grains of sand imbedded in the substance. It is a common species in the Bay of Fundy.

The Bryozoa are represented by numerous species, some of which are veryabundant. The Mcmbranipora pilosa (Plate XXXIV, figs. 262, 263) is one of the most alondant. It incrusts, and often entirely covers, the fronds of various alge, especially of Phyllophora Brodici, P. mombranifolia, Rhodymenia palmata, Delesseria simuosa, \&ec. On the reet off Watch Hill it was particularly abundant on these and other algre, shells, \&c. It is easily distinguished by the single long spine at the proximal end of the cell, and by the shorter ones along the sides. With the preceding, Crisia cbumea, (p. 311, Plate XXXIV, figs. 260,261 ;) Tubulipora fabellaris ; Cellepora ramulosa, (p. 312;) and a species of Discopora, allied to D. coccinea, were rery abundant, adhering to the more slender red algie. A species of Lepralia, of a reddish color, and forming both incrusting and lichen-like corals, was common. In this the apertures of the cells are large, operculated, broadest proximally, and each one has a short, stont, conical spine at its proximal border, which is scarcely visible except in a profile riew.

The Bugnla Murrayanu, which forms clnsters of broad, thin, flexible fronds nearly two inches high, was dredged seceral times. It is very common in the Bay of Fundy. An incrusting species of Alcyonidium, perhaps identical with \mathcal{A}. gelatinosum of Europe, occurred on the red algie. A species of Collularia, allied to A. ternata, was also obtained.

The Echinoderms are represented by the common green sea-urchin, Strongylocentrotus Diöbachiensis, (1. 106, Plate XXXV, fig. 2158,) which is common off Gay Head, and as far as off New London, though far less abundant than in the Bay of Fundy; by the common red or purple star-fish, Asteries vulguris, (p. 407,) which was abumdant oft Gay Head and on the reef off Watch Hill; Cribrella sanguinolenta, (p. 407.) which is not uncommon as fur west as the Watch Hill reef, and off New London; and by the Ophiopholis aculcate, (Plate XXXV, fig. 270,) which was only once met with off Gay Head, but of which we dredged several specimens on the reef off Watch Hill. The last-named suecies is extremely abundant in the Bay of Fundy and northward, from low-rater to the depth of more than one liundred fathoms.

The Hydroids are very mumerous on the rocky and stony bottoms, -attached to algre, stones, shells, ascidians, \&c. One of the most abundant is Obelia geniculatu, (p.407,) which grows on the fronds of Laminaria, Rhodymenia, and other algre; it often nearly covers one or both sides of the broad fronds of Laminaria, for the distance of two or three feet, the creeping stems forming an intrieate net-work from which the upright
stems arise in great abundance to the height of an inch or more. This species was particularly abundant on the reef off Watch Hill, and those obtained on the 13th of April were loaded with the reproductive capsules, (gonothecie.)

At the same place we obtained luxuriant specimens of O. Al hellatu, (p. 390,) some of which were eight or ten inches long and profusely branched; these also bore reproductive capsules at the same date.

The curious Antemnularia antennina was dredged off Gay Head in eight fathoms, where a number of large and fine specimens were obtained. This species had not been previonsly recorded from America, but it is not uncommon in the Bay of Fundy.
The Aleyonoid Polyps are represented by the northern Alcyonium carneum, (Plate XXXVIII, fig. $\because 83$.) which we dredged off Gay Head, oft Cuttyhmek, and on the reef at Watch Hill. This species grows up into lobed or arborescently branched forms, with the delicate, translincent polyps mostly elustered toward the ends of the branches. The general color is translucent, pale yellow, or salmon, sometimes more or less tinged with orange or red. Among the Actinoids there is a species of Eduardsia, (E. lineata V.,) which is as yet undescribed. It ocemred in considerable numbers crowded into the openings and interstices between ascidians, worm-tubes, \&e. It is peculiar in having no distinct naked basal portion, at least in the numerous specimens hitherto seen, for in all cases the rough epidermis extemded entirely over the base. The tentacles are long, slender, thirty or more, and each nsually has a Hake-white line down the center. The disk is usually marked with radiating white lines. This species was dredged off Gay Head and also on the reef off Watch Bill.

The Sponges are numerous on the outer rocky bottoms, and belong to about a dozen species, most of which are still undetermined; but they are nearly all northern forms, common in the Bay of Funds.

One of the most common is the Chalina oculata, which forms thick, upright, more or less flattened stalks, which, as they grow larger, fork and divide into more or less numerous, and often digitate branches, which vary greatly in form and thickness; seattered over the surface are round orifices, about a tenth of an inch in diameter. The color is dull orange-red, when living, but the color disappears when the animal matter is removed, leaving the sponge white. The texture is open and quite delicate. Another very curions species, (Polymastia?) when young, forms yellowish white incrustations over stones and shells; later, it rises at several points into long, slender, round, tapering, finger-like prolongations, which do not branch, but are often so gronped as to give a digitate appearance to the whole. This was dredged off Gay Head in 18 to 20 fathoms, and is also common in the Bay of Fundy. One of the most abundant species of this region forms very irregularly shaped, uneren, pale yellow masses, attached to the stems and fronds of Phyllophore and other small alge, and often, as it grows larger, spreading over and
entiroly covering and destroying the alga. The large openings (oscula) are irregularly scattered over the surface and quite mequal in size, rarsing from less than 05 to .10 of an inch or more in diameter. The texture is rather close when dried, showing a finely reticulated texture at the smface. This appears to belong to the genus Tedania. Another species, apparently of the same genus, occurs with the last, and has the same habits, but its color is pale buff, or yellowish white, and its texture is much firmer and more compact. Another species, occurring with the last two on the Phyllophora, at Watch Hill, forms small, irregular, deep jellow masses, of a soft and somewhat gelatinous consistency.

Foraminifera of several species are abuudant, attached to the fronds of the red algæ, to the rongli integnment of Ascidians, to stones, shells, worm-tubes, \&e., but they have not yet been identified.

List of species inhabiting the stony and rocky bottoms on the open coast.

articulata.

Crustacea.

Page.

Page.

Cancer irroratus 493
C. borealis 493

Libinia canaliculata 339
Eupagurus longicarpus....... 313
E. Bernhardus 501

Homarus Americanus 49シ
Crangon rulgaris 493
Hippolyte pusiola 493
Pandalus annulicornis 493
Lysianassinæ, (one species) .. 431
Pontogeneia inermis......... . 452

Lepidonotus squamatus 320 Clymenella torquata 343
L. Augustus................. 494 Naraganseta coralii 494

Harmothoë imbricata 321 Sabellaria vulgaris 321
Phyllodoce gracilis 494 Polycirrus eximius 320
P. catenula 494 Nicolea simplex....... 494

Eumidia Americana 494 Potamilla oculifera........... 322
Autolytus comntus.......... 494 Sabella microphthalma...... 323
Autolytus, species 494 Spirorbis spirillum 323
Nereis pelagica 319 S. porrecta ? 504
N. fucata 494 Serpula dianthus

Lumbriconereis fragilis 501

452 Balanus crenatus
Annelids.
Page. Page.

Serpula dianthus. 32 2
315
Amphithö̈ maculata 493
Unciola irrorata 493
Cerapus rubricornis 565
Porlocerus fucicola 493
Podlocerus, species 494
Caprella, species 494
Idotea irrorata. 494
I. phosphorea. 316

Erichsonia filiformis......... . . 494
Balantus crenatus 396
4

	Page.		Page.
Nemertes, species	. 505	Leptoplana folium	487

MOLLUSCA.
Gerstroporls.
Page. Prage.
Urosalpinx cinerea 306 Cracibulum striatum 417

Tritia trivittata.............. 3. 3 C. mengiformis........ 355
Astroris lımata 306 Lmatia heros................ . . 426
A. zonalis 399 Leptochiton apiculatus 399
A. rosacea. 49Σ L. ruber. 40 .

Anachis avara 306 Onchydoris pallida 495
Lacua vincta 30j 3 Polycera Lessonii 400
L. neritoidea.................. 495 Dendronotus arborescens 495

Rissoa exarata............... 495 Tergipes despectus.......... 495
Cerithiopsis terebralis 417 Aolis papillosa 495
Bittium nigrum............. . 305 Doto coronata................. . . . 495
Lamellibranchs.
Page. 1 Page.
Saxicara aretica 309 Mytilus edulis 307
Mya arenaria 472 Modiola modiolus 495
Kellia planulata 310 Modiolaria nigra 433
Argina pexata 309
Scapharca tramsversa........ . . 309
Anomia aculeạta.... 495

Ascidians.

Echinoderms.

Page. Page.
Strongylocentrotus Dröbachi. A. arenicola 326
ensis 496 Cribrella sanguinolenta 496
Asterias vulgaris. 496 Ophiopholis aculeata 496
Aculephs.
rage. Page.
Clytia Johnstoui 408 Sertularia argentea 408
C. intermedia 408
Orthopyxis caliculata 408
Platspyxis cylindrica 408
Campanularia volubilis 408
C. flexnosa 327
Obelia geniculata 496
O. dichotoma 407
S. cupressina 408
Ifydralimania falcata 408
Plumnlaria, species 407
Anteunularia anteunina 497
Eudendrium ramosum 408
E. dispar 408
O. flabellata 497 Thamnocnidia tenella 407327
O. diaphana 327 Hydractinia polyclina $3 \geqslant 8$
Polyps.
Page. Page.
Alejonium carneums. 497 Edwardsia lineata 497
Metridinm marginatum 329 Astrangia Dauæ 408
PROTOZOA.
Sponges.
Page. Page.
Chalina oculata 497
Polymastia (?) 497
Tedania, two species Grantia ciliata 330
Renieria, species Lencosolenia botryoides (?) 391 330
Cliona salphurea.
IV. 4.-Fauna of the sandy and gravelly bottoms off the OPEN COAST.

The bottom off the sontheru shores of Nantucket and Martha's Vineyard is sandy or gravelly over large areas, from low-water mark down to 25 fathoms or more. Tracts of similar bottom ocemr off Cuttyhunk Island and farther west. In many of these places, especially in the shallower waters, near shore, the material of the bottom is nearly pure siliccous sand, varying in fineness from coarse gravel to the finest sand, and as these sands are generally loose and moved by the storm-waves, in shallow water, their inhabitants are but few. In deeper water, at depths of 20 to 25 fathoms or more, the material is usmally a very fine sand, often firmly compacted, and not infrequently mixed with more or less fine mud. Such localities are favorable for a much greater variety
of animals, and especially for many burrowing annelids, crustacea, and bivalve shells. Bottoms of this character pass by insensible gradations into the true muddy bottoms, so that it is very diflicult to make any sharp distinction between them, or between the animals that inhabit them. Several localities at which we dredged were quite intermediate in eharacter, so that it is difficult to decide in which division they should be put. Yet there is a very wide difference between the animals of the ioure sandy and of the soft muddy bottoms. Most of the localities where the bottom was of this mixed or intermediate character, and of very fine material, have been elassed with the muddy bottons, because the auimals inhabiting them agree more closely with those of the true muddy bottoms than with those of the genuine sandy ones. But in each case I shall endearor to give an idea of the fanna of typical localities of pure sand, of true mul, of muddy sand, and of sandy mud, so that the more general lists given muder the sandy and muldy bottoms, respectively, need not cause confision.

The special localities where drelgings were made on sandy bottoms are as follows : line $50, a, 162_{2}$ fithoms, siliceous sant; $b, 18.2$ fathoms, siliceous saud; S1, $a, b, 16 \frac{1}{2}$ fathoms, sand ; $85, a, b, 1512$ fathoms, siliceous saud and gravel; S6, a, b, 25 fathoms, sand and gravel, with some mud and small stones; off Wateh Hill, 6 to S fathoms, loose siliceous saud, with some stones. Besides these a few other dredgings were made on similar bottoms, but not recorded.

Among the Crustacea that are characteristic of the true sandy bottoms are Platyonichus ocellatus, (p. 388, Plate I, fig. 4,) which is, however, more common in the sounds; Eupagurus Bernhardus, a decidedly northern hermit crab: Crungon vulgaris, (p. 339, Plate III, fig. 10;) Ptilochcirus pinguis ; Idotea Tuftsii. Where the bottom is of loose siliceous sand, the common Unciola irrorata (p. 340, Plate IV, fig. 19) frequently occurs, usually associated with but few others, except a species of Anony, , or some closely allied genus, which seems to live exclusively on such bottoms. This last species is rather stout, pale grayish or jellowish white, usually tinged with purple on the back The posterior portion is more decidedly purple, together with the caudal appendages and some of the last epimera. This was dredged off Watch Hill.

Several interesting species occurred on the bottoms of fine compact mud and sand, in 20-89 fathoms. Among these were Phoxus Kroyeri, which is a northern species; Siphonocetes cuspidatus Sunti, an undescribed species; Byblis serrata Sumtir, another vers interesting new species; undetermined species of Ampelisca, \&e.

Few Aunelids are peculiar to true sandy bottoms. Among those of most interest are Sthenclais picta V., (1. 348 ;) Lumbriconereis fragilis, a northern and European species; Anthostoma acutum V.; and Scolecolepis cirrata. The last is a northern species found in the Bay of Fundy and north to the Aretic Ocean, and also on the northern coasts of Europe.

The color is chocolate-brown, with bright red, ligulate, dorsal branchise on the anterior third of the body. The two large tentacles exceed in length three times the breadth of the bodiy; they are often coiled up, and are greenish in color. This worm is three or four inches long.

A large purple Meckelia (1. lurida V.) was dredged in two localities.
Among the Mollusks there are but few species that are characteristic of these bottoms, and probably none that are peculiar to them, unless some of the Ascidians should prove to be so. The Molgula arenata (p. 426, Plate NXXIII, fig. 251) is often common eren on loose siliceous sand and gravel, with which it forms a coating over its body. The Molgula producta was dredged in some numbers on a bottom of fine sand, with some mud. The integmment is thin, translucent, closely covered with a layer of fine sand; the tubes are transparent, whitish or flesh-color, sometimes piuk at the ends; anal tube with four, and branchial with six, flake-white, longitudinal stripes, and often with a circle of flakewhite spots at the base outside, and other spots within. The anal orifice is square, but the branchial is either subcircular or squarish, in expansion, and destitute of distinct lobes or papillie, in this respect differing from all the other species of the genus. The branchial tube is generally a little the longest, and both of them are somewhat tapered, with a swollen base.
The Glanduta arenicola is another nearly globular Ascidian, which lives, like the two preceding, free in the sand, and covers itself with a closelyadherent coating of sand. This species grows to be about half an inch in diameter, and can easily be distinguished from the last by its much smaller tubes, both of which have small square orifices, and by its thicker and firmer integument, in which the sand appears to be somewhat imbedded. At the base there are some slender fibers for anchoring it more securely in the sand. This was dredged by Mr. Prudden, off Cuttyhunk Island, in 1872. Messrs. Smith and Harger dredged it in great abundance last year on St. George's Bank, on a bottom of clear siliceous sand, in $2 S$ fathoms. Dr. Dawson has also dredged it in Murray Bay, in the St. Lawrence River. It is, therefore, a decidedly northern species.

Another species of Glandula also oceurred on the true sandy bottoms. The specimens of this were all small, mostly less than a fifth of an inch in diameter, and the integument was densely covered by rather coarse and very firmly adherent grains of saud, in several layers; the sand completely concealed the tubes from view in all the specimens observed, and it was not sufficiently studied while living to afford an accurate description.

The Bryozoa and Hydroids that are found on the sandy bottoms are mostly attached to dead shells and small stones that are seattered over the surface.

Of Echinoderms several species occur on the hard bottoms of fine, compact sand, or saudy mod, but most of these are more at home on rocky bottoms.

On the bottoms of loose siliceous sand the Eehinarachnius parma (p. 362, Plate XXXV, fig. 267) is often very abundant. Several hundred are sometimes obtained at a single cast of the dredge. At locality $S 1, b$, off the south coast of Martha's Vineyard, in 21 fathoms, on a bottom of clear siliceous sand, Di. A. S. Packard dredged a fine specimen of a rare and little known Holothurian, the Stereoderma unisemita. This has not been found before, so far as known to me, since the two original specimens were described twenty years ago. One of those was from the Banks of Newfomdland, and the other was supposed to have been from off Massaclmsetts Bay. As both the original specimens appear to have been lost or destroyed, this rediscovery was of considerable interest. This specimen was about three inches long, and half an inch in diameter, fusiform, tapering to each end; the body and suckers were pale flesh-color, and the integument is filled with a great abundance of small calcareons plates.

Most of the Polyps and Sponges that occur on these sandy bottoms are attached to the scattering dead shells and small stones or pebbles, and belong properly on the rocky and stony bottoms. One large and fine sponge seems, however, to be peculiar to the sandy bottoms. This is a firm, siliceous sponge, with a very compact and fine texture. It is ruite irregular in shape, but often grows in the form of elongated, compressed masses, attached by one edge; these masses are often six inches or more in length and one or two in thickness, and perhaps two or three high. Some of the largest specimens consist of two or three such erest-like plates or lobes attached together at base. When living the color is bright sulphur-yellow or lemon-yellow, and the surface is nearly smooth. One fine living specimen, of large size, was dredged by Dr. Packard off the sonthern shore of Martha's Vineyard, at locality $50, b$, on a bottom of clear siliceous sand. Numerous specimens were also found thrown on Edgartown beach. These were mostly bleached ont white and more or less worn. This species has not yet been identified. I have specimens of it from the coast of Virginia.

A very curious organism, of which the nature is still uncertain, but which was supposed, at the time it was taken, to belong to the sandy Foraminifera, was often extremely abundant in the clear siliceons sand. They were nearly circular, somewhat flattened or biscuit-shaped, and entirely covered by adherent grains of sand, except that there were several dark-colored, hook-like processes projecting from the circumference. The size was generally less than a fifth of an inch in diameter, and more frequently not more than 12 to 15 of an inch. When dried they became very friable, and the sand fell asunder at a slight tonch, so that they then appeared like mere hmps of sand, but they retain their firmness wheu preserved in alcohol. They were often so abundant in the fine sand that when a dredge-full was washed through a moderately fine sieve several hundreds or thousands would sometimes remain in the sieve.

List of species inhabiting sandy and gravelly bottoms.
In the following list I have inchded nearly all the species that ordinarily occurred on those bottoms in which sand predominated, even though some of them are more strictly muddy-bottom species. Others belong more properly on rocky, stony, or shelly bottoms, but are introduced here because they occur attached to the scattered shells and stones that are almays liable to be met with on sandy bottoms.

In order to designate those species that are more strictly characteristic of the clear sandy bottoms, I have prefixed to them a dagger, (thins: \dagger.) To show the character of the fauna on the bottoms of mixed or intermediate character, I have selected a single locality, $86, b$, southwest of Cuttyhunk Island and opposite the mouth of Buzzard's Bay, where the depth was trentr-five fathoms, and the bottom consisted of fine sand mixed with some mud and gravel, with a few small scattered stones, and have prefixed an asterisk (thus : *) to such species as occurred at that particular locality, thongh most of them occurred also at other localities.

Nemerteans and Planarians.

Sipmaculoits.
*Phascolosoma cementarium . 416

MOLLCSCA.
Gastropods.

* Neptunea premmar.	Page. 50 S	Crepidula foruicata.	Page. 85
Ibucciumm undatum	191	C. unguiformis	35\%
- istyris lunata	:306	\dagger Lunatia heros	126
Anachis arara.	806	Rissoa exarata.	495
\dagger^{*} Tritia trivittata	3.54	* Margarita obscura.	508

Lamellibranchs.

	Page.		Page.
tMya arenaria, (young)	472	+Astarte castanea.	432
\dagger^{*} Ensatella Americana.	356	\dagger A. quadraus	50!)
†Siliqua costata	358	* A. undata	508
Corbula contracta	418	t^{*} Cyclocardia borealis	418
Clidiophora trilineata	432	$\dagger^{*} \mathrm{C}$. Novangliae	418
* Tyonsia hyalina	355	* Yoldia sapotilla	509
* Periploma papyracea	509	* Nucula proxima	432
Cochlodesma Leanum	418	Scaplarea transversa	309
\dagger Angulus tener	3.35	* Modiolaria corrugata	509
* Cumingia tellinoides	418	Pecten tenuicostatus.	509
* Callista conrexa	432	Anomia aculeata	495
* C'ardiun piunulatum..... 423			
Ascidians.			
	Page. 311		Page. 50%
* Cjnthia partita.	311	trandula arenicola	502
\dagger Molgula arenata	502	†Cilandula, sp.	502
t* M. producta	502	* Amarrecium pallidum.	496

* Ir. Manhattensis 311Bryozou.

radiata.Echinoderms.			
\dagger Stereoderma unisemita.	Page.	Asterias vulgaris.	Page. 496
\dagger^{*} Echinarachuius parma...	503	* Cribrella sanguinolenta...	407
Strongylocentrotus Dröbachiensis.	406	Ophiopholis aculeata.....	496
Acalephs.			
*Platypyxis cylindrica.	$\begin{aligned} & \text { Page. } \\ & \text { tos } \end{aligned}$	* Plnmularia, si)	Page. 407
* Clytia Johnstoni.....	408	Hydractinia polyclina....	328
Eudendrium ramosum......	408		
Polyps.			
Edwardsia lineata.	$\begin{array}{r} \text { Page. } \\ 497 \end{array}$	Alcyonium carneum.......	Page. 497
PROTOZOA.			
Sponges.			
Chalina oculata.	Page. 497	\dagger Massive siliceons sponge .	Page 503
Polymastia (?) .	497		

IV. 5.-FAUNA OF The muddy bottons off the onen coast.

Within the depths to which onr dredgings extended, very few true muddy bottoms occur. The deposits of mud on the open coast usually begin to oceur ouly at the depths of twenty-five to thirty fathoms, and even at these depths there is a considerable admixture with fine siliceous sand. The central and deeper portion of the depression in line with the axis of Vineyard Sonud is, howerer, occupied off to the west of Gay Head and No Man's Land by a deposit of fine, soft, sticky mud, filled with the tnbes of Annelids and Amphipods, (Ampelisca, \&e.) Dredgings were made on this bottom at localities $85, c$, in 18 fathoms; $d, 19$ fathoms; $e, 11$ fathoms. On September 9 , the temperature at $S 5, c$, was 55° Fahrenheit at the bottom, and 62° at the surface; at d, it was 57° at the bottom and 62° at the surface; at c, it was 59° at the bottom and 63° at the surface. This muddy bottom abounded in Amnelids, small Crustacea, and bivalve shells.

In several other localities, where the bottom was a mixture of mud and fine sand, the mud seemed to predominate and to determine the character of the life, so that such localities have been classed with the muddy bottoms, though the fauna differed considerably from that of the soft muddy bottoms referred to abore. In the following list, however, I have specially designated the species found in the typical localities of each kind.

The principal localities where we dredged on the bottoms of fine sandy mud are as follows: $S 0, e$, south of Martha's Vineyard, in 21 fathoms; $S t, b$, sonthwest of Gay Head, in 16 fathoms ; $57, a, b$, about fiftecn miles east of Block Island, in 29 fathoms. At the last locality the temperature, on September 14 , was $6: 3 \mathrm{~F}$. at the surface, and 5 at the bottom.

Among the Cristacea none was more abmulant on the soft, muddy bottoms than a small species of Ampelisen, which inhabits soft, flabby tubes, covered with fine mud. When taken out of the water these tubes are always collapsed and flat, and they were so abundant in the mul that it was almost impossible to wash it throngh the sieves, becanse they soon became completely clogged up with the tubes. Wheu a quautity of the mud was left in a bucket of water these Crustacea would come out of the tubes and rise to the surface in large numbers. This species is generally quite pate, or nearly white. Its body is much compressed.

Another variety, or perhaps a distinct species, foumd with the last, is pale flesh-color, with a row of bright red spots along the middle of the back; the antemme were specked with red; cyes bright red; epimera reticulated with red lines; and the legs and candal appendages are more or less marked with red.

The Uneiold ivrorata, (p. 340,) Itilocheirus pinguis, and other Amphipods, were associated with the preceding species.

The Diastylis qualrispinosa (Plate III, fig. 13) was very abundant on the soft muddy bottoms, together with other species of Cumacea, not set identified. It is pale flesh-color, with a reddish purple patch at the posterior part of the carapax, and two small spots of pink.

The Annelids were very numerous, both on the soft muldy bottoms and in the sandy mud. One of the most conspicuous species is the Aphrodita aculeata, which was common in the soft mud. This is a large, stont Annelirl, the largest specimen obtained measuring about 3 inches in length, and about half as much in breadth. It is remarkable for the exceedingly numerous and long setre of many kinds, which cover its sides and back, except along a narrow dorsal space; some of these setre are stout, and nearly an inch long, with sharp points, and barbed near the end, and they curve orer the back much like the quills of a poreupine, and are liable to inflict painful wounds, if the creatures are carelessly handled. These setae usually reflect bright, iridescent colors.

Several other northern European species, found also in the Bay of Fundy and at Saint George's Banks, were also met with. Among these were Lumbriconercis fragilis, Scolecolepis eirrata, Melimna cristate, Terebellides Stroëmi, and several more common species.

The Nephthys ingens (p. 43I, Plate XII, figs. $59-60$) is a very abundant species on these bottoms and grows to a large size.

The curions Stermespis fossor (Plate XIV, fig. 7t) is quite common ; and the Tromhoniu uffinis (Plate X゙IV, fig. 75) was dredged several times.

Many other species were also common, or even abundant, in the various localities, and quite a number proved to be undescribed, and therefore their descriptions will be found in the systematic catalogue accompanying this report. Among these were Lycitice Americana, Ninoë nigripes, Anthostoma, sp., Acutum, Ammotrypane fimbriata, Travisia carnea, Eone gracilis, Brada sctosa, Nicomache dispar, Rhodine attemuata, a species of Ammochares, Ampharete gracilis, Euchone clegans, and a species of Nematonereis.

Several species of Nemerteans also occur on these bottoms. The largest and most interesting is a large species of Meckelia, (M. lurida, V.) This grows to the length of 8 or 10 inches, and .25 broad ; its color is deep chocolate-brown, with paler margins. It generally breaks up into numerous fragments when caught. Another species, belouging, perhaps, to the genus Cercbratulus, but not sufficiently studied while living, was 2 or 3 inches long in extension, and .05 to .05 of an inch broad. Its color was dark olive-green, darkest anteriorly, the head with a white margin. The lateral fosse of the head were long and deep; the eyes incon spicuous, perhaps wanting; proboscis emitted from a terminal pore ; the ventral orifice, or mouth, placed well forward. Both this and the preceding were fornd at the 29 -fathom locality, in sandy mud, but the former also occurred in soft mud, in 19 fathoms.

One of the most abundant Gastropods is Ncptunea pygmaca, (Plate XXI, fig. 115,) which is a rather northeru shell, very common in the Bay of Fundy. The specimens from this region are, however, quite as large as any that I have seen from farther north. The small disk-shaped eggeapsules of this shell were found in great abundance early in September attached to various bivalve shells, as well as to the shells of the Neptunca itself.

Buccinum untatum, (Plate XXI, Fig. 121;) Bela harpularia, (Plate NXI, fig. 108;) Lunatia immaculata, (Plate XXIII, fig. 131;) Margarita obscura, (Plate XXIV, fig. 156;) Astyris rosacea ; and Cylichna alba, (Plate XXV, fig. 163,) are all northern shells, which were met with in small numbers on the muddy bottoms.

The Lamellibranchs were quite abundant. One of the most conspicnous is the northern Cyprina Islandica, (Plate XXVIII, fig. 201,) which was quite common at several localities, especially in soft mud.

Many of the shells from the deeper dredgings in this region are north-
 ern and even aretic species, several of which have been supposed not to occur south of Cape Cod. Among these northern forms are Macoma proxima, of which we dredged a few small specimens; Cyclocardia borealis and C. Novanglie (p. 418,) both of which were common; Astarte undata, (Plate XXIX, fig. 203,) which was dredged in considerable abundance at several localities. A large proportion of the shells of this species, obtained here, were quite different in appearance from the varieties that occur in such abundance in the Bay of Fundy. The latter,
although quite rariable in form ant sculpture, are generally compressed ; those from this region are mostly rather swollen, and often decidedy obese. These correspond with the type-specimen of A. lutca Prekins, from New Itaven, (fig. 3,) which I have been able, through the kinduess of Dr. Perkins, to compare directly with our specimens. This form is, perhaps, sufficiently well marked to be designated a sa variety; (luteu,) but many specimens intermediate between this and the ordinary forms oceured. This varicty resembles the European A. sulcata more closely than do any of the other varieties of our species, but in the character of the hinge, lumble, beaks, and sculpture, it differs decidedly from any European specimens that I have seen. The Asturte quartrans (Ilate XXIX, fig. :05) was rarely met with. Good-sized specimens of the large seollop, Pecten temicostatus, were dredged off Gay Head ou hard bottoms, and also on the mmldy bottom, in 29 fathoms, and in several other localities. The northern Anomia aculeate (Plate XXXII, figs. 239,240) oceurred adhering to dead shells. The Modiolaria corrugatet (1 late NXXI, fig. 23.5) was dredged several times in the deepest localities, but M. lucrigatu, recomed by Mr. Sanderson Smith, was not met with by us; nor Ledu tenuisulcute, which has been found off Newport, Rhode Island. The Jucnle delphinodonte (Plate XXX, fig. 2e9) was common on soft muddy bottoms. The Lucina filose (Plate XXIX, fig. 212) appeared to be not meommon on similar bottoms, but most of the specimens obtained were less than an inch in diameter. Small specimens of Periploma papyracer (Plate XIVII, fig. 197) were frequently dredged. The specimens of Thrucia truncata (Plate XXVII, fig. 195) were few and small. The Cryptodon obesus V., (Plate XXIX, tig. 214,) was first discorered in this region, but all the specimens were of large size and dead, though mostly quite fresh. I have since seen smaller specimens from Labrador, \&c. C. Gouldii (Plate xxix, fig. 213,) is more common. Yoldia sapotilla (Plate XXX, fig. 231) was generally abundant, especially in the soft mud, but I. obesa was only met with once, and in small numbers, in 29 fathoms ; I. thruci-formis we did not meet with, but Dr. Simpson records it from off Long Island.

Of Ascidians very few species occur. The most abundant is Eugyra pilularis, (Plate XXXIII, tig. 249,) which, in contration, looks like a round ball of mud, for it completely covers itselt with a thick coating of fine samd or mud, which is held in place partly by delicate fibrons processes from the integument, those from the base being louger, and serving to anchor the little creature in the sand ly attaching a considerable quantity of samd to themselves. When the sand is removed, the integument is found to be thin and quite translucent, the tubes, when extended, are long and trinsparent, close together, and inclosed by a naked band which surrounds the base of both. It is also very

[^7]common in the Bay of Funds, \&e. The Molgula producta (p, 502) also occurred on the sandy mud at the 29 -fathom locality.

The Echinoderms appear tr, be very scarce on these bottoms. The only oue of special interest was the Molpadia oïlitica, a small, round, rather slender species, abont an inch and a half long, of a miform fleslıcolor. Of this only one specimen was dredged, at the 29 -fathom locality, fifteen miles east of No Man's Land, by Dr. Packard. It had not been observed alive before, the only specimens previously known having been taken from the stomachs of fishes.
The most interesting Hydroid that lives on the muddy bottoms is Corymorpha pendula, (Plate XXXVI, fig. 273.) This is a very beautiful species, which grows singly, with the bulb-like base of the stem inserted into the mul.
Two interesting species of Polgps were found on the muddy bottoms. One of these, the Eduardsia farinacea, occurred only on the soft muddy bottom off Gay Head, in 19 fathoms. It is a cylindrical species, about an inch long, and. 10 or . 12 of an inch in diameter, remarkable for having only 12 tentacles, which are equal, unusually short, thick, and blunt. The coating of mud in the middle region is thin and easily remored.

The single specimen obtained here had only 10 tentacles, but in other respects it agrees essentially with those found on similar bottoms at several localities in the Bay of Fundy, all of which had 12 tentacles. The body is whitish or flesh-color, the naked portion below the tentacles; in the specimeu from off Gay Head, was striped with 10 longitudinal lines or bands of brown, corresponding with the tentacles; these bands were raried with flake-white specks and mottlings, the spots of white becoming more distinct near the tentacles; these bands were alternately lighter and darker. Tentacles translucent at tip, tranversely barred ou the inside, with about five brown bands and spots, the lower ones often V-shaped or W-shaped, and some of them extend around to the ontside of the tentacles; alternating with these brown bands were bars and spots of yellow and of white. The disk was pale yellow, varied with small brown spots, mostly forming radiating rows from the mouth to the bases of the tentacles, and there were two spots of brown betweeu the bases of adjacent tentacles; month with ten lobes, which were also brown, with a fine light line extendiug from between them to the intervals between the tentacles. The specimens from the Bay of Fundy vary considerably in color, but the above is one of the more frequent styles of coloration.
The Epizoanthus Americanus (Plate XXXVIII, figs. 286, 287) is a very singular species, which either lives attached to stones, as in the deeper parts of the Bay of Fundy and oft' Saint George's Bank, in 430 fathoms, or else it attaches itself to univalve shells, inhabited by hermit-crabs. All those obtained in this region had the latter habit, and were from the 29 -fathom place, fifteen miles east of Block Island, on sandy mud. After one original young polyp has found lodgment and attached itself to the shell, its base begins to expand over the surface of the shell, and from
this basal membrane buds arise, which soon grow larger and become like the parent polyp, while the basal membrane continues to extend itself and new huds to develop, until the whole shell becomes incrusted by the membrane, inside and out, while a number of beantiful polyps arise from the upper side of the shell, and turn their months in sfifferent directions. The number of the polyps in these colonies varies, according to the size of the shell, from three to ten or more. Finally, by some chemical process, the polyps, or rather their basal membranes, dissolve the shell entirely, and apparently absorb it into themselves. And jet the membranes retain the spiral form of the shell rery perfectls, and the hermit crab eventually actually lives inside the membranes of the polyps, which continue to grow and even to enlarge the chamber for the use of the crab, so that it need not change its habitation for a larger one as it grows older. When fully expauded these polyps are about an inch high, and are capable of changing their form considerably, but they are generally more or less eylindrieal, or else hour-glass shaped. There are 38 or more tentacles, in full grown ones, and they are subequal, long , slender, acute, arranged in two close circles, and usually held in a recursed position, (as in fig. $2 s$, , with those of the onter circle more recurved than those of the inner ones; corresponding with the bases of the alternate tentacles there is an outer circle of triangular points or lobes, covered extemally, like the rest of the exterior of the body, with adherent and imbedded grains of fine sand. The mouth is bilabiate, often somewhat raised on a couical protrusion of the disk, the lips manylobed, or plicate. The integument of the body when fully expauded is translucent, pale flesh-color, or salmon color ; disk aud tentacles salmoncolor, or pale orange, sometimes white, the lips and inside of the mouth brighter orange.

List of species inhabiting bottoms composed of soft mud and samly mul off
the outer coust.
In the following list those species that were found on the soft, sticky mud, in 11 to 19 fathoms, off Gay Head, are designated by the sign \ddagger, prefixed to their names. Those that oceured at $87, a, b$, in 29 fathoms, fine sandy mud, fifteen miles east of Block Island, are designated by an asterisk prefixerl.

ARTICULATA.
Crustacea. Fage. Page.
\ddagger Libinia canalieulata'....... $339 \quad$ * $\frac{+}{\dagger}$ Ampelisca, sp.......... 507
Eupagurus longicarpus. . . . 313 * Byblis serrata. 501

* Pandalus anmulicornis 493 * $^{*} \ddagger$ Ptilocheirus pinguis.... $0 \boldsymbol{\text { pot }}$

Hippolyte pusiola $395 \quad *+$ Unciola irrorata....... . 507
Crangonvulnaris........... 339 * Siphonocetes cuspidatus. j01

* \ddagger Diastrlis quadrispinosa . . $50-\quad \ddagger$ Epelys montosus 370

Phoxus Kroyeri 01 E. trilobus 370

* Mera levis.............. 315 Anthura brachiata

N゙emerteans and Planarians.

Sipunculoits.

* \ddagger Phascolosoma cementariam		$\begin{array}{r} \text { Page. } \\ 416 \end{array}$
MOLLUSCA.		
Gastropods.		
Bela harpularia. 50 Page .	Crepidula unguiformis....	Page. 355
\ddagger Buceinum undatum $50 \leq$	C. fornicata	35 J
* \ddagger Neptunea pyginca. 508	* Lunatia heros, var. trise-	
* Tritia trivittata. 354	riata	354
Astyris lunata. 306	* L. immaculata.	508
* Astyris rosacea 008	* Margarita obscura.	503
* Crucibulum striatum. . . . 399	* Cylichna alba	j0S

Lamellibranchs.

[513] NVERTEBRATE ANLMALS OF VLNEYAR1) SOUND, ETC. 219
Page. Page.
509 * \ddagger N. delphinodonta $50!9$
Angulus tener :3s \ddagger Yoldia limatuka $4: 2$

* Macoma proxima . 08 * $\ddagger+$ Y. sapotilla 509
Cmmingia tellinoiles 415
Y. thraciformis 509
* \ddagger Callista convexia 432
* X. obesa \%09* \ddagger Cyprina Islandica50S
* \ddagger Cardium pinumlatum42:3
* \ddagger Lacina filosa ᄃ09* Cryptodon Gonldia509
* \ddagger C. obesus $50!$
* \dagger Astarte castanca $4: 2$
$\ddagger \mathcal{A}$. quardrans $50!$
Leda tennisnkata 209
Argina pexata 309
Scapharea triansersa $30!)$
Mytilus ednlis 307
* $+\dot{+}$ Modiolaria nigrab 433
M. corrugata 09
M. levigata 509
* \ddagger A. undata 508 * \ddagger Crenella glandula 418
* Cyclocardia horealis 508 * \ddagger Pecten temicostatus 509
* C. Novangliar 508 * Anomia aculeata 809
* \ddagger Nocula proxima 432
Ascillians.
Page. Page.
* \ddagger Engyra pilularis 509 Oynthia partita 311
* Molgula prorlacta 510
Tryyozaa.
Page. Page.
420| * Bugula Murayaua 496
I: $\triangle \mathrm{DIATA}$.
Echinoderms.
Page. I'age.
* Molpadia oülitica..........
Strongylocentrotns Dröba- 510 \ddagger Asterias vulgaris $4!9$ chicusis 406Acalephs.
* Clytia Johmstoni
Page. Pagr.
* Eudendrinm ramosum 408
Polyps.
Page. Page.
5id * Epizoanthus Americamus. 10
\ddagger Edwardsia farinacea

B.-LISTS OF SPECIES FOUND IN THE STOMACHS OF FISHES-FOOD OF FISHES.

In the following lists I have brought together the prineipal results of the various recorded examinations of stomachs of fishes in this region, up to the present time, whether done in comnection with the United States Fish Commission or independentiy. The special dates and localities are given in each case.

The observations from June to September, 1871 , were made in connection with the work of the commission. Those from May to July, 1872, are based on collections made at Wood's Hole by Mr. Vinal N. Edwards, for Professor Baird. Those at Great Egg Harbor, New Jersey, April, 1871, were made by Mr. S. I. Smith and the writer while on an independent visit to that place.* The observations made at Eastport, Maine, in 1872, are not included in this report.

The names of the fishes used in this list are those adopted by Professor Baird, and agree, for the most part, with those used by Professor Theodore Gill in his Catalogne of the Fishes of the Eastern Coast of North America.

Striped Bass; Rock-Fisi, on "Rock;" (Roccus lineatus.)
At Great Egg Harbor, New Jersey, April, 1871, several specimens, freshly caught in seines, with menhaden, de., contained Crangon vulgaris (shrimp) in large quantities.

A specimen canght at Wood's Hole, July 22,1872 , contained a large mass of "sea-cabbage," Ulve latissimu, and the remains of a small fish.

Specimens taken at Wood's Hole, August, 1S71, contained crabs, Cancer irroratus; and lobsters, Homarus Americamus.
White Perch; (Morone Americana.)
Numerous specimens caught with the preceding at Great Egg Harbor, New Jersey, contained Crangon vulyaris.
Black Bass; Sen-Bass; (Centropristis fuscus.)
Specimens canght in Vineyard Sound, June 10, contained the common crab, Cancer irroratus ; the mud-erab, Panopens sayi ; three species of fishes.

Another canght May 25 contained a squid, Loligo pallida.
Scup; Pongee; (Stenotomus argyrops.)
Forty young specimens, one year old, taken at Wood's Hole in Augirst, contained large mmbers of Amphipod Crustacea, among which were Unciola irrorate, Ampclisea, sp., \&c.; several small mud-crabs, Panopeus depressus; Idotea irrorata; Nereis virens, and numerous other Annelids of several species, too much digested for identification.

[^8]Other speeimens, opened at varions times, show that this fish is very general feeder, eating all kinds of small Crustacea, Amnelids, hivalve and mivalve mollusks, \&e.

Tautog; Black Fisil ; (Tautoga onitis.)
Specimens eanght at Wood's Mole, May 23, contained the eommon rock-crab, Cancer irroratus; hermit-crals, Eupayurus longicarpus; shells, Tritiu trivittutu, all crushed.

Others canght May 26 contained Eiupafurus pollicaris ; E. longicarpus ; the barnacle, Balamus cronatus ; the squid, Loligo Pealii; Tritia trivittata. Others taken May 99 had Cancer irroratus ; mud-crabs, Panopeus depressus; lady-crabs, Platyonichus occlletus; shells, Tritia trivittata, Crepidula fornicuta, Argina pexata, and the scollop, Pecten irradians ; barnacles, Balanus crenatus, all well broken np.

Another taken May 31 contained I'lutyonichus occllutus; Tritia trivittata.

Others taken June 3 contained the mud-crab, Panopeus depressus; triangular eral, l'clia mutica ; Crepicula unguiformis ; T'riforis nigrocinctus; the common muscle, Mytilus edulis ; and the "horse-mnsele," Modiola mortiolus.

Another, on June 10, contained the common rock-crab, Cancer irroratus; mud-crab, Penopeus Sayi ; Nucula proxima ; several aseidians, Cynthia partita and Leptoclinum albidum.

Two canght July S and 15 contained small lobsters, Homarus Americanus; Crepidulu fornicata ; Bittium nigrum; a bryozoan, Crisiu eburnea; sand-dollars, Echinarachnius parma.

A specimen caught in August contained long-clams, Mya arenaria; muscles, Mytilus cdulis ; Petricola pholadiformis.

Weak-Fisif ; Squeteague; (Cynoscion regalis.)
Several canght in seines at Great Egg Harbor, New Jerser, April, 1871, with menhaden, \&e., contained large quantities of shrimp, Crangon vulgaris, unmixed with other food.

Specimens taken at Wood's Hole, in July, often contained sand-crabs, Platyonichus occllatus ; and very frequently squids, Loligo Pcalii.

King-Fisir ; (Menticirrus nebulosus.)
Four specimens taken in seines at Great Egg Harbor, April, 1871, contained only shrimp, Crangon vulyaris.

Others taken at Woorl's Hole, May 29, were filled with Crangon vulgaris.

Specimens taken in July contained rock-crabs, Cancor irroratus; squids, Loligo Pectii.

Rudder-Fism ; (Patimurichthy.s perciformis.)
A specimen caught at Wood's Hole, in August, contained a small Squilla cmpusa; aud young sınids, Loligo Pealii.

Macherel ; (Scomber vernalis.)
Specimens takeu July 18, twenty miles sonth of No Mans Land, contained shrimps, Thysanopodt, sp. ; larval crabs in the zoëa and megalops stages of development; young of hermit-crabs; young of lady-crabs, Platyonichus oeellatus; young of two undetermined Macroura; numerous small Copepod Crustacea; numerous shells of a Pteropod, Spirialis Gouldii.

Small Tunny; (Orcymus themina.)
One specimen canght at Wood's Hole, in August, contained eleven squids, Loligo Pealii.

Bonito ; (Sarda pelamys.)

Specimens taken at Wood's Hole, iu August, coutained an abundance of shrimp, Crangon vulgaris.

Blue-Fish ; Horse-Mackerel ; (Pomatomuts saltatrix.)
Specimens caught at Wood's Hole, in August, frequently contained squids, Loligo Peulii ; also varions fishes.

Off Fire Island, Long Island, Angust, 1870, Mr. S. I. Smith saw bluefishes feeding eagerly on the free-swimming males (heteronereis) of Nereis limbuta, (p. 318,) which was then very abundant.

Sea-Robin ; (Prionotus C'urolimus.)
A specimen canght at Wood's Mole, May 27, contained shrimp, Crangon culyaris ; and a small tlomuder.

Another canght May 29 contained Amphipod Crustacea, Anomyx (?), spl.; ainl Crangon vulgaris.

Specimens dredged in Vinegard Sonnd, in August, contained muderabs, Panopeus Sayi ; rock-crabs, Caneer imoratus ; and several small fishes.

ToAd-Fisir; (Batrachus tau.)
Several specimens examined at Great Egg Harbor, New Tersey, April, 1871, contained young edible crabs, Callinectes hastatus of various sizes up to those with the carapax two inches broad; shimp, Crangon veut. garis ; prarn, Palamonetes vulgaris ; Ilyanassa obsoleta; rarious fishes, especially the pipe-fish, Symgnathus Peckiomus ; and the anchory, Engraulis rittutus.

A specimen eanghtat Wood's Hole, in Juls, contained the common rock-erab, Cancer irroratus.

Goose-Fisif ; Angler ; (Lophius Americanus.)
A specimen canght in Vineyard Sound, in June, contaned crabs, Cancer irroratus ; and squids, Loligo Pealii.

COD; (Gaths morrhua, verr.)
The cod-fishes devour a great variety of Crustaeea, Anmelids, Móllusks, star-fishes, \&c. They swallow large bivalve shells, and after digesting the contents spit ont the shells, which are often almost unin-
jured. They are also very fond of shrimps, and of crabs, which they fiequently swallow whole, even when of large size. The brittle starfishes (Ophiur(ths) ate also mach relished by them. I have taken large masses of the Ophiopholis aculeata from their stomaths on the eoasts of Maine and Labrador; and in some eases the stomach would be distended with this one kind, mmined with any other food.

In this region I have not been able to make any new observations on the food of the eod. This defieiency is partially supplied, howerer, by the observations made by me on the coast of Maine, ©. the very mumerons observations made at Stonington, Connecticut, many gears ago, by Mi. J. IT. Trumbull, who examined large numbers of the stomachs of eod and haddock, caught within a few miles of that place, for the sake of the rare shells that they contaned. This collection of shells, thms made, was put into the hands of the Rev. J. H. Linsley, who incorporated the results into his "Catalogne of the shells of Comecticut," which was published after his death, and in a somewhat mufinished state, in the American Jonrnal of Science, Series I, vol. xlviii, p. 271, 18t5. In that list a large number of species are particularly mentioned as from the stomachs of cod and haddock, at Stonington, all of which were collected by Mr. Trumbull, as he has informed me, from fishes eaught on the fishing-grounds near by, on the reefs off Watch Hill, \&e. Many other northern shells, recordell by Mr. Linsley as from Stonington, but without particulars, were doubtless also taken from the fish-stomachs by Mr. Trimbull. There was no record made of the Crustacea, ©ce, found by him at the same time.

The following list includes the species mentioned by Mr. Linsley as from the cod. For greater convenience the origimal names given by him are added in parentheses, when differing from those used in this report:

List of mollushis, de., obteincd by Mr. J. H. Trumbull, fiom cod-fish cuught
near Stonington, Connecticut. GASTROPODS.

Sipho Islandicus (?), young, (Fusus corneus.)
Ptyehatractus ligatus, (Fasciolaria ligata.)
Turbonilla intermpta, (Turritella intermpta.)
Turritella erosa.
Rissoa exarata, (?), (Cingnla arenaria.)
Lumatia immaculata, (Natica immaculata.)
Amphispliyra pellucirla, (Bulla debilis.)
Chiton marmorens, (?), (Chiton fulminatus.)
LAMELIMBHANCHS.
Martesia cmeiformis, (I'holas cmeiformis.)
Periploma papyracea, (Anatina papyracea.)
Thracia trumcata.

Tagelus divisus, (Solecurtus fragilis.)
Scmele equalis, (?), (Amphidesma requalis.)
Ceronia aretata, (Mesodesma arctata.)
Montacuta elevata, (Montacuta bidentata.)
Callista convexa, Joung, (Cytherea morrhuana.)
Cardinm pinnulatum.
Cyprina Islandica.
Gouldia mactracen, (Astarte mactracea.)
Yoldia sapotilla, (Nucula sapotilla.)
Y. limatula, (N. limatula.)

Nucula proxima.
N. tenuis.

Modiolaria nigra, (Modiola nexa.)
Crenclla glandula, (M. glandula.)
Pecten tenuicostatus, young, (Pecten fuscus.)

ECHINODERMS.

Echinarachnins parma.
НАрDOCK; (Melanogrammus aglifimus.)
The haddock is not much milike the cod in the character of its food. It is, perhaps, still more omnivorous, or, at least, it generally contains a greater variety of species of shells, \&e.; many of the shells that it habitually feeds upon are burrowing species, and it probably roots them out of the mud and sand.

A complete list of the animals devoured by the haddock would donbtless include nearly all the species belonging to this fama. We have had few opportunities for making observations on the food of the haddock south of Cape Cod, but have examined many from farther north.

A specimen taken at Wood's Hole, November 6,1872, contained a large quantity of Gammarus natator, and a few specimens of Cramgon vulgaris. Another from Nantncket contained the same species.

The following species of shells were mentioned by Mr. Linsley, in his catalogne, as from the haddock:

List of mollusks obtained from stomachs of haddock, at Stonington, Connecticut, by Mr. J. H. Trumbull.
Neptunea pygmea, (Fusus Trumbulli.)
Astyris zonalis, (Buccinum zonale.)
Bulbus flarus, (?), (Natica flava.)
Margarita obscura,
Actron puncto-striata, (Tormatella puncto-striata.)
Cylichna alba, (Bulla triticea.)
Serripes Grenlandicus, (?), (Cardium Gronlandicmm.)
The above list donbtless contains only a small portion of the species collected by Mr. Trumbull, but they are all that are specially recorded.

As an illustration of the charater and diversity of the haddock's fool, I add a list of the species taken from the stomach of a single speeimen, from the Boston market, and doubtless canght in Massachusetts Bay; September, 1871.

GASTROPODS.

Natica clansa.
Margarita Grenlandica.

LAMELLIBRANCHS.

Leda temuisuleata.
Nucula proxima.
N. temuis.

Crenella glandula.
ECIIINODERMS.
Psolus phantapus.
Lophothuria Fabricii.
In addition to these there were fragments of shimp, mobably Pandalus amulicormis, and numerons Ammelids, too mmeh digested for identification.

Ton-Cod ; Frost-Fisin ; (Microgadus tom-codus.)

Sereral specimeus from New Haven Harbor, Janary 30, contained numerons Amphipods, among which were Moralevis; Gammarus, sp.; Ampelisca, sp. ; an undetermined Macrouran; numerous Entomostraca; the larva of Chironomus oceonicus.

A lot taken in a small pond at Wood's Hole, in Marelı, by Mr. Vinal N. Edwards, contained the common shrimp, Crangon rulgaris; large numbers of the green shrimp, Virbius zostericole ; the prawn, Palcmonetes culyuris ; large quantities of Amphipods, especially of Gemmarus. ammulatus, G. natator, Calliopius leviuscula, and Microdeutopus minax ; and smaller mumbers of Gammarus ornatus and G. mueronatus.

Another lot of twelve, taken in April at the same place, contained most of the above, and in addition several other Amphiporls, viz: Mera levis, Pontogeneid inermis, Ptilocheirus pinguis, and Caprella ; also Nereis virens, and varions small fishes.

Ocellated Flounder; Sumyer Flounder; (Chenopseta ocellaris.)
Several specimens taken in the seines, at Great Egg Harbor, New Jerser, in April, contained large quantities of shrimp, Crangon rulgaris and Mysis Americana; one contained a full-grown Gebia aflinis.

One eaught at Wood's Hole, June G, contained twenty-six specimens of Ioldia limatula ; and mumerons shells of Nucula proxima, Angulus tener, and Tritia trivittatu; and Amphipod Crustacea belonging to the genus Ampelisca.

Specimens caught at Wood's Hole, in July, contained rock-crabs, Cancer irroratus; Pimixa cylindrica; Crangon vulgaris; squids, Loligo Pealii; Angulus tener; Nucula proxima ; and many "saud-dollars," Echinaruchnius parma.

Winter Flounder; (Pseulopleuronectes Americunus.)
A specimen caught at Wood's Hole, in Augnst, contained large numbers of Bulla solituria.

Spotted Flounder ; (Lophopsetta maculata.)

Numerous specimens canght in seines at Great Egg Harbor, April, 1S71, contained large quantities of shrimp, especially Mysis Americana and Crangon vulgaris; the prawn, Palamonetes vulgaris; mumerous Amphipods, Gammarus mucronatus; one contained a Gebia affinis.
Minnow ; (Fundulus pisculentus.)
Specimens caught in July, at Wood's Hole, contained large numbers of Melampus bidentatus, unmixed with other food.
Sea-Merring; (Clupea elongata.)
Specimens taken in Vineyard Sound, May 20, contained several shrimp, Crangon vulgaris, about 1.5 inches long; Mysis Americana, and large numbers of an Amphipod, Gammarus natator ; also small fishes. SHAD ; (Alosa tyranmes.)

Several specimens taken in the seines, at Great Egg Harbor, April, 1871, contained finely-divided fragments of numerons Crustacea, among which were shrimp, Mysis Americana.

Several from the mouth of the Comecticat River, May, 1872, contained fragments of small Crustacea, (Mysis, \&e.)

Hickory Shad ; (Pomolobus mediocris.)
Several specimens taken in the seines at Great Egg Harbor, April, 1S5:, contained large quantities of fragmentary Crustacea; one contained recognizable fragments of shrimp, Crangon vulgaris.

Menimaden; (Breroortia mouhalen.)

A large number of specimens freshly canght in seines at Great Egg Harbor, April, 1S71, were examined, and all were found to have their stomachs filled with large quantities of darli mud. They undonbtedly swallow this mud for the sake of the microscopic animal and vegetable organisms that it contains. Their complicated and capacions digestive apparatus seems well adapted for this crude and bulky food.

File-Fisii; (Ceratacanthas aurantiacus.)

A specimen takeu at Wood's Hole, in Augusk, contained a quantity of the finely-divided stems and branches of a Hydroid, Pcmaria tiarella.

Dusky Silarí; (Eulamia obscura.)

Several specimens caught at Wood's Hole, in July and August, contained lobsters, IIomarus Americanus; rock-crabs, Cancer irroratus.

Blete Shark: (Éulamia Millocrti.)
A large specimen camght at Wool's Hole, in Anginst, contained a quantity of small bivalve-shells, Foldia selpotilla.
Theer-Shark; (Gulerocerdo tigrina.)
Specimens canglit at Wood's I Iole, in Angust, contained lange univalve shells, Buccimum undutum and Lumutia heros.

Doch-Fisir ; (Mustelus cumis.)

Several specimens caught at Wood's Hole, in Angnst, contained lohsters, Homarus Americamus; spider-crabs, Libinia camaliculata; rockerabs, C'ancer irrorutus.

SAND-Shark; (Eugomphodus littoralis.)
Many specimens taken at Wood's Hole, in July and August, contaned lobsters, Homarus imoricamus, in abundance; Cancer irroratus; and squids, Loligo Pealii.

Common Skate; "Summer Skate;" (Raia diaphanu.)
A specimen taken at Wood's Hole, May 14, contained rock-crabs, Cancer irroratus; a young skate; a long slender fislı, (Ammodytes?.) Another, canght in Juls, contaned Cancer irroratus.

Peaked-nose Skate; (Raia levis ?.)
Specimens eanght in Vineyard Sound, May 14, contained mumerons shrimps, Crangon rulyaris; several Conilera concharum; several Ammelids, among them Nophthys ingens; Mcekelite ingens; two specimens of Phascolosomu Gouldii; razor-shells, Ensatella Americana, (tho "foot" only, of many specimens;) a small fish, Ctenotabrus burgull. Specimens taken at Menemsha, in July, contaned large numbers of crabs, Cancer irroratus ; and of lobsters, Homarus Americames.

Sting-Ras; (Trygom centrotra.)
Specimens canght at Wood's Hole, in July and Angust, contaned large numbers of crabs, Crncer irroratus ; squids, Loligo I'ealii ; clams, Mya areneria; Lmatia heros.

Long-Talled Sting-Ray; (Myliobutis Fromincillei.)
Specimens taken in Vineyard Sonnd, in Jnly, containel an abondance of lobsters, Homarus Americanus; crabs, Cancer irroratus; also clams, Mya erenuria; and Lunatia heros.
"Rabibit-Fisif."
A specimentaken at Wood`s Hole, in July, contained a lobster, Homarus Americamus.
"Fog-Fisif."
A specimen caught at Woodis Hole, Julv 1, eontained hermit-crabs, E'upugurus pollicaris.

C.-THE METAMORPHOSES OF THE LOBSTER, AND OTHER CRUSTACEA.-BY S. I. SMITH.

Most of the larger crnstaceans of our coast, whatever may be their habits when adult, are, in the early stages of their existence after hatching from the eggs, essentially free-swimming animals, living a large part of the time near the surface of the water. In this stage they are constantly exposed to the attacks of other predaceous animals, and, as they occur in vast numbers, afford food for many raluable fishes. They are most abundant at the surface in calm, clear weather, and they especialiy resort, like the young of many other marine animals, to spots and streaks of smooth water where the tidal currents meet.

Very little has yet been written upon the forms or habits of the joung crustaceans of our own coast ; but, in connection with the investigations carried on in Vineyard Sound and Buzzard's Bay, a great amount of material for such work was collected. This material has not yet been fully studied, and only a sketch of some of the more important results is presented in this report. During the few weeks in Jume and July, in which I was myself at Wood's Hole, the time was so fully ocenpied in collecting, that very little time was left for studying the animals while alive; hence most of the observations which follow, except occasionally those on color, have been snbsequently made from specimens preserved in alcohol. While at Wood's Hole, I was much assisted in obtaining these young animals by every one then associated there in the work of the commission; and I wonld especially acknowledge snch assistance from Dr. W. G. Farlow, Mr. V. N. Edwards, and Capt. John B. Smith. After I left, the collecting was kept np as before, and many valuable notes were made by Professors Verrill aud J. E. Todd.

Special attention was given to the early stages of the lobster, as perhaps the most important crustacean found on our coast, and I have gone more fully into the accomnt of its early history than that of any other species. As this will serve as an example to illustrate the development of most of the other Macrourans, it is presented first.

Numerons specimens of the free-swimming young of the lobster, in different stages of growth, were obtained in Vineyard Sound during July, but it was too late for any observations upon the young within the egg. This deficiency was partially supplied by a few observations at New Haven in 1872. Eggs taken May 2, from lobsters captured at New Loudon, Connectient, had embryos well adranced, as represented in fig. 4. In this stage the eggs are slightly elongated spheroids, about 2.1^{mm} in the longer diameter, and 1.9^{mm} in the shorter. One side is rendered very oparne dark green by the mabsorbed yolk mass, while the other shows the eyes as two large black spots, and the red pigment spots on the edge of the carapax, bases of the legs, \&e., as irregular lines of pink markings.

In a side view of the embryo, the lower edge of the carapax (b, figure)
is elearly defined and extends in a gentle curve from the middle of the eye to the posterior borrer of the embryo. 'This margin of the carapax is marked with dendritic spots of red pigment. The whole dorsal portion, finl!s one-half the embryo, is still ocempied hy the unabsorbed portion of the yolk, ($(1$, ,,) of which the lowermargin, represented in the figure bey a dotted line, extends from close above the eye in a curve nearly parallel with the lower margin of the carapax, but with a sharp indentation a little way behind the eye. The eyes (c) are large, nearly romb, not entirely separated from the surounding tissues, and with a central portion of black pigment. The antemmlat (d) are simple, satck-

Fig. 4.*
 like appendages, arising from jnst beneath the eyes, with the terminal portion turned backward and marked with several large dendritic spots of red pigment. The antemare (e) are but little larger than the antennule and are sack-like and withont articulations, but the scale and flagellum are separated and bent backward, the scale being represented by the large and somewhat expanded lobe, and the flagellnm by a sborter and slender lobe which arises from near the base of the scale. The mandibles, both pairs of maxilla, and the first and second pairs of maxillipeds are not sufficiently developed to be seen withont remoring the antems and the edge of the carapax, and are only represented by sereral small lobes, of which the anterior, apparently representing the mandibles, are distinetly defined, while those that follow are much smaller, indistinct, and confised. The first and second maxillipeds are each represented by a small lobe divided at the extremity. The external maxillipeds (f) are well developed and almost exactly like the posterior cephalothoracic legs. Both the branches are simple and sack-like, the main branch, or emdognaths, \dagger much larger and slightly longer than the outer branch, or exognathus, which is quite slender. The five pairs of

[^9]cephalothoracic legs (g, h, i) are all similar and of abont the same size, except the main branch of the first pair, $(9$,$) which is much larger than$ that of the others, but is still sack like and entirely without articulations. The outer or exopodal branches of all the legs are slender, wholly muarticulated, sack-like processes, while the inner or main (endopodal) branches of the four posterior pairs are similar, but much stouter and slightly longer processes arising from the same bases. The bases of all the legs are marked with dendritic spots of red pigment like those upon the lower margin of the carapax.

The abdomen (m) is curved round beneath the cephalothoras, the extremity extending betmeen and considerably in front of the eyes. The segmeuts are searcely distinguishable. The extremity, as seen from beneath the embryo, is slightly expanded into a somewhat oval form, and very deeply divided by a narrow sinus, romded at the extremity. The lobes into which the tail is thus divided are narrow, and somewhat approach each other toward the extremities, where they are each armed along the imner edge with six small obtuse teeth.

The heart (l) is readily seen, while the embryo is alive, by its regular pulsations. It appears as a slight enlargement in the dorsal vessel, just muder the posterior portion of the carapax. The intestine (k) is distinctiy visible in the anterior portion of the abdomen as a well defined, transparent tube, in which float little granular masses. This material within the intestine is constantly oscillating back and forth as long as the embryo is alive.

The subsequent development of the embryo within the egg was not observed. The following observations on the fomg larve, after they have left the eggs, have all been made npon specimens obtained in Vineyard Sound, or the adjacent waters, during July. These specimens were mostly taken at the surface in the day-time, either with the towing or hand net. They represent three quite different stages in the true larval condition, besides a later stage approaching closely the adult. The exact age of the larrie of the first stage was not ascertained, but was probably only a few days, and they had, most likely, molted not more than once. Between the third stage, here deseribed, and the last, there is probably an intermediate form wanting.

First stage.-In this stage, (Plate IX, Figs. A, B, C, D,) the young are free-swimming Schizopods abont a third of an inch (7.8 to $8.0^{m m}$) in length, without abdominal appendages, and with six pairs of perliform cephalothoracie appendages, each with the exopodus developed into a powerful swimming organ. The general appearance is represented in the figures. The ejes are bright bhe ; the anterior portion and the lower margin of the carapax and the bases of the legs are speckled with orange; the lower margin, the whole of the pemplimate, and the basal portion of the ultimate segment of the abrlomen, are brilliant reddish orange.

The antenmule (Fig. C.) are short and sack-like, with a single articu-
lation at the hase, and three seta at the tip. The antemme have large well developed scaldes, furnished along the inner margin with bong plumose hairs, but the flagellnm is shorter than the seale, not plivided into segments, and has three plumose sete at tip. The mandibles are unlike on the two sides; the inferior edges are armed with acute teeth, except at the posterior angle, where there is a small molar area; the pappi are very small, with the three segments just indicated. The exognathus in both pairs of maxille is composed of only one article, and is furnished with several seta at tip. In the first maxillipeds the exognathos is an marticulated frocess, fumished with slort phmose hairs on the onter side. The secom maxillipeds have the princepal branch eylindrical, not thattened and appressed to the imer month orgaths as in the adult; the exognathus is short, and as yet scarcely flabelliform ; and the epignathus is a simple process, with not even the rudiment of a branchia. The external maxillipeds are pediform, the emdognathus as long as and much resembling the endoporli of the posterior legs, while the exognathes is like the exopodi of all the legs, being half as long as the endognathus, and the terminal portion furnished along the edges with long plumose hairs. The epignathos and the branchip are very rulimentary, represented by minute sack-like processes. The anterior cephalothoracie legs, (Fig. D.) which in the adult develop into the hig claws, are exactly alike, and no longer than the external maxillipeds. The pediform branch is, howerer, somewhat stonter than in the other legs, and subeheliform. The legs of the second and third pairs are similar to the first, but not as stont. The legs of the fourth and fifth pairs are still more slender, and styliform at the extremity, as in the adrlt.

The exopodal branches of all the legs and of the extermal maxillipeds are quite similar, and differ rery little in size. In life, while the animal is poised at rest in the water, they are carried horizontally, as represented in Figure 5 , or are emred up over the carapax, sometimes so as almost to cover it. The blood cireulates rapidly in these appendages, and they mudoniotedly serve, to a certain extent, as respiratory organs, as well as for locomotion. Br careful examination, small processes were found representing the normal number of branchiae to each leg.* These rudimentary branchie, however, difler somewhat in different specimens, being very small, and searcely distinguishable, in what appear to be younger individuals, from the rudimentary epipodi, while in others, apparently older, they are further developed, being larger, more cellutar in structure than the epipodi, and even showing an approach to cremulation in the margins, as shown in Figme D).

The abdomen is slender, the second to the fifth segments each armed with a large dorsai spine, curved backward, and with the lateral angles

[^10]produced into long spines, and the sixth segment with two dorsal spines. The proportional size and the outline of the last segment are shown in Figure B; its posterior margin is armed with a long and stont central spine, and each side with fourteen or fifteen plumose spines or setre, which are articulated to the margin.

In this stage the young were first taken July 1, when they were seen swimming rapidly about at the surface of the water amoug great unmbers of zoëre, megalops, and copeopods. Their motions and habits reeall at once the species of Mysis and Thysanopodd, but their motions are not quite as rapid and are more irregular. Their bright colors render them conspicnons objects, and they must be readily seen and captured by fishes. They were frequently taken at the surface in different parts of Vineyard Sound from July 1 to 7, and several were taken off Newport, Rhode Island, as late as July 15, and they would very likely be found also in June, judging from the stage of development to which the embryos had adranced early in May in Long Island Sound. Besides the specimens taken in the open water of the Somnd, a great number were obtained Snly 6 , from the well of a lobster-smack, where they were swimming in great abundance near the surface of the water, having undoubtedly been recently hatched from the eggs carried by the female lobsters confined in the well. Some of these specimens lived in vessels of fresh sea-water for two days, but all efforts to keep them alive long enongh to observe their molting failed. They appuared, while thus in confinement, to feed principally upon very minute animals of different kinds, but were several times seen to devour small zoëe, and occasionally when much crowded, so that some of them became exhausted, they fed upon each other, the stronger ones eating the weaker.

Second stage.-In the next stage the young lobsters have increased somewhat in size, and the abdominal legs of the second to the fifth segments have appeared. The rostrum is much broader, and there are several teeth along the edges. The basal segments of the antenmulae have become defined, and the secondary flagellum has appeared, but is not subdivided into segments. The antemae and month organs have mudergone but slight changes. The first cephalothoracie legs are proportionally larger and stouter than in the first stage, and have become truly cheliform. The succeeding legs have changed little. The epidodi of all the legs and of the external maxillipeds have increased in size, and the branchial processes are distinctly lobed along the edges, and have begun to assume the form of true branchis. The segments of the abdomen have the same number of spines, but they are relatively somewhat smaller, and the last segment is relatively smaller and broader at base. The appendages of the second to the fifth segments differ considerably in size in different specimens, but are nearly as long as the segments themselves; their terminal lamellie, however, are represented only by simple sack-like appendages, without sign of segmentation, or elothing of hairs or sete. The peunltimate segment is still withont appendages.

Specimens in this stage were taken only twiee, Juty 1 and 15. 'They lave the same habits and general appearance as in the first stage, but are readily distinguished by the possession of rudimentary abdominal legs. In color they are almost exactly the same, only the orange-colored markings are perhaps a little less intense.

Third stage.-In the third stage (Plate IN, fige. $1: F^{\prime},(i$,$) the larve$ are abont half an inch ($1 \geq 2$ to $13^{m m}$) in length, and the integrment is of a much firmer consisteney than in the earlier stages. The antennule are still rudimentary, and considerably shorter than the rostrm, although the secondary flagellum has inereased in length, and begins to show division into numerous segments. The antenne retain the most marker feature of the early stages-the large size of the scale-but the flagellum is much longer than the salle, and begins to show division into segments. The mandibles, maxillse, and first and second maxillipeds have changed very little, althongh in the second maxillipeds the extremity of the exognathas begins to assume a flagelliform character, and the branchia is represented by a small process mpon the side of the epignathins. The external maxillipeds have begun to lose their pediform character. The anterior legs have increased enormously in size, and those of the second and third pairs have become truly chelate, while the swimming exopodal branches of all the legs, as well as of the external maxillipeds, are relatively much smaller and more unimportant. The epipodi (tig. G) are furnished with hairs along the edges, and begin to assume the characters of these appendages in the adult. The branchie (fig. G) have developed rapidly, and have a single series of well-marked lobes along each side. The abdomen still has the spines characteristic of the earlier stages, though all of them are much reduced in size. The appendages of the secoud to the fifth segments have become conspicuons, their lamella have more than donbled in length, and the margins of the terminal half are furnished with very short ciliated setie. The appendages of the peuultimate segment (fig. F) are well developed, although quite different from those in the adnlt. The onter lamella wants wholly the transverse articulation near its extremity, and both are margined, except the onter edge of the outer lamella, with long plumose hairs. The last segment is relatively smaller and more quadrangular in ontline, and the spines of the posterior margin are much smaller.
.The only specimens procured in this stage were taken July S and 15. In color they were less brilliant than in the earlier stages, the orange markings being duller and whole animal slightly tinged with greenish brown.

In the next stage observed, the animal, about three-fifths of an inch (14 to 17^{mm}) long, has lost all its schizopodal characters, and has assumed the more important features of the adnlt lobster. It still retains, however, the free-swimming habit of the true larval forms, and was frequently taken at the surfice, both in the towing and hand net. Althongh resembling the adnlt in many features, it differs so much that, were it
an adult form, it would undoubtedly be regarded as a distinet genus. The rostrum is bifid at tip, and armed with three or four teeth on each sifle toward the base, and in some specimens with a minute additional spine, on one or both sides, close to the tip. The flagella of the antemule extend seareely beyond the tip of the rostrum. The antennal seale is very much reduced in size, but is still conspicuous and furnished with long plumose hairs along the iuner margin, while the flagellum is as long as the earapax. The pappi of the mandibles have assumed the adult character, but the mandibles themselves have not acquired the massive molar character which they have in the older animal. The other monthorgans have nearly the adnlt form. The anterior legs, although quite large, are still slender and just alike on the two sides, while all the cephalothoracie legs retain a distinct process in place of the swimming exopodi of the larva. The lateral angles of the second to the fifth abdominal segments are prolonged downward into long spiniform teeth, the appendages of these segments are proportionately much longer than in the adult, and the margins of their terminal lamellae are farnished with rery long plumose hairs. The lamella of the appendages of the penultimate segment are oval, and margined with long plumose hairs. The terminal segment is nearly quadrangular, as wide at the extremity as at the base, the posterior margin arcuate, but not extending beyoud the prominent lateral angles, and furnished with hairs like those on the margins of the lamelle of the appendages of the penaltimate segment.

In color they resemble closely the adult, but the green color of the back is lighter, and the yellowish markings mon the claws and body are proportiouately larger.

In this stage, the yomg lobsters swin very rapidly by means of the abdominal legs, and dart backward, when disturbed, with the candal appentages, frequently jumping ont of the water in this way like shrimp, which their movements in the water much resemble. They appear to be truls surface animals, as in the earlier stages, and were often seen swimming about among other surface animals. They were frequently taken from the Sth to the 2Sth of July, and very likely oceur much later.

From the dates at which the different forms were taken, it is probable that they pass through all the stages here described in the course of a single season. How late the young, after reaching the lobster-like form, retain their free-swimming habit was not aseertained.

The young of the different kinds of shrimp, Crangon rulgaris, Palcemonetes vulgoris, and Tirbius zostericola, when hatched from the egg, are freeswimming animals, similar in their habits to the yong of the lobster. In structure, however, they are quite unlike the larve of the lobster, and approach more the zoëa stages of the crabs, which are described farther on. When they first leave the egg, they are without the five pairs of cephatothoracie legs, the abdomen is withont appendages, and much as it is in the first stage of the young lobster, while the maxilliperls are
dereloped into long locomotive appendages, somewhat like the external maxillipeds of the first stage of the goung lobster. While get in the freeswimming condition the rephatothoracic legs are developerl, the maxillipeds assume the adult form, and the abominal limbs appear. The young of these shimp are rery much smaller than the young of the lobster, but they remain for a considerable time in this immature state, and were very frequently taken at the surface in the towing-net.

The soung of Crangon culguris are hatehed in the neighborhood of Vineyard Sombl, in May and June, and amise at the adult form before they are more than 4 or $5^{m m}$ long. Specimens of this size were taken at Wood's Hole, at the surface, on the evening of July 3 . Later in the season much larger specimens were frequently taken at the surface both in the evening and day-time.

The young of Palamonetes vulgaris did not appear till near the middle of July. Soon after hatching, the young are $3^{m u n}$ long. The cephatothorax is short and broad with a slender spiniform rostrum in front, an enormons compound eye each side at the anterior margin, and a small simple eye in the middle of the carapax. The antennule are quite rudimentary, being short and thick appendages projecting a little may in front of the head; the peluncle bears at its extremity a very short obtuse segment representing the primary flagellum, and inside, at the base of this, a much longer plumose seta. The antenne are slightly longer, than the antennula; the short peduncle bears a stont appendage, corresponding to the antemal scale, the terminal portion of which is articulated and furnished with long plumose setre, and on the inside at the base of the scale, a slender process corresponding to the flagellum, and terminated by a long plumose seta. The first and second pairs of maxilise are well formed and approach those of the adult. The three pairs of maxillipeds are all developed into powerful locomotive appendages; the inner branches, or endognathi, being sleuder pediform appendages terminated by long spines, while the onter branches, or epignathi, are long swimming appendages like the swimming branches of the legs of the young lobsters in the first stage. Both branches of the first maxillipeds are considerably shorter than those of the following pairs, but otherwise like them, and the inner branch of the second pair is somewhat shorter than that of the thircl, but its onter branch is about as long as that of the thirl pair. The five pairs of cephalothoracic legs are wanting or only represented by a cluster of minute sack-like processes just behind the outer maxillipeds. The abdomen is long and slender, wholly without appendages beneatl, and the last segment is expanded into a short and rery broad candal lamina, the posterior margin of which is truncate with the lateral angles rounded; these angles each bear three, and the posterior margin itself eight more stont phomose setir, the setar of the posterior margin being longer than those upon the angles, and separated by broader spaces in which the margin is armed with mumerous very small setie. They arrive at the adult form before they are more than $5^{\text {min }}$
long, and they were often taken at the surface until S to $12^{m m n}$ in length, the larger ones being taken in the first part of September.

The Joung of Tirbius zostericola appear at about the same time as those of Palamonetes, or a rery little later, and pass through quite similar changes. The young attain the adnlt form when not more than $3^{w m}$ in leugth, and were frequently taken at the surface, both in the daytime and the evening, until they were $10^{\mathrm{mm}} \mathrm{long}$, those S to $10^{m \mathrm{~mm}} \mathrm{loug}$ being common in late Augnst and early September.

The larval forms of several other Macrourans were taken at different times, but none of these were abmont, and I have not been able to connect them with the adnlt forms of any of the common species of the New England coast.

The young of Gebia affinis, only 4^{mm} long, but with nearly the form of the adult, was taken at the surface on the evening of September 3. The joung of Callianassa Stimpsoni, about 4^{mm} long and with nearly all the adult characters, was also taken at the surface early in September.

The hermit-crabs (species of Eupagurus) when first hatched have much resemblance to the joung of shrimp at the same period, and hare similar habits. The young of one of the species, after it has passed through the earlier stages, and when it is abont $3^{n m}$ long, and has all the ecphalothoracic appendages similar to those of the adult, has still a symmetrical abdomen, like that of a shrimp, with long swimming-legs npou the second, third, fourth, and fifth segments, and broad laminated appendages upon the penultimate segment. Young, in this and the earlier stages, were common at the surface in Vineyard Somnd during the last of Augnst and the first of September.

Hippe talpoide probably passes throngh a metamorphosis similar to that of the hermit-crabs. The young attain nearly the adult form before they are more than J or $6^{\text {mm }}$ long, and specimens of this size were taken at the surface in Vineyard Sound on the erening of September 3. I hare also found, eally in September, the foung a little larger upon the onter shores of Fire Island Beach, where they were left in large numbers ly a high tide, and soon buried themselves in the sand.

All, or at least nearly all, the species of Brachyura living on the coast of New England pass throngh very complete and remarkable metamorphoses. The most distinct stages through which they pass were long ago described as two groups of crustaceans, far removed from the adult forms of which they were the young. The names zoëa and megalops, originally applied to these groups, are conveniently retained for the two best marked stages in the development of the crabs.

The young of the common crab, (Cancer irroratus,) in the earlier or zoëa stage, when first hatched from the egg, are somewhat like the form figured on Plate VIII, (fig. 37, the latest stage of the zoëa of Cancer irroratus, just before it changes to the megalops,) but the spines upon the carapax are all much longer in proportion, and there are no signs of
the abdominal legs or of any of the future legs of the megalops and erab. In this stage they are very small, much smaller than in the stage figured. After they have incerased very much in size, and have molted probably several times, they appear as in the figure just refomed to. The terminal segment of the abomen, seen only in a site-view in the tigure, is very broad and divided nearly to the base by a broad sinns. earh side the masins project in long, spiniform, diverging processes, at the bise of which the margin of the simus is amed with six to eight spines on each side. When alive they are translucent, with deposits of dark pigment forming spots at the articulations of the abdomen and a few upon the cephatothorax and its appendages. In this stage they were taken at the surface in Vineyarl Sonnd, in immense mumbers, from June 23 to late in August. Thes were most abumbant in the early part of July, and appeared in the greatest numbers on calm, smmy days.

Several zoëe of this stage were observed to change directly to the megalops form. (l'late VIII, fig. 3S.) Shortly before the change took place they were not quite as active as previonsly, lut still continued to swim about until they appeared to be seized by violent convulsions, and after a moment began to wriggle rapidly ont of the old zö̈a skin, and at once appeared in the full megalops form. The new integument seems to stiffen at once, for in a very few moments after freeing itself from the old skin the new megalops was swimming abont as actirely as the oldest individuals.

In this megalops stage the animal begins to resemble the adult. The fire pairs of cephalothoracie legs are much like those of the adult, and the month-organs have assumed nearls their find form. The eyes, however, are still enormons in size, the carapax is elongated and has a slender rostrum and a long spine projecting from the cartiac region far over the posterior border, and the abdomen is carried extenderd, and is fumblise with powerful swimming legs as in the Macroma. In color and habits they are quite similar to the later stage of the zoesp from which they came; their motions appent, howerer, to be more regmar and not so rapid, although they swim with great facility. In this megalops the dactşli of the posterior cephatothoraric legs are styliform, and are each furnished at the tip with three pecular seter of different lengeths and with strongly enred extremities, the longest one simple and about as long as the dactylus itself, while the one next in length is armed along the imner side of the curved extremity with what appear to be minnte teeth, and the slortest one is again simple.

Aecording to the observations made at Wood‥s Hole, the soung of Cancer irroretus remain in the megalops stage only a very short time, aud at the first molt change to a form vere near that of the adult. Notwithstanding this, they oceorred in vast mumbers, and were taken, in the towing-nets in greater quantities even than in the zoëa stage. Their time of occurrence seemed nearly simultaneous with that of the zoës, and the two forms were almost alwiys associated. The exact time any
particular individual remained in this stage was observed only a few times. One full-grown zoeia (like the specimen figured) obtained June 23 , and placed in a ressel by itself, changed to a megalops between 9 and $11 \frac{1}{2}$ a. m. of June 24 , and did not molt again till the forenoon of June 27 , when it became a young erab of the form described farther on. Of two other zoëe obtained at the same time, and placed together in a dish, one changed to a megalops between 9 and 111 a . m . of June 24 , the other during the following night; these both changed to crabs during the night of June 26 and 27 .

The following memorandum on a large number of the same lot of both stages of the young, kept together in a vessel of fresh sea-water, also indicates the rapidity of these changes. In the columns "zoëa" and "megalops" the total number of individuals in cach of these stages is given; under "crabs" the number which had appeared since the last observation, and under "dead" the number which had died since the last observation :

Time of observation.	Zoëa.	Megalops.	Crabs.	Dead.
June 23, 7 p.m.	15	22	0	0
June 24, 5 a. m.	5	23	2	7
June 24, 9 a. m..	4	22	2	0
June 24, 11 $\frac{1}{2}$ a. u...	2	22	1	1
June 24, 7 p.m..	1	22	1	0
June 25, 6 a. m..	0	20	0	3
June 25, $21 . \mathrm{m}$.		19	1	0
June 26, 6 a. m.....		16	1	2
June 27, 6 a. m...		14	2	0
June 27, $2 \frac{1}{2} \mathrm{p} . \mathrm{m} .$.		1:	0	2
June 27, 7 p . m.		1 I	0	1
June 28, 7 a. m..		9	2	0
June $2 \mathrm{~s}, 4 \mathrm{p}$. m..		4	3	2
June 29, 7 a.m..		- 2	2	

In the two or three instances in which the change from the megalops to the young crab was actually obscrved, the megalops sank to the bottom of the dish and remained quiet for some time before the molting took place. The muscular morements seemed to be much less violent than in the molting at the close of the zoëa stage, and the little crab worked himself out of the megalops skin quite slowly. For a short time after their appearance the joung crabs were soft and inactive, but the integument very soon stiffened, and in the course of two or three hours they acquired all the pugnacity of the adult. They swam about with ease and were constantly attacking each other and their companions in the earlier stages. Many of the deaths recorded in the above memorandum were due to them, and on this account they were removed from the vessel at each obserration. In this early stage the joung crabs are
quite different from the adnlt. The carapax is about $3^{\text {nnn }}$ long and slightly less in breadth. The front is much more prominent than in the adult, but still has the same mumber of lobes and the same general form. The anterolateral margin is much more longitulinal than in the adult, and is armed with the five normal teeth, whith are long and acnte, and fom vers much smaller secondary teeth alternating with the normal ones. The antenne and ambulatory legs are proportionally longer than in the adnlt. The foung crabs in this stage were once or twice taken in the towing-net, but they were not common at the sufface, althongh a large nmber were fombl, with a few in the megalops stage, among hedroids upon a floating barrel in Vinesard Sound, July 7.

The yomng of I'latymichus ocellatus in the zoía and megalops stages were frequently taken in the towing-net from the last of Jume till Augnst, but they were much less abmentant than the young of Cancer irorutus. On June 2!, howerer, they occurred in great mmbers. Twenty-two out of forty of those in the zoéa state changed to the megalops dining the first twenty-fom homs, and in the same time ten ont of fifty in the megalops stage changed to the adult form, so that they probably do not remain in the megalops state longer than the yonng of Cancer iroratus. They apparently do not molt during the megalops stage.

The megalops of the Platyonichus is about the size of that of Cancer irrorutus, and resembles it much in general appearance, but the carapax is much broader in proportion, the rostrum is a little longer, and there is a marked prominence at the anterior margin of the orbit, representing the lateral tooth of the front of the adult, and a similar prominence, represeuting the stout postorbital tooth, at the posterior angle of the orbit. The spine upon the cardiac region is rather more slender than in the megalops of the Cuncer. The chelipeds are more elongated, and much like those of the adult Platyonichus, except that they want the stout spines of the latter. The dactyli of the posterior legs already approach in form those of the adult, being expanded into narrow oval plates a fourth as broad as long. The tips of each of these dactyli are furnished with four peculiar sete of different lengths and with strongly curved extremities, the longest and two shortest of which are simple, while next to the longest one is fumished along the inner side of the curved extremity with little, closely set, sack-like appendages.

Another megalops, belonging apparently to some swimming-crab, was several times taken in the towing-net, in Vineyard Sound, from Augnst 11 to September ?, and was also taken by Mr. Harger and myself, east
 ber 14. It wonld fall in the genns Cyllene of Dana, and is closely allied to his Cyllene furciger (Crust. U. S. Expl. Exprl., p. 49t, Plate NXXI, fig. S) from the Sooloo Sea. In one specimen the carapax, inelnding the rostrum, is $\stackrel{2}{2} .0^{m m}$ long, excluding rostrum, 1.6^{mm}, breadth, $1.1^{1 \mathrm{~mm}}$. The front is ruite narrow between the bases of the ocular peduncles, and has a long and slender rostrum. There are no prominences either side
of the orbit and no dorsal spine upon the carapax. The fourth segment of the stemum is armed each side, just within the bases of the legs, with a long and broul spine projecting backward and slightly outward, as in Cyllene fiwciger. The chelipeds and ambulatory legs are long and sleurler, and the dactyli of the posterior pair of legs are expanded and lamellar, as in the megalops of Platyonichus. The abdomen is abont as long as the carapax excluding the rostrum, and the fifth segment is armed with a stont spine each side of the postero-lateral angles.

A very large megalops, quite different in structure from those already mentioned, is oceasionally found thrown upon onter beaches on the sonthern coast of New England and Long Island, but is apparently much more common upon the coast of the Sonthern States. This is undoubtedly the young of Ocypode wenarin, and was long ago described by Say (Jommal Acad. Nat. Sci., Philadelphia, rol. i, p. 157, 1817) as Monotepis inermis, and it is partially figmed by Dana, (Crust. U. S. Expl. Exp., Plate XXXI, fig. 6.) The canapax is very convex above, broader behint, and has no dorsal spine. The front is deflexed sharply downward and a little backward, and the extremity is tricuspidate, the median tooth being long and narrowly triangular, while the lateral teeth are small and obtuse. The sides are high and impressed so as to receive the three anterior pairs of ambulatory legs. The thind pair of ambulatory legs are closely appressed along the mpper edge of the carapax and extend forward over the eyes, their dactyli being curved down over the eyes and along each side of the front. The posterior legs are small and weak, and each is folded up and lies in a groove on the latero-posterion surface of the carapas. The external maxillipeds have almost exactly the same structure as in the adult Ocypoda, and, as in the adult Ocypoda, there is a tuft of peculiar hairs between the bases of the second and third ambnatory legs. I have specimens of this megalops from Block Island, and have myself collected it, late in Augnst, at Fire Island Beach, Long Island. In the largest specimen from the last locality the carapax is $6 . t^{m m}$ long and $5.6^{m m}$ broad.

A large number of young specimens of the Ocyporla, collected at Fire Island Beach, indicate plainly that they had only recently changed from this megalops. The smallest of these specimens, in which the carapax is 5.6 to $6.0^{1 m m}$ long and 6.1 to 6.5^{mm} broad, differ from the adult so much that they might rery easily be mistaken for a different species. The carapax is rery slighty broader than long, and rery convex above. The front is broad, not narrowed between the bases of the ocnlar perluncles, and triangular at the extremity. The margin of the orbit is not transverse but inclines obliquely backwark. The ambulatory legs are nearly naked, and those of the posterior pair are proportionately much smaller than in the adnlt.

The adnlt Ocypoda is terrestrial in its labits, living in deep holes above high-water mark on sandy beaches, but the young in the zoëa state are undoubtedly deposited in the water, where they lead a free-
swimming existence like true pelagic animals，until they become full－ grown in the megalops state．Say mentoms that his sperimens were fommenst mon the beath by the reflnent tide and＂appeared desirons to protect themselves ly burowing in the samb，in order to wait the retmon of the tide，＂but they were more likely awating the final wange to the terrestrial state．The tufts of peculiar hairs between the hases of the second and third ambulatory legs，and，in the adnlt，comected with the respiration，are present in the full－grown megalons，and are moionbtedly prowided to fit the amimal for its tertestrial existence as soon as it is thrown mon the shore．The yomm in the magalops stage oecon on the shore of Long Lslant，in August，and perhaps earlier．It Fire Island Beath in 1800 no spectmens of Oceppode were discovered till the last of Angust，and those first fombl were the smallest ones obtained； by the midde of september，however，they were common on the outer beath，and many of them were twice as large as those first obtained． Althongh earefnl seareh was mate along the beach for several miles， not a seecimen of the adult or half－grown emab conld be fomm；every imbividnal there had evidently lamded and developed dining the season． l＇obably all those living the year before hat perished during the win－ ter，and it is possible that this species never survives long enongh to attain its full growth，so far north．

A small megalops，taken in the towing－nets in considerable numbers at Woorl＇s Hole on the evening of September 3，resembles in several characters the megalons of Ocypoth，and is probably the somg of one of the species of Gelasimus．The carapax is $1.0^{m m}$ long and 0.7 broad．The front is narrowly triangular，deflexed perpendicularly， somewhat excarated between the eyes，and terminates in a long，slen－ der，and acute tip．The sides are high and impressed for the reception of the three anterior ambulatory legs as in the megalops of Ocyporla， althongh in the alcoholic specimens examined the leg＇s are not closed against the sides．The posterior ambulatory legs are small，and lodged in grooves on the sufface of the carapax．much as in the megalops of Ocypota．The external maxillipeds are very much like those of the megalops of Ocypote．

A peenliar megalops，belonging apparently to some Grapsoid gronp of crabs，was several times taken in the towing－net in Vineyard Somd from Auginst 5 to September 3 ，on the latter date in the evening．In these the carapax is 1.2 to $1.3^{n m}$ in length and 0.9 to $1.0^{\text {nnn }}$ in brealth．The fiont is broal，concare abore between the eyes；the middle portion projects obliguely downward and terminates in a short， obtnse rostrom ；while the lateral angles project forward into a promi－ nent tooth above each eye，so that，when seen from above，the frontal margin appears transerse and tridentate，the teeth being separated by considerable spares．There are no dorsal spines or tubereles upon the calapax．The sides are high，and are apparently impressed for the reception of the anterior ambubatory legs．The posterior ambulatory
legs are subequal with the others and have styliform dactyli. The ischial and meral segments of the external maxillipeds are short and broad.

Another megalops, of which sereral specimens were taken in the towing-net, in Vineyard Sound, August $\overline{\text { I }}$, has a remarkable, elongated and tuberculated carapax. The carapas, inchuling the rostrum, is 1.3^{mm} long and 0.84^{mm} broad, is armed above with sereral large tubereles, and the posterior margin is arcuate and armed with a median tubercular promineuce. The front is somewhat exearated above and expanded each side in front of the eyes, the anterior margin being transrerse, as seen from above, with a short and spiniform rostrum curved obliquely downward. The chelipeds have slender hands and the ambulatory legs are long and slender, the posterior pair being subermal with the others, and all having the dactyli styliform. The abdominal legs are rery long.

Sereral other forms of zoër and megalops were taken in Vineyard Sound and ricinity, but, as they were not traced to the adult forms and were none of them very abundant, they are not here described.

Squilla empusa passes through a remarkable metamorphosis, wut none of the earliest stages were observel. Specimens in one of the later larval stages (Plate VIII, tig. 36) were taken at the surface in Vineyard Sound, August 11. These are nearly $6^{\text {mum }}$ long. The carapax is proportionally much larger than in the adult, corering completely the whole cephalothorax, has a long slender rostrum projecting far in front of the eyes, and the lateral angles projecting backward in two slender processes as long as the rostrum. There is also on each side, just behind the eye, a small tooth on the margin of the carapax, and another similar one on the posterior margin just beneath each of the posterior processes. The ejes are very large and almost spherical. The antennule are short, projecting scarcely beyond the eyes, and biramons, one of the flagella being short and musegmented, the other longer and composed of three segments. The antennc are still without flagella, and the scale is quite small. The first pair of legs (the appendages corresponding to the first pair of maxillipeds in the Macroura, \&e.) are well dereloped, long, and slender, like those of the adult. The great claws are proportionally larger than in the adult, and have very much the same strncture. Of the six succeeding pairs of cephalothoracie legs, only the three anterior, subcheliform ones are as jet developed, and these are quite small, those of the third pair being smaller than the others, and projecting lont slightly beyond the carapax; the three posterior, styliform legs are entirely wanting, or represented only by slight sack-like protuberances. The abdomen is not quite as long as the cephalothorax, including the rostrum and posterior processes, and the five anterior segments are subequal in length, smoothly rounded abore, and fumished with well developed swimming-legs, much like those of many macrouranas. The sixth segment is much shorter than the others, and has rudimentary appendages
seareely longer than the segment itself. In these appendages the spiniform process from the base is long and simple, not biramoms, as in the adult, and the lamellit are small, much shorter than this process, and the onter one has no articulated terminal portion. The terminal seg. ment is as long as the four preceding segments, abont as broad as long, the lateral margins slightly eonsex in ontline, and each amed with two sharp teeth, while the posterior margin is concave in outline, with the lateral angles projecting into sharp teeth, between which the edge is armed with abont twenty small and epmad slender spines.

1).-C'ATALOGUE OF゙THE MARINE INTETEBRATE ANHMALS OE THE SOUTHERN COAST OF NEW EN(iLAND, AND AD. JACENT WATERS-BL A.E. VERRILL, S. I. SMITH, AN゙D OSCAR HARGER.

In the following catalogne nearly all the marine invertebrates which are known to inhabit the coast between Cape Cod and New Fork are inclnded, except those belonging to certain groups which have not yet been studied by any one, sufficiently for their identification. Such are chiefly minnte or microscopic species, belonging to the Entomostraca, Foraminifera, Ciliated Infusoria, \&e., together with the intestinal worms of fishes and other animals. Our sponges, also, hare litherto receired rery little attention, and it has not cet been possible to didentify but a small momber of the species. It is not to be supposed, howerer, that the list is complete in any gromp, for erery season in the past has served to greatly increase the number of species in almost erery class ancl order, and this will doubtless be the case for many jears to come. But as no attempt has hitherto been made to emmerate the marine animals of this region, excepting the shells and radiates, it is hoped that this catalogne will prove useful, both to show what is already known concerning this fana, and to serve as a basis for future work in the same direction.

In some instances species that have not actnally been found on the part of the coast mentioned, but which ocemr on the shores of Long Island and New Jersey, under such circumstances as to render it pretty certain that they will also be found farther north, have been included in the eatalogne, but the special localities have always been given in such cases.

In orter not to make the list too long, only those synonyms are given which are really necessary to make apparent the origin of the names, and to refer the student to some of the best deseriptions and figures in the works that are generally most accessible, and in which more complete synonymy may be found.

For the same reason, in describing the new species, the descriptions have been made as brief as semed consistent with the purpose in view, viz: to enable students and others who may not be experienced natu-
ralists to identify the speeies that they mas meet with. To this end, the portions of the descriptions relating to strictly microscopic parts hare frequently been omitted, when more obrions characters, sufficient to distinguish the species, could be found.

References to the plates at the ent of this rolume have been inserted, and also to the pages in the first part of the report where brief descriptions, remarks on the habits, or other information may be found.

The catalogne of the Crustacea was prepared by Mr. S. I. Smith and Mr. Oscar Harger. The rest of the catalogne is by Professor A. E. Yerrill, with the exception of the descriptions of the insects, which have been furnished by Dr. A. S. Packard and Dr. G. H. Horn; the l'yenogonids, which have been determined by Mr. S. I. Smith; and a few of the Bryozoa, which were identified by Professor A. Myatt, who also furnished most of the figures of the species belonging to that class.

Hitherto there has been no attempt to enmerate the marine invertebrates of the entire southern coast of Nerr England. Sereral partial lists have been published, howerer, and these have been of considerable use in the preparation of the following catalogne.

In the Repor't on the Invertebrata of Massachusetts; by Dr. A. A. Gould, 1S41, numerous localities for shells on the southern coast of Massachusetts are mentioned.

A catalogue of the shells of Comecticut, by James I. Linsley, was published in the American Journal of Science, rol. 45, 1845. In "Shells of New Englant," 1851, Dr. William Stimpson gave much aceurate information concerning the distribution of our Mollusca. In 1869 Dr. G. H. Perkins published a rery useful catalogne, in the Proceedings of the Boston Society of Natural History, vol. xiii, p. 109, entitled "MolInscan Fanna of New Haven."

The " Report on the Mollusca of Long Island, New York, and of its Dependencies," by Sanderson Smith and Temple Prime, in the Annals of the Lyceum of Natural History, vol. ix, p. 377, 1870, also contains much useful information.

A paper by Dr. Joseph Leidy, entitled "Contributions toward a Knowledge of the Marine Invertebrate Fana of the Coasts of Rhode Island and New Jerses," in the Journal of the Philadelphia Academy, rol. iii, 1855 , although very incomplete, contains the ouly published lists of the Annelits and Crustacea of this region. In his "Catalogue of North American Acalephx," 1865, Mr. A. A gassiz has entumerated all the species discovered on this coast up to that time. Other papers will also be referred to in the synonymy.

INSECTA.

The insects incluted in the following catalogne have mostly beren determined by A. S. Packard, jr., M. D., amd by George H. Horn, M. D., who have also kindly furnished deseriptions of the new species. Onr thanks are ako due to I)r. H. A. Hagen, who has identified some of the species. The Prenogonids have been determined by Mr. S. I. Smith.

DIPTER.

Fall-grown larve were dredged in 10 fathoms in Vineyard sound, sereral miles from land, among compond Asedians, (A. E. V.:) and several young larsie were dredged in 8 to 10 fathoms in Wood's Hole Passage, September 10, (A.s. P.)
"This is a true Chirmomus, the borly being long and slender, with the nsmal respiratory filaments at the end of the borly. Head red as usial, chitinons; antemar slender, ending in tro mequal spiues; (yes black, forming conspicuons dots: mandibles acute, three-toothed.

From lorer side of antepenultimate segment arise two pairs of long fleshy filaments, twice as long as the diameter of body, not contaning trachere, so far as I can see; and from the end of pemultimate segment a dorsal minute tubercle, forming a eclindrical papilla, giving rise to eight respiratory hains about as long as the segment is thick; anal legs long and slender, with a crown of abont twelve spines. Two prothoracic feet, as usual. In one larva the semi-pupa was forming; leugth, $11^{m m,}$, (.45 inch.)

This species belongs in the same section of the genns with Chiromomus plumosus, figurd ly Reaumer, (rol. ir, Pl. 1t, figs. 11 and 12; and vol. v.)"- . S. S. P.

Cmimonomús ocernicts Packard. (p. 331.)
Proceerlings of the Essex Institute, vol. vi, p. $4:$, figs. 1-4, 1-69.
Specimens apparently belonging to this species hare been obtained near New Hawen, at low-water mark, among conferve. It oceurs at Salem. Massachusetts; Casco Bay; and the Bay of Fundy, from low-water mark to 20 fathoms.

Culex, species undetermined. (p. 466.)
A species of mosquito is excessively abmolant on the salt-marshes in antumn, and the larrie inhabit the brackish waters of the ditehes and pools.

Muscide.-Larre of an undetermined fly. (1. 415.)
This larra was found living beneath the surface of the sand, at lowwater mark, on the shore of Great Egg Harbor, at Beesley's Point, New Jerser, April $2 S, 1871$. (A. E. V.) The same larra, or an allied species, was found May 5 , under stones below high-water mark. "Specimens were brought to me from New Jerses, and kept living in sea-water for some time. The following description is from the living specimens: Body white, long, slender, cylindrical, tapering gradually from the penulpenultimate segment toward the head; thirteen segments, counting the head as one. Segments smooth, thickened at the hinder edge, the sutures being distinct; tegument very thin and transparent, allowing the riscera to be easily distinguisherl. The terminal segment of the borly is conical; seen from beneath it is nearly a fourth longer than broad, the end subacute and deeply eleft by a furrow which diminishes in size and depth to beyond the middle of the segment, where it fades ont. This conical extension is flattened vertically above; fiom the middle of the same ring project the supra-anal, conical, fleshy tubercles, one-fourth the length of the entire ring, which give rise to two main tracheer running to the head, and which separate and close together at the will of the animal. When extended the prothoracic ring is considerably longer than the others. Head one-third as large as prothorax, and a little more than half as wide. Length, !mum.

I cannot detect any spiracles on either of the thoracic rings. The trachea are not nearly so regular as in the larve of the Anthomyia ceparrm, with living specimens of which I placed it side by side; head much the same, shorring it may be of this family. Ninute antemae present; no traces of them in Anthomyia, and their presence throws a doubt whether it be a muscid."-A. S. P.

Eristalis, speeies undetermined.
One large-sized larva was found in Vineyard Sound among algat in April, by Mr. Vinal N. Elwards.
Epirydra, species undetermined. (p. 466.)
Packard, Proceedings Essex Institute, vol. vi, p. 50.
Shores of Narragansett Bay, puparium found under sea-weeds by Dr. T. dorexmieul. According to Dr. Packard, "searcely distinguishable from E. Kelophile Packard, which lives in salt brine at the saltworks in Gallatin Comits, Illinois."

COLEOPTERA.

A number of species of tiger-bectles (Cicindela) are common on the sandy shores and beaches just above high-water mark, and some of them are seldom found away from the sea-shore, while others are also found far inland. The larve of some of these, and perhaps of all, live below high water, but this has not jet been observed in the case of several

[^11]in the following list, which includes those most characteristic of the seashores.

Cicindela generosa Dejean. (p. 336.)
Spéeies Général des Coléoptères, vol. v, p. :231, (teste Lee.;) Gould. Boston Journal Nat. Hist., vol. i, p. te. Pl. 3, fig. 2.
Adult common on sandy beaches at high-water mark; larve burowing in sand below high-water mark, in company with the species of Talorchestia.

Cicindela dorsalis Say. (p. 364.)
Journal Acalemy Nat. Sciences of Philadelphia, vol. i, p. 20) ; Gould, op. cit., p. 47. Marthas Vinerard, on the samdy beaches.

Cicindela margivata Fabricins. (p. 4io.)
Srstema Eleutheratorum, vol. i, p. 211; Gonld, up. cit., p. As.
Barren spots in salt marshes that are oceasionally covered by the tides.

Cictndela retanda Dejean. (p, 364.)
Spécies Cién. des Coléoptères, vol. i, p. 74.
With the last, and on sandy beaches at Marthas Vineyard, \&e.
Cicindela mirticullis Say̧. (p. 304.)
Trans. Amer. Phil. Societs, new series, vol. i, p. 411, Pl. 13, fig. 2.
With last, also at a distance from the coast.
Cicindela duodecimguttata Dejean.
Spéc. Gén. des Coléop., vol. i. p. 73: Gonld, op, cit., p. 51.
Sandy beaches near the salt water; appears both in spring and autumn.

Georinus marassatus (I)ej.) (p, 364.)
Spécies Gén. des Coléopères, vol. is, p. 21.
Sereral specimens were found on the outer beach of Great Egg Harbor. Nen Jersey, burrowing in sand between tides. This species is not confined to the coast, but occurs eren west of the Mississippi in sandy places, (IIorn.)

Bembiditar constirictur Leconte. (1. 464.)
Ammals Lẹcemm Nat. Hist.. N. Y., vol. iv, p. 30 .
Between tides at (ireat Egg Mambor, New Jersey.
B. contractum Say. (p. 464.)

Trans. Amer. Phil. Soce, wol. ii, p. \%o.
Between tides at Great Egg Harbor. This and the preceding oceur also along the margins of streams emptying into the ocean. (Horn.)
Hidrophleus (Tropistervus) Quadristriatus Horn. (p. 466.)
Trans. Amer. Entomol. Soc., 1-71, p, 3:31.
In hrackish pools, near Beesley's Point, New Jersey, associated with Palemonetes vulgaris and other brackish-water species.
"Elongate oral, more attennate in front, black, with slight oliraceous tinge; surface densely, finely, aud equally punctured. Head with a sigmoid row of coarse punctures on each side, meeting at the rertex. Antenn: and palpi testaceons. Thorax with a small forea on each side, near the anterior margin, behind and within the eyes, and an angulate row of punctures on each side near the middle, and a few eoarse punctures rery irregularly disposed. Elytra with four strix of moderate punctures, the first two sutural and extending nearly from base to apex, inclosing at base a short scutellar row ; the outer two rows subhumeral, obliterated at base, extending nearly to apex, and becoming coufused, extending toward the imer rows. Bods beneath black, opaque, and pubescent, abdomen with a row of brownish patches at the sides of each segment. Legs pale testaceous, femora at base and tarsi black. Length, .33 inch; (9.5^{mm}.)

Resembles lateralis in form, but more narrowed in front than behind. The elytra are evenly punctured, and the body along the median line moderately convex. It differs from all our species by the four distinct strise of punctures on each elytron. The onter two correspoud in position with the eighth and ninth, and traces of a third, fourth, and fifth are risible at base."-Horn.

Pimlhydrus reflexipennis Zimmermanu.
Trans. Amer. Eutomol. Soc., 1〒69, p. 2.50.
Great Egg Harbor, betweeu tides.
This and the next oceur also inland. (Horn.)
P. perplexts, Leeonte.

Proc. Philad. Acad. Nat. Sci., 1855, p. 321.
Great Egg Harbor, between tides.
Phytoses littoralis Horin. (p. 464.)
Trans. Amer. Entomol. Soc., 1=71, p. 331.
"Head brownish testaceons, moderately shining, sparsely clothed with yellowish hairs, front feebly concare; parts of mouth and antenne testaceons, the latter darker at tip). Thoras paler than the head, as broad as long, disk depressed, sides strongly rounded in front, behind the middle simate; base truncate, feebly emarginate at mitdle, and but slightly broader than half the width of thorax at middle; surface sparsely punctured and pubescent. Elytra pale testaceous, sparsely punctured and pubescent, short, sides strongly divergent behind; body apterous. Abdomen elongate oval, broader behind the middle, piceons, shining, and very sparsely pubescent. Legs pale testaceons. Last segment of abdomen o slightly prolonged at middle and sinuate on each side. Length, . 0 inch, (2 2^{mm}.)

The male resembles in its several character's P. Balticus Kraatz, of Europe, but the median prolongation of the last abdominal segment is broader. The penultimate segment is subcarinate along the median line behind. The mandibles in the present species are much more exsert than in the species from California.

This is an interesting addition to our insect fama. Its occurrence has been looked for on the gromm of the octurence of a species on the Pacific Coast, for, as a men, (rapidly losing its exceptions, any genns represented in Europe and on the I'acific Comst will have a representa tion in the Athantie fimmal region."- Hom.

This species was found burrowing in samd, between tirles, at Beesley's Point, New Jersey.

Bledites cormatus (Say.) (p. 16:.)
'Trans. Amer. Phil. Sor', vol. iv, p. 461.
This small species ocemred in considerable abmudance near Beesley:s Point. It forms its small burows in the loose sand at and just below high-water mark, in company with Tulorchestia lomgicornis, Neypherelle aremicold Sumpir, ©.e. It throws up a small heap of sand aromed the opening of its burrows, wheh are much smaller than those of the following species.
"This species is somewhat variable in the form of the elytral dark spot. The elytra are male testaceons or nealy white in color, and normally with a cordate suace of brownish color, and with the apex in front. This spot may become a narrow median fusiform space, or be divided so that the suture is pale; the spot fiequently becomes larger by the apex of the cordate spot, extending to the scontellum and along the basal margin."-Horn.

Blediu's pallipennts (Say.) (p. 46:.)
Journal Acad. Nat. Sci., Philad., vol. iii, p. 15.5.
Shores of Great Egg Harbor, near Beesleys Point, common, buroming perpendicularly in moist sand considerably below high-water mark. The holes are rombl, with a small heap of sand aromnd the orifice. This species is also found far inland. (Horm.)

ILeterocertes undatus Melshemer. (p. 464.)
Proc. Acaih. Nat, Sci., Plilad., vol. ii, p. Wr.
Beesley's l'oint, bumwing in sand, between tirles. This species ocen's also on the margins of inland streams. (llom.)

I'malerla testacea say.
Long's Expdition, vol. ii, p. 2-0
Somer's I'oint, on the shore of (ireat Egg Harhor, between tides.

NELROI'TERA.

Molanas, species matetermined. (p. 379.)
This larva was fomd in a firm, straight, flattened, tapering tube, made of grains of sand, and attached to the piles of a wharf, below high-water mark, at Menemsha Bight, on Martha's Vineyard, Oetober, 1871, by Dr. Elward P'almer.

Anurida maritima (Guerin.) (1. 331.)
This Podurid is rery abmodant on the under surfaces of large stones from high-water mark to about half tide, New Haven, Wood's Hole, Nantucket ; also on the coasts of Europe and Greenland. (Fabricius.)

ARACHNIDA.

Chernes oblongus Say. (p. 331.)
Hagen, Record of American Entomology for 1868, p. 51.
Under stones near low-water mark, at Wood's Hole, (S. I. S.,) sereral specimens were found together. This species is recorded from Florida and Georgia. I am not aware that it has been observed below highwater mark before. These specimens were identified by Dr. Hagen.
Trombidiunt, species. (p. 331.)
Several species of mites belonging to this or allied genera are found beneath stones near high-water mark, or even running over the fuci and rocks near low-water mark, but it is uneertain whether they become submerged by the rising tide or rise on its surface.
Bdella marina Packard, sp. nor. (p. 331.)
Savin Rock, near New Haren, under stones between tides.
"Elongated pyriform, of the usnal form of the genus, the body being thickest at the insertion of the third pair of legs. Body with a few scattered hairs, especially toward the end. Palpi twice as long as labium, bairy toward the tip, four-jointed, basal joint not so long as secoud, third, and fourth conjointly; second a third shorter than third. Mandibles rery acutely conieal, projecting one-fourth their length begond the beak, with abont four hairs on the outer side; tips very slender acnte, corneons. Legs rather hairy; fourth pair but little longer than the others. Claws consisting of two portions, the basal much compressed, subovate, with about six hairs on the muder edge, and carrying a stout curred clatr. Beak half as long as the body is wide. Leugth $2.5^{m m}$.
"It differs from Say's Bdella oblonga ('from Georgia, under bark of trees, © Sc.) in its pyriform shape, the shorter first joint of the palpi, and much shorter beak."-A. S. P.

PYCNOGONIDEA.

Phoxichilidium alaxillare Stimpson. Plate Vif, fig. 35. (p. 415.)
Marine Invertebrata of Grand Manan, p. 37, 1853.
Common in Vineyard Sound and the Bay of Fund 5 .
Pallene, species. (p. 4:1.)
A small species, perhaps young, found upon piles of the wharf at Wood's Hole, and dredged in Vineyard Sonnd, in 14 fathoms, off Tarpanlin Core on Aseidians, and off Holmes's Hole on Hydroids ; also off Wateh Hill, Rhode Island, and New Haven.

CRUSTACEA.

The following cataloge of the Crustacea has been prepared by Mr. S. I. Smith, excepting the portion relating to the Isoporla, which has been written by Mr. O. Harger.* The list is by no means complete, even for the higher groups which are treated, and no attempt has been made to emmerate the Ostracoids and free-swimming Copepods. Among the Amphipods, the dithentt group of Lysianassine has not been studied, as the species require eareful comparison with those of our northern coast and of Europe. The same is true of the species of A mpelisca, and partially of some other genera. In several eases species are onitterl whichare as yet only represented in our collections by imperfect, roung, or too few specimens. The catalogue is intended, howerer, to inchude every species which has been mentioned, on good anthority, in any published work as inhabiting the southern coast of New England.

BRACHYURA.

Gelashius minax Leconte. (p. 467.)
Proceedings Acal. Nat. Sci., Philadelphia, vol. vii, 1-35. p, 41:3: Smith, Tranf. Comb. Acal., vol. ii, p. 12~, Pl. \&, fig. 4, Pl. 4, fig. $1,15 \% 0$.
Sonthern coast of New England to Florida. This species, the largest of our "fidller-crabs," lives upon salt marshes, usually farther from the sea than the others, and frequently where the water is most of the time nearly frests.
Gelasimus pugiax Smith. (p. 46j.)
Trans. Comn. Acad., vol. ii, p. 131, Pl. 2, fig. 1, Pl. 4, fig. 2. G. cocens, var. A, De Kay, Nat. Hist. of New York, p. 14, Pl. 6, fig. 10, 1844, (not Cancer rocans Linné.) G. pagilator Leconte, loc. cit., p. 403, (not of Bose.)
From Cape Corl to Florida, the Gulf of Mexico, and the West Indies. It makes its burows only npon salt marshes, but is often seen in great companies wandering out upon muldy or sandy flats. or even mon the beaches of the bays and sombls.
Gelashius pugilator Latreille. (p. 336.)
Nouvean Dictionnaire dryist. nat., 3i ćlit, tome xii, p. $520.1=15$; Smith, Trans. Comm. Acal., vol. ii, p. 136, Pl. 4, fig. 7, 1870. Ocypode pryilator Bose, Hist. nat. des Crust., tome i, 1. 167, 1×20. Gelasimns rocans De Kay, op. cit., p. 14, Pl. 6, fig. 9.
Cape Cod to Florida, upon muldy and samdy flats and beaches.
Ocypoda arevaria Say. (pp. 337,534 .)
Journal Acal. Nat. Sci., Philadelphia, vol. i, p. 69, 1-1ヶ; Ehlwatrls, IIist. mat. des Crust., tome ii, p. 44, 1'l. 19, tigs. 13, 14.
This species, which is common upon the sandy beaches from New Jersey southwarl, and which I have fomm npon?Fire Islamd Beach, Long

[^12]Island, will very likely be found rarely unon the beaches at Nantucket, and on the southern part of Cape Cod. It lives in deep burrows, above the reach of tides, mpon sandy beaches. It is readily distinguished from the "fiddlers" by the nearly equal claws or hands, which are alike in both sexes, and by its color, which is almost exactiy like the sand upon which it lives. It is carnivorous and very active, rmning with great rapidity when pursned.

The synongmy of this species is in much confusion, and I have not attempted to rectify it here, although there are apparently several names which antedate that of Say. The Brazilian species, usually called rhombed appears to be identical with ours, and if it is really the rhomber of Fabricins, his name should undoubtedly be retained.

SEsARMA IEETICULATA Say. (1. 467.)
 1812; Smith, Trans. Conn. Acad., vol. ii, 1.156.
From Long Island Sound to Florida, usually upon salt marshes and associated with Gelasimus pumax.

Pinnlia cylindrica Say. Plate I, fig. 1. (p, 367.)
Journal Acad. Nat. Sci., Philadelphia, vol. i, p. 452, 1818.
Vinesard Sound and Long Island Sound to South Carolita.
Pinnotheres ostreun Say. Plate I, fig. 号, male. (p. 367.)
Loc. cit., p. 6\%, Pl. 4, fig. 5, 1817 ; DeKay, op. cit., p. 1ン, Pl. τ, fig. 16.
Massachusetts to South Carolina.
Pinnotheres maculatus Say. (p. 434.)
Loc. cit. p. 450, 1818.
It lives in Mytilus edulis on the New England coast, and is found from Cape Cod to South Carolina.

Cancer irroratus Say. (pp. 31̌, 530.)
Loc. cit., p. 59, Pl. 4, fig. 2, 1817 ; Stimpson, Annals Lycemm Nat. Hist., New York, vol. vii, p. 50, 1859. Platycurcinus irroratus Edwards, Hist. nat. des Crust., tome i, 1. 414, 1834 ; DeKay, op. cit., Pl. D, fig. . . Cancer Sayi Gonld, Report on the Invertebrata of Massachonsetts, 1st edit., p. 323, 1841. I'lutyourcinas Sayi DeKay, opr. cit., p. 7. Cancer borealis Packard, Memoirs Boston Nat. Hist. Suc., vol. i, 1. $303,1867$.

Lalurator to South Carolina.
('ancer borealis Stimpson. (pll. $486,493$.
Loc. cit., p. 50, 1859. Cancer irroratus Gonld, op. cit., p. 3e.
Nova Scotia to Vineyad Sound and No Man's Land. It rery likely oceurs both north and sonth of these limits, as it seems to be rare or local, and is often, perhaps, confoumded with the far more common C. iroratus, althongh it is a perfectly distinct species.

Panopels Heristul Edwards．（p．4こ．．）
Op．eit．，vol．i，fo：3，1e：3t；Smith，Iroccedings Boston Suc．Nit．Hist．，vol．xii，p． ：T $6,1-59$.
Long Island Gommed to Brazil，${ }^{\text {lont }}$ not common north of New Jemey． It is readily distinguished from the following species，by the tuberele on the suhberatic region，just below the first lobe of the antero－lateral border of the carapax；hy the postorbital tooth being separated from the second tooth of the antero－lateral margin by a rombed sims；and by the daetylns of the larger cheliped having a stont tooth near the hase within．

PaNopede mbrressus Smith．Plate l，tig．3．（p．312．）
Loc．eit．，p．$-3=1-5 \%$
From Cape Cod to Florida，and often carried with oysters much farther moth．It is，perhaps，native in Massachensets Bay．

Pavoruts Sayi Smith．（p．310．）
Loc．cit．，p．2－4，1－59．
Associated with the last，and having the same range．It is easily dis－ tinguished from the last species by its narower，more convex，and swollen carapax，and by the more projecting and arenate front．The terminal segment of the abdomen of the mate is also quite different in the two species；in P ．Suyi it is broaler than the preceding segment， about two－thirds as loug as broad，the edges slightly concave，and the tip abruptly triangular，while in P．depressus it is narrower than the preceding segment，about three－fourths as long as broad，the edges con－ ves，and the tip broadly rounderl．

Panopels Harrisil Stimpson．（1．313．）
Loc．cit．，p．5̈̆，1－59．Pilımии．Harisii Gonkl，op．cit．，1．32f， $1=41$.
Massachusetts Bay to Florida．
Cabcinus ghantlatus（Say，sp．）（p．312．）
Cancer gramulatus Sas，loc．cit．，p．61，1－17．C＇arciuns manas Goukd，op．cit．，p． 3：21；DeK゙ay，op．rit．，p．E，I＇l．5，Jiss．5，6．（？）Carcius manas Leath，Eilwards， \＆c．
Cape Cod to Ňew Jersey，and perhaps much farther south．Our species may，very likely，be the sane as the Carcimus monas of Europe， but it：not extemling north on om own coast throws some doubt upon this until there las been a carefinl comparison of specimens from the tiro sides of the Atlantic．

Platyonichis ocellatte Latreille．l＇late l，fig．4．（plo．338，533．）
 5，tig．7．C＇bucer ockllatus llerhst，Kraboen umel Krebse，Band iii，erstes Ileft， 1．fil，I＇l．4！．fig．1，1799．F＇orfumes pictus sisy，loc．cit．．p．Sis．l＇l．4，lig．t， 1－17．
Cape Cod to Florida．

Callinectes hastatus Ordway. (p1, 367, 468.)
Boston Journal Nat. Hist., vol. vii, p. 568, 1863. Lupa hastata Say, loc. cit., 1. 65, 1817. Lupa diacantha Dekay, op. cit., p. 10, Pl. 3, fig. 3.
Cape Cod to Florida, and occasionally in Massachusetts Bay.
Libinia canaliculata Say: (p. 368.)
Loc. cit., p. 7f, Pl. 4, fig. 1, 1817 : Dekay, op. cit., 1. 2, Pl. 4, fig. 4; Streets, Proccerlings Acad. Nat. Sci., Philadelphia, 1870, p. 105, 1871.
Found as far north as Casco Bay, on the coast of Maine, and common from Massachusetts Bay southward, at least as far as Florida.

Libinia dubid Edwards. (p. 368.)
Op. cit., tome $\mathrm{i}, \mathrm{p} .300$, Pl. 14 bis, fig. $2,1=34$: Streets, loc. cit., p. 104.
Cape Corl to Florida.
Pelia mutica Stimpson. (1. 115)
Amals Lycemm Nat. Hist., New York, vol. vii, 11. 177, 1860. J'isu muticu Gibbes, Proceedivgs Amer. Association Adr. Sci., 3 d meeting, 1. 1î1, 1550.
Vineyard Sound to Florida.
Hias coarctatue leach. (p. 504.)
Trans. Limn. Soc., Loudon, vol. xi, p, :3e9, 1815. Réme mimal de Cuvier, $3^{\text {me }}$ édit., Pl. 32, fig. :3. Lissa fissirostra Say, loc. cit., p. 79, 1817.
Leidy mentions this species as having been found on the coast of New Jersey, and Say mentions it from the coast of Long Island, but it seems to be rare south of Cape Cod. It lives in deep water from Cape Cod northward, and on the European coast, and is frequently found in the stomachs of the corl-fish.

Heterocripta grantlata Stimpson. (p. 315.)
Annals Lyceum Nat. Hist., New York, vol. x, 1. 102, 18゙1. Cryptopodia gramulata Gibbes, loc. cit., 1. 173; and Proccedings Elliott Soc., Charleston, vol. i, p. 35, wood cut.
This species, dredged several times in Vineyard Sound, was before known only from North Carolina to Florida and the West Indies.

ANOMOLRA.

Mipra talpoida Say. Plate If, fig. 5. (plo. $338,530$.)
Loc. cit., $1^{1 .} 160,121 \%$.
Cape Cod to Florida.
Eupaguru's pollicars Stimpon. (p. 313.)
Amals Lycemm Nat. Hist., New York, vol. vii, p. 92, 1s39. Pagurus pollicaris Say, loc. cit., P. 162, 1~17: Gonla, op. cit., f. $3: 9$; Dckiay, op. cit., p. 19. Pl. =, lig. $\% 1$.
Massachmsetts to Florida.
Eupagurts Bermhamdu's Stimpson. (1. 501.)
 systematica, vol. ii, p. 469, 1793; Gomlel, op. cit., p. 329; Dekay, op. cit., p. 20.

Vineyard Somm，©c．，in deep water，more abundant nortlo of Cape Cod，and extending to Northern Europe on one side，and to l＇nget Somed on the other．

Eupageres probechas Stimuson．

Loc．cit．，p，$-9,18.9$ ：and Proceedings Acad．Nat．Sci．，Philadelphia，1－．5̃，1．2．27，

This species has been taken in deep water off the coast of New Jer－ sey，and will，donbtless，be fomd off Long Istand and Vinesard Somme． It extends northward to Greenland and Northem Emrope．

```
Etph(iutus lovgicalires Stimpson. (p. 339.)
    l'rocerdings Acad. Nat. Sei., l'hiladlphia, 15.5. p. 2:%, 18.0. P'uguru. longicm'-
        pus Say, loc. cit., 1. 10:3, 1=1% ; Gould, op, cit., p. 3:'(1; 1)ekay, 口p. "it., p. 20,
        I'. =, tig. S:.
Tassachmsetts Bay to south (arolina.
```


MAC＇ROURA．

（iema affins Say．Plate 11，tig．－（pu．3tit．sio．）
Loc．eit．．p．195，1＊17．
Long Islaud Somd to South Carolina．
Callianassa Sthirsont Smith，sp．nor．Plate II，fig．S．（p．369．）
Carapax smooth and shining．Greater cheliped（fig．8）about three times as long as the carapax；carpus and hand convex on both sides ； carpus sometimes considerably longer，sometimes not at all longer than broad；both fingers of the same length，and about as long as the basal portion of the dactylus；the prehensile edge of the dactylus without a strong tooth or tubercle at base．Smaller cheliped about half as long as the greater；carpus and hand about equal in lengtl；fingers erfual， slender，as long as the basal portion of the propodus．Abdomen smooth and shiming abore，gradually increasing in breadth to the tifth segment； second segment longest，much longer than broad；third and fifth equal in length；fourth shorter，and sixth a little longer than third or firth； telson much broader than long，shorter than the fourth segment．

Length of a large specimen， $61^{\text {mun }}$ ；length of carapax， 15 ；length of larger cheliped， 44.

In the character of the chelipeds this species seems to be closely allied to（＇．Iongimune Stimpson，from Puget somul．

Our species ranges from the coast of the Southern States．north to Long Island Sound．

Homardes Americane＇s Elwards．（pp．：39．5，492，ione）
 1E1\％，（not of Fabricins．）
New Jersey to Labrador．

Crangon yulgaris Fabricins. I'late III, fig. 10. (plo. 339, 529.)
Supplementum Entomologiar system., p. 410, 1793. Crangon septemspinosus Say, loc. eit., p. 246, 1818.
North Carolina to Labrador and Enrope. In denth it extends from low water to 60 or 70 fathoms, aud probably much deeper.
Hippolyte pushola Kroyer., (p. 395.)
Monografisk Fremstlling Hippol., p. 319, Pl. 3, figs. 69-7:3, 1~42.
Vineyard Sound and nortlward to Greenland and Emrope.
Yirbius zostericola Smith, sp. nor. Plate III, fig. 11. (ъ. 369.)
Female: Short and stont, Rostrum about as long as the carapax, and reaching nearly, or quite, to the tip of the antemal scale; the mpper edge nearly straight and marmed, except by two, or rarely three, teeth at the base; under edge with three (sometimes two or four) teeth on the anterior half. Carapax smooth and armed with a stont (supra-orbital) spine on each side at the base of the rostrum and above and a little behind the base of the ocular peduncle, a small (antennal) spine on the anterior margin beneath the ocular peduncle, and a stont (hepatic) spine behind the base of the antemic. Inner flagellum of the antemmala extending very slightly beyond the tip of the antenmal scale; onter flagellum considerably shorter. Abdomen geniculated at the third segment; the posterior margin of the third segment prominent above, but not acute.

The males differ from the females in being smaller, much more slender, and in having the rostrum narrower vertically.

The color in life is very rariable. Most frequently the entire animal is bright green, sometimes pale, or even translucent, tinged with green. Others were translucent, specked with reddish brown, and with a broad median band of dark brown extending the whole length of the body.

Length of female, $20-26^{\mathrm{mm}}$; male $15-20$.
It is at once distinguished from I. pleuracanthus Stiupson, to which, in many characters, it is closely allien, by its rery much longer rostrum.

Among eel-grass about Vineyard Sound, and probably common at other points on the coast.

Tirbius plawracanthus Stimpson, (Amals Lycemm Nat. Mist, New York, vol. x, p. 127, 1571, abundant upon the coast of New Jersey, will very likely be fomd farther north. In habit it is similar to the species just described.
Pandalus annulicornis Leach. Plate II, fig. 6. (p. 493.)
Malacostraca Podophthalmata Britamiar, Pl. 40, 1~15.
Deep water in Vineyard Sound, off Newport, Sc.
North of Cape Cod it is common, and extents to Greenland and Europe. In depth it extends down to 430 fathoms at least.

Palemonetes vulgailis Stimpson. Plate II, fig. 9. (pl. 479, Jこ9.)
Annals Lyceum Nat. Hist., New York, vol. x, p. 1:9, 1271. Pulwmon mentyaris Say, Journal Acaul. Nat. Sci., Philatelphia, vol. i, p. 224, 121※.
Massachusetts to South Carolina.

Pendeus biansiliensin Latreille.
Ehlwards, Hist. nat. les Crust., tome ii, 1. 414 ; Gibbes, loc. cit., 1. 1!2; Stimpson, Annals Lycemm Nat. Hist., New York, vol. x, p. 1ite.
Aecoriling to Stimpson, this species has been fond in the Croton River at Sing Sing, New Iork, by Professor Baird. It will therefore be rery likely to oecm in the rivers of Sonthern New England. It is common on the coast of the Southem States, and extends to Brazil.

SQUHLLOIDLA.

 Amer. Assoc.. 3l meeting, p. 19:
Florida to Cape Corl.
The roung of this species is figured on Plate VIII, fig. 3 ,
MSNDEA.
Dheis stenolepts Smith, sp. nor. Plate Ill, fig. 12. (p. 370.)
Male: Anterior margin of the carapax produced into a very short, broad, and obtusely rombled rostrum, and each side at the inferior angle into a prominent, acutely triangular tooth, between which and the base of the ocular pedmele there is a broad and deeply rounded sinus. Peduncle of the intemula about a third as long as the carapax along the dorsal line; the sexnal appendage slender, tapering, nearly as long as the perluncle ; inner flagellum half as long as the onter. Antemmal scale rather longer than the carapax along the dorsal line, narrow, abont ten times as long as broad, tapering to a slender and acute point, both edges ciliated and nearly straight; flagellum about as long as the rest of the auimal. Abdomen somewhat genienlated between the first and second segments; sixth segment abont twice as long as the fifth. Appendages of the fourth segment reaching nearly to the distal extremity of the sixth segment; inner ramus slender, slightly longer than the base ; outer ramus maked, composed of six segments; the first, third, and fourth subequal in length, and together efualing about three-fourths of the entire length; the second, fifth, and sixth subequal; penultimate segment armed with a stont spine on the outside at the distal extremity, and the last segment terminated by a similar spine. Inner lamella of the appendages of the sixth segment extending slightly beyond the telson, narrow and tapering to an obtuse tip; outer lamella narrow, linear, about seven times as long as broad, nearly a thind longer than the iuner, both edges ciliated and nearly straight, and the tip narow and somewhat truncated. Telson considerably longer than the sixth segment, tapering slightly, the sides nearly straight, and each armed with about twenty-four spines; the extremity cleft by a deep sims romded at bottom, and its margins convex posteriorly and armed with very numerous slender spines.

Length of a male from tip of rostrum to extremity of telson, $23.2^{m m}$; length of carapax along the dorsal line, 6.5 ; length of antennal seale, 6.7 ; length of telson, 3.S. Length of female, $30^{\text {man }}$.

The females differ but little from the males except in the usual sexual characters. The figure, (Plate III, fig. 12,) made from a small female specimen, cloes not properly represent the anterior margin of the carapax.

In life the joung females are semi-translucent, a spot on each ocular peduncle, the peduncles and inner flagella of the antennula, the antemal seale, the telson and candal lamelle more or less blackish from deposits of black pigment, while each segment of the abdomen is marked with a rudely stellate spot of black.

Large males of this species were found in the antumn among eelgrass, at New Haven, Counecticut, and the young abundantly in the same sitnation in May. Young females were collected in abundance during June and July, among the eel-grass in the shallow bays and cores abont Tineyard Sound, while adult females, with the marsupial ponches filled with yonng, were collected, at Wood's Hole, in abundauce, April 1, by Mr. V. N. Edwards.

Mysis Americana. Smith, sp. not. (p. 396.)
Anterior margin distinctly rostrated, but only slightly projecting; eveuly rounded, the inferior angle projecting into a sharp tooth. Antennulie, in the male, with the densely ciliated sexnal appendage similar to that in M. vulyuris of Europe; the outer flagellum nearly as long as the body, the imner slightly shorter. Antennal seale about three-fourths as long as the carapax, about nine times as long as broad, tapering regularly from the base to a very long and acute tip; both margins ciliated. Appendages of the fourth segment of the abdomen in the male similar to those iu M. vulfaris. The outer ramus is slender and naked, and its pair of terminal stylets are equal in length, slender, curved toward the tip, and the distal half armed with numerous short setie; the ultimate segment of the ramus itself is little more than half as loug as the stylets, the penultimate segment four or five times as long as the terminal. Inner lamella of the appendages of the sixth segment about as long as the telson, narrow, slightly broadened at the base, and tapering to a slender but obtuse point; outer lamella once and a half as long as the inner, and eight times as long as broad, slightly tapering, the ex tremity subtruncate. Telson triangular, broadened at base, the lateral margins slightly convex posteriorly, and armed with stout spines alternating with intervals of several smaller ones; the tip very narrow, truncate, armed with a stont spine each side, and two small ones filling the space between their bases. Length 10 to $12{ }^{m m m}$.

This species was found, in April, at Beesley's Point, New Jersey, in pools, mon salt-marshes, and at the same locality the stomachs of the spotted flounder were found filled with them. Professor D. C. Eaton found it in great abundance among ser-weeds, \&c., just below low-water mark, at New Haven, Connecticut, May 5, 1873. It was also taken in the dredge, in 4 to 6 fathoms, at New Haven, Comecticut, and in 25
fathoms off Vineyard Somd, ant has been fomm in the stomachis of the ${ }^{*}$ shad, mackerel, ※c.

Meteromisis momana Smith, gen, et sp. hov. (p. 396.)
Body rather short and stont. Carapax broad behind and tapering anteriorly ; the anterior margin produced into an obtusely triangular rostrum. Ocular peducles short and thickened nearly to the base. Peduncle of the antemma stont, extending to the tip of the antemal scale; the terminal segment in the male wanting the usual elongated sexualprocess, but having in its place a very dense tuft of long hairs ; imer flagellum nearly as long as the carapax; onter flagelhum stout at base and more than twice as long as the inner. Antenmal seale about three and a half times as long as broad, not quite reaching to the extremity of the peduncle of the antemmala, orate, olotnse at the tip, extermal margin without a spine and ciliated like the imer; pedmele elongated, pemultimate segment considerably longer than the ultimate; Hagellum nearly as long as the entire body. Mandibles, maxillae, first and second maxillipeds, as in Mysis. The first pair of legs (second pair of gnathopoda) (liffer remarkably from those in all the deseribed genera of Mysidir. The whole leg is stonter than in the succeeding pairs, and the terminal portion, corresponding to the multiarticulate portion of the imer branch (endopodus) in Mysis, \&e., consists of only three segments including the terminal claw; the first of these segments is stont, slighty shorter than the preceding (meral) segment, and armed with stont spines along the distal portion of the immer margin; the second seg. ment is rery short, not longer than broad, and closely articulated to the preceding segment so as to admit of rery little motion; the ultimate article is a long, slightly curvel claw, freely articulated to the preceding segment. In the five posterior pairs of legs the terminal portion of the inner brauch is multiarticulate as in Mysis, in the first composed of five segments. besides a stout terminal claw like that in the preceding pair, aud in the four remaining pairs of six segments and a slender terminal claw. The exopodal branches of all the legs are well developed.

Ablomen a little more than twice as long as the carapas, the sixth segment a little longer than the fifth. The appentages of the first fire segmentsalike in both sexes; short, rudimentary, and like the same appendages in the female Mysis. Inner lamella of the sixth segment projectmg very slightly beyond the extremity of the telson, broat, ovate; outer lamella only a little longer than the inner, about two-serenths as long as broad, imner magin quite convex, outer very slightly, tip rounded. Telson short, broad at base, and narrowed rapidly toward the extremity, the width at base abont two-thirds the length, at the extremity only a thind as wide as at base; the lateral margins each armed with twelve to fourteen spines, which increase in size distally, and a very long terminal spine; the posterior margins cleft by a sims deeper than broad, and armed? with numerous small spines.

In life the males are semitranslucent and nearly colorless, while in the females the antemulre, the flagella of the antenne, the ocnlar peduncles, the thorax with the marsupial pouch, and the articnlations of the candal appendages are beantiful rose color.

Length of a male, 6.0^{mm}; carapax along the dorsal line, 1.8; antennal scale, 0.70 ; telson, 0.90. Length of a female, S. s^{mm}; carapax, $\because .5$; antemnal seale, 0.88 ; telson, 1.16 .

The absence of the sexnal appendages from the antennule of the male, the peculiar structure of the anterior legs, and the similarity of the abdominal appendages in the two sexes, at once separate the genus Heteromysis from all known allied genera.

Tilisanopoda, species. (452.)
A great number of small specimens were taken from the stomach of mackerel eanght twenty miles off No Man's Land, July 18, 1871.

Sereral were also caught swimming at the surface in Vineyard Sonnd, April 30, 1878, by V. N. Edwards.

A single specimen of a species apparently the same as this was taken at New Haven, Comecticnt, May 5, 1873, by Professor D. C. Eaton.

CLMACEA.

Diastilis edtadispinosa, G. O. Sars. Plate III, fig. 13. (p. 507.) Öfversight af Kongl. Vet.-Akad. Förh., 15:1, Stockholm, p. fe.
Dredged in 23 fathoms of Martha's Vineyard and in 29 fathoms of Buzzard's Bay. It is also found in the Bay of Fundy. Sars's specimens were dredged by the Josephine expedition in 18 fathoms off Skinnecock Bay, Long Island, and in 30 to 35 fathoms, latitude $39^{\circ} \tilde{5} t^{\prime}$ north, longitude $73^{\circ} 15^{\prime}$ west, off the coast of New Jerses.

Our specimens agree well with Sars's description, except that the second segment of the inner ramms of the lateral eandal appendages has but three, or rarely fonr, spines mpon the inner margin, while in Sars's specimens there were five.

Diastillis sculpta Sars.
Loc. cit., p. 71.
With the last species, in 18 fathoms, oft Skinnecock Bay, accomding to Sars.

Diastylis abbreviata Sars.
Loc. cit., p. 74.
Rare in 30 to 35 fathoms, off the coast of New Jersey, with the first speeies, (Sars.)

Eudorella pusilla Sars.
Loc. cit., p. 79.
Not infrequent in 18 fathoms, oft Skinnecock Bay, (Sars.)

EUDORELAA HINDDA Nitrs.
Loc. cit. p. ${ }^{-0}$.
Rave in :30 to :3.5 fathoms, with the other species mentioned, off the eoast ol' New Jerser, (Sars.)

AMPHINODA.

Male: Antemma not quite raching the distal extremity of the penultimate segment of the antenna; second and third segments of the peduncle about equal in length, and each slightly longer than the first ; flagellum abont as long as the two last segments of the pedmele. Antema less than half as long as the body; segments of the pethucle stout and swollen, the ultimate longer than the penultimate; flagellmm stout, compressed vertically, much shorter than the pedmele, eomposed of twelse to fifteen segments. Propodas in the second pair of legs short and thickened laterally, the pamary margin with a small prominence on the onter eage of the posterior angle, behind which the tip of the dactylns closes, and along the imer edge, inside the dactylus, with at thin ridge, which is broken by a small notch near the posterior angle, so that the margin when viewed laterally shows a broad lobe next the base of the dactylus and two small, romded lobes next the posterior angle, the tip of the dactylns resting between the small lobes; dactylus slender, eurved so as to fit closely the palmary margin, and furnished with rery minute setar along the prehensile margin. Posterior thoracic legs slightly longer than the preceding; carpus in full-grown specimens short, much swollen, and thickened so as to be nearly eylindrical.

Female: Carpus and hand in the second pair of legs marmed ; propodus short, slightly spatulate in ontline, with a pair of mimute setie at the base of the dactylns, which is rery short, not reaching the extremity of the proprotus.

Length: male, $10-15^{\mathrm{mm}}$; female, 10-14.
Bay of Fundy to New Jerses.
Orchesta palustris Smith, sp. nov. (p. 4tib.)
Mate: Antenmula reaching slightly beyond the distal extremity of ${ }^{\text {f }}$ the penultimate segment of the pedmacle of the antemm. Antemme less than halt' as long as the borly; pedmele slender; Hagellum slender, longer than the peduncle, composed of eighteen to twenty-six segments. Propodus in the second pair of legs nearly oval in outline, the palmary margin spinons, regularly curvel to the posterior angle, which projects on the outer edge in a slight, rombled prominence, within which the tip of the dactylus closes ; dactylus slemder, emred so as to nearly fit the palmary margin, and furnished with minute sete along the prehensile margin. Posterior thoracic legs slightly longer than the preceding ; carpus and propodus both long and slender.

The female differs from the male as in the last species.
Length, male, 15-22mm ; female, $1 \ddot{-1}-15^{\text {m"n }}$.
Cape Cod to New Jerser, and very likely farther north and sonth.

Talorchestia longicornis Smith．（p．336．）
Talitrus Tongicornis Say，loc．cit．，p，384，1818．Orchestia longicornis Edwards， His．mat．des．Crust．，tome iii，p．18， 1840 ；De Kay，op．cit．，p．36，I＇1．7，fig．19．
Cape Cod to New Jersey，and probably farther sonth．
TALORCIIESTIA MEGALOPHTHALMA Smith．（p．336．）
Orchestia megalophthulma Bate，Catalogue Amphip．Crust．，British Museum，p．22， 186.

Cape Cod to New Jersey，and probably farther south．
Talitrus quadrifidus，De Kay，（op．cit．，1．36，Pl．1t，fig．„フ，may be based on the femate of one of the preceding species，but it so is badly described and figured as to be indeterminable．
Hyale Littoralis Smith．（1．31亏．）
Allorchestes littoralis Stimpson，Marine Invertebrata of Grand Manan，p．49．，Pl．3， fig．36，1853；Bate，Catalogue Amphip．Crust．，British Musenm，p．48，Pl．8．fig． $2,1 \approx 62$ ．
This species was fonnd at New Haven，Connecticut．，by Professor Verrill，May $\tilde{5}, 1873$ ，and is one of the inluabitants of rocky shores，piles of wharves，\＆e．I have found it at Provincetown，Massachusetts，and it is abundant in the Bay of Fundy．It is undoubtedly abundant on the whole New England coast，lont its station upon the shore is so high np on the beach that it is likely to be orerlooked．
Lysianassa，species．（p．431．）
A species of this genus，as restricted by Boeck，was sereral times dredged in Vineyard Somnd and Buzzard＇s Bay．

Several other species of Lysianassince were taken in Vineyard Sound and the neighboring region，but they have not jet been sufficiently studied to be entmerated．The species of this gronp are much less common and the individuals smaller on the coast of Southern New Eng－ and than they are mpon the coast of Maine and farther north．

LEPIDACTYLIS DYTISCUS Saç．（1．339．）
Loc．cit．，p． $380,1818$.
Georgia to Cape Coul．
Phoxus Kroyeri Stimpsolı．（1．Ju1．）
Marine Invertebrata of Grand Manan，p．st， 1833.
Rare in Vineyard Somd and nsually in deep water．Common in the Bay of Fundy．

UROTHOE：species．（1．45゙．）
A species with long，slender antenne and rery large black eyes， and apparently belonging to this genus，was taken in great numbers at the surface at Wrood＇s Hole，on the evening of $J n l y 3$ ，and on one or two other occasions．In life it was whitish，slightly tinged with orange－ yellow．

Monoculodes，species．（p．45\％．）
A single suecimen taken at the surface in Vineyard Sound，December 21，by Mr．V．N．Ealwarke．

Saphistion Sturionis Kroyer．（p．45\％．）
Nat．Tidsskrilt，vol．iv，p．157，1－Lき．Darwinia rompressa bate，Roport brit．Assoe．，
 and Westwood，Brit．Sessile－eyed Crust．vol．i，1．124，wood cut．
A parasitic amphipod，apparently quite identical with this species of Enrope，was fonmd in the month of a goose－fish（Laphius Amerirnmas） taken in Vineyard somol．A species，apparently the same，was also taken from the back of a skate（Raia leevis）in the Bay of Fimaly the past smmmer．It is readily distinguished by its broad depressed form， aud by having the third to difth pairs of legs very stont and their distal segments forming powerful talon－like chaws，while the tirst and secomd pairs are small and slender．

Calliopit＇s Laviusculus Bueck．（1．： 1 m. ．）
Crast．Amphipoda borealia at aretica，p．117，1870．Amphithoi lorimscu／a Kroyer

 op．cit．，vol．i，p．156，woud cut．
Tineyard Sound and northward to Greenland，Northern Europe，and Spitzbergen．

BONTUGENELA INERMIS Boeck．（1．45゙．）
Op．cit．，p．114，1870．Amphithoë inermis and rremulate，Kroyrr，Grönlands Am－ fipoder，Pp．47，50，I＇l．3，figs．11，12，1733．Iphimedia mulgaris Stimpson， Marine Invertebrata of Grand Manan，p．53，1853．Atylus inermis，crenulatus， and rulgaris Bate，Catalogne Amphip．Crust．Brit．Mns．，1p．138，139，142，P1．・フ7， figs．5，6，1～62．Atylus rulgaris Packard，Memoirs Boston Soc．Nat．Hist．，vol． i，p．298，1267．（Not Atylus（Paramphitoë）inermi．Packard，loc．cit．．p．992，Pl． 8 ，fig．3．）
Taken at the surface in Vineyard Sound，in March，by Mr．V．N．Ed－ wards．It is abundant，in company with Calliopius leviusculus，about the Bay of Fundy in pools left by the tide，and ranges north to Labra－ dor and Greenland．

Gammands onnatus Edwards．Plate IV，fig．1\％．（p．314．）
Anuales des Sci．nat．，tome xx，1－30，p．3int，Pl．10，tigs．1－10；Hist．mat．des Crust．，tome iii，1． 47 ；Bate，op，cit．，p．212，Pl．：37，Sig．ऽ．Ciammarus lorusta Gould，op．cit．，p． $3: 34$ ．Ciammarnspulex Stimpson，Marine Invert．（frand Manan， p． ．
New Jersey to Greenland．
Gammares Avinulatus Smith，sp．nov．（p．314．）
Anterior margin of the head produced each side beneath the anten－ nula into a trmented lobe，which extends farther forward than in G ． ornatus：eyes scarcely reniform，less elongated than in G．moutus，and their lower margins not reaching，by considerable，the anterior border of the truncated lobe．Antemat longer than the antemmata；the ulti－ mate segment of the pedmele longer than the peinltimate；the flagel－ lum much more slender，the segments more elongated and with fewer hairs，than in G．ormatus．Hands of the first pair of legs more elongated than in G ．ornatus，and the palmary margins very oblique．Propodus in
the second pair very narrow and elongated, subeylindrical, slightly Hattened on the inner side, the palmary margin longitndinal, and searcely distinct from the posterior margin. Fourth segment of the abdomen with a median fasciele of two large and two small spines, but no lateral fascicles. Fifth and sixth segments with both median and lateral fascicles of spines.

Color in life grayish white, the posterior margins of the segments bortered with brown, giving the borly an amulated appearance.

Length, 1こ-18 ${ }^{\text {num. }}$.
New Haven; Comnecticnt, and Eastport, Mane, and doubtlessabundant at other points on the coast.
This species closely resembles the fresh-water (6 . fusciutus, but is, distinguished from it by the proportions of the segments of the pedurecles of the antennex, and by wanting the lateral fascicles of spines noon the fourth segment of the abdomen.

Gammares natator Smith, sp. nor. (p. 439.)
Male: Eyes large, enlongated, but only slightly reniform. Antennula short and stont, about three-sevenths as long as the body; flagellum but little longer than the peduncle; secondary flagellum nearly half as long as the primary. Antema considerably longer than the antemnula; penultimate segment of the peduncle reaching to the extremity of the peduncle of the antennula; ultimate segment of the peduncle longer than the penultimate; Hagellum about two-thirds as long as the pedumcle. Both antennule and antenne are furnished with very loug hairs, of which many on the autennule are plomose. First, second, and third epimera margined on the inferior edges with long cilia. First pair of legs more slemder than the second; propodus oral, twice as long as broad, palmary margin continuous with the inferior, with a very natrow lamellar edge, a stont obtuse spine in the middle, and two smaller ones at the inferior angle; dactylus strongly curved. In the second pair the propodus is more than half as broad as long, and somewhat rectangular in ontline, except that the palmary margin is slightly oblique; the palmary margin has a narrow lamellar elge, with a slight emargination in the middle, from which a stont obtuse spine arises, and at the inferior angle there are two or three smaller spines, as in the first pair. The inferior elges of the carpi and propodi of both pairs of legs are thickly clothed with long hairs. Natatory llegs reaching to the tips of the telson. Second and third segments of the abdomen with the sides. prodnced backward, and the postero-inferior angle acnte. Fourth segment with only a median fascicle of spines; fifth and sixth segments with median and lateral fascicles. Rami of the posterior candal stylets lanceolate, five or six times as long as brould, the outer extenting beyond the imer by theilength of its terminal article, which is very slender, almost spinitorm, the edges of both rami clothed with long plamose hairs. Lach division of the telson nearly three times as. long as broad.

In the female the hamds of the first and second pairs of legs are smaller and slemerer，and the proporli somewhat oval and mearly alike in both pais：；otherwise the females do not difter trom the mates，except that the rami of the posterior camdal stylets are，perhaps，a very little shorter and broader in proportion．

Length，10－12m＂．
Vineyam Somal，in vast mmbers at the surface of the water，minally among floating sea－weeds amb ecel－gratis．Also fiom stomach of matkerel， May－O．

Trams．Limmen Soc．，London，vol．xi，p．3．59，1815；Bate，Catahogne Amphip．
 Crust．，vol．i，p． 3 ：30，wool－cut．
A species which I camot distinguish，by the published figures and lescriptions，from this common species of Europe，was not uncommon， associated with Amphithö̈ maculata，muder stones at the Wepecket Islands，Gnll Island，Cnttyhme Island，and at other places on Vine－ fard Somd and liuzzad＇s Bay．It has also been found at Watel Hill， Rhorle Island，and at New Haven，Comecticut，ly Professor Verrill． It is at once distingmished from all the other species of our coast by its slemter form，slender antenma，by having the sides of the second and third segments of the abdomen narrow and not produced or acnte at the postero－inferior angle，and by haring the outer rami of the posterior candal stylets four or five times as long as the inner．
Gamharus muchonatus Say．（p．479．）
Loc．cit．，p，376，181气；De Kay，op．cit．，p． 37 ．Gammaractuthus mucronatus Bate， op．cit．，p．203．
Readily distinguished from the other species of the coast by having the posterior margin of each of the anterior segments of the abdomen produced into a slender，spiniform，dorsal tooth．In life，it is translu－ cent，tinged with green，or yellowish green，minntely specked witi brown or black；these black or brown markings and the green color being fre－ quently so arranged as to give the antemme and legs a banded appear－ ance．Our species camot be referred to Bate＇s gents Gommarectentures， for the dorsal margin is not distinctly carinated，and the thind，fourth， and fifth segments of the abdomen are fumished with fascicles of spines．

Usmally in bratckish water，North Carolina to Cape Corl，and，accord－ ing to Say，from Florita also．
M（ERA LEvis Smith，sp．nov．（1，315．）
Eyes nearly romut black in alcoholic specimens．Antemnula two－ thirds as long as the body；first and seroud segments of the peduncle edual in length，thind about two thirds as long as the second；llagellmm about as long as the pehtuncle．Antema about as long as the peluncle of the antemmala ；ultimate and penultimate segments eymal in length， antepenultimate very short ；flagellim much shorterthan the perlunele． Lecrs of the first pair small ；carpus as broarl as the proporlus，but little．
longer than broad, the posterior margin straight and furnished with fas. cicles of stout hairs; palmary margin nearly transverse, slightly areuate, and armed with short setee; dactylus slender and fitting closely the palmary margin. Legs of the second pair larger; carpus short, as broad as the base of the propodus, the posterior angle thickly clothed with stont hairs; propodus in the male stont, broadest distally, the palmary margin expanded toward the inferior angle and excavated on the inner side to receive the long and strongly curved dactylus; in the female, elongated, slightly narrowed distally, the posterior margin continuous and nearly parallel with the palmary, and furnished with fascicles of stont hairs. Fifth pair of legrs but little longer than the third or fourth ; sixth and seventh much longer than the fifth, subequal, stout, their meral and carpal segments considerably expanded, especially in the male. Ultimate caudal stylets projecting a little beyond the preceding pairs; rami short, broad, and with spinous tips; the outer ramus slightly longer and broaler than the inner, and its onter margin armed with a rery few fascicles of spinules. Telson reaching to the bases of the rami of the posterior candal stylets, nearly as broad as long, and cleft two-thirds of the way to the base.

Length, $5-7^{\mathrm{mm}}$.
New Jersey, Long Island Sound, Vineyard Sound.

Melita nitida Smith, sp. nov. (p. 314.)

Eyes small, round, black. Antennola about two-thirds as long as the body; first segment of the peduncle slightly shorter than the second, which is nearly twice as long as the last; flagellum longer than the peduncle. Antenna shorter than the antennula, but the peduncle considerably longer than the peduncle of the antennula, the penultimate segment being scarcely shorter than the penultimate segment of the antemnula, while the ultimate segment is subequal with it. First pair of legs with the carpus longer and broader than the propodus; propodus obloug, slightly curved; dactylus very small but stout, curved, and attached in a notch in the middle of the extremity of the propodus, not closing upon the extremity of the propodus but projecting inwardSecond pair of legs stout; carpus short, triangular; propodus some. what oval, the palmary margin oblique, arenate, continuous with the posterior margin, and armed with a series of minnte spines and with numerons stiff hairs, the clothing of hairs continuing round pon the posterior margin to the carpus; dactylus curved, tip resting within the palmary margin. Third pair of legs slightly longer than the fourth. Three posterior pairs slender, the fifth somewhat shorter than the sixth ind seventh, which are subequal, and have the anterior margins of the bases armed with small spines and the posterior margins minutely serrate. None of the dorsal margins of the segments of the abdomen serrate or emarginate, but the margin of the fifth segment armed with several slender spines on each side near the median line of the dorsum. Pemblimate caudal stylets not quite reaching the tip of the preceding
pair. The ultimate pair very long and armed with faseides of spines along the margins. Divisions of the telson slemere, spinoms at the lips.

In life dark greenish shatecolor, changing in alcohol to dark sate.
Length, i-9 ${ }^{\text {mum. }}$
New Jersey to Cape Cod.
Amplasca. Platelv, tig. 17. (ple 431, 507.)
The species of this gemms fomm 1 pon on coast have not yet been carefilly stmdied. At least two species were taken in Vineyard Somed and linzard"s Bay. The genus is readily recognized, but the species are dificult to distinguish.

Biobis serrata Smith, sp. hov. (p. Jol.)
Female : Dorsmon rounded above, with no trace of a hongitndinal earina upon the abdomen; third segment of the abdomen broadly rounded at the postero-lateral angle. Antemma ahont as long as the perluncle of the antenna: fomth seqment of the perlmole of the antema longer than the fifth. Inferior margins of the epimera of the first and second pairs of legs sermate, with slember and acnte teeth altermating with the marginal cilia; carpms in the first pair seacely if any longer than the popodns; carpus in the secomb pair rey much longer than the propodis. In the third and fomrth pairs of legs the dactulus as long as the propodns. Basal regment in the serenth pair of legs expanding distalle, the posterior margin nearly straight, the anterior am inferior margins evenly arenated, amb rearhing as far as the distal end of the carpus; carpms about as long as the ischimm and merus together, a little less than twice as long as broal, and armed with long spines upon the anterior and distal margins, but the posterior margin wholly nomarmed propodus almost as long as the carpus, and marly four times as long as broad, anterior margin marmed, the posterior armed mon the outside with two transverse rows of three or fonr spines, decreasing in size as they recede from the margin, the distal end with a spine each side the slender dactylus. Iami of the first pair of eaudal stylets equal, as long as the base; outer rami of the second pair shorter than the inner; rami of the posterior pair efual, longer than the bases, reaching to the tips of the rami of the first pair. Telson as long as the breadth at base, cleft rather more than balf its length, the lateral margins arenate, and rapidly converging toward the evenly rounded extremity.

Alcoholic specimens are pale yellowish, the epimera, bases of the pos. terior legs, and the sides of the abromen specked and mottled with mumerons points of dark pigment crowded irregularly together.

Length, 10-12"I․․
Deep water off Vineyard Sound and Buzzard's Bay.
P'thochemeds pinguis Stimpson. (p. 431.)
Marine Invertebrata of Grand Manan, p. 56, 1853. P'rotomedia pingus Bate, Catalogue Amphip. Crust. Jrit. Mus., p. 1z0, Pl. 31, fig. 2, 186
Common on the whole coast of New England upon muddy bottoms 19 v
and north to Labrador. In deptin it extends down to 150 fathoms, and probably much farther.

Microdeutopes minax Smith, sp. nov. (p. 479.)
Antemula about two thirds as long as the borly; first segment of the peduucle stont, about as long as the head; second segment a little longer and much more slender; third segment nearly half as long as the first; flagellum slender, about a third longer than the peduncle; secondary hagellnm very small, consisting usually of but oue segment. Antenna about two-thirds as long as the antemmla; ultimate and pennltimate segments of the perlnncle equal in length, and each fully twice as long as the antepenultimate; flagellum scarcely as long as the last segment of the peduucle. Hands of the first pair of legs in the male greatly developed; carpus very large, scarcely longer than the breadth in the middle; superior margin strongly arnate, the inferior angle produced into a stout process opposed to the propodus, and the inferior margin arenate and armed distally with two teeth, a large and prominent one at the base of the terminal pocess, the other small, obtuse, or even obsolete; propodus not more than lalf as long as the carpus, much longer than broad, the inferior margin with two broad obtuse teeth; dactylns stout, a little shorter than the propodus. Legs of the second pair with the basal segment broad and squamiform; carpus elongated; proporlus as long as the carpus and as broad as its distal portion, rectangular, abont two and a half times as long as broad; dactylns short and hooked at the tip. In the female the hands of the first pair of legs are only moderately developed; carpus broad; proporlus scarcely as broal as the carpus, rectangular, the palmary margin somewhat oblique, and the inferior margin armed with a spine at the obtusely ronnded inferior angle. In the second pair the basal segment is not expanded but narrow; the carpus and proporlus much as in the male, except that they are clothed with momerous long, plumose hairs. The bases of the first and second prairs of caudal stylets are armed with a long, slender, spiniform process, arising from the distal end just below the bases of the rami. The onter rami of the posterior stylets are a little longer than the inner. All the stylets extend to the same point.

Length, about $4^{\text {minn. }}$.
Long Island Sound and Vineyard Sound.
Another species of Microrleutopus was collected in Vineyard Sound, but it was not abundant.

Autonole, species. (p. 41\%.)
A species belonging apparently in this genus, as defined by Boeck, was common in Vineyad Sonnd, living in tubes in masses of a compound Ascidian (Amouroucium pellucidum Verrill) in 3 to 8 fathoms. It is 6 or $T^{m m n}$ in length, and in life the antemulie and antenne are obscurely banded and specked with pink; the body above, except upon the fifth segment and the posterio: part of the abdomen, is almost black, the
color extending down upon the epimera, while the legs and candal appendages are semi-tramslucent. The eyes are large and black.

Ampimthoí maculata Stimpsom. Plate IV, fig. 16. (p. 315.) Marine Lhvertehata of Grand Minan, p. 53, 1 S5:3.
Vineyand Somd to the Bay of Fimbly and Labrador.
dyphetmois valma Smith, spor. (p. 315.)
Mate: Eyes romm, black in alcoholic specimens. Antemmbe and antenna suberpal in length. Pedmacle of the antemmata extending searcely beyond the distal extremity of penultimate segment of the pedmele of the antema; the second segment but little longer than the first; ultimate segment short and slemter. Ultimate and pemultimate segments of the peduncle of the antema subequal in length. First pair of legs short, compressed ; carpus as broad as the propodus ; propolus broad, owal in ontline, the posterior and palmary margins forming a continuons, nealy smicirentar enrve; dactylus fitting closely the palmary margin. Second pair of legs very large ; carpus small; propodus oblong, broadest at the dista! extremity, very large and thickened, the outer surfee convex, the imer Hattened, palmary margin transverse, with a broad, low, median tooth, and a romded prominence at the inferior angle, within which the tip of the very stont and strongly eurved dactylus closes.

The female differs in having the hands of the first pair of legs slightly more elongater, and those of the second pair smaller than in the male, and the palmary margin slighty oblique.

Color in life, bright greeu.
Length, 10-13 min.
New Jersey and Long Island Sound.
Ampimthoï longmana Smith, sp. nov. (p. 370.)
Male: Eyes romm, and, in specimens preserved in alcohol, back. Antemmala slender and as long as the bods; second segment of the perluncle a little longer than the tirst; third segment about half as long as the second; flagellnm about twice as long as the pedmucle. Antema considerably stouter and slightly shorter than the antemma, the perluncle about twice as long as the flagellum; third segment of the peduncle a little more than half as long as the first segment of the peduncle of the antermma; fourth segment nearly three times as long as the third; fifth considerably longer than the fourth; flagellum a little longer, or sometimes only as long, as the fifth segment of the perluncle. Hauds of the first and second pairs of legs stont and much elongated. Cappus in the first pair nearly as loug as the first segment of the peduncle of the antemula, namow; propodas much more than twice as long as broadi, as wide ambloug as the carpus, of the same width throughont, slightly enved, and the very short palmary margin transwerse; dactylus stout, very little curved, more than half as long as the propodus, and projecting far beyond its inferior edge; the posterior margins of
both propodus and carpus densely clothed with long, stiff hairs. Carpus in the second pair of legs short, with an angular prominence upon the posterior side; propodus as long as in the first pair, and much broader, the palmary margin oblique, projecting at the inferior angle, just inside of which there is a deep sinus in the margin. Posterior edges of the bases of the sixth and seventh pairs of legs marmed.

In the female the antemme are shorter and not quite as stont, and the hands of the first and second pairs of legs are very much shorter, smaller, and much less hairy ; in the first pair the carpus and proporlus are very much shorter and proportionally broader, and the palmary margin of the propodus more oblique; in the second pair the propodus is short and somewhat oval, with a slight prominemee at the inferior angle of the palmary margin.

Length, 6-9 m^{mm}.
New Jerser ; Great South Bay, Long Islaml; Vineyard Sound. Common among eel-grass in sheltered situations. The young, even 5 or $6^{\text {mam }}$ long, were taken at the surface in Vineyard Sound several times.

Amplitioé conera Smith, sp. nor. (p. 370.)
Eyes small, romm, red in lite, but fating in alcohol to whitish. Antemma slemder, as long as the borly; first segment of the peduncle as long as the head; second slighty longer than the first; last a third as long as the second; flagellum very slender, nearly three times as long as the peduncle. There is a rudimentary secondary flagellam, not longer than the first two segments of the primary flagellam and very slender. Antema a little shortei than the antennma; the peduncle very little shorter than that of the antemma; last two segments abont equal in length, the penultimate reaching as far as the same segments of the antennula; flagellnm abont as long as the peduncle. First and second pairs of legs, in the male, about equal in size, as long as the head and thorax together, and clothed on both margins with long, plumose hairs. Carpus in the first pair longer than, and as broad as, the propodus, the distal extremity truncate and right-angled at the inferior margin; the propodus much longer than broad, the palmary margin oblique, very nearly straight, and armed "at the inferior angle upon the immer side with a stont spine. Carpus in the second pair narower than in the first, the distal extremity oblignely rounded at the inferior angle; propodus as long as the carpus and no broader, the palmary margin less oblique than in the first pair, withont any spine, and the inferior angle slightly projecting; daetjlus, strongly curved and closing by the margin of the propotus. In the female the legs of the first and second pairs are nearly alike in form, very mneh smaller and weaker than in the male, and only sparsely clothed with mostly simple hairs, except upon the inferior margin of the carpus in the second pair. In both pairs the carpus is about as long and broad as the propodns; the propodus is short, narrowed toward the carpus, the palmary margin oblique, convex in ontliue, with the inferior angle rounded and armed with a stont spine on the inside. Second
and third segments of the ablomen produced into a slight angular prominener at the postero-inlerior angle. The posterior edges of the bases of the sixth and seventh pairs of legs not sermated but armed with two to fom small spines. First and second pairs of candal stylets extending scare ely beyomt the posterior pair. In the first pair there is a long, slember spine projecting from the distal extremity of the base beneath the rami.

Length of largest specimen examined, $13^{\text {mun. }}$.
North Carolina to Cape Conl. Commonamong eel-grass. Taken at surface in Vincyard Sommd.

PODOCERUS FUCLCOLA Smith. (1. 493.)
Cerapus fucicolu Stimpsom, Marine Insertelrata of (irand Manam, p. AE, Pl. 3, fig. 3.4, 15:3.3.
This species was dredged by Professor Verrill, in 4 to $\overline{5}$ fathoms, off Wateh Ilill. Rhote Lslamd, in April, 157:3. It is common in the Bay of Fiundy.

Pobockrus, species. (p.494.)
Another species of the same gemus was taken in abundance with the last. It is a large and dark-colored species.
Cerapus rubricornts Stimpson. Plate IV, fig. 18.
Marine Invertebrata of Grand Manan, 1 . 46, I'l. 3, fig. 33, 1-3.3; Bate, Catalogne Amphip. Crust. Brit. Mus., p. 256, Pl. 45, tig. 4.
Not common south of Cape Cod, but very abundant in the Bay of Fundy and north to the coast of Labrador. ln depth it extents down to 100 fathoms at least.

Cerapus minat Smith, sp. not.
Antennule and antenne about equal in length, rather more than half as long as the body. Second pair of legs greatly developed in the male, the hand wearly half as long as the body; carpus elongated, narrow, nearly three times as long as the brealth in the middle, the posterior angle projecting into a broal process about as long as the dactylns, and armed on the inside with a tooth nearly as stout as the distal part of the process itself, but projecting ouly about half as fir ; proporlus about latf as long as the carpus, twice as long as broad; datylus considerably shorter than the proporlus, the tip in most of the larger specimens furnished with a pencil of long hairs. In the female the hand in the secom pair of legs is small ; the carpus produced into a long process on the inferior edge of the propodus to the palmary margin; propodus short, broal, somewhat oral, the palmaty margin areuate and armed with several short spines on the portion next the carpal process.

Length, abont $4^{\text {n" }}$.
Long Lstand Somm, Vinevard Somme.
? CeRAROS TUBULARIS SA! (p. 396.)
Loe. eito. p. 49, 1’l. f. fig. $7-11,1 \times 17$.
several specimens of it small amphiporl, olvergent, June 27 , in Vinesard

Sound, among masses of a large compomil Ascidian, (Amouroucium pellucidum, in eight to ten fathoms, off Nobska Point, are probably this species, but unfortmately females only were obtained, while Say describes and figures the male alone. In our specimens, the antenuulae and antenne are spotted with very dark purplish-brown, the anterior part of the body almost black, the middle and posterior portions spotted with black, or very dark purplish brown. They are between 4 and 5 mm long and inhabit mattached tubes as described by Say. The tubes are regularly eylindrical, quite thin and delicate, black, abont 5^{mm} long, and $0.4^{\text {mim }}$ in diameter, and are carried abont by the animal very much as the larsir of some of the Phryganeide carry about their tubes in fresh water. In the structure of the caudal appendages, our specimens are quite different from the species usually refered to Ccrapus, bnt I have not thought best to make any changes in nomenclature matil the discovery of the male shall make it certain whether our specimens belong to the species deseribed by Say.
Cororhiul Cylindifula Smith. (p. 370.)
Podoccrus cylindricus, Say loc. cit., p. 387, 1818, (not of Bate, Catalogue Amphip. Crust. Brit. Mus., p. 256.)
New Jersey to Vineyard Somnd. Very abumlant among weeds and hydroids about piles of wharres, and almost everywhere in shallow water.

Length, abont 4^{mm}.
SIPIIONCECETES CUSPIDATUS Smith, sp. nov. (p. 501.)
Male: Head prodnced into a long, slender, acute rostrmm, and eath side between the antennula and antenna into a long lobe ronnded at the end where the eye is sitnated, and contracted toward the base. Antennala reaching abont to the mialde of the fourth segment of the peduncle of the antenna; segments of the pednucle equal in length; flagellum scarcely longer than a segment of the perluncle, and composed usually of fire segments. Antenna a little longer than the body; third segment of the peduncle a little longer than any segment of the peduncle of the attennula; fourth segment nearly twice as long as the thind ; last segment nearly one-half longer than the third; flagellum a little shorter than the last segment of the peduncle. Legs mucli like Kroyer's figures of S. typicus, those of the first pair with the carpus twice as long as broad ; propodns slightly narrower and a little longer than the carpus, the posterior edge fimmished with long hairs and several stout spines. Legs of the second pair much stonter. Posterior caudal stylets with the terminal process fally as long as the ramus itself, the ramus as broad as long', the extremity obtusely rommed and furmished with very long hairs. Telson broater than long, transversely elliptical.

In the female the antennad and second pair of legs are more slender than in the male.

In alcoholic specimens the antemular are marked with nqriow bands of black or dark brom upon each segment of the tlagellum and at
both ends of the second and third segments of the pedmele, and the antemar are obsemrely banded and tinged with a lighter color.

Leng'th, ahont $6^{\text {mun. }}$.
It inhalhits tubes constructerl of grains of saud.

Jeriola halohata sal. Plate IV, fig. 19. (p. 310.)

This species grows to a much larger size than deseribed by say, being freguently $1.5^{m m}$ in length.

New dersey to the Bay of Fundy, and probably much farther north, amb from low water to more than to0 fathoms in depth.

Hyperia, species. (1. 43!.)
A large species of Hyperia was several times fomm upon the large red jelly-fish (Cyancu) in Vineyard Sound. The same species is common in the Bay of Fundy, but las not been identified with certainty.

Another species of Hyperia was taken at the surface, in company with Sulpa, in Vineyard Somal, carly in September.
Pheonlma, species. (p. 4:39.)
A species of this peculiar genus was taken at the surtace, in company with Stulpu, ofl Gay Head, early in September. It is closely allied to the I^{\prime}. Atluntica of Guerin. Aecording to Professor Verrill's motes it is, in life, transhcent, scarcely tinged with yellowish white, and nearly insisible in the water; the eyes red.

Another form allied to the last was taken with it, and is possibly the make of the same species, but differs from it, aml from the characters usmally assigned to the gemus, in possessing well-leveloped antemmar. In life, according to Professor Verrill, it was transheent whitish, the body spotted with dark lnown, and the eyes blackish.

Thimodrs, spectes.
A single specimen of a species of this gemus was taken with the I'hronimu and Sielpe, off Gay Itent, early in September.

Chitelala (imometrica Say. Plate V , fig. 20. (p. 4s0.)
 Eff, fig. E.
North Carolina to Vineyard Somd, expecially among cel-grass : very abmant in Great lige Harbor, New Jersey, April, 1871.

Chblimbla, species. (1,:3if.)
A harger species of C'aprella, which is common in the Bay of Fundy, was frequently dredged in Vincyard Somal.

```
ISOPOD.
```

Scypiacelfa smith, gen. nov:
Near Seyphax, Dana.* Antemna composed of eight distinct segments,

[^13]with a geniculation at the articulation of the fourth with the fifth segment; terminal portion, corresponding to the flagellum, composed of three closely articulated segments, besides a minute apical one; mandibles slender, without palpi; exposed portion of the maxillipeds formed of only two segments; the basal one with a narrow, elongated portion, which is abruptly narrowed at the articulation of the terminal segment, and sends a slender process beneath it to the middle of its imer margin; the terminal segment much narower than the basal, and tapering towarl the extremity; legs subequal, the posterior not shorter than the others; terminal segment of the abdomen produced between the posterior candal appendages, whith are short and essentially as in the allied genera.

This genus differs from Scyphux most notably in the form of the maxillipeds, which in Scyphax have the terminal segment broad and serrately lobed, while in our genus it is elongated, tapering, and has entire margins. In Scyplux, also, the posterior pair of thoracic legs are much smaller than the others, and weak; the last segment of the abdomen is truncated at the apex, and the articulations between the segments of the terminal portion of the antenne are much more complete than in our species. The general form and appearance of the genera are the same, and the known species agree remarkably in habits, the Scyphex, according to Dana, occurring on the beach of Parna Harbor, New Zealand, and found in the sand by turning it over for the depth of a few inches.

Scypiacella arenicola Smith, sp. nor. (p. 337.)
Body elliptical; abdomen not abruptly narrower than the thorax; the whole dorsal surface, except the extremity of the ablomen, covered with small, depressed tubercles, which give rise to minute spimules; eyes prominent, round; antenna a little longer than the breadth of the body; first and second segments short, equal; third, fourth, and fifth successively longer, the fifth being rather longer than the terminal portion, which is more slender than the fifth segment, tapers regularly to the tip, and is composed of three successively much shorter segments, and a rery short, somewhat spiniform, lut obtuse, terminal one; all the segments, except the mimute terminal one, seatteringly beset with spinules; legs beset with small spines; the ischial, meral, carpal, aud propodal segments subequal; terminal process of the last segment of the abdomen narrow, triangular, with the apex slightly rounded, and the dorsal surface a little concare; posterior candal appendages much shorter than the abdomen; rami slightly unequal, the outer stont, spinulose, the imen a little shorter and much more slender.

Color, in life, nearly white, with chalky white spots and scattered, blackish dots arranged irregularly. Eyes back.

Length, 3-4mm.
Fonnd at Somers's and_Beesley's Points, on Great Egg Harbor, New Jersey, in April, 1sin, burowing in the sand of the beaches, just above
ordinary high-water mak, in company with several species of staphylinider, and will very likely be fomed on Long [stand and the somthern coast of New England.

Philoschid vitata say.
Joms. Acarl. Nat. Sci., Philarlephial, vol. i, p. 429, 1-1s.
['mer rubbish below high-water mak, Comecticnt aml New Jarmer

Massachusetts to Florida.

Massachusetts to Florida.
Inotea Turtsit Stimpson. (p. :34.)
Sarine Invertebata of (Gand Manan, p. 39, 1-5.3.
Bay of Fundy and oft New London, Comecticnt.

Hist. nat. des ('rmst., rol. iii, p. 13:2, 1-10. Stenosome irroreta Siy, loc. cit., p. 42:3, 1818: Comld, Invertebrata of Massachmsetts, p. $3: 39,1841$.
Bay of Fundy to Creat Egg I Iarbor, New Jersey.
Idotea robusta Kroyer. Plate V, fig. 24. (p. 439.)
Naturhist. Tidssk., $2 \boldsymbol{2 l}$ R., Bind ii, p. 10z, 1846; Stimpson, Proceedings Acal. Nat. Sci., l'hiladelphia, $1 \leq 62$, p. 1333.
South shore of Long Island to the Arctic Ocean. A pelagic species.
Tdotea phospiomea Harger, sp. nov. (p.316.)
Resembling I. irrorata in size and shape, but easily distinguished from that speeies by the pointed abdomen.

Antemne less than halt the length of the body, antemnla attaining the end of the third segment of the antennar. Front slightly excavated with the lateral angles salient. Heal about twice as broad as long, turginl, and usmally with a pair of tubereles on the vertex. Eyes placed a little before the middle of the lateral margin, hemispherieal, black. First segment of thorax produced laterally aromed the back part of the head nealy to the eyes, showing no epimeral sutmes. Second segment much longer on the median line, but shorter at the sides than the first; the epimera occupg the anterior two-thirds of the lateral margin. Third segment slightly longer than the second; the epimera occupying still more of the lateral margin. Fourth segment of about the same length as third ; the epimera ocemping nealy or quite all the lateral margin. The remaining three thomeic segments gradually decrease in size; the epimera occopy the whote lateral margin and increase in size posteriorly. The first two abominal segments are distinct and acute at the sides. The third is similar to these at the sides, hat is only separated
from the last by an incision reaching abont half way to the median line, Last segment entire, ovate behind, and cuspidate. The style on the second pair of branchial plates in the male is slender, surpasses the laminar, and reaches the middle of the terminal eilia; it is obliquely truncated at the end.

Many of the specimens, especially the smaller ones, are furnished with a row of prominent tubereles along the back, and sometimes with lateral rows.

Length, $10-2.5{ }^{\mathrm{mm}}$; brealth, $3-7.5^{\mathrm{mm}}$.
Long Island Sound to Bay of Fundy.
Ericimsonia flliformis Harger. Plate Tf, fig. 26. (p. 316.) Stenosoma filiformis Say, loe. cit., 1. 4:4, 181\%.
Small, slender, and nearly linear in ontline. Antemmlat not quite attaining the fourth segment of the antenne, which are six-jointed, and more than laalf as long as the body, with the first segment short, second and thitd increasing in length, last three segments about equal; hear elevated between the eyes, where it is surmounted by a bifid tuberele; first and secoud thoracie segments with a lateral salient angle behind the evident angulated epimera; third and fourth segments with their lateral borders emarginate, and the epimera concealed or rarely visible from above at the emargination; last three thoracie segments angulated in front of the epimera, which are also angular. This arrangement, especially in the smaller specimens, gives the appearance of fourteen serrations on each side of the thorax. There is a row of tubereles along the median line. Abrominal segments consolidated into a siugle piece, which is furnished with a divergent tooth on each side near the base, and is expanded and obtusely triangular at the apex. The style on the second pair of branchial plates in the male is strong and curved, surpasses the eilia, and is acute amd sharply sermenear the end.

Length, $\tilde{0}-9^{\mathrm{mm}}$.
Vineyard Sound to Great Egig Harbor, New Jersey.
Emichsonia atmanuata Harger, sp. nov. Plate Vi, fig. 27. (p. 370.)
Body smooth, narrowly linear in outline. Antemmbe slightly sur"passing the second segment of the antemne, which are more than half' the length of the body, and have the last segment longest. Head excarated in front; eyes small, black, prominent; first thoracic segment short; second, third, and fourth segments about equal in length, twice as long as the first; third segment broadest, last three segments gradnally deereasing in length. Epimera visible from above only in the last two or three segments, bnt the sutures are evident, except in the first segment, and their position moves gradnally from the anterior portion of the segment in the second to the posterior in the seventh segment. Abdominal segments consolidated into a single piece, which is slightly dilated laterally near the base, and obtusely triangular at the tip. The
style on the second pair of branchial plates in the male is straight, slightly smpasses the cilia, and is acute at the end.

The color in life is usually minform dark green, sometimes with an obsemre dorsal stripe of a lighter color.

Lelrgth, $15^{\text {minn. }}$.
Abmadat among cel-grass at Great Lgeg Harbor, New Jersey, and also fomm at New Haven, Comecticut.

Eplets trilobus Smith. Plate VT, fig. :3. (1. 370.)
Intotea biloba Siy, loce cit., I. 425, 1ele.
Great Ligg Harbor, New Jersey to Vineyard Somm.
Erelis montosus Hargar. (p.370.)
Idotea montosa stimpson, Marine Invert., Ciraml Manan, p. 40, I-5:3.
Bay of Fundy to Long Island Somml.
JERA COPIOSA Stimpson. (p. 31\%.)
Loc. cit., p. 40, l’. 3, fig. 29, 1-53. d. miralis I'ackard, Memoirs Foston Soc. Nat. llist., vol. i, : 290 , (mon Kroyer.)
Long Island Somed to Labrador.
Lhmoria lamorum White. Plate VI, fig. 25. (p. 379.)
Pop. Hist. Brit. Cmst., p. 2e7, Pl. 12, fig. 5. Cymothoa lignorem Rathke, Skrivt. af Naturl. Selsk., vol. 101, t. 3, f. 14, 1799, (teste Bate and Westwood.) Limnoria terebrans Leach, Trans. Linn. Soc., London, vol. xi, p. 3î, 1-15. Gonld, Invertelmata of Massachnsetts, p. 3 es, 1841.
Great Egg Harbor, New Jersey, to the Bay of Fmudy and Emrope.
Nerocila munda Harger, sp. nov. (p. 459.)
Elongated, oval, smooth, and polished. Antemmeand antemula nearly equal in length, about as long as the heat. Head flattened, about onethird broaler than long, slightly narrowing anteriorly, produced and broadly romited in front, subernally trilobed behind, the midde lobe largest. Eyes back, consisting of an irregulary rombed patch of rather indistanct ocelli visible both above and below. First thoracic segment longer than the others, exeavated in front for the three lobes of the head; epimeral sutures of this segment indistinet, but the posterior lateral angles of the segment are somewhat produced and broadly rounded. The next three segments have this angle produced so as to hecome a small tooth in the fom thomeie segment; in the last three segments it is much prodnced, becoming a long icute tooth in the serenth. The epimera of the second segment are romaled behind ; the remaining epimera are slighty angular behind, becoming more acute posteriorly ; those of the second, thind, and fourth segments extend backward about as far as the segment to which they belong, but in the last three segments the produced angles of the segments surpass the epimera, so that the angle of the sixth segment nearly attains the end of the seventh epimeron.

The abdomen is composed of six segments, the first fire short and about equal in lengtlu; the sixth equal in length to the other five, truncate in front and romnded behind. The spines beneath the abdomen, or "abdominal epimera," are acute, the second a little more slender than the first, and extending not quite to the posterior angle of the fourth abdominal segment. The interual plate of the caudal stylets is oval and obliquely truncate, shorter than the external, which is narrow, orate, acute behind, extending about half its length beyond the tip of the abdomen and longer than the preceding segment of the stylet. Claws of the anterior feet strongly hooked, those of the posterior feet feebly so.

Color, in alcohol. brown, with two narrow dorsal baths of lighter color.

Length, $15^{\text {mm }}$; breadth, $\mathbf{i}^{\text {mm }}$.
This speeies is allied to I. bicittate, but differs from that species as figured by Milne Edwards, (Atlas du Riegue auimal de Covier, Crust., Plate 66, fig. 5,) in the shortness of three posterior epimera, the regularly rounded terminal segment of the abdomen, and the shape of the caudal stylets.

A single specimen was obtained on the dorsal fin of Ceratucanthes anrentiacus.

Conilera concharui Harger. (p. 45\%) Ega concharm Stimpson, Marine Invert. Grand Manan, p. 42, 1:53.
Vineyard Sound ; Charleston, South Carolina.
Livoneca ovalis Harger. Plate VI, fig. 29. (p. 457.) Cymothot ocalis Say loc. cit., p. 394, 1sie.
These animals are usually distorted, and not, as represented in the figure, symmetrical on the two sides.

The specimen figured was taken from a blue-fish near the gill.
Anthura brunnea Harger, sp. nov. (p. 420.)
Nearly miform in size thonghout, but slightly narrower anteriorly. Antemnise and antenne nearly equal in leugth, scarcely longer than the head. Front projecting between aud each side of the bases of the antennule into prominent angles. Eyes small aud situated in the sides of the lateral prominences. Thoracic segments smooth and shining above; the third with a slight semicircular depression on the middle of the anterior margin. This depression is still more strongly marked on the three following segments. First segment slightly longer and narrower than the others; second to fifth about eqnal; sixth and seventh considerably shorter; the serenth abont three-fourths the length of the sixth; all the segments carinated below. Dorsal surface of the basal portion of the abdomen similar to the posterior segment of the thoras, showing no indication of segments. Terminal portion tlat, smooth, and narrowly ovate at tip. Appendages of the pennltimate segment lamelliform, similar in form to the terminal plate but not quite equaling it. First pair of feet short and thickened. All the feet slightly inairs.

In life whitish mottled with dull, purplish brown above. Eyes black,

Great Egg Harbor, New Jerser, and Vineyand Somal.
ANTHURA bRACHAATA Stimpsom. (p. 万ll.)
Marine Invertebrata of Grand Manan, p, 4:3, $1-2.3$.
This species is greatly constricted at the articulations of the secomel thoracie segment, and by that chameter is easily distinguished from 1. brummea.

Bay of Fundy to Vineyard Somad.
TANAS Filum stimpson. (p, 381.)
Marime Invertebata of (iramil Maman, p. Fis, leñ.
Bay of Fumly to V'ineyard Somod.
(bepon matortus Leidy. (p. 5.5\%.)
Jour. Acad. Nat. Sci. Phila, vol. iii. p. 149, Pl. 11, figs. 26-3:2, 10.).\%.
Bramehial cavity of Gelasimus pugilator, Athamtie City, New Jersey.

> ENTOMOSTRACA.

The Ostracoda and the minute Copeopoda of our coast have not get been sufficiently studied by any one for us to attempt to enmmerate even the more common species.

COPEOPODA.

Smplimina, species. Plate Vh, fig. 33. (p. 439.)
A beautiful species of this remarkable genus was taken off Gay Head, Martha's Vineyard, September 2 and S.

PHYLLOPODA.
Artenia gracilis Verrill.
Amer. Jonr. Sci., 2l series, vol, xlviii, p. 248, 1869 ; Troceedings Aner. Assoc. Adr. Sci., vol. xviii, p. 235, figs. 1 aud $2,1=70$.
In tubs of concentrated sea-water at New Haven, Connecticut; Charlestown, Massachusetts ; and in salt-rats at Falmouth, Massachusetts.

Silhonostoma.
Ergasilés labraces Kroyer. (p. 459.)
Nat. Tidsskrift, 1863-64, p. 303, 1'l. 11, fig. 2, (teste Zoological Record for 186\%.)
According to Kroyer, found upon the striped bass (Roccus lincatus) from Baltimore, and liable, therefore, to ocem on the coast of New England.

Argultes Citostomi Dana and Herrick. (1. 459.)
Amer. Jour. Sci., Ist series, vol. xxx, p. : 8: $18: 36$, and vol. xxxi, p. 297, plate, 183%.
Parasitic on the "sucker" (Catostomus) in Mill River, near New Haren, Connecticut.

Argulus laticauda Smith, sp. nor. (p. 452.)
Carapax orbicular, longer than broad; antero-lateral margin with a deep sinus from which a deep suleus extends to the center of the carapax; sinns of the posterior margin about twice as deep as broad, extending a little less than a thim of the length of the carapax. Eyes large. Body scarcely projecting beyond the posterior margin of the carapax. Tail orbicular, slightly longer than broad, its posterior sinus narow, extending scarcely a fonth the length. Antennula and antenne much as in A. Catostomi, to which the species bears considerable resemblance. The squamiform appendage upon the base of the prehensile legs expands into a broad posterior margin, which is divided into three broad, closely approximated lobes, of whieh the extremities are broad, truncated, and slightly and irregrlarly excavated; the terminal portion of the leg is much as in A. Catostomi, the nltimate segment longer than the penultimate and armed at the tip with two claws. Natatory legs short, the anterior ones not projecting beyond the carapax.

In alcoholic specimens most of the carapax is oparue and black with a thick deposit of pigment.

Length of entire animal, in the largest specimen, $5^{m m}$; length of carapax, 3.7 ; breadth of carapax, 3.2 ; length oí tail, 1.3 ; breadth of tail, 1.1.

Found among alge in Vineyard Sound.
A small specimen taken at surface early in September had the opaque portions of the carapax dark brown in life, and in alcohol it retains about the same color.
Argulus latus Smith, sp. nov. (p. 45a.)
Carapax large, orbicular, broaler than long; the antero-lateral borter with a broad shallow sims; the sims of the posterior margin not deeper than broad, its depth scarcely more than a fifth of the length of the carapax. Body projecting considerably beyoud the posterior margin of the carapax. Tail a third as long as the carapax, about two-thirds as broad as long, the lateral margius slightly curved and nearly marallel, the simus very broad and extending more than a thitd of the whole length. Disks of the sucking legs about a fouth as wide as the carapax. Squaniform appendage upou the base of the prehensile legs with a pappilose area upoi the expanded distal portion, the posterior margin withont teeth or lobes, but the outer margin of the expanded portion armed with numerons very small teeth; ultimate segment longer than the pennltimate, and apparently withont any hooks at the tip. Natatory legs all long, even the anterior projecting beyond the sides of the carapax.

Color of alcoholic specimens yellowish white.
Length, $3.0^{\text {min }}$; length of carapax, 2.2 ; breadth of carapax, 2.5 ; length of tail, 0.7 ; breadth of tail, 0.45 .

Taken at the surface, in Vineyard Sound, July 1.

Argulus megalob's Smith, sp. now. (p. 45\%.)
Carapax shbelliptical, longer than broad; the antero-lateral margin with a deep sims; the posterion lobes of the canapax, eatch side of the shallow and narow sims, broady rounded. Dyes very large, their diameter a tenth as great as the breadth of the carapax. Body projecting much berome the posterior margin of the carapax. Tail someWhat orate, abont two-thirds as broad as long, the simus omly a small notch, extembing not more than a tenth of the length. Natatory legs pery long, all projecting beyond the carapax. Squaniform appendages upon the hases of the prehensile legs, with a pappitose area upon the expanded portion, and the posteriot margin amed with thee rather slender teeth, separated her broal spaces; the terminal segment of the leg armed with two small hooks.

Color of alcoholie specimens, yellowish white.
Length, $\because 2.2$ m ; length of campax, 1.3 ; beadth of carapax, 1.0 ; length of tail, $0 . \overline{7}$; breadth of tail, $0.4 \overline{7}$.

Vineyard Somm, taken at the surface, July 8.
Aratlots Acosti (ionld. (p. 459.)
Invertelrata of Massachusetts, $1.340,1 \approx 11$.
Parasitic upon the alewife in Massallonsetts Bay, aceording to Gouhl. Cabicies ctotus Mialler. (10.459.)
 Pl. 6, lig. : 1-37. Caligus Mïlleri Leach, Encyel. Brit., supl., vol. i, p. fes,
 Pl. :3, Higs. 4, 5. C'aligns Americemas l'ickering and Dana, Amer. Jour. Sci,

Abmalant upon the cod-fish of one coast and of Enope. It is probably the Colignes piscinus of Gonh and ether American writers.

Calites Rapax Elwards. (p. 45\%.)
Hist. nat. Iles Crust., tome iii, p. 45:3, Pla 32, lig. 9-12, 1840; Bairil, op. cit., p. 270, pl. :3:, figs. 2, :3; Stecnstrup and Liitken, Bidrag til Kıudskab on det athme Hars Suyltekrebse og Lernirer, p. 35!, II. 2, fig. 4, 1~61.
Vineyard Sound, on the sting ray, (Trygon centroura,) and small specimens, both male and femake, taken at the surface at Wood's Hole, September 3 , in the evening. These specimens from the surface, according to Professor Verrill's notes, were light flesh color, thickly speckled with minute brown spots, the eyes bright red.

Leprophthemes, species. (p. 459.)
A species with a long tail, and somewhat like the L. graeilis, (V:an Benaten sp., was fomm upon the sting ray (Trygom centroura) taken in Vineyard sount.

Lemeorhthemeds, species. (p. 45!.)
A species with a very short tail, and approaching Heller's genms Anuretes. South shore of Long Islamd, npon a flomuler, (Chenopsetta ocellaris.)

The Leprophtheirts salmonis Froyer, is found upon the salmon of the northern coast of New England.

Echtirogaleus coleoptratus Stecmstrup and Liitken. (p. 459.)
Op. cit., :80. Dinematura coleoptrata Gnérin, Ienographie du Riegne animal, Crnst. Pl. 35, fig. 6. Dinemonra alta Baird, British Entomostraca, p. 285, Pl. 33, tigs. $6,7$.
Vineyard Sound, September 19, from the back fin of the mackerelshark, (Lamma pmetata.) It has been found upon the English coast and off the Azores.

Echtimogaleus menttoulatue Smich, sp. nor. (p. 459.)
Carapax broader than long, with a very slight median emargination in the ontline of the front. Posterior portion of the body scarcely longer and not quite as wide as the carapax. Dorsal plates, or elytra, covering much more than half the genital segment, their immer and posterior margins armed with a regular series of small teeth. The posterior lobes of the genital segment somewhat triangular and each terminated by a stout spine. Dorsal plate of the tail elongated, obtusels rounded at the extremity, and exposed from abore by the very broad sinms in the genital segment. The tail itself broad, somewhat rectangular, but uarrowed distally and not projecting behind the dorsal plate; the terminal lamellae nearly as long as the tail, narrow, linear, nearly three times as long as broad, and armed at the tip with several setie.

Length, 9^{mm}; breadth of carapax, 5.1 ; length of elytra along the inner margin, 冗..5.

Vineyard Sound, on Atwood's shark, (Cercherias Atwoodi.)
? Pandalius Cranchif Leach. (1.459.)
1)ict. des Sci. nat., tome xir, f. 535, 1819, (teste Elwards et al.;) Edwards, Rigne animal de Cuvier, $3^{\text {me éd., Crust., Pl. 73, fig. } 2 \text {; Steenstrup and Liitken, opl. }}$ cit.. Pl. 11, fig. 22.
A number of specimens of a Pandarus, taken from a dusky shark (Enlamia olscura) on the sonth side of Long Island in 1870, differ only very slightly from the figures and descriptions of P. Crenchii quoted above.
Pandarus, species. Plate VII, fig. 31. (p. 457.)
Vineyard Somnd, on Atwood's shark, (Carchurias Atwoodi.) It is, perhaps, only a variety of the last species, but differs considerably from it, wanting almost wholly the series of spines upon the posterior margin of the carapax, having the caudal appendages shorter and obtuse, besides some slight differences in the natatory legs.
Nogagus Latreillit Leach. Plate VII, fig. 32. (p. 457.)
Diet. des. Sei. nat., tome xiv, p. 536, 1819, (teste Edwards et al.;) Regne animal de Cuvier, Crust., Pl. 79, fig. 3; Hist. nat. des Crust., tome iii, p. 459 ; Steenstrup and Liitken, op. cit., p. 384, l'l. 9, fig. 18.
Tineyard Sound, in company with the last species, on Atwood's shark. All the species of Nogagus are males of the allied genera, Pandarus,

Eehthrogaleus, se., and are only provisionally retained in a separate gronp, until it can be retermined to which of these genera the different species really belong. This species is probably a P'antares, and very likely the male of the last species.

Our specimens differ slightly fiom the figures given by Steenstrup and Liitken, the dentiform prominences on the sides of the genital segment in our specimens being much smaller than represented in their figures, the segments of the tail somewhat shorter and broaler, and the terminal lamelle also shorter and broader, while in other respeets they agree well. Steenstrup and Liitken's specimens were taken from sharks caught in latitule 31° north, longitule 76° west, (in the Gulf Stream, off the South Carolina coast, and in latitude 40^{2} sonfli, longitnde 810 west, while Leachis came from latitude 1° sonth, longitude 4° east.

Nogagus tranax Steenstrup and Liitken. (p. 45\%.)

Vineyard Souml, with the last species, upon Atwool's shatk. It has nearly as extendel a range as the last species.

It is rery different from the last species, having the branches of the posterior pair of natatory legs each composed of a single segment, and the tail also composed of a single segment, which is broader than long, and has the short, trumeate candal lamelle attached to its oblipuely trmeaterl posterior angles. Length, 4.5^{mmm}.

This species probable belongs to a different genns from the last, and is periaps the male of Echthrogaleus denticulatus, with which it was associated. Both species of Nogagus, the Pendurus and Echthogateus denticulatus, were howerer, all found on thr sume specimen of the shark, so that the association of males aml females in one or two instances is not rery goold proof of their identits.

PavDARES SNUATUS Say: (p.-159.)
Loc. cit., p. 436, $1-1=$.
This species is apparently, as far as can be judged from Say゚s deseription, allied to P. bicolor Leach, a Enropean species, which is probably not congencric with the species which te have previonsly mentioned.
Cerbods Latreillit Leach. (p. 4.99.)
Eneyl. Brit., Suppl., vol. i, p. 40.5, Pl. en, $1=1$. (teato Edwards et al. :) Edwards, Ilist. mat. Iles Crust., tome iii, p. 4i,: Baird, op, cit., p. 273, Pl. 34, figs. 1, 2. Accorting to (fould, (op. cit., 1, 341 , this species has been fomel upon the sun-fish (Orthergoriseus molu) taken on the coast of Massachusetts.
Artiosoma crassum Stecnstrup ami Liitken. (1). 460.)
Op. cit., p. 367, Pl. 12, fig. 24, 1-61. Culigne crassus Abildgaard, (teste Stecnstrup and Lïtken, Naturh. Selsk. Skr., Bind iii, p. 49, pl. 5, [1794 ?] (teste Krocer.) Authosoma Smithii Leach. Eucyel. Brit., Suppl., vol. i,]. 406, PI. 20, 1-16, (teste Edwards et al. :) Kinyer, Nat. Tilsskrift. vol. i, p. 295, Pl. 2, fig. 2, $1=36$; Edwards, Hist. nat. den C'rust., tome iii, 493, Pl. 39, fig. - ; Rìgne animal de Cuvier, Crust., Pl. 79, fig. .3: Baird, op. cit., p. 299, P1. 33, fig. 9.
According to (iould, (op, cit.. p. 341,) Anthosome Smithii has been 20 V
found upon the mackerel-shark (Lamma punctata) taken on the coast of Massachusetts.

Lernea branchialis Limé. (p. 460.)

Systema Natura ; Edwards, Hist. nat. des Crust., tome iii, p. 5os ; Steenstrup. and Liitken, op. cit., p. 403, Pl. 13, fig. 28.
Fonnd attached to the gills of the cod in the Bay of Fuudy, and, undoubtedly, extents as far south as that fish. It is common in Northern Europe.

Pentlla ilumosa DeFay: (1). 460.)
Op. cit., p. 60, 1844.
Found, according to DeKay, upou Diodon pilosus, and a species of Rhombus.

Anciorella uncinata Nordmami. (p. 460.)
Mikrographische Beitrage, 11eft ii, p. 10:, 11. 8, figs. \$-12. Pl. 10, figs. 1-5, 1832 ; Baird, op. cit., p. 337, Pl. 35, tig. !) Lermea uncinata Miiller, Zoologia Danica, vol. i, Pl. 3:3, fig. P, 18e8, (teste Nortmann el al.;) Vau Benaden, Poissons des côtes de Belgique, Mémoires Acart. Foy:ale Belgique, tome xxxiii, Pl. : ㄹ, fig. 7 , 1871.

Found upon cod-fish taken at New London, Comecticut. It is a common Ettropean species.

Lerneonema radiata Stp, and Ltk. Plate VII, fig. 30. (p. 458.)
Op, cit., p. 400, 1-21. Lermeacera radiata Leveur, Jonrnal Acad. Nat. Sci., Philadelphia, vol. iii, p. ?-2, Pl. 11, tig. 1, 1~24.
At Great Egg Harbor, New Jersey, and in Vineyard Sound and Buzzard's Bay, very commou upon the menhaden, (Brevoortier Menkuden.)
Lerneonema ?, species. (p. 460 .)
A species belonging to this, or a closely-allied genus, was found upou a species of Corangus taken in Vinevard Sonnd.

According to Gonld, (op. cit., p. B+1,) Penella filosa Cuvier, (Ginérin, op. cit., Zoophytes, Pl. 9. fig. 3; Elwiurls, II ist. nat. des Crust., tome iii, p. 525 , has been found upon (ithugoriscus mola, and might, therefore, oceasionally occur south of Cape Corl. The same author also mentions (p. 341) Chondractuthus cornutas. Cuvier, (Nordmam, op. cit., p. 111, Pl. !, figs. 5-10; Edwards, Hist. mat. des Crust., tome iii, p. 500, Pl. 40, figs. 18-2ン,) and Prenchiella Thymi Cuvier, (Edwards, op. cit., tome iii, p. 512 ; Steenstrul and Litken, up. cit., 1. 420, P1. 15, fig. 36,) as occurring upon the eoast of Massachmsetts.

(IIRRIPEMA.

Balanus amphitrite Dawin. (1. 3S1.)
Monograph of the Cirripedia, pp. 240 , cil4, Pl. 5, fig. : $2,1854$.
Found upon the bottoms of ships, but probably does not live long after arriving upon our coast. It is foumd in all the tropical and warmer temperate seas.

Balanus tintinnabulum Liuué, (Darwio, op. cit., pp. 194, 611, Pl. 1, ٌ2,
fig. 1.) oceurs with the last species, but has not been noticed living. It lias abont the same range as the D. ctmphitrite.

Balants mburneus Gould. (p. 381.)
Op. cit., p. 15, 1'l. 1, fig. 6, 1841, Darwin, op. cit., pl. 24e, 614, Pl. 5, fig. 4.
From Massachmsetts bay to Florida and the West Indies. It sometimes occurs in brackish or even fiesh water. Professor J. Wyman found it living about $\overline{J 0}$ miles up, the St. Johu's River, Florida, where the water was fresh enongh to drink, and the specimens lived well when transferred to a ressel of perfectly fresh water.

Balanes niprovisus Darwin.
Op. cit., plp. © $2.50,614$, Pl. 6, fig. 1.
Darwing gives this species as ocruring in England, Nova Scotia, United States. West Indies, and Sonth America, so that it mulonbtelly occurs upon the coast of New England.

Balanus chenatus bruguiere. (p.381.)
Encyelop. Method., 179-, (teste Darwin;) Darwin, op, cit., plo. ©in, G15, Pl. G, fig. 6. Falanus riegows (imald, olp. cit., p. 16, Pl. 1, fig. 10.
Dredged abundantly in Vineyard Sound. It ranges from the arctic regions of the Atlantic to the Cape of Good Hope and the West Indies.

Balanuts balanoiden Stimpson. (p. 30.5.)
Marine Invertebrata of Grand Manan, 1. 39, 1853; Darwin, ou. cit., pp. 267, 615 1'l. 7, tig. 2. Lepas balanoides Linné, Systema Nature, 17tī, (teste Darwin.) Balanus ornlaris and elongatus Gould, op. cit., pp. 17, 1e, Pl. 1, figs. 7, 8.
Extremely abundant between tides. It iuhabits the whole North Atlantic.

Coronula diadema De Blainville. (p. 460.)
Dict. des Sci. nat., 122 , (teste, Darwin;) Could, op. cit., l. 1:3: Darwin, op. cit., Pl. 117. 6:3, Pl. 15, fig. 3, Pl. 1i, fiǧ. 1, 2, 7. Lepas diadema Linmé, Systema Naturar, 17 lif, (teste Darwin.)
Attached to whales taken on the coast. both north amd south of Cape Cod. It is fomd thronghont the whole North Atlantic.

Lepas fascicularis lillis and Solander. Plate VII, fig. 34. (p. 38\%.)
Zonphytes, 176, (teste Darwin ;) Darwin, oll. cit., p. 92, Pl. 1, fig. 6.
Found in vast numbers in Vineyard Sound, in June and July, and frequently taken in the Bay of Fundy in August.

Lepas rectinata Spengler. (p. 382.$)$
Darwin, op.cit., p. -5. Pl. 1, fig. 3. Inatifa dentata Gould, op. cit., p. 21, Pl. 1, fig. 11.

Attached to ships bottoms, but probably does not live long after arriving on our coast. It lises thronghont the warmer parts of the Atlantic.

Lepas anatifera Limé. (p. 38°..)
Systema Naturar, [ifit, (teste Darwin ;) Darwin, op. cit., p. 73, Pl. 1, fig. 1.
Occurs in the same way as the last species. It is common to the Atlantic, Pacific, and Indian Oceans, and the Mediterrancan.

Lepas anserffera Limué. (p. 38.)
Systema Nature, 1767, (teste Darwin;) Darwin, op. cit., p. E1, Pl. 1, fig. 4. Anatifa striata Gould, op. cit., 1. 20.
This species probably occurs in the same way as the last. It has the same range.

Conchoderma Aurita Oifers. (p. 392.)
Darwin, op. cit., p. 141, Pl. 3, fig. 4. Lepas aurita Linmé, Sjstema Naturie, 176\%, (teste Darwin.) Olion Curieri Gould, op. cil., p. ©3:3.
On ships' bottoms, \&e. It ranges through all the seas.
Conchoderma tirgata Olfers. (p. 392.)
Darwin, op. cit., p. 146, Pl. 3, fig. .. Lepas rivgata Spengler, 1701, (teste D.rwin.) Cineras rittata Gould, op. cit., p. פ?.
Occurs in the same way, and has the same range as the last species.

xiphostra.

Limbles Polimientes Latreille. (b. 310.)
IIist, des Crust., (teste Edwards.) Hist. nat. des Crust., tome iii, p. 549; Say, loc. cit., 1. 433: (Fomll, op. cit., p. 3:39; Packard, Memoirs Boston Soc. Nat. Hist., Fol. ii, p. 155, Pl. 3-5. 1872, (ou the development:) A. Milne Edwards, Amales des Sci. nat., 5e sér., tome xvii, mos. 1 et 2, Dee., $1-7.2$, Pl. 5-16, (on the anatomy.) Monoculus Polyphemus Liunc, Systema Naturse; Polyphemus occudentelis Lamark, Hist. des Anim. sans rert.; De Kaj, op. cit., 1.55, Pl. 11, fig...0. Limulus anstralis Say, loc. (it., p. 436. Xiphosura Polyphemus White, List of Crust. in British Mus.. 1. 121. 124.
Casco Bar, on the coast of Maine, to Florida.
ANNELIDA.
POLYCILETA.
Aphrodita aculeata Linn. (1, 507.)
Systema Naturar, ed. xii, vol. i, p. 1084, 1767; Milmgren, Öfvers. af Kong. Vet.Akad. Förhandlingar, 1-10), p. 52; Johnston, Catalogne of British Nou-Parasitical Worms, p. 101, Pl. 9, 1-65; Quatrefages, IHistoire naturelle des Annelés, vol. i, p. 19I, $1=65$.

Oft Gay Head in 1.5 to 19 fathoms, mad ; Bas of Fundy, 10 to 106 fathoms, mud; St. George's Bank, 50 fathoms; northward to Labrador. Northern coasts of Europe to Great Dritain aud Mediterranean.

Lepmonotus souanates Leach. Plate I , figs. 40,41 (b. 300.)
Aphrodita squamata Linn., Syst. N:it., ed. x, p. itió; ed. xii, p. 1u-1. Polynö̈c
 dita punctata Miill., Zoöl. Dan. Prot., p. 21\% (t. Malngren). Lequidonotus stuamatus. Malungren, op. cit., p. 56 ; Johmston, op. cit., 1. 109, I'l. T, tig. I. Lepidonote armadillo Ledy, Mirine Invert. of Rhode Island and New Jersey,

Great Egg Harbor, New Jersey ; New Haven; Wateh Hill, Rhorle Island; Vineyard Sound, \&e. Very common north of Cape Cod to Labrador and Iceland; northern coasts of Europe; Cireat Britain; France.

In the liay of Fundy it oceurs abmulantly from above low-water mark to the depth of S0 fathoms.

Body oblong, somewhat narowed toward each end, entirely covered by twelve pairs of large scales, or "elytra," which, with the exception of the first and last pairs, are broad oval, eveuly rounded posteriorly, the outer lateral edge with a tine finge; the posterior margin smooth. Their surface is iridescent and nearly smooth throughout, and destitute of tubereles, but has minute rounded granules, and appears punctate under a lens. The scales of the last pair are elongated, with the inner edge curred inward, but without a distinct emargination, such as is seen in the preceding species. Setie mumerons, slender but stiff, amber-yellow. Seales usually reddish or greenish brown, tinely specked with dark brown. Length up to $30^{\text {mm }}$; breadth, $S^{\text {mum }}$.

This species is easily distinguished from the last by its nearly smooth scales, the form of the last pair, and the lighter-colored and more sleuder setic.

Savin Rock, near New Haveu; Vineyard Sound.

Lepidonotus Ǎgustus Verrill, sp. nov. (p. 494.)

Body elongated, narrow, of nearly uniform wilth thronghout, convex above. Twelve pairs of elytra, which are only sliglitly imbricated and hardly corer the back completely, there being often a narrow naked dorsal space, but when the elytra are closely appressed the back is nearly corered. The elytra are rather small, regularly oval, except those of the terminal pairs; outer edge irregularly fringed; surface covered with small, slightly prominent, romdish gramules. Posterior elytra with a deep emargination on the inner margin. Head larger and relatively broader than in L. squumatus, courex, with well-rounded sides, eses larger and farther apart. Auteunte rather short. Seter shorter than in either of the preceding species, of nearly miform length, rather rigid, light amber-colored, forming short dense fascicles. Color variable; in one specimen the scales were sellowish gray and brownish, varied with dark specks, and with a central subcircular or somewhat crescent-shaped white spot, surrounded by a circle of dark brown specks;
which form an irregular dark spot on the imer border of the pale central spot.

Reefs off Watch Mill, Rhode Island, in 4 or 5 fathoms, among rocks and algæ.

Harmothöe mibricata Malmgren. (p. 321.)
Nordiska Hafs-Annulater, op. cit., p. 67, 1965, P1. 9, fig. \&, A-E. Aphrodita imbricata Linn., Syst. Nat., cll. xii, p. 1084, 1767. Aphrodita cirrata Miiller, ProdrZoïl. Dan., No. 2644 (t. Malmgren); Fabricins, Fanna Grenlandica, p. 308, Pl. 1, fig. 70. Lepidonote cirrata Crstel, Grön. Ann. Dorsib., 1843, p. 14, Pl. 1, figs. $1,5,6,11,14,15$; Stimpson, Invertebrata of Grand Manan, p. 36, 1553. Poignäe cirrata Sars, Arch. fïr. Naturg., vol. xi, 1845, p. 11, Pl. 1, figs. 12-21 (embryology).
New Hareu; Watch Mill, Rhode Island; Vineyard Sound; Massachusetts Bay; Bay of Fundy and northward to Greenland; Iceland; and Spitzbergen. Northeru coasts of Europe; Scotland. In the Bay of Fundy it is common from abore low-water mark to 60 fathoms; in Vineyard Sound, from low-water mark to 1.5 fathoms; 25 fathoms off Buzzard's Bar.

Sthenelais picta Verrill, sp, nov. (p. 3 48 .)
(?) Sigation Mathilda Leidy, Marine Invert. Fanna of the Coasts of Rhode Island and New Jersey, p. 16, Pl. 11, f. 53, from Journal Philadelphia Acad., series ii, vol. iii, 1855 (non Aud. and Edw.) (?) Sthcnelais Leidyi Quatr., op. cit., vol. i, p. 278 (no description).

Body depressed, mnch elongated, nearly uniform in breadth throughout; back courex; ventral surface flat. The whole dorsal surface is closely corered by the imbricated scales, of which there are more than 150 pairs. These, with the exception of the anterior and posterior pairs, are broadly lmate, with a deep emargination in the center of the anterior edge; the posterior and lateral margins are broadly rounded; the outer lateral edge is laciniately fringed; the posterior edge is smooth; the whole surface of the anterior scales is corered with minute, slightly elerated granules ; farther back, the exposed portion of the surface of the scales is smooth, and the microscopic granules are restricted to the anterior and inner portions. The scales of the anterior pair are oral, and have their entire outer and anterior margins minntely but irregularly denticulate.

The head is small, romided, contracted behind the posterior eyes and in front of the anterior ones; the eyes are near together, in a quadrangle; those in the anterior pair are a little farther apart, and lateral. The heat is prolonged anteriorly into a narrow elliptical or oval portion, which forms the base of the median antennre close to and below each of the anterior eyes a prominent, membranous, ciliated process arises. The feet of the first pair, which are directed forward, are elongated, and bear a pair of slender, elongated, dorsal cirri, which are nearly as long as the anteme; a much shorter, slender cirrus from the lower lobe, with a small, thin, membraneous process below; and a large fascicle of long,
slemier setar ats long as the median antemie. The palpi are slemder, longer than the antennar ; lateral feet prominent, projecting beyond the scales: setar light yellow.
Color rariahle, generally light gras, with a dark bown median dorsal band, each scale often bordered on the posterior and imner edges with brown, which is connected with a blackish angular spot near the anterior margin, the rest of the scale being transparent and whitish; head dark brown, with a red central spot and a round whitish spot on each side. Length up to $100^{m m}$: lorealth usualls about $4^{\text {min. }}$.

Tineyard Somd, low-water mark to it fathoms; off Martha's Vineravd, 21 fathoms, sand; off New Haven, 4 to 5 fathoms, shelly. Great Egg Harbor (Leidy).
This speries ditters considerably in the form of the head, antenna, \&e., from the figure giren by Leidy. His description is insufficient to determine whether he observed the same species.

Nepititis figens Stimpson. Plate Nil, figs. 59, 60. (p.431.)
Marine Invertebrata of Gramd Manan, p. 33, in Smithsonian Contribntions, 1353.
Long Island Somd, oft New Haven, 3 to 8 fathoms, mud, common; ofi Block Island, in 29 fathoms; Bay of Fundy, 10 to 60 fathoms.
This species is readily distinguished by the form of the head and position of the small antenna; br the large median dorsal papilla on the proboscis, and the smaller ventral one; by the very prominent and widely separated rami of the posterior feet; and the dark color of the setr. It grows to the length of 130^{mm} or more.

Nephthis picta Ehlers. Plate Nif, fig. 5 万. (p. 348.)
Die Borstenwiirner, vol. i, p. 632, Pl. 23, figs. 9, 35, 1863.
Vineyard Sound, low-water mark to 8 fathoms, muddy and shelly. Nahant; Charleston (Ehlers).

Nephthes bucera Ehlers. Plate Nit, fig. as. (1. 416.)
Die Borsteuwiirmer. vol. i, p. G17, Pl. 23, fig. \&
Vineyard Somnd, 8 to 10 fathoms, shelly; Wrateh Hill, Rhode Island, 4 to .5 fathoms, among rocks and samd. Massachusetts Bay (Ehlers).

This species is remarkable both for the form of the head and the length of the sete, which often exceel the diameter of the body.

Nephtifrs cilemta Rathke.
beiträge zur F゙anna Norwegens, p. 1:0, 1-4:3: Malugren, op. cit.. p. 104, Pl. 12 , figs. 17, A-C, 1R 6 ; Quatrefages, op. cit., p. 499 (Nephtys): Ehlers,
 Danica, vol. iii, p. 17, Il. Sl, figs. 1-4 (t. Ehlers). N'phthys borealis (Ersted, Anumlat. Danicor, consp., $1,32,1=4: 3$ (t. Malmgren).

Ehlers gives Edgartown as a locality for this species. It is a northern form, found at Iceland, Greenland, Spitzbergen, and along the northern coasts of Europe and Great Britain. Stimpson records it from the

Bay of Fundy, in 40 fathoms, mud. It was dredged near St. George's Bank in S5, 110, and 150 fathoms, mud, by Dr. A. S. Packard, on the "Bache," 1872.

Eumidia Americana Verrill, sp. nor. (p. 494.)
Body long and slender. Head triangular, subcordate, broad and slightly emarginate posteriorly, the sides rapidly converging, the front end narrow and rounded, with four slender antenne, which are as long as the head; odd median antenna long and slender, tapering, as long as or longer than the head. Eyes moderately large, romnd, convex, near the posterior margin of the head. Tentacular cirri long and slender; crowded. Proboscis elongated, subclavate, enlarging to the end, which is surrounded by about fomteen triangular papille; the basal two-thirds corered with small, slender, prominent papillie, which are not crowded, but arranged in longitudinal rows; this part of the proboscis is, in the preserved specimens, longitudinally ridged and transrersely wrinkled; the terminal third is nearly smooth, but usually minutely granulons. The lateral lamellæ, or branchice, are ovate-lanceolate, leaf-like, with curred tips; posteriorly they are larger and more acnte. Length up to 50^{mm}; breadth, 1.5^{mm}.

Vineyard Sound, 8 to 12 fathoms, among compound ascidians.
Eumidia vivida Terrill, sp. nov.
Head relatively a little longer than in the preceding species, with the sides more conrex, and the front rounded; antenure long and slender. Eyes brownish, very large, abont twice as large as in the preceding species. Proboscis long, slender, clarate, nearly smooth, but with a few minute, distant papillæ; the terminal orifice surrounded by about eighteeu very small papilliform denticulations. Branchise of the anterior segments long and narrow lanceolate; of the middle segments ovate. Length up to 45^{mm}; breadth, 1.5^{mm}.

Vineyard Somul, 8 to 12 fathoms, among ascidians.
Euilidia papillosa Verrill, sp. nor.
Head short, rounded, convex, emarginate posteriorly, the sides convex; antemur not very slender; median odd one stont, tapering, acute, as long as the head. Eyes large; brown. Tentacular cirri rather stout, those of the tro posterior pairs more than twice as long as the others. Proboscis long, clavate, densely covered with short, rounded papille, and with a circle of minnte papillse at the orifice.

Length up to 40^{mm}; breadth, 2^{mmm}.
Vineyard Somd, 6 to 10 fathoms, among compound ascidians.
Eulalia pistacia Verrill, sp. nov.
Body moderately slender, depressed. Head convex, shorter than broad; in preserved specimens, sides well rounded, posterior margin slightly emarginate; median odd antenna small, slender, considerably
shorter than the head. Eyes large, brown. Tentacular cirri moderately long; the four posterior ones considerably longer than the others. Branchite narrow lanceolate anteriorly; ovate and leaf-like on the middle segments; longer and lanceolate posteriorly. I'roboscis long, more or less clavate, smooth, but often showing longitudinal striations, and sometimes with a few very minute scattered papillie toward the end; the orifice smromuled by a circle of mmerous minute papilla. Color bright yellowish green (epulote-green or pistachio-green), often with obscure darker markings posteriorly, and at the base of the appendages. Length 111 to $40^{\text {min }}$; breadth, $1.5^{m m}$.
 Haven, + to 5 fithoms, among hychoids.

Eulala (iraxulosa Terill, spror.

Body not rery slender, considerably stonter than in the preceding species, and less tapering anteriorly. Head short cordate, decidedly emarginate behind, broader than long; sides prominently romuded; front small, rounded. Antenæ short; odd one slender, originating between the eyes, more than half the length of the head. Ejes large, romud, conrex, dark brown. Proboscis long, clavate, thickly covered throughout with round, scarcely prominent, crowded, rather large granules, each of which has a dark central spot; orifice surrom ded by a circle of small papille. Tentacular cirri slender, acnte, the two posterior pairs long, reaching the eighth segment. Lateral appendages large and prominent for the genus. Branchie of upper ramus rather large, orate, leaf-like antgriorly; larger and obliquely orate, with acuminate tips, farther back; branchise of lower ramus similar in form and nearly as large. Color bright grass-green. Length $55^{m u}$, or more; breadth, \simeq^{mm}; length of proboscis, 6^{mm}.

Off New Haven, \ddagger to \bar{j} fathoms, among hyidroids.
Eulalia annulata Verrill, sp. nov.
Body moderately slender, convex, tapering to both ends. Heat longer than broad, somewhat oblong, trincate behind, the sides but little convex, narrowing bat little to the obtusely romaded frout. Proboscis corered with small prominent papille. Eyes two, large, dark brown or blackish, rather near together. Odd median antenna slender, more than half as long as the head, placed fir in adrance of the eyes; frontal antemie rather large, about the same in length, but much stouter than the median one, with slender tips. Tentacnlar cirri very unequal, the two upper pairs much longer than the others, not rery sleuder, reaching to the seventh or eighth segment in preserved specimens; the two lower pairs not more than one-third as long. Dorsal branchice narow and acute thronghout; the anterior ones are narrow lanceolate, with subacute tips; those farther back become still more elongated, narrow lanceolate, or almust linear lanceolate, with acuminate
tips, aud in length equal to half the diameter of the body ; posteriorly they become somemhat wider, with acute, curred tips. Caudal cirri small, narrow lanceolate, about as long as the posterior lateral lamelte, or branchis. Color of preserved specimens pale greenish or bluish gray, with narrow amulations of golden brown, and iridescent. Length 50mm, or more ; breadth abont $1: 25^{\text {mima }}$.
Vineyard Sound, 4 to 12 fathoms. among ascilians.
Eulalia gracilis Verrill, sp. not.
Body very long and slender, with the segments deeply incised ; posterior segments elongated. Head small, elongated, truncate behind; posterior angles not prominent, oblong, tapering but little tomard the front, which is obtusely rounded; sides not swollen. Eyes of moderate size, brown, situated close to the posterior margin of the head. The four frontal antemme are more than half as large as the head, rather stont, tapering, and the head is slightly constricted behind them; odd median one, small, slender, inconspicuons, about one-third the length of the head, placed considerably in advance of the eyes. Tentacular cirri rather stout, the two upper ones longest, rather more than twice as long as the head; the posterior pair, when extended backward, reaches the fifth setigerous segment in preserved specimens; the tro lower ones are considerably stouter and smaller, nearly equal, and are somerwat longer than the head in alcoholic specimens. Branchia of the anterior segments short, oval, obtuse at the tip; posteriorly larger, elongated oral, leaflike. Color light greenish brown or olive, with a row of dark brown spots along each side of the dorsal surface of the body.
Length up to $6 J^{\text {mun }}$; breadth abont 1^{mm}.
Vineyard Sound, 6 to 14 fathoms, among ascidians and hydroids.
This species is rery active in its motions. In general appearance it resembles certain species of Phyllodoce, for which it might easily be mistaken, owing to the small size and translucency of the odd median antemna, which is not easily observer, especially with living specimens. The position of the tentacular cirri is, however, sufficient to distinguish the genus from Phyllodoce and Eumidia. The form of the head is quite peculiar, but somewhat resembles that of Phyllodoce gracilis, and also the preceding species.

One specimen of the Eutatia gracilis was fomm in which fissiparity was apparently about to take place. In this, one of the segments was larger than the rest, and had developed a distinct pair of eyes. The specimen unfortunately died before the separation took place.

Pifllodoce gracilis Verrill, sp, hor. Pl. NI, fig. 56. (p. 494.)
(?) P'hyllodoce muculata A. Agasiziz, Aunals Lyceum New York, vol. viii, p. 333, fig. 53, 1-66 (non Miiller, nec (Ersted).
Body very long and slender. Head longer than broad, decidedly cordate behind, with the posterior angles well rounded; the sides swell-
ing ont opposite the eyes, then narowing to near the antennar, where there is a slight constriction, and expanding slightly at the end, which is obtusely romded. Eyes vory large, hown, wide apart, and sub-lateral, connected by a curval band of hown specks; antemar tather farge and long, about one-thirl as long as the head. Tentaculare cirri lage, the two posterior much the longest, reaching to about the eighth setigerons segment. Branchier of anterior segments broad oval or sub-eiteular, romuled at the end; posterior ones larger, broarl oval, narrowed to the end. I'roboseis with a large, swollen, basal portion, on which are twelve longitudinal rows of large, prominent, obtuse papilla, about seven in each row; and a terminal smooth portion, which is somewhat louger, and about as broad at the end as the basal portion, but considerably narrower at its commencement; the orifice is smrounded by a cirele of large, rounded papillar. Color greenish, with a median dorsal row of dark brown spots, and another less conspicuous row aloug each side of the back, at the base of the lateral appendages.

Length up to $\overline{S^{m m p}}$; breadth, 1 to 1.25^{mn}.
Watch Hill, Rhorie Island, in 4 or 5 fathoms, rocks bottom.
The figure (56) copied from one of those given by Mr. Agassiz does not agree perfectly with the specimens described, but probably represents the same species. The head, as figured, is more oblong and the eyes nearer together than in my specimeus; the tentacular cirri are less crowded. The anterior ones, in the preserved specimens at least, appear to arise from beneath the base of the head. Some of these differences may be due to the different states of extension and contraction; for the species in this family are all quite changeable in form during life, and usually contract very much in alcohol.

Piryllodoce (Atentla Terrill, sp. nov: (p. 494.)

Head somewhat longer than broad, slightly cortate posteriorly, with the posterior angles well rounded, and the sides full and convex; front broadly rounded, and with a slight emargination in the middle. Eyes large, dark brown, placed on the dorsal surface of the head; antenne rather long, slender. Tentacular eirri long and slender, the two posterior much longer than the others. Branchise of anterior segments broad ovate, with rounded tips; farther back larger and longer, orate, leaf-like, with acuminate tips. Proboseis with twelve rows of papilla on the basal portion. which are prominent, somewhat elougated, obtuse, seren or eight in the lateral rows, those in each row close together. Color of body and branchie pale green, with a median dorsal row of dark brown spots, one to each segment ; and two lateral rows, in which there is a spot at the base of each "foot;" head pale, or greenish white.
length up to $\pi 5^{\mathrm{mm}}$; breadth abont $1.5 \mathrm{Jm}^{\mathrm{mm}}$.
Watch Hill, Rhode Islaml, in 4 to 6 fathoms, among rocks and alga, and in tide-pools; Wood's Hole, at surface, evening, July 3. Very common in the Bay of Fundy, from low-water to 50 fathoms.

This species is closely allied to P. pulchelluc Malmgren, from Northern Europe, but differs somerwhat in the form of the head, which is shorter and rounder in the latter ; the bravchice also differ in form. It is a rery active species, and secretes a large quantity of mucus.

Eteone robusta Verrill, sp. nov. (1. 485 .)
Body large, stont, depressed, broadest in the middle, tapering gradually to each end. Ifead small, about as long as wide, convex, with a median depression; the sides rounded; front obtusely romided. The four frontal antemue are rery small, short, obtnse, less than half the diameter of the heat. Eses rery small, black. Tentacles rery small and short, tapering, their length about one-half the diameter of the head, the two pairs about equal. Branchie small, sessile, anteriorly very small, oval, obtuse; in the middle region rounded, sub-oral. Color dark green, with the auterior portion somewhat paler, and with light green transwerse bands between the segments; lateral appendages pale green.
Length, $12 \mathcal{J}^{\text {mim }} ;$ breadth in middle, $5^{\text {man }}$; length of head, 0.6^{mm}.
Watch Hill, Phode Island, under stones, between tides, April 12, 1873.
Eteone linicola Verrill, sp. not. (p. 349.)
Body very long and slemder, tapering gradually to both ends; depressed, and with deeply incised, elongated segments posteriorly; less depressed and with shorter and less distinct segments anteriorly. Head small, about as broad as long, the posterior angles well rounded, the sides with a slight constriction in adrance of the eyes, narrowing rapilly; front narrow, convex ; antenne slender, about half the length of the head. Eyes minute, incouspicuous. Tentacular cirri about equal to the length of the head. Lateral appendages small on the auterior segments, becoming much more prominent farther back; anterior branchie very small, orate, sessile; those farther back much larger, aud narrow orate. Color, when liviug, light green throughout.
Leugth about 80^{mm}; breadth, including appendages, 1.5^{mmm}.
Great Egg Harbor, New Jersey, in mud at low-water.
Eteone serosa Verrill, sp, nor.
Body long and slender, resembling the preceding in form, but somewhat less slender. Head shorter and broader, the posterior angles prominently romnded; two slight notches or emarginations on the posterior margin, the middle portion extending farther back than the lateral; sides rapidly tapering; front narrow. Antemne less than half the length of the head. Eses small, but quite distinct. Tentacular cirri searcely as long as the head. Lateral appendages a little prominent on the anterior segments, but much less so than farther back; setre numerons. The branchie are small, sessile, and inconspicuonsanteriorly; larger and ovate farther back.

Length up to $7 \mathrm{~J}^{\text {man }}$; breadth about $2^{2 n m}$.
Vineyard Sound, 6 to 12 fathoms, anong ascidians.

Eteone, species undetermined.
A small and stender species was dredged off (iay Head, in 19 fathoms, soft mul.

Another very peenlian species of Eteme was obtained at Groat Eag Harbor, New Jersey. In this the head is depressed and elongated, tapering, with short antemne. The anterior part of the body is round and with the lateral appendages very small, closely appressed, and mot at all prominent, giving to this part of the body a smooth appearance; on this part of the body the branchie are rery small, lumate, sessile, closely appressed; farther back they hecome much larger, and rounded or ovate, while the setigerous lobe becomes prominent, and the seta much longer and more numerous.

Podarike obsctia Yerrill, sp. nor. Pl. XIf, fig. 61. (p. 319.)
Body courex above, flat below, with the segments deeply ineised at the sides, moderately slender in full extension, but capable of great eontraction, tapering gradually to the caudal extremity, and less toward the head. Head small, broader than long, emarginate in front, sides forming rommded angles; posterior margin nearly straight. Autemme five, subequal, the outer pair articulated upon a short, thick basal segment; the odd median one is somewhat shorter, articulated upon a small basal segment, which arises in front of the anterior pair of eyes. Tentacular cirri long, slender, six on each side, two arising from each of the first three ammations, on each side; those on the midhle are longest, those on the first shortest. Eyes four, small, red; those on each side close together, but those of the anterior pair are farthest apart. Proboseis with a large, swollen basal portion, and a smaller eylindrical terminal portion, the surface nearly smooth. Lateral appendages, or "feet," elongated, biramons. The upper branch is short, conical, bearing at its extremity a long. slender dorsal cirrus, nearly as long as the hreadth of the body, or even exceeding it, and having a short basal joint; the setie of the uper ramus are very few and small. The lower branch is much larger and longer, thick at base, tapering somewhat to the obtuse end, from which a small, terminal, obtuse, papilliform process arises; the short, acute, rentral cirms arises from abont the terminal third. and is less than half as long as the dorsal cirms; the setie are mumerous and long, forming a broad, fan-shaped fascicle, in which the middle setar are considerably longer than the upper and lower ones, and in length about equal to the setigerons lobe ; these sete are all compound, the middle ones having a very long, slender, acute terminal joint, and the shorter ones bemeath having a much shorter terminal joint. Last segment small, rounded, bearing two long, slender anal cirri, much longer than the dorsal cirri. Color variahle, most commonly very dark brown or hlackish; sometimes dark brown with transverse bands of light fleshcolor between the segments, and two intermediate transrerse whitish limes on each segment.

Length up to 40^{mm} when extended; breadth, including setre, 3^{mm}.
Wool's Hole, among eel-grass and at the surface, very abundant, especialiy at night, in July and Angust; also under stones, between tides.

Autolytus cornutus A. Agassiz. Pl. X1If, figs. 65, 66. (p. 397.)
Jonrwal Boston Society of Natural History, vol. vii, p. 392, Plates 9-11, 1863.
Great Egg Harbor, New Jerses; New Haven; Wateh Hill; Vineyard Sound; Massachusetts Bay; Eastport, Maine. Low-water mark to 15 fathoms.

Autolytis, species undetermined. (1. 398.)
Off New Haren, 4 to 6 fathoms, shelly, among hỵdroids.
Autolytus, species undetermined.
Females, filled with eggs, of a large species of this genus were taken at the surface of Vineyard Sonnt, April 30, by Mr. V. N. Edwards. These were about 40^{mm} in length, as preserved in alcohol, and mather stont, tapering to each end. The head is small, short, rounded in front. The eyes are small, and the two pairs are near together. The odd median antenna is more than twice as long as the breadth of the head; the lateral ones are abont half as long'; the first six setigerous segments have short setre; the following ones have a fascicle of long, slender ones, equal to the breadth of the body.
Syllis, species undetermined. (p. 45:.)
A single specimen from Vineyard Sound. The body is abont $12^{m m}$ long; the antenne are not very long; the palpi short; the dorsal cirri are rather long, and, like the antemise, regulaly beaded; the rentral cirri are small, tapering; the setit are, numerous, rather short.
Gattiola, species undetermined. (p. 453.)
Young specimens were taken several times in Vineyard Sound, at the surface. Adult specimens of a fine species of this genus were dredged in the Bas of Fundy in 1872 , in 80 fatboms.
Nereis virens Sars. Pl. XI, figs. 4i-50. (p. 317.)
Beskrivelser ng Iakttagelser, ete., p. 5i, Pl. 10, fig. 27, a, b, c, 18035 (t. Malmgren). Nercis grandis Stimpson, Iuvertebrata of Gramd Manaa, p. 34, fig. 24, 1553. Nereis Yankiana Quatrefages, Hist. des Amnekís, i, p. 553. Pl. 17, fiss. 7, \& 1865; Alitta virens Malmgreu, op. cit., 1. 183; Amulata polycharta, 1. 56, Pl. 3, figs. 19, A-E, 1567.
New Haren, at low water; Watch Hill; Vineyard Sound; Massachusetts Bay ; Eastport, Maine; northwarl to Labrador. Northern coasts of Europe to Great Britain.
Nereis limbata Ehlers. Pl. NI, fig. 51 . (p. 318.)
Die Borstenwürmer, vol. i, p. 567, 1868.
Charleston, South Carolina, to Massachusetts Bay; half-tide mark to 4 to 6 fathoms in Long Island Sound.

Systeman natura, el. x. p. 6iat ; ed. xii, p, 10*6; Malmgren, Ammata polycharta
 Heteronercis grandifolia Mahmgren, Nordiska Hafs-Anmulater, I. 10R, I'l. 11, tigr. 15, 16,1 , 13', C ; Am. polycheta, 1. 60, 1'l. 5, tigs. 31. A-1); Meteroner is arciert

 54, (i1, I'l. 5, fig. : \because, fimale (1. Ehlers).

Oh New IMven : N:atch Mill; Vineyard Sonnd; northwarl to Labrador. Greenland ; leeland: Suitzhergen ; morthem eoasts of Europe to Great Britain. In the liay of Fumes from low water mark to 106 fithoms, common.

Nemeis fucsta Aud. and Edwards. (p. 494.)
Histoire nat. litt. de la France, vol, ii, p. 1-s (teste Mialmgrent) L Lyeoris fucata
 2, xit, 1 . 350 (t. Malmgren) ; Nereilepus fucuta Malmgren, Anmata polycharta,
 Howis glauconis Malmgren, Nordiska IFafs-Annulater, Öfvers af Kongl. Vet.

 figs. 41-44.
A specimen was dredged at Watch IVill, Rhode lsland, in 4 to 6 fathoms, among rocks and algie, which agrees well with Malmgren's description and tigure of Heteroncreis glancopis. Ehlers regards the latter as the heteronereis-form of \mathcal{N}. fucate.

Nemeis, species undetermined.
Head sub-conical; antennte small, slender; palpi small, shorter, and thicker; two upper pairs of tentacular cirri moderately elongated, subefual, lower ones very small. Posterior eges elongated and on the upper sitle of the head; anterior pair small, lateral. Feet terminated by fomsmall papille; dorsal and ventral cirri small, slender.

The only specimen observed is preserved in alcohol; it is a femate filled with eggs. Vineyard Sound, 6 to 8 fathoms.

Nectosereis Verrill, gemus nov:
Head prominent, depressed, oral, rounded in front, bearing two pairs of large eyes on the upper and lateral surfaces, and a pair of smabl antemue beneath; palpi small or rudimentary. Tentacular cirvi fom on each side, as in Nereis. Proboscis small, similar to that of Nereis, but more simple; furnished with a pair of terminal hooks; with two anterior clusters af denticles on the upper side, and with tive small clusters below, in a ring extenting nearly half-way around it. Anterior part of body finsiform, cousisting of about fourteen segments, on which the feet are divided into small, rounded lobes, with small ventral cirri; aud with long dorsal cirri, those on the first seren segments swollen and gibbous toward the end, with a small acute terminal portion. Posterior part of
the body composed of numerous short segments, on which the feet are furnished with lamelliform appendages.

This remarkable annelid bears some resemblance, in the structure of the body and "feet," to Heteronereis, and there is probably another form to which it bears the same relation that Heteronereis bears to Nereis; but the structure of the head is very unlike that of any known genus, and, indeed, would not allow it to be placed in the family of Nereide without modifying the famils-characters. There are are no large palpi, corresponding to those of Nereis, and nothing to represent them, unless two small lobes close to the mouth be considered rudimentary palpi.

Nectonereis megalops Verrill, sp. nor. Plate XII, figs. 62, 63. (p. 440.)

Body slender, consisting of two parts; the anterior portion, containing fourteen setigerous segments, is broadest in the middle, tapering both ways, and separated from the posterior portion by a distinct constriction; the posterior portion is much longer and more slender, tapering gradually to the end, and consists of very numerons short segments, which are furnished with complex lateral appendages, with thin lamella and componnd bladed setre. Head broad oral, somewhat convex, and very smooth abore; the lateral margins a little conrex; the frout obtusely romuded. Eres very large, conres; the anterior ones largest, lateral and partially dorsal, oral; in contact with the posterior ones, which are somewhat smaller and more dorsal. Two small decurved antemæ, with swollen bases, are on the rentral side of the head; two small, rounded processes in front of the month. Tentacular cirri slender, the upper pair much the longest; the rather short lower pair arising near the month; the two intermediate pairs arise behind and close to the anterior eres; all are slightly anmulated. The "feet" on the first seren segments hare a large dorsal cirrus, increasing in length from the first to the seventh, narrow at base, swollen and gibbous toward the end, with a slender. oblique, terminal portion; on the seven following segments the dorsal cirri are smaller, slender, tapering; the rentral cirri are small, with swollen bases on the first fire segments, slender and tapering on the rest; the intermediate lobes of the feet are small and rounded, but more elongated on the first fire segments. Setse of different forms, many of them with a slender, often cursed, acute terminal piece.

The lateral appendages of the posterior region have, ou the upper ramus, a long, slender dorsal cirrus, strongly crenulate-lobed on the lower side; a small, rounded lamelliform process above its base; and a long, lanceolate process arising just below it, and in length equaling the cirrus ; an orate setigerous lobe, bearing a broad fan-shaped fascicle of compound seta, extending about to the end of the dorsal cirrus; and a lower orate-lanceolate lamelliform process, with the base expanded and extending backward, the tip reaching to about the outer third of
the cirrus; a single strong hack spine supports the setigerons lobe. The lower ramus has a rounded setigerous lobe, and a large broadlyrounded lamellifom process, nearly as long as the longest one of the nper ramms and much broader; the setigerous lobe bears a hroad fanshaped fascicle of rompomad sete, similar to those of the upper mams, but a little shorter, and a slogle black basal spine; the ventral cirrus is slender, and there is a broad, romded ventral lamella at its base. The seta are rather stout, with a broad, thin. blade-like, terminal piece, which is generally lanceolate, with a rounded point, and often someWhat enrved, but more commonly straight. A few setre have a slender acote terminal piece. Anal segment with momerous small slender papilliform processes on each side, forming a circle.

Length up to $3 \tilde{J}^{\mathrm{mm}}$; breadth abont 2.5^{mmm}.
Vineyard Somud, swimming actively at the suface, both in the erening and in the brightest smshine, in the middle of the day; July 3 to Angust 11.

Diopatea cutprea Claparède. Plate XILI, figs. 67, 68. (p. 346.)
Amnélides ehétopoles du golfe de Naples, in Mémoires de la Société de Physiques et d'Hist. Nat. de Geneve, vol. xix, p. 432, 1863. Nereis cuprea Bose, Hist. nat. des Vers, vol. i, p. 143 (t. Claparèle).
Charleston, South Carolina, to Long Island Sonnd and Vineyard Sound.

Mandiysa Leidyi Quatrefages. Plate NII, fig. 64. (p. 319.)
Histoire nat. des Aunelés, vol. i, p. 337, 1865 (M. Leidii). Eunice sangnincu Leidy, Mar. Inv. Fanna of Rhode Island and New Jerses, p. 15, 1855 (non Moutagn).
Great Egg Harbor, New Jersey, to Long Island Somd and Vineyard Sounl. Low-water mark to 10 fathoms.

Lycldice Americana Verill, sp. nov. (p. 508.)
Body depressed, sleuder, narowed toward each end; segments wellmarked. Head much depressed, oblong, narrowed somewhat toward the front, which is trmeate and somewhat emarginate in the middle; lower side bilobed, the lobes well romided. The two eyes are lateral, just ontside the bases of the lateral antenna. The three antenne are subequal, nearly as long as the diameter of the head; the odd median one is apparently a little longer than the lateral, and placed slightly farther back. The dorsal cirri are long and slender, exceeding the diameter of the body in living specimens; they have a small lobe near the base. Anal cirri fum ; the two lower exceeding the diameter of the body; the two upper ones less than half as long. Color light red, with a bright red dorsal ressel and dark brown intestines, showing through in the middle; eyes dark red.

Length, while living, abont $40^{\text {mm }}$; greatest diameter, 1.5^{mmm}.
Off Gay Head, in 19 tathoms, soft mud.
21 V

Nematonereis, species undetermined. (p. 50s.)
A species, apparently belonging to this genus, was dredged in 29 fathoms, east of Block Island. The specimens have been lost or mislaid. In life the head was small, rounded, with one median dorsal antema, about as long as the diameter of the head. Eyes two, small but conspicuous, dark brown. Dorsal cirri slender.

Lumbriconereis Fragilis Cersted. (p. j07.)
Couspec. Ann. Dan., p. 15, figs. 1, 2, 1843 (t. Malmgren). Lambricus fragilis Miiller, Prod. Zool. Dan., p. 216; Zool. Dan., yol. i, p. 22, Pl. 22, figs. 1-3, 1788, (t. Malmgren). Lumbrinereis fragilis Malmgren, Anuulata polychseta, p. 63, Pl. 14, figs. 83-83, D.
Month of Vineyard Sound and deeper waters outside; northward to Nova Scotia and Gulf of Saint Lawrence. Northern coasts of Europe. From low-water mark, in the Bay of Fundy, to 430 fathoms, off Saint George's Bank.

Lumbiriconereis opalina Verrill, sp. nov. Plate XIII, figs. 69, 70. (p. 342.)

Lunbriconereis splendida Leidy., op. cit., p. 15 (non Blainville).
Body cylindrical, much elongated, largest in the middle, tapering gradually toward the head, which is comparatively small; segments well marked. Head conoidal, obtuse, changing much in form during life; in extension considerably longer than broad, and more acute than in the figure. Eyes four, in a transverse row, the two middle ones larger and a little in advance of the others. The lateral appendages, or "feet," consist of a short, obtusely-rounded basal papilla, which bears the setae; from the posterior and ventral end of this a prominent elongated lobe arises, which is somewhot curved and obtuse. These appendages are longer in the middle of the body than anteriorly. Seta five to nine in each fascicle, and of several forms ; one or two in each fascicle usually have a loug, slender, flexible capillary point. Color reddish or brownish, with brilliant iridescence.

Length up to 400^{mm}; diameter in middle, 3^{mm}.
New Haven to Vineyard Sound ; low-water mark to 14 fathoms.
Lumbriconereis thanuis Verrill, sp. hov. (p. 342.)
Body very long, slender, filiform, of nearly uniform dianeter throughout, capable of great exteusion; segments very numerous, well marked. Head a little narrower than buceal segment, depressed, obtusely pointed or rounded in front, without eyes. In the first to ninth pairs the lateral appendages have about six slender lanceolate setre; those of the ninth pair have two slenter spatnlate setæ, with about six or seven lanceolate ones; at the sixteenth pair they begin to have recurved spatulate setæ, with two or three hook-like denticles at the end, while two or three lanceolate ones remain; posterior to the twenty-third or twenty-fourth pair only one of the long, slender, acute setre remains, accompanied by
two or three of the spatulate hooks; the latter are about half as long as the former, slember toward the base, but gradmally becoming broader toward the ent, which is twice as broad, obtnsely rounderl, and curved back from abont the middle; the hooks are nearly terminal on one side, the thin margin projecting beyond them. The basal bobe of the "feet" is very small; the posterior lobe is small but prominent. Color light red to dark red, somewhat iridescent.

Length up to 3.90^{mm}; diameter, $0.0 .5^{\mathrm{mm}}$ to 1^{mm}.
Great Egg Harbor, New Jersey, to New Haven and Vineyard Sound.
Ninoie nigripes Verill, sp. nor. (p. 50s.)
Borly elongated, slemder, broadest a short distance behind the head, at the midlle of the branchiferons segments. Head depressed, elongated, conical, blunt at end, about twice as long as broad. The branchie are represented on the first two setigerons segments by a short, flattened lobe, arising from the outer and posterior face of the setigerous lobe. On the two following segments the lobe is divided into two or three parts; on the fifth there are usually three, more elongated, romnd, and more slender branchise, which increase in namber and length on the succeeding segments until there are five, six, or more long, slenter branchial filaments, which arise from the posterior face of the setigerons lobe, and diverge, forming a somewhat fan-shaped or digitate group; about the twenty-fourth segment the number rapidly diminishes, and after the twenty-seventh or twenty-eighth there remains but one small branchial process. The setigerous lobe is promineut, obtuse, turned forward. The setre are numerons on the branchial segments, and rather long, of varions shapes, but mostly beut, with an acute lanceolate point; posteriorly they are shorter and fewer, and mostly slender, margined sete, with hooks at the spatulate end. Body flesh-color; the sete dark, often blackish; branchia bright red.

Length of broken specimens, 20^{mm}; breadth anteriorly, 2^{mm}.
Vineyard Sound and Buzzard's Bay, and waters outside; in 8 to 29 fathoms, mud.

Staurocephalus pallidus Verrill, sp. nov. (p. 348.)
Body rather slender, convex above, flattened below, largest in the middle, tapering slightly toward each end, composed of about seventy segments. Mead small, depressed, rounded in front; antenna four, slender, longer than the breadth of body, the two upper ones longer and more slender than the lower ones, strongly annulated or bealed; lower ones stouter, smooth, tapering. Eyes four, dark red; the posterior pair very small, placed between the bases of the upper antemm; the anterior pair farther apart, placed between the bases of the upper and lower antemme. Anal cirri fom, the upper pair slender and abont twice as long as the lower ones. Dorsal cirri elongated, slender, more than twice as long as the setigerous lobe, absent on the first setigerous segment, very small on the
second, but well developed on the third. Setie rather long and slender. Color pale yellow, with red blood-vessels showing throngh anteriorly.

Leugth, 50^{mm}; breadth, $2^{\text {mam }}$. This species moves like a Nercis.
Near New Haven light-humse, in sand, at low-water mark.
Riynciobolus Americanus Verrill. Plate X, figs. 45, 46. (p. 342.)
Glyecra Americama Leidy, op. eit., p. 15, Pl. 11, figs. 49, 50, 1855; Ehlers, Borstenwiimer, vol. i, 1. 663, Pl. 2:3, figs. 43-46, 1868.
Charleston, Sonth Carolina, to Long Island Sound and Vineyard Somnel. Low-water mark to 10 fathoms.

I follow Claparede in adopting Rhynchobolus for those species of the old genns Glycera which have the proboscis armed at the end with four hooks or fangs.

Rifychobolus dibranchiatus Verrill. Plate X, figs. 43, 44. (p. 341.)

Gilycera dibranchiata Ehlers, op. eit., pp. 670-702, Pl. 24, figs. 10-28, 1868.
Great Egg Harbor, New Jersey, to Long Island Somnd; Vineyard Sound; and Massachnsetts Bay. Low-water mark to S fathoms.

Ehlers has giren a rery full anatomical description of this species.
Eone gracilis Verrill, sp, nov. (p. 50s.)
Body very slenler, terete; surface iridescent. Head elongated, acutely conical, composed of eight distinct, ronuded annulations, the basal one with a pair of minute reddish eyes; antennæ four, slender. Feet prominent, elongated, more than equal to half the diameter of the body; they are uniramons on about thinty-two segments of the anterior part of the borly, and bilobed, with a small obtuse dorsal cirrus; the upper lobe is prominent, more elongated than the lowerone, both cylindrical, obtusely pointed; setæ compound, in two small fascieles, long, the free part exceeding the entire length of the foot. On the posterior half of the body there is a small, slightly elevated, mammilliform upper ramus, abose the base of the lower ramus, and entirely separate from it, containing two or more small, acute, dark seta, which project but slightly; the lower ramus is deeply hilobed, the lobes elongated, round, the upper one longest, the lower one aente; on the posterior side of the base of the upper lobe there is a minute, rounded setigerons lobe, and at the junction of the two lobes, on the posterior face, there is another small setigerous lobe; the setie are long and slender, acute, many of them curvel, arranged in small fascicles.

Length, 20^{mm}; diameter less than 1^{mm}.
Off Gay Head, 19 fathoms, in soft mud.
Aricia ornata Verrill, sp. nov. (p. 344.)
Body rather stont, composed of numerons very short segments, much depressed and flattened anteriorly, strongly eonvex beneath in the middle region, flattened above throughout; breadth nearly the same
throngh a bage part of the length, narmow slightly and gradnally toward the posterior emd, and abriptly marowed anterionly close to the head, which is very small, short, eonical, and acute at the tip. On the anterior thirty-two setigerous segments the feet consist of a small mper ramus, having a small, tapering dorsal cirrus and a minnte sotigerons lobe, bearing a small faseicle of slender and short setar, and a lower mmos, separated by a marow space, and eomsisting of a small mpmer papilla, and a long transwerse row of minnte, rombled papillae, which sumome a narow, somewhat elevated, erest-like ridge; the first twelve or thitcen segments having shorter rows, so as to leave a broad, maked ventral space, but those farther back having rows of papilla that nearly meet beneath, and thins entirely corering the sides and rentral surface for a short distance; these crest-like ridges bear close rows of minute, hooked setar. The branchite eommence on the upper surface of the fifth setigerons segment, in the form of elongated papillar, which become more elongated aml narrow ligulate farther back. Posterior to the thirty-second segment the papilliform crests of the lower ramms disap. pear, and the lower ramus consists of an clongated papilliform, and finally cirriform, mper process, with a minnte setigerons lobe at its base, bearing fine inconspicuons setre ; and an elongated membranons basal portion, decurent down on the lateral surface of the segment; the upper ramus is connected at the base by a membranons web with the lower one, and consists of an elongated dorsal cirrns, similar in size and shape to the branchia, and a very small setigerous lobe, bearing a small fascicle of fine setre. The branchixe are comected by a slight web-like basal ridge with the dorsal cirri. Thus there are three parallel rows of cirriform or slender ligulate processes along each side of the back, learing a broad, central, naked space all along the back.

Length up to (0^{mm} or more; breadth, $4^{\text {mm }}$.
Sarin Rock, burrowing in sand at low-water mark, May, 1872.
Axthostona robustun Verrill, sp, nov. Plate XLY, fig. 76. (p.343.)
Body large, long, stont, thickest and rounded, or but slightly depressed, anterioly; tapering rapidy to the head; posterior portion very long, narowing gradually to the posterior end, flatter or concare abore, well rounded below, higher than wide, with three rows of long, ereet, lignlate, or narrow lameolate processes along each side of the back, the four imner rows largest; and a pair of folaceons processes on the sides of each segment. Head short, conical, acute. Proboscis large, broad, divided into about eighteen long, narrow, digitate, and suleated lobes, with convoluted margins, broadest at the end, and free for a large part of their length, but united at the base bya membranous web; or it might be described as divided into a lower, two lateral, and two uper main lobes, each of which is again divided into three or four digitations. During life these are all continnally changing in form and length, and generally only a few of the processes are protruded at one time. Branchiae com-
mence on the twenty-sixth setigerous segment as minute papilla; on the trentr-eighth they become prominent and acute-eonical ; farther back they become long, lanceolate, thin, foliaccous, as long as the diameter of the body.

On the twenty-three anterior setigerous segments the "feet" are represented by two short, dense, fan-shaped fascicles of sete on each sideOn the tweuty-fourth segment a small papilliform lobe, or ventral cirrus, appears below the lower ramus, which rapidly becomes larger on the succeedling segments, becoming quite conspicuous on the twents-ninth segment; at abont the twenty-eighth it becomes broader, and divided into three small lobes, the lowest broadest and thimest, and a bilobed setigerous lobe is developed. At the thirtieth the ventral lobe becomes broader, somewhat foliaceous, with a rounded outline; farther back this becomes still larger and more foliaceous, with a broadly-ronnded flexmois onter border, and the upper branch of the setigerous lobe becomes an elongated ligulate process, directed mpard, and similar in form to the branchie, thongh smaller and more slender, but the lower branch remains small and rounded; a small fascicle of long, slender setie arises from between them. On the twenty-seventh segment an upper cirms appears on both the upper and lower rami, in the form of a small papilla, which becomes somewhat elongated and tapering at the twenty-ninth; that of the lower xamns continnes small throughont, and much shorter than the setigerous or ventral lobes, but that of the upper ramus becomes rapidly larger, longer, and more ligulate, corresponding nearly with the branchia in size, form, and rate of increase. On the middle and posterior regions the upper ramus consists of this long, thin, lanceolate circus and a fascicle of long, slender setre, arising from the anterior face of its base, and in length considerably exceeding the cirms; the seta are pale yellow. Those of the upper ramus are short anteriorly, and become decidedly longer at the twenty-eighth segment, and on the thirty-second and subsequent segments they form a long, divergent, fan shaped fascicle; color, when living, ocher-yellow, orangeyellow, to yellowish brown, generally brighter yellow posteriorly. Usually there are two rows of brown spots along the back, and posteriorly there is a dorsal red or reddish brown line; branchie blood-red.

Length of large specimens up to 375^{mm} or more; breadth, 10^{mm}; ordinary specimens are about $300^{m m}$ long and 7^{mm} broad. Owing to the facility with which it breaks up when disturbed, it is difficult to obtain entire specimens of large size.

Great Egg Harbor, New Jersey; New Haren; Wood's Hole ; in sand, at low-water.

Anthostoina fragile Verrill, sp. nov. (p. 344.)
Body long and slender, composed of very numerous segments, very fragile, and prone to divide spontaneously when disturbed; thickest and sub eylindrical anteriorly, tapering rapidly to the head; posterior part
very long and slender, tapering gradually; flatemed dorsalls. Head distinctly ammatated, elongated conical, very acoute, with the tip slender and translucent; proboscis short and boad, not exteming lar bepond the tip of the head, with six or more broad, comvoluted, changeable lobes, which are mited at the base by a broad membramoms expansion. The dorsal branchice first appear on the sixtenth setigerous segment as small papillap; they become well developed and long ligulate at about the twentieth, increasing somewhat in length on the segments farther back. On the first thirteen segments belind the buecal the "feet" are represented by a very small, slighty-elevated lobe, above and below, each bearing a dense fascicle, that of the lower ramus widest, but the length of the setir abont equal in both. On the fontenth segment a small tubercle appears on both rami; on the sixteenth these become -longated and somewhat cirriform, and the setie become considerably longer on the fifteenth segment. It about the seventeenth segment the lower ramus becomes distinetly tri-lobed, and at the twentieth fourlobed, with the setigerons lobe bifin, and the two lower latem lobes conical, acate, and swollen at the base; while the upper ramus is long and ligulate, like the branchie, and the setare are and slender, the lower faseicle smallest. Farther back the lobes of the lower ramus heenme still more developed, but keep their acne conical form, and the uper ramus and setac continne to elongate mitil, on the posterior part of the body, they exceed in length the diameter of the body. Anal seg. ment oblong, snb-cylindrical, smooth, with two long filiform cirri on the upper side; color, when living, brownish orange, dull yellow, ocher, light reddish, or flesh-color, with a red median dorsal line, and sometimes with the dorsal surface tinged with red posteriorly ; a narow, light ventral line, bordered with reddish. Sometimes the upper surface is maculate with fine polygonal, whitish spots, due, perhaps, to ova contained within the body; there are sometimes two obscure brownish spots on the upper side of the head.

Length in to $129^{m m}$; diameter, 3^{mm}.
Great Egg Harbor, New Jersey; New !aven ; Watch Hill; Wood's Hole; in sand, between tides, and gregarious.

Anthostona acutum Terrill, sp. now. (p. 501.)
Bols long and quite slender, tapering most toward the head, and very gradnally posteriorly. Head very acntely pointed, with two rather indistinct reddish spots above, resembling imperfect ocelli. The branchiee commence at the eleventlo setigerons segment as small dorsal papilte, and become prominent on the thirteenth ; on the succeeding segments they become long and ligulate. Anteriorly the feet are represented bran npper ramus, consisting of a very small tuft of setar, with a very small papilliform lobe abore it, and a lower rams, consisting of a small prominent papilla, with a fasciele of slemder sete, much larger than the npper one. On the fourtenth and suceeeding segments
the dorsal cirrus of the upper ramns becomes longer, more slender, and lignlate. On the fifteenth segment a small, short, rounded ventral cirrus appears on the lower ramus, and farther back it becomes larger and more promineut, and the setigerons lobe becomes bilobed. Anal segment rounded, obtuse; cirri long and slender. Color light red.

Length up to $40^{\text {min }}$; diameter, $2.5^{\text {mam }}$.
Off Gay Hear, 19 fathoms, soft mad; also from the deeper parts of Vineyard Sound.

Anthostona, species undetermined. (p. 508.)
Another species, not well studied, was dredged in the deeper water's off Giy Head and Buzzard's Bay. It differs from all the preceding in having eighteen anterior segments without branchise.

Nerine Agilis Vertill, sp. nov. (p. 346.)
Body long and rather slender, anteriorly flattened, posteriorly more rounded. Head long couical, with a slender acute tip; mouth a.transrerse fissure beneath; eyes four, placed in front of the bases of the two large anteune, small, black, the anterior ones a little fartiner apart; antemme long, slender, with thiekened bases, placed on the dorsal surface of the head, with their bases coutiguous.

The branchise are slender, ligulate, and exist on all the segments except the first. On the inst segment the "feet" are represented on each side by two small rounded lobes, bearing very small setie, and placed just below the bases of the antemae; on the succeeding twenty segments the lower ramms consists of a larger, somewhat semicircular lobe, bearing a broad cluster of slender, acnte sete, and separate from the upper ramus, which consists of a thin foliaceous process joined to the branchial cirrus, but with a free terminal portion, and bearing a broad, comb-like cluster of long acute setie, nearly as long as the branchire, and much longer than those of the ventral ramus. On the twenty-first setigerous segment a small papilliform rentral cirrus appears on the lower ramus, and farther back it becomes more prominent and separate from the setigerous lobe. In the middle and posterior region the free portion of the cinform lobe of the upper ramus is longer.

Color reddish or brownish green anteriorly, light green on the sides; branchie bright red. Length up to 60^{mm}; breadth, 2^{mm}; leugth of antenne, $12{ }^{\mathrm{mm}}$.

Great Egg Harbor, New Jersey, on the onter beach, burrowing in sand, at low-water mark.

Scolecolepis viridis Terill, sp. nov. (p. 345.)
Body long, slender, depressed; both the upper and lower surfaces flattened, of nearly miform breadth throughout most of the length, abruptly narrowed at each end, and somewhat tapering and more romoded posteriorly. Head with the central plate longer than broad,
forming an acnte angle behind, anteriorly suddenly expanding into a wide transrerse frontal lobe, broadly rounded in front, with a slight emargination in the middle, the lateral angles prominent and slighty amrienlate or recured. Lyes fom, distant, the two pairs nealy parallel. Proboscis small, smooth, rombled. Antemae slender, twice as long as the breatth of the body. The branchie are slender and lignlate anteriorly, and meet over the middle of the back; but farther back they gradually decrease in length, and disappear at about the anterion third. The upper zamus of the feet consists of a broad, thin, foliaceons upper ramus, rounded ontwardly, comected, for most of its length, with the branelia, the upperend a little prominent; and a broad chnster of setie, consisting of a small upper faseicle of slender acienlar, searcely as long as the branchia, and a comb-like gromp of shorter and somewhat stonter bent and acnte sete. The lower ramms consists of a small, thin, romnded process, bearing a trimserse row of acute bent seta, and a ventral tuft of longer and more slender ones. Posteriorly the slender setie in the dorsal and rentral tults are considerably longer ; and several stouter, recurved, two-hooked, uncinate sete appear in the transverse rows of aente sete, both in the upner and lower rami. Anal segment short, trumeate or subnreolate, somewhat bilobed ; the margin of the orifice erembated with small rounded lobes, and with four small conical papillie on the upperside. Color olive-green or bright green, darker posteriorly; branchie bright red; antenne light green, with a row of black speeks.

Length up to $100^{\text {mum }}$; breadth, $3^{\text {mmm }}$.
Great Egg Harbor' New Maveu; Watch Hill; Wood's Hole; burowing in sand, at low-water.

Scolecolepis texuis Verrill, sp. nor. (p. 345.)
Body very long aud slender, depressed, especially anteriorls, gradually tapering posteriorly. Head short and broad, slightly three-lobed in front, the central lobe broadly romnded, the lateral ones also romeded, somewhat smaller. Antemme long and slender. The branchie are small, ligulate, and exist only on the anterior segments. The setae of the dorsal tiaseicle are long and slender ; but those of the first three segments are longer than the others, forming large fan-shaped fascieles directed upward and forward ; those of the first segment longest, about twice as long as the breadth of the head. Farther back the setie of the upper ramus become shorter, the upper ones slender, capillary, the lower ones stonter, somewhat beut, mustly acute, some uncinate. Those of the lower zamus are shorter, setiform, forming large fascicles anteriorly. Farther back the upper ones are partly stonter, somewhat bent, and acute, and partly uncinate, while a small ventral fascicle of sleuder ones still remains. Posteriorly the setigerous lobes of the feet become rery smail. Color light green; branchie red, tinged with green; antenne whitish, with a red central line.

Length, $80^{m m}$; breadth, $1.25^{m m}$.
Great Egg Harbor, New Jersey; burrowing in sand, at low-water.

Scolecolepis cirrata Malmgreu. (p. j01.)
Annulata polychreta, p. 91, Pl. 9, figs. 54 A-54 D. Nerine cirrata Sars, Nyt. Mag., vol. vi, p. 207 (teste Malmgren).
This is a larger and stonter species than either of the preceding. The front of the head is broadly romuded, with prominent, rounded, lateral angles; the foliaceous lateral appendages are larger and much wider.

Off Block Island, in 29 fathoms, and in the deepest parts of VineFard Sound, near the montl; off Saint George's Bank, in 110 and 150 fathoms. Northern coasts of Europe; Spitzbergen; Greenland. In 20250 fathoms. (Malmgren).

Spio setosa Verrill, sp. nov. Plate XIV, fig. 77. (p. 344.)
Nerine coniocephata? A. Agassiz, Annals Lfeemm of Nat. Hist. of New York, vol. viii, p. 333, Pl. x, figs. 39-45, 1866, (non Johnston.)

Body long, moderately slender, flattened dorsally, convex below, obtuse anteriorly, slightly tapered toward the posterior end. Head with a prominent median lobe, which is sub-truncate and a little turned up at the front end, with the corners a little prominent and rounded; lateral lobes shorter than the median; on the posterior part of the vertex there is a small median, conical prominence. Eyes four, on the vertex, the posterior pair nearest together; antennæ long. Branchiae moderately long, slender, ligulate, largest on the anterior segments. On the first three or four segments the upper ramus of the feet has a slender dorsal cirrus, which disappears farther back. The setæ of the upper ramus are long, acute, and form aroad fascicle, in which the upper ones are much longer and more slender, divergent; the lower stouter and more or less bent; they are longest on the first four or five segments, the mpper ones considerably exceeding the branchia. The lower ramus is small and but slightly elevated; on the anterior segments it bears a small fascicle of short, acute, bent setre, much shorter than those of the npper ramus, and closely crowded together in two or more rows, with a small rentral tuft of longer and more slender setre; farther back the acute bent setre begin to be replaced by uncinate sete, which, at about the tenth segment, form a complete transverse row, parallel with a row of slightly longer, pointed seta, while the small ventral tuft of longer acute setie still remains, and all the seta in the broad fascicle of the upper ramus are acute aud much longer. In the middle region of the body, the uncini of the lower ramus form a close row, containing fifteen to twenty; they are strougly recurved near the end aud margined.

Length up to $S 0^{\mathrm{mm}}$; diameter about 2.5^{mm}.
New Haven; Wood's Hole ; and Namshon Island; in sand, at lowwater.

This species appears to be the same as the one studied by Mr. Agassiz, though it differs slightly from his figures, one of which I have copied.

Spio romusta Verrill, sp. now. (p. 345.)
Body stout, broadest anteriorly, tapering posteriorly, but little depressed execpt anteriorly, very consex bencath, flattencd above. Head broad, somewhat angular; the median lobe trumeated and slightly emarginate in front; lateral lobes a little shorter, wide, obtuse in front, slightly angulated laterally; a small median, conical elevation on the posterior part of the heal. Antemat long, rather stont. Buanchise long, harrow, tapering. Upper ramms of the feet with a small, obtuse setigerous lobe, bearing a small fascicle of short seta, comsiderably shorter than the branchia, even on the anterior segments, and a foliaceons process arising behind the setigerons lobe, broadly romeded on its thin outer edge; the mpper end free and obtusely pointed; farther back the sete are shorter and the folliaccons process smaller and less prominent. The lower ramms on the anterior segments has a small, prominent, semicireular foliaceons process and a small, dense fascicle of short seta, crowded in several transverse rows; on the eighth and subsequent segments the foliaceons processes become larger and wider, and the setae more numerous, crowded, and partly uncinate; still farther back the seta are nearly all moinate, except a very small ventral tuft of slender ones, and form long, double, transserse rows, projecting but little beyond the sufface. Color greenish.

Length, 50^{mm}, or more ; breadth, 3^{mma} to 3.5^{mm}.
Wood's Hole and Naushon Island; in sand, at low-water mark.

Polydora ciliatum Claparèle (?). Plate XIV, fig. 78. (p. 345.)

A. Agassiz, On the Yomng Stages of a Few Annelids, in Ammals Lycemm Nat. Hist. of New York, vol. viii, pp. 323-330, figs. 26-98, 1866 (embryology).
Naushon Island and Massachusetts Bay; in muddy sand, at abont halftide (A. Agassiz).
The adnlts of this species were not found by us. The young were frequently taken in the towing-nets.

A young Polydora, belonging perhaps to a different species, was dredged off New Haren, in 4 to 6 fathoms, slielly bottom. It was abont 12^{mm} long. The color was pale fellow, with small black spots along the sides between the fascicles of setie; a red dorsal vessel ; antenne white.

Ormelia shmplex Leidy. (p. 319.)
Marine Invert. Fanma of Rhode Island and New Jersey, p. 16, 1855.
Body short, smooth, iridescent, well rounded above, flat below; usmally foum coiled up, so that the extremities meet, or nearly so, and resemhling in general form the larve of certain beetles and flies. Head very acute conieal; the buccal segment suddeuly enlarges; month beneath, with thick evertile lips, the lower one generally protruded as a large rounded lobe. P'osterior end terminated by about ten unequal, round, blunt, fleshy, simple papillie, of which the two ventral ones
are considerably longest. The setre commence opposite the mouth and extend to the posterior end; they form two fan-shaped fascicles on each side of each segment, closely approximate at their origin, but strongly divergent, the upper ones directed upward, the lower ones downward ; the seta are rery long and slender on the middle segments, those of the upper finscicles longest, and exceeding half the diameter of the body; anteriorly they are considerably shorter; they are somewhat expanded toward the base, but have long and very slender tips. Dorsal cirri rather long and stont, transparent and wrinkled, blnnt at tip, thickened at base; in length nearly equaling a third of the diameter of the body. Color yellowish white, tinged with brownish on the sides.

Length, 8^{mm} to 10^{mm}; diameter, 1.5^{mm}.
Savin Rock, at half-tide. Point Judith, Rhode Island, below lowwater mark (Leidy).

The specimen above deseribed was found under stones at Savin Rock, near New Haven, May 5. Its body was completely filled, from one end to the other, with comparatively large yellowish white eggs, which show through the transparent integument of the dorsal side very distinctly.

Travisia carnea Verill, sp. not. (p. 50s.)
Body with twenty-four setigerous segments, oblong or fusiform, very changeable, round, usually tapering abruptly to each end. Head small, conical, acute; posterior end terminated by a small, bluntly ronnded, or slightly clavate papilla; sete small aud slender. Branchiæ short, slender, commenciug on the third setigerons segment and ceasing at the twentieth; longest abont one-forrth as long as the diameter of the body. Segments of middle region tri-ammulated. Color light red or deep flesh-color; branchie bright red.

Length, in extension, abont $25^{\mathrm{mm}} ; 3^{\mathrm{mm}}$ to 4^{mm} in diameter. It can contract to $12^{m m}$ or less in length.

Off Gay Head, Martha's Vineyard, in 19 fathoms, soft mud.
Ammotrypane fimbriata Verill, sp. nov. Plate XV, fig. 79. (p. 508.)

Booly elongated, slender, smooth, thickest in adrance of the middle, tapering gradnally to both ends, convex, and well rounded above; lower surface with a median sulcus and rounded margins, separated from the upper surface by a deep groove. Head very acute. Eyes tro, small, black. Proboseis small, sub-globular, smooth. Branchise long and slender. Candal appendage spoon-shaped, deeply concare, transversely striated; the onter margin fringed with a row of small, slender papille; a pair of slender cirriform processes, abont half its length, arises at its rentral base, and a longer single median one is generally concealed in its earity. Setae of the anterior segments long and slender, more than half the diameter of the body, shorter farther back. Color, when lising, purplish flesh-color, shining and iridescent
on the dorsal surface; a row of elongated dark spots on each side between the fascieles of setie; the sete dark gray.

Lemsth, $75^{\text {man }}$; diameter, $3^{\text {mam }}$.
Off Buzand's Bay, in e. fathoms, mud; Pay of Fundy, 10 to 90 fidhoms, mad; near Sant (ieorge's Bank, 110 and 150 fathoms, mat.

Scalibregata mrevicauda Yerrill, sp. mov. (p. 416.)
Body rather short, with a marrow, tapering anterior portion; a swollen middle region: and a narow, tapering eamdal portion; lower surface with a very narmo, smonth median area, divided transversely finto a series of small rommed prominemes hẹ slight depressions. Head small, transverse, truncate or slighty coneave in front, the angles prodnced and prominent. On the anterior region fom segments bear short, tufted branchite, elose to the base of the upper laseicles of sette, which are rather long and slender; each of these segments also has a dorsal transverse row of rather large and conspicuons blackish grames on its posterior margin, and also a black spot on the sides below the branchiae. The surface of all the anterior segments is regulaty and rather finely gramulons, the gramules in transwerse rows. The middle region, composed of about ten segments, is thicker, and sometimes much swollen, and the feet are represented only by small fascicles of slember sete. The candal region is less than one-half the entire length in preserved specimens, and is rather slenter and tapering, composed of abont sixteen segments; the rami of the feet consist of a prominent, obtuse papilla, both above and below, with a blackish spot at the end, and bearing a fasciele of slender seta, in length lather exceeding half the diameter of this part of the body. Color, when living, dark brownish red, tinged with yellow at both ents.

Length, $32^{m m}$; diameter, 2.5^{mm}.
Off New Haven, 4 to 6 fathoms, shelly bottom.
Tropionia affinis Verill. Pl. XIV, fig. 75. (p. 507.)
Siphonostomum affine Leidy, op. cit., p. 16 (1.13), 1355.
Body rather slender and elongated for the gemms skin irregularly rugose, granulons, anteriorly covered with small papillae. The eight branchie are cylindrical, thick, blunt, unequal; two tentacles stouter than the branchis, sulcate bencath. On the four anterior segments the mper and lower faseieles of setie are much elongated and directed forward. On the fifth and following segments those in the upper fascicles are capillary, divergent, six to ten in each fascicle; in the lower fascicles there are about three stont, slightly curverl, acate, deep yellow sete. On the thind and fourth segments the seta of the mpper fascieles are longer and larger than those in the lower ones ; posteriorly the lower seta become longer, stonter, and more curved at the tip, the lowest one becoming hook-like.

Length, 60^{mm}; diameter, $3 . \tilde{u}^{\mathrm{mm}}$.

Off Block Island, 29 fathoms; off Buzzard's Bay, 25 fathoms, mud. Great Egg Harbor (Leidy).

Brada setosa Verrill, sp. nov. (p. j0s.)
Body short, oblong, sub cylindrical, flattened below, tapering a little toward both ents, which are obtuse ; composed of seventeen setigerous segments. Skin covered with small, prominent, acute papille. Upper fascicles of setæ long, slender, light colored; lower fascicles larger, composed of stonter, long, dark colored setae, surrounded at base by small cirriform appendages. Ventral cirrus small.

Length of preservel specimen, 10^{mm}; diameter, 2.5^{mm}.
Oft Gay Head, 8 to 10 fathoms, among muscies, $\mathbb{S c}$.
Stervaspis Fossor Stimpson, Plate XIV, fig. 74. (p. 507.)
Marine Invertebrata of Grand Manan, p. 29, fig. 19, 185.3.
Off Gay Head, 19 fathoms, soft mud; common in the Bay of Fundy in 10 to 90 fathoms, mnd; near Saint George's Bank, 110 fathoms, sandy mud; Casco Bay, 20 fathoms.

Cirratulus grandis Verrill, sp. nov. Plate XV, figs. 80, 81. (p. 319).
Body large and stont, anteriorly subcylindrical, somewhat flattened and tapering slightly posteriorly, and rather abruptly tapered anteriorly. Head small, acute, with obscure brownish spots above, but apparently without distinct-ocelli. Posterior end obtuse, the orifice surroanded by a thickened, slightly crenulated border. Posterior to the mouth there are ahout seven rather indistinct ammli (perhaps four biammated segments) destitnte of appendages; the two next segments bear two fascieles of small setre on each side, and two crowded dorsal clusters of long slender branchial cirri ; these clusters nearly meet on the dorsal line, leaving only a narrow naked space, and contain a large number of cirri, usnally of various lengths, closely crowded together. Farther back the "feet" consist of small and slightly prominent upper and lower rami, commected by a slightly raised, transverse ridge; each ramus bears a small fascicle of short, slender, acute sette, in a transverse row ; and a few stouter curved spinule, which project but little from the surface; posteriorly the spinnles are more mmerons and the slender sete fewer and a little longer, but they are scarcely equal to one-tenth of the diameter of the body. Along nearly the whole length of the body long slender branchial cirri arise from above most of the upper rami, but many of these are genemally broken off in preserved specimens. In alcohol the lower surface of the body is generally flat or concave; the "feet" occupy an elerated lateral ridge, often separated from both the rentral and dorsal surface by a deep groove; and the dorsal surface is moderately convex. The anmalations are short, very numerons, and distinct. Color, when living, dull yellow, yellowish green, yellowish orange, greenish orange to orange-brown, darkest anteriorly, and often
iridesent beneatho sides often with dark brown specks; anterion branchal cirri usually bright orange, with a red central line; lateral ones darker fellow or orange, generally with a central line of bright red, due to the blood-ressels showing throngh.

Length up to 150^{mm}; diameter, $5^{m m}$ to 7^{mm}; length of branchial cirri, 60^{mm} to 100^{mm}.

New Haven to Vineyard Sound; low-water to 6 fathoms, in sand and gravel ; common.

Cirratulus tenuis Verill, sp. nov. (p. 416.)
Body slender, elongated, strongly ammlated. Head conical, depressed, acmete. The first fon rings behind the month are louger than the rest, and destitute of : ppendages. The branchise and sete commence at the fifth segment ; the branchix form a chaster on each side, and are long and filiform; farther back and on the middle region there is usually a pair of branchial eimi on each segment, but posterionly they become distant and irregular. Setie long and slender in each ramms, the upper ones exceeding in length the diameter of the body on the anterior and middle regions, but becoming much shorter posteitorly. In alcohol the integmment is irileseent. No eyes were detected.

Length, 40^{man}; diameter, 1.25^{mm}.
Vineyard Sound, 6 to 12 fathoms, among compound ascidians ; 23 fathoms ofi Martha's Vineyard.

Cirmifinereis fragilis Quatrefages. (p. 397.)
Histoire naturelle des Annelés, vol. i, p. 464. Cirrhatulus fragilis Leidy, op. cit., 1. 147 (15), Plate 11, figs. 39-43, 1855.

Point Jndith, Rhode Island, muder stones at low water (Leidy). Specimens, apparently of this species, were dredged in Vinegard Sound.

Naraganseta coralit Leidy. (p. 494.)
Marine Invertebrate Fauna of Rhode Island and New Jersey, p. 12 (144), P1. 11, figs. 46-43, 1855 ; Quatrefages, op. cit., vol. i, p. 468.
New Haven ; Watch Hill ; Point Jndith; in Astrangia Dance.
Our largest specimen had ten pairs of cirri ; the first three pairs originate from one segment, the lowest being stonter and lighter colored than the rest.

DODECACEREA, species undetermined. (p. 422.)
A species, belonging apparently to this genus, was dredged off New Haven Harbor, in shallow water, but the specimens are too young for accurate determination.

Clymenella Verrill, gen. nov.
Borly elongated, composed of about trenty-two segments exclusive of the cephalic and anal segments. All the segments, except the buecal and three anteanal, setigerous; they bear fascicles of slender sete above
and series of hooks below. The anterior margin of the fourth setigerons segment is prolonged into a thin membranons collar. Proboscis swollen, longitudinally ribbed. Head with a prominent conrex median plate, and with a raised border on each side and behind, the lateral and posterior lobes separated by notches. Anal segment fumel-shaped, the edge surrounded by papillze.

Clymenella torquata Verrill. Plate XIV, figs. 71-73. (p. 343).
Clymene torquatus Leidy, op. cit., p. 14 (146), 1855.
Great Egg Harbor, New Jersey; New Haven; Vineyard Sound; Bay of Fundy; Saint George's Bank, \&e. Low-water to 60 fathoms.

Nicomache dispar Verrill, sp. nov. (p. 512.)
Body elongated, with eighteen setigerous segments. Head elongated, sub-conical, with a small central plate, and a depressed point in front, and with low, narrow, lateral and posterior marginal lobes, separated by slight notches; on the anterior part of each lateral borter there is a cluster of small, reddish brown, ocelli-like specks. Bnecal lobe coalescent with the cephalic above. Proboscis swollen and plicate. The first two setigerous segments have small fascicles of slender, short setie above, and a single uncinate seta or hook below on each side. The third segment has much longer setre in the upper fascicles and two hooks in the lower ones. The fourth has still longer, slender sete in the upper faseicles, and abont eight hooks in each of the lower ones. In the following segments the hooks become much more mmerous. There is one short, biammlated, anteanal segment, destitnte of setre. Anal segment suburceolate, as long as broad, cylindrical toward its border, which is furnished on the ventral side with one long, slender cirms, often as long as the diameter of the anal segment, and two short lateral ones; the rest of the border lias a few, mostly very small, distant, unequal, obtuse papilize or denticulations. The anal orifice is situated at the summit of a small cone, which rises from the bottom of the fumnel. The last setigerous segment is longer than the anteanal, and a little longer than any of the ten that precede it, which are all short and subequal, broader than long, those toward the posterior end deeply ineised at the intervals between them. The three anterior setigerons segments are shorter than broad ; the fourth is twice as long; the fifth is three times as long; the sixth is five times as long. The color, when living, was light red, translnceut, with conspicuous bright red blood-vessels, and with a bright red band at about the anterior third. The largest specimen obtained was $50^{\mathrm{mm}} \mathrm{long}$ and 2.5^{mm} in diameter after preservation in alcohol. In this specimen the anal segment is long, funnel-shaped, flaring but little toward the margin, and with four or five slight transverse annulations. The bnceal segment has two transverse reddish lines on each side.

Off Buzzard's Bay in 25 fathoms; fifteen miles east of Block Island in 29 fathoms, sandy mud. It forms rough tubes of sand, which are not very firm.

Maldane elongata Verrill, sp. nov. (p. 343.)
Body large and much elongated, eylindrical, obliquely truneated at both ends; with nineteen setigerous segments, those of the middle region elongated; head depressed, with its dorsal snrface very oblique; median lobe low, convex, obtusely romided in front; lateral marginal lobes, or folds, low, romnded, thickened, separated by a shallow emargination from the posterior trimsverse fold, which is also thickened, little elevated, and divided into two parts by a slight sulems; from the noteh between the lateral and posterior lobes of the head, a lateral oblique salcus curves downward and backward, and joins the first of the two transrerse sulei, which are strongly marked on the ventral side of the bnecal segment. Anterior setigerous segments strongly bianuulated; the first two are short, the length about equal to the diameter; the next two are considerably longer; aud those farther back become very much elongated; the last setigerous segment is short. The segments are considerably swollen where the setie arise, especially in the middle region. The upper sete are long and slender, mostly about half the diameter of the body, and form rather large fascicles on most of the segments. The last segment is obliquely truncated, its posterior border surrounling the base of the large anal process, which is oblignely placed, foliaceous, obovate, with the posterior edge broadly ronnded, the upper surface concare, and the margin entire. Color dark umber-brown, or reddish brown, iridescent; the swollen parts of the rings are lighter jellowish brown, or grayish brown, the dark red blood-vessels often showing through; near the bases of the seta there are usually small dark colored specks; head and buceal lobe thickly specked with dark brown or blackish.

Length of largest specimens, 300^{mm}; diameter, $4^{m m}$ to 5^{mm}; more frequently about half this size.

Savin Rock, near New Haven ; in sandy mud at low-water mark, forming thick tubes composed of fine mud.

Rhodine attenuata Verrill, sp. nov. (p. 50S.)
Body sleuder, elongated, with the segments strongly marked, and the first setigerons segment very long. Head elongated, depressed, obtusely rounded in front; median lobe, or ridge, broad and but little elerated, except near the front of the head, where it becomes suddeuly narrowed, more convex, with well marked foree on each side; lateral lobes rudimentary, scarcely apparent ; on the posterior part of the head there is a prominent transverse elevation. Buccal lobe coufluent with the cephalic. First setigerous segment swollen anteriorly änd about as broad as the head at its anterior end where the sete arise, but narrowed and gradually attenuated backward, its total length being abont eight times its diameter; second and third setigerons. segments about equal, nearly twice as long as broad, swollen in the middle, the frout margin of each prolonged into a slieath-like collar; the three next
segments are short and rounded, about as long as broad, much narrowed at each end, and swollen in the middle; next two about twice as long as. broad; succeeding segments more elongated. Anal segment wanting in the specimens examined.

Length about 50^{mm}; diameter about 1^{mm}.
Off Gay Head, 6 to 8 fathoms; fifteen miles east of Block Island, in 29 fathoms, sandy mud.

The Clymene urceolata Leidy, from Great Egg Harbor, will probably be found on the New England coast, but we have not met with it. It is peculiar in haring an urceolate anal segment, with a smooth margin.

Ammochares, species undetermined. (p. 50s.)
A species which constructs slender, flexible tubes, corered with grains of sand, regularly and curiously attached by one end in an imbricated manner, was dredged fifteen miles east of Block Island, in 29 fathoms sandy mud, and in 23 fathoms off Martha's Vineyard. The worm is very slender, Hlesh-color, with a red dorsal vessel, and two small, red, ocelli-like spots.

Notomastus luridus Verrill, sp. nov. (p. 342.)
Body long and rather large, composed of numerons segments, nearly cylindrical when living, and tapering but little, except close to the ends. In preserved specimens the anterior region, including about ten segments, is often a little swollen and slightly larger than the rest of the body; at other times it is even more slender than the posterior region. Head small, acute. Proboscis short and broad, swollen; in full expansion nearly twice the diameter of the body, nearly smooth, dark blood-red. The segments of the anterior region are longer than broad, in extension nearly twice as long, biannulated, and each of the annuli is again aunulated with several transverse, more or less irregular sulci or furrows; ten of these segments bear fascicles of slender setre both above and below, the fascicles on the first two setigerous segments being very small, and containing few setie. The segments following the tenth setigerous one have a small transverse row of slender uncinate seta above, and a longer lateral transcerse row of the same kind of setre on each side; the "feet," or setigerous lobes, are but little prominent, the upper ones being dorsal and much smaller than the lateral ones. The surface of the body is transversely wrinkled, and covered with minute, irregular reticulations, giving it a slightly granulous appearance. Color, when living, dark purplish brown, with a bluish iridescence anteriorly, and a darker median dorsal line posteriorly; minute, white, raised spots, or slight papillie, are scattered orer the surface.

Length, $150^{\text {min }}$ or more; diameter, $2^{\text {mm }}$.
Savin Rock, near New Haren; in mnddy sand, at low-water mark.

Notomastus filiformis Verrill, sp. nor. (p. 342.)
Body very long and slender, filiform, composed of very mmerous short segments. Head very changeable in form, usually long, conical, and very acutely pointed. Proboseis smooth, obovate, or trumpetshaped, when extendel, and bright red. In the anterior region there are eleven setigerons segments, which bear small fascicles of slender sete in both rami, those in the first five longer and acntely pointed; these segments are short, biaumulate; the lower fascicles of setie are largest and fan-shaped. In the middle region the segments are about as long as broad. Color, pale red to bright red, often mottled with whitish, and more or less yellowish posteriorly.
Length, $100^{\text {min }}$; diameter, $1^{\text {min }}$.
Great Egg Harbor, low-water to one fathom, in sands mud; New Haven; Watel Hill; Vinesard Sound.

Sabellaria vulgaris Verrill, sp. nov. Plate XVII, figs. SS, SSa. (p. $3 \geq 1$.)

Borly rather stout, thickest anteriorly, tapering backward to the base of the long, slender candal appendage. Two slender, red, oral tentacles arise near the month, between the bases of the operculigerons lobes, and, when extended, reach beyond the bases of the opercula. A single median lanceolate process also arises between the operculigerous lobes. A deep emargination exists on the ventral side, back of the month; on each side of this the front margin of the segment is prolonged into a tridentate lobe, the teeth or lobes being unequal, the inner ones largest, the middle oues more slender and acute, the outer one smallest and shortest; beyond these, toward the sides, there is another small acute process; two conical processes also project forward from the lateral margins, and also a fascicle of setr. The ciliated prehensile cirri, or tentacles, are long and slender when extended, and reach considerably beyond the opercula. The setre composing the opereula are golden jellow; the outer circle white at base. A row of sinall conical papilla surrounds the bases of the opercula. Branchir long, lanceolate, aente, longer than the diameter of the body. Color of bolly yellowish fleshcolor, or pale reddish, often with two rows of brown spots along the ventral surface; operculigerous lobes whitish or grayish, speeked with blackish; branchie reddish or yellowish, with a red central line, often with a greenish tinge, or red centered with green; tentacles pale fleshcolor, sometimes purplish; opercula blackish or grayish on the anterior surface, golden yellow on the sides, white at base; candal process pale red or flesh-color.

Length abont $25^{m m}$, exclusive of candal process: $2^{m m}$ to $2.5^{m m}$ in diameter.

Great Egg Harbor, New Jerses, to New Haven and Vineyard Sound; low-water to ten fathoms; vers common. Eggs are laid in May and June.

Cistenides Gouldil Verrill, sp. nov. Plate XVII, figs. 87, 87a. (p. 323).

Pectinaria Belgica Gould, Invertebrata of Massaehusetts, 1st ed., p. 7, Plate 1, fig. 1 (tube), 1841 (not of European writers). Pectinaria auricoma Leidy, op. cit., p. 14 (146), 1855 (not of European writers).

Body rather stont, little curved. Head with the dorsal surface obliquely truncated, its posterior marginal fold with a smooth border. Antenne long, tapering, acute; frontal membrane or veil semicircular, its edge divided into rather long, slender, acute papillæ, about twents. eight in number. Cephalic setre in two broad groups, each containing about fifteen light golden setre, which are somewhat curved upward, with long, slender, very acute tips, those in the middle of each group much the longest. Tentacles stout, obtuse, flattened, and folded up so as to form a groove beneath. Color light red or flesh-color, handsomely mottled with dark red and blue.
Length up to 40^{mm}; diameter, 7^{mm}.
Great Egg Harbor to New Haveds and Cape Cod; low-water to 10 fathoms.

This species can easily be distinguished from C. granulatus, which is common in the Bay of Fundy, by the cephalic seta or spines, which are fewer, much stouter, obtuse, and darker colored in the latter.

Ampiarete gracilis Malmgren. Plate XVI, fig. 83. (p. 508).
Nordiska Hafs-Annulater, Ofvers. af kongl. vet. Akad. Förh., 1865, p. 365, Plate 26, figs. 75-75D.
Body flesh-colored, greenish posteriorly, with a conspicuous red median ressel; branchire light sea-green.

Length, 25^{mm} to 35^{mm}; diameter, 2.5^{mm} to $3^{\text {mm }}$; length of branchix, 6^{mm} to 9^{mm}.

Off Gay Head, 10 fathoms; off Martha's Vineyard, 23 fathoms; east of Block Island in 29 fathoms; Bay of Fundy, 10 to 90 fathoms; north. ern coasts of Europe, Bahusia, at Koster Island, in 130 fathoms. Our specimens differ slightly from the description and figures of Dr. Malmgren, especially in usually having but twelve uncigerous segments in the posterior region, instead of thirteen, found by him in the European specimens. This may be due to difference of age or sex. There are, howerer, thirteen in one of our specimens.

Ampilarete setosa Verrill, sp. nov. (p. 416.)
Body rather thick anteriorly, tapering rapidly backward. Cephalic lobe acute, with a much shorter, small, lateral lobe on each side. Branchiæ eight, transversely wrinkled, rather short; in preserved specimens about equal to the breadth of the body. Palmulæ, or cephalic fascicles of setæ, short and broad, rounded, fan-shaped, the setæ being nearly equal, the ventral ones a little longer than the lateral. Fourteen segments bear small fascicles of long setr, supported by prominent lobes at the base. The posterior region consists of about teu uncigerous seg-
ments. Anal segments small, with two long slender cirri. Color of body translucent, light yellowish green; the anterior part of the body tinged with bright blood-red, due to the circulating fluid, showing through the integrment; branchise greenish, with a central series of white spots; setic of the palmulae, deep yellow.

Length about 20^{mm}; diameter, 2.5^{mm} to 3^{mm}.
Off New Haren, low-water mark to 6 fathoms, shelly. It makes rough tubes about an inch long, covered with coarse sand and mud.

Amage pusilla Verrill, sp. nor.
Body rather slemder. Head obtusely rounded in front; the middle lobe small, and but little larger than the lateral. Eight slender branchia, abont twice as long as the diameter of the body, arranged in a crowded group; two farther back than the rest; and with no apparent naked median space. Twelve of the setigerons segments bear long fascicles of slender setie. No "palmulæ," or cephalic setie. Tentacles mumerous and slender. Two small, slender anal cirri.

Length, 12^{mm}; diameter, $1 . \tilde{v}^{\mathrm{mm}}$.
Off New Haven, 5 to 6 fathoms; shelly bottom.
Melinna cristata Malmgren. (p. 432.)
Nordiska Hafs-Annulater, loc. cit., p. 371, Plate 20, figs. 50-50n. Sabellides cristuta Sars, Fiuna littoralis Norvegiæ, vol. ii, pp. 19, 24, Pl. 2, figs. 1-7, 1856.
Month of Vineyard Sound, on muddy bottoms, in the deepest water; Bay of Fundy, on muddy bottoms, in 10 to 90 fathoms; near Saint George's Bank, in 110 and 150 fathoms, mud. Off' the Scandinarian coast in 40 to 200 fathoms; Greenland ; Spitzbergen.

The tube is soft, flexible, slender, and corered with fine mnd.
Terebellides Stroeinin Sars. (p. 507.)
Beskriv. og Iakttag., p. 43 , Plate 13, figs. 31, a-d (teste Malmgren) ; Malmgren, Nordiska Hafs-Annulater, loc. cit., p. 396, Plate 43-43d, 1865.
East of Block Island, in 29 fathoms, sandy mud ; Bay of Fundr, 10 to 90 fathems, muldy; near Saint George's Bank, 85j to 150 fathoms. Greenland, 10 to 250 fathoms; Iceland ; Spitzbergen ; northern coasts of Europe; Adriatic Sea.

Amphitrite ornata Verrill. Pl. XVI, fig. So. (p. 320).
Terebella ornata Leidy, Marine Invertebrate 'Fanna of Rhode Island and New Jersey, loc. cit., p. 14 (146), Plate 11, figs. 44, 45 (setie), $185 \bar{j}$.
Great Egg Harbor, New Jersey, to New Harén and Vineyard Sound; common in sand and gravel at low-water mark.

Nicolea simplex Verrill, sp. nor. (p. 321.)
Body elongated, swollen anteriorly, especially above, attemuated posteriorly. Head with a rather large, well rounded, or nearly circular frontal membrane, which has a smooth margin; mouth with a small
posterior fold. Tentacles very mumerous, crowded, long, and slender. Branchiæ four, rather small; those of the anterior pair somewhat the larger ; those of both pairs are repeatedly dichotomously divided from close to the base. The divisious are short and not very numerous, and diverge at a wide augle. Fifteen segments bear small fascicles of slender setæ, commencing at the next behind the last branchiferous segment. The third and fourth setigerous segments of the male bear small, slender lateral cirri. Ventral shields abont thirteen; the first six transversely oblong, and nearly equal in width; the last seven narrowing rapidly to the last, which is acutely triaugular. Color, when living, light red, or flesh-color.

Length, $35^{\text {mm }}$; diameter, $3^{n u m}$ to 4^{mm}.
New Haven to Vineyard Sound, from low-water to 6 fathoms; off Watch Hill, 4 to 6 fathoms, in tubes composerl of bits of shellsaud graius of sand, attached to Laminarice.

Scronopsis Verrill, gen. nov.
Body composed of numerous segments, of which 17, following the third, bear fascicles of slender sete, and the following ones have only small uncigerous lobes; second and third segments bear branchix, and have their anterior margins prolonged into membranous, collar-like expansions; that of the second forming broad, lateral lobes behiud the tentacles; that of the third forming behind the branchire a dorsal collar or sheath, beueath which they can be retracted. Branchia typically four. Those of the first pair usually larger, but generally one or more are absent, and frequently the anterior oues are smallest, or those of the same pair may be unequal, owing probably to the facility with which they may break off and be reproduced ; they are palmately branched and supported on elongated pedicels. Tentacles numerous and crowded.

This genus is allied more closely to Pista than to any other yet described, but differs in the structure of the branchie and character of the collar formed by the third segment.

Scronopsis palmata Verrill, sp. nov. (p. 321.)
Body elongaterl ; rather slender; thickened but not distinetly swollen anteriorly, tapering gradually to the posterior end. The setigerous feet commence at the fourth segment, or next behind the branchial collar, and are all quite prominent, the first three or four being a little smaller than the rest; the seta are rather long. The uncigerous feet commence on the second setigerous segment. Behiud the last setigerous segment the uncigerous feet are smaller, somewhat prominent, and extend to the aual segment. Ventral shields about 20 ; the mostanterior ones are transversely oblong; the succeeding ones squarish, gradually tapering to the last, which are very narrow. Anal segment tapering; its orifice with a crenulated margin. Branchiæ large, with numerous palmate divisions
arising from the summit of the stout and rather long pedicels.* There are usually five or more main divisions in good-sized specimens, these spread outward from one point, are recurved at the ends, and flexnous and bipinnately branched, the lower pinna being longest each time, and the ultimate divisions very mumerous, fine, slender, and acute. The branchix of the posterior pair, in normal specimens, are considerably smaller, with the divisions less mumerous, and the ramuli longer and more delicate. The pedicels of the anterior branchice are about as long as the diameter of the body, and are very contractile, as well as the branches, so that the gills can be contracted into a small compass and withdrawn under the dorsal collar, beneath which the pedicels arise. This branchial collar is formed by the prolongation of the margin of the third segment; on each side of the median line above, it is divided into tro narrow, lanceolate processes directed forward; exterior to these there are two other wider and usually less prominent angles or lobes; laterally, the collar is prominent, with a broadly rounded, thin margin, which forms another angle on each side beneath; on the ventral side its edge recedes and is but little raised. The tentacular collar, formed by the second segment, expands into a broad, rom side; and on the ventral surface becomes narrower, thongh still prominent, and recedes in a broad, rounded sinus behind the posterior lobe of the mouth. The cephalie segment is bordered by a rather broad frontal membrane, emarginate above, and broadly rounded laterally. Tentacles rery numerous, long, and slender. Color, light red, brownish red to dark reddish brown; the ammations often darker; the upper surface is usually more or less specked with flake-white; along each side, below, there is usually a row of squarish spots, brighter red than the rest of the body, each pair connected by a narrow, transverse line of red between the rentral shields, which are dull yellowish red; the segments along the sides are often bordered with red; branchie nsually green, specked on the outcr sides of the branches with flake-white, and with internal blood-red vessels, showing distinctly in all the divisions; the pedicel is usually bright red; tentacles, flesh-color.

Length up to 70^{mm}; diameter, 3^{mm}.
Great Egg Marbor to New Haven and Vineyard Sound ; low-water mark to one fathom.

Leprea rubra Verrill, sp. nov. (p. 38.)
Body elongated, somewhat swollen anteriorly, rapidly tapering to the very long, slender, posterior portion. All the segments posterior to the branchic bear small fascicles of slender setie, as well as uncini ; posterior to the twenty-fifth setigerous segment the uncigerous fect become-

[^14]much narrower and more prominent; anteriorly they are very broad. Ventral plates rather broad anteriorly, those posterior to the seventh or eighth suddenly narrowed. Branchiæ in three pairs, small, finely arborescently divided, the divisions numerous; posterior pair considerably smaller than the others. Cephalic lobe with a somewhat prolonged. froutal border, broadly rounded in front, with an entire margin. Color bright red; tentacles flesh-color.

Length, 50^{mm} or more; diameter, 2.5^{mm} to 3^{mm}.
Vineyard Sound; Wood's Hole on piles of wharves just below lowwater mark.

Polycirrus exinius Verrill. Plate XVI, fig. 85. (p. 320).
Torquea eximia Leidy, op. cit, p. 14 (146), Plate 11, figs. 51, 52 (setie), 1855.
In this species there are twenty-fice setigerous segments, bearing small fascicles of long, slender setre ; about seventy posterior segments bear uncini only ; anteriorly the uncini commence on the eighth setigerous segment. There are nine rentral shields, divided by a median rentral sulcus. The frontal lobe of the head is large, elongated oral or elliptical. The posterior lobe of the mouth is large, rounded. Body: and tentacles bright blood-red; the body is often more or less yellowish. posteriorly.

Great Egg Harbor to New Haren and Vineyard Sound; low-water to 10 fathoms.

A species of this genus was also dredged in 19 fathoms off Gay Head, but its identity with the above is uncertain. Another species, remarkable for its brilliant blne phosphorescence, is common in theBay of Fundy. The P. eximius does not appear to be phosphorescent.

Chetobranchus Yerrill, genus nov.
Allied to Polycirrus and, like the latter, destitute of blood-vessels. Body much elongated, composed of rery numerons segments, nearly all of which bear fascieles of setr. Segments of the middle region bear simple, or more or less branched, branchial cirri, each of their divisions tipped with slender seta; these cirri are wanting on the anterior and posterior segments, the first and last ones being smaller and more simple than the rest. The cephalic segment expands into a broad, tentacular or frontal lobe, which is rounded or emarginate anteriorly, and often more or less scolloped laterally. Tentacles crowded, very numerous, long and slender in extension, capable of being distended by the blood, as in Polycirrus, \&e.

Chetobranchus sanguineus Verrill, sp. nov. (p. 320.)
Body greatly elongated, much attenuated posteriorls, more or less. swollen anteriorly, but narrowed toward the head, the thickest portion being usually between the tenth and fifteenth segments. The branchial cirri commence at about the ninth segment, those of the first pair being short, simple cirri; those on the next segment are once forked; those on
the next have three or four branches; farther back they divide dichotomously above the base into mumerous branches, all of which are supported upon a short basal pedicel, which may be a little elongated in expansion, the total length of the branchise being then greater than the diameter of the body; the branches are clustered, slender, delicate, and elongated, and each one is terminated by a small fascicle of slender, sharp, serrate setie two to fom or more in a group, so that the entire appendage may be regarded as a very remarkable enlargement and modification of the setigerous lobes of the "feet."

On the segments anterior to the ninth the setigerous lobes of the feet are short, conical, swollen at base, and bear a small faseicle of sete; the rentral surface of the anterior segment is somewhat raised, and divided by a series of sulei or wrinkles into several lobes or crenulations, which are somewhat prominent and papilliform at the posterior margin of each segment, and have a grannlous smrface. There is a distinct median rentral sulcus. Between the adjacent branchial eirri anteriorly there are, on each side, four or more thickened, somewhat raised, squarish organs, with a granulous and apparently glandular structure ; farther back these are reduced to two, then to one, and finally disappear on the segments of the posterior region, which is very long, slender, attenuated, composed of rery numerons short segments, with only rulimentary appendages; after the branchial cirri become reduced to simple processes they still continue, on about forty segments, gradually decreasing in length and size; beyond this small seta still exist on the segments, till near the end of the body. Anal segment small and simple, the orifice with slightly crenulated margins. Frontal membrane large and broad, versatile in form, often with a deep emargination in front, each lateral lobe divided into two or three subordinate lobes, or unequal scollops, the edges undulated; at other times the front edge and sides are broadly rounded and entire. The mouth is furnished with a large elongated orate lobe, which is rounded, free, and prominent posteriorly. Tentacles very long, much crowded, and very numerous; in extension usually as long as the body. Color of bods, anteriorly, deep blood-red; posteriorly, more or less motthed or centered with yellow, owing to the internal organs showing through the integument; tentacles and branchial cirri bright blood-red.

Length ul, to 350^{mm}; diameter 5^{mm} to 7^{mm} or more anteriorly; length of tentacles, in extension, 400^{mm} or more.

Great Egg Harbor to New Haren and Vineyard Sound; common at low-water mark, in mud.

Potamilla oculifera Verrill. Plate XVII, fig. SG. (p. 329).
Sabclla oculifera Leidy, op. cit., p. 13 (145), Plate 11, figs. 55-61, 1855.
Great Egg Harbor to New Haren; Vigeyard Sound, low-water mark to 25 fathoms, off Buzzard's Bay. In the Bay of Fundy from low-water mark to 60 fathoms.

Closely related to P. reniformis of Northern Europe, and possibly identical with it.

Sabella micropithalma Verrill, sp. nov. (p. 323.)
Bodyrather short and stout, narrowed slightly anteriorly, tapering rapidly close to the posterior cud, composed of about sixty segment, depressed, moderately couvex above, flat below, especially wheu preserved in alcohol; anterior region composed of eight setigerous segments, having moderately long fascicles of setie ; posterior region composed of about fifty short segments, bearing rery small fascicles of sete ; anal segment small, simple, with two very small ocelli-like spots; ventral shields of • the anterior segments short, trausversely narrow, oblong ; median sulcus very distinct in the posterior region, dividing the ventral shields into two nearly rectangular parts, which are broader than long. Branchix numerous and long, often half as long as the body, connected by a slight web close to the base; the stalks smooth, with mmerous minnte ocelli, in two irregular rows; pinnæ numerous, long and slender; tips of the branchire without pinnæ. Collar broadly interrupted above, flaring and reflexed at the sides, with ronnded upper angles, erect and sinuous at the latero-ventral margins, reflexed below, forming two short, rounded lobes, separated by a narrow but deep central sinus, within which there is a short bilobed organ. Tentacles thin, lanceolate, acute, in preserved specimens not so long as the diameter of the body. The anterior segment is divided by a deep dorsal sulcus, which is not conspicuous on the succeeding sogments. Color of body greenish yellow, dull olive-green, or greenish brown; branchire pale yellowish, greenish, or flesh-color, often with numerous transverse bands of lighter and darker green, which extend to the pinne, and sometimes blotehed with brown; collar translucent, specked with flake-white; ocelli dark reddish brown. Specimens, apparently belonging to this species, were taken from wood bored by Teredo, near New Haven. These had the body olive-green, specked with flake-white anteriorly, on the ventral side, especially on the first two segments ; branchie mottled with greenish brown and white and specked with flake-white ; ocelli brown, numerous.

Length, 30^{mm}; diameter, 2.5^{mm} to 3^{mm}. Preserved specimens are about 20^{mm} long, 2.5^{mm} broad.

New Haren to Vineyard Sound ; low-water mark to 5 fathoms.
Euchone elegans Verrill, sp. nov. Plate XVI, fig. 84. (1. 432).
Body rounded, slender, gradnally tapered backward; the anterior region, which forms about one-half of the entire length, consists of eight setigerous segments; these are biannulated and divided by a dorsal, longitudinal sulcus, and by a lateral sulcus on each side below the uncigerous lobes. The middle region consists of thirteen shorter bianuulated segments, which bear small fascicles of setæ on the lower rami; these are divided by a rentral sulcus, and also by the lateral ones. The caudal region consists of about ten very short seg. ments ; all of which, except the last, bear small fascicles of setre. These segments are margined by a rather broad membrane, wider and rounded
anteriorly, narrowing to the end. Collar broad, with a nearly even margin, often somewhat sinuous at the sides, divided above and below, the lobes rounder at the angles. The collar is a little broader below than above. Branchias long, slender, recurved in expansion, connected by a broad and very thin membrane, continued as thin borders of the branchia to their tips, which are destitute of pinna for some distance. Body pale flesh-color, with a darker median line, reddish anteriorly, darker greenish or brownish, posteriorly; branchise pale yellowish or greenish, each with a flake-white spot near the base outside. Other specimens were greenish gray, with green branchie. Some were flesh. color, with a bright-red dorsal ressel ; the branchise flesh-color, without the white spots at the base.

Length, in extension, about 20^{mm}; diameter of body, 1.5^{mm}.
Deep water off the mouth of Vineyard Sound; off Martha's Vineyard, in 21 and 23 fathoms; off Block Island, in 29 fathoms, sandy mud, abundant. Coseo Bay, 7 to 20 fathoms.
This species makes slender tubes, covered with fine sand.
Fabricia Leidyi Verrill, sp. nov. (p. $3 \geqslant 3$.)
Bods very small and sleuder, tapering a little to both ends, in extension considerably exsert from the slender tube; eleren segments bear fascieles of setie; the segments are about as long as broal, slightly constricted at the articulations, with the anterior margin a little prominent; anal segment small, tapered to a blunt point, beariug two small, dark ocelli. Branchise six, subequal, forming three symmetrical pairs, each one with tive to seven slender pinne on each side; the basal pime are about as long as the main stem, the others successively shorter, so that all reach to about the same level. Tentacles short, thick, bluntly rounded at the end, strongly ciliated. At the base of the branchie, on each side, is a rell, pulsating vesicle, the pulsations alternating in the two ; just back of these, on the first segment, are two brown ocelli; a little farther back, and near together, on the dorsal side, are tro auditory vesicles, each with a round central corpusele. The fourth and eleren succeeding segments bear small fascicles of acute, bent setre, about as long as half the diameter of the body ; on the middle segment there are about four or five setar in a fascicle; on the niuth, three; on the tenth, two; on the eleventh, one or two, in the specimens examined. Intestine rather wide, but narrowed at the eighth setigerous segment, and after that slender, bordered by a red blood-vessel on each side. In the fourth setigerous segment there are three globular granulated organs. color, yellowish white, tinged with red by the circulating fluid.
Length about $3^{\text {mum }}$; diameter about $0.25^{\text {mim }}$; expause of branchix, 0.8^{mm}. The specimens measured may be immature.
New Haven to Vineyard Sound, common at and below low-water mark; Cisco Bay.

Serpula dianthus Verrill, sp. nov. (p. 322.)
Body elongated, gradually attenuated to the posterior end; the posterior region considerably flattened; dorsal surface covered with minnte papillæ and having a finely pubescent appearance undera lens. Collar broad and long, in living specimens sometimes one-third as long as the body; the posterior portion free dorsally, and in expansion about as long as the attached portion, extending backward and gradually narrow. ing to the end; the margins thin and undulated; the anterior border is dirided into a broad revolute dorsal lobe, with an undulated margin, and two narrower lateral lobes, which are broadly revolute laterally, with the margin rounded and nearly eren. Seven segments bear rather large fascicles of long, acute setr. The first fascicle is remote from the next, and directed dornward and formard, with the setse longer than in the others; the six following fascicles are broad, and are directed downward and backward. The uncinate setæ form long transverse rows anteriorly, but toward the posterior end they form short rows. Operculum funnelshaped, longitudinally striated externally, with a long, slender pedicel ; the upper surface is concare, with about thirty small, acute denticles around the margin; an inner circle of about twelve long, slender papillie, incurved at tips and united at base, arises from the upper surface of the operculum. On the left side is a small rudimentary operculum, club-shaped at the end, with a short pedicel. Branchire are long rather slender, united close to the base, about eighteen on each side, in mature specimens, those toward the ventral border considerably longer, than the upper ones; tips naked for a short distance, slender, and acute; pinne very numerons, slender. Colors quite variable, especially those of the branchia; the branchio are frequently purplish brown, transversely banded with flake-white, alternating with jellowish green, the pinure usually having the same color as the portion from which they arise; on the exterior of the branchire the purple bands are often divided by a narrow longitudinal line of whitish; operculum brownish green on the outer surface, purplish on the sides, with white longitudinal lines toward the margin, greenish white at base; pedicel purplish, banded with white; collar pale translucent greenish, veined with darker green; body deep greenish yellow, the dorsal surface light yellow. Many other styles of coloration occur, some of which are described on page 322.

Length up to 75^{mm}; diameter about 3^{mm}.
Great Egg Harbor to New Haren and Cape Cod ; low-water mark to S fathoms.

The tubes are long, varionsly crooked, and often contorted, sometimes solitary, frequently aggregated into masses four or five inches in diameter. They are nearly eclindrical, with irregular lines of growth, and sometimes with faint carinations.

Serpula dianthus, var. Citrina Verrill. (p. 322.)
I have applied this name to a very marked color-variety, in which the
branchix are lemon-yellow or orange-yellow, without bands, but usually with a reddish central line; the opereulum is nsually yellow; collar and base of branchise bright yellow; borly light yellow.

Found with the preceding, and often in the same cluster of tubes.
Vermilia (?), species undetermined. (p. 416.)
The species thus indicated forms slender, more or less crooked, angular tubes, with two distinet carinations on the upper surface; they are about half an inch long, attached firmly by one side along their whole length. The branchia forma wreath, with about six on each side; pinna long and slender; two or more of the branchic bear pink, sack-like appendages. The branchie are reddish brown, annulated with narrow bands of white.

Diameter of tubes, abont $1.25^{\text {min }}$; of expanded branchix, 4^{mm}. The specimens have been lost, and no observations were recorded concerning the operenlum, so that the genus is still uncertain.

Long Island Sound, off New Haven, in 4 to 6 fathoms, on shells.

Spirorbis burealis Daudin (?).

Rec. des mém. de mollusques, 1800. Serpula spirorbis Linné, Systema Naturee,
ed. xii, p. 1265. (?) Spirorbis spirillum Gonld, Invertebrata of Mass., ed. i, p. 8 ,
1841; A. Agassiz, Annals Lyceum Nat. History of New York, vol. viii, p.
318, Plate 7, figs. $20-25$ (embryology), 1866 (not of Linné aud other Europeau
writers).
New Haren to Cape Cod, the Bay of Fundy, and northward; abundant on Fucus, Chondrus crispus, and other alga, at low-water mark.

Whether this, our most common species, be identical with the European species known by this name is still uncertain.

The animals of the varions species of Spirorbis are still very imperfectly known, and many species have been described from the tubes alone. Accurate descriptions or figures of the animals are necessary. before the species can be determined satisfactorily.

This species has nine branchie, five on one side and four on the other, with the operculum. The brauchia are large and broad with long pinne, the basal ones shorter, the distal ones increasing in length to near the encl, so that each branchial phume is somewhat obovate in ontline; the tips are naked only for a short distance. The branchial wreath, in full expansion, is about as broad as the entire shell. The operculum is oblique and one-sided, and supported on a long clarate pedicel, which is transrersely wrinkled, and expands gradually into the operculum at the end, the enlargement being chiefly on one side; the outer surface is ronghly gramulous and usually covered with adhering dirt. The collar is broad, and has three fascicles of setie on each side. The branchiae are pale greenish white, centered with brighter green, due to the circulating fluid.

This is the species mentioned in the early part of this report (p.332) under the name of S. spirillum. The true spirillum of Linné as at translucent tube, and is found in deeper water, on hydroids, \&e.

Spirorbis lucidus Fleming.

Edinburgh Encyclop., vol. vii, p. 68; Jolnston, Catalogne of Britislı Non-Parasitical Worms, p. 349 ; Malmgren, Annulata polychreta, p. 123. Serpula lucida Montagn, Test. Brit., p. 506 (t. Johnston). Serpula porrecta Fabricius, Fauna Grœenlandica, p. 378 (non Miiller). Spirorbis sinistrorsa Montagu, op. cit., p. 504; Gould, Invertebrata of Massachnsetts, ed. i, p. 9, Plate 1, fig. 4, 1841.
Deeper parts of Vineyard Sound, near the mouth, in 10 to 12 fathoms, on hydroids and bryozoa; off Gay Mead, 10 fathoms; off Buzzard's Bay, in 25 fathoms, on Caberea Ellisii; off Block Island, in 29 fathoms, on Caberea ; Casco Bay, 6 to 20 fathoms, on algre, \&c. ; Bay of Fundy, 10 to 50 fathoms, on lydroids; Saint George's Bank, 30 to 60 fathoms. Greenland; northern coasts of Europe.

This species forms small, translucent, glossy, reversed spiral tubes, coiled in an elevated spire, the last whorls nsually turned up, or even erect and free.

There are six branchie, which are large and broad, with long, slender pinnæ, which do not decrease in length till near the end; the naked tips. are short and acute. The operculum is sub-circular, somewhat obliquely attached to the slender pedicel, which is abont half as long as the extended branchix, and enlarges rather suddenly close to the operculum; the outer surface of the operculum appears nearly flat, and is covered with adherent dirt. The collar is broad, with undulated and revolute edges. The three fascicles of setæ are long and slender. Ocelli two, conspicnous. The animal, in expansion, is usually much exsert from the tube. Anterior part of the body bright red ; branchiæ pale greenish; their bases and posterior part of the body bright epidote-green.

It is the species catalogued as S. porrecta (?) on pages 498 and 504.
OLIGOCHATA.
Clitellio irrorata Verrill, sp. nov. (p. 324.)
Body very slender, the largest about $60^{\mathrm{mm}} \mathrm{long}, 0.75^{\mathrm{mm}}$ in diameter, distinctly annulated. Head conical, a little elongated, subacute; setre. commencing on the first segment; those on the anterior segments in fascicles of two or three, very short, small, in length not one-third the diameter of the body, more or less curved like an italic f, obtusely pointed at the end; some of them are but slightly bent at the tip, others. are strongly hooked; farther back there are three or four sete in the fascicles, and they are somewhat longer, and two or more in many of the fascicles are forked, the others simple, spinous, more or less curred; in the upper fascicles posteriorly, and sometimes throughont the wholelength, there are two or three much longer, very slender, hair-like, flexible bristles, but these are often absent from most of the segments, perhaps accidentally. The intestine is voluminons, slightly constricted at the articulations; two bright red blood-vessels, distinctly visible through the integuments, run along the intestine, one abore and one below, following its flexures, withont contractile lacunte.

New Haven to Wood's Hole and Caseo Bas, under stones in the mpper part of the fucus-zone, and nearly up to high-water mark.
The above description was made from living speeimens taken at Sarin Rock, near New Haven.
Some of the specimens obtained at Wood's Hole appear to differ somewhat from this description, but the differences may be chiefly due to their being taken in the breeding season. In these the anterior faseicles consist of two short sete, which are slightly curved in the form of an italic f, and are subacute, not bifid at tips. At the ninth to twelfth setigerous segments a thickening oceurs, forming a clitellus; on the ninth segment the sete are replaced by a small mammiform, bilobed orgau; on the tenth there is a pair of prominent obtuse papille, swollen at base. On the posterior segments only two setie were observed in each of the four fascicles, but they were longer, more slender, and more curved at the tip than the anterior ones. In each of the segments slender cecal tubes, forming about two loops on each side, were noticed. Length, about 35^{mmm}.

Lumbriculus tenuis Leidy.

Marine Invertebrate Famna of Rhode Islaud and New Jersey, p. 16 (14*), Plate 11, fig. 64, 1855.
Point Judith, Phode Island, abundant aborit the roots of grasses on the shore of a sound (Leidy). We did not obtain this species.

Halodrillus Verrill, genus nov.
'Body long and slender. Blood white or colorless. Sctie small, acute, in four fan-shaped fascicles on each segment. The alimentary canal consists of a priform phargnx, followed by a portion from which sereral (five to seven) romded or pyriform cacal lobes, of different sizes, arise on each side and project forward and outward; these are followed by a large two-lobed portion, beyond which the intestine is constricted then thickened and convoluted, and covered with polygonal, greenish, glandular cells, which become fewer farther back, where the intestine becomes a long, narrow, convoluted tube. In the anterior part of the body, around the stomach and ceecal lobes, there are numerous convolutions of slender tubes. The blood-vessels ruming along the intestine contain a colorless fluid.

IIalodrillus littoralis Verrill, sp. nov. (p. 324.)
Body round, sleuder, moderately long, tapering to both ends, but thickest toward the anterior end, tapering more gradnally posteriorly. Head small, conical, moderately aeute, or obtuse, according to the state of contraction; month a transrerse, slightly sinuous slit beneath. The setie commence with four fascicles on the first segment behind the buecal; the setae are slightly eurved, forming rounded, fan-shaped fascieles of four to six setae, the middle setie being longer than the upper and lower ones; posteriorly the setre are less munerous. Candal segment
tapered, obtuse, or slightly emarginate at the end, with a simple orifice. The blood contains minute, oblong corpuscles. Color milk-white. Length, 25^{mm} to 40^{mm}; diameter, 0.5^{mm} to 1^{mm}.

New Haven ; Wood's Hole; Casco Bay, Maine; very common under dead sea-weeds and stones near high-water mark.

Enchytr eus triventralopectinatus Minor.

American Journal of Science, vol. xxxv, p. 36, 1863.
In this species, according to Minor, there are three pairs of rentral fascicles of sete before the dorsal ones commence; the pharynx extends to the fourth pair of ventral fascicles, from which a narrow oesophagus extends to a little back of the sixth pair; here a gradual enlargement of the alimentary canal occurs, ending abruptly just back of the eighth in a narrow, twisted tube, and this gradually enlarges at the ninth rentral fascicle into a moderate sized alimentary canal. No ejes. Length, about $10{ }^{\mathrm{mm}}$.

New Haven, near high-water mark (Minor).

BDELLODEA.

Comparatively few leeches have hitherto been met with in this region. Many additional species, parasitic on fishes, undoubtedly remain to be discorered.

Branciliobdella Ravenelif Diesing. Plate XVIII, fig. S9. (p. 45S.)

* Sitzungsberichte der kais. Akad. der Wissenschaften, Wien, xxxiii, p. 482, 1859. Phyllobranchus Ravenelii Girard, Proceedings of the American Association for the Advancement of Science for 1850 , vol. iv, p. 124, 1851. (?) Branchellion Orbiniensis Quatrefages, Annals des sci. natur., sér. 3, vol. xviii, pp. 279-325, Plate 6, figs. 1-13, Pl. 7-8, 1852 (anatomy).
In describing this species Mr. Girard mistook the anterior for the posterior end, and described the large posterior sucker, or acetabulum, as the head. The color is dark brown, purplish, or dark violaceous, specked with white.

Vineyard Sound, on a stingray (Myliobatis Freminvillei), in sereral instances; a number usually occurred together. Charleston, South Carolina, on a " skate," species unknown (Girard). Atlantic Ocean, on a torpedo (Quatrefages).

Cystobranchus vividus Verrill. (p. 455.)
American Journal of Science and Arts, ser. 3, vol. iii, p. 126, fig. 1, 1872.
New Haven, on the minnow (Fundulus pisculcntus), both in fresh and brackish water; November and December.

Ichthyobdella funduli Verrill. (p. 45s.)
American Journal of Science and Arts, loc. cit., p. 126.
New Haven, ou Fundulus pisculentus, with the last.

Borly, in extension, long and slender, rombled, thickest hehind the middle, attenated anterionl: Acetabulum nearly cireular, not much wider than the borly. Head small, obliguely truncated, romeded. Cobor dark olive, with a dow of sumare or oblong white spots along each side: head and acetabulum whitish, tinged with green. The young are reddish brown.

Length, 30^{mm} to 40^{mm}; diameter, $1.5^{m m}$ to - $^{2 m m}$.
Vineyand Somal, on the ocellated flomder, (Chenopsettu ocelleris. .
Postombilla, species undetermined. (p. 4.58.)
body slemder, eylmdrical, strongly ammated; the largest seen was abont $12^{\text {mm }}$ long and $0.75^{m i n}$ in diameter when extended. Head oblignely campanulate, attached by a narrow pedicel-like neck. Acetabulnm obligue, romm, only a little wider than the hody. Color pale greenish or greenish white, with scattered microseopic specks of hlackish. No distinct ocelli, but there are several dark stellate pigment-spots on the head, similar to those on the body. Perhaps all the specimens are immatme.

Sarin Rock, New Haven, on Mysis Americemus, below low-water mark.

Mrzobdella lugubris Leidy. (p. 45s.)
Proceedings of the Academy of Natural Scimees of Philadelphia, vol. v, p. 243 , $1 \leq 51$; Diesing, op. cit., p. 489.
Parasitic on the edible crab (Callinectes hastatus), attached abont the bases of the legs. We have not ohtaned this species on the roast of New England, but it may be expected to ocem liere.

Body stont, broal, thick, consex above, flat below, broalest near the posterior end, uarrowing somewhat anterions; the front broadly romeded, with a mediam rertical slit, in which the month is sitnated. Acetabulum large, rombled, about as broad as the body. Intestine consolnterl posteriorly, visible throug the integment. Between the intestine and lateral margins, especially posteriorly, the skin is covered with small stellate spots, looking like openiugs, within and aroum which are large numbers of small romm bodies. like ova. Color yellowish white.

Salem, Massachusetts; Long lsland Nomed ; batasitic in the branchial cavity of the long clam (Mya erentria).

Malacobdella grosxa Leidy, Proceedings Academy Natural Sciences of lhiladelphia, Fol. v, p. 209 (now Blainville).
Borly, in extension, elongated, whong, with neally parallel sides, or tapering slighty anteriorly : anterior end broal, obtnsely romided, 23 V
emarginate in the center, bat not deeply fissmed. In contraction the body is broader posteriorly. Dorsal surface a little consex; lower side side flat. Acetabulum romed, rather small, about half the diameter of the body in the contracted state, but nearly as broad when the body is fully extented. The intestine shows throngh the integiment distinctly ; it is slender, and makes abont seven turns or folds. Color pale rellow, with minute white specks beneath and on the upper surface anteriorly, giving it a hoary appearance; middle of the dorsal surface irregularly marked with hake-white; laterally reticulated with fine white lines.
 IS $S^{1 m n}$ long ; $5^{m m}$ to $6^{m m 1}$ wide.

New Haren, parasitic in the branchial cavity of the romd clam (Tenus mencentrit), October, 1571. Philadelphia, in the same clam (Leidy).

GYMNOCOPA.

Tomopteris, species untetemined. (p. 453.)
Voung specimens of a species of this genns were taken in the erening in Vineyard Sonnd. They are too immatme for acemate identification.

A large and fine species of Tomopteris was taken by Mr. S. I. Smith, in Eastport harbor, in July, 1852. This was abont $40^{\text {min }}$ in length. An excellent drawing of it was made by Mr. Emerton from the living specimens. It is, perhaps, the adnlt state of the Vinefard Sonnd species.

CHETOGNATHA.

Sagitfa elegans Verrill, sp. nov. (p. 410.)
Body slenter, thickest in the middle, tapering slightly toward both ends. Head somewhat broader than the neck, aud about equal to the body where thickest, slightly oblong, a little longer than broat, obtuse, rounded in front or sub-truncate, sometimes with a slightly prominent small central lobe or papilla; the anterior part of the head rises into a crest-like median lobe considerably higher than the posterior part; ocelli two, minute, widels separated, on the posterior half of the head; the anterior lateral borders of the head are slightly crenulated. The fascicles of setre or spinules on the sides of the heal each contain abont eight seta, which are considerably curved, with acute tips, aml reach as far as the anterior border of the heat. Caudal fin orate; its posterior edge broadly rounded. The posterior lateral fins commence just in adrance of the oraries, and extend back considerably beyond them, so as to leave a naked space somewhat less than their length between their posterior euds and the cautal fin ; on this naked part, just in advance of the cantal fin, are two small, low, lateral papillie comected with the male organs; two other smaller papille are situated at about the posterior third of the lateral fins. The median lateral fins are about equal in length to the posterior ones, and separated from them by a
maked space less than thein own length ; the distance fiom the anterion emb of the midhle fins to the anterior border of the head is efrat to twiee the length of the fins; the length of the latter is about one-sixth of the entire length of the boly. The color is translacent whitish, nearly diaphamons.

Length, about, $16^{\circ \mathrm{mm}}$; diameter, abont 0.9^{mm}.
 among sielpue, September s, in the day-time.

Sagitas, species muletermined. (p. 440.)
A much larger and stonter species than the preceding was taken in abundance by Mr. Vinal N. Etwards, in Vineyatl Somul, at varions dates, from Jamary to May.

Its lengil is generally $25^{-m n}$ to 30^{mm}. I have not seen it living. GEPIIRLEA or SHPUNCLLOIIS.

Phascolosoma camentarius. Verrill Plate NTHI, fig. 93. (p. 416.)
Sipunculus cementarius Quatrefages, op. cit.. vol. ii, p. 623, 1-1i5. I'huscolosoma Bernhardus I'ourtales, l'roceedings Amurican Association for Advancement of Science for 1-i) p. 41, I Sis. Sipunculus Beruhurdus Stimpson, Invertebrata of (Hrand Man:m, p. D゙ (non Forbes.)
Deeper parts of Vineyarl Somel, 10 to 15\% fathoms; off Block Islant, 29 fathoms; Bay of Fundy, 2 to 90 fathoms, abundant; near Saint Georgès Bank, fo to 430 fathoms.

PuAscolosoma, species undetermined. (p. 353.)
A species similar to the last in size and form, with a thick integument, thickly covered thronghout with small romded papillic or granules, but without the dark chitinons hooks seen on the posterior part of the latter.

Vineyard Sound.
Phascolosona Gotidi Diesing. Plate NVIII, fig. 93. (1). 353.)
Revision der Rhyngodeen, op. cit., p. 764, 1559. Sipunculus Gonldii l'onrtales, Irocedings of American Association for the Alvancement of Science for $1 \approx 51$, vol. v, p. 40, 1*52; Keferstein, Zeitsehrift fïr wissenselaftliche Zoologie,

New Haren to Massachusetts Bas, at Chelsea Beach; common in samd and gravel at low-water mark.

> SCOLECHOA.

TUREBELLARIA.

RHABDOC(ELA OE NEMERTEANS.

Balajoglosstes aurantiacus Fervill. (p. 351.)
Stimponia anromtiaca Gibarl, Procerdings Academy of Natmal Sevences ot Philadelphia, vol. vi, p. 367, 1~54. Lalanoglossus fionulershii A. Agassiz, Memoirs American Acalemy of Arts and Sciences, rol. ix, p. 421, Plates 1-3, 1873.
Fort Macon, North Carolina, to Naushon Island. Charleston, Sonth

Carolina (Girard). Newport, Rhode Island, to Beverly, Massachusetts (A. Agassiz). In sand between tides.

A reexamination of living specimens of the southern form will be necessary before their identity with the northern one can be positively established. I am unable to separate them with preserved specimens. Sce page 351 ; also American Jommal of Science, ser. 3, vol. v, p. 235.)

Nemertes socialis Leidy. (p. 324.)
Marine Invert. Fanua of Rhode Island and New Jersey, p. 11 (143), 185.5.
Great Egg Marbor to New Haven aud Vineyard Soumd. Very common under stones, between tides.

Nemertes viridis Diesing.
Sitzungsberichte der kais. Akand. der Wissenschaften, vol. xlv, 1. 305, 1862. I'lunaria rividis Miiller, Zö̈l. Dan. Prodromus, 2384, 1726 (t. F:als.) ; Fabricius, Fauma Grenlandica, p. 324,1880 . Votospermus riridis Diesing, Syst. Helminth, vol. i, p. © 20,1850 . Jemertes oliracen Johnston, Mag. of Zoology and Botany, vol. i, 1. 5.36 , 1ll. 18, tig. 1. Borlasia olivacea Johnston, Catalogne British Non-parasitieal Worms, p. 21, PI. 2b, fig. 1, 1865. Temertes obscura Desor, Boston Journal of Natural History, vol. vi, pp. 1 to 12, Plates 1 ant 2, 1843. P'olit obscurn Girard in Stimpson's Marine Invertelrata of Grand Maman, p. 29, 1853.
Body very changeable in form ; in full extension long and slender, sub-terete, tapering toward both ends, the length being sometimes 150^{mm} to 200^{mm}, while the diameter is 2^{mmm} to 3^{mm}; in coutraction the body becomes much shorter and stonter, more or less flattened, and obtuse at the ends, large specimens often being only 30^{mm} or 40^{mm} long and t^{mm} to $\bar{z}^{\text {mum }}$ broad. The head is flattened, more or less bluntly rounded, and is furnished with a row of small dark ocelli on each side, which vary in number and size aecording to the age, the large specimeus often having six or eight on each side, while the small ones have but three or four, and the rery romg ones have ouly a single pair. The lateral fosse of the head are long and deep, in the form of slits, and extend well forward to near the terminal pore. The latter in some states of contraction appears like a slight rertical slit or noteh, but at other times appeans cirenlar; the proboseis is long, slender toward the base, clavate toward the end, the terminal portion transversely winkled. The rentral opening or month is sitmated opposite to or a little behind the posterior ends of the lateral fosse ; it is ortinarily small and elliptical, with a distinct lighter colored border, but is capable of great dilation when the creature is engaged in swallowing some amelid nearly as large as itself.

In aleoholic specimens the body is ustally thickened and romderl anteriorly, more slender and somewhat flattened firther back, often acute at the posterior end; head obtnsely rounded or sub-trmeate, with a small terminal pore aud two lateral fossie, which are short and extend formard rery near to the terminal pore; rentral opening or month small and romd, situated slightly behind the posterior ends of the lateral fossee ; ocelli not apparent. The color, when living, is very variable,
most ammonly dark olivereren or hackish green above, and somewhat lighter below, the head margined with lighter ; fernently the color is dati liver-hrown or reddish brown, amd the back is nsually crossed by faint pale lines, phared at merual distances.

 F'mat!: and northwand to Labmalor and Greenland. Also on the northErn roasts of Emrope to (ireat Britain. Jbmanat maler stones between tides, amd in shallow water.

The specimens referred to on page 3 ± 2 as probably lolonging to Cerebrutulus, were most likely identical with this species.

Nbubntes (!) species matetermined (4). (1. 498.)
Borly alongated, moderately stont; hearl not distinct from the body. Color miform bright brownish red.
length, 2. $)^{m m .}$
Off Wiateh IHill, Rhode Island, among rocks, in 4 to (ifathoms. A species, apmarently the same, also ocomred in 2.5 fothons off linzarl's Bay.

This was red with two dark red spots anteriorly. No ocelli were detected.

Nemertes, (?), species madetermined (b).
Borly slemler, sub-terete ; head not distinct from borly. Ocelli inconspicuons, apparently abont thee in a row on each side of front of hearl. Color of heal aml body, above, brownish red, with a whitish ring around the neck, which recedes in the middle, above.

Lengeth, smin.
Oif Watch Mill, with the preceding.
This is, perhaps, a species of Cosmocephalde.
Nementes, species untetermined (c).
Borly sleuder; hearl not separated by a constriction. Ocelli vers mmerons, arranged in a long chaster on cach side of the head. Color uniform olive. green above and below.

Length, 3.5^{mm}; breadth, 1.3^{mm} to $2^{m m}$.
New Haven Harbor, on the piles of a wharf, in brackish water.
Tetrastemma abenicola Verrill, sp. nor: Ilate XIX, fig. 98. (1. 351.)

Body sub-teretr, lons, slember, slighty depressed, of nearly umiform width; the head is rery rersatile, usually sub-conical or lanceolate, flattened, occasionally becoming partially distinct from the borly by a slight constriction at the neck. Ucelli fom, those in the anterior pair nearer together. The lateral fossa are long and deep slits on the sides of the head; month or ventral pore small, often sub-triangular, situated just back of the posterior ends of the lateral fossie. Borly deep theshcolor or pale purplish. Length, abont $100^{m m}$, in extension.

Sarin Rock, near New Haven, in sand at low-water mark.
This species is, perhaps, not a true Tetrastemma. It is here only provisionally referred to that gemus.

Meckelia ingens Leidy. Plate NIX, figs. $96,96 \pi$ (1. 349.)
Mariue Invertehrate Fauna of Rhode Island and New Jersey, p. 11 (143), 1855. (?) Meckelia Pocohontas (iirard, Proceedings of Academy of Natural Sciences of Philatelphia, vol. vi, p. 366 , 18:2.
Fort Macon, North Carolina; Great Egg Harbor to New Haven and Vineyard Somm. Low-water mark to S fathoms. Charleston, Sonth Carolina (Girard).

Meckelia lactea Leidy. (p. 350.)
Procectings of Acatemy of Natural Sciences of Philadelphia, vol. v, p. 243, IF...t.
Great Egg Marbor to New Haven and Vineyard Somnd. Low-water mark to 10 fathoms. Perhaps the romg of the preceding species.

Mechelia rosea Leidy. (1. 350.)
Proceedings Academy Natural Sciences of Philadelphia, rol. v, p. 241, 18.51.
Great Egg Harbor to New Haven and Vineyard Somnd. Common in sand at low-water mark.

Meckelia lurida Verill, sp. nov. (1. 508.)
Body long, large, stout, much depressed thronghont, and thin posteriorls, somewhat thickened anteriorly. Head changeable in form, often acute; lateral fossse long. Ventral opeuing large, elongated. Proboscis long, slender, emitted from a terminal pore. In some specimens there was a slender, acute, candal papilla. Color deep chocolate-brown, with lighter margins. Length, 150^{mm} to 250^{mm}; breadth up to 10^{mm} or more.

Off Gay Mead, 19 fathoms, soft mud; ofi' Buzzard's Bay, 25 fathoms; off Block Island, 29 fathoms, saudy mud; Casco Bay, 10 to 68 fathoms.

Cerebratulus (?), species indetermined (a). (p. 50s.)
This is a dark olive-green species, with paler margins, the anterior part darkest.

Off Block Isiand, in 29 fathoms; off Gay Heat, in 19 fathoms, soft mud.

Cosmocephala ocmibacea Yemill, sp. nor. Plate NLA, figs. 95, 9ัa. (p. 325.)

Body elongated, moderately slender, somewhat flattened but thick, and with the margins romded, obtnse at both ends or snbacnte posteriorly; broadest and often swollen anteriorly ; gradnally and slightly tapering posteriorls; the integment is translucent and the intermal median organs show quite distinctly; lateral organs voluminous, extending the whole length of the body along each side, and showing throngh as dull yellowis! white mottlings. Itead contimons with the
body, ohtuse; a slight groote, usitally apmeatime as athitish line on each side, rmonsobiquely across the rental amd lateral surface of the head, diverging from the month and curving somewhat forward at the sides; terminal pore small and inconspicomos; month, or ventral pore, smatl. Ocelli momeroms, artaged as in the figme, but varying sombwhat in number. (See p. 32.F.) Color dull yellowish, or yellowish white, often tinged with deeper yellow or orange anteriorly, with the median line lighter ; a redlish internal organ shows throngh as an chongated red spot between the posterior ocelli.

Length, $50^{m m}$ to 70^{mm}; breadth, 2.5^{mm} to 3^{mmm}.
N゙ew Haven to Vineyand Somul ; under stones, between tides.

Body rather slender amd elongated in extension, usually broadest in the middle and tapering to both ends, but quite versatile in form ; lead not distinct, usmally obtuse; posterion end narrower, usmally obtuse or slightly emarginate : integument soft, secreting a large quantity of mucus; the lateral organs extend to the heat. Ocelli mumerous, variable in momber, usually eight or ten on each side, arranged in three paits of short, oblique, divergent rows, two to four in each; terminal pore of the head moderately large ; no lateral fossie could be thetected. There appears to be a terminal opening at the posterior end. Color dult yellow or pale orange sellow, sometimes brighter orange, especially anteriorly ; bosteriorly usually lighter, with a faintly marked dusky ou greenish median line.

Length, $25^{m \mathrm{~mm}}$ to $30^{m m}$ in extension ; brealth, 1.3^{mm} to 2^{mm}.
Great Egg Harbor to New Haven and Vineyard Sound ; low water mark to ${ }^{6}$ fathoms.

Monocelis Agilis Leidy: (p. Se: 2.$)$
Marine Invert. Fanna of Rhorle Istand and New Jersey, p. 11 (14:3), 1-5.5. Monops, (?) agilis Diesing, Sitzmgswerichte der kais, Akak, der Wisselnechaf-

New Hasen; Point Julith, Rhole Island, at low-water, creeping nu Irytilus colutis (Leidy).

ACELA CRENULATA Hiesing.
O_{p}. cit. p. 20:3. Acmoxtomum crenulatum S.hmarda, Nelu wirlell. Th., vol. i, 1. 1, : : Pl. 1, fig. : 2 (t. Diesing).

Hoboken, New Jersey, in backish water (Schmarda).

(FENLS LZXDETERTMN1:

Body rery long ans slender, almost filiform, slightly thatence, with rounded sides; the flat sides are longitudinally striated, the marrower romuled sides are marked with mmerons short, distinct, separate, tramsrerse lines or depressions, corresponding to opaque internal organs. In one of the smaller specimens one and is acute conical, terminated by a
slender incurved point; the other emd is obtnsely romded, depressed and translucent at the end, appareutly with a transverse orifice beneath. The largest specimen, and one of the smaller, has one end corresponding in form to that last described; the other is rounded, a little enlarged, subtruneate, apparently with a terminal orifice. A jellowish internal organ, with transrerse divisions, runs along each side interually. In life the color was grayish white, with four very slenter double longitudinal lines of dark slate-color.

Length of largest specimens, in alcohol, S $0^{m m}$; diameter, $0.7^{\text {mm }}$; smallest ones, 40^{mm}; diameter, $0 . \tilde{5}^{\mathrm{mm}}$.

Wood's Hole, swimming very activoly at the surface in the evening, June 29 and July 13, 1871.

This species was taken by Mr. S. I. Smith, who recorded the color. I did not observe it myself in the living state. The above description was made from preserved specimens. Its characters cannot all be made out satisfactorily with alcoholic specimens, and its generic and family affinities are uncertain. In generalappearance, when living and moving, it resembles Gordius and Rhamphogordius.

DENDROCGELA OR PLANARIANS.

Stilochopsis littoralis Verill, sp. nov. Plate XLX, fig. 99. (p. 3巳J.)
Body tlat with thin margins, very changeable in form, broal oval, elliptical or oblong, ronncled or sub-truncate at the ends, often with the margins untulated. The tentacles are small, ronnd, obtuse, translucent, each containing an elongated gronp of abont ten or twelve minute black ocelli on the anterior surface. The tentacles are sitnated at about the anterior fourth of the body, and are separated by about one-fourth of its breadth. Dorsal ocelli about eight, forming four groups of two each, in advance of the tentacles; marginal ocelli numerons, small, black, most conspicuons beneath, and most numerons on the anterior portion, arranged in two or more irregular rows near the margm, extending back to the middle of the sides or beyond. Color pale greenish or brownish yellow, veined or reticulated with lighter, and with a light median stripe posteriorly; beneath flesh-color, with a median elongated light spot, narowest in the middle, dne to internal organs.

Length, δ^{mm}; breadti, about 6^{mm}.
New Haren to Vineyard Somid; maler stones, between tides.
Playocera nebllosa Girarl. Ilate NIX, fig. 100 (1. 32.5.)
Proceedings of the Acatemy of Natural Sciences of Philatelphia for $1=5: 3$, vol. vi, p. $367,1854$.
Savin Rock near New Haven, moder stones at low-water. Charleston, S. C. (Giratel).

Lemtoplana folbua Verill, sp. nov. (1. 487.)
Body very flat, with the margin thin and undulated; ontline versatile, usually cordate or leaf-like, broadest and emarginate posteriorly, the
posterion borters well bomded, and the side a little comsex, mamowing to all obtuse print at the anterion end ; sometimes ohboug or elliptical, amb but little narowed anterionly ; the posterior emargination is msally rery distinet, often derp, and sometmes in eont raction has a small jnor jecting angular point in the midrle but at timesthe emargination nearly dis:apears. Ocellia four gronss, near the anteriorend ; the twoposterior chasters are smaller than the anterior and wider apart; the anterior (hasters are vew bear the others, and close together, almost hemding on the median line, and are comprosed of mumerous very minute crowded ocelli, less distinct than those of the other chasters. Color pale ver lowish fleshecolor, veined with dentritie lines of darker flesh color, or with whitish; an indistinct bale reddish spot behind the anterior ocelli ; an interrmpted longitudinal whitish stripe in the middle, due to the internal organs, ant a small median whitish stripe posteriorly.

Lemgth, $\because\left(0^{m \mathrm{~mm}}\right.$ (0) 25^{mm}; breadth, 10^{mm} to 15^{mm} 。
Off Watch Hill, t to fithoms, among rocks and algit : off Block Island, in ?! fathoms: off linzzard’is Bar, in era fathoms.
l'lasama grisea Vemill, sp. nor: (p. 187.)
Body elongated and usually oblong in extension, often long oval or somewhat elliptical, obtusely pointed or romeded posterionly; head sub)truncate in front, often a little prominent in the middle; the angles are somewhat prominent, but not elongated. Ocelli two, black, each surrounded by a reniform, white spot. Color yellowish green or grayish. with a central whitish stripe in the middle of the back, suromoded by darker; head margined with whitish.

Length, in extension, $12{ }^{\text {man }}$; breadth, $3^{m m}$.
Watch Hill, Rhorle Island, unter stones, between tides.
Procerodes Wheatlandi Giramd. (p. 32. i.)

 Report, p. :3.5.
New Iraven to Caseo Bay. Point Jadith (leidy). Manchester, Massachusetts (Gimad). Jhmmant mmer stomes, between tides.

Fovia Wrammexit (iiram. (p. 480.)
Procectings of the Boston Society of Natural llistory, rol. iv, p. Dll, 1-5..:

A small, narow, oblong, ret Planarian, aboarently belonging to this species, was collected at Wood's Hole atomg eel-w Fas, and also in Casco Bay: Chelsea, Massachmsetts (Girard).

Bdelloura Candida Girard. (p. 460 .)

Proceelings Boston Society Natural History, vol. iv, p. 211, 1852. Fortex condida Giraml, op. cit., vol. iii, p. 264 , (for 18.50), I 5.51 . Filelloura perasitica Leidy, Procedings Academy Natmal Sciences of Philalelphia for 1851, vol, v, p. 240, 1852 ; Stimpson, l'rodromms, p. 6, 1857.
Great Egg Harbor; New Haren : Massachusetts Bay. Parasitic on the gills of the "horseshoe-crab" (Limulus Polyphemus).

Bdellotra rutstica Leidy.

Proceedings Acad. Natural Sciences of Philalelphia, vol. v, p. 2!2, 15.2; Stimpson, Prodromus, p. 6, 1-5न̈.
Great Egg Harbor, on Llua latissima (Leidr).

NEMATODES.

Pontonema marinual Leidy. Plate NVIII, fig. 94. (p. Ӟ己̃.)
 Great Egg Marbor to New Haren and Vineyard Sound ; rery abundant from above low-water mark to 10 tathoms.

Pontonema vacillatua Leid?. (p. 320.)
Marine Invertebrate Fanna of Rhode Island and New Jersey, 1. 12 (144), 185.5.
Great Egg Marbor to Vinesard Soumd, with the preceding.
Yarions other small, free Nematodes are frequently met with, bnt they have not been carefnlly examined.

Sumerous species are also parasitic in the stomach, intestine, muscles and other organs of tishes, ernstacea, worms, \&e. (See page tüg.)

MOLLUSGA.

CEPILALOPODA.
DIBRANCHIATA.
Ohinastreines illecebrosa. (p. 441.)
Loligo illecebrosa Lesuenr, Jonmal Acal. Natural Sciences, Philadelphia, vol. ii, p. 95, Plate 10,1821 ; Gonll, Invertebrata of Massachusetts, ell. i, p. 318 ; 1-41; Dekay, NaturallIistory of New York, Mollnsea, p. 4, I-13. Ommastrephes sugittatus Linney,* in Gonld's Invertebrata of Mass., ed. ii, 1. 510, 1870, but not Plate 2.5 , fig. 339 (non Lamarck, sp.)
A large specimen, taken at Eastport, Maine, was ten inches long, exchnsive of the arms. When preserved in alcohol the candal-fin was lather more than one-third of the length of the head and body together; its width was equal to abont three-fomrths of its length. The colors of this specimen were described on page 42. A small specimen from Newport, R. I., agrees in color and most other respects with the larger specimens, but differs somewhat in the proportions, especially of the candal fin, probably owing to its immaturity. This specimen, in alcohol,

[^15]

A fresh specimen, eanght in Caseo Bay, had the following propor: tions: Lemgth of head and body, not inchuding the arms, "eytme lengh of calldal tin. stime ; beadth of fin, $90^{m m}$; diameter of hody, $3.5^{\prime \prime \prime \prime}$; lengeth of upper arms, somm ; of second lair, $100^{m m n}$; of third pair, $100^{m m}$; of extensile arms, $15^{\text {mom }}$; of the rentral pair, $90^{\text {mon. }}$

Greenport, Long Islaml, (Sanderson Smith): Newport, Rhode Islaml; Provineetown, Massachmetts; Caseo Bay ; Mount Ibesert, Maine; Jay of Funcly.

Ommastrephes Patromia (Lesucur, sp.) is fomed in the (inll Strean off our coasts, amd may sometimes ocenr accidentally on omr shores. It is a more slender and elongated species than the preceding, with a relatively shorter candal tin. It is also darker colored. The figure given by Binney in the last edition of (rombis luvertebrata of Massachusetts (1'late 2.5, tig. 340) does not represent this species.

 Natural lintory of New York, Mollhsea, p, f, Pl. : ${ }^{2}$, fig. 35l (copied from Lesnenr) : Binmes, in Gomld's Invertebrata of Mass., ed. ii, p. 514 (Pl. D5. lig. :340.) probably represents this species, certainly not o. Barbamii.)
Sonth Carolina to Massachnsetts Bay. Very common in Long Island Sound and Vineyard Somed.

The yong, from an inch to two inches in length, were taken from the mindle of Ju!y to the last of Angust in great mumbers, at the surface, i_{n} Vineyard Sound, by Mr. Vinal N. Edwards.

Lolfia puictata Dekay.

Natural History of New York, Mollusea, p. 3, Pl. I, fíp. 1, 1-1.; ; Binney, in Goule's Invertebrata of Mass., cel. ii, p. 513.
This is probably identical with the preceding species. The slight differences noticed are pobably sexual, but as I have not been able to fully satisfy myself in regarl to this, I have not thonght it proper to muite them at this time.

Long Island Somnd.

Bonls stont, tapering rapidly backward. Anterior border of mantle with a prominent, ohtusely rounded, median dowsal lobe, from which the margin recedes on each side ; on the lower side the margin is'concare in the middle with a progecting angle on each side. Candal tin large, about as boad as long, more than half as boge as the body. Siphon large and stont; uper pair of arms considerabls smaller and shorter than the others, slember at tips, margined along the immer dowsh ridge with a thin membrane. Second pair of arms stonter and longer, trignethal, slightly margined on the onter angle. Third pair much stonter and considerably longer, with a membranons fold along the midhle of the
outer surface, which expauds into a thin membrane toward the end. Tentacnlar arms long and sleuder, in extension longer than the body, the portion that bears suckers forming about one-thnd the whole length ; in the female the larger suckers on the middle of this portion are not so large as the largest on the other arms, and are arranged in abont four rows; those near the tips of the arms are very small and crowded. In the male the principal suckers of the tentacular arms are rery much larger than in the female, aud considerably exceed those of the other arms; they form two alternating rows along the midule of the arm, and external to them there is a row of smaller suckers on each side, alternating with them; the suckers toward the tips are rery numerons, small, and crowded; outside of the suckers, on each side, there is a marginal membraue with a scolloped elge; another membranous fold rms along the onter surface and expands into a broad membrane near the end; the arms of the ventral pair are intermediate in length between those of the second and third pairs. Ground-color of body, head, arms, and fius pale, transhcent, yellowish white; entire rentral surface pale, with small, distant, brownish cirenlar spots, which are nearly obsolete on the siphon and arms ; the upper surface is covered with pale brown, mequal, circular spots which are not crowded, having spaces of whitish between them; the spots are more sparse on the head and arms, but somewhat clustered above the eyes. The general appearance of the animal when fresh is umsually pale and gelatinons. The "pen" is broad, quill-shaped, transincent, and amber-coloret. A medium-sized male specimen preserved in alcohol measures 145^{mm} from the base of the dorsal arms to the posterior end of the body; length of body, 120^{mm}; length of candal fin, 70^{mm}; breadth of fin, 75^{mm}; length of first pair of arms, 42^{mm}; of second pair, $50^{m \mathrm{~mm}}$; of thind, $60^{m \mathrm{~mm}}$; of tentacular arms, 150^{mm}; of rentral pair, 53^{mm}.

Long Island Somnt.
The Spirula Peronii Lamarck, (špirula fragilis in Binney's Gould, p. 516 , fig. $75 \tilde{J}$), is occasionally cast up, on the onter beaches of Nantucket, but it probably does not ocenr alive in our waters.

GASTROPODA.

PECTINIBRANCHIATA.
Bela marpularia Adains. Plate NXI, tig. 10S. (p, 503.)
II. and A. Adams, Genera of Recent Mollnsea, vol. i, p. 92, 1-5; ; Gonld's Invertebratar of Mass., ed. ii, p. 352, fig. 191. Fusus harpularius Conthong, Boston Journal Natural Histors, vol. ii, I. 106, I'l. 1, fig. 10, 1夫3s; Gould's Invertebrata of Mass., ed. i, p. 291, fig. 191, 1~41. Nangelia harpuharia Stimpson, Shells of New England, page 48, 18.5.
Tassachusetts Bay to Labrador and Greenland. Ofi Gay Head, 10 to 19 fathoms ; in the Bay of Fundy freruent in from 1 to 80 fathoms. Fossil in the Post-Pliocene "Leda-clays" of Labrador (Packard); and Canada (Dawson).

BELA Plaburotomatid Adams.

 Loven). Hengtiu prymidalis Stimpson, Shells ol Now Englant, p. 49.
Off the eoast of Long Islamd, in 4 ; fithoms (Stimpson). Massathnsetts Bay to Labrador; in C'aseo Bay aud the Bay of Fumdy not meommon in 18 to fo fithoms. (nreenland (Näller). Fimmark (Lovén). Fossil in the I'ost-l'liocene deposits of Canada, Labordor, (ireat Pritain, and Scanlinavia.

The identifeation of this species with the lanceimum pyraminale Ström, is somewhat mucertain ; if correct, the latter mame has priorits.

Bela plicata ddams. Ilate NXi, fig. 107. (1, 333.)
 cata C. 13. Alams, Bostom Jommal of Natmal History, vol. iii, p, :3-, l'ate : B ,

 Nat. IIistory, vol, xiii, p. 121, [-60.
Near New Havel, race Hmatington ami Greenport, Long Island (Samderson Smith). New York (Dekay). Dartmonth, Massachmetts, and New Bedforl Harbor, in mud, (C. B. Adams). Leanfort, N. (.. (1)r. E. Cones). Indian Pass, Florida (L. Jewett).

MaNGELA CERTNA. (1.432.)
Verill, American Jonmal of Science. vol. iii, n. 210, 1-9.2. F'lemotoma cerimm Kurtz and Stimpson, Proceedings of the Boston Society of Natmal History,

Shell elongated, finsiform, rather acnte at apex, composed of abont seven whorls; apical whorls smooth, the others angulated in the midnle and decidedly flattened just below the suture; suture distinct, but shallow, molulated : the body whom has about eleren prominent, longitudinal, sub-acute phications or ribs, separated bes wide, concare interspaces. The ribs are most prominent at the angulation abore the midde of the lower whorl, and do not extend on the flattened sulbsutmal band. The whole surface is covered by fine, rased, revolving lines, often altemately larger and smaller, separated by wider strite, and erossed by tine, distinct lines of growth, remlering them slightly nodulons. The terolving lines are most distinct on the sub sutumb band, and are often nearly obsolete orer the summits of the ribs. Onter lip acorte, with a decided angle at about the posterior fomth, where it recedes to form a decided, rounded noteh, at and just above the angle; middle portion nearly straight, gradually emving and receding toward the anterior end: camal short, straight, and somewhat contracted. Colow whitish, or slighty yellow; inner surface light wax-yellow. Length, 6.5.5m ; brearth, $3^{m m}$; length of aperture, $3^{m m}$.

Vineyard Sound, 3 to 10 fathoms; near New Haren. New Bedforl, Mass., and Charleston, S. C. (Stimpson). Staten Islamd; Greenport and Ifuntington, Long Islant, low water to 3 fathoms, (S. Smith). Beaufort, N. C. (Cones). Fossil in the I'ost-Pliocene of South Carolina. Pleurotoma bicarlnatum Conthons. Plate NXI, fig. 106. (p.418.)

Boston Journal of Natural History, vol. ii, p. 104, Plate 1, fig. 11, 133s; Gonld, Invert. of Mass., ed. i, p. $2=1$, fig. 186 ; ed. ii, p. 319 , fig. 61~. Manyelia bicarinata Stimpson, Shells of New England, p. 49. Defirancia bicarinata II. and A. Adams, Genera of Mollusea, vol. i, p. 95.
Stonington, Conn. (Linsley). Vineyard Sound, 6 to 12 fathoms, rare; Massaclusetts Bay ; Bay of Fimdy. This is a rare and imperfectly known species. I have never had opportunities to examine the living animal.
The gencric relations of this and the two preceling shells are still doubtful.
Buccinual undatum Linné. Plate NXI, fig. 121. (p. 494.)
Systema Natura, ed. xii, p. 1204. Gould, Invertebrata of Massachnsetts, ed. i, 1.305; ed. ii, 1..366, fig. 634. Succimum undulatum Möller, in Kroyer's Tidsskift, vol. iv, p. 84, 184: (t. Stimpson). Stimpson, Review of the Northern Buccinnms, in Canadian Naturalist, October, 1\&65. Buceinmm Labradorense Feeve, Conch. Icon., vol. iii, Bnc. i, 5, 1846 (t. Stimpson).
Moath of Yineyard Sound and off Gay Head, 6 to 19 fathoms. Off New Jersey, north latitude 40°, west longitude 73°, in 32 fathoms, sandy bottom, (Captain Gedney).

Near Stonington, Conn. (Linsley) ; Montank Point, Long Island, and Little Gull Island (S. Smith). Not common south of Cape Cod, except on the onter islands and in deep water; common in Massachusetts Bay; and rery abundant on the coast of Maine, and northward to Greenland. On the Emopean eoast it oceurs from Iceland and the North Cape to France, and from low water to 650 fathoms. In the Bas of Fimily it is abundant from above low-water mark to 100 fathoms.

As a fossil it is common in the Post-Pliocene deposits of Mane, Canada, Labrator, and Great Britain. Mrr. Desor obtained it from the PostPliocene formation of Nimtucket Island.

The ordinary American specimens from shallow water differ considerably in form from the typical Emropean specimens, but the species is quite variable on both coasts, and I have examined large specimens from Saint George's Bank and La Have Bank, dredged ly Mr. S. I. Smith, which differ very little from the common European form, and it is easy to form series comecting these with our common shore specimens. I am, therefore, mable to agree with Dr. Stimpson, who considered our shell distinct from the European, and adopted the name undulatum fôr it.
Neptunea curta Verrill.
Fusus cornens Say, Amer. Conch., iii, Plate 29,1831 (non Lime, Pemant, etc.). Fiusus Istandicus Gonlit, Invert. of Mass., chl. i, p. 284; ed. ii, p. 371, fig. 6:3 (non Chemmitz, Gmelin, rte.). Fusus curtus Jeffeys, Liritish Conchology, vol. iv, p. 336, 186%.
 mon in the bay of Fimmly fom low－water mark to sofathoms．Limstey reports it，as F ．cormens．from fish－stomathe at Stonington，Comnecticut．
 oceupied by E＇uputuri，fomd on Fire lsland leach，on the sonth side of Lomg Ishat，by Mr．S．S．Smith．It poombly inhahits the derp water oft laloek lslam．

The dentition of this species is Ilecidedy buecinom．The central plates are transversely ohong，deeply concave ahove，with the lateral angles prodnced；below armed with three small，nearly equal，short teeth． the rentral one largest，beyond which，on eath side，it is concave，the onter angles being a little prominent．The lateral plates are large，with an onter，very strong，enved tooth，and two mach smaller，slightly comed ones near the inner end，the inmermost being slightly the largest．

The dentition agrees very closely with that of N．cutique，the type both of the genns Jeptunea，Bolton，170太，and Chysodomens，Swainson， 1S40，but it is very different from that of sipho Revoliciensis（S．Islaml－ icus Trosch．），which Trosehel refers to the Faciolaride．The latter is evidentls the tope of a gemus（Nipho）very distinct from Xeplunen；but among the Enropean speces，gracilis，mopinqua，Tuccinatu，and the true Islemdich（as described by Jethreys）are closely related to curte，and be－ long to the gemus Neptunen，in the family Buccinilad．

Neptuned（N＇ptunella）prgaled．Plate NXl，fig．115．（p．50s．）
 1－11．Tritonium pygmaiam Stimpson，Shells of New England，p．46，1＝j1． Fusus Trumbullii Linsley，Amer．Jommal Science，ser．i，vol．xlriii，p．D2，fig． 1，$\because, 104.5$（nou（iomld，1－1よ）．Finsus mgmens Gould，Invert．of Mass．，ed．ii，
 Mollnsea，rol．i，1．－1．1－5．Chrysolomus pygmens Dall，Proc．Boston Soc．Nat． Hist．，vol．xiii，1．足t2，1－io．

Deep waterof Sew London and Stonington，Comecticat，northward to the Gultof Saint Lawrence．East of Block Istand， 29 fathoms，simdy mud；
 dant and large；off Edgarton，is to 20 fathoms ；Casco Bar， 10 to 40 fathoms，common；Eastport，Maine，and Bay of Fundy，low water to 100 fathoms（A．E．V．）．Nrar Saint George＇s Bank，til to 1．50 fathoms ； east of Saint Ceorgěs lank，t30 fathoms ；and off Ialifan（S．I．Smith）．

The odontophore in this species is Jong and slender ；the dentition is buceinoid．The minllle plate is small，transtersely oblong，concave above，below convex，with one very small central thoth；lateral pates relatively large and strong，with a large，emred outer tooth，and a smaller hifid inmer tooth，widely sparated from the outer one．

The pecnliarities in the dentition of this species，in connection with the singular wooly or relvety epidermis，indicate that this species should form the trpe of a sub－genns，or perhaps even a distinct gems． For the group I wond propose the name Septumella．

Flequr carica Comad. Pl. AXIf, fig. 127. (p. 35.).)
Proeeedings of the Acarlemy of Nat. Sciences, I'hilalelphia, rol. vi, p. 319, $185: 3$; Gill, on the Genus Fulgur and its Allies, in American Jomran of Couchologr, vol. iii, p. 145, 186\%. Murer cariea Gmelin, Srst. Nat., p. 3545, 1783. Fulgur eliceuns (pers) Montfort, Conch. Syst., vol. ii, p. 50\%, 1810, fig. (t. Gill). I'yrula carica Lamarcls, Anim, sans Vert., ed. i, vol. vii, p. 1:32, 1832 ; Gould, Invert. of Mass., ed. i, p. 295. Linsyeon carica Gould, op, cit., ed. ii, p. 383, fig. 646 ; Stimpson, in American Jonmal of Conchology, vol. i, $1.61,1865$.
Eastern coast of the United States ; northward to Cape Cod ; southward to northern Florida, and west Florida. Abundant in Vinesard Sound, in 1 to 10 fathoms; also in Long Island Sound, near New Haven. Nantucket (Allams); St. Angustine, Florida (H. S. Williams) ; west Florida (E. Jewett.) It occurs iu the Miocene formation of Maryland and Virginia, and in the Post-Pliocene deposits of Virginia, North Carolina, South Carolina, and Florida.

SYCOTVPU'S CANALICULATUS Gill. (1). 3J..)
Ameriean Joumal of Conchology, vol. iii, p.149, 186ĩ. Murex cana?iculatus Limé, Syst. Nat., ed. xii, p. 1-2.2. Pyrula eanaliculatu Lamarck, Anim. sans Vert., vol. vii, p. 137, 1-2.2 ; Gould, Invert. of Mass., ed. i, p. 234, fig. 206. Busyeon canalichlatum 1L. aud A. Adims, Genera of Recent Mollnsea, vol. i, p. 151, 1858; Goult, Invert. of Mass., ed. ii, p. 380, fig. 645. Fulgur canaliculata Say, Journal Acad. Nat. Sciences, lhilatelphia, vol. ji, l-g.? ; Comrarl, Proc. Phil. Acad., rol. vi, p. 219, 1853.
Eastern coast of the United States ; northward to Cape Cod and Nantucket ; southwarl to Georgia and Northern Florida, Westeru Florida, and northern shores of Gulf of Mexico. Abundant in Yineyard Sound, Long Island Somnd, \&e., in 1 to S fithoms. St. Angusti a, Florida (H. S. Williams). Found fossil in the Post-Pliocene of Virguria, North and Sonth Carolina, and Northern Florida; in the Pliocene of South Carolina : and Miocene of Maryland.

Nassa vimex Say. Plate XXI, fig. 114. (p.371).
Jonrnal Acalemy Nat. Scieuees, Philadelphia, vol. ii, p. 231 , 1822 ; Goull,
Invertebrata of Mass., efl. ii, p. 365, tig. 633. Nassa fretensis Perkins, Pro-
eeedings Boston Soc. Nat. History, vol. xiii, p. 117 , tigure, $1=69$ (variety).
Eastern eoast of the United States; uorthward to Vineyard Sound ; sonthward to Florida, and the Gulf of Mexico ; not abindant north of Cape IIatteras. In Vineyard Sound and Long Island Somd, fomel sparingly in shallow water among eel-grass. New Bedford (Adams). Lloyd's Iarbor, Hmutington, and Northport, Long Island (S. Smith) ; Egmont Ker, Florida (Jewett). It has been found in the Pliocene and Post-Pliocene of South Carolina.

Some of Say's original specimens were from Sonth Carolina, others from Great Egg Harbor, New Jersey. At the latter locality I have also collected among eel-grass, in slallow water, the rariety described by Dr. Perkins as N. fretensis, which is the most common form in all the more northern localities. Specimens intermediate between these and the ordinary sontliern forms are, howerer, of frequent occurrence, and the typical form also occured in Vineyard Sound, with the rariety.

Thith thivittata Adams. l’late Ňif, fig. 112. (p. 354.)
II. and A. Adams, Genera of Recent Mollusea, vol. i, p. 12:2, I -5\%. Nassa trivittala Say, Jonmal Acad. Xatural Sciences, Philadelphia, vol. ii, p. :2:31; Gonld, Invert. of Mass., el. ii, 1. 364, tig. 63\%. Ruceinum tririttatum Adans, Boston Jonrnal of Nat. Ilist., vol. ii, p. Wín ; Gould, ort. eit., ed. i, p. 309, tig. 2ll.
Gulf of Saint Lawrence to Northern Florida. Eastport, Maine, and Bay of Fundy, 3 to 30 fathoms, not abundant; Casco Bay, 1 to 40 fathoms, abundant; Vineyard Sound and Buzzard's Bay, 0 to 14 fathoms, abundant; off Block Island, 29 fathoms; Long Island Sound, common. Gaspé, Canada (Dawson). Fossil in the Post-Pliocene of Point Shirley, Mass., Nantucket (Desor), Gull Island (Smith), Virginia, South Carolina, and North Carolina; in the Pliocene of Soutl Carolina; and in the Miocene of Maryland, Virginia, and South Carolina.

Ilyanassa obsoleta Stimpson. Plate X̌II, fig. 113. (p.468.)
American Journal of Conchology, vol. i, p. 61, Plate 9, figs. 11, 12, 1865. Nassa obsoleta Say, Journal Acad. Nat. Seiences, Philadel phia, vol. ii, p. 2:32, 1822 ; Binney's Say, p. 77, 1855 ; Gould, Invertebrata of Mass., ed. ii, p. 362, fig. 631 ; Bucciunm obsoletum Gonld, Invert. of Mass., ed. i, p. 308, fig. 210; Tritia obsoleta H. and A. Adauns, Genera, p. 1খ2, 1858.

Eastern and sonthern coasts of the United States; northward to Gasco Bay, Maine, and the mouth of the Kennebeck River, and local in the southern part of the Gulf of Saint Lawrence; southward to Florida and the northern shores of the Gulf of Mexico. Extremely abundant on the whole coast south of Cape Cod; more local farther north, and mostly restricted to sheltered bays and harbors. It has not been found on the east n part of the coast of Maine nor in the Bay of Fundy. An isolated colons of this species is found on the western and sonthern shores of the Gulf of Saint Lawrence and Prince Edward's 1sland (Bell, Dawson).

As a fossil it has been found in the Post-Pliocene deposits at Point Shirles, in Chelsea, Massachusetts (Stimpson); at Nantucket Island (Desor); Virginia; and South Carolina. It is also reported from the Pliocene of South Carolina.

Urosalpinx cinerea Stimpson. Plate XXi, fig. 116. (p. 306.)
American Journal of Conchology, vol. i, p. 58, Plate 8, figs. 6 and 7, 1865. Fusus cincreus Say, Jonrnal Academy Nat. Science, Philadelphia, vol. ii, p. 236, 1822; Amgrican Conchology, Plate 29, 1831. Buccinum plicosum Menke, Syn., ed. ii, p. 69, 1830, (t. Gould) ; Gonld, Invertebrata of Mass., ed. i, p. 303, fig. 213. Гиссіини сіиении Gonld, op. cit., ed. ii, p. 370, fig. 637.
Eastern coast of the United States; northward to Massachusetts Bay, and local farther north, to the Gulf of Saint Lawrence ; southward to Georgia and Northern Florida, and on the west coast of Florida, at Tampa Bay. Abundant in Vineyard Sound, Bnzzards Bay, Long Island Sound, and along the coast of the Middle States, especially on oyster-beds. In Vineyard Somd it occurs from above low-water mark to S fathoms. It occurs in some of the shallow and sheltered branches 24 V
of Casco Bay, especially at the upper end of Quahog Bay, but has not been found on the islands, nor farther eastward along the coast of Maine, nor in the Bay of Fundy. A colony exists, however, in the sonthern part of the Gulf of Saint Lawrence, associated with the preceding and other southern species. It is found fossil in the Post-Plio. cene of Point Shirley, Massachusetts, Nantucket, Gardiner's Island, Virginia, North Carolina, and South Carolina; in the Pliocene of South Carolina; and in the Niocene of Maryland.

Eupleura caudata H. and A. Adams. Plate XXI, fig. 117. (p. 371.)
Genera of Recent Mollusca, vol. i, p. 107, 1859 ; Stimpson, Amer. Journal of Conchology, vol. i, p. 58, Plate 8, fig. 5 (dentition), 1805. Rumella camluta Say, Jonrnal Acal. Nat. Sciences, Philadelphia, vol. ii, p. 230, 18:2 ; Gonld, Invert. of Mass., ed. i, p. 297, fig. 176; ed. ii, p. 386, fig. 643.
Eastern coast of the United States; northward to Nantucket and Cape Cod; sonthward to northern Florida, and western Florida, at Tampa Bay. At Vineyard Sound it oceurred living in considerable numbers in the shallow ditches on the marshes, as well as in the sound itself, in 1 to S fathoms; off New Haven, in 1 to 5 fathoms, not abundant; Great Egg Harbor, frequent among eel-grass in shallow water. Egmont Ker, Florida (Jewett).

In the fossil state this species has been found in the Post-Pliocene of Virginia, North and South Carolina, and Florida; in the Pliocene of South Carolina; and in the Miocene of Maryland and South Carolina. Purpura lapillus Lamarek. Plate XXI, figs. 118 to 120. (p. 306.)

Anim. sans Vert., el. i, vol. vi, 1822 ; ed. ii, vol. x, p. 79 ; Gonld, Invert. of Mass., ed. i, p. 301; ed. ii, p. 360, fig. 630. Buccinuu lapillus Linné, Syst. Naturie, ed. xii, p. 1202, 176%.
Watch Hill, Rhode Island; Montauk Point, Long Islaud; Cuttyhunk Island; shores of Viueyard Sound, at Nobsea Point; northward to the Arctic Ocean. Oa the European coast southward to Portugal. Northeastern coast of Asia. Sitka (Middendorff). This species is local sonth of Cape Cod, and has not been found to the eastward of Stonington, Con. necticut, in Long Island Sound. It is extremely abundant along the northern coasts of New England and Nova Scotia, often nearly covering the surface of the rocks toward low-water mark, where they are en. crusted by Bulamus balanoides, upon which it chiefly feeds, inserting its proboscis between the opercular valves of the barnacle.

This shell has been found in the Post-Pliocene deposits at Waterville, Maine, and at Crardiner's Island, but is not a common fossil in this comntry. In England it is found in the Red-Crag and all later formations ; it also occurs in the Post-Pliocene deposits of Scandinaria. The fossils show the same variations that are seen in the recent shells.

Ptychatractus ligates Stimpson.
American Jonrnal of Conehology, vol. i, p. 59, plate 8 , fig. 8 (dentition), 1835. Fasciolaria ligata Mighels and Adams, Boston Jonrnal of Nit. History, vol. is, p. 51, Plate 4, lig. 17, 18.t; Gould, Invert: of Mass., ed. ii, p. :35., fig. 617.

Casco Bay, Maine, to Labrador. Stonington, Comecticut (Linsley).

Casco Bay, 20 to 40 fathoms; Bay of Fandy, 15 to folathoms. Malifax (Willis); (raspé (Whiteaves) ; Muray Bay (Dawson); Mingan (Foote). This shell orems sparingly at all these localities. It has mot been recorded from sonth of Cape Cod by amy one exeept Linsley, and it must be regarded as a very donbtfol member of the fanma of sonthern New England until rediscovered.

Dr. Dawson records one broken specimen from the Iost-Pliocene of Montreal.

ANACHIS AVARA Perkins. (b. 30G.)
Proccedings, Boston Soc. Nat. History, vol, xiii, p. 11:3, $18 i 9$ (in part). Colum-
 (in part) Gonld, Invert. of Masis., ed. i, p, 313 ; ed. ii, p. 350 (in patt).
Cane Cod to Northern Florida; Western Florida and the morthern shores of the Gulf of Mexico. Vineyard Somm, from 0 to 10 fathoms; Long Island Somad; Great Egg Habor, New Jersey; Nantucket (Adams) ; Fort Macon (Cones); South Carolina (Ciibbes); Georgia (Comper) ; Western Florida (Jewett). North of Cape Cod, it is local and rare ; Massachusetts Bay (Stimpson).

Fossil in the Post-Pliocene of North and South Carolina, and in the Iliocene of South Carolina.

Among the shells usually referred to this species there are great variations in form and sculpture, and the color is quite inconstant. The numerons specimens that I have examined from varions localities can, however, be arranged in two groups, between which I have found no specimens that can be regarded as truly intermediate, althongh most of their distinctive characters are variable in each series. For the present, therefore, I have with some hesitation followed Mr. Ravenel in regarding these two principal forms as distinct species. As these species (or rarieties) have not been distinguished by most writers, it is probable that some of the northern localities given above shonld properly go muler the next species, which is far more abundant in Vineyard Sound and Long Island Sound than the trpical arara, while the latter predominates in the collections from Fort Macon, North Carolina, and southward. The figures given by Dr. Gould remesent the ordinary northern form of the following species. In the first part of this report both forms are included under acura.

From Fort Macon I have specimens that agree perfeetly with Say's original description of acaru. These are less elongated than the next species, and rather fusiform, the thickest part being but little below the middle, with the spire acute. The mature shells have ten flattened whorls; the first three or muclear whorls are smooth; some of the succeeding ones usually have namerous reatical costae ; the last whorl has 10 to 13 more or less prominent, smooth obtusely romded, somewhat curved costed, separatcel by wider concave intervals, and gradually disappearing below the middle; below the costie are nmmerons, well im-
pressed revolving grooses, of which S or 10 are wider and deeper than the rest; similar but finer grooves cross the spaces between the costr, bui are mostly obsolete on the costre; the middle whorls usually have a similar number of costre, which are less prominent, and often more or less obsolete, while the spaces between are crossed by numerous fine revolving strix. The canal is short, broad, and nearly straight; the outer lip well ronnded, not incurved anteriorls, but with a decided emargination posteriorly. Length of mature shells, 13^{mm}; diameter, $\mathbf{6}^{\mathrm{mm}}$, often smaller.

Specimens of the same size and form from Vineyard Sound and New Haven agree closely with the above description in most respects, but have 14 or 15 costie on the last whorl, and about 20 on the preceding ones, where the costre are so crowded that the spaces between are often narrower than the costa.

Anachis smillis Verrill. Plate NXI, fig. 109.
Columbella similis Ravenel, Proc. Acad. Nat. Sci., Philad., 1861, p. 41. Columbella translirata Ravenel, op, eit., p. 42. Columbella arara (in part) Gould, Invert., ed. i, p. 313, fig. 197 ; ed. ii, p. 356 , fig. 726.
Massachusetts Bay to Georgia. Abundant in Vineyard Sound and Long Island Sound; Great Egg Harbor. Fort Macon (Dr. Yarrow.) This species is usually much more elongated than the preceding, with a more elevated spire, the broadest place being a little above the lower third of the length. Whorls, 10 ; flattened ; the nuclear whorls smooth The canal is longer, and usually distinctly excurved ; the outer lip is more or less incurved anteriorly, so as to slightly narrow the canal; the body-whorl has 18 to 20 or more rather regular, obtuse costr, separated by spaces of about the same width, generally slightly nodular close to the suture; at some distance below the middle of the whorl they gradually disappear, but sometimes there are also smaller intermediate costie below the middle of the whorl (rar. transtirata); the lower part of the whorl is covered with mumerous well-impressed, revolving grooves, which cross the lower ends of the costre, rendering them nodulous; on the upper part of the whorls the revolving grooves are larger and more distinct than in the precerling species, and usnally continue orer the costa; the one next below the suture is usually larger than the rest, and thus produces the subsutural nodules; the grooves are generally least distinct in the middle of the lower whorl, which is sometimes slightly angulated. On the middle whorls there are mumerous (usually more than 25) regular costre, like those of the last one, and crossed by about 5 distinct revolving grooves, more conspicuous in the spaces between; the upper one largest, usually producing a distinct series of nodules on each whorl. Color exceedingly variable, generally dark reddish brown, chestunt, or light jellowish brown, more or less mottled and specked with whitish; there is often a subsutural band of white, or the nodules are white, and also a band of white around the widdle
of the last whorl, but these are freguently absent. Length of a rather large specimen, $17^{m m}$; beadth, $7^{m m}$; length of an average specimen, 13^{mm}; breadth, 5^{mmm}; length of a slender specimen, 15^{mmm}; breadth, 5^{mm}.

Astifis lunata Dall. Plate ǍNI, fig. 110. (p. 306.)
 Journal Acad. Nat. Scionces, Philadelphia, vol. v, 1. 213, 1~2li. Juccinum lunctum Adams, Boston Jonra. Nat. Hist., vol, ii, p. Dé Mass., ed i., p. Sle, lig. I9i. Columbella lunatu Gould, op. cit., ed. ii, p. 309, fig. fis!. J'usus Trumbulli (ionld, Amer. Journ. Science, vol. vi, p. D:3.) fir. 7, 1s, (non Linsley). Bucriumm Whoulleyi Dekay, Nat. Hist. of New York,
 son, Shells of New England, p. $\mathbb{L}^{2}, 1851$; Smith, Ammals Lycemm Nitt. Hist. of New York, vol. viii, 1. 302, fig. 5, Re(6.". Astyis "limata Say" and A. "Turnbullii Linsl.," H. and A. Adams, Genera, vol. i, p. 107 (typographical errors).
Massachusetts Bay to Northern Florida and the northern shores of the Gulf of Mexico ; local and not ahmodant north of Cape Cod, at Prorincetown, Nahant, and Swampscott, Massachusetts. Very abundant in Vineyard Sound, from low-water to 10 fathoms; and in Long Island Sound; Great Sonth Bay, Long Island ; and Great Egg Harbor, New Jersey; Fort Macon, North Carolina, and southward. Estella Pass, Florida (.Jewett) ; Georgia (Couper).
Fossil in the Post-Pliocenedenosits of South Carolina ; and at Gardiner's Island, New York (S. Smith) ; and in the Pliocene of South Carolina.

The color-variety, separated by several writers as C. Gouldiana, is identical with the Wheatleyi of Dekay.

Astyris zonalis Verrill. Plate NXI, fig. 111. (p. 399.)
Buccinum zoumlis Linsley, American Journal of Science, ser. i, vol. x\}viii, $1.2=5$, 154. (no description): Gould, Amer. Journ. Science, series ii, vol. vi, p. 236, fig. 8, 1-42. Columbella dissimilis Stimpson, Proceedings Boston Soc. Nat. History, vol. iv, p. 114, 1851; Shells of New England, p. 47, 1851; Goukd, Invert. of Mass., ed. ii, p. 355, fig. 6ess.
Long Island Sound, near New Haren; Vineyard Somd; Casco Bay ; Eastport, Maine, 10 to 60 fathoms. Grand Menan, New Brinswick, in S fathoms, sand, (Stimpson). Stonington (Linsley).

Astyris rosacea II. and A. Adams. (p. 508.)
Genera of Recent Mollusea, vol, i, p. 1ع7, 185\%. Buccinum rosaccum Gonk, American Joumal of Science, xxxiii, p. 197, 1-40; ĭnvert. of Mass., ed. i, p. 311, fig. 195, 1-41. C'olumbella rosacea Stimpson, Shells of New England, p. 47,
 Mïller, Naturhistorisk Tidsskift, vol. iv, p. se, 1842.
East of Rlock Island, 29 fathoms, tine sandy mud; Stonington, Connectient (Linsley) ; Massachmsetts Bay to Gulf of Saint Lawrence; Isles of Shoals, 2(fathoms, and West lsles, 10 fathoms (Stimpson); Casco Bay, 10 to 20 fathoms ; Bay of Funds, S to 60 fathoms ; Sable lsland, Nova Scotia (Willis) ; (irand Menan, in deep water. (Stimpson).

The itlentity of A. Holbillii, from Greenland, with this speeies, is rery donbtful, for it was described as smooth, with a firm comens, fuscoluteus epidermis.

Lunatia heros Adams. Plate XXIII, figs. 133 to 136. (p. 353.)
H. and A. Adams, Genera of Recent Mollnsea, vol. i, p. 207, 1858; Gonld, Invert. of Mass., ed. ii, p. 332, figs. 0108, 609. Natica heros Say, Jour. Acad. Nat. Sci., Philatelphia, vol. ii, p. 245,1820 ; (kould, Invert., ed. i, p. 231 . Natica triseriata Say, up. cit., vol. v. p. 209 (color-variety) ; Gould, Invert., ed. i, p. 233. Lumatia triseriata Gonld, op. cit., ed. ii, p. 340, fig. 610.
Georgia to Gulf of Saint Lawrence and sonthern coast of Labrador. Coast of New Jersey, near Great Egg Harbor, abundant and large, (A. E. V.) ;southern sile of Long Island, at Fire Island beach, abmodant, (S. I. Smith) ; Long Island Sound, at New Haven, not common; Vineyarl Somm, abmulant from low-water to 10 fathoms; Casco Bay, common; Bay of Fundy, common from low-water to 40 fathoms; Saint George's Bank, common, (S. I. Smith); Gaspé (Dawson); Georgia (Couper). The variets triseriutu has the same distribution, and is the more common form in the deeper waters, but is also fonm on the sandflats at low-water. It is common in Caseo Bay and Bay of Fundy, in 1 to 40 fathoms; off Marthas Vineyard, 10 to 20 fathoms; and off New London, Commectient, 10 fathoms.

This species has been fomm fossil in the Miocene of Maryland, Virginia, and Sonth Carolina; in the Pliocene of South Carolina; and in the Post-Pliocene of Canada and Sonth Carolina.

Lunatia minaculata Arlams. Plate XXIII, fig. 131. (p. 508.)
H. and A. Alams, Genera of Recent Mollusea, vol. i, p. 207. Natica immaculata Totten, American Jommal of Science, ser. i, vol. xxviii, p. 351, fie. 6, 1535; Gomld, Invertebrata, ed. i, p. 234, fig. 16s, 1841. Mamma (?) immaculata Gould, cel. ii, P. 34t, fig. 614.
Stonington, Comecticut, and eastern end of Long Island, to Gulf of Saint Lawrence. Off Martha's Vinesard, 20 fathoms; east of Block Islant, 29 fathoms. Stonington (Liusley); Off Napeague Point, Long Island (S. Smith); Newport, J. I. (Totten). Massachusetts Bar, Casco Bar, and Bay of Fundy, \boldsymbol{y} to 80 fathoms, common : often fomd living at low-water mark in the Bay of Fundy.

Netertia duplicata Stimpson. Plate NXIII, fig. 130. (p. 3Jł.)
Smithsonian Check List, p. 5, 18G0; Gonlıl, Invert. of Mass., ed. ii, p. 345, fig. 615. Jatica duplicaln Say, Jomr. Acal. Nat. Scionces, Philadelphia, vol. ii, p. 247, 1-2v; Goukl, Invert., ed. i, p. 236, fig. 164, 1-41. Lunalia Iluplicata H. aud A. Adams, Genera Recent Mollusca, vol. i, p. $207,185$.
Massachusetts Bay to Northern Fiorida; northwestern Florida to Yucatan. Local amb not common north of Cipe Corl. Abmudant at Nantucket; Vinerard Somed; Long Islam Somul ; sonthern coast of Long lsland; New Jerses ; and southwarl. Saint Angustine, Florida (Williams). Tampa Bay, Florida, and Egmont Fer, abondant, Jewett). Texas (Schott). Near Vera Cruz, Mexieo (coll. T. Salt).

Fossil in the Miocene of Maryland, Virginia, North and South Caro. lina; Plocene of South Carolina ; and Iost-Pliocenc of Virginia, North Carolina, South Carolina, Saint John's River, and Tampa Bay, Plorida.

NAtica plesilla Siy. Plate NX゙llf, fig. 132. (p.417.)

Jommal Acad. Nat. Selences. Philadelphia, vol, ii, p. 257 , 1802; Stimpson, Shells of Now Englaml, p. 43, 1-51; (fonld, Invort. of Mass., ad. ii, p. 344, hig. 613, (not of ed. i) ; Simderson Smith, in Amals Lyc. Nat. History, New lork, vol. ix. 1. 396, fix. 4, $1=70$.

Yineyad Sound to Northern Florida. In Vineyard Sound and 13uzzard's Bay this species is common in 2 to 10 fathoms. Hnntington and Gardiner's Bas, Long Island, t to 5 fathoms, (S. Smith). South Carolina (Kurt\%). Fort Macon, North Carolina (Cones). Georgia (Couper).

Acrybia flara II. and A. Adams, = Natice flaza Gonld, Invert., ed. i, p). 239, fig. 16:2; 7ullous Rarus Gonld, op. cit., ed. ii, p. 347 , fig. 616. Thas species was catalogued by Jinsley (1855) as from the stomachs of hadBock taken off Stonington, Comnecticut. It has not been subsequently recorded from south of Cape Cod by any one. It is not improbable that there was some mistake, either in respece to the locality or the identity of the specimens refered to by Linsles. It is an aretic species, found in the Bay of Fundy and at Saint Georgès Bank; northward to Greenland (Möller, as $\lambda \boldsymbol{\text { N. }}$ numu).

Fatica clatsa lBrol. and Sowerky, was ermeonsly given by Mir. Perkins (Proc. Boston Suc. Nat. Ilist., vol. xiii, p. 192) as from "Stonington, Comnectient, Linsley:" It does not oceur in Mr. Linsley's list, nor has it been found living, to my kuowledge, south of Cape Cod. It oceurs in Massachasetts Bay and northward to the Arctic Occan. It is not mucommon in the bay of Fundy from 6 to 109 fathoms; and in Casco Bay from 9 to 60 fathoms. One small dead specimen was dredged by us in 19 fathoms, off Gay Ilead.

Cerithlopsis Grmenil Verill. Plate NXIV, fig. 153. (1. 35:3.)
Corthinm frecnii C. B. Allams, boston Jourual of Natural IIistory, vol. ii, p.

 1. 32: 2 , fig. 591.

Massachusetts Bay to South Carolina. Vineyard Sound and Buzzards Bay, 3 to 10 fathoms; Long Island Sound, near Sew llaven. Dartmonth Harbor (Adams) ; Boston Jarbor (Stimpson) ; Long Ishad (s. simith) : Fort Macon, North Carolina (Comes). Also reported from Bermada.

Jeffreys (in Amals and Mag. Nat. Mist., Oct., 1si2, p. 241) regards this as inentical with the Emopean Coturevelaris, and sives it a north ern distribution. Joth opinions apmear to be ineorrect.

Cerithiopsis Emersonil Adams. Plate XXIV, fig. 151. (p. 417.)

H. and A. Adáns, Genera, p. 240, 1858; Gonld, Invert., ed. ii, P. 3e7, fig. 649 Cerithium Entersonii C. B. Adams, op. cit., P. 284, Plate 4, fig. 10, 1838 ; Gould, Invert., ed. i, p. 275, fig. 180.

Cape Cod to So:th Carolina. Vinevard Somed and Buzzard's Bay, 3 to 10 fathoms, shell. Nant?ciket (Adarr); Huntington and Greenport, Long lsland (S. Smith). Fossir m the Miocene of North Carolina, (Conrad). Jeftreys (in Britısı Conchology, vol. iv, p. 257) regards this species as identical with Cerithium metula Loven, 1846, on the authority of Danielssen. This appears to be an erroneons identification.

Cerithiopsis terebralis Adams. Plate XXIV, fig. 150. (p. 417.)
1f. and A. Adams, Genera, vol. i, p. 241, 1853; Gould, Invert., et. ii, p. 389, fig. 650. Cerithium terebrale C. B. Adams, Boston Journal Nat. Hist., vol. iii, p, 320 , Plate :3, fig. 7, 1840 ; Gould, Invert., ed. i, p. 276, fig. 181. Cerithium terebellum C. B. Adams, Catalogne Genera and Species of Recent Shells in Collection of C. B. A., p. 13, 1847.

Cape Cod to South Carolina. Vineyard Sound and Buzzard's Bay, 2 to 12 fathoms, not uncommon. New Bedford, Massachusetts (Adams). Greenport and Huntington, Long Island (S. Smith). Fort Macon, North Carolina (Cones).

Triforis nigrocinctus Stimpson. Plate XXIV, fig. 152. (p. 30J.)
Smithsonian Check-List, p. 5, 1860; Gonld, Invert., ed. ii, p. 323 , fig. 592. Cerithium nigrocinctum C. B. Adams, Boston Jour. Nat. Hist., vol, ii, p. 2こ6, Plate 4, fig. 11, 1838 ; Gould, Invert., ed. i, p. 287 , fig. 182.
Cape Cod to South Carolina. Vinegard Sound and Buzzard's Bay, low-water to 10 fathoms, not uncommon; uear New Haveu; and Great Egg Marbor, New Jersey. Dartmonth, Massachusetts (Adams). Huntington and Greenport, Long Island (S. Smith). Fort Macon (Cones).

Bittiual nigrum Stimpson. Plate XXIV, fig. 154. (p. 305.)
Smithsonian Check-List, p. 5, 1860 ; Gould, Invert., ed. ii, p. 321, fig. 590. Pasithea nigra Totten, American Jour. of Science, vol. xxvi, p. 369, Plate 1, fig. 7 , 1834. Cerithium reticulatum Totten, op. cit., vol. xxviii, p. 352, fig. 8, 1835 (non Da Costa). Cerithium Sayi Menke (t. Gould); Gonld, Invert., ed. i, p. 278, fig. 183.

Massachusetts Bay to South Carolina; local north of Cape Cod, in Boston Harbor (Totten), and in the Gulf of Saint Lawrence, at Pictou and Prince Edward's Island (Dawson). It is not found on the coast of Mane nor in the Bay of Fundy. Vineyard Sound and Buzzard's Bay, abundant, low-water to S fathoms, among alga and eel-grass; Long Island Somid; and Great Egg Harbor, New Jersey, abundant. Fort Macon (Cones).

The Bittiam alternatum (Turritella alternata Say, 1822) is a very closely related species, and probably identical with this.

Turritella crosa Conthony, recorded, with a mark of donibt, by Linley, as from the stomach of a col, off Btonington, Comn., was perhaps
ineorrectly identified. It may have been a worn Cerithiopsis terebratis. Tho true T. erosa is a decidedly northern species, common in Casen Bay and the Bay of Fundy, and extend; 'lorthward " 'the Aretic Ocean, and sonthward on the northern cos ne "atione, it in on the North Pacific coast of America. It has not is of recorded fr, in sonth of Cape Cod by any one except Linsley.

Vermetes Radicula Stimpson. Plate NXIN, fig. 15\%. (p. 417.)
Sleells of Now Englami, p. 3\%, 1551; Gould, Iuvert., ed ii, p. 316, fig. 524. Vermetus lumbriculis Gonld, ed. i, p. Dut, and varions other American anthors, (non Lamarck).
Cape Cod to Florida. Vineyard Somm and Buzzard's Bay, 3 to 10 fathoms, not uncominon; Loug Island Somml. Fort Macon, North Carolina, common, (Cones).

Fossil in the Post-Pliocene of North Carolina.

Proceedings hoston Society of Natural History, vol. iv, p. $112,18 . \operatorname{l}$; Shells of New England, p. 36, llate : , tig. 3, 1851; Gould, Invert., ed. ii, p. 315, fig. Jes.
Vineyard Somul, 1 to 4 fathoms, and dead on shore at Nobsca Beach. New Bedford (Stmpson). Greenport, Long Island, 10 fathoms, sand, (S. Smith).

Dead shells of this species readily lose the outer layer, in which the ammlations are formed; they then become white and smooth, withont any trate of aumbations, and might be mistaken for a different species.

Cecuar Cooperi Smith.

Sanderson Smith, Annals Lyceum Nat. Hist., New York, vol. vii, p. 154, 1860 ; op. eit., vol. ix, p. 393, fig. 3, 1870, (non Carpenter, 18ibi). Cereum costatum Verrill, American Journal of Science, vol. iii, p. D®3, $1 \times 2:$; this Report, P. 417.
Vineyard Sound, 8 to 10 fathoms. Gardiner's Bay, Long Island, 4 to 5 fathoms, sand, (Smith).

The first description of this species was formerly overlooked by me; as it antedates the description of the Califormian species to which Dr. Carpenter gave the same name, the present species must be called Cooperi.

In the adolescent stage of growth this species enlarges rather rapidly, and has 12 or 13 , distinct, elevated, rounded coste, narrower than the intervals between; the cirmlar grooves are mmerons, unequal, interrupted over the coste, and broader toward the aperture. The aperture is romded within; its margin is stellated extemally by the costie.

Crepidula fornicata Lamarek. Plate NAIIf, fig. 199. (p. 41i.)
Animanx sans Vert., vol vii, p. 6.11 : Say, Jomrnal Acad. Nat. Sciences, Philadel-
 fig. $530(?$?). P'atella formicate Limé, Syst. Nat., ell. xii, p. 12.7.
Caseo Bay, Mane, to Florida, aml the northern shores of the Gulf of Mexico. Local north of Massachusetts Bay ; in the southern part of
the Gulf of Saint Lawrence, at Prince Edward's Island, \&c. Halifax (Willis). Saint George's Bank (S. I. Smith). It is common in the shatlow and sheltered parts of Casco bay, but has not been found east of the Kennebeck River, on the coast of Maine, nor in the Bay of Fundy. Very abundant in Vineyard Sound and Buzard's Bay, from low-water to 12 fathoms; in Long Island Somd, near New Haven, low-water to 6 fathoms; Great Egg Harbor, New Jersey; and everswhere southward. Egmont Key and Tampa Bas, Florida (E. Jewett).

Fossil in the Miocene of Maryland, North and Sonth Carolina; Pliocene of Sontl Carolina; and Post-Pliocene of North and South Carolina, Gardiner's Island, New York, and Nantncket Island.

The fornicata of Linné was described as a Mediterranean species, and may not be identical with the American shell.

Crepidula Plana Say. Plate XXIIf, fig. 127.
Journal Acad. Nat. Sciences, Philatelphia, vol. ii, p. 226, 1822; Gould, Invert., ed. i, p. 159, fig. 16 ; ed. ii, 1. 27a, fig. 533 . Crepitula nnguiformis Stimpson, Shells of New England, p. 30, 1831; this Report, pp. 353, 417 (non Lamarck, $182:$).
Massachusetts Bay to Florida and the northern shores of the Gulf of Mexico. Loeal and less abmolant farther north, in Caseo Bay, Mane; Nova Scotia (Willis) ; Gulf of Saint Lawrence (Bell, Dawson); and Saint George's Bauk (S. I. Smith). Not found on the eastern part of the coast of Maine, nor in the Bay of Funds. Tery common in Vinefard Sound, Buzzard's Bay, and Iong Island Sound, from low-water mark to 12 fithoms, on the outside of oysters, Limuli, and rarious dead shells, as well as on the inside of varions dead univalve shells; in all these situations frequently associated with the preceding species, but no intermediate forms have been observed.

Fossil in the Miocene of North and Sonth Catolina; Pliocene of Sonth Carolina; and in the Post-Pliocene of Gardiner's Island, New York, North Carolina, South Carolina, and Florida.

The Mediterranean shell, C. unguiformis Lamarek, is a distinct species.
Chepidula convexi Say. Plate XXIII, fig. 128. (p. 35j.)
Jommal Acad. Nat. Sciences, Pliladelphia, rol. ii, p. 22\%, 1~2.2; Could, Invert., ed. i, p. 160, fig. 15 ; ed. ii, p. 273, fig. 534. Crepidula glance Siy, op. cit., p. 225; Gould, Invert., ed. ii, p. 274, fig. 535 ; eth. i, p. 151, fig. 14. C'repidula acuta H. C. Lea, American Jour. Scienee, ser. i, vol. xlii, p. 102, llate 1, fig. 4, 1842.

Massachnsetts Bay to Florida. Less abundant amd foeal farther north : at Quahog Bay, Maine; Nov̌a Scotia (Willis) ; and Gulf of Saint Lawrence. Very common in Vineyarl Sound, Bazzard's Bay, Long Island Sonnd, shores of Long Island, and Gieat Egg Harbor, New Jersey. Fort Macon, North Carolina (Cones). Georgia (Comper).

Fossil in the Post-Pliocene of Yirginia and South Carolina.
The distribution of this species is probably identical with that of Eupagurus longicarpus and Ilyanassa obsolcta, with which it is nearly always
associated. At Quahog Bay, Maine, this species oecors on the hack of the dead shells of 1 . obsoleta, which are ocempied hy the hermit-erab, just as in the waters of Southern New England; and these, with momerous other sonthern foms associated with them, constitnte a gemme sonthern colony, ocenpying a wam, sheltered bay, suromuled on all sides by the morthern fanma.

The depressed variety (glunca) is fomblathy on broad and nearly flat surfaces of large bivalve shells, stones, ©e. The very convex varieties adhere manly to the surlaces of small comex motalses.

Cbecmbluat sthation Adams. Plate XXIll, digs. 125, 126. (p. 417.)
11. and A. Allams, Gemera of Rerent Mollusea, vol, i, p.:3fic; Gomld, Invert., ell ii,
 I'hiladuphia, vol. r, p, 2lf, 1*3k. Crucibulum (Dispot(tu) striuta II. and A. Allams, Gemera, vol. i, p. 3ite, 125\%.
Bay of Fundy to New Jersey. Eastport Harbor and Bay of Funds, low-water mark to 30 fathoms, common; Fremehmans Bay and Momit Desprt, Maine, 3 to 10 fathoms, common; Casen Bay, Maine, 6 to 40 fathoms; Vineyard Somm and Buzzards Bay, 3 to 12 fathoms, uot uncommon. (rardiner's Bay and Montank Point, Long Istand (S. Smith). Off New London, Comn, (roll. T. MI. Prudden). Saint George's bank (S. I. Smith). Northern New Jorsey (Say).

Ifttomina inkorata Gray. (1. 372.)
Zoology of Captain Beechey"s Voyage, p. 13-, Plate 3^{2}, fig. 1, 12:39. fiould, Invert., ed. ii, p. 311, fig. 5j9. Tarbo irrorutns Say, Jomral Acand. Nat. Sciences, Philadelphia, vol. ii, p. 2:39, July, 1-2.2; Binney's say, p. R1. P'hasianclla sulcta Lamarek, Animanx sams Vart., ed, i, vol. rii, p. 54, Ang., 1802; cd, ii, wol. ix, 1. © 24. Littorina sulcuta Deshayes, in Lamarek, op. cit., wol. ix, p. 20:3, 1-13.

Vineyard Somd to Florida and the northern slores of the Gulf of Mexico. Vinerard Smmal, sparingly; Long Island Somal, near New Haven, rare. Stratfort, Connectient, on high selge(Linsley). Huntington, Loug Island (S. Smith). Comparatively rare and local north of Marrland; very abundant farther south.

Many of the shells of this species found on our shores have undoubtedly been bronght from Virginia and Maryland with the sonthern orsters planted in our waters, but it is probably indigenous in certain localities.

Littonina rudis. Plate NXIV, fig. 13i. (p. 30.5.)

 (al, ii, 1. :30: lig. 天ли.
Among the aditional mames that appar fo have been apmed fo the ramoms
states of this variable species are: L. saxatilis Johnson ; Turbo sulcatus Leach ; Turbo jugosus Montagu; L. patula (nar.) Jeffcoys; L. neylectu Bean ; T. ventricosus Brown; L. marmoratu Pfeiffer; Nerita littorea Fabricius (non Linné); L. Grönlandica Müller, Lovén, Mürch; L. rudissima Bean; L. zonaria Bean; L. neglecta Bean, etc.
Great Egg Harbor, New Jersey, northward to the Arctic Ocean; Greenland ; Iceland ; Spitzbergeu. Northern coasts of Europe to Great Britain and Spain. Local south of Long Island Sound ; abundant on all the rocky shores oí Southern New England, from New York to Cape Cod, and at the eastern end of Long Island; local at Great Egg Harbor, among Fucus, on the stones of an old pier. Extremely abundant on all the northern shores of New England and northward. Fossil in the Post-Pliocene of Canada, Great Britain, and Scandinavia.

Littorina palliata. Plate XXIV, fig. 138. (p. 305.)
Gonld, lnvert. of Mass., ed. i, p. 260, fig. 167, 1841 ; ed. ii, p. 309, fig. 57 E. Turbo palliatus Say, op. cit., p. 240, 1e22. Littoriua urritoilea Dekay, Mollusca New Fork, p. 105, Plate 6, figs. 109-111 (non Turbo nevitoidea Linné). Littorina littorulis Stimpson, Shells of New England, p. 33, (non Forbes and Hanley; non Nerita littoralis Linné). Turbo littortlis Fabricins, Fama Grœenlandica, p. 402 , 17<0 (non Limé). Littorina arctica Mïller, Kroyer's Tidsskrift, vol. iv, p. 82, 1842. (?) Littorina limate Lovén, Ofversigt af Kongl. Vet.-Akad. Förhandlingar, vol. iii, p. 154, 1846. Littorina Peconict S. Smith, Annals Lycenm Nat. Hist., New York, vol. vii, p. 155, 1860.
Great Egg Harbor, New Jerses, to the Aretic Ocean ; Greenland, Spitzbergen, Fimmark, and Norway. Very abundant from New York to Cape Cod and northwarl, wherever Fuci grow on rocks between tides; local and less abundant south of Long Island Sound.

Fossil in the Post-Pliocene of Great Britain and Scandinavia.
Should this species prove to be identical with L. obtusata (Limné, sp.) of Europe, as there is reason to anticipate, its range will be nearly coincident with that of L. rudis, with which it is always fonnd associaterl on our coast. Several writers have already mited the two forms, but no satisfactory comparisons of large series of specimens, from many localities on both coasts, have been made.

Lacuna vincta Turton. Plate XXIV, fig. 139. (p. 305.)
Gould, Invert., ed. i, p. 262, figs. 169, 178*, 1841; cd. ii, p. 302, fig. 573. Twerbo rincta Montagn, 'Test. Brit., p. 307, Plate 20, fig. 3, (t. Gonld). Trochas diraricatus F’abricius, Fanna Grönlandica, p. 39:3, 1780 (non Linné). Lacuma divaricate Lovén, op. cit., p. 155, 1846; Jeffreys, British Conchology, vol. iii, p. 346.
Accorting to Jeffreys, the following are among the synonyms or varieties of this species: Turbo canalis Montagu; T. quadrifasciata Mont.; Phasiunella jusciata, P. bifusciuta, P. cornea, and P. striata Brown ; Lacuna solitula Lovén; L. labiosa Lovén; L. frigida Lovén.

New York to the Arctic Ocean; Greenland, Iceland, Lapland, Scandinavia, Great Britain, France; on the Pacific coast of America sonthward to Puget Sound. Long Island Sound, common, but rather local ; Watch Hill, Rhorle Island, among algie, in 4 to 5 fathoms; Vineyard

Somm ; Buzaarl's Bay. Very abundant north of Massachusetts Bay, in Casco Bay, Bay of Fumdy, Labrador, ete. Staten Lslamd and Long Island (S. Smith).

Fossil in the Post-Plocene of northern Great Britain and Seandimavia.

Latenne neritoiden Gonld.
 170 ; ed. ii, p. 30:3, tig. 57.4.
This species is a very doubtful inlabitant of this region, having been recorded by no one except Linsley, 1855, who reports it from Long Island Somd (Oyster River and Long Beach, Stratford, Connectient). I have never been able to find it in the same region, nor has any one else lad better success. Linsley's specimens may have been incorrectly named. It oceurs in Massachnsetts Bay; at Cape Elizabeth, Casco Bay; Grand Menan Island, ete.; northward to Greenland ; and on the northern shore of Europe.

Littorinella minuta Stimpson. Plate XXIV, fig. 140. (p. 469.)
Researehes mpon the Hydrobinse and Allied Forms, p. 42, May, 1865, in the Smithsonian Miscellaneons Collections. Turbo minutus Totten, American Journ. Science, ser. i, vol. xxvi, p. 369, fig. 6, 1834. Cingula minula Gould, Invert., ed. i, p. 265, fig. 171. Rissoa miuuta Gould, op. cit., ed. ii, p. 293, fig. 566. Ecrobia mimuta (provisional name) Stimpson, op. cit., p. 42, 1865. ? Cingula modesta Lea, Boston Journal of Natural History, vol. v, p. 238, Plate 2f, fig. 5.
The tentacles in this species are rather short, searcely exceeding the breadth of the liead, slightly tapering, blunt; the eyes are on low prom. inences on the outer side of the bases of the tentacles; rostrum large, stout, transversely wrinkled, longer than the tentacles, tapering somewhat, but divided at the end by a deep emargination into two rounded lobes, which are often somewhat expanded. Foot short and broad, subtruncate anteriorly, with the angles broad and but little produced, posterior end broadly rounded.

New Jersey to Nova Scotia and Gulf of Saint Lawrence. Abundant along the brackish and muddy shores of Long Island Sound, Buzzard's Bay, Vineyard Sound, Massachusetts Bay, Casco Bay, and Bay of Fundy.

It is not confined to brackish waters, but often occurs also on the ocean shores, muder stones between tides.

Littorinella l.evis Verrill.

Cingula lavis Dekay, Niatural Mistory of New York, Mollusea, p. 111, Plate 6,
fig. 118 (poor), 1-43. Odostomia limnoidra (Dckay, MSS.), Linsley, Amer.
Journ. Scienct, ser. i, vol. xlviii, p. 2-4, 1-5.5 (110 description). (?) Ris8oa
Stimpsoni S. Smith, Amals Lyceum Nat. Hist., New lurk, vol. ix, p. 393,
fig. $\because, 1=70$.

Long Lsland Sombl, near New Haven. Stratford, Connecticut (Linsley); near New lork (Dekay); Greenport, Long Island (S. Smith).

Rissoa Aculeus Stimpson．Plate N゙N゙V，fig．141．（1）．306．）
Proc．Boston Soe．Nat．Hist．，vol．ir，p．15， 1851 ；Shells of New Englame p． 34；Gonld，In rert．，ed．ii，p．299，fig．56\％．Cingula aculeus Gonld，Iuvert．，cd． i，p．266，fig．172，1＝11．Trochus strietellus Fabricins，Fama Grïnl．，p．393，（non Linné）．（？）Rissoat sacatilis Möller，Index Mollusea Grönl．，in Kroyer＇s＇Tids－ skrift，vol．is，p．\＆e，1843．（？）Rissea aretica Lovén，Ofversigt af Kongl．，Vet．－ Akad．Förbandlingar，vol．iii，p．156， 18.66.
Long Island Sound to Greeuland．New Haveu，Comecticut，and vicin－ ity，common．Watch Hill，lhorle Island；Vineyard Sound ；Stratford， Connecticut（Linsley）；Gull Island（Smith）．Common on the shores of Massachosetts Bay，Casco Bay，and Bay of Fundy．

Loven＇s R ．arctice was from limmark，and，to judge from the de－ scriptions，may not be ideutical with our species．Mr．Jeffreys regards it as a variety of R ．striata of Europe．He also unites the American shell with R ．striata，thus：＂The variety arctica（under the specific name aculeus given to it by Professor Stimpson）inhabits the northeru sea－board of the United States．＂（See British Conchology，vol．iv，p．38）． It is natural to infer that a writer who does not appear to have seen the accurate description and figure of this species published in the well－known work of Dr．Gonld，ten years previous to Dr．Stimpson＇s earliest publications，cannot have devoted much time or attention to the American shells，and therefore his opinions shonld not have too much weight in such cases．

In reality，our shell differs widely from R ．striatu．It agrees more nearly with the English R．proxima（Alder，Forbes and Hanley），but apparently differs from it in the soft parts．The foot in our shell is broadly and slightly rounded auteriorly，with the angles only slightly produced，and tapers backward to a bluntly－rounded posterior end． The tentacles are long，slender，slightly tapering，with blunt tips．The eyes are situated near their bases on the dorso lateral aspect，and are scarcely elevated above the general surface．The snout is rather long， often a little expanded at the end，and divided by a deep emargination into two lobes，which often，in a dorsal view，show a slight emargina－ tion on their onter surface．No operular cirrus was observed．This species belongs to the genus Onobr of II．and A．Adams．The R ． suxutilis was described by Mïller as having the whorls smooth，but he refers to T ．striatellus of l＇abricius，which had spiral striations，as in our species．

Rissoa exarata Stimpson．（p．495．）

Proceellings Boston Soc．Nat．Hist．，vol．ir，p．15，1世5）；Shells of New England， p．34，llate 1，fig．3，1551；Gonld，Invert．，ed．ii，p．301，fig．57̄1．Cingula arenarid Mighels and Adlams，Boston Jomr．Nat．Hist．，vol．iv，P．49，Plate 4， fig．elt，1842（nom Montagu，sp．）．Rissau Mighelsii Stimpson，Proc．Bost．Soc． Nat．Hist．，vol．ir，p．15， 1851 ；Shells of New England，p． 34 ；Gould，Invert．， ell．ii，p．301，（bint not fignre 570，which is probably R．sulcesu）．
Stonington，Comecticnt，to Gulf of Saint Lawrence．Watch Hill，Rhode Islant， 4 to 5 lathoms，among rocks and algee（white varicty）；Casco Bay，

6 to "25 lathoms; Bay of Fundy, 4 to 20 fathoms. Fossil in the Post. l'locene of Canada. This speces is usually brownish or chestunt-color, but is also fiequently white.

Rissoa elurnea Stimpsom, has been recorded (as Rissoella (? eburnen) by Dr. (i. H. Perkins, from Lomg Island Somml, near New Harom, but I have seen no motoubed shells of this species fiom any locality sonth of Massachasetts Bay. The shell refered to by 1hr. Ierkins was beathworn, and may have been some other speefes. The fignre given in the
 resent this species. See the fignre in Stimpson's Sholls of New England, late 1, figs. I, 1a. This shell appars to he a Jeffreysia.

From Huntington, Long Islanl, I have seen a shell closely resembling Rissoul latior Stimpson, (M. and Adams, sp.), if not identical with it.

Shenea planolbis. Plate NXIV, fig. 142. (p, 38:3.)
Forbes and Hamay, British Mollusea, vol iii, p. 156, Plate 7.1, figs, 1-:3, ant Plate (: G, figs. 1 and Iu (amimal); Stimpson, Shells of New Eneland, p. B5; (ionld, lusert., ed. it, p. 2att, fig. 563. Tarbo planorbis F'abricins, F'anat Grönl., p. 394, 1780. Shenea serpuluidey Gonld, Invert., ed. i, :247, fig. 189.
Long Island Somd to Greenland, Iceland, Spitzbergen, Scamdinavia; and northern and castern coasts of Europe generally, to England and France. Near New Haven, Connecticut, common; Watch Hill, Rhode Island; Cuttyhnkifsland. Very common on all rocky shores in Massat chusetts Bay, Casco Biay, and Bay of Fundy. Fossul in the Post-Pliocene of Scotland and Scandinavia.

Stylifer Stimisonii Verrill. (p. 460.)
American Journal of Science, vol. iii, pp. 210 and $283,1=7 \%$.
Shell white, short, swollen, broad oval ; spire short, ralully enlarging. Whorls four or five, the last one forming a large part of the shell ; conrex, rounded, with the suture impressed, surface smooth, or with very faint strie of growth; a slightly impressed revolving line just below the sutmre. Aperture large and broad. Length about . 15 of an inch ; brealth, .12.

Parasitic on the dorsal surface of Strongylocentrotus Dröbachichsis, from off New Jersey, in :35 fathoms (Captain Gedney); and Saint (ieorge's Bank, north latitude $41^{\circ} 25^{\prime \prime}$, west longitude $65^{\circ} 56^{\prime}, 3^{\prime \prime}$, in 60 fathoms, (S. I. Smith).

ELLimA oleacea Kirtz and Stimpson. Plate NXIV, fig. 149. (p. 418.)
Proceedings Boston Soc. Nat. Mist., vol. ir. p. 115, 1~. 1 ; Stimpson, Shells of New

Vinesard Sound to Beanfort, North Camolina. In Vineyard Somed it is not uncommon on Thyone lriturens, in to lo fathoms. Buzardes Bay (Stimpson).

Odostomia producta Gould. Plate XXIV, fig. 143. (p. 418.)
Invert., ed. i, p. 270, fig. 175, 1841 ; ed. ii, p. 325, fig. 593. Jaminia producta Adams, Boston Journal Nat. Hist., vol. iii, p. 3き2, Plate 3, fig. 8, 1840.
Vineyard Sound to New Jersey.
Odostomila fusca Gould. Plate X̌XIV, fig. 144. (p. 307.)
Invert., cid. i, p. 2\%0, fig. 176; ell. ii, p. 325, fig. 594. Pyramis fusea Adans, op. cit., vol ii, p. 282, Plate 4, fig. 9, 1839.
Cape Cod to New Jersey.
This species is referred both to Turbonilla and Odostomia by H. and A. Adlams, in the same work (Genera Moll., pp. 231, 232).

Odostomia dealbata Stimpson.

Smithsonian Check-List, p. 5, 1860; Gould, Invert., ed. ii, p. 327, fig. 595. Chemuitzia dealbata Stimpson, Proc., Boston Soc. Nat. Hist., vol. iv, p. 114, 1851; Shells of New Eugland, p. 41.
Long Island Sound to Boston Harbor. New Haven, Connecticut (Perkins). Boston (Stimpson).

Odostonita bisuturalis Gould. (p. 307.)
Invert., ed. ii, p. 327, (not fig. 597). Turvitella bisuturalis Say, Journ. Acad. Nat. Sci., Philadelphia, vol. ii, 1. 244, 1822. Chemnitzia bisuturalis Stimpson, Shells of New England, p. 42. Jaminia exigua Couthouy, Boston Journ. Nat. Hist., vol. ii, Plate 1, fig. 7, 1838. Odostomia exigua Gould, Invert., ed. i, p. 272 , fig. 177.
New Jersey to Massachusetts Bay. Boston (Say); Chelsea (Couthouy); Staten Island; Greenport, and Huntington, Long Island (S. Smith). Not uncommon in Long Island Sound, Vineyard Sound, and Buzzard's Bay.

The figure (597) in the second edition of Gould's Invertebrata does not represent this speeies, but apparently a variety of O. trifida.

Odostonid trifida Gould. Plate XXIV, figs. 145, 146. (p. 307.)
Invert., ed. i, p. 274, fig. 179, 1841 ; ed. ii, p. 328, fig. 593. Actaon trifidus Totten, Amer. Journ. Science, ser. i, vol. xxvi, p. 368, Plate 1, figs. 4, $a, b, 1834$.
New Jersey to Massachusetts Bay. Staten Island (S. Smith) ; Lynn, Massachusetts (Haskell). Common in Long Island Sound, Vineyard Sound, and Buzzard's Bay.

Odostomia mpressa Stimpson. Plate XXIV, fig. 147. (p. 418.)
American Jouru. Science, vol. xxir, p. 444, 1860; Gould, Invert., ed. ii, p. 330, fig. 600. Odostomia insculpta Dekay, Nat. Hist. N. Y., Mollusea, p. 115, Plate 31, fig. 297, 1843. Turvitella impressa Say, Journ. Acad. Nat. Sci., Philadelphia, vol. ii, p. 244, 1822; Binney's Say, p. 84. Chemnitzia impressa Stimpson, Shells of New England, p. 42, 1851.
E. Long Island Sound to South Carolina. Near New Haren, Conneeticut, rare. East River (Dekay); Maryland (Say); Beaufort, North Carolina (Stimpson, Cones).

Odostoma smmivida Goull. Plate NXIV, fig. 1is. (p. His.)
 B. Alams, hostom .lommal Nat. Hist. vol. ii, p. Deat, Plate 4, fir. 1:3, 1-39.
 seminulu II. amd A. Allams, (iemera Moll., wol. i, 1. 2:31.
Massachmetts Bay to Sonth Carolina. Commom in Vineyand Somm and Bu\%zad's Bay, in 2l to 10 liathoms; Long Island Sound, lessicommon. Massachusetts B:ay (Stimpson). Gremport and Hmatington, Long Island (S. Smith). Fort Macon, North Carolina (Cones).

Turbonilla interreupd Alams. (p. 118.)

II. and A. Adans, Goucta, vol. i, !. 2:31, 18.8; Gonld, Invert., chl ii, p. 2:3. fig. 601 (bad figne). Twritelle intermpta Tottrin, Amer. Jomr. Science, ser. i, volxxiii, 1. 35, tig. 7, 13:3; (ionld, luvert., ed. i, p. 203 , fig. 173 (incorrect).
Cape Cod to Sonth Carohna. Quite common in Vineyard Somm and Buzzamd's Bay, in 3 to 10 fathoms; Long Island Sound, off Thimble Islands and New Ilaven, 3 to 5 fithoms, mather rare. Ifmentington and Greenport (S. Smith). Dirtmouth, Massachusetts (Adams). Newport, lihode Island (Totten). Fort Macon, North Carolina (Cones).

I have received from Prof. E. S. Morse specimens of this shell obtained from mud in the harbor of Portland, Maine, but they are dead and bleached. I am not aware that it has been found living so far north on our coast. Fossil in the Post-Pliocene of Sonth Carolina.

Lorén records this species as from the coast of Norway, lut possibly his shell is a different species, or else a rariety of T'. rufa of Southern Europe, which is certainly very closely related to our species, and is considered the same by Jeffrees. If so, the name given by Totten has precedence of rufa (Philippi, 1836). Farther and more extensive comparisons mast be made before the identity of the two forms can be establissied.

The figure given in the first edition of Gould's Invertebrats, and copied in the second edition, does not correctly represent this shell, and was, perhaps, drawn from some other species, for it does not agree with Gould's description, which is accurate. The spire, as represented, is too acute and too rapidly tapered ; the last or body whorl is too large; the aperture has not the right form ; and the peculiar sculpture is not brought ont at all. Totten's figure, though somewhat coarse, is characteristic.

Turbonilla elegans Verrill. Plate NXIT, fig. 15\%. (p. 418.)

Shell light yellowish, clongated, moderately slender, acute. Whorls ten or more, well rounded, not distinctly flattened; suture yather deeply impressed; surface somewhat lustrous, with mumerous rommled rertical costa, narower than the concare interspaces, fading out below the middle of the last whorl; and with numerons fine revolv-
ing groores, which are interrupted on the costre, but distinct in the intervals; on the upper whorls there are about five; and on the lower half of the last whorl usually five or six distinct and contimons ones. Aperture broad oval, anteriorly rounded and slightly effuse; outer lip thin, shapp; columella nearly straight at base within, slightly revolute ontwardly, regularly curved anteriorly where it joins the outer lip, and not forming an angle with it. The epidermis is thin, light yellow, sometimes with a darker, sellowish, revolving band on the middle of the last whorls, and also with the revolving strise darker.

Vineyard Somnd, 6 to 10 fathoms; Long Island Sound, near New I Iaven, 5 fathoms.

Turbonilla areolata Verrill, spo nov.
Shell small, slender, with eight or more whorls, slightly obelisisshaped, owing to the more rapid narrowing of the upper whorls; apical or unclear whorl very small, reversed; the other whorls are moderately convex, somewhat flattened in the middle, and crossed by mumerous rather crowded, narrow, transverse coste, of which there are twentyfise or more on the lower whorls; interstices intermpted by numerons rather conspienons, revolving, impressed lines, of which there are abont six on the upper whorls; these divide the interstices into series of pretty regular, small, squarish pits, but do not cross the cost:e; the bodywhorl is stbangulated below the middle, where the coste disappear, below which the base is marked only by fine revolving lines; suture impressed. Aperture oval, acute posteriorly, rounded and slightly spreading anteriorly; onter lip sharp, thin, slightly angulated below the middle, rounded and slightly effuse anteriorly; columella smooth, somewhat curved, searcely forming an angle at its junction with the outer lip. Length, 4^{mm}; breadth, 1.5^{mmm}.

Long Island Sound, uear New Haren.
The crowled costre and numerous spiral lines produce a closely caucellated appearance, which is sufficient to distinguish this from the two preceding species. From the following it differs much in sculpture, form, shape of aperture, and columella, and especially in the minute size of the apical whori.

Turbonilla costulata Tertil, sp. nov.
Shell small, long conical, translucent, glossy white, banded faintly with pale brown, subacute, with a relatively large, smooth, reversed apical whorl; the other whorls are six or more, Hattened, and but slightly convex, eularging regularly, crossed by numerous straight, smooth, rounded, transverse coste, of which there are upward of twenty on the lower whorls ; interstices rather narrower than the costar, deep, and intermpted by numerous very minute revolving lines, which are scarcely visible under an ordinary pocket-lens, and do not cross the coste; suture impressed. The body-whorl is subangulated below the
midale, the edstar vanishing at the angulation ; the base is covered with momerons microscophe revolving lines; on the boty-whol there are two revolving hands of pale brown, one above and one below the angatation. Apertne long ovate, acoute posteriorly, alitte angulated on the onter side, rombed and slighty molonged anterionf: Outer lip thin and sharp, romm and slightly eflase anteriorly ; eolmmella smonth, nealy straight, but scarcely forming an angle where it joins the onter lip. Length, 4^{mm}; breadth, 1.5 m^{mm}

Somewhat ressmbles T. interrupta, but the costar are more crowded, the spiral lines are very moth finer and more momeroms, and the nuclear-whorl is much larger.

Long Island somal, near New Haven, Comn.
Turbonilla stricta Verfill, sp. nov.
Shell white, subulate, very acute, with a very minnte reversed apieal whorl ; whorls ten, besides the molems, gmanally and recglaty enlarging, thattened or only very slightly convex, crossed by straight, obtuse, transverse costar, of which there are about sisteen or eighteen on the lower whorls; the two mpere whorls are nearly smooth; suture impressed. Apertme irregulaty oblong-ovate, atute posterionly, rombled anterionly ; onter lip flattened, thiekened internally, in mature shells, and minutely cremulate within; columella smooth, nearly straight, thickened, forming an angle where it joins the onter lip. Length, $4.5^{\text {mm }}$; breadth, $1^{\text {mm. }}$.

Long Island Somm, of New Haren, Comectient.
This is probably the shell recorded from this region as T. nirea (Stimp. son, sp.) by Dr. G. If. Perkins. It liffers from the niven in the form of the aperture and lip, and in being smaller and much more achte, thongh laving the same number of whorls.

Turbonilla meualis Verrill.

 ney's Say, p. 119.
"Shell subulate, white; rolntions ten, each with about tweuts-two, transwerse, elevated, obtnse, equal lines, with interstitial grooves of the same diameter; suture distinct, impresied; aperture romded at base, and destitute of any distinet emargination. Length one-fith of an inch." (Bay.)

My specimens agree well with the above deseription. The shell is rery slender and acute, with a small distinctly reversed apical whorl ; the remaining nine whorls are somewhat flattened, and all are crossed by obtuse, tramsveise costie, which are a little oblique, especially at the upper ends, close to the sutnres; on the bodr-whorl there are abont twenty, but fewer on the upper ones; at the base of the body-whorl they ramish, leaving it smooth; the interstices between the costie are deep and apparently smonth. The aperture is round ovate, well rounded or sub-cirenlar anteriorly; the imer lip having a raised amd thin
margin. Length, $4.5^{m m}$; breadth, 1.25^{mm}. Vineyard Sound, 6 to 8 fathoms.

Menestho allula Möller (Fabritius, sp.), was recorded by Linsley (as Pyramis striatula Conth.) from the stomachs of ducks at Bridgeport, Connecticnt. It has not been found sonth of Cape Cod by any one else, and as it is a rare deep-water shell on onr northern coast, it is not likely to have been obtained by ducks. It is found in Massachusetts Bay, Casco Bay, Bay of Fundy, and northward to Greenland. Linsley's shell may have been Odostomia impressa.

Scalaria lineata Say. Plate NXI, fig. 123. (p. 418.)
Journal Acad. Nat. Seiences, Philadelphia, vol. ii, p. 242, 18:2; Binney's Say, pp. 83, 180, Plate 27, lower left figure ; Gould, Iuvert., ed. i, p. 250; ed. ii, p. 312, fig. 580.
Tineyard Sound, Bnzzard's Bay, and Long Island Sound; southward to South Carolina and Georgia. Fossil in the Post-Pliocene of North aud South Carolina.

Scalaria multisthlata Say. Plate NXI, fig. 122. (p. 418.)
Jumrn. Acad. Nat. Sciences, Philadelphia, vol. v, p. 208, 1826 ; Amer. Conchology, iii, Plate 27 ; Binney's Say, Pp. 119, 180, Plate 27, lower right figure; Gould, Invert., ed. ii, p. 313, fig. 581.
Vineyard Sound, Buzzard's Bay and Loug Island Sound; sonthward to Florida. Fossil in the Post-Pliocene of South Carolina.

SCalatia angulata Say.
American Conchology, iii, Plate 27, upper figures, 1831 , as a variety of S. cluthrus; Sowerby, Thes. Coneh., part is, p. 86, Plate 32, fig. 5, 1514. Scalaria Humphreysii Kiener, Ieonographie des Coquilles Viv., p. 15, Plate 5, fig. 16, 1838-9.
Connecticnt to Florida. Stonington(Linsley); Greenport, Long Island (S. Smith). Outer beach at Great Egg Harbor, New Jersey (A. E. V.); Fort Macon and Beaufort, North Carolina, common, (Stimpson, Cones); South Carolina (Kiener). Rare and perhaps aceidental north of New Jersey.

Scalaria Grgenlandica Perry.
Conch., 1811, (t. Müreh); Sowerby, Thesamrus Conch., part iv, p. 101, Plate 34. figs. $105,106,1844$; Gonid, Invert., ed. i, 1. 249, tig. 170^{*}; ed. ii, p. 314, fig, 582. Turbo clathrus Groulandicus Chemnitz, Coneh., xi, t. 1878, 1579 (t. Gould). Scalaria subulata Conthony, Boston Jour. Nat. IIist., vol. ii, p. 93, Plate 3, fig. 4, 1838.
Cape Cod to the Aretic Ocean, and northeru coasts of Enrope, southward to Bergen. Sonth Shoals, off Nantucket (Agassiz, t. Stimpson). Common in Casco Bay and Bay of Fundy, from 10 to 109 fathoms. Fossil in the Post-Plicoene of Nantucket, rare, (Desor) ; and in the Red-Crag, Norwich-Crag, and later deposits in Great Britain.

Janthina fragilis Lamarck; Could, Invert., ed. i, p. 240 ; ed. ii, p. 277. This has been found cast ashore at Nautucket, but probably does not occur living so fiur north. It inhabits the Gulf Stream farther sontl.

lilllilloglossa.

 theny, Boston Jomm. Nat. Hist., vol. ii, p. 100, Plate :3, fig. $2,1 * 3^{2}$.
Stonington, Comectient, to Labrador. Rare and confined to the onter waters sonth of Cipe Corl ; off Martha's Vineyard, 20 to 25 fathoms. Stonington, from haddock's stomach, (Linsley). Common in Massachusetts Bay, Caseo Bay, and in the Bay of Fundy, from extreme low. water mark to 100 fathoms. East of Saint George's Bank, in $4: 30$ fathoms, (S. J. Smith).

Marguta ormutu Dekay, N. V. Mollısea, p. 107, Plate 6, fig. 10t, 1843, was deseribed as occurring in the vieinity of New York, but I have not met with it in Long Island Somul.

VOCOGLOSSA.

Acmad testudisalis Forbes and Hanley. Plate X゙XIV, figs. 109, 159a. (p.307.)
british Mollusca, vol. ii, p. 434, Plate 6e, figs. R, 9, and Plate A A, fig. $\quad \ddot{2}$; C'arpenter, leport of British Association for I-50, pp. 219, 366, 18.7~; Dall (smb)genus, Collisella Dall), American Journal of Conchology, vol. vi, p. 249, 1871. Lottia testudinalis Gould, Iuvert., ell. i, p. 153, fig. 12. Tectura testudiualis Gonld, Invert., ed. ii, p. ©it, tis. 529. Patella tesfudinalis Miiller, Prodromms Zool. Danica, p. 297, $17 \% 6$.

Variety ulrens. (tig. 159 a). J'atella alrens Comad, Jommal Acad. Nit. Seiences, Philadelphia, vol. vi, Plate 11, fig. 20, 1831. Lottia alveus Gould, Invert., ed. i, 1. I5t, fig. 13. Tecturt alrous Gould, Invert., ed. ii, p. 269, tig. 530 .

Long Island Somd to the Aretic Ocean ; eircompolar. It extends sonthward on the Enropean coasts to Southern Sweden, England, and Ireland; in the North Pacifie, sonthward to Sitka and the Island of Jesso, Japan. It is comparatively rare and local sonth of Cape Cod ; at New Haven, very rave; Watch Hill, Rhole Island; Martha:s Vinerard, C'uttyhmen, and adjacent isJands. Inntington and Greenport, Long Island (S. Smith). Fossil in the Post-Pliocene of Labrador (lackard) ; Greenland, Scandinavia, and Great Britain.

I'OLNILACOPIORAS.

Cideropletra apoulata Carpenter. Plate AXT, fig. 16í.
Chiton upicnlatus Say, Amer. Conoh., part vii, appeudix, (!) $1 \times 3 \mathrm{~F}$; Bimey's Say,
 chiton apiculatus, this Report, p. Sw.
Cape Cod to Eastern and Western Florida. Common in Vineyard Somm and Buzzard's Bay, in :' to 12 fathoms, shelly. Ofi New Lohdon, Connecticut (coll. T. M. Pmdden).

Dr. I'. I'. Carpenter informs me that this sirecies belongs to the genus Chetoplew of (iraly (non Adams).

Trachidermon ruber Carpenter. Plate XXV, fig. 166.
Chiton ruber Lowe, Zö̈l. Journ., vol. ii, p. 101, Plate 5, fig. 2 (t. Gonld); Gould, Invert., ed. i, p. 149, fig. 24; ed. ii, 1. 260, fig. 523. Leptochiton ruber H. and A. Adams, Genera, vol i, p. 473 ; this Report, p. 399.

Off New London, Connecticut, to the Aretic Ocean and northern coasts of Europe. Rare and local in the colder outer waters south of Cape Cod. Ofï New Loudon, 8 fathoms; ofï Watch Hill, 5 fathoms. Stonington (Linsley). Very common in Casco Bay and Bay of Fundy, from low water mark to 40 fathoms.
1)r. Carpenter asswes me that this species should be referred to Trachydermon.

Linsley records "Chiton fulminatus Couth." ($=$ C. marmoreus Gould, Invert., ed. ii, p. 261, fig. 524) as from cod-fish takell off Stonington, Connecticut, but as it has not been confirmed from sonth of Cape Cod, this must be regarded as at doubtful identification. This species is found from Massachusetts Bay northward to the Aretic Ocean and northern coasts of Europe. It is common in the Bay of Fundy, from low-water mark to 40 fathoms, on "nullipore" (Lithothemnion).
"Chiton albus" ($=$ Trachydermon albus, t. Carpenter) has been mentioned as from this region, but probably erroneously. White specimens of C. apiculata are often mistaken for it, when superficially examined. The gemmine allus is a northern species, with about the same distribution as the preceding. It is abundant in the Bay of Fundy, from low-water to 80 fathoms.

PLLMONATA.

Melampus bidentatus Say. Plate XNV, figs. 169, 169a. (p. 463.)
Journal Acad. Nat. Sciences, Philadelphia, vol. ii, p. $245,18 \%$; Gould. Invert., erl. ii, p. 467 , fig. 721. Auricula bidenteta Gonld, Invert., ed. i, p. 117, fig. 131. Melampus corneus Stimpson, Shells of New England, p. 51, 1851.
Massachusetts Bay to Florida, and along the northern shores of the Gulf of Mexico to Texas. Very common on the shores of Vineyard Sound, Buzzard's Bay, Loug Island, and Long Island Sound. Fossil in the Post-Pliocene of South Carolina.
Alemia miosotis Pfeiffer. Plate XXV, fig. 16s. (p. 383.)
Pfeiffer, Mon. Auric. Viv., p. 148, (t. Binney) ; Gonld, Invert., el. ii, p. 463, tigs. 718, 719. Auricula myosotis Draparnand, Tabl. Moll. Fr., p. 53. Auricula denficulata Gould, Invert., ed. i, p. 199, fig. 129 (mon Montfort).
New Jersey to Nova Scotia; also on the Atlantic and Mediterranean coasts of Europe. It is common at Eastport, Maine ; Portland, Mane ; and at the mouth of West River, near New Haven, Connecticnt; also near New York Cits.

TECTIBRANCHIATA.

Bulla solitaria Say. Plate MXV, fig. 161. (p. 371.)
Jonmal Acad. Nat. Sciences, Philadelphia, vol. ii, p. 245, 1822; Binney's Say, p. 84 ; Gould, Invert., ed. i, 1. 162, tig. 92; ed. ii, p. 222, fig. 513 . Bullu insculptu Totten, Anerican Journ. Science, vol. xxviii, p. 350, fig. 4, 1835.
Massachusetts Bay to Sonth Carolina. Common in the muddy lagoons
and salt-ponds along the shores of Vineyarl Somml, Bazard's Bay, and Long Island Somud. Abundant in a small bond near I Iolmes' Ihole; in New Haven IFarbor, in ditehes near Fort Halr.

 lurert., ed. i, p. Wi-4, lig. 93.
Cape Coì to South Carolins. Not uncomson in Vineyud Soumt, Buzzard's Bay, and Long Istand Sound. This species was recorded as from Casco Bay by Dr. Mighels, but as this habitat has not been confirmed subsequently, it was probably based on an erroneons identification. Fossil in the Post-Pliocene of Camada (Dawson).

 \therefore, lixs. 43,41 . Ballit triticen Conthouy, Boston Jonr. Nitt. Mist., vol, ii, p. E2,

Neal Block Islaml, northward to the Arctic Ocean : northern coasts of Europe to Bergen ; and on the northwest coast of America, sonth to Sitka. Fossil in the Post-Pliocene of Canada and Great Britain.

Most of the specimens of this shell dredged in the Bay of Fundy are opaque, yellowish brown or chestmut color, but those from Casco Ba! are nearly all clear white and transheent, althongh of equal siza.

Utriculus canaliculatus. Plate NXV, fig. 160. (p. 432.)
Stimpson, Smithsonian Check-List, p. 4, 1860 ; Gould, Invert., ed. ii, p. 219, fig. 510. Folearia camuliculata Say, Jour. Acad. Nat. Sciences, Philalelphia, vol. ソ, !. 211, 1826 ; Binuey's Say, p. 121. Bullu canaliculata Gonld, Invert., ed. i, 1. 166, fig. 97. Tormatina canaliculata H. and A. Alams, Genera, vol. ii, p. I:3.

Massachusetts Bay to South Carolina. Common in Buzzard's Bay and Fineyad Sound, in 2 to S fathoms; less common in Long Island Sound. Fort Macon, North Carolina, abundant, (Dr. Yarrow). Fossil in the Post-Pliocene of North and South Carolina : and the Pliocene of South Carolina.

Finlla deliilis Gonld, Amer. Journ. Science, ser. i, vol. xxxviii, p. 196. 1841: Invert., ed. i, p. 161, fig. 95, 1-41. Jhiaphana debilis Gould, Invert., ed. ii, p. :1f, fig. 507. Bulla pellacida Brown, 1>44. Amphisphyra pellucida Lovén, op. cit., p. 143, 1=16. Rulla hyalina Turton, Mag. Nat. Hist., vol. vii, p. 353, 1~3, (t. Jeffreys), (now (Emelin).
Cape Cod to the Aretic Ocean ; and on the northern coasts of Emrope, southward to Great Britain, Madeira, etc. Stonington, Connecticut, from stomach of cod (Linsley). Not meommon in Caseo Bay and Bay of Fundy, and northward, in 6 to 50 fathoms. Very rare sonth of Cape Cod. Fossil in the Post-lliocene of Camada. Great Britain, Norway, and Swetlen.

Actanon puncto-striata Stimpson. Plate NXV, fig. 165.
Shells of New England, p. 51, 1851 ; 15. and A. Adams, Genera, vol. ii, p.5. Tornatella puncto-striuta C. B. Adams, Boston Jour. Nat. Hist., vol. iii, p. 323, I'late 3, fig. 9, 1840 ; Gonld, Invert., ed. i, p. 24.), fig. 188 ; ed. ii, p. 224, fig. 515.
Cape Cod to South Carolina. Vineyard Sound, and Buzzard's Bay, not uncommon; Long Island Sound, rare ; Iluntington and Greenport, Long Island (S. Smith).

Doridella Yerrill.

Body smooth, oval, convex. Dorsal tentacles retractile, without sheaths. Head prominent, the lateral angles prolonged anteriorly as short oral palpi or tentacles. Foot broad, cordate. Branchise tufted, situated near the posterior end, on the right side, in the groove between the mantle and foot.

Doridella obscura Terrill. Plate NXV, figs. $173 a, b$. (1 , 400.) American Journal of Science, vol. 1, p. 408, figs. 2, 3, November, lizio.
Body broad oral, 7.5^{mm} long and 5^{mm} broad; back convex, smooth. Foot broad, cordate in front. Oral disk broad, emarginate or with concave outline in front; the angles somewhat produced, forming short, obtusely pointed, tentacle-like organs, which in extension project beyond the front edge of the mantle. Dorsal tentacles small, stont, retractile. The branchie cousist of a tuft of slender filaments, usually concealed by the edge of the foot. Color of body dark brown, lighter toward the edge, as if corered with nearly conflueut blackish or brown spots, the whitish ground-color showing between them ; foot, oral lisk, and dorsal tentacles white ; the central part of the body, beneath, with a three-lobed yellow spot due to the interual organs. Young specimens are fleshcolor or yellowish brown abore, specked with darker brown.

Vineyard Sound and Long Island Sound to Great Egg Harbor, New Jersey. Savin Rock, at low-water, under stones; off South End, 4 to \bar{z} fathoms, shelly.

NUDIBRANCHIATA.

Doris bifida Verrill. Plate NXT, fig. 176. (page 307.)
American Joumal of Science, vol. l, p. 406, $18 \% 0$.
Outline broad oval, widest anteriorls, about $25^{m m} \operatorname{long}$ by $1^{2 m m}$ broad, in extension; back very convex, mantle covered with numerons, scattered, small but prominent, pointed papillie. Tentacles rather long, thickest in the middle, the outer half strongly plieated with abont twenty folds, but with a smooth tip, the base surrounded by small papille. Gills retractile into a single cavity, united together by a partial web, deeply frilled, moch subdivided, bipinnate, the subdivisions fine aud slender. Foot very broad, in exteusion projecting back beyond the mantle abont a quarter of an iuch, slightly tapering, rounded and slightly notched at the enci. Oral disk or veil crescent-shaperd, the front
a little prominent，the sides extended backward，and forming at cure continnons with that of the foot．

Color purplish brown，sprinkled with white specks；tentagles deep brown，specked with white，tips yellowish；gills purplish at base，the edges ant tips usmally yellow：foot similar in color to mantle，but lighter．

Long Island Somm，at Savin Rock，near New Laven，to Eastport， Maine，under stones，at low－water mark．

Onchidoris paliada Verill．（p．49\％．）

 vert．，erl．ii，1．$\because 29$ ，I＇late $\because 0$ ，firs． $2 \sim 4,257, ~ 25 x, ~ 291$ ．

Off Cuttyhunk Island；Massachusetts Bay；Casco Bay ；Bay of Fundy：In Eastport Harbor，not unsommon，from low－water mark to 30 fathoms．

Policera lessonil Dorbigny．（1．400．）
Magazine de Zoïl．，vol．vii，p．ET，Plate $10 ⿹$（t．Gonhl）；Alder and lanmock，Brit． Nind．Moll．，Fam．I，Ilate 24；Gomld，Invert．，ed．ii，p．2ed，Jlate 17，figs． ？42－－24：．Toris illumimata Gonld，Invert．，ed．i，1）．4，1－11．
Long Island Sombl to Labrador；Enropem coasts，from Sweden to France and Great Britain．Savin Rock，near New ILaven，Connecticut， at low－water，and off South End in 4 to 5 fathoms；Watch Hill，Rhorle Island， 3 to 6 fathoms．Common in Casco Bay and Bay of Fundy，from low－water mark to 20 fathoms．

Dendronotus Arborescens Ald．aud Hancock．（1．49J．）
 figs．Bll－：313．Doris arborescens Miiller，Zoül．Dan．Prod．，1．：2e＇，17才6；F＇abri－ cins，Fannat Grönl．，p． 346 ，1780．Tritonia arbores＂ens Cuvier；Gonld，Invert．． ed．i，p．5．Tritomit Iirynoldsii Conthouy，Boston Jomm．Nitt．Mist．，vol．ii，1r 74，Plate ${ }^{2}$ ，tigs．1－4， $1 \subset 3^{2}$ ．
Watch Hill，Rhode Islani，in 4 to $\overline{-5}$ fathoms，common on Laminaria among Obelie；northward to Greenland；on the Eampean coasts sonth to Great Britain amd France；Sitkia（Jiddendorfi）．Very common in the Bay of Fumby and Casco Bay，from above low－water mark to bu fathoms．Rare and local soath of Massachasett：Bay．

Acth．Scamb．Nat．，pr． 1.51 （t．Stimpson）；Öfers．af Kongl．Vet．－Akal．Fähant－ lingar，wol．iii，p．1：39， $1=16$ ；Alier and Hancock，Brit．Nul．Moll．，F：an，：，
 Gmelin，Syst．Nat．，p．：$: 100^{-5}, 1790$ ．
New Jersey to Labralor ；on the northern Enropean coastr，southward to Great Britain，Holland，and France．Great Egg Harbor，New Jersey， 1 fathom，（A．E．V．and S．I．Sinith）；Long Island Sommd，near New Haven ；off Gay Mead，Martha＇s Vineyard ；off Watch Hill，Rhode Isl－ and， 4 to $\tilde{5}$ fathoms，on Obelia．Common in Massachusetts Bay，Casco Bay，and Bay of Fundy，from low－water mark to 15 fathoms．

Eolis papillosa Lovén. (p. 495.)
Öfvers. af Kongl. Vet.-Akad. Förh., vol. iii, p. 139, 1E46; Gould, Invert., ed. ii, p. Q238, fig. 518 , and l'late 18, figs. 257-263. Limux papillosus Linné, Syst. Nat., ed. xii, vol. i, p. 10se, 1767. Eolis farinueca Gould, MSS.; Stimpson, Invert. Gramd M:man, p. 25, 1853.
Rhode Island to the Arctic Ocean; northern coasts of Emrope to Great Britain. Rare south of Cape Cod; Watch Hill, among roots of Lemincrice; rery common in Caseo Bay and Bay of Fundy, from above low-water mark to 20 fathoms.

Eolis, on Montagua. Species untetermined. (p. 495.)
A species about an inch long, with bright red, fusiform branchie, arranged in seven or eight transverse clusters on each side. Foot with prominent and acute auricles anteriorly.

Of Gay Mead, 4 to 5 fathoms, rocks.
Mongagua milata Verrill. (p. 383.)
Endis pilata Gonhl, Invert., eal. ii, p. 243, Plate 19, tis . 2\%0, 27\%, 279, 231, 1870. - Eolidia piluta, this Report, p. 383. (See errata.)

Long Island Sound to Massachusetts Bay. Abundant in New Haven Harbor, on piles of Long Wharf.

Montagua vermifera Verrill.
.Eolis rermifertes S. Smith, Annals Ly'e. Nat. Hist., N. Y., vol. ix, p. 391, 1ご0.
Greenport, Long Island (Smith). Long Island Sonnd, off Thimble Islands, 4 to 5 fathoms, among rocks.

The specimens from Thimble Islands differ somewhat from the original description. They were abont half an inch long; moderately stont; the foot lanceolate, rapidly tapered posteriorly to a point, but not produced far beyond the branchise, nor slender-pointed; anteriorly the angles are somewhat produced, triangular, aud pointed, their length equal to about half the breadth of the foot. Mead rounded ; tentacles rather stout, obtuse; the oral longer than the dorsal ones; the latter are transversely wrinkled. The branchial papille are fusiform, moderately stont, obtuse, arranged in abont twelve transverse rows on each side, forming six elusters, the two rows forming each cluster separated by a narrow elliptical naked space, narrower than the spaces between the clusters; in each anterior row there are six or seven papille, the upper ones larger, the lowest short and blunt. Foot translucent, white, with a tlake-whitestreak on the upper side posteriorly; body pale yellowish, minutely specked with greenish and flake-white ; back of the dorsal tentacles there is, on each side, an orange patch, and there are others along the back; papille dark brown internally, irregularly specked with flake-white externally, forming toward the end an illdefined white ring ; the extreme tips me white; tentacles similar in color to the body.

Montagia Goulanil Vemill, sp. now.

Body elongated, rather slemder; foot with the anterior angles only slighty prominent, and obtusely romaled; posterionly it tapers gradually to an elongated slemerepoint. Trentacles long, shember, not serrate, the dorsal ones a little longer than the oral ; eyes small, back; branchial papilia fusiform, morlerately stont, grouped in eight or more tamserse rows on each side, the rows being gronped two by two so as to form transerse clusters, with two rows each, the rows of the chasters heing separated by spaces narower than those between the chasters. Color of boxly light yellow or tinged with pate orange; tentacles pale orange, with a flake-white stripe on the posterior surface; branchial papillat dak brown or reddish brown internally, with a ring of opaque white close to the tips.

Length about $20^{m m}$.
Off' Thimble Istand, in 4 to fathoms, with the preceding species.
This is nearly allieel to MI. Mramemensis Stimpson, bat the angles of the foot are less produced and not acute, and the proportions of the tentacles are different. Dr. Gonld seems to have confounded this species with 11. dieersa (Eolis dicerse Conth.), and one of his figures (Plate 19, fig. -2S0) apmarenty represents this species; but certainly does not represent 13 . diverse, which was originally described and figured as having the oral tentacles longer than the dorsals (See Gond's figs. 267,268 , copied from Couthony.)

Conyphella granota Verrill.
Eolis (Tcrgipes) gymmota Conthony, Boston Jour. Nat. 1Iist., vol. ii, p. (i9, Plate 1. fig. : 1838 ; Gonld, Invert., ed. i, p. 7; ed. ii, p. 249, l’ate l6, figs. .2.35-241. Mortagua gymmota II. and A. Adams, Genera, vol. ii, p. 74 . Capolinu gymmota, this Report, 1r. 3-3. (See errata.)
Wood's Hole to Boston, Massachnsetts.
Tmagipes desirectu's Adams. (p. 495.)
II. and A. Adans, Genera, vol. ii, p. 76, 1气...7. Eulidice despecta Johnston, Lomd. Mag. Nat. Hist., vol. viii. p. 378, fig. 35. Eolis tespecte Alder and Hancock, Brit. Nud. Moll., Fim. 3, l'late 37. A:ulis (Tergipes) despecta Gonld, Invert.,

Stonington, Comnecticut, to B:ay of Fundy aud northward; northern coasts of Europe to Great Britain. Off Watch Hill, 4 to 5 fathoms, on Laminetriu, among hydroids, abundant; Casco Bay; Eastport Marbor.

Nanshon Island (A. Agassiz).
Elysh (imlorotica Gonld. Plate NXV, fig. 172. (1). 480.)

Great ligg Harbor, New Jersey, in pools on salt mask at low-water (A. E. V. ant S. I. Smitlı). Cambridge, Massachusetts (Agassiz).

Elysiella catulus Verrill. Plate NXV, fig. 171. (p. 480.)
American Journ. Science, vol. iii, p. D84, Plate 7, figs. 5, 5², 1872. Placobranchus cutulus Agassiz, MSS.; Gonld, Invert., ed. ii, p. 256, Plate 17, figs. 249, 250, 1870.

Great Egg Harbor, New Jersey, to Massachusetts Bay. New Haren Harbor and Woot's Hole, among eel-grass, common.

PTEROPODA.
GYMNOSOMATA.

Clione papillonacea Pallas. (p. 444.)
S_{1} icicil. Zoül, x , p. 37, Plate 1 , figs. 18, 19, (\%) 1ǐ4. Clio limacina Phipıs, Voyage to North Pole, p. 195, 1774 (t. Gould). Clio retusa Miiller, Prod. Zoöl. Dan., 2742, 1726 (non Linné) ; Fabricins, Fauna Grönlandica, p. 334, 1780 (deseription excellent). Clio boreulis Brngiere, Encye. Meth., Vers., i, p. 502, 1792 (t. Gould). Clione boreulis Gray, Brit. Mus. Pteropoda, p. 36, 1850; Stimpson, Shells of New England, p. 27, 1851; H. and A. Adams, Genera, vol. i, p. 62, Plate 7, fig. 7 Clione limacina Stimpson, Smithsouian Check-Lists, p. 4, 1860; Binney in Gould, Invert., ed. ii, p. 507, fig. 754 (poor). Clio Miquelonensis Rang, Ann. Sei. Nat., ser. i, vol. v, p. 285, Plate 7, fig. 2, 182.5.
New York to the Arctic Ocean; on the northern coasts of Europe south to Great Britain. Off Stonington, Comecticut (A. E. V. and D. C. Eaton) ; Vineyard Sound (V. N. Edwards); Portland, Maine (C. B. Fuller).

The synonymy of this species has been greatly and unnecessarily confused. The Clio retusu of Linne was a sonthern Pteropod, having a triquetral shell. In a foot-note on page 1094 of the twelfth edition of the Systema Nature, he states that he had not seen the gemus Clio, but adopts it from Brown. He gives three species mentioned by Brown, all having shells.

THECOSOMATA.

Styliola virrea Vertill. Plate XXY, fig. 178. (1). 443.)
Ameriean Joum. Science, vol. iii, p. 284, Plate 6, fig. 7, 1872.
Shell smooth, polished, diaphanous, almost glassy, long conical, rather slender, slightly curved toward the acute apex; animal white; locomotive organs obovate, with the end broadly rounded, and bearing. slender tapering tentacle-like processes near the middle of the anterior edge; intermediate lobe short, rounded in front.

Length of shell, 11.2^{mm}; diameter, 2^{mm}.
Taken among Sulpa, off Gay Head, Martha's Vineyard, in the afternoon, September $9,1571$.

Several other species of this and other related genera were taken by Messrs. S. I. Smith and Osear Harger, off Saint Ceorge's Bank, in 1572, on the United States steamer Bache. These may occasionally ocemr also in the vicinity of Nantucket and Martha's Vineyard.

 (t. Lamarek). Hymaten cornoe Lamarck, Syst. des Anim., 1. 140, 1-01. Hyctu" tridentutu Lamarck, Anim, saus Vert., ed. ii, vol. vii, p. 415.
Mediteramean Sea and the wamer parts of the Atlantic. The shells were dredged off Marthas Vineyard, at two localities, in 19 and $2 \cdot$ fithoms.

Dacha thisploosa Gray: (p. 14.)

 Gouhl, Invert., ed. ii, 1. 50.1. Hyatea trispinosa Lesmemr, in Blainville, Dict.
 3-0, Plate 5, lig. :3; Stimpson, Shells of New Eingland, p. :\%.
Gulf Stream and warmer parts of the Atlantic generally. Occasionally cast ashore at Nantucket (Stimpson).

Spirlalis Gouldil Stimpon. (p. 443.)
Proc. Boston Soc. Nat. IIst., vol. (iv, p. 8, 18.5 ; Shells of New England, p. St, l'late 1, dig. 4. Ifeterofusus balea and H. vetrotersus Binmey, in Gould, Invert..
 Flemingii A. Agassiz, Iroc. Boston Soc. Nat. Ilist., vol. x, p. 14, 1e65, (not of Forbes). Meterofusus Alexandi Verill, Amer. Jomr. Scienee, vol. iii, 1. 2s1, $18 \% 2$ (young).
Near Naushon Island ant Nahant, Massachusetts (A. Agassiz). Tirenty miles off No Man's Land, in stomach of herring, (S. I. Smith). Off Saint George's Bank, in Ginlf Stream, (S. I. Smith and O. Harger). The identity of this species with the Limacina balea Mïller, of Greenland, is very questionable. The description of the latter is brief, and no mention is made of the spiral sculpture, which is an important character of S. Ciouldii.

LAMELLIBRANCIIATA.

DIMYARIA.

Teredo Navalis Limé. Plate NXVI, fig. 183. Plate NXVII, fig. 186. (111. 351,482.)

Systmat Natura, ed. xii, p. 1207, 126ã ; Tryon, Proc. Acanl. Nat. Sciences, vol.
 rol, iii, p. 171.
Coast of Cnited States, from Florida to Vineyard Somd ; coasts of Emope, from Sweden (Christiania) and Great Britain to Sicily; Algeria and the Black Sea (Jefleess) ; Senegal. Great Lgg Harbor, New Jerser; New Haven Harhor, in piles of wharves; Woon's Hole, in piles of wharf; Vinesard Sound and Buzzard's Bay, in cedar boys.

This is the most abmolant species on our Atlantic coast, south ol Massachusetts Bay, where it also probably occurs.

Teredo megotara Hanley. Plate NXTVI, fig. 188. '(1. 387.)
Forbes and Hanley, Brit. Conch., vol. i, p. it, Plate 1, figs. 1, 2 ; Plate 18, figs. 1, 2 ; vol. iv, p. 247; Tryon, op. cit., p. 46m, 1862; Jeffreys op. cit., p. 176 ; Gonld, Invert., ed. ii, p. 30, fig. 357.
Massachnsetts Bay to Sonth Carolina. Common in floating driftwood, in the North Atlantic; north to (ireenland, Iceland, and Spitzbergen ; coasts of Scandiuavia and Great Britain. Fossil in the PostPliocene of Scandina via.

Teredo Thomisonil Tryon. Plate XXYiI, fig. 187. (p. 387.)
Proc. Acad. Nat. Sci., Philadelphia, vol. xr, p. 23, Plate 2, figs. 3, 4, 5, 1863; Gould, Invert., ed. ii, p. 31, fig. 358.
New Bedford, Massachusetts, in cedar buors (Tryon). Provincetorn, Massachusetts, in whale-ship (Atwood).

Teredo dilatata Stimpson.

Proc. Boston Soc. Nat. Hist., vol. iv, p. 113, 1511; Shells of New Eugland, 1. 26 ; Tryon, op. cit., p. 464, 1862 ; Gould, Invert., ed. ii, p. 32, fig. 359.
Massachusetts to Sonth Carolina (Trjon). Cape Anm, in bnoys, (Stimpson). Provincetown, Massachusetts (Gould). Grecuport, Long Island (S. Smith). I have not met with this species south of Cape Cod.

Sylotria fimbilata Jeffeys. Plate NXVif, fig. 189. (p. 387.)
Amals and Mag. Nat. Hist., ser. iii, ovol. vi, p. 126, 1860 ; Tryon, op. cit., p. 47 , 1862 ; Gould, Invert., ed. ii, p. 34, fig. 361. Teredo pulmulata Forbes and Hanley, Brit. Moll., vol. i. p. 86, Plate 2, figs. 9-11, (non Lamarek). Xylofrya palmulata Stimpson, Check-List, p. 3, 1ع60; Perkins, Proc. Bostou Soc. Nat. IIist., vol. xii, p. 141, 1869.
Long Island Sound to Florirla ; Pacific coast, at the Straits of Fuea; Europe. In an old submerged wreck near New Haven. From the hull of the "Peterhoff," used in the blockade of the southern coast during the late war. Frequent in ressels from foreign ports.

Journal Acad. Nat. Sciences, Philadelphia, ser. i, vol. ii, p. 321, 1222; Bimey's Sas, p. 107 ; Hanler, Recent Shells, p. 6, Plate 9, tig. 26 ; Tryon, op. cit., p. 202 ; Gonid, Invert., ed. ii, p. 38 , fig. 364.
Vineyard Sound to Florida. Payta, Pern (Tryon). Common on the shores of Long Island Somd, near New Haven. The large specimens from Sable Island (Gould), mentioned by Tryon, were not this species, but Z. crispata.

Pholas costata Limmé. (1. 433.)
Systema Nature, ed. xii, p. 1111, 1762 ; Trrom, Proc. Acarl. Nat. Sciences, Philadelphia, xir, p. 201, 1862 ; Gonll, Invert., ed. ii, p. 37, tig. 363.
Caribuean Sea to Buzzard's Bay. Southern Europe (Linné). New Bedford Harbor, living, (Gonld); Wood's Mole, Massachusetts, dead
shells dredged, (A. E. V.); Long Island Somm. Atlantic City, New Jemes ('lyron). Specimens fom the east amd west coasto of Florida; amb liom near Vera Cruz, Mexico (eoll., Mr. Salt), are also in the musemm of Yale College.

 Gonld, luvert., ed. i,]. DZ. Zirfoll crispata (iray, l"ignmes of Moll. Anim.,

Stonington, Comecticut, to Gulf of Saint Lawrence; I Celand ; northern coasts of Europe, sonth to France, and the southern coasts of Great Britain : west coast of North America, sonth to California. Charleston, South Carolina (Stimpson, t. Gould). New dersey (t. Gould). Woods Hole, dead shells dredged, (1. E. V.). Common in Caseo Bay, in 10 to 20 fathoms, perforating hard elay and sumken but somd wood; also in the Bay of Fundy, in S to 70 fathoms, in hatrd clay. Mr. C. 13. Fullar has obtained fine large speeimens in submerged tree-stumps at extreme low-water mark on Jewell's Island, Casco Bay: Fossil in the Post-Plocene of Maine, Scandinavia; and in the Coralline and Red Crags of Great Britain. Its oceurence at Charleston, Sonth Cirolina, needs confirmation.

Martesia cuneiformis Gray, 18j゙; 2ryon, op. cit., p. 219. Dholas cuneiformis Say, Jour. Acad. Nat. Sci., Philad., rol. ii, p. 322, 1820.

This species was found by Mr. Perkins in oyster-shelis, near New Haren, but it was probably brought from farther sonth (Maryland or Virginia) in the oysters. It inhabits the coasts of Florida and the West Indies.

Itiplothyra smithai Tryon, op) cit., p. 450, 186..
This species was described from specimens fonad in orster-shells at Staten Island, where they were supposed to have lived. If really indigenons there, it may be expecterl to oecur ia Long Island Somm.

Saxicaya arotica Deshays. Plate NXVIf, fig. 192. (1. 300.)
Elem. Conch., Plate xii, ligs. A, 9 (t. Gould) ; Forhes and Hanles, Brit. Moll, vol. i, p. 141, Plate 6, figs. 4-6; Gunld, Invert., ed. ii, p. 89, fig. 357. Myu arctica Limué, Syst. Nat., erl. xii, p. 111:3, 1767. Mytilus rugosns Limé, Syst. Nat., ©-1. xii, p. 115ti. Saticurn rugnat Latmarck, Anim. sans Vurt., ed. ii, vol. vi, p.
 pholadis Limné, Mant. Plant., b. 513. Siusicarn pholadis lamanek, opr. cit., rol.
 1-:
Georgia and South Carolina to the Aretie Ocean ; northern coasts of Europe to the Merlitermean: Pacifie Coast of America, south to Santa Barbara, California. Varions other parts of the world are given as localities by different anthors. On our coast this shell is very common from Masatchasetts Bay to Labrador, oceurring from low-water mark to 50
fathoms or more. In Casco Bay it is extremely abundant in rocky, carermons pools, among the ledges at low-water mark, and mostly attached by a byssus, associated with Modiola modiolus. I also fomb speeimens in 10 to 15 fathoms, perforating recent and sound shells of Cyprina Islemfica. In the Gulf of Saint Lawrence, near A? costi Island, where limestone abounds, I have found it burrowing in the limestone in large numbers. Sonth of Cape Cod it is far less abundant, thongh not uncommon in Long Island Sound. Var. distorta (Say) is common from Fort Macon to Georgia, and is possibly a distinct species. Fossil in the Post-Pliocene of Maine, New Brunswick, Canada, Auticosti, Labrador, Scandinavia, and Great Britain; in the Coralline and Red Crags of England, etc. Var. distortu is found in the Miocene of Maryland.

Mya arenaria Linué. Plate NXVI, fig. 179. (pp. 357, 463.)
Systema Naturer, ed. xii, p. 1112, 1667; Gonld, Invert., ed. i, pp. 40, 359; ed. ii, p. 55, fig. 375. Mya mercenaria and M. acuta Say, Journal Acad. Nat. Sci., Philadelphia, vol. ii, p. 313, 18\%2.
Sonth Carolina to the Arctic Ocean; northern coasts of Emrope, south to England and France; northeastern coast of Asia, south to China and Japan (Hakodadi). Sitka (Middendorff). Sonth Carolina (Gibbs). Fort Macon, North Caroliua (Dr. Yarrow). Comparatively scarce south of Cape Hatteras. Very abmdant from New Jersey northward, both in brackish estnaries and on the open coasts. Particularly large and fine in Long Island Sound (see p. 463). Casco Bay and Bay of Fundy, from half-tide mark to 40 fathoms, those dredged being all young. Fossil in the Post-Pliocene of Scandinavia, Greenland, Labrator, Canada, New England, Virgiuia, South Carolina, etc.; in the Red-Crag and all later formations in Great Britain ; and in the Niocene of Virginia.

Corbula contracta Say. Plate XXVII, fig. 191. (p.418.)
Jonrnal Acad. Nat. Sciences, Philadelphia, vol. ii, p. 312, 1e22; Gould, Invert., ed. i, p. 43, fig. 37 ; ed. ii, p. 60, fig. 377.
Cape Cod to Florida. Common, living, in Vinesard Sound and Buzzard's Bay, in 5 to 19 fathoms ; Long Island Sound, near New Haren, not uncommon in shallow water. Georgia (Conper). Fossil in the Post-Pliocene of Virginia, North"and South Carolina ; and in the Pliocene of Sonth Carolina. A closely related species ocenrs in the Miocene of Marsland.

Lyonsia hyalina Comrad. Plate NXV'I, fig. 194. (p. 3üs.)
Americau Marine Couchology, p. 51, Plate 11, fig. 2, 1831 ; Gonld, Invert., ed. ii, p. 64, fig. 350. Mya hyalinu Conrad, Jour. Acad. Nat. Sci., Philadelphia, vol. vi, p. 261, Plate 11, fig. 12, 1\&31. Usteodesma hyalina Conthony, Boston Jour. Nat. IIist., vol. ii, 1. 166, 1839; Gould, Invert., ed. i, p. 46, fig. 31.
Florida to Gulf of Saint Lawrence. Common in Long Island Sonnd, Buzzard's Bay, Vineyard Sound, Massachnsetts Bay, Casco Bay, and Day of Fundy ; low-water mark to 30 fathoms; Beaufort, North Carolina (Cones).

 dora trilinctla Say, Jomm, Acal, Nat. Sciences, Philadmphia, vol, ii, p. ※li,

Fhorida to Ginlfo Bant lawrence. Common in Long lskand Somud; off Block lsland, 2!! fathoms; Bu\%zand's Bay; Vineyard Sonnd C Caseo Bay: and lay of Fiundy; luw water mark to 30 fathoms; (ireat Egg Harbor, New Jerser, 1 fithom. lBenfort, North Carolina (Cones, Yarrow). Fossil in the Post-Pliocene of Virginia and Sonth Carolina ; and in the Pliocene of South Carolina. A closely-retated form, C. aressidens (Comad, spr.), ocens in the Niocene of Virginia.

 Totten (name provisional), Amer. Jom. Science, vol. xxviii, p. 3fũ, fig. 1, 1335.
New Jersey to Labrador. Anticosti Island (A. E. V.) ; not meommon in Massachmsetts Bay, Casco Jay, and Bay of Fondy, 10 to 100 fathoms. Less fregnent sonth of Cipe Cod ; off Block Island, in 29 fathoms. (A. S. Packard): Newport, Rhode Island (Totten); (irecuport, Long Island (s. Smith). Chatean Bay, Labrador (Packard).

This species, when young, is liable to be confonnded with Thraciu myopsis Beek $=$ T. Couthonyi Stimpson (see Plate XXVII, fig. 196), but they are easily distinguished by the structure of the hinge. The latter oceurs in Massachusetts Bay, Bay of Fundy, ete., northwarl to Greenland, but has not been recorded from south of Cape Cod.

Cormbodesua Leanua Conthony. Plate X̌̌YII, fig. 193. (p. 418.)
Bostou Jour. Nat. Hist., vol. ii, p. 1i0, 1839; Stimpson, Shells of New England. 1. 22; (Gonld, Invert., el. i, p. 49, figs. 29, 30 ; ed. ii, p. 62, fig. 32-3. Inatina Leam Comrad, Jour. Aead. Aat. Sciences, vol. vi, 1. 263, 1late 11, lig. 11, 1831.
North Carolina to the Gulf of Saint Lawrence. Vineyard Sound and Long Island Sound, not uncominon in 3 to 10 fathoms; Casco lbay and Eastport, Maine, rarely obtained alive; banks off Nova Scotia (Willis); Saint George's bank (S. I. Smith and O. Marger). A related species, C. antiquatum (I'eriplomu antiquata Comrad), occurs in the Miocene of Virginia.

Thracla Conradi Conthony. (p. $4 \because 6$.)
Poston Jour. Xat. Hist., vol. ii, p. 15.3, Plate 4, fig. 2, 1839; (ionld, Invert., ed. i, p. 50) ; ed. ii, 1. 69, fig. 3-1. Ihracia dectivis Comrad, Amer. Mar. Coneh., 1. 44, Plate 9, fig. E, 1モ31 (not ol Pemmant).

Long Island to Gulf of Saint Lawrence. Vineyard Sonnd, 6 to S fathoms; Casco Bay, 6 to 15 fathoms; Frenchman's Bay, near Monut Desert, Maine, $: 3$ to S fathoms. Eastport, Maine, in 6 fathoms, and Grand Menan (Stimpson) ; Nahant, Massachusetts (Haskell); Rhode Island $\because 6 \mathrm{v}$
and Buzzard's Bay (Gould) ; Labrador (Packard). Fossil in the PostPliocene (Leda-clay) at Saco, Maine (Fuller).

This species burrows so deeply in the mad or sand that it is seldom taken alive with the dredge.

Timacia truxcata Mighels and Adams. Plate XXVII, fig. 195. (1. 509.)

Boston Jomr. Nat. Hist., vol. ir, pr. :8, Plate 4, fig. 1, 1842; Gonld, Invert., ed. ii, p. $7: 2$, fig. $: 386$.

Long Island to Greculand. Off Block Island, 29 fathoms; Casco Bay, 10 to 20 fathoms; Bay of Fundy. Off Long Islant, 37 fathoms, (Gonld). Greenland, in 60 fathoms, (Mïreh).

Ensatella Americana Verill. Plate Ñ゙VI, fig. 182 ; Plate NXXIf, fig. 245. (p. 356.)
 ed. ii, p. 42, 1870 (provisional name). Solen ensis Gould, op. cit., ed. i, p. 23; and el. ii, p. 40 (non Linmé); Dekay, Nat. Hist. New York, Moll., p. 242, Plate 33, fig. 313. Ensis Americana H. and A. Adams, Genera, vol ii, p. :34.
Florida to Labrador. Common at Great Egg Harbor, New Jersey; Long Island Sound; Buzzard's Bay ; Vineyard Sound ; Massachusetts Bay; Casco Bas; Bay of Fundy ; Gulf of Saint Lawrence; low-water mark to 20 fathoms, sandy. Fort Macon, North Carolina, abondant, (Cones). Georgia (Couper). Labmador, rare (Packard). Saint George's Bank (S. I. Smith).

Fossil in the Post-Pliocene of Portland, Maine; Point Shirler, Massachnsetts; Nantucket; Virginia; and South Carolina; in the Pliocene of South Carolina; and Miocene of Maryland ; North and Sonth Carolina.

In this species the siphonal tubes, in mature shells, protrule about $3 \tilde{y}^{m m}$, and are mited together for abont half their length, beyond which they are romd and divergent, subequal. Both orifices are surrounded by a similar circle of numerous papillie, of three sizes; the larger ones are enlarged in the middle, aciate at tips, with a large black spot on each side of the base; alternate with these are somewhat smaller ones of the same form and with similar basal spots; alternating with the primary and secondary ones are small tapering papille, less than half the length of the longest; mmerous slender tapering papilla are also scattered irregularly orer the sides of the free portions of both tubes, in some cases in irregnlar rows of four to six, while on the rentral side of the branchial tube two rows of alternating papilla extend along the whole length of the siphon. The mantle is closed ventrally for most of its length; there is a posterior opening for the protrusion of the foot, aud a small opening just in adrance of it, and another opening near the middle of the rentral border; the latter is fringed with small conical papille. Foot long; the end bulbons, obliquely trmeated and bereled laterally.

Vertebrata.

```
Catalogne of the Birds found at Norway, Oxford ('o., Me. (25 p.), 1863 (rare).
Catalogne of Birds fomed in vicinity of Calais, Me, and Bay of Fundy. By G. A. Boardman, edited by A. E. V. ( 10 p.), 1862.
Notes on the Natural History of Anticosti, I. Mammals, Birds, l'lants (20 1).), 1862 (rare).
Notice of Neosorex and Sorex, with a list of Soricide of New Englam? \(\left(9{ }^{5}\right), 1863\) (rare).
Catalognes of Reptiles and Batrachians fomm in vicinity of Norway, Me. ( 5 1), 1863 (scarce).
Supplementary notice of Neosorex palustris; Oceurrence of Caribou in Maine ( 2 p.), 1863.
Adlitions to Catalogue of Birds found in vicinity of Calais, Me., de. ( 2 p.\(), 1863\).
```On the Food and Habits of Marine Fishes (4 p.), 1871.12
```

```O' "vations on the supposed eastward migration of the Cliff Swal-low (3 p.), 1863 (rare).
```

Note on the distribution of North American Birds (2 p.), March, 1866. ..... 10
Investigations upon the Geographical Distribution of North American Birds, [as determined by physical canses] (t p.), May, 1866.
On the external characters of the young of the Central American Tapir (71) , 1867. ..... 06
Breeding Habits of Salamanders and Frogs, May, 1869.
Radiata:-Celenteruta and Echinodermuta.
(See also Brief Cont., Nos. 1, 5, 7, 15, 18, 22, 38 to 45.)
Notice of a Primnoa from St. George's Bank, 1862.
List of Polyps and Corals, sent by the Mus. Comp. Zoology (30 p.),1864.
Revision of the Polyps of the E. Coast of the United States ( 45 1., 4 to, 1 pl.), 1864 (very scarce). ..... Fक
Synopsis of the Polyps and Corals of the North Pacific Exploring Expedition, under Com. Ringgold and Capt. Rogers, Parts 1 to 4 (154 p., 8 pl.), 1865-69 (scarce). ..... 1.50
Descriptions of new Polyps and Corals from Panama, Apr., 1866 (scarce). ..... 30
On the Polyps and Echinoderms of New England, with descriptions: of new Species ( 24 p.), 1866 (searce). ..... 30
Notes on Radiata in the Mnseum of Yale College: (366 p., 7 pl.$)$, 1867 to 1871 , Nos. 1 to 9. ..... 3.25
Nos. 1 to 4.-[Echinoderms and Corals of New Zealand, West Coast of America and Brazil] $127 \mathrm{p} ., 2 \mathrm{pl}$. ..... 1.25
Nos. 4 and 5.-[Corals and Echinorerms of Brazil ; Echinoderms of Lower California] 25 p., 1 pl., 1868. ..... 30
Nos. 6 and 7.-Corals and Polyps of West Const of America (190 p., 7 pl .), 1868-70. ..... 1.50
Nos. 8 and 9.-[Echinoderms of the Pacific Coast of America] 19 p., 1 pl. ..... 30
On the Zowlogical Atinities of the Tabnlate Corals, (4 p.), 1868. ..... 10
Critical remarks on the Halcyonoid Polyps in the Musenm of Vale College, No. 1, 186R; 3, 4, 1869. ..... 25
Note on the Generic relations and synonymy of the common Sea- urchin of New England. ..... 10
New and imperfectly known Echinoderms and Corals (16 1.) , 1869. ..... 12
Our Sea Anemones (12 p.), July, 1868. ..... 12
Comparison of the Coral Fanme of the Atlantic and Pacific Coasts of the Isthmus of J)arien ( 2 p.) , 1869. ..... 08
Dana's Corals and Coral Islauds Reply to P. Martin Duncan (6 p.), 1873. ..... 08
Note on Starfishes of the New England ('oast. (5 p.), 1876. .....  08
Cephalopoda.
(See also lbrief Cont., Nos. $30,31,35,38,44,45,46$ )
Dis orery of an Octopis inhabiting the coast of New England (t p., ents), 1873. ..... 08
Ocmurnce of gigantic Cuttle-fishes on the coast of Newfoundland ; Systematie position of Brachiopoda ( 8 p .) , 1874. ..... 10
The gitant Cuttle-fishes of Newfoundland and the common Squids of the N. England coast ( 8 p ., cuts), March, 1874. ..... 12
The Colossal Cephalopods of the N. Atlantic (23p., cuts), 1875. ..... 25
Note on Gigantic Cephalopods,-a Correction (1 p.), 1876. ..... 05
Occurrence of another gigantic Cephalopod (2 p.), 18 ヶт. ..... 05
The Cephalopodit of North America: Part I. The gigantic squids (Architeuthis and allies), with Observations on similar large species from foreign localities ( $81 \mathrm{p} ., 14 \mathrm{pl}$ ), 1880. ..... 1.25
Miscellaneons Marine Invertebratu.
(See also under Brief Cont.)
On the Parasitic Mabits of Crustacea (11 p.), July, 1869. [Inclndes descriptions of new specios ly S. I. Smith.] ..... 12
Recent Explorations of the Deep Sea Fanme ( 6 p.), 1870. ..... 10
On the Marine Fanma of Eastport, Me. (5 p.), 1871. ..... 10
The Depths of the Sea, A Reriew ( 3 p. ), 1873. .....  6
Remarks on Errors in Mr. Jeffrey's Article on the Mollusea of Europe compared with those of Eastern North America (7 p.), 1873. ..... 10
Report on the Invertelrata of Vineyard Somnd and adjacent waters ( 4.8 p., 38 pl.), 1874. The Crustacea are by S. I. Smith and O. Harger. ..... 2.65
Explorations of Casco Bay by the U S. Fish Commission, in 1878 (45 p., 6 pl.), 1874. ..... 60
Notice of some dredgings made near Salem in $1873(3 \mathrm{p}), 1874.$. ..... 08
Occurrence of fossiliferous Tertiary Rocks on the Grand Bank and George's Bank (1878) ..... 06
Fanna Littoralis Norregiæ, A Review, [Includes identifications of N. England with Norwegian species $7,1879$. ..... 06
Notice of the recent Additions to the Marine Inverterbrata of N. E.coast of America, with descriptions of New Gencra and Species(41 p.), 1879.30

Check－list of the Marine Invertehmata of the Athatic const ：（ape

Brief Cuntributions to Zooloyly from the Muspum of Finle Colletfr Nem Hareen，Comm．， 1866 to 1880 ．

3．－Deseriptions of new American Phyllopod Crintace：（ 11 f．）， 1809．Luthor＇s coppes humed in jrinting oftice ］
5．－Echinoderms and Corals from（iulf of Californial（8 p．），1850 ． 10
（5．－Deseriptions of Shells from Gulf of California（ 11 p. ）， $18 \% 0$ ． 10
7．－Descriptions of New Corals，（ 6 p．，cuts）， 1870 ．． 10
s．－Descriptions of New England Nudibranchiata，（ 41 ，cuts）， 1870 ．os
10 to 14 －－Descriptions of Ascidians from New England，（25 P， 26 ．3．5
cuts）， 1871 （scaree）．
15－New Starfishes and Ophimans from the Atlantic coasts of Amer－． 118
iea and Aftiea（ 4 p．）， 1871 ．
16－Distribution of Marine Animals on the Southern Coast of New England（ 61 ）， 1871.． 08

1\％．－Descriptions of N．American Fresh－water Lecehes，（1t p．，
cuts）．

1s．－Affinities of l＇aleozoic Tabulate Corals with existing species， （s p．，cuts．）
19 and 20. －Recent Additions to the Mollnsean Fanna of New En－ gland，notes on other species（ $15 \mathrm{p} ., 3 \mathrm{pl}$ ．）， 1872.
22．－Radiata from the Coast of North Carolina（ $\quad$ p．）， 1872 ． 10
23 bis．to $29 .-$ lesults of Recent Dredging Exp．on the const of
New England（ 67 p．，cuts， 5 pl．）， 1873 to 1874
30 and 31 ．－The Gigantic（cphalopods of the N．Atlantic，（ 17 p .4 t 1 l ．） 25
32 to 34．－liesults of Dredging Exp．off N．England coast in 1874， （ 21 P．，cuts， 3 pl．）， 1875.
35．－Notice of occurrence of another Gigantic Cephalopod，Dec．， 1874 （2 p．） 1875.
.06
36．－On the Post－pliocene fossils of Sankoty Head，Nantucket I． （12 p．），Nov．， 1875.
38 bis．to 45 ．Notice of recent Additions to the Marine Fanma of the the Eastern coast of North America（ 42 p．）， 18 is to 1881.
46．－Synopsis of the Cephalopods of N．E．coast of America，（12 p． 5 pl．）， 1880.

30－3 31 ス心
The series abore namerl，except $\operatorname{Nos} 3$ if in one order，$\$ 2.5$ ．
This Series ulso includes the following，by other unthors：
2．Descriptions of New Seyllarita and Ethra．By S．I．Smith．
t．－Crustacea collected by Prof．（．F．Hartt，on const of Brazil，（t p．） By．s．I．Smith．
9．－Notice of a Fossil Insect［Paolia vetusta］from the Carboniferous formation of Indiama，（3 p．，cut．）By S．I．Smith．
21．－The Early Stages of American Lobster，（6 p．， 1 pl．）By S．I． Smith．
23．－Descriptions of new N．American Myriopods（ 6 p． 1 pl. ）， $18 ヶ 2$. By O．Harger．
37．－Deseription of Mancasellus brachyurus，a new fresh－water Iso－ pod，（1876）．By O．Harger．

37 bis.-Descriptions of two new Genera of Pyenogonida ( $4 \mathrm{p} .$, cuts), March, 1878. By E. B. Wilson.
38.-Descrijtions of new Genera and Species of Isopoda (7 p ), 1878. By O. Harger.

## Fresh-water Invertebrata.

(See also Brief Cont., Nos. 3, 17, 37.)
Observations on Phyllopod Crustacea [Branchipide], with descrip-
tions of new Generauand Species ( 18 p ., cuts), 1870 .
$\checkmark$ Notice of Invertebrata dredged in Lake Superior, in 1871, by the U. S. Lake Survey. By S. I. Smith and A. E. Verrill (7 p.), 1871.

Review of Nicholson's Contributions to a Fanna Canadensis, 1873. . 08
Reports on Fresh-water Invertebrata of N. America : Crustacea, By S. I. Smith; Leeches, by A. E. Verrill ; Invertebrata of L. Superior, by S. I. smith; Food of Fishes, by S. I. Smith (72 p., cuts, 3 pl.), 1874.

Report upon Fresh-water Leeches of Nevada, Utah, Colorado, de.
$(4$ to, 11 p.$), 1875$.

## Miscellaneous.

New Fluid for preserving Natural History Specimens (2 p.), 1866. . 06
New preservative Solution and momnting insects in glycerine-jelly (3 p.), 1866.
The Laws of Reproduction in Cattle, ete. ( tbstract of two lectures, 32 p., cuts.s, 1869.
The External and Internal Parasites of Man and Domestic Animals ( 140 p., 84 cuts), 1870.
Supplement to the same. .....  10
Description of Sclerostoma pingnicola (2 p., cut), 1870. ..... 06
Glycerine for preserving Natural Colors of Marine Animals, 1869.
The Rules of Zoological Nomenclature (20 p.), 1869. .....  25
Additional Note on the Rules of Nomenclature ( 2 p .), 1872. .....  05
Other Authors: Miscellaneous.
Turnbull, F. M., Anatomy and Mabits of Nereis virens (15 p., 3 pl ) ..... 40Dana, J. D. and Pickering, C., Description of Caligns Americanus( 41 p., 3 pl.), 1838.40
Whiteares, J. F.. Dredging Operations in Gulf St. Lawrence 1874. ..... 14Girard, C., American Bibliography, Zoological, Botanical, Geological,for 1851 , ( 19 p.)20
Bradley, F. II., List of Geological Reports of State Surveys. ..... 12

Any of the above pamphlets will be sent by mail on receipt of price.
Address: GEORGE E. VERRILL,
[A discount of 20 per cent. will be made on any order of $\$ 10.00$, or more. All orders should be prepaid.]



 $-8$


 2. CC-







Solen rivilis Say. This species has been recorded from the sonthern coast of New England by several writers (Stonington, Connecticnt, Linsley; Rhode Island, Comrad), bnt l have myself met with no anthentic New England specimens. It mas, howerer, oceur rately and perhaps accidentally. It is not uncommon on the outer beach at Great Egg Harbor, New Jersey, and farther south, to Florida.

Siligut costata Adams. llate NXCH11, fig. 24. (1. 3.5.)
11. and A. Adans, Gener:a, vol. ii, 1. 3.f., 18.5. Solen costatus Sily, Jour. Acmu. Nat. Sci., Plalad., vol. ii, p. 315, 1820; Hankey, Rocent Shells, p. 15, Plato 9, fig. Ds' (non Legmminaria costutt Sehmm., $1817=$ Siliqua radiatu Linné, sp.). Solen suyii Grays, (iriffith's Cuvier, xii, l'hate 31, tig. 3 (t. Gould). Machera costate Gonld, Invert., ed. i, p. 31, and fig. on p. 24 , 18.41 ; ed. ii, p. 47, fig. 370.
Cape Hatteras to Gulf of Saint Lawrence. Rare or local north of Casco Bay. Not observed in the Bay of Fundy. Common in Massachusetts Bay; Vineyarl Somm; Great Lge Harbor, New Jersey. Companatively rare in Long Island Sound, near New IIaven; Fire Island Beach, Long Island (S. I. Smith). Coney Tsland, etc. (S. Smith). Rimonski, Gnlf of Saint Lamrence, common, (Bell). Banks off Nova Scotia (Willis). The earliest name for this genus appears to be Siliuu, Muhlfeldt, 1811. It was named Legumimeriu by Schumacher in 1817, and Machera by Gonld, in 1841. The latter name is, moreover; preocenpied by Machava Cuvier, 1832.

Tagelus gmbus Gray. Plate XNVI, fig. 181; Plate NXX, fig. 217. (p. 373.$)$

> Proc. Zö̈l. Soc., Lomen, xr, 1217; Dall, Proc. Bostoa Soc. Nit. IList., vol. xiii, p. 251,1870 . Solen gibbus Spengler, Skrivt. Nat. Selks., vol. iii, p. 10.1, 1794 (t. Gould). Solen ('uinecnsis Chemmitz, Conch., xi, p. 202, Plate 193, fig. 1937, 1599. Sulen Curibens Lamarck, Anim. sans Vert., ed. ii, vol. vi, p. 5s. Solecurtus C'aribous Gould, Invert., el. i, p. S0. Solecurtus gibbus Forhes and Hanley, Brit. Moll., rol. i, p. 26\% ; Gonld, Invert., ed. ii, p. 43, fig. 36\%. Siliquaria motatu Schmancher, Essai d'm Nonv. Syst. des Habit. des Vers test., p. 129, Dlate 7, figs. 2, :3, $181 \%$ (not the genus Siliquaria Brig. ; Lamarek, 1ع01). Siliquaria gibba H. and A. Adans, Genera, p. 3\%, Plate 9:3, tiss. 5, 5a, 18.5.

Caribbean Sea, West Indies, and Gulf of Mexico to Cape Cod. Similar if not identical species are found on the Pacific coast of Central America, and on the west coast of Africa. Vineyard Sound and Buzzard's Bay, not uncommon; Great Egg Harbor, New Jersey, abundant. Fort Macon, North Carolina, very common (Cones). Alabama (Mighels). Fossil in the Post-Plocene of Virgiuia, Sonth Carolina, and Florida; in the Pliocene of Sonth Carolina ; and in the Miocene of North and South Carolina.

The nawie, Siliquoria Schmmacher, 1817, adopted for this gemms by several recent writers camot be retained, because preoceupied bs Brongiere, 1791, and by Lamarek (see Syst. des Anim., 1801, p. 98) for a gemus of Vermetide.

This genus is widely different from the restricted genns Solcemtus

Blainv, 1824, =Macha Oken, 1835, and undonbtedly belongs to the Tellinidle, near Psammobia, as shown by the structme of the soft parts. (See page 373 and Plate xrvi, fig. 1S1).

Tagelus divisus. Plate NXX, fig. 218 . ( 1.435 .)
Dall, op. cit., p. 251, 1870. Solen divisus Spengler, op. cit., p. 96,1794 (t. Gould). Solen bidens Chemnitz, op. cit., p. 203, Plate 198, fig. 1939, 1793. Solen frugilis Pulteney, Durset Catal., 1. 28, Plate 4, fig. 5, 129¢ (t. Gould). Solen centralis Say, Journ. Acad. Nat. Sci., Philad., vol. ii, p. 316, 182. Solecurtus bidens Forbes and Hanler, op. cit., vol. i, p. 266 ; Stimpson, Shells of New England, p. 22. Solccurtus dirisus Gould, Invert., ed. ii, p. 44, tig. 363. Machu divisu Gray, Catal. Brit. Moll., p. 160. Legnainaria Floridana Comad, Proc. Acad. Nat. Sci., Philad., vol. iv, p. 121, 1848. Mesoptcur't bidentetu Conrad, Catal. Solcnide, Amer. Jonr. Conch., vol. iii, Appendix, p. 23, $18 \frac{18}{2}$.
Gulf of Mexico and West Indies to Cape Cod. Vineyard Sound and Buzzards Bay, not common. Rhode Island, rather commou, (Gould). Fort Macon, North Carolina, common, (Cones). Tampa Bay, Florida, (Com'ad, Jewett).

Macona fragilis Adams. Plate XXX, fig. 292.
H. and A. Adams, Gener:a, vol. ii, p. 400, 1858.

V'tr. fuscu = Macomu fusca Adams. (p. 359.)
Genera, vol. ii, p. 400 ; Gould, Invert., ell. ii, p. 93, fig. 409. I'summobia fusch Say, Jour. Acal. Nat. Sci., Philad., vol. v, p. 2?0, 18:0. Senyuinolariu fusec Conrad, Aner. Mar. Conch., p. 34, Plate 7, fig. 1, 1831 ; Gould, Invert., el. i, p. 66, fig. 4.

Tar. fratyilis.
Femus fregilis O. Fabricins, Fauna Grönlandica, p. 413, 17e0. Telline Grönlandica Beck, Ljell, in Trans. Geol. Soc., London, vol. v, p. 137, Plate 16, fig. e, 1841. Macoma Grönlamdica Packard, Men. Boston Soc., vol. i, pp. 235, 243, etc., 1866; Dawson, Notes on Post-Pliocene Geology of Canada, p. 72, from Canadian Naturalist, vol. vi, 1872. Tellimu Fubricii Hanley; Sowerby, Thesamus, p. 112 , (t. Mörch).
Georgia to Greenland. Var. fusca is abmedant on the entire coast of New England, Long Islant, and New Jersej. Georgia (Say, Conper). Var. fragilis is abundant from Long Island Sound and Massachusetts Bay to Labrador. The two forms grade into one another insensibly.

A closely related but apparently distinet species, M. Balthica (Linné, sp.), is abundant in the Baltic and elsewhere on the northern coasts of Europe, and has been regarded as identical by several writers. Another similar form, inconspicua (Sowerby), oceurs on the northwest coast of America, but is regarded as distinct by Dr. P. P. Carpenter and others.

As a fossil, var. fragilis is abundant in the Post-Pliocene deposits of New England, New Brunswick, Canada, Labrador, and Greenland; var. fusca oceurs in the Post-Pliocene of New Englaud, Tirginia, North Carolina, and South Carolina.

Macona sabuigasa Mioreh．

 mortimn Gray，Zoïl．Bechey＇s Yoyagr，p．15t，I＇late 4，fig．4，1soo．Tellinn sordieln Couhhoug，Boston Jour．Nat．Hist．，vol．ii，p．5！，l＇late 3，fig．11，1－3！． samguimolaria sordida Gould，lnvert．，ed．i，p．（iz，1－11．Tellinn lata Lovén， Obers，af kongl．Vet．－Akad．，lörhand．，vol．xi，p．19．），1－16（not Tellian lata （Emelin，1890，whieh is a Throcin，t．Märeh）．Tcllina culdoret Ly̧ell，Phil．
 （fonld，ed．ii，p．95，fig．f01；this leport，p．592．Macome calctrat Alams： 1）：wsol，op．cit．，1． 73.
Connectient to the Aretic Ocean ；northern coasts oí Enrope ；North Pacifie；south on the coast of Asia to liakodadi，Japan ；and，perhaps （as Il．expunscl，a donbtful variety），on the west coast of America south to Puget Sound．Off Block Lsland，in 29 fathoms，rare ；Casco Bay， 3 to 60 fathoms，not uncommon；Quahog lBay，Maine， 3 to 5 fathoms，soft mod，large and abundant；Bay of Fundy， 4 to 80 fathoms．Stonington and Stratford，Connecticut（Limsley）；Saint George＇s Bank（S．I． Smith）．Fossil in the Post－Pliocene of Maine，New Brmswick，Canada， Labrador，Scandinavia，and Great Britain．

The Tellinu tenert Leach， 1815 （non Say），has been regarded as a synonym of this species by most writers；Mürch considers it identical with M．fragilis．

Tellina（Angulus）teneru H．and A．Adans，Genera，vol．ii，p．：398，185s．Angu－ lus tener Verrill，Amer．Jomr．Science，vol．iii，p．290，Plate 6，figs．1，1u， 1上2．Telline tenera Say，Jomr．Acad．Nat．Sci．，Philad．，vol．ii，p．30：3，1820； Hinnles，Recent Sheils，p．65，Plate 9，fig．33；Gould，Invert．，ed．i，p．63，fig． 44 ； ed．ii，p．97，fig． 403.
Florida to Gulf of Saint Lawrence．Common on the coast of New Jersey，Long Island，Long Island Sound，Buzzard＇s Bay，Vineyard Sound， Massachusetts Bay；less common in Casco Bay and Bay of Fundy． Gaspé，Canada（Darson）．Fort Macou，North Carolina（Cones）．A elosely－allied form（A declicis＝Tellina declivis Courad，Journ．Acad． N．Sc．，Phil．，vol．vii，p．131）occurs in the Miocene of Virginia．

Axgulus tenallu＇s Verill．Ilate NXX，fig．2ツ．
Angulus modestux Verrill，Amer．Jour．Science，rol．iii，pl．こlo，こeñ，Plate

Shell smoth，shiming，more or less iridescent，with very fine concen－ tric stria．Form similar to that of A．tener，but more oblong，and with the anterior dorsal margin nearly straight，or eren slightly concave： the beaks are at about the posterior third，and scarcely prominent；the posterior end slopes rapidly，and is subtrmeate at the end；the ren－ tral margin is but slighty convex in the middle，and smb－parallel with the dorsal margin．The shell is often a little thickened，and firmer than in A．tener，but is sometimes as thin．Color，pink，light straw－color，or
white ; often banded concentrically with these colors. The hinge-margin is stonter and the teeth stronger than in $A$. tener, and different in relative size and proportions; the ligament-plate is also longer.

Lourg Island Somnl and Vineyard Somed; 4 to 10 fathoms, mud and sand.

Tellina texta Say. Plate NAX, fig. 223. (p. 432.)
'American Conchelogy, Part vii, Plate 6̄̈, fig. 3, 1837; Binney's Say, p. 2P8; Hanley, Recent Shells, p. (i5, Plate 14, fig. 10 ; Gould, Invert., ell. i, p. 68, fig. 43 : ed. ii, p. 96 , fig. 403. Tellina (P'croncua) teatu IL. and A. Adams, Genera, vol. ii, p. 499, 1 25 ?

Cape Cod to South Carolina. Vineyard Somd and Buzzard's Bay, 2 to 10 fathoms, mud, common; Long Island Sound ; Great Egg Harbor. Greeuport, Long Island (S. Smith) ; Fort Macon, North Carolina (Cones); Soutlı Carolina (Say).

Fossil in the Post-Pliocene of South Carolina

## Tellina rersicolor Cozzens.

Jay, Catalogne Shells, ell. ii, .p. 12, 1833; Dekay, Nat. Hist. New York, Moll., p. 202 , Plate 26, fig. $2 \% 2$.
Glass House Point, near New York (Cozzens); Stratford, Connecticut (Linsley).

I have met with no shells corresponding precisely with the description of this species.

Gastranella Yerrill.
American Jonrnal of Science, vol. iii, p. $2 \times 5,1=52$.

- Shell oblong, more or less irregular, and sometimes with the ventral margin inflexed ; pallial simus large; ligament external, elongated. light valve with two small cardinal teeth; the posterior one thin, directed obliquely backward. Left valve with two cardinal teeth ; the posterior one stout, bilobed; the anterior one smaller. No distinet lateral teeth. Animal with long, slender, separate siphonal tubes, with a simple circle of papillie at the ends ; mantle well open anteriorly ; foot ligulate. The curions little shell for which this genus is constituted apparently resembles Gustrana more than any other described genus."

Castranella tumda Yerrill. Plate X.IVII, fig. 190. (1.418.)
American Jour. Sci., vol. iii, 1 p . 210, 226, Plate 6, figs. $3,3 a, 1872$.
Shell small, variable in form, swollen above, more or less elongated oval, or oblong, with rounded ends, compressed posteriorly. The beaks are rounded, somewhat prominent, ineursed but not approximate, and directed somewhat forward; the anterior dorsal margin is deeply concave in front of the beaks, but withont a distinct lunnle, at the anterior end regularly romuded or a little prolonged, compressed; ventral margiu slightly convex, or nearly straight and sub-paraliel with the dorsal margin, or incurved, in the different specimens; posterior end broadly rounded in some, decidedly prolouged in others; dorsal posterior mar-
gin usually nealy straight for at least half its length, sometimes a little convex and gradually sloping thronghont. Surface with fine, somewhat irregular, concentric striar, slightly iridescent. Color white, with the umbos pmole. Length, $4^{\text {mm }}$; height, 关. inm $^{\text {mm }}$.

Long Ishand Somm, near New ! Iaven, t to fithoms, shelly and grav. elly bottom, among hydroids and sponges (A. E. V.).

I bra crqualis Sas.
Ameriean Conch. Part iii, Plate ${ }^{2}$; onter ligntes, 1-31; Binney's Say, p. 1-2, same plate: s'timpon, Check-List, 1, 3, 1*tio. Amphidesma "quetis Say,
 iii, Plate ᄅ己 sciance, vol. iii, p. 2t0, 1-i
Florida and Gulf of Mexico to Cape Hatteras ; rate and local farther north. Stonington, Comecticut, from coldstomaclis (Linsley). Fort Macon, North Carolina, abundant (Cones, Varrow). Texas (lawer). Clarleston, Sonth Carolina (Say).

The ocemrence of this southern species at Stonington needs confirmation. I have seen no specimens from north of Cape Hatteras.

Fossil in the Miocene of North and South Carolina.
Cumingla tellinomes Comial. Plate NXX, fig. 2o1. (1. 418.)
 fig. 36: cal. ii, ]. 79, fig. 390. Nactrat tcllinoides Comral, Jouru. Acad. Nat. Sci., Philad., vol. vi, p. 25-2, l'late 9, figs. $\bullet, 2,1831$.
Cape Cod to Florida. Common in Vineyard Sound and Buzzards Bay, 3 to 12 fathoms; Long Island Sound, less common. Fort Macon, North Carolina (Cones, Iarrow). Florida (Conrad). Fossil in the PostPliocene of Nantucket Island, South Carolina, and North Carolina; in the Pliocene of Sontl C'arolina; and in the IFiocene of Virginia and Sontl Carolina.

Ceronia hrotata Adams. (p. 426.)
H. and A. Allans, (ienera, vol. ii, p. 414, 1-5, ; Goukt, furert., ed. ii, p. *0, fig.



Long Island to liser Saint Lawrence. Stonington; Connecticut (Linstey). East Ifampton and Montank, Long Lsland (S. Smith). Nantucket (Gomld). Common in Massachusetts Bay; Casco Bay, and East. port, Maine, rare. Sova Scotia (Willis).

## Ioner. funsor Sily.

Journal Acad. Nat. Sciences, Philadelphia, vol, ii, p. 3ut, loon ; Binmey's say, pp. $99, \ldots 26$, Plate 61, fir. . .
This spectes may possibly ocenr occ:asionally on the Southern New England coast, but I an not aware of any anthentic instances. I have fonnd it quite common living on the outer beach at Great Egg Harbor, New Jersey, and it has been fomb as far north as the sonthern sile of Long Island.

Conch., x. p. 350, Plate 180, fig. 1656, 1788 ; Gould, Fuvert., ed. i, p. 51 ; eui. ii, p. 7:3, lig. 387. Mactra giganten Lam., Anim. sans Vert., ed. ii, vol. vi, p. !7. Mactra similis Say, Journ. Acad. Nat. Sci., Philatelphia, rol, ii, p. 309, 1892; Bimey's Sas, p. 101. Špisule solidissimu Gray, Charlesworth's Mag. Nat. IIist., vol. i, p. $33: 3,1837$; H. and A. Adans, vol. xi, 1. 388. ' Heminactre solidisxima Conrad, Amer. Journ. Conch., vol. iii, appendix, 1. 32; Perkins, Proc. Bost. Soc. Nat. Hist., vol, xiii, p. 346, Te69. Syismla Sayi Gras, op. cit., 1 , 3.33.
Florida and Gulf of Mexico to Labrador. Yery abundant on the onter beach at Great Esoç Harbor, New Jersey; Long Islaud; Long Island Sound; Vineyard Sonud; Cape Cod; Massachusetts Bay ; Casco Bay; Bay of Fundy, low water-mark to 10 fathoms, sandy. Fort Macon, North Carolina (Cones); Labrador (Packard); St. George’s Bank (S. I. Smith) ; West Florida (Jewett) ; Texas (Romer).

Fossil in the Post-Pliocene at Point Shirley, Chelsca, Massachusetts (Stimpson); and apparently in the Miocene of North and South Carolina (Conrad, as "M. similis?").

## Mulinia lateralis Gray. I'late XX̌Yi, fig. 185̃, 13. (p. 373.)

Charlesworth's Mag. of Nat. Hist., vol. i, p. 376, 1837 ; Meek, Smithsonian CheckLists, Miocene, 1. 11, 1864. Mactral lateralis Say, Jonru. Acal. Nat. Sci., Philad., vol. ii, p. 309, 1822; Gould, Invert., el. i, p. 54, tigs. 34, 35; ed. ii, p. 77, fig. 389. Standella lateralis Il. and A. Adans, Genera, vol. ii, p. 352, 1858; Conrad, I'roc. Philad. Acad., vol. xiv, p. 573, 1862.
Massachnsetts Bay to Florida, and on the northern shores of the Gulf of Mexico to Galveston, Texis. Very abuudant in Long Island Sound; commou in Buzzard's Bay and Vineyard Sound, 1 to 15 fathoms, mul. Boston and near Lym, Massachnsetts (Gould). Fort Macon, North Carolina (Cones). Ceorgia (Couper). Texas (Rœmer).

Fossil in the Post-Pliocene of Virginia, North Carolina, South Carolina, and Florida (Saint John's River) ; in the Pliocene of South Carolina ; and in the Miocene of Virginia, North and Soutli Carolina.

Petricola litoladiformis Lamarck. Plate N゙XVII, fig. 199. (1). 372.)

Anim. sams Vert., ed. i, vol. v., i. 505, 1218 ; el. ii, vol. vi, p. 150; Sat, Amer.
 ley, Recent Shells, p. 52, Plate 13, fig. 49 ; Gould, Invert.. ed. i, p. 63 ; ed. ii, p. 90, figs. 398, 399. Petrieolu fornicata Say, Journ. Acad. Nat. Sci., Philadelphia, vol. ii. p. 319, 1822. Petricola ductylu. Say, Amer. Conch., Part vi, Plate 60, fig. 2 (non Sowerby, Hanley, (tt.); Gonld, Invert., cd. i, p. 65 ; cl. ii, p. 02 , fig. 41.

Florida and Ginlf of Mexico to Massachusetts Bay; local and more rare farther north, at Quahog Bay, Maine; and in the southern part of the Gulf of Saint Lawrence, as at Prince Edward's Island (Dawson); Nova Scotia (Willis). Very common in Long Island Sound, near New Haven; Buzzard's Bay; Vineyard Somul (Lackey's Bay, cte.) ; and Massachnsetts Bay (Chelsea, Nahant, etc.). Fort Macon (Cones);

Florida (Comad); Texas (lamer); Cuba (1) ()rbiguy). Fossil in the post-Pliocene of Virginia, sionth Carolina, and Floritas: and in the Plocene of Sonth Carolina. A similar form, if mot identieal (I'. C'urolinensis Conral), ocems in the Miocene of Sonth Camolial.

A species scarcely to be distinguished from this was sent to me in large nmmbers from La I'az, (ball of California, by Captain Pedersen.

 ii, p. 1:33, lig. 45. Meremara rolacea schmmacher, Essali d’n Nomvean

 moremaria P'erkins, l'roce. Bostom Soc. Nat. Hist, vol. xiii, p. 14i, 1=(i). Venus

 Siv, op. cit., p. .ĩ $1,18.2$; Bimey's Say, p. 95.
Florida to Massachnsetts Bay; more rare and local farther north, at Quahog Bay, Mane; Nova Scotia (Willis) ; and in the southern part of the Gulf of Saint Lawrence, to the Bay of Chaleur. It is not found on the coast of Mane, east of Kenuebeck River, nor in the Bay of Funds. Tery common in Vineyard Sound, Buzzard’s Bay, Long Island Sount, and southward. Fort Macon (Cones); Sonth Carolina (Gibbes): (reorgia (Comper) ; Texas (Romer). Fossil in the Post-Pliocene of̂ Point Shirley, Nantucket Island, Gardiners Island, Virginia, and Sontl Carolina; in the Pliocene of Sonth Carolina ; and in the Miocene of Maryland, Virginia, North and Sonth Carolina.

Chlistid convexa Adams. Plate NXX, fig. 219. (1). 43』.)
11. and A. Adams, Genera, vol. ii, p. 4e., 185s. Cytheret 'omrext Say, Journ. Acad. Nat. Sci., Phil., vol. iv, p. 149, Plate 12, fig. 3, 1804 (fossil); Gould, Invert., ed. i, p. 24, fig. 49: ed. ii, p. 131, fig. 44 (recent). Dione conrexa Deshayes, Catal. Conch. Biv., British Musemm, 1, 71, 18.3. ('ythered morrhuanu Linsley, Amer.
 vi, p. ©3: $121^{2}$ (young). Cytherea Sayma Comma, Amer. Jour. Sei., ser. i, vol. xxiii, p.:35, 1s:3: (recent) ; Fossils of the Medial Tertiary of the U. S., p. 13, Plate 7, hig. 3, 1-38 (fossil). Cytherea Noyii P'erkins. Proc., Boston Noc. Nat. Mist..
 sci., vol, xlix, p. $\because \pi /$. March, 1-7!.
New Jersey to Gulf of Sant Lawrence. Fort Iacon, North Carolina, dead valses on the heach, plenty, but perhaps fossil, (Cones, Larrow). Great Egg Marbor, New Jersey ; Long Island Somm; Vineyard Sonnt, and Buzzards Bay, 2 to 10 fathoms, mud, common; Casco Bay, 3 to S fathoms, mud, arlult, living : Eastport, Mane, rare. Ňov̌a Scotia (Willis); Prince Ehward's lsland (Dawson).

Fossil in the Post-Plocene of Virginia and North Carolima; in the Pliocene of Sonth Carolima ; aml in the Miocene of Marvand. North and Sonth Carolina.

The matne sidyamu given to this species in 1833 (loce. cit.) Mr. Mr. Con.
rad, was accompanied by a short description of recent specimeus from Rhode Island and New Jersey. He gave C. concexa Say as a synonym, however, remarking that it "appears not to differ from the C. convexu of Sas, but I have changed the name because M. Brogniart had preriously applied it to a very rissimilar species." More recentls, however, he has indicated his belief that the two are distinct (Catal. Hiocene Shells, in Proc. Phil. Acad., vol. xiv, p. 575,1862 ), although he recog. nizes the "Suyanu" as a Miocene shell, but he has not pointed ont the differences, if any exist, so fiar as known to me. Should the recent shell prove to be distinct from the fossil one described by Say, it shonld therefore bear the name Callista Sayana.

In this species the amimal is white, or pale salmon-color: The border of the mantle sometimes protrudes considerably beyond the edge of the shell, and is delicately undulated or frilled; the siphon tubes, in full expansion, are smooth and rather longer than the shell, and are united quite the ends; the orifices are simple, without apparent papille, and the ranchial is considerably larger than the other; a well-marked groove stends along the whole length of the siphon, indicating the partition between the tubes.

Totmena abmal Pekins. Plate NXX, fig. 2e0. (1. 359.)
Proc. Boston Soc. Nat. Hist., vol. xiii, 1869 (in errata); by error, Tottemilu (p, 148). Tenus gemma Totten, Amer. Jour. Science, vol. xxvi, p. 367, figs. Du, d, 1Е:3. Gemma gemmat Deshayes, Catal. Conch. Biv., British Musenm, p. 113, $1=53$; H. and A. Adams, Genera, vol. ii, p. 419, Plate 10\%, fig. 3. (iemma Totteni Stimpson, Check-List, 1. 3, 1sG0.

South Carolina to Labrador. Very abundant in Long Island Sound, Buzzard's Bay, Vineyard Sound, Nantucket, aud Massachusetts Bay; common in Casco Bas, and at Grand Menan Island. Nova Scotia (Willis). Prince Elward's Island (Dawsou). Indian Harbor, Labrador (Packard). Fort Macon, North Caroliua (Cones).

An allied species (T. spherica H. C. Lea, sp.) occurs in the Miocene of Virginia.

## Tottenia Manhattensis Verrill.

'emus Manhattensis Prime, in Jay̌'s Catalogne of Shells, ed. iv, smplement, p. $466,1552$. Venus (Gemima) Manhatensis Jrime. Anmals Lyc. Nat. Hist. N. V., rol. vii, p. 420 (figure), 1862. (iemma Manhattensis Gonld, Invert., ed. ji, p. 13~*; fig. 449.
North Carolina to Vineyard Sumd. Hell Gate (Prime). Greenport and Huntington, Loug Island (S. Smith). Near New Haven, rare. Fort Macou, North Carolina (Yarrow).

I have seen but few specimens of this shell, and am not fully satisfied that it is distinct from the preceding. Its color is not constant, some specimens being pale straw-color, others purplish. Mr. Prime originally described it as white.

Cyprena lslandica Lamarck. Plate NXV'llf, fig. 201. (p. 50S.)
 fónus Istemelica Limmé. Syst. Nat., ed. xii, p. 11:31.
Bastern end of Long Island to the Aretic Ocean ; on the northern Enropean coasts southward to England. Off Block Lsland, ey fathoms, sandy mud; ofl Cay Heal, Martha's Vineyard, 19 fathoms, soft mul ; common iu Casco Bay, 10 to So fathoms; Bay of Fundy, if to 90 fathoms; Saint George's Bank, 45 fathoms ; and Gulf of Saint Lawrence. Montank, Long Lsland (S. Smith). Fossil in the Post-Pliocene of Scandinavia, Scotlamd, England, Sicily, and other parts of Emope. In North America it appears not to have been fomd fossil hitherto, and it must, therefore, be rare in our northern lost-Pliocene or glacial de posits, if not altogether absent.

Jommal Acad. Nat. Sciences, Philadelphia, ser. i, vol, vi, p. 2ot, l'lates .fig. $1: 31$; Gould, Invert., ed. i, p. 90 , fig. 57 ; ed. $\mathrm{ii}, \mathrm{p} .141$, lig. 4io.

Long Island Somd to Sonthern Labrador. Near New Hawen, Connectient, rave ; Buzards Bay and Vineyard Somm, 4 to 12 fathoms, common ; rery common in Massachusetts Bay, Casco Bay, Bay of Fundy, and Gult of Saint Lawrence, $\geq$ to $S 0$ fathoms. Labrador, sonth of Straits of Belle Isle (Packard). IInntington, Gardiner's and Peconic Bars, Long* Island (S. Smith.) Off New Loudon, Connecticut, (coll. T. M. Prudden).

Fossil in the Post-Pliocene of New Brunswick.
ímencardiul Mortoni. Plate NXIN, fig. 203. (p. 35s.)
Perkins, Proc. Boston Soc. Nat. Hist., vol. xiii, p. 150, 1-69. Cerdium Momtomi Conrad, op. cit., vol, vi, 1. .259, Plate 10, figs. ह, (6, 7 ; Gould, Invert., ed. i, 1. 91;
 $14: 3$, fig. 4.3.
Florida and northern shores of the Gulf of Mexico to Cape Cod ; rare and local farther north. Common in Long Island Sound, Buzzard's Bar, Vineyard Somnd, and abont Nantucket. Dartmonth Lakes, Halifax, Nova Scotia (Willis, t. Gould). West Florida (Jewett). Fort Macon (Cones). Fossil in the Post-Pliocene of South Carolina.

Serripes Grïnlandicus Beck (Aphrodite Gröniandica Stimpson; Gould, Invert., ed. ii, p. 14t, fig. 454). This species was recorded asfrom Stonington, Connecticut, by linsley, but has not since been fomm sonth of Cape Cod, and must, therefore, be regarded as a doubttul inhabitant of onr waters. It occurs from Massachmsetts Bay to the Aretic Ocean, but is rare south of the Gulf of Saint Lawrence and Labrator. Casco Bay and Mount Desert, Maine, 8 to 30 lathoms, rare, (A. E. V.).

Cyclocarda borealis Comrad. Plate NXIA, fig. 216. (p. 413.)
Amer. Jomrn. Conchology, vol. iii, 1. 191, 1\&it. ('ardita borculis Conmad, Amer.
 p. 1.16 , fig. 4.5. Actinobolus borcalis H. and A. Alams, (ienera, vol. ii, 1, 1-7, 18.).
(?) Penericarlia mibruria Say, Amer. Conch., Part v, cover, 1832; Binney's Say, p. 205. (?) Temericurdif gramulatu Say, Jour. A. Nat. Sci., Philadelphia, vol. is, p. 142, Plate 12, fig. 1. Carditu grumuluta Conrad, Fossils of Merlial Tert. of U. S., p. 13, Plate 7, fig. 1.
Ner Jerses to Labrador. Common in the deeper parts of Vineyard Sound, near its month, and off Gay Head and Buzzard's Bas, 10 to 25 fathoms; oft Block Islant, 29 fathoms; very common in Casco Bay, Bay of Fundy, and Gulf of Saint Lawrence, 3 to 80 fathoms. Sandy Hook, and Montank, Long Island (S. Smith). Off Nem London, Connecticut (T. M. Prudden). Saint George's Baak, 25 to 65 fathoms, (S. I. Smith). Straits of Belle Isle, 50 fathoms; Chatean Bar, 50 fathoms; Long Island, Labrador, 15 fathoms, (Packarl). A species, regarded as identical br Dr. Carpenter, occurs on the North Pacific coast of America as far sonth as Catalima Island, and on the northeast coast of Asia.

Fossil in the Post-Pliocene of Gardiner's Island; Nantucket and Point Shirley, Massachusetts ; and Labrador. The Miocene form, C. gramulata (Say, sp.) is very closely allieri to this, if not identical. It is found in Tirginia and Maryland.

Cyclocardia Novanglle Morse. Plate NXix, fig. 215. (p. 418.)
Achimobolus (Cyclocardia) Nota-amglise Morse, First Annnal Report of Trustees of Peabody Acad. of Science, Salem, p. 76, ent, 1867. 「yclocardia Notanglia Verrill, Amer. Journ. Science, vol. iii, p. 211, 1872.
Connecticut to Gulf of Saint Lawrence. Mouth of Vinesard Somud and off Gay Head, 10 to 25 fathoms; Casco Bay, and Bay of Fundy, 3 to 40 fathoms, not uneommon. Off New London, Comeeticut (T. M. Prudden).

Astarte undata Gould. Plate NXIN, fig. 203. (p. 508.)
Iuvert., ed. i, p. 80, fig. 46, 1841 (provisional name); Plitippi, Abbildungen nul Beschr. nener oder wenig gek. Conch., vol. ii, p. 1, Plate 1, fig. 1, 1850; Verrill, Amer. Jour. Science, vol. iii, p. 213, 1872. Crasina latisulca Hanley, Recent Shells, p. 87, Plate 14, fig. 35, 1843. -Astarte snleatu Gonld, Invert., ed. i, p. 78 , fig. 46, 1841 (not of Europeau writers) ; ed. ii, p. 119, fig. 432 (poor figure, from an old, deformed shell).
Var. Iutea $=$ Astarte luten Perkins, Proc. Baston Soe. Nat. Hist., vol. xiii, p. 150, figure, $1=69$.
Long Island Sonnd to the sonthern part of the Gulf of Saint Lawrence. Off Gay Head and Buzzard's Bay, and in the deeper parts of Vineyard Sound, 8 to 25 fathoms, common; off Block Island, 29 fathoms: very common in Caseo Baly and Bay of Fundy, 5 to 100 fathoms; Saint George’s Bank, 20 to 85 fathoms. Off New London, Connecticut, (T. M. Prudden). Southern part of Gulf of Saint Lawrence (Whiteaves). Var. luten ocenrs rarely near New Haven (Perkins); and more frequently off Gay Head and in Vineyard Soumd, 8 to 19 fathoms, with the ordinary varieties. It resembles the European sulcata more than the common or typical raricties do, but passes insensibly into the ordinary forms. The shells referred to undutu, by Dawson and Whiteaves, from

Gaspé，Canada，are not this species，but a short variety of A．clliptich． The latter is a much more northern shell，amd I have dredged but one specimen on the New Ligland coast（off Casen bay，6．5 fathoms）．

Fossil at Point Shirley，Massalehnsetts，in the Post－Pliocene，（Stimp－ son，as L．sulcetu）；and at（iardiner＇s Lsland（S．Smith）．

American Conchology，l＇art i ，心：： 0 ，I＇late 1 ；Bimey＇s Say，p．150，Ilate 1 ；Gould，

 castence lamarek，Anim．sans Vert，ed．ii，vol．vi，p．eiz；Hanley，Recent

Great Egg Iarbor，New Jersey，to Nora Seotia．Common on the shores of Long Istand，Nantucket，Martha＇s Vineyarl，and Cape Cod； Long Island Somd，not very common；Vineyarl Sombl and Buzard＇s Bay， 5 to 20 fathoms，frequent；Casco Bay and Bay of Fundy， 5 to 20 fathoms，not common．Massachmsetts Bay，abundant，（t．（ionld）．Saint George＇s Bank，2．：to 40 fathoms，（S．I．Smith）．Halifax and Sable Island，Nova Scotia（Willis）．Ofi Cape Sable，Nova Scotia（A．E．V．）． Uff New London，Comecticut（T．M．Prudlen）．Foossil in the Post－ Pliocene at Niantucket aud Loint Shirley，Massachusetts．

Astarte quadrans Gould．Plate ŇNL，fig．20．5．（p．J09．）
Invert．，ed．i，p．©l，fig． 48,1811 ；ed．ii，p． 123 ，fig． 434 ；Verrill，Amer．Jomen．Sci．， vol．iii，p．：2，1～io．Astarte I＇ortlandica Mighels，ljoston Journ．Nat．Hist．， vol．is，pp． $3: 3,315$ ，Plate 16 ，fig．$\stackrel{2}{2}, 1843$（variety）；Gould，Iuvert．，cd．ii，p． 127 ，ting． 441.
Stonington，Comnecticut，to Gulf of Saint Lawrence．Month of Tine－ yard Sound，and off Martha＇s Vineyard， 19 to 25 fathoms，rare；Massa－ clusetts Bay；Casco Bay；Bay of Fumdy，in 6 to 40 fathoms，not un－ common．Saint George＇s Bank（S．I．Smith）．Gulf of Saint Lawrence ©Whiteaves）．

Var．Portlamdicu occurs，with intermediate forms，in Casco Bay and Bay of Fundy， 10 to 2.5 fathoms，not common．

Gouldia mactracea Gould．Plate XXIX，figs．206，207．（p．418．）
Invert．，ed．ii，p．1Os，fig．422，1＝70．Asturtc mactraca Linsles，Amer．Jour．Sci．， vol，xlviii，p． $2 \bar{\circ}$（figure）， 1845 ；Gould，op．cit．，ser．ii，vol．vi，p．233，figs． 1. 2，1－4：．（．）dstarte lumulata Conrad，Jour．Acad．Nat．Sciences，Philad．，vol． vii，1．151，1－37；Fussils of the Medial Tertiary of the U．S．，p．45，Plate 21 ，fig． $-1-40$ ；Gonldia lmuulata Conrad，Catal．of Mocene shells，in Proc．Acad． Nat．Sci．，Thilad．，vol，xir，p． 5 é， 186.
Florida and northern shores of the Gulf of Mexico to Cape Cod． Common，living，and of large size，in Tineyard Sound and Buzzards Bay，especially at Wood＇s Hole， 3 to 10 fathoms．Stonington，in stomach of cod（Linsley）．Huntington and Greenport，Long Island （S．Smith）．Ofí New Loudon，Connecticut（coll．T．M．Prudden）．Fort Macon（Cones）．South Carolina（Kurtz）．West Florida（E．Jewett）． Tampa Bay（Comad）．

Fossil (G. lumulata) in the Post-Pliocene of North and Sonth Carolina; in the Pliocene of South Carolina; and in the Miocene of Maryland and Tirginia. The fossil shell is probably identical with the recent one, but I have not had snitable specimens of the former for comparison; if identical, the species shonld be ealled $G$. lunulutio.

Lucina filosa Stimpson. Plate XXIX, fig. 212. (1. 509.)
Shells of New England, p. 17, 1851; Gonld, Invert., ed. ii, p. 98, fig. 404. Lucina radula Gould, Luvert., ed. i, p. 69 (non Montagu, sp.). ? Lucina contracta, Say, Jour. Acad. Nat. Sciences, Philad., vol. iv, p. 145, Plate 10, fig. \&; Conrad, Fossils of the Medial Tertiary of U. S., p. 40, Plate 20, fig. 5, 1840.
Stonington, Connecticnt, to Maine. Off Block Island, 29 fathoms, sandy mud; oft Gay Head, 19 fathoms, soft mud; Casco Bay and Portland Harbor. Stonington (Linsley). Boston Harbor (Stimpson). Phillip's Beach (Holder). Rhode Islaud (Conrad, as L. contracta).

Fossil in the Post-Pliocene of Gardiner's Island (S. Smith). L. contracta oceurs in the Miocene of Virginia ; it was formerly regarded by Conrad as identical with the recent shell from Rhode Island, but is probably a distinct, thongh closely-allied species. Mr. Jeffreys identified this species with L. borealis (Limmé) of Europe; the latter is aiso found on the Pacific coast at Vanconver Island and Catalina Island (Cooper and P. P. Carpenter).

Cyclas dentata. Plate NALX, fig. 211. (p. 418.)
Lacina dentata Woorl, General Conchology, p. 195, Plate 46, fig. 7, 1-15; Gould, Invert., ed. ii, p. 99, fig. 45. Lucima diraricata Gonld, Invert., ed. i, p. 70, (non Linné, sp). Lucina strigilla Stimpson, Shells of New Eugland, p. 17, 1851.

Brazil and West Indies to Cape Cod. Not uncommon, dead, but rarely obtained living, in Tineyard Sonnd, 6 to 14 fathoms. Coney Island (S. Smith). Nantucket (Gonld). St. George's Bank (S. I. Smith). Fort Macon, Nortlı Carolina, abundant, (Cones, Yarrow). Georgia (Couper).

Fossil in the Post-Pliocene of North Carolina, Sonth Carolina, and Florida; and in the Plocene of Sonth Carolina. The same, or a closelyrelated species, (L. Conradi D'Orb., Prod., iii, p. 117, 2194, t. Conrad, in Proc. Acad. Nat. Sci., Phil., 1862, p. $577=$ L. divaricata Conrad, Fossils of Med. Tert., p. 38, Plate 20, fig. 3) oceurs in the Miocene of Tirginia.

Cryptodon Gouldif Adams. Plate XXIX, fig. 213. (p. 509.)
H. and A. Adams, Genera, vol. ii, p. 470, 1858 ; Gould, Invert., ed. ii, p. 100, fig. 406. Lacina Gouldii Philippi, Zeitsch. f. Malak., 1845, p. 74 (t. Gould). Thyasiru Gouldii Stimpson, Shells of New Eng., p. 17, 1851. Lucina flexuosa (iould, luvert., ed. i, p. 71, fig. 52 (non Montagu, sp.).

Stonington, Comecticut, to Gulf of Saint Lawrence. Off Block Island, 29 fithoms; Buzzards Bay, 6 fathoms, mud; common in Massachusetts Bay, Casco Bay, and Bay of Funcly, 5 to 60 fathoms, muldy and sandy. Nora Scotia (Willis). Gaspé, Canada (Whiteares). Mirray Bay (Dawson). Gnlf of Saint Lawrence, 20 to 300 fathoms (White-
 sil in the Post-l'liocene at Montral, Jare, (Dawson) ; Brmswirk, Mame (I'ackard).

Possibly some of the Ginlf of Saint Lawrener specimens may belong to the following species.


Shell white, irreghary and rather coarsely concentrically striated. much swollen in the middle; the transwerse diameter nearly egual to the length; the height considerably exceeding the length. The beakis are prolonged and tmod strongly to the anterior side. The lumular area is rather large and sunken, somewhat flat, in some cases separated bey a slight ridge into an inner and an onter portion. Anterior border with a prominent rommed angle ; rentral margin prolonged and rombled in the middle; posterior side with two strongly-developed flexures, separated by deep grooves. Interior of shell with radiating grooves. most comspienons toward the rentral edge.

Length of the largest specimen, $12^{m m}$; height, $1 \mathrm{~S}^{\mathrm{mm}}$; thickness, $13^{\mathrm{mmn}}$. The smaller specimens hare abont the same proportions.

Six single valves, some of them quite fresh, were obtained off Noman's Land at different localities. They were all right valves, and the smallest was 12.$)^{m m}$ of an inch in height. The specimen from Labrador agrees nearly in form and structure, and is only 5.5.mm in height and $J^{\text {mim }}$ in length.

This species appears to be more nearly related to C. flexuows of Einrope than to C. Gouldii. The European species is nearly intermediate between the two American shells in form ; but jodging from the specimens that I have had opportunities to examine, the three forms ought to be kept distinct. (. Gouldii is a thimer amb more delicate shell. more rombed, relatively much longer, and is seldom more than fimn to $7^{\text {min }}$ in breath.

Block Island to Labrador. East of Block Island, in 2! fathoms, fine sandy mud; off Gay Head, 19 fathoms, mud; Casco Bay, 60 fathoms. math. Labrador (Packard). East of Saint (ieorge's IBank, 430 fathoms (S. I. Smitlı).

Turtonit mimula Stimpson.
Shells of New England, p. 16, 15.51 (non Alder. Forbes and Itanley, etc.): Gouht, Invert., ed. ii, p. © , fig. 395. Fenus minutal Fabricins, Fama Grïnlandica, p.
 figs. 4, 4a, 1-72.

Massachnsetts Bay to Creenland. Common muter stones and in rocky pools at low-water, in Massachusetts Bay and Casco Bay. Although this species has not yet been found sonth of Cape Cod, so far as I am aware, it will probably be found hereafter on the more exposed roeky shores, as at Point Jidith, Wateh IIill, or on some of the onter islands.

The American specimens of this shell differ so widely in form, aud especially in the structure of the hinge, from all the European specimens with which I have compared them, as well as from the descriptions and figures, that I camot regard them asidentical. Dr. Gould has well defined the form and external characters of our shell. I have seen no Emopean specimens so elongated in form as the American examples seen by me invariably are, but depend less on the external form than on the structure of the hinge for distinguishing them. (See the greatly enlarged figure in the Amer. Journal of Science).

Haring had opportunities to study northern specimens of this shell, since I gave it the name nitida, I have become finlly satisfied that the original shell deseribed by Fahricins is inentical with the American species, rather than with the Emropean. His description corresponds well with our best specimens. The European species, if, as I believe, distinct from ours, should, therefore, retain the name T. purpura (Montagu, sp.) ; and minutu should be restored to the American form.

Kellia playulata Stimpson. Plate XXX, fig. 2?6. (p. 310.)
Shells of New Eugland, p. 17, 1851; Gould, Invert., ed. ii, p. 83, fig, 303. Kellia rulber Gonld, Invert., ed. i, p. 60, (now Montagn, sp.).
Long Island Somd to Greenland. Near New Haven, Connecticut, rare ; Tineyard Sound and Buzzard's Bay, 1 to 8 fathoms, not common; Casco Bay; Eastport, Maine, 8 to 15 fathoms; lBay of Fundy. Montank and Greenport, Long Island, low-water to 6 fathoms, mud ; and Gull Island, low-water, under stones, (S. Smith). Boston Harbor, if fathoms, shelly, (Stimpson). Sable Island, Nova Scotia (Willis). Greenland (Mörch).

Montacuta elevata Stimpson. (p. 418.)
Shells of New Eugland, p. 16, 1851; Guuld, Invert., eil. ii. p. E6, fig. 395. Hontacuta bidentata Gonld, Invert., eal. i, 1. 59, 1811 (mon Montagn, sp., 1203).
Long Island Sound to Massachusetts Bay. Savin Rock, near New Haren, rare; Naushon Island, Vineyard Sonnd, rare. Greenport, Long Island (S. Smith). New Bedforl (Gould). Chelsea Beach (Stimpson).

Lepton fabagelea Courad.
Marine Conchology, p. 53, late 11, fig. 3, 1831; Dekay, Nat. History of New York, Mollnsca, p. 243 , Plate : 2, , fig. $307, A, B$.
Rhode Island (Conrad).
I have not seen specimens of this shell. It seems to be rare aml little known.

A closely-related species (L. mactroides Conrad, Fossils Medial Tert., p. 19 , Plate X , fig. 5,1839 ) is found in the Miocene of Maryland.

Solenomýa telum Say. Plate X゙N1N, fig. 210. (p. 360.)
Jonrnal Acad. Nat. Sciences, Philad., vol. ii, p. 317,1822 (Solemye); Gonld, Invert., ed. i, p. 35 ; ed. ii, p. 48, fig. :371.
North Carolina to Nova Scotia. Great Egg Harbor, New Jersey; Long Island Somd, near New Haven, low-water to 6 fathoms, not uncommon;
yery common in Buzands Bay and Vineyard Somed， 1 to is fathoms，
 common；Casco Bay，rare．Nova Sootia（Willis）．Huntington and Greemport，Lomg Island，rave，（S．Smith）．
Solhewhya bormalis Tutten．


Comectient to Aova Scotia．Xewport，Rhode Island（Totten）．Chelsem and Nahant，Massallinsetts（Gould）．Casco Bay and Porthand Harmen rate；Vinerand somul，at Cuttyhumk Island，rare．Stomington，Comec ticnt（Linsler．）．

This species may prove to be only the mature state of the preveding， but I have nerer seen specimens intermediate in chatacter．
Yolda linatula Stimpson．Plate XXX，fig．23．（1．432）．
Shells of New England，p．9，1－5；HI，and A．Adame，Genera，vol．ii，p．万小゙，
 limatula Say，Amer．Conch．，ii，Plate 12，middle tigures，Ie：31；fiombld，Invert．， 11． 02 ，tig．62．Leela limatula Stimpson，Shells of New Eugland．10．10，1～5．
North Carolina to Gulf of Saint Lawrence．Common in Long Island Sound；Buzzard＇s Bay；Vineyard Sound Casco Bay，in 2 to 12 fathoms， soft mul ；less common in the Bay of Fundy， 4 to 30 fathoms．Beanfort， North Carolina（Stimpson，Cones）．Huntington and Greenport，Long Island（S．Smith）．Novia Scotia（Willis）．The specimens from Long Island Sound are as large and fine as the northern ones．

Fossil in the Post－Pliocene of Canada，Virginia，North and Sonth Carolina；and in the Pliocene of Sonth Carolina．An allied specie＇s（ Y leceis Say，sp．，Courad）oceurs in the Miocene of Maryland and south Carolina．

Ioldia myulis Stimpson；Gonld，Invert．，ed．ii，p．160，fig．167；Nucula myalis Couthony，1838．This is often confonmded with K．limatulu，thongh quite distinct．It is a more arctic species，ranging from Massachusetts bay to the Arctic Ocean and Spitzbergen，but it has not been fomml south of Cape Cod，so far as known to me．The shells reported as surh， that I hare seen，are $I$ ．limutula．Gould reports the latter as from Norl－ land（McAndrew），but we suspect that I．myatis or I．sapotilla may have been，in this case，mistaken for $Y$ ．limutulu．

Y゙oldia sapotilla Stimpson，1851．Plate NXX，fig．231．（p．509．）
H．and A．Adams，Genera，vol．ii，p．548；Gould，Invert．，ed．ii，p．159，tig． 466. Nucula sapotillu Gondd，Invert．，ed．i，p．100，fig．61，1841；Hatey，Recent Shells，p．1r0，I＇late 20，fig．3．Leda（Yoldia）sapotilla Stimpson，Shells of New Englaml，p．10，1851．Yoldia arctica Mörch，op．cit．，p．93，1857（t．Dawson， from specimen；non X．aretica Sars）．
Long Island to the Arctic Ocean，comparatively rare and local，chietly in deep water，south of Cape Cod．Off Gay ITead， 19 fathoms，soft mud； off Buzzard＇s Bay， 95 fathoms，sand；east of Block Island， 29 fathoms，
fine sandy mud; common in Casco Bay and Bay of Fundy, 4 to 100 fathoms, mud. Greenport, Long Island (S. Smith). Massachusetts Bay (Gould). Nora Scotia (Willis). Labrador (Packard). Greenland (Mïreh).

This species seems to be mknown among our Post-Pliocene shells. Having examined several hundred specimens from many different localities and depths, I am satisfied that it is perfectly distinct from I. limatule, with which certain writers are inclined to unite it.

## Soldia Gouldii.

Nucula Gouldii DeKay, Nat. IIist. New York, Mollusca, p. 180, Plate 13, fig. $221,184: 3$.
This was originally described by Dekay as from Long Island Sound. I have seen no specimens corresponding with the deseription in all respects. It is, perhaps, a short variety of I. sapotilla.

Yoldia obesa Stimpson, 1851. (p. 509.)
I. and A. Adams, Genera, vol. ii, p. 548 , 1858 ; Gonld, Invert., ed. ii, p, 155, fig. 463. Lecla obesa Stimpson, Iroc. Boston Soc. Nat. Itist., vol. iv, p. 13, 1851; Shells of New England, p. 10, Plate 2 , fig. 1, 1851. Nucula naricularis Mighels, Boston Journal Nat. History, p. 323, 1843 (non Conthouy, Gonld).
Block Island to Gulf of Saint Lawrence. East of Block Island, 29 fathoms, rare; Caseo Bay and off Cape Elizabeth, 30 to 95 fathoms; Bay of Funly, 40 to 100 fathoms, rare; near Saint George's Bank, 110 and 150 fathoms (Packard). Massachusetts Bay (Stimpson).

Yoldia tiraciformis Stimpson, 1851. (p. 509.)
Smithsonian Che k-List, p. 2, 1860 ; H. and A. Adams, Genera, vol. ii, p. 548, 1858 (thracireformis) ; Gould, Invert., ed. ii, p. 157, fig. 465 ; Mörch, op. cit., p. 21, 1857. Nucula thracieformis Storer, Boston Jour. Nat. History, vol. ii, p. 122, figure, 1-38; Gould, Invert., ed. i, p. 97, fig. 66. Ledu thraciaformis Stimpson, Shells of New England, p. 9, 1851. Nucula navicularis Couthony, Boston Journ. Nat. History, vol. ii, p. 178, Plate 4, fig. 4, 1830, (Fomng) ; Gonld, Invert., ed. i, p. 103. Ioldia angularis Möller, op. cit., p. 92, 184. (t. Mïrch).

Long Islaud to Greeuland. Off Fire Island, south of Long Island, in 10 fathoms; and off Race Point, Cape Cod, in 30 fathoms, (Stimpson). Not uncommon, and of large size, in Casco Bay, 15 to 95 fathoms; and Bay of Fundy, 10 to 100 fathoms; near Saint George's Bank, 85 fathoms (Packard).

Leda tenuisulcata Stimpson. (p. 509.)
Shells of New England, p. 10, 1851 ; Gould, Invert., ed. ii, p. 161, fig. 168 . Nucula temuisnl-ata Conthony, Boston Jonm. Nat. Mist., vol. ii, p. 64, Plate 3, fig. 8, 1833. Nuchata mimeta Gould, Invert., ed. i, p. 101, 1541 (non Fabricius, sp).
Phode Island to Gulf of Saint Lawrence. Common in Massachusetts Bay, Caseo Bay, and Bay of Fundy, 6 to 80 fathoms. Nora Scotia (Willis). Newport, Rhode Island (t. S. Smith). Sonthern part of the Gulf of Saint Lawrence (Whiteares). Particularly abundant in Eastport Harbor, 10 to 30 fathoms; Saint George's Bank and vicinity, 40 to 150
fathoms（Smith，Vackard）．Fossil in the Post－limene at Saco and I＇ortand，Maine（l＇ackaml）；？（＇anada（Dawsom，as L．peroulu，rar）．

NuGula proxna Siy．Plate NX゙メ゙，tig．2：30．（p．418．）
 103，tig．（6．3；ell．ii，p．150，tig．45＊．
Sonth Carolina to Gulf of saint Lampence．Common in Long lshand
 zard＇s Bay and Block lsamd，e2．to 2！fathoms；common in Massachu－ setts Bay，Casco Bay，and Bay of Fundy， 4 to so fathoms；very ahme dant in Trenton Bay，Mount Desert，Maine，10 fathoms，soft mukl． Nova Scotia（Willis）．Saint Georges Bank（S．I．Smith）．Fort Jacom， North Carolina（Cones）．Long Islaml，abmilant，（S．Smith）．Fossil in the Post Pliocene of North and Sonth Carolina；in the Pliocene of South Carolina ；and in the Miocenc of Maryland and Sonth Carolina．

Nucula delphinodonta Mighels．Plate N゙NX゙，fig．229．（p．50！．）
 ii，1．15：3，fig．161．Nacula corficate Mäler，Naturhistorisk Tibsskritt，vol．iv， 1． $90,1042$. PNatula rallata Dekay，Nat．Hist．New Jork，Moll．，1．1599，Plate 12 ，fig． $2 l 6,1=4 \%$ ．

Rhode Island to Greenland．Dast of Block Island， 29 fathoms；off Gay Mead，1！fathoms，soft mud；Massachusetts Bats，common；Casco Baly，（i to 9J fathoms，common；Frenchman＇s Bay，Mount Desert，com－ mon；Bay of Fmuly and Eastport Harbor， 10 to 100 fathoms，mud， common；Nova Scotia（Willis）；Gnlf of St．Lawrence（Whiteaves）． Greenland（Müller，Müreh）．Northern Enrope（t．Jeffreys）．

## J̌ueula temuis Turton（Montagu，sp．）

Gould，Invert．，ell．i．，p．105，fig．6．I ；ed．ii，p．149，fig．45\％．
This species was recorded as from cod－stomachs，at Stonington，Con－ necticut，but was not met with by us．Its oecmrrence sonth of C＇ape Cod needs confimation．It is an aretiespecies；common in Caseo Bay and the Bay of Fuads，in 10 to 100 fathoms，mud ；and northward to the Aretic Ocean．Also on the northern coasts of Europe，south to Great Britain． It is also found in the Post－Pliocene of New England and Canada．

Scapilarca transyersa．llate NX̃，fig．22s．（p．309．）
1I．and A．Adams，Genera，vol．ii，p．$\overline{3} \mathrm{~B}^{2}, 155^{2}$ ．Area transtersa Say．Jonr．Acad． Nat．Sci．，Philal．，vol．ii，1． 269,102 ；Gould，Invert．，ed．i，1． 96 ；ed．ii， 1 ． 14 s ，fig． $456 a$ ．

Florida to Cape Cod．Long Istand Somm，near New Haven，low－water to S fathoms；Buzzard＇s Bay and Vineyarl Somul， 2 to 10 fathoms ： Great Egg Ilarbor，New Jerses， 1 fathom．Nantueket（Gonld）．Long Island，abmulant ；Greenport， 3 to 10 fathoms（S．Smith）．Fort Jaron， North Carolina（Coues）．South Carolina（Kurtz）．Georgia（Conper）．

Fossil in the Post-Pliocene of Nantucket, Gardiner's Island, Virginia, North and South Carolina; and in the Miocene of Virginia and North Carolina. According to Gould, found fossil at Provincetown,. Massachnsetts, in an artesian boring, 120 to 200 feet beneath the surface, (Post-Pliocene ?)

Argina pexata Gray. Plate XYX, fig. 227. (p. 309.)
Proe. Zoül. Soc., Lomlon, 1847 ; II. and A. Adams, Genera, vol. ii, p. 540, Plate 1:5\%, figs. 7, 7a, 1858. Arca pexata Say, Jour. Acad. Nit. Sciences, Plilad., vol. ii, 1. $26 *, 1822$; Gould, Iuvert., ed. i, p. 95 , fig. 60; ed. ii, p. 147, fig. 456.

Florida and northern shores of Gulf of Mexico to Cape Cod ; rave and local farther north, in Massachusetts Bay. Very common in Long Island Sound, low-water to 10 fathoms; Buzzard's Bay; Vineyard Sound; Great Egg Harbor, New Jersey. On beach at Provincetown, Massachusetts (S. I. Sinith). Staten Island and Long Island, abundaut (S. Smith). Fort Matcon, North Carolina (Yarrow). Georgia (Couper). West Florida (Jewett). Texas (Romer).

Fossil in the Post-Pliocene of Gardiner's Island (?) (S. Smith); in the Miocene of Sonth Carolina.

Alrca ponderosa Say.
Journ. Acad. Nat. Scienees, Philadelphia, vol. ii, p. 2[f7, 182?; Bimey's Say, p. 92.
This species ocemrs on the beach at Edgartown, Martha's Vineyard, associated with the other common sand-dwelling shells of that region. The ralves are apparently tolerably fresh, thongh worn, and no fossil shells have been found in that vicinity. It occurs in the same way on the southern side of Long Island, near Fire Island (S. I. Smith and S. Smith). But I am not aware that it inas been fom living north of Cape Hatteras; nevertheless, it may oceur locally in shallow water off shore. The specimens found may possibly have been washed ont from submerged Post-Pliocene deposits.

It is found living at Fort Macon, North Carolina, and sonthward to the Gu!f of Mexico.

## HETEROMYARIA.

Mytulus edulis Linné. Plate XXXI, fig. 234. (pl. 307, 432.)
Systema Nature, ed. xii, p. 1157, 1767; Gould, Iuvert., ed. i, p. 121, fig. 82; ed. ii, p. 183, figs. 483,484 . Mytilus borealis Lamarck, Anim. sans Vert., ed. ii, vol. vii, p. 46 ; Dekay, Nat. Hist. N. Y., Moll., p. 182 , Plate 13, fig. 22: Plate 24, fig. 256. Mytilus pellucidus Pennant, Brit. Zoöl., vol. iv, p. 237, Plate 66, fig. 3 , (t. Gonld $)=$ variety pellucidus Gonh, Invert., ed. ii, p. 184, fig. 484. Mytilus notatus Dekay, op. cit., p. 182, Plate 13, tig. 223, 1843.
Circumpolar: Arctic Ocean south to North Carolina, on the American coast; south to Great Britain, France, and the Mediterranean and Black Seas, on the European coast ; sonth to Monterey and San Francisco, on the North Pacific coast; south to China and Japan, on the Asiatic coast. Very abundant in Great Egg Harbor, New Jersey, Long

Island Somm, Buzzands Bay, Vineyard Sound, Massarlhmetts Bay, Casco Bay, Bay of limuly (littomal to 20 fathoms), amd nothwarl. Font Macon, North Camolina (Cones).

Fossil in the Post-Pliocene of (rreenland, Labrador, Canada, lake Champlain, Maine, New Brmswiek, loint Shirley, Massachusets. and samt.Johns River, Forida; in the Post-Plocene of Sammanaia, Rassia, and Great Britain; in the Red Crag and all later formations in England.



 Vert., ed. ii, vol. vii, p. 17 ; Sal, Amer. Comeh., Plate 45.
Cirempolar: Greenland sonthward to New Jersey ; on the Emopean coast from Spitzbergen sonthward to Great Britain and France ; in the North Pacific southward to Monterer, Californa, on the American coast : and southward to Northern Japan on the Asiatic eoast. Long Island Somnd, not Very common; Vineyard Somd and Bnzard's Bay, not abmodant ; common in Massachmsetts Bas ; abmdant in Caseo Bay and bay of Finuly, low-water to $S 0$ fathoms. Staten Island and Long Island (S. Smith). Fossil in the Post-Plocene of Point Shirley, Massachmsetts, Montreal, Canada, Scotland, Ireland, Sicily, ete.; in the Coraline Crag, Red Crag, and later formations in Englanl.

Modiola plicatula Lamarek. Plate XXXI, fig. 238. (p. 307.)
Anim. sans Vert., el. i, 1819 ; ed. ii, vol. vii, p. 22 ; Gould, erd. i, p. 12.5, fig. 8 ; ; ell. ii , p. 188, fig. 486; Dekay, op. eit., p. 184, Plate 14, fig. थJ3; Himley, Recent Shells,
 Shells of New England, p. 12. Moriola semicosta Conrad, Jonr. Acanl. Nat. Sci., I'hilad., vol. rii, p. 24, Plate 20, fig. i, (t. Gould). Mytilus demissus Dillyn, Catal. Recent Shells, vol. i, p. 314 (t. Gonld). Brachydontis plieatulus H. and A. Adams, (Genera, vol. ii, p. 517 ; Perkins, op. cit., p. 156.

Georgia, to Casco Bay, Maine; more rare and local farther north ; in the southern part of the Gulf of Sant Lawrence, and on the coast of Nova Scotia; nor olserved on the coast of Maine east of the Kemebeck liver, now in the Bay of Findy. Very abmulant at Egag Habor, New Jersey, Long Island Somnd, Buzzard's Bay, and Vineyard Somd; less abmulantin Massachusetts Bay, near Sialem, Massachnsetts, ete.; local in sheltered muddy coves about Casen Bay and Quahog Bay, Maine. Month of the Kemnebeck River (C. B. Fuller). Prince Edwarl's Island (1)awson). Nova Scotia (Willis). Fort Macon, North Carolina (Cones). Georgia (Comper).

Modiola mamatus Terrill. (pp. 37.475. )
American Journ. Science, vol. iii, p. : 11 I , Plate 7 , fig. 3, 1~is. Mytilus humatus Say, Journ. Acad. Nat. Sci., lhilalelphia, vol. ii, p. 2(i.), lewe; Anerican Conchology, Plate 50 ; Binney's Siy; pl. 91, 20.1, Plate 50. Aulacomya hamatus Alams, (xeneris, vol. ii, p. 513. In'thelydoutes humatus Perkins, op. cit., p. 156, 1:69.
Loug Island Sound to Florita, and the shores of the Gulf of Mexico
to Vera Cruz. New Haven, common on ofsters, living, but perhapsintroluced from Virginia. New York Harbor, on oysters, (S. Smith). Fort Macon, North Carolina (Yarrow). Georgia (Couper). Tampa Bay, Florida (Conrad, Jewett). Texas (Rwmer). Near Vera Cruz (coll. T. Salt, in Yale museum).
Modiolaria nigra Lovén. Plate NXXI, fig. 236. (p. 433.)
Öfvers. af Kongl. Vet.-Akad., Förhandl., vol. iii, p. 187, 1846; Mr̈̈reh, Naturhist. Bidrag, Grönland, p. 93, 1857; H. and A. Adaus, Genera, vol. ii, p. 515, 1858; Gould, Invert., ed. ii, p. 190, figs. 487, 483. Modiola nigra Gray, Appendix to Parry's Vogage, p. 244, 1824 : Hanley, Recent Shells, 1. 24.2. Mytilus discrepuns Stimpsou, Shells of New England, p. 12, 1851 (not of European authors). Modiola nexa Gonld, lnvert., ed. i, p. 12*, fig. 66 (young).
Circmopolar: Greenland, sonthward to Long Island; Spitzbergen, southward to Great Britain and Holland; Behring's Straits, southward to Okhotsk. Not uncommon aud of good size in Vineyard Sound, 10 to 15 fathoms, off Gay Head, etc.; common in Casco Bay and Bay of Fundy, of large size, low-water to 60 fathoms; Stonington, Connecticut, in stomach of cod, (Linsley).

Fossil in the Post-Pliocene of Maine, Canada, Labrador, and Northern Europe.

## Modiolatia discors Beek.

Lovén, Öfvers. af Kongl.Vet.-Akad. Förhandl., vol. iii, p. 187, 1846; Gonld, Invert., ed. ii, p. 83, figs. 489, 490. Mytilus discors Linné, Syst. Nat., ed. xii, p. 1159 ; Stimpson, Shells of New England, p. 12, (non Gould, ed. i). Mytilus discrepans Montagu, Test. Brit., p. 169. Modiola discrepans Lamarek, Anim. sans Vert., ed. ii, vol. vii, p. 23; Gonld, Invert., ed. i, p. 129, fig. 83. Modiola levigata Gray, Appendix to Parry's Second Voyage, p. 245. Mytilus lerigathe Stimpson, Shells of New England, p. 12. Modioluria leriguta Lovén, op. cit., p. 187, 1846; Stimpson, Check-List, p. 2, 1860; this Report, p. 509.
Circmmpolar: Greenland, southward to Long Island; Finmark, southward to Great Britain; Behring's Straits, southward to Puget Sound. Very common in Caseo Bay and Bay of Fundy, low-water to 100 fathoms; not uncommon in Massachusetts Bay; rare and local sonth of Cape Cod. Saint George's Bank and vicinity, common, (S. I. Smith, Packard). Gardiner's Bay, Long Island, rare, (S. Smith). North of Hebrides, in 530 fathoms, (t. Jeffress).

Fossil in the Post-Pliocene of Canada, Greenland, aud Norther'n Europe. I am unable to separate M. larigata, as a species, from the ordinary New England form, usually referred to M. discors, the differences being due chiefly to age. The common European form of discors shows more differences, but is probably only a dwarf variety of the same species.
Modiolaria corrugata Möreh. Plate XXXI, fig. 235. (p. 509.)
Op. cit., p. 94, 1857 ; Stimpson, Check-List, Smithsonian Inst., p. 2, 1860; Gonld, Invert., ed. ii, p. 193, fig. 491. Mytilus corrugatus Stimpson, Shells of New England, p. 12, 1851. Mytilus discors Gould, Invert., ed. i, 1. 130, fig. 84 (uou Limé, sp.).
Long Island to Greeulaud and Northern Europe. Off Martha's Vine-
yard and Buzzard's Bay, 20 to 2.5 fathoms, rare; Caseo Bay, 1.5 to 9.5 fithoms, not common; Bay of F'unly, 10 to 100 lathoms, ficeplent. Saint (ieorge's Bank (S. I. Smith, A. S. l'ackard). (dardiner's Bay, it fathoms, one specimen, ( S . Smith). Off New London, Comectiont (T. 31. Prudden). Gulf of Saint Lawrence (Whiteaves). Muray Bay (Dawson). Novai Scotia (Willis). Labrador (Patekard). Aretic Ocean, near Behring's Straits, 30 fathoms, (Stimpson, N. I'. Expl. Exp., t. Gould).

Fossil in the Post-Pliocene of Canada (1)awson).

H. and A. Adams, Genera, rol. ii, 1. ธ1., 1-.2; (ionld, Invert., ed. ii, p. 191, tig. 492. Modiola glamdula Toten, American Jommal Science, ser, i, vol, xivi, p. 367 , tigs. 3 , e, f, g, 1s3! ; (ionld, luvert., ed. i, p. 1:31, tig. e7 (pars). Mytilus decussulus Stimpson, shells of New England, p. 11,1351, (nou Montagn, sp.); Dekay, op, cit., 1. 186, 1'late 2.2, fig. 218.
Comecticut to Gulf of Saint Lawrence. Buzzard's Bay and Vineyard Sonud, 5 to 15 fathoms, not uncommon; off Gia Head, 1 ? fathoms, soft mud; off Block Island, 29 fathoms, sandy mud; common in Massachasetts Bay, Caseo Bay, and Bay of Fundy, 3 to 60 fathoms. Halifax (Willis). Gnlf of Saint Lawrence, at Gaspé (Whiteaves). Gardiner's Bay, Long Islạd (S. Smith). Stonington (Linsley). Off New London, Connecticut (T. M. Prudden). Sandy Ilook, New Jersey (Ferguson). Fossil in the Post-Pliocene at Montreal, Canada (Dawson). A related species, C. rquilaterata Conrad (II. C. Lea, sp.) oceurs in the Miocene of Virginia.

This species was undoubtedly confonnded with C. decussata (Montagn, sp.) by both Gould and Stimpson. The gennine decussata is quite common in Caseo Bay, Bay of Fundy, and Gulf of Saint Lawrence, and is usually associated in those waters with C. glemdula. It is a northern, and common European species, and is also recorded from the North Pacific coast of America by Dr. P. P. Carpenter. It also occurs in Greenland (Mürch).

## MONOMVARLA.

Pecten hrradians Lamarek. Plate XŇIII, fig. 23S. (p. 37t.)
Auim. sans Vert., ed. i, 1819; ed. ii, vol. vii, p. 143 ; Gonld, Invert., ed. ii, p. 19?, fig. 49i. Pecten conceutricus Say, Journ. Acad. Nat. Sci., Philad., vol. ii, p. 259, 18.2.; Gould, luvert., ed. i, 1. 131, hig. 83 ; Dekity, op. cit., 1. 17:2, I'late 9, fig. 205.
Florida and the northern shores of the Gulf of Mexico to Cape Cod ; rare and local farther north in Massachusetts Bay; aud Nova Scotia (Willis). Very common in Vineyard Sonud, Buzard's Bay, shores of Long Island and Connecticnt, New Jersey, and southward. 'Tanpia Bay, Flomda (Comrad, E. Jewett). Texas (Romer).

Fossil in the l'ost-Pliocene of North Carolina and Tampa Bay, Florida; in the Pliocene of South Caroliua; and in the Miocene of

Tartand. Dng up from beneath the mud in the harbor of Portland, Maine, in a semi fossil state by the mud-dredging machines (Fuller).

## Pecten Islandicus Chemmitz.

Conclı, vii, p. 304, Plate 65, figs. 615, f16, 17e4, (t. Gonld); Lamarek, op. cit., etl. ii, rol. vii, p. 145 ; Gould, Invert., erl. i, p. 1:33, fig. 87 ; erl. ii, p. 192, fiy. 495. Ostica Istamiea Miiller, Zoöl. Dan. Prod., No. 2090. 1776; Fabricins, Fanna, Grönl., p. 115, 1780. Pecten Pealii Courad, Amer. Mar. Conch., p. 12, Plate 2, fig. 2,1831 .
Arctic Ocean sonth to Cape Cod, local and rare farther sonth; on the northern Enropean coasts, south to Bergen, Norway, and Great Britain. Not uncommon and of good size in Casco Bar, 20 to 70 fathoms ; common in the Bay of Fundy, low-water to 100 fathoms. Saint George's Bank, 40 to 65 fathoms, (S. I. Smith). More common farther north. stouington, Connecticut, in an eel-pot, (Linsley). I am not aware that any one except Linsley has recorded it from the southern coast of New Eugland.

Fossil in the Post-Pliocene of Mane (abmodant), New Brmswick, Canada, Labrador, Greenland, Scandinavia, Denmark, Scotland, etc. Naples (Jeffireys). Mr. Sanderson Smith reports fragments from Gard. iner"s Island.
Pecten tenutcostatus Mighels. (1. 509.)
Mighels and Adams, Proceedings Boston Soc. Nat. Hist., vol. i, p. 49, IE 11 : Boston Jourual of Natural History, vol.iv, p. 41, Plate 4, fig. 7, 1842 (young) ; Gould, Invert., ed. ii, p. 196, fig. 494. P'ecen Mayellanicus Lamarek, Anim. sans Vert., erl. ii, vol. vii, p. I34 (? non Gmelin, sp.) ; Hanley, Recent Shells, p. Dit ; Gonld, Invert., erl. i, p. 132. Pecten fusens Linsley, Amer. Jour. Sci., ser, i, vol. xlviii, p. 278 , 1845; Gonld, ser. ii, vol. vi, p. 235, fig. 6, 1848 (young). Pecten brumens Stimpson, Shells of New England, in erratin, 185.1.
New Jerser to Labrador. Fare and local south of Cape Cod. Not mucommon in Massachnsetts Bay and Casco Bar, 4 to So fathoms; abmudant in Frenchman's Bay, Monnt Desert, Maine, in 3 to 10 fathoms; common in Passamaquoddy Bay and Bay of Funds, 1 to 109 fathoms. Saint George's Bank, 45 fathoms, (S. I. Smith). Nora Scotia (Willis). Labrador, 2 to 15 fathoms, (Packard). Off Blork Island (Gondd). Stonington, Comnecticnt, in cod stomachs, (Linsley, as P. fuscus). Coney Island and Sandy IIook, New York (S. Smith).

Fossil in the Post-Pliocene near Saint John, New Brunswick, and Gindiner's Island, New York. A closely related species occurs in the Niocene of Virginia.
A nomia Glabra Verrill. Plate ŇXIII, figs. $241,242,242^{2}$. (p. 311.)
American Jour. Scieuce, vol, iii, $1.213,1872$. duomia ephippinm (pars) Linne, Syst. Nat., ed. xii, p. I150; Gonkl, Invert., ed. i, p. I33; ed. ii, p. 204 , fig. 497. Anomia clectrica Gonld, Invert., ed. i, p. 140 ; ed. ii, p. 205, fig. 499, adnlt, (non Linne.) Anomia squamula Gould, Invert., ed. i, p. 140; ed. ii, p. 206, young, (non Limné.)
Florida to Cape Cod; rare and local farther north, in Massachnsetts Bay, Casco Bay, and on the sonthern coast of Nova Scotia, off Cape

Sable，sfathoms．Not observed on the eastem part of the coast of Mane，now in the Bay of F゙unly：Very eommon in Lomex Fland Somm， Buzzardis Baty，Vimeyard Somad ；along both shores of Lang Island； New dersey，and sonthwad ；low－water to 12 fathoms．Southern part


Fossil in the Post－Pliocene of North and sonth Carolina；atar in the Pliorene of South C＇arolina．

Limme gave ．Pennsylvimia＂as one of the loce lities for his A．epheppi－ am，atrl，therefore，probably eonfommed our shell with the Emopern species，as most subsergent writers havedone．Gonld has well deseriberl our species in its different states，moder the manes photed above，fis－ ures 499 of the second entition（ 0 figures 241,242 ），represent the ordi－ nary adult form，which is everywhere abmadant on the sonthern shores of New England．The specinens from Eastport，Mane，refored to $A$ ． ephippinm by Gonld，were malonbtedly the smooth or squamose variety of the following species．
－אromid Actleata Gmelin．Plate NXXII，figs．239， $240,210^{2}$ ．（1）． 4！5．）

Srst．Nat．，p．33：16，1790；Gonk，Invert．，ed．i，p． 139 ，fig． 90 ；cd．ii，p．201，fig． 498.

Long Island to Labrador，and northern coasts of Europe．Off Ston－ ington，Comecticut， 4 to 5 fathoms rocky ；off Gay Head， 10 fathoms， scarce ：rery common in Casco Bay，Bay of Fundy，and northward，low－ water to 80 fathoms．Greenport and Montank，Long Island（S．Smith）．

Tarieties of this speeies occur frequently in the Bay of Fundy and Casco Bay，in which the aculeate seales are more or less abortive，or even entirely absent，leaving the surface either nearly smooth or irregn－ larly sfuamose，but such varieties are easily distinguished from the young of the preceding speeies．

This may possibly be a variety of the true ephimpium of Einope，as supposed by many writers，lont I believe it to be perfectly distinct from A．glabra．

Ostred Virgmiana Lister．（p］．310，472．）
Favamme，Conch．，Plate 11 ，fig C $2,1:=0$（ t ．Gonld）；Gould，Invert．，cil．i，p． 136 ； m．ii，1．20：2；Verrill，Amer．Jonr．Science，vol．iii，p，213，12ヶ．）Ostrea Virgin－ ich Gmelin，sist．Nat．，p， $33: 36,1790$ ；Lamarck．Anim．sans Vert．，cul．ii，vol．vii，


 les，liecent Shells，p． 299.
Florida and the northen shores of the Gulf of Mexico to Massachn－ setts Bay；local farther north，off lamariscotta，Mane，and in the sonthern part of the Golf of Saint Lawrence，af Prince Enlwat Island，in Northmberland Straits，and Bay of Chalem：Not fombl along the eastem shomes of Mane，nor in the Bay of Fundy．Abumant
in the ancient Indian shell-heaps on the coast of Massachusetts, on the islands in Caseo Bay, and at Damariscotta. The shells, in a semi-fossil state, have been dug mp from deep beneath the mud in the harbor of Portland, Maine, in large quantities, but native oysters appear to be entirely extinct in Casco Bay. Very abundant in Long Island Sound; in the upper part of Buzzard's Bay ; rare and local in Vineyard Sonud ; very abundant on the shores of Maryland and Virginia. Mouth of Saint John's River, and in Tampa Bay, Florida (Comad). Texas (Romer).

Fossil in the Post-Pliocene at Point Shirley, Massachnsetts, Nantncket Island (abundant), Gardiner's Island; in the Plioceue of Sonth Carolina; and in the Miocene of Virginia and Sonth Carolina.

The occurrence of large quantities of oyster-shells beneath the harbor mud at Portland, associated with Venus mercenaria, Pecten irrarlians, Turbonilla interrupta, and other southern species, now extinct in that locality, and the occurrence of the first two species in the ancient Indian shell-heaps, ou some of the islands in Casco Bay, though not now found living among the islands, indicates that the temperature of those waters was higher at a former period than at present. These facts also point to the most satisfactory explanation of the existence of numerous sonthern shells, associated with the oyster and Venus mercenaria in the sonthern part of the Gulf of Saint Lawrence, though not now found in the intermediate waters, along the coast of Maine, nor in the Bay of Fundy.

All the rarious forms of this species, upon which the several nominal species, united above, have been based by Lamarck and others, often occur together in the same beds in Long Island Sound, and may easily be comected together by all sorts of intermediate forms. Eren the same specimen will often have the form of borcalis in one stage of its growth, and then will suddenly change to the Virginiana style, and, perhaps, later still, will return to the form of borealis. Or these different forms may be assumed in reverse order. Great variations in the number and size of the costa and undulations of the lower valve oceur, both in different specimens from the same locality, and even in the same specimen, at different stages of growth. All these variations occur in precisely the same way in the shells taken from the ancient Indian shell-heaps along our entire coast, from Florida to Maine.

## TUNICATA.

## SACCOBRANCHIA.

## Ciona tenella Verrill. (p. 419.)

American Jommal Science, ser. iii, vol. i, p. 99, figs. 12, 13, 1871. Aseidia tenella Stimpsom, Proc. Bost. Soc. Nat. Hist., iv, p. 228, 1853; Iuv. of Grand Manam, p. 20,1853; Binney, in Gonld, Invert., ed. ii, p. 24, 1870. ?Aseidia ocellata Ag., Proe. Amer. Assoc. for Adv. Sci., ii, p. 159, 1850 (deseription insufficient); Binney, in Gould, Luvert., ed. ii, 11. 24, Plate 24, fig. 332, 1870.
Cape Cod to Gulf of Saint Lawrence; rare and local sonth of Cape

Cod．Common in Caseo bay and Bay of Fiundy，low－water to 100 fathoms．New Berliord，Massachasetts（L．$\Lambda$ gassiz）．

Molgula Manimttensis Verill．Plate NXXIII，fig．3．50．（111．311， 445.$)$

Amer．Jour．Science，vol．i，p．54，Jan．，1871；Tellkampf，Amals Lye．Nat．Hist．， New York，vol，x，p．8：3，187\％．Ascidia Manhattensis Delkay，Report on the Nat－ ural Itistory of Ninw York，Mollusea，p．259，1843；Bimey，in Gonld＇s Inverte－ brata of Massachusetts，ed．ii，p．25，1－i0（eopied from Dekay）．Ascidia amphora Ag．，MES．；Bimey，op，cit．，p．$\because 5$ ，Plate 2.4 ，fig． 333 ．
North Carolina to Casco Bay，Maine．Very common in Great Exem Marbor，New Jersey，Long lsland Sound，Buzzarl＇s Bay，Vineyard Sound，and Massachusetts Bay．Less common in Casco Bay．Great South Bay，Long Island，abundant，（S．I．Smith）．

Molgula pellucida Verrill．（1．426．）
Amer．Jour．Science，vol．iii，p．2s9，Plate 8，fig．2，1872．
Body subglobular with a smooth，thin，pellucid test．Tubes termi－ nal，contignous，much swollen at base，long，divergent，tapering，reticu－ lated within by longitudinal and cirenlar white lines（muscular fibers）． Branchial aperture with six papillæ．Intestine conspicuously visible through the test；stomach covered by deep orange－colored hepatic glands．Oraries large，whitish．Color of test，pale hyaline bluish； tubes toward the ends，dull nentral tint．

Diameter of the largest specimens abont $25^{\mathrm{mm}}$ ．
North Carolina to Massachusetts Bay．Massachusetts Bay（L．A gas－ siz）．Long Island（Coll．Peabody Academy of Science）；Bird Shoal near Beanfort，North Carolina（Dr．H．C．Yarrow）．

Mr．Binuey has published（Plate 22，figs．315，316）characteristic col－ ored figures of this species under the name of $M_{0}$ producta（Stimpson）， which is a very different，sind－covered species．
Molgula producta Stimpson．（p．502．）
Proc．Boston Society Natural History，vol．iv，p．229，1852；Verrill，op．cit．，p．239， liate 8 ，fig．6， 1872 ；Binney，in Gould，p． 21 （not the figures，which are M．pellucida）．
Off Buzzard＇s Bay，2J fathoms，sandy．Massachusetts Bay，low－water to 6 fathoms，（Stimpson）．

Molgula Arenata Stimpson．Plate NX゙X゙IIf，fig．2す1．（p．419．）
Proc．Boston Soc．Nat．Hist．，vol．iv，p．230，1452；Binney，in Gould，Invert．，ed． ii，p．थ1 ；Verrill，Amer．Jom．Sci．，vol．iii，Plate R，fig．5，187．．
Long Island Sound，near New Haven， 3 fathoms，sand；Vineyard Sound and Buzzard＇s Bay， 5 to 15 fathoms，sand and gravel．Nan－ tucket（Stimpson）．

Molgula parillosa Yerrill．（p．495．）
Amer．Jour．Science，vol．i，p．57，fig．4，b， 1571 ；op．cit．，vol．iii，p．Q11，Plate 8，fig． 4，18\％2．
Body free，nearly globular，or transversely suboval，usually slightly
compressed laterally. Integument rather thin, transheent, the surface, both of the tubes and body, entirely covered by particles of sand, broken shells, foraminifera, ete., which adhere firmly. When cleaned the whole surface is thickly covered with prominent granule-like papillae and numerous slender fibrons processes; the grannles are most conspicuous on the tubes, where they usually have a rusty color. The tubes are long, snbequal, and their bases are separated by a space usually greater than their diameters; they are quite divergent, both of them curving ontward, the anal tube most abruptly. The branchial tube is cylindrical, somewhat longer than the amal, equal to or exceeding the diameter of the borly, the orffice surrounded by six rather long and slender, conical, divergent papinte. The anal tube often bends suddenly ontward, tapers slightly, and has a small square aperture, surrounded ber a circle of dull reddish brown. In contraction the tubes are not retracted, but are usually shortened to about one-half their length. In life the body, when cleaned, is pale grayish, with an almost transparent integment, throngh which the conrolutions of the dark intestine are conspicuons.

The largest specimeus are about $10^{\mathrm{mm}}$ in diameter.
Oft Martha's Vineyard, 10 fathoms, stony; Caseo Bay and Bay of Fundy, 10 to 20 fathoms.

Eugyra pilularis Verrill. Plate XXXIII, fig. 249. (p. 509.)
Amer. Jour. Science, vol. iii, p. 211, Plate 8, tig. 3, 187.. Molgula pilularis Verrill, op. cit., vol. i, p. 56, fig. 4, e, 1871.
Body unattached, globnlar, covered with a thin layer of mud, and, when the tubes are retracted, looking like a small soft ball. Integument of the body, when cleaned, very thin, soft, nearly transparent, thickly corered with minnte grannles, and minutely fibrons, usnally concealed by the adhering particles of mud and fine sand, but this ean be easily removed. The tubes are naked, smooth, nearly transparent, subconical, sleuder, as long as the diameter of the bods, originating close together, and but slightly divergent, both of them nearly straight; they can be wholly retracted, and their bases are surrounded and connected by a narow, naked, oval or oblong band, which is msually conspicnons when the tubes are withdrawn: in partial contraction, the tubes are conical, subpellucid, retienlated with white lines. The branchial tube is a little shorter than the anal, the apertme surrounded by six acute, conical papille, and twelve small, dark, brownish spots. Anal tube a little smaller, slightly longer, a little tapering, with a small square aperture, smromuded by four small lobes and fomr small, reddish brown eye-spots.

In life the body, when cleaned, is transparent grayish, the dark intestine showing through rery distinctly ; tubes greenish at base.

Diameter usually abont $5^{\mathrm{mm}}$, seldom more than $6^{\mathrm{mm}}$ or $8^{\mathrm{mm}}$.
Off Gay Head, Martha's Vineyard, 19 fathoms, soft mud; Casco Bay,

10 to 20 fathoms；laty of Jimbly，off Gramd Meman，Eastport Harbor， and South liay，if to 20 fathoms，sol＇t mad．Galf of Sant Lawrence （Whiteares）．

Glavolta arbaicola Vertill．（p．50？．）
Amer．Jomr．Sci－nce，ser，iii，vol．iii，pp．211，22マ2，1～7：
Body subglobular，mather higher tham broad，the whole surfare cor－ ered with grains of samb，forming a continmons layer．When the samd is remored the surface of the test is retienlately wrinkled and pitted， not furnished with fibers，except at base，where there are a few lons， slemer，thead－like white ones．Tubes terminal，neme together．in the aleoholic specimens short，forming low verruce，swollen at bise，the ends a little prominent and maked．Apertures square，with four small lobes．The test is tough and opaque．Height，about 12min breadth， $10^{\text {mam }}$ ；otten larger．

Murray Bay，Gulf of Saint Lawrence（Dr．J．WV．Dawson）．Saint
 hunk Lsland and Buzzard’s Bay（＇T．H．Prudden）．

Glandula．Species mindetermined．（p．502．）
Vineyard Sound and ofl Martha＇s Vineyard， 10 to 20 fathoms，sand．
Crnthia partita Stimpson．Plate XXXILI，fig．ص14．（p．311．）
Proc．Bost．Soc．Nat．Itistory，vol．ir，p． $2: 31,1859$ ；Bimmer，op．cit．，p． $1^{2}$ ：Yerrill， Amer．Jonr．Science，vol．iii，p．21：，1̌i̊．（？）C＇ynthia rugosa Agassiz，Proc． Amer．Assoc．，vol．ii，p．159， 1850 （description inadequate）；Bimey，opr，rit．．p． 20 （copied from the preceding）．Cynthia stellifera Verrill（var．），Amer．Jour． Scieuce，vol，i，p．93，figs．5，6，a，b，1ご1．
North Carolina to Massachnsetts Bar．Common in Long Island Somd，Vineyard Somd，and Buzzards Bar，low－water to 15 fathoms． Boston Harhor，$t$ fathoms（Stimpson）．Off New Lonlon，Connecticut （T．M．L＇rudden）．

Cratha carnea Verill．Plate XXXIIf，figs．247，218．（1．4！5．）
American Jomr．Science，ser．iii，vol．i，p．94，figs． $7,8,9,1571$ ．Ascidia carute Agassiz，lroc．American Assoc．for Adr．Sci．，ii，p．159，1－50（descriptiou insufli－ cient）；Bimey，in Gonld＇s lnvertebrata of Mass．，ed．ii．p． 25 ，Plate 24，fiss． 334 ，
 is，p．231， 1852 （young）；Bimmer，op．cit．，p．19，1870．Cynthiat placente（pars） l＇ackard，Mem．Boston Soc．Nat．Hist．，vol．i，p．2if，1：fif：Bimes，op．cit．，p．19， 1＇late 23 ，figs． $3 \mathfrak{2}$ ， 1070 ；Verrill，Amer．Jour．Sci．，vol．xlix，p．4：1，18：0．
Martha＇s Vineyard to Labrador．Off Gay IVead， 10 fathoms，stony ； common in Eastport Harbor and Bay of F＇undy，low－water to 109 fathoms；Casco Bay，less common， 10 to 40 fathoms．Massachmsetts Bay（Stimpson）．Labrador（Packard）．

This spectes is closely allied to（＇．rustica（Limé，spr）from Icelanrl， and may eventually prove to be identical．

Cynthia echinata Stimpson. (p. 495.)
Invert. of Grand Menan, p. 20, 1854 ; Binney, op. cit., p. 18, Plate 23, fig. 326 ; Verrill, Amer. Jour. Science, vol. i, p. 96,1871 ; vol. iii, p. 213, 1872. Cynthia hirsuta (young) Agassiz, op. cit., 1850; Binney, in Gonld, luvert., ca. ii, p. 20, Plate 24, fig. 336. Ascidia echinata Linné, Syst. Nat., ed. xii, p. 1037, 1767. Ascidia echinata Fabr., Fanna Groul., p. 331, 1780; Rathke, Zö̈logica Danica, vol. iv, p. 10, Plate 130, fig. i, 1806 ; Müller, Index Mollusc. Grenl., in Kroyer's Nat. Tidsskrift, vol. iv, p. 95.
Martha's Vineyard to Greenland, Iceland, and northern coasts of Europe. Off Martha's Vineyarl, 10 fathoms, stony, rare; common in Casco Bay and Bay of Fundy, low-water to 109 fathoms, attached to stones, shells, and other ascidians. Saint George's Bank (S. I. Smith). Banks of Newfoundland (T. M. Coffin). Labrador (Packard).

Boltenia. Species undetermined.
Boltenia reniformis Dekay, Nat. Hist. New York, Mollusea, p. 260, Plate 34, fig. 324 (non Macleay).
New York Harbor (t. Dekas.)
The description and figure of the single poor specimen seen by Dekay are insnfficient for its determination. I have not met with the genus south of Cape Corl, and the locality given may possibly be incorrect.
Perophora viridis Verrill. (p. 388.)
Americau Jour. Science, ser. iii, vol. ii, p. 359, 1871.
Colonies composed of numerous nearly sessile individuals, which are small, abont $2.5^{\mathrm{mm}}$ to $3^{\mathrm{mm}} \mathrm{high}$, comnected by slender stolons, and thickly covering the surfaces over which they creep. Test compressed, seen from the side, scarcely higher than broad, oval, elliptical, or subcircular, often one-sided or distorted, with a short pedicle, or subsessile at base. Branchial orifice large, terminal; anal lateral or subterminal, botlı a little prominent, with about 16 angular lobes, alteruately larger and smaller. Test transparent; mantle beantifully reticulated with bright yellowish green; intestine yellow.

Vinevard Sound, 2 to 12 fathoms, on algre and ascidians, common; Little Harbor, Wood's Hole, on piles of wharves, at and below lowwater mark, very abundant.
Botrillus Gouldir Verrill. Plate XXXIII, figs. 252, 253. (1. 375.)
Amer. Jour. Science, ser. iii, vol. i, figs. 14, 19, 1871. Botryllus stellatus Gould, Rep. on Inv. of Mass., 1st ed., p. 320,1841 (non Pallas). Botryllus Schlosseri Binney, in Gonld, Inv. Mass., ed. ii, p. 3, Plate 23, fig. 319, 10 \% (non Pallas) ; Dall, Proc. Bost. Soc. Nat. Hist., xiii, p. $255,1870$.
This species commonly forms thick, fleshe, translncent incrustations on sea-weeds and zoöphytes, the form which it assumes depending upon the shape of the object. The masses are often several inches in length and half an inch or more in width. The animals are short oval, as seen at the surface, and form circular or elliptical groups, of from fire to sixteen or more, surromding cireular or elliptical cloacal orifices. The "marginal tubes" or buds are numerons in all parts of the common
tissue, the enlarged ends appearing as oval or pydiform spots, lighter than the grommeroln: The bramehial openings are small and cirentar, suromoded by a light halo. The amimals differ considerably in form, aceording to the state of contraction.

The eobor is extremely variable; several of the color-varicties have been named and deseribed on pages 375,376 .

Brooklyn, New York, to Boston, Massachmsetts. Very abundant at Wool's Hole, Wranoit Pond, and other similar localities along the shores of Vineyard Sombl and Buzzard's Bay ; abmulant at the month of Charles River, near Boston. Wateh Hill, Rhorle Island, and Brooklyn, New Lork (D. C. Eaton).

Amareselum Pelluchdua Verrill. (p. 401.)
Amonroucinm pellucilum Verrill, Amer. Jonr. Science, ser. iii, vol. i, p. 290, 1271; vol. iii, 1. ᄅll. Alcyomdium? pellucidum Leidy, Jour. Acarl. Nat. Scieuce, Philad., ser. ii, vol. iii, 1355, p. 14:, Plate 10, tig. 9.), (mitilated zooid).
Colonies large, complex, consisting of a large mumber of small, elong. ated, clavate colonies, arising from a common base, and more or less sepatate laterally and at summit, thos forming laroe asoregrated hemispherieal or irregular masses, often six inches in diameter, the suface generally covered thickly with adhering sand, but frequently naked orer the summits of the colonies, or even over large surfices of the masses, when, as often happens, the central colonios coalesce; when maked, the tissue is smooth, trauslucent, gelatinoms-looking, and soft. The small side-colonies are long, with a slender stolon-like base, curving ontward and ascending, enlarging gradually to the smmmit, which is more or less convex, usually with a single central cloacal orifice, surromndel by an irresular cirele of individutal zoöids, varying in number aecording to the size or age of the colony to which they belong. The zoöids, when mature, are long and slenter, varying greatly in length in eath colons, according to the state of derelopment of the post-ablomen; the largest are often $20^{\mathrm{mm}}$ to $25^{\mathrm{mm}}$ in length. The stomitel is bright orange-red, and quite conspicnoms; the slemer post-abdomen exceeds in length the rest of the body, but is not more than half the diameter of the thorax, and is slightly constrieted at base. In yommindividuals, not halt grown, the post-abdomen forms nearly half the whole length, and is very slender. 'The branchial aperture has six, short, rommpapille; the anal is situated a short distance from the end of the body, and has short inconspicuons lower lobes, with an elongaterl, pointer lobe above. The branchial sac is oblong, with mumerons lonsitudinal and transrerse ressels and aboal rentral rlact. The stomach is about as broad as long, subglobular, with the ends trumeated and the surface covered with mmmerons, intermpterl, lomgitndinal, glamlular ridges. The post-abolomen is nearly filled by the large, elongated oviary, which extemals nearly to the posterior ent on the dorsal or atrial side, and comtains momerous chosely-packerl ornles of comparatively large size, amb
the conspicnons male organs, extending throngh the whole length on the rentral or branchial side, in the form of a slightly-convoluted duct. The posterior end terminates in a small, obtuse papilla. The atrium, or cloacal cavity, often contain eggs in which the embryos are well developed, and, in some eases, the free, tadpole-shaped larve. The tumic is specked with numerous, minnte, purplish brown pigment-cells.

One of the zoïds measmred $7.5^{m m}$ in length; thorax, $2^{m m}$; abdomen, $1.5^{m m} ;$ post-abdomen, $4^{m m}$; diameter of thorax, $.5^{\text {mim }}$ to $.9^{\mathrm{mm}}$; of abdomen, about the same; of post-abdomen, $.375^{\mathrm{mm}}$ to $.5^{\text {nma }}$.

North Carolina to Vineyart Sound. Very abundant in Vineyard Somul, in 6 to 12 fathoms.
Asargeciuar stellatuar Vervill. (1. 402.)
Imouroncium stellatum Verrill, Amer. Jourual of Science, ser. iii, vol. i. p. 291, 1021.

Masses large, variable in form, often in the form of thick vertical phates, or erect crest-like lobes, fiequently irregular; surface nearly smooth, naked; tissue firm and cartilage-like externally, somewhat translucent, generally pale jellow or flesh-color by transmitted light. The fronds are often six inches or more in breadth and height, and from hatf an inch to an inch thick. The zooids are grouped in more or less regular, and generally simple, citcular, stellate clusters, scattered over the whole sufface, and usually containing from six to twenty individuals, arranged around a central, sub-circular cloacal orifice ; in contraction the position of each individual is inlieated by an oval spot, more transparent than the common tissue, with a small flake-white spot around the branchial oritice. The individual zooids are elongated and slender; the post-abolomen more sleuder, usmally considerably exceeding in length the rest of the body, and but slightly constricted proximally; the thorax and abdomen are shorter and stouter than in the preceding species; branchial sate with about twelve transerse vessels; stomach oblongoval, with numerons longitudinal glantular folds, which are bright orange-red in life; intestine large, light orange or yellow. Branchial tube elongated, bright orange; the orifice with six prominent rounded lobes. Anal orifice subterminal, with a prominent ligulate process above, and several small lobes below.

North Carolina to Cape Cod. Very abundant in Vineyard Sound, in 5 to 15 fathoms, on gravelly and shelly bottoms. Fort Macon, North Carolina (Dr. Yitrow)

## Amardeciuli constellatual Verrill. (ipp. 3SS, 403.)

American Journal of Science, ser. iii, vol. ii, p. 359, 1871 (Amowroncinm).
Masses thick, turbinate, often incrusting, surface usually convex, smooth; substance firm, gelatinous, translncent, but softer than in $A$. stellutum. Groups stellate, circular, oral or elliptical, often narrow and elongated, or irregular and complex; zooiids much elongated, slender; the branchial tube short, with six rounded lobes. Branchial sac elong-
ated. Color of the masses asually light orange-red, varying to yellowish and pale flesheolor; the branchial orifices with six radiating white lines. Anal oritices often surrombed by a pale or whitish border; zoïds generally orage-yellow ; the orifices and tubes with upure part of the mantle bright orange, or lemon-yellow; branchial sac usmally flesh. color or pale yellow, sometimes bright orange; stomach with bright orange red longitudinal glamdular ribs; intestine light oramge; manle with minute opagne white specks. In some specimens the cloacal chamber or "atrimm" contained three or four bright pmple tadpoleshaped larvar.

Vineyard Sound, 4 to 12 fathoms, frequent; Wood's Hole, on piles of wharf; off Stonington, Connecticnt, $4-\tilde{j}$ fathoms.

Amaraeciuar paldidum Verrill. (p. 496.)
American Jommal of Science, ser. iii, vol. i, p. 299, 1 7 1 (. 1 mouroucium).
Masses sessile, hemispherical or sub-globular, usmally attached by a large base. Surface generally evenly ronnded, sometimes irregular in large specimens, smoothish, but thinly covered with minnte, firmls atdberent particles of fine sand, which are imbedded in the surface of the common tissue and scattered thronghout its substance. The cloacal openings are few in number and irregularly placed, except in small specimens, which usually have but one large central opening. The animals are much smaller and more numerons than in the preceding species, often forming somewhat cireular groups of six or eight individuals around the cloacal openings; ontside of the cirenar grouns they are usually irregularly scattered, but sometimes form linear series of eight or ten, and in young specimens with but one central opening they often form a larger outer circle, which is near the margin, more or less irregnlar, and composed of numerous individuals. The post-abdomen, in all the numerons examples examined, was small, thick, obtuse, and decidedly shorter than the abdomen and thorax taken together; it often terminates in two slender papille. Color of the masses pale yellowish or grayish ; stomach dull orange-yellow; ovaries yellowish white.

The larger specimens of this species are $15^{m m}$ to $25^{m m}$ in diameter; the largest zooids are $3^{\mathrm{mm}}$ to $4^{\mathrm{mm}}$ lobg, by . $75^{\mathrm{mm}}$ to $1.2 J^{\mathrm{mm}}$ in diameter; but many are much smaller.

Martho's Vineyard to Gulf of Saint Lawrence. Off Buzzards Bay, 25 fathoms, gravel; south of Gay Head, 10 fathoms, stony; Casco Bay, S to 40 fathoms; Eastport Harbor and Bay of Fuudy, low- water to so fathoms.

Leptoclinual albidual Verrill. (p.403.)
American Journal of Science, surv. iii, vol. i, p. 446, 1ET:.
Colonies incrusting stones, dead shells, ascidians, etc., forming broad, thin, irregular, coriaceons ernsts, with an meven suffer, filled with minute, white, spherical, calcureous grains or corpuseles, which, under
the miscroscope, have the surface covered with projecting points. Surface of the crusts corered with small, irregular, scattered prominences, in which the branchial orifices are sitnated. Cloacal orifices few and distantly scattered. Systems irregular, the zooids scattered, but often arranged in rather indistinct concentric groups around the cloacal openings, and connected with them by cloacal ducts, which are variously branched, often showing throngh the integument as dark dendritic lines, converging toward the cloacal orifices from different directions.

Color white, the zoöids light yellowish.
The colonies often become $200^{\mathrm{mm}}$ to $300_{\mathrm{mm}}$ across; thickness seldom more than $2.5^{\mathrm{mm}}$, commonly about $1.25^{\mathrm{mm}}$; zoöids $.5^{\mathrm{mm}}$ to $.75^{\mathrm{mm}}$ long; dianeter $.25^{\mathrm{mm}}$ to $.30^{\mathrm{mm}}$.

Long Island Sound to Labrador. Thimble Islands, near New Haven, 4 to 6 fathoms, rocky; off Stonington, 4 fathoms, rocky; common in Vineyard Sound, 8 to 15 fathoms; abundant in Casco Bay, 6 to 40 fathoms; abundant in the Bay of Fundy, low-water to 80 fathoms. Banks of Newfoundland (T. M. Coffin). Mingan Islauds, 10 fathoms (A. E. V.). Saint George's Bank (S. I. Smith).

Leptoclinum luteolum Verrill. (p. 403.)
American Jour. Science, loc. cit., p. 446, 187:.
This species forms thin, coriaceous crusts, like the preceding, filled in the same way with similar spherical corpuscles. The branchial orifices open at the summits of low verruce. The cloacal orifices are small, with fom to six lobes, and distantly scattered. Color deep salmon, or somewhat rosy.

The crusts are of all sizes up to $300^{\text {mun }}$ or more in diameter, and are usually somewhat thicker than in the preceding species, with larger and darker colored zoöids.

Connecticut to Bay of Fundy ; off Stonington, Comecticut, 4 fathoms, rocky; Vineyard Sonud, 6 to 14 fathoms, common; Casco Bay, 10 to 40 fathoms, common; Bay of Fundy, low-water to 80 fathoms, common.

## TENIOBRANCHIA.

Salpa Caboti Desor. Plate XXXIII, figs. 254, 255. (p. 445.)
Proc. Buston Soc. Nat. History, vol. iii, p. 75, 1848 (not described) ; A. Agassiz, op. cit., vol. xi, p. 17, figs. 1 to 5, 1866 ; Binney, in Gould, Invert., ed. ii, p. 6, figs. 350 to 354,1870 (description and figures copied from A. Agassiz).
In the typical variety, as described by Mr. Agassiz, the color is pale pink or rosy; the nuclens deep chestnnt. Long Island Sound to Saint George's Bank. Common in Buzzard's Bay and Vineyard Sound. Off Saint George's Bank (S. I. Smith).

Var. cyanea. (p. 446.)
Nucleus and the borders of the mantle are bright Prussian-blue; surface of the latter delicately reticulated with fine blue lines.

Vineyard Sound, especially oft Gay Head, in September.

Doliolum (species undetermined). (p. 446.)
Vineyarll Sound (A. Agassiz).

## LARYALIA.

Appendicularia (species undetermined, ${ }^{\circ}$ ). (p. 446.)
Allied to A. lomyicundu (t. A. Agassiz), op. cit., 1. 2:3, 1866; Binney, op. cit., p. 13 (copied from A. Agassiz).
Long Island Sound to Massachusetts Bay (A. Agassiz).
Aprendicularia (species undetermined, b). (p. 446.)
Allied to A. furcutu (t. A. Agassiz), op. cit., p. 23, 1866 ; Binuey, op, cit., p. 13 (copied).
Long Island Sound to Massachusetts Bay (A. A gassiz).

## BRYOZOA OR POLIZOA.

## PHYLACTOLAMATA.

Pedicellina Americana Leidy. (p. 405.)
Jonmal Acal. Nat. Sciences, Philadelphia, ser. ii, vol. iii, p. 143, Plate X, fig. 2is, 1855.

New Haven, Connecticut, to Vineyard Sound. Point Judith, Rhode Island (Leidy).

GYMNOLEMATA.
cyclostomata.
Crisia eburnea Lamouroux. Plate NXXIV, figs. 260, 261. (p. 311,)
Polyp. flex., p. 138, 1816; Esp. methodi〔ue, p. 6; Johnstou, British Zoophytes, ed. i, p. 262 , Plate 30 , figs. 3, 4 ; ed. ii, p. 283 , fig. 62 , and Plate 50 , figs. 3,4 ; Smitt, Kritisk fört. öfver Skaudinaviens Hafs-Bryozoer, in Öfvers. af Kongl. Vet.-Akad. Förhandl., 1865, p. 117, Plate 16, figs. 7 to 19. Sertulariu eburnea Limé, Syst. Nat., ed. x, p. 810 ; ed. xii, p. 1316.
Long Island Somd to the Arctic Ocean; Spitzbergen to the Mediterranean (t. Smitt); California (t. Johmston). Common near New Haven, and at Thimble Islands, 1 to $\mathbf{6}$ fathoms, rocky, and in tide-pools ; off Wateh Hill, Rhode Island, 4 to 5 fathoms, on alge ; common in Vineyard Sound, 4 to 15 fathoms; Very common in Casco Bay and Bay of Fundy, low-water to S0 fathoms.

Diastopora patina Smitt. (p. 40̃.)
Smitt, op. cit., p. 397, Plate 8, figs. 13 to 15. Tubulipora patina Lamarek, Animaux sans Vert., ed. i, vol. ii, p. 163 ; ed. ii, vol. ii, p. 944 ; Johnston, Brit. Zoöph., ed ii, 1'. 260, I'late 47, figs. 1 to 3.
Long Island Somnd to the Arctic Ocean; northern coast of Europe, from Finmark to Great Britain. Near New Haven, at Thimble Islands, 1 to 5 fathoms; Watch Hill, Rhode Island, 4 to 5 fathoms; Vineyard Sound, off Holmes' Hole, 3 to 4 fathoms; very common in Caseo Bay, Bay of Fundy, and northward.

TUBULIpORA FLABELLARIS Smitt．（p．405．）
Op．cir．，p．401，Plate 9，figs． 6 to 8．Tubipora flubellaris Fabricins，Fauna Grenl．， p．430， 1780 （non Johnston，sp．）．Tubulipora phalangea Johnston，Brit．Zoöph．， ed．ii，p．2i3，Plate 46，tigs．1，2．

Long Island Sound to Greenland ；northern coasts of Europe to Great Britain．Common at Thimble Islands， 1 to 5 fathoms，on algie，hydroids， etc．；Watch Hill，Rhode Island；Vineyard Sound；Casco Bas ；Bay of Funds，and northward．

CTENOSTOMATA．
Alcyonidiuir ramosum Verrill．Plate XXXIV，fig．257．（p．404．）
American Jonrnal of Science，vol．iii，p．289，Plate 8，fig．10， 1872.
Much branched，when full－grown；the branches ronnd，irregularly dichotomus，usually crooked．Surface glabrous，smooth，or nearly so， the cells rather small and crowded，their margins not elerated；zoöids with sisteen slender tentacles．Color ashy brown，or dull rusty brown．

Diameter of branches，mostly $\tilde{\text { ⿹丁口 }}^{\text {mm }}$ to $6.5^{\mathrm{mm}}$ ．Height， $2250^{\mathrm{mm}}$ to $.375^{\mathrm{mm}}$ ．
Great Egg Harbor，New Jersey，to Vineyard Sound；common in Long Island Sound，near New Hareu，in 1 to 5 fathoms；Thimble Islands； Watch Hill，Rhode Island，etc．

Alcyonidiun hirsutum Johnston．（p．404．）
British Zö̈ph．，ed．i，p．303，Plate 42，figs．1，2；ed．ii，p．360，Plate 69，figs．1， 2 ： Smitt，op．cit．，p．496，Plate 12，figs． 3 to 8．Alcyonium hirsutnm Fleming，Brit． Anim．，p． 517.
Long Island Sound to the Arctic Ocean；Spitzbergen；northern coasts of Europe to Great Britain．Savin Rock，near New Haven，low－ water；Thimble Islands，in tide－pools，on Fucus，Phyllophora，etc．； Vineyard Sound；and Casco Bay．

Alcyonidiun hispidum Smitt．（p．404．）
Op．cit．，p．499，Plate 12，figs． 22 to 27，1866．Flustra hispida Fabricius，Fanna Grœul．，p．438， 1780 ；Johnston，Brit．Zoöph．，ed．ii．，p．363，Plate 66，fig． 5. Flustrella hispida Gray，Brit．Mus．Catal．，part i，p． 108.

Long Island Sound to Greeuland；Finmark to Great Britain．Very common at Savin Rock，near New Haren，at low water，encrusting stones，Fucus，etc．；Thimble Islands ；Watch Hill，Rhode Island；Vine－ yard Sound；Casco Bay；Bay of Fundy，ete．

Alctonidium Paraslticum Johnston．（p．404．）
British Zoöph．，ed．i，p．304，Plate 41，figs．4， 5 ；ed．ii，p．362，Plate 68，figs．4， 5 ； Smitt，op．eit．，p．499，Plate 12，figs．14－19．Alcyonium parasiticum Fleming， Brit．Anim．，p． 518.

Rhode Island to Arctic Ocean；northern coasts of Europe to Great Britain．Vineyard Sonud，on Phyllophora．
(?) Alcyonidiem gheatinosum Tohmston. (p. 496.)
 smitt, op. cit., p. 4!7, Plate 12, tirs. ! -13. Aleyoninm gelatinosum Lime,

Gulf of Saint Lawrence; Spitzbergen to Great britain. A few small specimens, apparently belonging to this species, were dredged in the deceper pats of Vimeyard Somad.

Tesicularia cuscuta Thompson. (p.404.)
Zoiil. Res., mem. v, p. 97, Plate 2, figs. 1-4; Smitt, op, cit., p. 501, Plate 13, fixs. 2人, 34, 35. Nertularin mentu limme, ed. xii, p. 1:311. Valloria cuscutn Filem-

Sew dersey, northwarl ; northern coasts of Europe to Great Britain. In Vineyard Somd it wats fommon hydroidsattached to floatingeel-grass, and was anso dredged in 6 to 8 fathoms, on algie, Sertularia argenten, and other hydroids; Great Egeg Harbor, New Jersey, low water, on Sortularia pumila; Casco bay, on piles of wharf.

Vesicularia gracilis Verrill. (p. 389.)
Bomerbankia gracilis Leidy, Jommal Acad. Nat. Sciences, Philal., ser. ii, vol. iii 1. 142, Plate 11, fig. : $2 \mathrm{~d}, 1 \times 5 \mathrm{~m}$.

Great Egg Harbor, New Jersey, to Vineyard Sound. Point Judith, Rhode Island (Leidy). Vineyard Sound, 6 to 8 fathoms, on hydroids.

Vesicularia dichotoma Verrill, new sp. (p. 404.)
Stems clustered, caespitose, usually one or two inches high, slender, flexible, white, and repeatedly forking. The branches stand in different planes, so as often to prodnce miniature tree-like or shrub-like forms, many of which generally arise close together, forming crowded tufts upon rocks, oyster-shells, or algae. When the stem or a branch divides, there is a joint formed at the base of each of the forks, by the interposition of a very short segment of a dark brownish, opaque substance, which contrasts strongly with the white translucent substance of the rest of the stem. Zooids arranged closely in two subspial rows of six to twelve cach, just below each fork of the stem and branches, and not occupying half the length of the internorles, which are naked and smooth below the crowded elnsters of the zoüids ; these are smooth, greenish brown, broad oval or obovate in contraction, subeylindrical or elliptical in expansion, entirely sessile, and but little narrowed at the base, and so crowded as to appear imbricated. The tentacles are eight, long and slender, in expansion usually more than half the length of the cell.

Great Egg Harbor, New Jersey, on oysters; Sarin Rock, at lowwater ; off New Haven Light, 4 to 6 fathoms, shelly and rocky ; Thimble fslands, in rocky tide-pools; Norwalk, Comecticnt, on oysters. This is probably the species recorded by Dr. Leidy from Great Egeg Harbor under the name of Valkeria pustulosa, which is an allied Enropean species.

Vesicularia armata Verrill, new sp. (p. 40j.)
Cells stont, oral, broad at base, with a short and narrow pedicel, attached either singly or in pairs along slender, filiform, creeping stems, which often anastomose, the branches being mostly opposite. Distal end of cells prolonged into four conical processes, each of which, when perfect, supports a long slender spinule, nearly half as long as the cell. Tentacles not seen. Celis sellowish horn-color, with an oval, dark brown internal organ, visible in most of the cells.

Vineyard Sound, on floating sea-weeds attached to Sertularice, Halecium gracile, etc.; also in 6 to 10 fathoms, rocky, on Sertularia argentea.

Vesicularia fusca Smitt. (p. 420 .)
Op. cit., p. 502, Plate 13, figs. 37-39, 1866. Arenella fusca (?) Dalyell, Rare and Rem. Anim. of Scotland, vol. ii, p. 65 ; vol. i, Plate 12 , fig. 11, (t. Smitt).
Long Island Sound northward; northern coasts of Enrope to Great Britain. Off South End, near New Haren, 3 to 5 fathoms, on Alcyon. idium ramosum.

Farrella faimliaris. (p. 487.)
Vesicularia (Farrella) familiaris Smitt, op. cit., p. 502, Plate 13, fig. 36, 1866. Plumatella familiaris Gros, Bulletin Soc. Imp. Mascon, vol. xxii, p. 567, Plate 6, G. figs. 1-10 (t. Smitt). Farrella pedicellata Alder, Catal., p. 68, Plate 6, figs. 1-3; Quart. Jour. Miscrosc. Soc., vol. v, p. 24, Plate 14, figs. 1-3.
Long Island Sound to Vineyard Sound and northward; coasts of Scandinavia and Great Britain. Thimble Islands, near New Haven, in tide-pools, on algae; Casco Bay. Saint George's Bank (S. I. Smith).

Chilostomata.

## Cellularina.

Etea anguina Lamonroux. (p. 405.)
Soc. Phil., 1812, p. 184 (t. Smitt) ; Polgp. flex., p. 153, Plate 3, fig. 6 ; Expos. Methodique, p. 9, Plate 65, fig. 15 ; Smitt, op. cit., p. 280 , Plate 16, figs. $\mathbf{2}-\mathbf{4}$, 1867. Sertularia angnina Linné, Syst. Nat., ed. xii, p. 1317. Anguinaria spatulata Johnston, Brit. Zoöph., ed. ii, p. 290, Plate 50, figs. 7, 8.

Long Island Sound, northward; coasts of Scandinaria and Great Britain. In Vineyard Somd it was common at low-water mark and in 6 to 14 fathoms, on Phyllophora and hydroids. Off New Haven, 4 to 6 fathoms, on Halecium gracile.

EUCRATEA Chelata Lamouroux. (p. 405.)
Polsp. Corall. flex., p. 149, Plate 3, fig. 5, 1816; Expos. Meth., p. 8, Plate, 65. fig. 10 ; Smitt, op. cit., 1865 , Plate 5, fig. 3; 1867, p. 231, Plate 16, figs. 7-9; Johnston, Brit. Zö̈ph., ed. ii, p. 288, fig. 64. Sertuluria chelata Limné, Systema Nat., cd. x, p. E16. Cellularia chelata Pallas, Elench. Zö̈ph., p. 25, 1766.

Martha's Vineyard northward; northern coasts of Emrope to Great Britain. Off Gay Head, 10 fathoms, on hydroids and aseidians. Our specimens differ somewhat from the figures of the European form ; the
cells are simple, more slender, and more elongated; aperture of primary cells somewhat bilabiate; of lateral cells simple and scarcely raised; no processes were observed on the front of any of the cells; the primary cells taper below into a slender, often crooked pedicel, which is abont one third as long as the cell.
(?) Cellularia tervata Johnston. (p. 496.)
British Zoïph., ed. ji, P. 335, Plate 59, 1848; Smitt, op. cit., 1867, 1. 28\%, Plate 16, figs. 10 to 26 . Cellaria ternatu Ellis and Solander, Zoïph., p. Bo. Menipua ternata Busk, op. cit., p. 21, Plate 20, figs. 3 to 5 . (?) Cellnlaria demsa Desor. l'roc. Bostou Suc. Nat. Ilist., vol. iii, p. 66, 1848 (Ilescription inadequate).
Cape Cod to the Arctic Ocean; northern coasts of Europe to Great Britain. Off Gay Head, 10 to 20 fathoms ; common in Caseo Bay, Bay of Funds, and at Saint George's Bank, 6 to 100 fathoms. South Shoals, 22 fathoms, (Desor).

Caberea Ellisif Smitt. (p. 420.)
Op. cit., 1267, p. 2マ7, Plate 17, firs. 55, 56. Flustra Ellisii Flemiug, Mem. Wern. Soc., vol. ii, p. 2J1, Plate 17, figs. 1 to 3 (t. Smitt). Flustra setracea Fleming, Brit. Anim., p. 536; Johnston, Brit. Zoöph., ed. ii, p. 316. Cellularia Hookeri Johnston, Brit. Zoïph., ed. ii, p. 333, Plate 60, figs. 1, 2. Caberea Hookcri Busk, op.. cit., p. 39, Plate 37, fig. 2.
Martha's Vineyard, northward to the Arctic Ocean ; northern coasts of Europe, from Finmark to Great Britain. Month of Vineyard Somul, off Gay Head, 8 to 12 fathoms; off Buzzard's Bay, 25 fathoms; very common in Casco Bay, Bay of Fundy, and Saint George's Bank, if to 100 fathoms. Labrador (Packard).

Bugula Murrayana Busk. (p. 496.)
Catal. Mar. Polyzoa, Brit. Mns., part i, p. 46, Plate 59; Smitt, op. cit., 1867, p. 222, Plate 18, figs. 19 to 27. Flustra Murrayana Bean Mss., Johnston, Brit. Zö̈ph.. ed. i, p. 347, Plate 63, figs. 5, 6. Flustrat truncata Deser, Proc. Boston Soc. Niat. Hist., vol. iii, p. 66 (non Liuné).
Martha's Vineyard to Spitzbergen; northern coasts of Europe to Great Britain. Off Gar Head, 10 to 20 fathoms; very common in Caseo Bay, Bay of Fundy, and Gulf of Saint Lawrence, 1 to 100 fathoms. Saint George's Bank, 20 to 65 fathoms, (S. I Smith). Labrador (Packard).

Bugula flabellata Bask. (p. 389.)
Catal. Marine Polyzoa, Brit. Mas., part i, p. 43, Plates 51, 5. . Imgulu driculariu, forma flabellate, Smitt, op. cit., 1867, p. 290 , Plate 18, fig. 11. Flustru ariculariat Johnston, Brit. Zoüph., ed. i, p. 2e6, Plate 36, figs. 3, 4; ed. ii, p. 346 , Hatte bi3, figs. 3, 4.

Vineyard Somd, 6 to 8 fathoms; Wood's Hole, abundant on the piles of wharves. Coasts of Great Britain and Belginm.

Bugula turrita Verill. Plate ŇXXIV, figs. 25s, 259. (p.311.)
Cellularia turrita Desor, Proc. Boston Soc. Nat. Hist., vol. iii, p. 66, 1848. Cellularia fastigiata Leidy, op. cit., p. $14: 2$ (non Linné, sp.).
North Carolina to Caseo Bay. Very abundant in Great Egg Marbor, New Jersey ; Long Istand Sound; Buzzarl's Biy ; and Vineyard Sound, low-water to 15 fathoms; Portland, Maine, on piles of wharf.

## Flustrina.

Membranipora pilosa Farre. Plate NXXIV, figs. 262, 263. (1. 496.)

> Phil. Trans., 1837, p. 412, Plate 27 , figs. 1 to 5 ; Johnston, Brit. Zoüph., ed. i, p. 280 , Plate 34 , figs. $10,12,1838$; ed. ii, p. 32\%, Plate 56 , fig. 6,1847 ; Smitt, op. cit., 1867, p. 368, Plate 90 , fig. 49 . Flastra pilosa Linué, Fanna Suec., ed. ii, p. 539 (t. Smitt). Eschara pilosa Pallas, Elench, Zö̈ph., p. 50,1766 . Hippothoa rugosa Stimpson, Invert. Grand Minan p. 18 (variety catemularia). Tubipora eatenularia Jameson, Wern. Mem., vol. i, p. 561 (t. Smitt).

Long Island Somed to the Arctic Ocean; Finmark to the Mediterranean. Very abundant near New Haven, at Savin Rock, Thimble Islands, etc., in 1 to 6 fathoms, and in tide-pools, on Chondrus crispus, Phyllophora and other alge, stoues, etc.; Watch Hill, Rhode Islaud, 4 to 5 fathoms, on algre, abundant; Vineyard Sound ; Massachusetts Bay ; Casco Bay; Bay of Fundy, and northward. The variety catenularia is common in Casco Bay and Bay of Fundy, from above low-water mark to 50 fathoms. It occurs on the coasts of Northern Europe at various depths down to 300 fathoms. Fossil in the Post-Plioceme of Canada and Labrador (Dawson).

Membranipora lineata Busk. (p. 406.)
Catal. Mar. Polyzoa, part ii, p. 58, Plate 61, fig. 1 ; Smitt, op. cit., 1867, p. 363, Plate 20, figs. 23 to 31. Flustra lineata Linné, Systema Nat., ed. xii, p. 1301 ; Johnston, Brit. Zö̈ph., ed. ii, p. 349, Plate 66, fig. 4. Escharina lincata Leidy, Journ. Acad. Nat. Sciences, Philad., ser. ii, vol. iii, p. 141, Plate 10, fig. 29, 1855.

Great Egg Harbor, New Jersey, to the Arctic Ocean; Spitzbergen to Great Britain, low-water mark to 50 fathoms. Common near New Haven, from low-water mark to 6 fathoms, on stones, oysters, algre, ete.; Watch Hill; Rhode Island ; Vineyard Sound ; Casco Bay ; Bay of Fundy, and northward.

Fossil in the Post-Pliocene of Canada.
Membranipora tenuis Desor. (p. 420.)
Proc. Boston Soc. Nat. Hist., vol. iii, p. 66, 1848.
Long Island Sound to Cape Cod. Common near New Haven and in Vineyard Sound, low-water to 10 fathoms. Muskeget Channel, in 5 fathoms, (Desor).

## Escharina.

## Eschabepora penctata Smitt. (p. 4P. 4 )




Vineyad Somml, northward ; northern coasts of Emope to Sonthern Norway and Great Britain. Vincyarl Somml, 6 to 12 fathoms, on shells, ete., common. Saint George's Bank (S. I. Smith). (?) Fossil in the Post-Pliocene of Canala (Dawson).

Excharina rariabilis Leidy, Jour. Acad. Nat. Sci., lhiladelphia, ser, ii, wol, iii, p. 1世, Ilate 11, fig. 37. Lepralia cariolosa Desor, opr. cit., p. 66, 18.to (not of Johnston).
Sonth Carolina to Cape Cod and Massachusetts Bay. Very abundant in Creat Egg Harbor; Long Ishand Somd; Buzzarl's Bay; Vineyard Souml Nantncket Harbor ; low-water to 25 fathoms. Saint George's Bank, $\because 0$ fathoms, (S. I. Smith). Fort Macon, North Carolina (coll. Dr. Yarrow).

Mollia ifralina Smitt. Plate NXXIV, fig. 264. (p. 420.)
Op. cit., for 1867, Ap., p. 16, (separate copies, p. 16), Plate 25, figs. 84-87, 1863. Cellepora hyalino Limné, Syst. Nat., ed. xii, p. 1286. Lepralia hyalina Johnston, 1rit. Zoöph., ed. ii, p. 301, Plate 54, fig. 1. Cellepora nitide Fabricins, Fauna Groml., p. 435, 1780.
Long Island Sound to Greenland; Spitzbergen to Great Britain. Common near New Haven and at Thimble Island, in tide-pools and from 1 to 6 fathoms, on algee Watch Hill, Rhode Island, $t$ to 5 fathoms; Buzzard's Bay and Vineyard Sound, abondant; Casco Bay; Bay of Fundy, and northward. Fossil in the Post-Pliocene of Canada (Dawson).
(?) Lepralia Pallasiava Busk. (p. 496.)
Catal, Mar. Polyzoa, Brit. Mus., part ii, p. 81, Plate 8:3, figs. 1, ક; ; Smitt, op. rit-, for 1~17, Ap., p. 19, (separate copies, p. 19), Plate 26, fig. 93, 1~68. Exchara Pallasiana Moll, die Seerinde, p. 64, Plate 3, fig. 13 (t. Smitt). Lepralia pediostoma Hatssal, Aun. and Mag. Nat. Mist., vol. vii, p. 36e, Plate 9, fig. 4; vol. ix, p. 407 ; Johnston, Brit. Zö̈ph., ed. ii, p. 315, Plate 5.5, fig. 7. L'schurina pectiostoma Leidy, op. cit., p. 141, Plate 10, fig. 23, 1855.
Rhode Island, northward; northern coasts of Emope to Sonthern Norway and dreat Britain. Watch IIill, Rhode Island, 4 to 5 fathoms, on algie; Yineyard Somd, 6 to 14 fathoms, on Phyllophore and other alge, shells, etc.

Our specimens do not agree perfectly with the European form. Close to the proximal horder of the aperture there is a large, but not rery prominent, broad-based spine, or subconical process, which is not conspicuons in a riew from above, but is prominent in a side-riew. In
some specimens a few of the cells hare several slender spines around the margin of the aperture.

This may prove to be a species distinct from S. Pallasiana, but at present I regard it as a variety.
(?) Discopora coccinea Smitt. (p. 496.)
Op. cit., for 1867, Ap., p. 26, (separate copies, p. 26), Plate 27, figs. 162-176. (?) Cellepora соссінса Abildgard, Zö̈l. Dan., vol. iv, p. 30, Plate 146, figs. 1,2 (t. Smitt). Lepralia Peachii Johuston, Brit. Zoüph., ed. ii, p. 315, Plate 55, figs. 5, 6.
Long Island Somm, northward; northern coasts of Enrope to Great Britain. Watch Hill, Rhode Island, 4 to 5 fathoms, on red algre; Vineyard Sound and Quick's Hole, on algæe, ete., in 4 to 12 fathoms.

Fossil in the Post-Pliocene of Canada (Dawson as I. Peachii).
The speeimens from our coast, referred to the above species, differ considerably from the typical European forms, and may eventually prove to be a distinct species when a eareful direct comparison with a large series of European specimens can be made.

The aperture is usually surrounded by a circle of stont, conical or elongated spinnles, variable in number, the one nearest the angle of the aperture, on each side, often stouter; but the spines are often absent. A small semicircular avieularium is often seen near one side of the cell, and distant from the aperture. The tooth or spine at the proximal edge of the cell is elongated and more or less bifid at the end.

## Celleporina.

Cellepora scabra Smitt. (p. 419.)
Op. cit., for 1867, Ap., p. 30 , (separate copies, p. 30), Plate 23, figs. 183 to 197, 1868. Lschara scabra Fabricius, Nye Zoöl. Bidr., Vid. Selsk. Phys. Skr., Haunise, vol. i, p. 29 (t. Smitt). Millcpora reticulata Fabricius, Fanua Grœul., p. 433, 1780 (non Limné).
Vineyard Sound to Greenland; Spitzbergen; northern coasts of Europe. Vineyard Sound and Quiek's Hole, 5 to 10 fathoms, on Phyllophore, ete., not uncommon.
Cellepora ramulosa Linné. (p. 312.)
Syst. Naturr, ed. xii, p. 1285, 1767 ; Johnston, Brit. Zö̈ph., ed. ii, p. 296, Plate 52, figs. 4, 5; Smitt, op. cit., for 1867, Ap., p. 31, (separate copies, p.31), Plate 23, figs. 198-210. Cellepora verrucose Fabricius, Fanna Greml., p. 434 (variety) Cellepora pumicosa (pars) Limné, Syst. Nat., ed. xii, p. 1286 ; (?) Johnston, Brit. Zoüph., ed. 'ii, p. 295, Plate 52, figs. 1-3 (variety).
Long Island Somd to Greenland; Spitzbergen; northern coasts of Europe to Great Britain. Very common near New Haven, off South Eud, at Thimble Islands, and Faulkner's Island, in large tide-pools, low-water to 8 fathoms, ehiefly on Sertularice and other hydroids, and slender red alge, (mostly the variety tuberosa, or verrucosa) ; Watch Hill, Shode Island, 4 to 5 fathoms; Buzzard's Bay and Vineyard Sound, 1 to 15 fathoms, on hydroids, common ; abundant in Caseo Bay; Bay of Fundy; and at Saint George's Bank; low-water to 145 fathoms.

# RADIATA. <br> <br> EOHINODERMATA. 

 <br> <br> EOHINODERMATA.}

## HOLOTHURIOIDEA.

Thyone Briareuts Selenka. (p. 36..)
Zeitschrift fiir Wissenschafliche \%oologie, vol. xvii, ן. 353, 186\%. Holothuria Briarcus Lesmemr, Jomrn. Acad. Nat. Sciences, Philadelphia, ser. i, vol. iv, p. 161, 1Ee4. Sclerodactyla Briarens Ayres, lroc. Boston Soc. Nat. Hist., vol. iv, plp G, 7, 101-:3, 18..1 ; Verrill, Proc. Boston Soc. Nat. Hist., vol. x, p. 3. 2 , 1~6if. • Anaperus Diryarens Ponrtales, Procuedings Amorican Assoc. for Adv. of Seience, for 1851, 1.10, 1852. Amaperns Curolinus Troschel, Miiller's Arch. fiir Anat., 1846, p. $6 \cdot$; Pourtales, op. cit., p. 10.
Texas to Cape Cod. Long Island Sound, at West Maren, Connectient, Thimble Islands, ete., not common; Vineyarl Sound and Buzaud's Bay, 1 to 10 fathoms, not meommon; Gardiner's Bay, Long Island; Great Egg Harbor, New Jersey ; Fort Macon, North Carolina, common (coll. Dr. Yarrow); West Florida (coll. E. Jewett).

Stereoderma unismmita Ayres. (p. 503.)
Proc. Boston Soc. Nat. Hist., vol. iv, p. 46, 1851; Selenka, op. cit., p. 341, Plate 19, figs. 96,97. Aunperus unisemita Stimpson, Proc. Boston Soc. Niat. Hist., vol. iv, p. E, 1.85l ; Verrill, op. cit., vol. x, p. 357, 186f. Cucumaria fusiformis Desor, Proc. Boston Soc. Nat. Hist., vol. iii, p. 67 (non Forbes).
Off Martha's Vineyart, 22 fathoms, sand; Banks of Newfoundland (Stimpson). South Shoals of Nantucket, 22 fathoms, (Desor).

## Pentamera pulcherrina Aytes. (p. 420.)

Proc. Boston Soc. Nat. Hist., vol. iv, p. 207, 1852; Selenka, op. cit., p. 346.
South Carolina to Vineyard Sumd. Off Holmes's Hole, 4 to $\boldsymbol{\text { F fathoms ; }}$ Nobsea Beach, after storms, abundant; Fort Macon, North Carolina (coll. Dr. Yarrow). Fort Johmson, South Carolina (Stimpson).
? Molpadia oölitica Selenka. (p.510.)
Op. cit., p. 257 (in part), 1867. Chirodota oölitiea Pourtales, Proc. Amer, Assoe. for 1851 , p. 13, 1852. Embolus pauper Selenka, op. cit., p. 359, l'late 20, fig. 132 $186 \%$.
Off Block Island, 29 fathoms, sandy mud ; off Boon Island, 95 fathoms, muddy, (A. S. Packard). Massachusetts Bay, in fish stomachs, (Pomrtales). Selenka gives "Cape Palmas (?)" as the locality for his "Embolus pauper," which was based on specimens sent from the Museum of Comparative Zoölogy-perhaps the original ones described by Pourtales; the locality given is evidently erroneous.

The single specimen from off Block Island is small and imperfect, and may not be this species.

CAUDINA ARENATA Stimpson. (p. 362.)
Marine Invert. of Grand Manan, p. 17, 18.33 ; Solenka, op. cit., p. 358, Plate 20 , figs. 1:29-1:31 ; Clatrk, Mind in Nature, p. 187, figs. 114-116; A, aud E. C. Agrassiz.

Sea-Side Studies, p. 97, fig. 126. Chirodota arenata Gonld, Invert. of Mass., ed. i, p.346, (figure), 1841 ; Ay̌res, op. cit., p. 143 ; Pourtales, op. cit., p.13. Caudina (Molpadia) arenata Verrill, Proc. Bostou Soc. Nat. Hist., vol. x, p. 345, 1866.
Vineyard Sound to Chelsea, Massachusetts. Sometimes abundaut on Chelsea Beach, after storms. Wood's Hole (H. E. Webster). Selenka gives "Grand Manan" (? from specimens in Mas. Comp. Zöl.), but after very carefnl search during several excursions to that island, I have never been able to find it there, and believe this to be an error. Stimpsou knew it only from Massachusetts Bay.

Leptosinapta Girardil Verrill. Plate XXXV, figs. 265, 266. (p. 361.)

Synapta Girardii Pourtales, Proc. Amer. Assoc. Adv. Science, for 1851, p. 14. Leptosyuapta temuis Verrill, Trans. Conn. Acad., vol. i, p. 325. Synapta tenuis Ayres, op. cit., p. 11, 1851, (non Quoy and Gaimard) ; A. and E. C. Agassiz, Sea-Side Stndies, p. 95 , figs. 124, 125; Verrill, Proc. Boston Soc. Nat. Hist., vol. x, p. 342. Synaptu Ayresii Selenka, op. cit., p. 362, 1867. (?) Synapta gracilis Seleuka, op. cit., p. 363, Plate 20, figs. 123, 124.
New Jersey to Massachusetts Bay. Common in Long Island Sound, at Sarin Rock, and other localities near New Haren, in sand at lowwater; abnndant in Vineyard Sound, on Naushon Island, etc.; Cape Cod; Chelsea Beach, Massachusetts. Sag Harbor, Long Island, (Ayres). Selenka erronconsly gives "Cape Florida" as the locality for S. Girardii. It was based on Massachusetts specimens.

Leptosinapta roseola Yerrill, sp. nov. (p. 362.)
Body long, sleuder; integument translucent, filled with numerous minute, scattered, opaque, light-red spots, oval or sub-circular in form ; perforated plates smaller than in the preceding species; anchors relatively much louger, with a very slender, elongated shank. General color, rosy or pale red, due to the minute red spots. Length $100^{m n}$ to $150^{\mathrm{mm}}$; diameter abont $\tilde{⿹}^{\mathrm{mm}}$ to $6^{\mathrm{mm}}$.

Long Island Sound, at Savin Rock, near New Haven; Vineyard Sound. at Naushou Island; in saud at low-water mark.

## ECHINOIDEA.

Strongylocentrotus Dröbaciilensis A. Agassiz. Plate XXXV, tigs. 368. (p. 406.)

Revision of the Echini, Parts I and II, pp. 162, 27\%, Plate $4^{\text {a }}$, figs. 2-4, Plate 9, Plate 10, 1872. Echinus Dröbachiensis Miiller, Zö̈l. Dau. Prod., p. 235, 1776, Toxopmeustes Dröbachiensis Agassiz, Catal. Rais., in Ammal. des Sci. Nat., vol. vi. p. 367, 1846. Eurycchimus Dröbachiensis Verrill, Proc. Boston Soc. Nat. Hist. vol. x, 1p]. 341, 352, 1866; Trans. Coun. Acad., vol. i, p. 304, 1867 ; American, Jour. Science, vol. xlix, p.101. Echinus neglectus Lamarck, Anim. sans vert., p. 49, 1816. Echimus gremularis Say, Journ. Acad. Nat. Sci., Plilad., vol. v, p. 2.5, $18: 7$ (non Lamarck). Echinus granulatus Gonld, Invert., ed. i, p. 344, 1811. Euryechinus gramulatus Verrill, Proc. Boston Soc., vol. x, pp. 340, 352. Strongylocentrotus chlorocentrotus Brandt, Prodr., p. 264, 1835.
Circmmpolar: New Jersey to the Arctic Oceau; Spitzbergen to Great

Britain; Behring Straits to Gulf of Georgia; Northern Siberia to Okhotsk Sea aud De Castrie's Bay. Very abmulant in the Bay of Fundy, from low-water to 109 fathoms; Casco Bay; Nassachmsetts Bay; month of Vineyard Somm and off Gay Heat, 10 to 20 fathoms, common; off Holmes's Hole; off Watch IIll, Rhole Island, 4 to $\overline{5}$ lathoms. not mucommon ; ofl' New London, Connecticut, plenty, (coll. I'rudlen) ; Fanlkner's Lslamd, Thimble Islands, and nean New Haven, 4 to 8 fathoms, mucommon and small. Off New Jersey, on a bank, in 32 fathoms, (Captain Gedney). Ofi Saint George's Bank, 430 fathoms, (S. I. Smith).

Fossil in the Post-Pliocene of Portland, Maine; New Bronswick; Canada ; and Labmalor.

## Arbacia lunctulata Gray. (p. 406.)

Proc. Zuäl. Soc. of London, 1835, p. 5\%; A. Agassiz, Revision of the Echini, Parts I and 11, p1p. 91, 263, Plate 2, fig. 4, Plate 5, figs. 1 to 18, 1872. Dchimus punctulatus Lamarek, Anim. sams vert., p. 47, 1816. E'chinociduris punctuluta Desmonlin, Syn., p. :306, 18:37. Echinocideris Dawisii A. Agassiz, Bulletin Mns, Comp. Zoölogy, vol. i, p. 20, 1863; Verrill, Proc. Boston Soc. Nat. Hist., vol. x, 1. $340,1866$.

Vineyard Sound to the West Indies and Gulf of Mexico. Common at Wood's Hole, and in Vineyard Sound and Bnzzard's Bay, 1 to 12 fathoms; off Watch Hill, Rhode Island, 4 to 5 fathoms ; Long Island Sound, near New IIaven, and at Charles Island, not common ; Fort Macon, North Carolina (coll. Dr. Yiarrow). Off Tortugas, 13 to 125 fathoms, (Pourtales). West Florida (E. Jewett).

Echinarachnius parma Gray. Plate XXXV, fig. 267. (p. 362.)
Ann. Phil., p. 6, 1895; A. Agassiz, Revision of Echini, Parts I and II, pp. 107, 316, Plates $11^{\text {d }}$, figs. $4,5,11^{\mathrm{e}}$, figs. 4, 5, 12, figs. 1-13, 18:2. Seutella parma Lauarek, Anim. sans vert., p. 11, 1816.
New Jersey to Labrador. According to Mr. A. Agassiz, itoccurs in the North Pacific, on the west coast of America, from the Aleutian Islands to Viancouver Island, and on the coast of Asia at Kamtchatka, 30 to 70 fathoms ; and also at New Holland; India; Indian Ocean; Red Sea, etc. Common along the entire coast of New England and Long Island, from low-water to 100 fathoms, sand. Off New Jersey, on a distant bank, in 32 fathoms, (Captain Gedney). Very abundant at Saint George's Bank and vicinity, 15 to 430 fathoms, (S. I. Smith).

## Mellita pentapora Liitken.

Bidrag til Kundskab om Echiniderne, p. 107, in Vidonsk. Middelelser, 186f; Verrill, Trans. Connecticut Academy, vol. i, p. 345, 1867. Echinus pentaporis Gmelin, Syst. Nat., 1. 3189, 1788. Éncope pentapora Agassiz, Monog. Scnt., Plate 3, 1-41. Scutella quinquefora Lamarck, Anim. sans vert., p. 9, 1816. Mellita quinqucfora Agassiz, Mon. Sent., p. 36, 1R41; Catal. Rais., in Ann. Sci., vol. vii, p. 13², 1847. Mellitu testudinaria Gray, Proc. Zïol. Soe., London, 1851, p. 36 ; Verrill, this Report, pp. 427, 4:9, (see errata). Mellitu testmlimata Amsissiz, Alon. Scut., p. 40, Plate $4^{\text {a }}$, figs. $7-9,1841$; A. Agassiz, Revision of the Echini,
pp. 141, 32:, Plate 11, figs. 13-22, Plate $12^{\text {a }}$, Plate 12 c , figs. 1, 2, (name adopted from Klein, 1734, accidentally binomial).
New Jersey to Brazil ; very abundant along the whole eastern coast of the United States, south of Cape Hatteras, and along the entire coast of the Gulf of Mexico; rare and local north of Cape Hatteras. Vineyard Sound, 5 to $S$ fathoms, rare and dead; outer beach at Great Egg Harbor, New Jersey, dead. Nantucket (Agassiz).

## ASTERIOIDEA.

Asterias arenicola Stimpson. Plate XXV, fig. 269. (p. 326.)
Proc. Boston Soc. Nat. Hist., vol. viii, p. 263, 1862; Verrill, vol. x, p. 339, 1866. Asteracanthion berylinus Ag. MSS., A. Agassiz, Embryology of Echinod., in Proc. Amer. Acad., 1863 ; Embryology of the Starfish, in Agassiz Coutributions, vol. v, p. 3 ; Sea-Side Studies, p. 108, figs. 141-145, 1865 (t. Agassiz).
Massachnsetts Bay to Northern Flarida and the northern shores of the Gulf of Mexico ; rare and local, in sheltered localities, north of Massachusetts, as at Quahog Bay, east of Portland, Maine ; but not known from the eastern part of the coast of Maine, nor in the Bay of Fundy.

Very common in Long Island Sound; Buzzard's Bay; Vineyard Sound; and along the shores of Long Island, from low-water to 15 fathoms. Not uncommon in Massachusetts Bay, at Nahant, Beverly, \&c.

Asterias Forbesif Verrill.
Proc. Boston Soc. Nat. Hist., vol. x, p. 345, 1866. Asteracanthion Forbesii Desor, Proc. Boston Soc. N. H., vol. iii, p. 67, 1818.
Buzzard's Bay to Beverly, Massachusetts. Vineyard Sound and off, Gay Head, 6 to 14 fathoms; Buzzard's Bas, 6 fathoms; Chelsea and Beverly, Massachusetts, low-water. Vineyard Sound, 8 fathoms, (Desor).

This is probably identical with the preceding species, the differences being, perhaps, chiefly sexual, but I have not yet had opportunities to satisfy myself fully in regard to this point, and, therefore, leave them, for the present, under separate names. Should they be united, the name Forbesii has the precedence over all others.

Asterias vulgaris Stimpson, MSS. (p. 496.)
Packard, in Canadian Naturalist and Geologist, Dec., 1863 (uo description); Verrill, Proc. Bostou Soc. Nat. Hist., vol. x, p. 347, 1866 (description). Asteracauthion pallidus Ag. MSS.; A. Agassiz, Embryology, in Proc. Amer. Acad., 1863 (no description); Embryology of the Startish, in Agassiz' Contributions. vol. v, p. 3. Asterias rubens Gould, Invert., ed. i, p. 345 (non Linné).
Long Island Sound to Labrador, aud (?) Greenland. Very abundant in Massachnsetts Bay, Casco Bay, Bay of Fundy, from above low-water mark to 40 fathoms ; in the deeper parts of Viueyard Sound and off Gay Head, in 6 to 25 fathoms, not uncommon; off Watch Hill, Rhode Island, 4 to 5 fathoms, common ; Faulkner's Island, Connecticut, lowwater, very rare.

Lebrastertas compra Verill.
Pror. Boston Soc., vol. x, p. 350, 1Fif. Asterias compta Stimpsom, Proc. Boston

Off New Jersey, $3 \pm$ fathoms, (Captain Geduey). Off Martha's Vineyard, 20 to 2.5 fithoms, rate ; ofl Casco Bay, 30 to 50 fathoms.

Crimbleasanguinolenta Liitken. (p. 407.)
Grenl. Echinod., p. 31, 1859; Vemill, Proc. Boston Suc. Nat LList., vol. x, p. 34.5,

 spongiosa Pabricins, Fanna Grenl., p. $36{ }^{2}$, 1780. Linkia ocnlata Forbes, Wran. Mem., vol. viii, p. 120, 18:39. C'ribella oculata Forbes, British Startishes, p. 100, (figure), 1841. Echinaster ocnlutus Miiller and Troschel, Syst. Asterid., p. 24, 1512. Linkia oculata Stimpson, Invert. of Grand Manan, p. 14, 1853. Linkia pertesa Stimpson, ol. cit., p. 14. Eehinaster samguinolemhes Sars, Fiana Litt. Norveg., i, p.17, Plate 8 , tigs. 3-6; Oversigt af Norges Lehinodermer, p. 84, 1861.

Connecticut to the Aretic Ocean; northern coasts of Europe to Great Britain and France. Very common in the Bay of Fundy, Casco Bay, and on the entire coast of Maine, from low-water to 100 fathoms ; Massachmsetts Bay; Vineyard Sound, 5 to 20 fathoms, not uncommon; off Watch IIill, Rhode Island, ${ }^{3}$ to 5 fathoms; off New London, Connecticut (coll. T. H. Pruddeu).

## OPHIUROIDEA.

Ophiura olivacea Lyman. (p. 363.)
Ill. Catal. Mns. Comp. Zoölogy, No. 1, Ophiuride and Astropliytidie, 1. 2:3, 186.5; Verrill, Proc. Boston Soc. N. H., vol. x, p. 3:39. Ophioderma olicaceum Ayres, Proc. Boston Soc. Nat. Hist., vol. iv, p. 134, 1852.
Cape Corl to North Carolina. Wood's Hole, Buzzard's Bay, and Vinefard Sound, not common; shores of Long Island, frequent; Fort Macon, North Carolina, common, (Dr. Yarrow).

Ophiopiolis aculeata Gray. Plate XXXV, fig. 270. (p. 496.)


#### Abstract

List of British Animals in Coll. of Brit. Mus., Part I, Rad. Anim., p. 25 , 1843 ; Liitken Additamenta ad Hist. Ophiuridarmm, p. 60, Plate 2, figs. 15,a. b, 16, a, b, 1858 ; Verrill, op. cit., p. 344, 1865. Asterias aculcate Linué (purs), Syst. Nat., p. 1101 ; Retzins Vetersk.-Akad., vol. iv, p. 240, 178:3; Miiller, Prod., 2341, 1776; Zoïl. Dán., vol. iii, p. 29, Plate 99, 1789. Ophiura bellis Fleming, Brit. Anim., p. 483, 18es. Ophiocoma bellis Forbes, Wern. Mem., vol. viii, p. $\mathcal{D} 6$; Brit. Starfishes, p. 53, figure. Ophiopholis bellis Lyman, op. cit., p. 96, Plate 1, figs. 4-6. Ophiolepis seolopendrica Miiller and Troschel, Syst. Aster., p. 96, 1~42. Ophiopholis scolopendrica Stimpson, Invert. of Grand Manan, p. 13, 1853.


Rhode Island and New Jersey to the Arctic Ocean; Iceland; Spitzbergen; northern coasts of Eurone, to the English Chammel, Ireland, ete. Very abundant in the Bay of Fundy, Casco Bay, and along the whole coast of Maine, from low-water to 100 fathoms; Massachusetts Bay; off Gay Head, 6 to 8 fathoms, rare ; of Watch Hill, Rhode Island, in 4 to 5 fathoms, rocky. Off New Jersey, 30 to 38 fathoms, N. lat. $39{ }^{\circ}$ $54^{\prime}$; W. long. $73^{\circ} 15^{\prime}$, (Josephine Exp., t. Ljungmann). A similar species, perhaps identical, occurs on the northwestern coasts of America.

Anphupholis elegans Ljungmann. (p. 420. )
Ophiuroidea viventia huc usque cognita, Öfvers. Kongl. Vet.-Akad. Förh., 1866, p. 312. Ophiura clegans Leach, Zoöl. Miscell., iii, p. 57, 1815. Amphiura elegans Norman, Ann. and Mag. Nat. Hist., vol. xv, p. 109, 1865 . Ophiocoma neglecta Forbes, Brit. Starfishes, 1. 30, 1841. Ophiolepis temuis Ayres, Proc. Boston Soc. Nat. Hist., vol. iv, p. 133, 1850. Amphiura temuis Lymau, Proc. B. S. N. H., vol. vii, p. 194, 1860. Amphipholis tenuis Ljuugmaun, Öfvers. af Kongl. Vet.-Akad. Förl., 1871, p. 635. Amphimra squamata Lyman, Catalogue Ophinr. and Astroph., p. 121, $1 \leq 65$ (non Delle Chiage, t. Ljungmanu).
Off New Jersey to the Arctic Ocean ; northern coasts of Europe to the English Chamel. Common in Vineyard Sonnd, 4 to 15 fathoms; Massachusetts Bay; Caseo Bay; Bay of Fundy, low-water to 60 fathoms. Greenland, 15 fathoms, (Liitken, as A. neglecta). Off New Jersey, 36 to 38 fathoms, N. lat. $39^{\circ} 54^{\prime}$, W. long. $73^{\circ} 15^{\prime}$, (Josephine Exp., t. Ljungmann).

Mr. Ljungmann, in his latest paper, regards this species as distinct both from the Mediterrancan species (Amphiura squamata), and the English and Norwegian species (Amphipholis elegans). The former I have here regarded as distinct, but consider the latter identical with the American form, the differences mentioned being slight and apparently ineonstant.

Ampiluta abdita Verrill. (p. 433.)
Amphipholis abdifa Verrill, Amer. Jour. of Science, ser. iii, vol. ii, p. 132, 1871 ; this Report, p. 433. (See orrata).
Borly plump, pentagoual; the interradial margins concave, and the angles, at base of arms, incised; margin thick, rounded; upper surface of disk covered with very mumerous, minute, crowded scales, which eneroach more or less upon the radial shields and run up between them in a wedge-like area; lower surface thickly covered with still more minnte, gramle-like scales. Radial shields elongated, three or more times longer than wide, curved; the outer end geniculate or bent downward, forming a prominent angle above; they are divergent, and separate for their whole length, or barely tonch at the outer ends, and are more or less concealed laterally and proximally by the encroachment of the small scales. Arms or rays, 16 times as long as the diameter of the body, or even more, slender, flexible, gradually attenuated to the tips.

Six month-papille in each angle of the month, and two to four additional small rounded papillæ, or tentacle-scales, near the extreme outer angle. Two of the mouth-papille, on each side, are placed close together, at about the middle of the edge of the jaw ; the outer of these, which is abont twice as wide as the imer, is flat, scarcely longer than wide, with the end obtusely rounded or truncate; the inner one is scarcely wider than thick, oblong, romded at the end; in one case these two papille are united together. The third month-papilla is stout and rounded, obtuse, larger and longer than either of the others, separated from them by a considerable interval, and bronght close to the tooth at the end of the jaw, beyond which it projects inwardly and downwardly.

The month-shields are long.oval, or somewhat hexagonal, narrowed outwardly, the outer part of the lateral edges being nearly straight, the onter end romded or sub-trumeate, the inner end broadly rounded. Side month-shields triangular with the three edges concave, the inner ends not mited, the surface fimely grambated. The lower arm-plates are separated by the side phates; the first two are longer than broad, pentagonal, the inner end forming an obtuse angle, the onter ellge straight; the next two are about as wide as long, squarish, with the corners rounded or trincate; the following ones are broader than long, somewhat octagonal, the outer and imer elges lougest and nearly straight ; beyoul the middle of the arm they are again pentagonal, with an inner angle. On the first five joints of one specimen there is only a single pair of tentacle-seales, which are small and romiden; on the succeeding joints there are generally two pairs, one of them being considerably smaller than the other; the largest specimen has two pairs of tentacle-scales on all the joints.

Arm-spines three, on each side of all the joints, except the first, which has but two ; they are thickened at base, gradually taperiug, blunt at tip, sub-equal; the lower one a little curved downward; the upper one stoutest, flattened, scarcely tapering, obtuse; the middle one a little longer than the others, the length about equal to width of lower armplates. The upper arm-plates are transversely sub-elliptical, with the onter edge well romuded, the imer edge slightly prominent or angular in the middle, and a little concave to either side, so that the lateral portions are somewhat narrowed ; the plates generally tonch each other.

Color, when living, brown above, the central area dark brown, a radiating band of the same extending to each interradial margin, and borlered like the central area with pale gray; opposite the base of each arm is a squarish area or radial band of olive-brown ; radial plates yellowish brown, the space between them bright blue. In the center of the disk is a small darker brown spot, and five similar ones, corresponding to the bases of the arms, form a circle around the center; five others, more distant, correspond to the interradial spaces; other more minute dark spots are seattered over the disk. Upper arm-plates are mostly dark brown, edged with pale brown or whitish; some of the plates are partially or wholly lighter, yellowish brown, and thens form transverse light bands, or mottlings, consisting of one or more plates; toward the tips these light bands become more numerous, and wider ; spines bright brown. Lower side of disk yellowish brown, with a tinge of greenish; plates around the mouth whitish ; caeh of the jaws with two brown spots; month tentacles orange-jellow. Under arm-plates yellowish brown, with the edges paler, and with a distal median spot of whitish; lower arm-spines yellowish brown. In some specimens the arms are dull greenish above, insteal of brown.

Diameter of the disk, of the largest specimen, $11^{\mathrm{mm}}$; length of arms, $180^{\mathrm{mm}}$.

Long Island Sound; off New Haven, in 4 to 6 fathoms, mud ; off Thimble Islands, 3 to $S$ fathoms, soft mud, rare.

This species is, in some respects, intermediate between Amphipholis and Amphiura. With the former it agrees best in the number of the arm-spines and general appearance; but in the strncture of the monthparts it agrees better with the latter. It will, however, not go into any of the sections or sub-sections established by Ljungmann. It appears to be more nearly allied to A. Eugenice Ljong., from La Plata, than to any other species hitherto described; the latter has, however, four armspines instead of three.

Astrophyton Agassizir Stimpson.
Invertebrata of Grand Manan, p. 12, 1853; Lyman, Catalogne, p. 186.
This species was first described from a specimen obtained "not far from the shoals of Nantucket," by Governor John Winthrop, in 1670 and 1671 (Philosophical Transactions), under the name of "Basketfish" or "Net-fish." Crab Ledge, off Chatham, Massaehusetts, (V. N. Edwards.) It occurs on the banks east and north of Cape Cod, and on Saint George's Bank, and is very common in the Bay of Fundy, low-water to 110 fathoms; and is especially abundant in Eastport Harbor, in 10 to 20 fathoms. According to Dr. Liitken it is also found at Greenland and Finmark.

## CRINOIDEA.

Antedon dentatus Verrill.
Proc. Boston Soc. Nat. Hist., vol. x, p. 339, 1866. Alecto dentata Say, Journ. Acad. Nat. Sci., Philadelphia, vol. v, p. 153, 1825.
This species was described by Say, from a specimen obtained at Great Egg Harbor, New Jersey. It may possibly oceur on the southern coast of New England, but I am not aware that it has actually been found so far north.

## ACALEPH A. <br> CTENOPHORE.

Mnemiopsis Leidyi A. Agassiz. (p. 449.)
Illustr. Catal. Mus. Comp. Zö̈logy, North Americau Acalephre, p. 20, figs. 22-24, 1865.

Buzzard's Bay and Vineyard Somd; Loug Islaud Sound, off New Haven.

Lesueuria hyboptera A. Agassiz. (p. 454.)
Catal. North American Acalephe, p. 23, figs. 25-28.
Newport, Rhode Island, to Massachusetts Bay (A. Agassiz).
Pleurobraciila rhododagtyla Agassiz. (p. 448.)
Memoirs Amer. Academy, vol. iv, p. 314, Plates 1 to 5, 1849 ; Coutributions to Nat. Hist. U. S., vol. iii, pp. 203, 294, Plate 2a, 1860; A. Agassiz, Catalogue, p. 30 , figs. $38-51,1865$.
Sonthern side of Long Island, to Greenland. Not uncommon in Long

Island Somd, near New Haven ; common in Vineyard Sound and Massachusetts Bay; very abumdant in Casco Bay, Bay of Fumly, and Gulf of Saint Lawrence. Off Saint George's Bank (S. I. Smith). Fire Island, Long Island (S. I. Smith).

Idyia roseola $A$ gassiz. (p. 451.)
Contributions to Nat. Hist. U. S., vol. iii, pp. 2i0-296, Plates 1, 2, 1860 ; A. Agassiz, Catalogue, p. 36, figs. 52-62, 186\%.
Vineyard Sound to Labrador. Off Gay Head, not common; common in Massachusetts Bay and Casco Bay; vers abundant in Bay of Fundy and Gulf of Saint Lawrence. Labador (Packard).

## ? Cestum V'eneris Lesueur.

Nonv. Bull. Soc. Phil., 1813, p. શ\&I, Plate 5, fig. 1; Lesson, Zö̈phytes Acalephes, 1. 30 , Plate 1 , fig. 1.

Mr. S. I. Smith observed a species, apparently identical with this, at Saint George's Banks, and Mr. A. Agassiz has observed fragments of a similar species near Newport, Rhode Island. This is properly a more sonthern species, found in the warmer parts of the Atlantie and in the Mediterranean Sea.

## DISCOPHORÆ.

Aurelia flavidula Péron aud Lesueur. Plate XXXYI, fig. 271. (p. 449.)

Ann. Mus. Hist. Nat., vol. xiv, p. 47, 1809; Lesson, op. cit., p. 376, 1843; Agassiz, Contributions to Nat. Hist. U. S., vol. iii, Plates 6-11 ${ }^{\text {b }}$; vol. iv, pp. 10, 160 ; A. Agassiz, Catalogue, p. 4?, figs. 65, 66. Aurelia aurita Stimpson, Invert., of Graml Manan, p. 11, 1853.
Buzzard's Bay to Greenland. Common in the upper part of Buzzard's Bay, in spring; off Gay Head and in Vineyard Sound, in August; abundant in Massachusetts Bay; Casco Bay; Frenchman's Bay; Bay of Fundy ; and Gulf of Saint Lawrence.

Cyanea arctica Péron and Lesuenr. (p. 449.)
Aun. Mus., vol. xiv, p. 51, 1809 ; Agassiz, Contributions, vol. iii, Plates 3, 4, 5, 5ab $10,10^{\text {a }}$; rol. ir, pp. 87, 162 ; A. Agassiz, Catalogue, p. 44, fig. 67. Cyanea I'ostelsii Gonld, Invert., ed. i, p. 347 ; Stimpson, op. cit., p. 11 (non Brandt).
Long Island Sound to Greenland. Common near New Maren; in Buzzard's Bay ; Vineyard Sound ; very abundant in Massachusetts Bay ; Casco Bay; Bay of Fundy; and Gulf of Saint Lawrence. Fire Island, Long Island (S. I. Smith).

Cyanea fulra 1 gassiz.
Coutributious, vol. iv, pp. 119, 162, 1862 ; A. Agassiz, Catalogue, p. 46 (no description).
Long Island Sound (L. Agassiz). Vineyard Sound (A. Agassiz).
I have been unable to distinguish more than one species among the Cyanee of our waters, although they vary considerably in color, just as
they do farther north, as in the Bay of Fundy. This is probably only a color-variety of $C$. arctica.

Dactylometra Quinquecirra Agassiz. Plate XXXVI, fig. 272. (p. 449.)

Contribntions, vol. iv, pp. 125, 166, 1862 ; A. Agassiz, Catalogue, p. 48, fig. 69. Pelagia quinquecirtha Desor, Proc. Boston Soc. Nat. History, vol. iii, p. 76, 1848.
Bermudas to Cape Cod. Long Island Sound, near New Haren; common in Buzzard's Bay and Vineyard Somad.

## Pelagia cyanella Péron and Lesueur.

Aun. dın Mus. Hist. Nat., vol. xiv, p. 37, 1809; Agassiz, Contributions, vol. iii, Plates 1:2, 13, 13a; vol. iv, pp. 123, 164; A. Agassiz, Catalogue, 1. 47, fig. 68.
Off Saint George's Bank (S. I. Smith). This species inhabits the Gulf of Mexico ; Caribbean Sea; and coasts of Florida and North Carolina. It is carried northward by the Gulf Stream to the vicinity of Saint George's Bank, and is, therefore, like the two following, likely to oceur oceasionally at Nantucket and Martha's Vineyard.

Stomolophus meleagris Agassiz.
Contributions, vol. iii, Plate 14, 1860; vol. 1v, pp. 138, 151, 1862; A. Agassiz, Catalogue, p. 40.
Coast of Georgia (Agassiz). Off Saint George's Bank (S. I. Smith).

## ? Charybdea periphylla Péron and Lesueur.

Aun. du Mus. Hist. Nat., vol. xiv, p. 33:2, 1809 ; Edwards in Cuvier, Règne Anim., Pl. 55, fig. 2 (from Lesueur) ; Lesson, op. cit., p. 265, 1813 ; Agassiz, Contributions, vol. iv, p. 173.
This species was originally described and figured from mutilated specimens taken under the equator in the Atlantic Ocean, and seems not to have been seen by later writers. Mr. S. I. Smith has apparently rediscorered this interesting species off Saint George's Bank.

The specimen obtained by him, while on the United States CoastSurvey steamer Bache, in 1872, is not quite perfect, but agrees pretty nearly with the descriptions and fisure cited.

The body in the alcoholic specimen is elevated, bell-shaped, rounded above, with a marked constriction toward the border; transparent, the inner cavity showing through as a large, conical, dark reddish brown spot, with the apex slightly truncated. Border deeply divided into sixteen long, flat lobes, which are of nearly uniform breadth throughout, and slightly rounded, or sub-truncate, at the end; the edges and end thin and more or less frilled; the inner side with two sub-marginal carine. Eyes inconspicuous, but small bright red speeks are seattered over the marginal lobes. The intervals between the lobes are narrow and generally smoothly rounded, without distinct evidence of the existence of tentacles, except that, in one of these intervals, there is a small and short papilliform process, with brown pigment at the base. The
oraries are mostly wanting, but portions are to be seen as slightly convoluted organs in the marginal region, opposite the intervals between the lobes.

Trachinema digitale A. Agassiz. (p. 454.)
Catalogue, p. 57, ligs. 81-86, 1865. Medusa digitale Fabricius, Fauna Granll., p. $336,1700$.
Vineyard Sound to Greenland. Wood's Mole, July 1, young specimens. Massachmsetts Bay (A. Agassiz).

## IIYROIDEA.

## Sertularina.

Tianorsis diademata Agassiz. (p. 454.)
Memoirs Amer. Acad., vol. is, p. 289, Plate 6, 1849; Contributions, vol. iii, p. 3ist, Plate 31, figs. 9-15; vol. ir, pp. 308, 311, figg. 45-48; A. Agrassiz, Catalogue, 1. 69, figs. 91-93.

Vineyard Sound to Bay of Fundy. Massachusetts Bay (A. Agassiz). Greenland (Mörch). Wood's Hole, April, 1873.

Oceania languida A. Agassiz. (p. 454.)
In Agassiz; Contributions, vol. ir, p. 353, 1862 ; Catalogne, p. 70, figs. 94-102, 1205.

Buzzard's Bay to Bay of Fundy. Common in Vineyard Sound; not uncommon in Eastport Harbor.

Eucheilota ventricularis McCready. (p. 45.4.)
Gymnophthalmata of Charleston Harbor, in Proc. of Elliott Society of Nat History, vol. i, p. 187, Plates 11, figs. 1-3, 12, figs. 1, 2, 185̃; Agassiz, Contr butions, vol. iv, p. 353, 1862; A. Agassiz, Catalogue, p. 74, tigs. 104, 105, 1865.
Charleston, South Carolina, to Vinesard Sound.
Eecifeilota dưodecinlalis A. Agassiz. (p. 454.)
In Agassiz, Contributions, vol. iv, p. 353, 1862; Catalogue, p. 75 , figs. 106-107a.
Buzzard's Bay, Naushon Island (A. Agassiz).
Clytia Johnstoni Hincks. (p. 408.)
Hist. British Itydroid Zö̈phytes, p. 143, Plate 24, fig. 1, 1868. Campamularia Johnstoni Alder, Northum. and Dur. Catal., in Trans. Tynes. F'. C., vol. v, p. 126, Plate 4, fig. 8 (t. IIncks). Sertularia uniflora (pars) Pallas, Elench. Zö̈ph., p. 121, 1766. Campanuluria rolnbilis Johnston, Brit. Zö̈ph., ed. ii, pp. $10 \pi, 108$, fig. 18 (not of Linné and Pallas). Clytia rolubilis Lamonroux, Expos. Metb., 1. 15, l'late 4, ligs. E, f, F, 12.21. Clytia bicophoru Agassiz, Coutribntions, vol. iv, 1ן. 304, 354, Plate 27, figs. 8, 9; Plate el, figs. 6-9, 1862; A. Agassiz, Catalogne, p. is, figs. 103-111.

Long Island Somd to the Arctic Ocean ; northern coasts of Europe to Great Britain and France. Common near New Haven and at Thimble Islands, in tide-pools and 2 to 6 fathoms; Wateh Hill, Rhode

Island, 3 to 5 fathoms; Buzzard's Bay; Vineyard Sound, 1 to 14 fathoms, common; off Block Islaud, 29 fathoms; abundant in Casco Bay and Bay of Fundy, low-water to 40 fathoms. Saint George's Bank (S. I. Smitl).

This species is undoubtedly the one described by Pallas, and according to the strict rules of priority it should be called Clytia uniflora.

Clytia intermedia Agassiz. (p. 408.)
Contributions, vol. iv, p. 305, Plate 29, figs. 10, 11, 1862 ; A. Agassiz, Catalogue, p. 75 (no description).

Vineyard Sound, 6 to 8 fathoms, on Phyllophora. Massachusetts Bas (Agassiz).

Platypyxis cylindrica Agassiz. (p. 408.)
Clytia (Platypyxis) cylindrica Agassiz, Contributions, vol. iv, pp. 306, 354, figs. 42-44 (not 41, nor Plate 27, figs. 8, 9), 1862. Platypyxis cylindrica A. Agassiz, Catalogne, p. 80, figs. 112-114. Campanularia volubilis Leidy, Jour. Phil. Acad. Nat. Sciences, ser. ii, vol. iii, p. 138,1855 (not Linné, sp.).
Long Island Sound to Massachusetts Bay. Near New Haren, 4 to 6 fathoms, on Halecium ; Thimble Islands; Watch Hill, Rhode Islaud ; Vineyard Sound; off Buzzard's Bay, 25 fathoms.

Orthopyxis caliculata Verrill. (p. 408.)
Campanularia caliculata Hincks, in Annals and Mag. Nat. Hist., ser. ii, vol. xi, p. 178, Plate 5, B, 1853; Brit. Hydroid Zö̈ph., p. 164, Plate 31, figs. 2-2d Clytia (Orthopyxis) poterium Agassiz, Contributions, vol. iv, pp. 297, 302, fig. 40 Plate 28, Plate 29, tigs. 1-5, 1862. Orthopyxis poterium A. Agassiz, Catalogne, p. 81,1865 .

Vineyard Sound to Labrador; northern coasts of Europe to Great Britain. Off Gay Head and in Vineyard Sound, 4 to 15 fathoms; common in Massachusetts Bay; Casco Bay; and Bay of Fundy, low water to 30 fathoms. Mingan Islands, Labrador, 6 fathoms, (A. E. V). Henley Harbor, Labrador, 20 to 30 fathoms (A. S. Packard, as Clytia volubilis).

Campanularia volubilis Alder. (p. 408.)
Catal. Zoüph. Northnmb. and Durham, in Trans. Tynes. F. C., vol. iii, p. 125, Plate 4, fig. 7, 1857 (not of Johnston) ; Hincks, Brit. Hyd. Zö̈ph., p. 160, Plate 24, fig. 2. Sertularia volubilis Linné (pars), Syst. Nat., ed. x, sp. 19 ; ed. xii, p. 1311 ; Pallas, Elench. Zö̈ph., p. 122, 1766. Clytia volubilis A. Agassiz, Catalogue, p. 77 (not of Lamouroux).
Vineyard Sound to Grecnland and Iceland; northern coasts of Enrope to Great Britain ; low water to 100 fathoms. Common in the Bay of Fundy, low-water to 60 fathoms.

Campanularia flexuosa Hincks. (p. 327.)
Brit. Hyd. Zö̈ph., p. 168, Plate 33. Laomedea flexuosa Hiucks, Devon. and Cornwall Catalogue, in Ann. and. Mag. Nat. Hist., ser. iii, vol. viii, p. 260, 1861.

Laomedea amphora Agassi\%, Contributions, vol. iv, pp.311, 314, fig. 50, p. 352, Plate 30, Plate 31, firs. 1-8, 186: ; A. Agassiz, C'atalogne, p. 93.
Long Island Somd to Gulf of Saint Lawrence; northern coasts of Europe, Isle of Man. New Haven, on piles of Long Wharf; Thimble Islands, near New Haven ; Vineyarl Sound, off Gay Head; abundant on the timbers of the wharves at Eastport, Maine.

Obelia diapiana Verrill. (p. 327. )
Thanmantias diaphamu Agassiz, Mem. Amer. Acad., vol. iv, p. 300, figs. 1, 2, 1849 (? non Mörch). Eucope diaphena (pars) Agassiz, Contributions, vol. iv, l'lato 33, fig. 2, 186: : A. Agassiz, C'atalogne, p. 83, figs. 115-125.
Long Island Sound to Massachusetts Bay. Abundant in New Maven Harbor and Vineyard Sound, on Zosterd, F'ucus, etc.

Oiselia geniculata Allman. (p. 407.)
Annals and Mag. Nat. Hist., vol. xiii, May, 1864 (t. Ifincks) ; Hincks, Brit. IIyd. Zoüphytes, p. 149, Plate 25, fig. 1, 1868. Sertularia geniculatu Limné, Syst. Nat., ed. $\times$, sp. 23 ; ed. xii, sp. 21, p. 1312; Pallas, Elench. Zooph., p. 117, 1766. Laomedea genculata Lamouronx, Pol. Flex., p. 20®; Johnston, Brit. Zö̈ph., ed. ii, p. 103, Plate 25, figs. 1, こ. Encope diaphana (pars) Agassiz, Contributions, vol. iv, p. 32:2, Plate 34, figs. 1-9, 1863. Eucope alternata A. Agassiz, Catalogne: p $86.12 e^{2}$.
Long Island Sound to Labrador. Northern Europe, from North Cape to Great Britain. Common near New Haven; at Thimble Islands; Watch Hill, Rhode Island; Vmeyard Somed, 4 to 15 fathoms; Massachusetts Bay ; Caseo Bay ; Bay of Funds, and northward, low-water to 40 fathoms, on Laminaria, Rhodymenit, etc.

## Obelia polygena Verrill.

Encope polygena A. Agassiz, Catalogne, p. 86, fig. 126, 1865.
Off Gay Head, 4 to 5 fathoms, not common. Nahant, Massaclusetts (A. Agassiz).

Obelia divaricata Verrill.
Laomedea divaricata McCready, op. cit., p. 195, 1859. E'ucope? divaricata A. Agassiz, Catalogue, p. 91, $1=65$.

Charleston, South Carolina (MeCready, Agassiz). A few specimens were fomd on floating algie in Vineyard Sound, which appear to belong to this species. It is closely allied to O. fusiformis (A. Agassiz, sp.).

Obelia prriformis Verrill. (p. 390.)
Catalogne, p. 83, figs. 127-1:99, 1865. Laomedea gelatinosa Leidy, Journ. Acad. Nat. Sci., Philatl., ser. ii, vol. iii, 1. 13-2, 1855 (not Pallas, sp.).
Long Island Sound to Bay of Fundy. Very abundant on piles of wharves, etc., at Wood's Hole.

This species is closely allied to the following ; in the latter the young meduse have sixteen tentacles when set free, and the reproductive eapsules differ slightly in form.

Obelia dichotoma Hincks. (p. 407.)
Brit. Hydroid Zö̈phstes, p. 156, Plate 23, fig. 1, 1863. Sertularia dichotoma Linne, Syst. Nat., ed. x, sp. 24 ; ed. xii, sp. 22, p. 1312. Laomedea dichotoma, var. a, Johnston, Brit. Zoöph., ed. ii, p. 102, Plate 26, figs. 1, 2.
Vineyard Sound, northward; northern coarts of Enrope to Great Britain. Off Gay Head, 8 to 10 fathoms, .1 ascidians; Eastport, Maine.

Obelia longissinia Mineks.
Brit. Hydroid Zö̈ph., p. 154, Plate 27, 1ع68. Sertni c~ix fomgissima Pallas, Eleuch. Zö̈ph., p. 119, 1766 (excl. synonymy). Laomedea longissima Alder, Trans. Trues. F. C., vol. iii, p. 121 (t. Hineks). Laomedea dichotoma, var. b, Johuston, Brit. Zö̈ph., ed. ii, p. 102. Campamlaria gelatinosa Van Beueden, Mém. sur le Campan., p. 33, Plates 1, 2 (t. Hincks).
Gay Head ; Cape Aun, Massachusetts; Bay of Fundy. Coasts of Belginm and Great Britain.

Obella flabellata Mincks. (p. 390.)
Brit. Hydroid Zoüph., p. 157, Plate 29, 1868. Campannlaria fabellata Hincks, Aun. and Mag. Nat. Hist., ser. iii, vol. xviii, p. 297.
Off Thimble Islants, 4 to 5 fathoms, on Astrangia; Watch Hill, Rhode Island, on Laminaria; Wood's Hole, on old wreck, in the passage. Coasts of Great Britain.

The hydrarium of this species very closely vesembles the Obelia commissuralis of Agassiz, and may prove to be identical with it. But the original $O$. commissuralis of McCready, from Charleston, South Carolina, is, perhaps, distinet from that described by Agassiz.

Obelia Commissuralis McCready. Plate XXXVII, fig. 281. (p. 327.)
Proc. Elliott Soc., vol. i, p. 197, Plate 11, figs. 5-7, 1859 ; (?) Agassiz, Contribntions, vol. iv, pp. 315, 351, Plate 33 (except fig. 2), Plate 34, figs. 10-21, 1862; (?) A. Agassiz, Catalogue, p. 91, fig. 134. Laomedea dichotoma Leidy, op. cit., p. 1338, Plate 11, fig. 36 (not Linné, sp.). ? Laomedea gelatinosa Stimpsou, Invert, of Grand Mauan, p. 8, 1853 (not Pallas, sp.).
Charleston, South Carolina (McCready). New Jersey (Leidy). Newport, Rhode Island, and Nahant, Massachusetts (A. Agassiz). New Haven Harbor, on piles ; Vineyard Sound, on floating algæ. Grand Manan (Mills, t. A. Agassiz).

The northern specimens possibly belong to the preceding species.
Obelia gelatinosa Mincks. (p. 391.)
British Hydroid Zoöphytes, p. 151, Plate 26, fig. 1, 1868. Sertularia gelatimnsa Pallas, Elench. Zooph., p. 116, 1766. Laomedea gelatinosa Lamouroux, Polyp Flex., p. 92 ; Johnston, Brit. Zö̈ph., ed. ii, p. 104, Plate 27, fig. 1 (var. b). Campenularia gelatinosa Lamarck, Anim. saus Vert., ed. ii, p. 134 (t. Hincks). Laomedea gigantea A. Agassiz, Catalogue, p. 86, 1865.
New Jersey to Massachusetts Bay; northern coasis of Europe, from North Cape to Belgium and Great Britain; low-water to 20 fathoms. Great Egg Harbor, New Jersey, on orsters; New Haven, on piles of Long Wharf, abundant. Mouth of Charles River, near Boston (H. J. Clark, t. A. Agassiz).

## Rhegmatodes tenuis A. Agassiz. (p. 454.)

In Agassiz, Contributions, vol. iv, p. 361, 1862 ; Catalogue, p. 95, figs. 136-13ヶ.
Buzzardis bay and Vineyard Sound.
Zygodactyla Groenlanidea Agassiz. Plate XXXVII, fig. 275. (p. 449.)

Contributions, vol. iv, p. 360, 1860 ; A. Agassiz, Catalogrue, p. 103, figs. 153-156. Aquorca (rranlandica Péron and Lesueur, Ann. du Mus., vol. xiv, p. 27, 1809 (t. A. Agrassiz).

Buzzard's Bay to Greenland. Common in Vineyard Sound, in Jume and July.

Aquorea albida A. Agassiz. (p. 454.)
In Agassiz, Contributions, vol. iv, p. 359,1862 ; Catalogne, p. 110, figs. 160-162. Buzzard’s Bay (A. Agrassiz).

Tima formosa Agassiz. (p. 449.)
Contributions, vol. iv, p. 362, 1862; A. Agassiz, Catalogue, p. 113, figs. 164-172.
Vineyard Sound, February and April. Massachusetts Bay (A. Agassiz).

Eutima limpida A. Agassiz. (p. 454. )
In Agassiz, Contributions, vol. iv, p. 363, 1862; Catalogue, p. 116, figs. 173-178. Buzzard's Bay, Naushon (A. Agassiz).

Lafoè́a calcalata A. Agassiz. (p. 408.)
Catalogue, p. 122, figs. 184-194. Lafoa cormuta Agassiz, Contr., vol. iv, p. 351 (not of Lamouroux). Laodicea calcarata A. Agassiz, in Agassiz, Contributious, vol. iv, p. 350, 186\%. Campamlaria dumosa Leidy, op. cit., 1). 138, 1855 (not of Fleming).
Sonth Carolina to Vineyard Sound; Buzzard's Bay and Vineyard Sound. The hydrarium was abundant on floating Zoster and algie in Vineyard Sound, creeping over Sertularia cornicina; also at low-water, and in 6 to $S$ fathoms on Phyllophora; Thimble Islands, in tide-pool, on Vesicularia. Charleston, South Carolina (McCready, deseribed as a constituent part of his Dynamena cornicina).

Halecium Gracile Verrill, sp. nov. (p. 32S.)
Stems slender, flexible, clustered, componnd, consisting of many very slender, united tubes, light brown or yellowish, pimately much branched; branches alternate, ascending, long, slender, tapering, similar to the main stem, and usually similarly subdivided; the branches and branchlets mostly arise from opposite sides of the stem, so that they stand nearly in one plane; ends of branches and the branchlets simple, very slender, translucent, whitish, divided into rather long segments; the articulations not very conspicuous, somewhat oblique ; each segment usually with a prominent cylindrical process, arising from near the upper end, which, on the older bramehes, bears the hydroid cell, but on the young branchlets are themselves hydroid cells, furnished with a thin, slightly
expanded border, haring a circle of dots near the edge; the older or secondary cells, arising from these, are rather elongated, narrow, cylindrical, with slightly expanded rim, more or less bent and erooked or geniculate at base, and usually with one or two irregular constrictions. Many of the older cells are much elongated, and have two or three old rims below, separated by distances equal to two or three times the diameter. The hydroids are long, slender, with numerons long tentacles, mueh exsert from the cells. . The branchlets and gonothecre (reproductire capsules) arise in the axils of the hydroid cells, and, like the latter, the gonotheceare often secund on the branchlets. The male and female capsules are different in form. The male gonothece are oblong, subfusiform, about three times as long as broad, obtusely rounded at the end, more gradually tapered to the base; the female gonothece are broader, somewhat flattened, usually a little shorter, gradually expanding from the narrow base to near the distal end, which is emarginate; the outer angle broadly rounded and slightly prodnced; the inner angle prolonged into a short cylindrical hydroid cell, with the edge slightly everted, from which two hydroids usually protrude. Height, $75^{\mathrm{mm}}$ to $150^{\mathrm{mm}}$; diameter of stems, seldom more than $1^{\mathrm{mm}}$; length of female gonothece, abont $1^{\mathrm{mm}}$; breadth, $0.40^{\mathrm{mm}}$ to $0.45^{\mathrm{mm}}$; length of male gonothece, $1^{\mathrm{mm}}$ to $1.10^{\mathrm{mm}}$; breadth, $0.30^{\mathrm{mm}}$ to $0.40^{\mathrm{mm}}$; diameter of hydrothece, about $0.12^{\mathrm{mm}}$.

Great Egg Harbor, New Jersey, on oysters, just below low-water mark; Long Islaed Sound, near New Haven, in 2 to 6 fathoms, abundant, and also in brackish water on floating timber; Thimble Islands, 2 to 6 fathoms; Buzzarã's Bay and Vineyard Sound.

This species is more nearly allied to $H$. halecinum of Enrope and Northern New England than to any other described species. It is a much more slender and delicate species, with longer joints, and narrower and more elongated hydrothece and polyps. The female gonothece, althongh similar, differ in having the distal ends decidedly emarginate, with the onter angle somewhat produced, though much less so than in those of H. Beanii.

Antennularia antennina Fleming. (p. 497.)
Brit. Anim., p. 546 ; Johnston, Brit. Zoüph., ed. ii, p. 86, Plate 19, figs. 1-3;Hineks, Brit. Hydr. Zö̈ph., p. 280, Plate 61. Sertularia antenniua Limné, Syst. Nat., ed. x, 1758; ed. xii, p. 1310. Antemularia indivisa Lamarck, Anim. sans Vert., ed. ii, vol. ii, p. 156.
Martha's Vineyard to Bay of Fundy; northern coasts of Europe to Great Britain and France. Off Gay Head, 8 fathoms; Casco Bay, 6 to 30 fathoms; Bay of Fundy, 10 to 60 fathoms, not uncommon.

Aglapifenia arborea Verrill.
P'lumularia arborea Desor, Proc. Boston Soc. Nat. Itist., vol. iii, p. 65, 1848; A. Agassiz, Catalogne, p. 140.
The original speeimen of this species is still preserved in the collection
of the Boston Society. It consists of a large number of long, mostly simple, but occasionally forked stems, forming a dense phome-like cluster, mited at base by an intricate mass of ereeping stolons, which cover what looks like the dead axis of a Gorgomia, but is most probably a dried-up black alga, and is certainly not, as Desor supposed, a part of the hydroid. The stems are mostly 4 to 6 inches long, more or less recurverl, composed of short joints, and densely covered with the secund pimate, which increase in length from the base toward the tips; the pimat arise from every joint, and form two close alternating rows along the inner side of the stems ; they are directed upward, and more or less curved inwarl, toward each other, near the tips, and mostly $5^{m m}$ to $S^{\text {min }}$ in length, composed of short, stont, oblique joints, not twice as long as broad. Hydra-cells deep, slightly flaring, rising at an angle of about $45^{\circ}$, attached only at base, the upper side less than half as high as the lower, border strongly dentate; one slender median denticle on the up. per edge; four lateral ones ou each side, of which three are subequal, triangular, rather wide, obtuse, with rounded intervals; the lower or outer lateral one is twice as long, rather acute; the single odd median one, on the outer margin, is equally long and more slender, and usually bent upward. A single large tubular median nematophore is attached to the outer side of the cell, along most of its length, but separated at the end, which is obliquely trumeate, with the apertme on the inner side, its tip nor exteuding beyond the long lateral denticles of the hydracell. Lateral nematophores small, sessile, not so loug as the upper or inner side of the cells. The large, closed, oblong corbula are irregnlarly scattered among the other pinure; they oceupy the terminal part of the modified pimm, but there are usually three or four unaltered hydracells on the basal portion, below the corbnla; the pinne bearing corbula are somewhat shorter than the others.

Shoals of Nantucket, ten miles east of Sancati Head, 14 fathoms, (Desor).

Plumularia tenella Verrill, sp. nov. (p. 407.)
Stems clustered, simple, slender, 1 to 2 iuches high, horn-colored; branches alternate, very slender, not very long, mostly unbranched, placed toward one face of the stem, inclining forward, and ascending at an angle of about $45^{\circ}$, and originating from the alternate joints of the stem, the internodes being longer than the joints that bear branches; at one side of the base of each branch there is a hydrotheea and accompanying nematophores; the internodes of the stem also bear one or two nematophores. The basal segment of each branch is short ; the rest are of three kinds ; every third one is usually stonter, and bears a hydrotheca; just in frout of each hydrotheca there is usually a very short segment, scarcely longer than broad, and sometimes indistinct, destitute of nematophores; then follows a much longer, slender segment, five or six times as long as broad, articulated by a very oblique joint at its dis-
tal end with the thickor and shorter polypiferons segment, and bearing one or two nematophores on the median line, which may be either near the middle or toward the proximal end. Hydrothece broad, subcylindrical, a little longer than broad, with a slightly flaring, even rim ; the axis forms an angle of about $45^{\circ}$ with the branches; the free part of the distal side is about half the length of the proximal side. Nematophores relatively large, usnally three with each hedrotheca: one on each side, shorter than the hydrotheca, trumpet-shaped, with a round, cup-like opening, narrowed below, nearly sessile; another, similar in form, placed toward the proximal end of the segment, inclined forward, and nearly reaching the base of the hydrotheea. Gonothecre not observed.

Off Gay Head, 8 to 10 fathoms, among ascidians; Vineyard Sound, $S$ fathoms.

This species is related to $P$. Catharince Johnston and $P$ cormucopice Hincks, from the English coast. The former differs in having opposite branches, smaller and more elongated nematophores, etc.; the latter agrees in having alternate branches, but the nematophores are smaller, longer, and more slender, and the joints of the branches are different.

This is the first genuine species of Plumularia that has been discorered on the New England coast.
Sertularia argentea Ellis and Solander. Plate XXXVII, fig. 280. (p. 408.)

Zö̈phytes, p. 38 ; Johnston, Brit. Zö̈ph., ed. ii, p. 79, Plate 14, fig. 3, Plate 15, figs. 1-3; Hincks, Brit. Hydr. Zoöph., p. 263, Plate 56; A. Agassiz, Catalogue, p. 144 .

New Jersey to the Aretic Ocean; northern shores of Europe to Great Britain and France; low-water to 110 fathoms. Great Egg Harbor, New Jerses, in April ; common and of large size in Long Island Sound, near New Haren, Thimble Islands, and at Fanlkner's Island, 1 to S fathoms; Wateh Hill, Rhode Island; Viueyard Sound, 1 to 15 fathoms, very common; abundant in Casco Bay; Bay of Fundy; Nova Scotia coast; and Gulf of Saint Lawrence, low-water to 110 fathoms. Saint George's Bank (S. I. Smith).
Sertularia cupressina Linné. (p. 405.)
Syst. Nature, ed. x, 1758; el. xii, p. 1308; Pallas, Eleuch. Zooph., p. 142, 1766; Johnston, op. cit., p. 80, Plate 16, figs. 1, 2; Hincks, opl. cit., 1. 270, Plate 57 ; A. Agassiz, Catalogne, p. 143.

New Jersey to the Arctic Ocean ; northern coasts of Europe to Great Britain and France. Great Egg Harbor, New Jersey, with reproduetive capsules, in April ; Vineyard Sound, not common; Massachusetts Bay ; Casco Bay; Bay of Fundy, in tide-pools and from 1 to 110 fathoms, common. Saint George's Bank (S. I. Smith). Absecom Beach, New Jersey (Leidy).

Sertularia pumla Limé. Plate XXXVII, fig. 279. (p. 327.)
Syst. Niture, ed. x, 1758 ; ed. xii, p. 1306 ; Pallas, Elench. Zooph., p. 130 ; Johnston, op. cit., p. 66, Plate 11, figs. 3, 4 ; Hincks, Brit. Hyır. Zö̈ph., p. 260, Plate 53,
fig. 1. Dymamena memila Lamonronx, Bulletin Soc. lhil., vol. iii, p. 181. 181: ;


New Jersey to the Aretic Ocean; Finmark to Great Britain and France. Great Ligg Harbor, New Jersey, on Fucus; abmant on the shores of Long Istand Sound, Vineyard Sound, and northward, between tides.

Seletularia cornicina Verrill. (p. 408.)
Dynumenu cornicina (pars) MeCready, olp. cit., 1. 204, 1859 ; A. Agassiz, Catalogne, 1. 14:, 1e65.

Charleston, South Carolina, to Vineyard Sound. Not uncommon in Vinesard Somad, 1 to $S$ fathoms, often on Halecium gracile ; also on lloating Zostera, ete., and covered with Lafoëa calcarata.

This species somewhat resembles the preceding, but the hydra-cells are more distant, longer, more prominent, and freer, while the end is distinctly bent outward, making the lower side concilve in the midhle ; aperture strongly bilabiate, often apparing tridentate.

Hydrallmania falcata Hincks. (p. 408.)
Brit. Hyd. Zoöph., p. 2is3, l'late 5s, 186z. Sertularia falcata Linué, Syst. Nat., od. x, 1:5̈; ed. xii, 1. 1309; I'lumularia falcata Lamarck, Anim. sans Vert., ed. ii, 1. 160; Juhnston, Brit. Zö̈ph., p. 90, Plate 21, figs. 1, 2. Sertataria tencressime Stimpson, Mar. Invert. Grand Manau, p. 8, 1853.
Long Island Sound to the Arctic Ocean; northern shores of Enope to the British Chamel. Common near New Haven, and off Thimble Islands, 4 to $S$ fathoms; Wateh Hill, Rhode Island; Vineyard Sound, and off Gay Head, 6 to 20 fathoms; Massachusetts Bay, abundant; very abundant in Casco Bay and Bay of Fundy, low-water to 110 fathoms; Miugan Islands, Labrador. Saint George's Bank, very abundant, $\because 0$ to 150 fithoms, (S. I. Smith, A. S. Packard).

## Tubularina.

Nemorsis Bacher Agassiz. (b. 454.)
Mem. Amer. Acad., vol. iv, p. 239, figure, 1849 ; Contributions, vol. iv, p. 345; A. Agassiz, Catalugue, p. 149, figs. 227-231. Nrmopsis Gibbesi McCready, op. cit., p. 58 , Plate 10, figs. 1-7, 1259.

Charleston, South Carolina, to Nantucket.
Bougainyillia surerciliaris Aggasiz. Plato XXXVif, fig. 276. (1. 328.)

Contributions, vol. iv, pp. 279, 291, figs. 37-39, Plate 27, figs. 1-7, 1862; A. Agrassiz, Catalogne, p. 153, figs. 2:3-240. Hippocrene supcreiliaris Agassiz, Mem. Amer. Acad., vol. iv, p. 250, Plates 1-3, 1849.
Newport, Ilhode Istand, to Bay of Fundy; ? Greeuland.
Margelis Carolinensis Agassiz. (p. 4õ0.)
Contributions, vol.iv, p. 34, 13ti2; A. Agassiz, Catalogne, p. 156, firs. 241-243. Hippocrenc Carolincasis MeCrealy, op. cit., p. 161 (separate copies, p. 6:2), Plate 10 , figs. -10 .
Charleston, South Carolina, to Vineyard Sound. Wood's Hole, at surface, evening.

Eudendrium dispar Agassiz. (p. 408.)
Contributions, vol. iv, pp. 285, 289, 342, fig. 36, Plate 27, figs. 10-21, 1862; A Agassiz, Catalogue, p. 159, fig. 249.
Vineyard Somul to Bay of Fundy ; 1 to 20 fathoms.
Eudendrium tenue A. Agassiz.
Catalogne, p. 160, fig. 250, 1865.
Buzzarl's Bay to Bay of Fundy, low-water to 15 fathoms. This is closely allied to the English E. capillare Alder, but the latter scems to be a smaller and more delicate species.

Eudendrium ramosum Ehrenberg. (p. 408.)
Corall. roth. Meer, p. 72, 1834; Johnston, Brit. Zö̈ph., ed. ii, p. 46, Plate 6, figs. 1-3; Hincks, Brit. Hydr. Zoöph., p. 82, Plate 13; ? A. Agassiz, Catalogue, 1. 160. Tubularia ramosa Linné, Syst. Nat., ed. xii, p. 1302.

Martha's Vineyard to Labrador; northern coasts of Europe to Great Britain. Off Gay Head, 8 to 20 fathoms; Casco Bay, 10 to 60 fathoms ; Bay of Fundy, 6 to 100 fathoms. Off Saint George's Bank, 430 fathoms, (S. I. Smith).

Dyshorphosa fulgurans A. Agassiz. (p. 448.)
Catalogne, p. 163, figs. 259, 260, 1265.
Buzzard's Bay, Naushon, and Massachnsetts Bay (A. Agassiz).
Turritopsis nutricula McCreads. (p. 454.)
Op. cit., pp. 55, 86, 127, Plates 4, 5, 8, fig. 1, 1857-9; Agassiz, Contributions, vol. iv, p. 347 ; A. Agassiz, Catalogue, p. 167, figs. 269, 270.
Charleston, South Carolina, to Vineyard Sonnd.
Stomotoca apicata Agassiz. (p. 455.)
Contributions, vol. iv, p. 347, 1862; A. Agassiz, Catalogne, p. 168. Saphenia apicata McCready, op. cit., p. 129, Plate 8, figs. 2, 3, 1859.
Charleston, South Carolina (McCready); Newport, Rhode Island (A. Agassiz).
Clava leptostyla Agassiz. (p. 32S.)
Contributions, vol. iv, pp. 218, 229, fig. 32, Plate 20, figs. 11-16a, Plate 21, figs. 1-10a ${ }^{\text {a }} 1862$; A. Agassiz, Catalogue, p. 170, fig. 274; Hincks, op. cit., p. 6, Plate 2, fig. 1, 1868. Clara multicornis Stimpson, Invert. Grand Manan, p. 11, 1853; Leidy, Journ. Acad. Nat. Sciences, Philarl., vol. iii, p. 135, Plate 11, figs. 33, 34, 1855 (not of Johnston).
Long Island Sound to Labrador ; coasts of Great Britain. Near New Haven Light; Thimble Islands, in tide-pools; Beverly, Massachusetts ; Casco Bay, on rocks and Fucus, abundant; Eastport, Maine, on piles. Point Judith, Rhode Island (Leidy). Nahant, Massachusetts (Agassiz). Morecombe Bay (Hincks).
Cordylopiora, species undetermined.
Syncoryma, sp., Agassiz, Contributions, vol. iv, p. 339 (no description).
Newport Harbor, Rhode Island (Leidy, t. Agassiz). In 1860 I obtained a species of this genus from the vicinity of Cambridge, Massa-
chusetts, in water that was fresh, or nearly so. It grew to the height of two inches or more, with long slender branches.

Willea ornata McCready. (p. 4iñ.)
Op. cit., p. 149 (separate copies, p. 47), Plate 9, figs. 9-11, 1859 (Willsia) ; Agassiz, Contributions, vol. iv, p. 346,1862 ; A. Ayassiz, Catalogne, p. 171, figs. $274^{\text {n }}$, 275.

Charleston, South Carolina (MeCready). Buzzard's Bay (A. Agassiz).

## Coryfe mirabllis Agassiz.

Contributions, vol.iii, Plate 11c, tigs. 14, 15, Plates 17-19; vol. jv, pp. 185-217, firs. 9-31, Plate 20, figs. 1-9, Plato e3a, tig. 12; A. Agassiz, Catalogne, p. 175, figs.
 1819. : Tubularia stellifera Conthony, Boston Jour. Nat. Hist., vol. ii, p. 5ff, 1539. Coryne grarata Wright, Eilinb. New Phil. Jonr., Apr., 1852, Phate T, fig. 5 (t. Mincks). Syncoryne gravata IIncks, Brit. Hyth. Zoöph., p. 5:3, Plato 10, fig. 1.
The species described by Couthony may, possibly, have been this ; but his species was described as unbranched, and as if it had two distinct eircles of tentacles. Martha's Vineyard to Greenland. Common in Massachusetts Bay; Casen Bay; and Bay of Fundy. Scotland (Hincks).

Dipurena conica A. Agassiz. (p. 455.)
In Agassiz, Contributions, vol. iv, p. 341, 1362 ; A. Agassiz, Catalogue, p. 181, figs. 301-305.

Buzzard's Bay, Naushon (A. Agassiz).
Gemmaria gemmosa MeCready. (p. 455.)
Op, cit., p. 151, Plate 8, figs. 4, 5, 1859; A. Agassiz, Catalonue, p. 134, fig. 303. Zanclea gemmosa McCready, op, cit., p-151,1549; Agassiz, Contributions, vol. iv, p. 344.

Charleston, South Carolina (McCready). Buzzard's Bay (A. Agassiz).
Pennaria tiarella MeCready. Plate XXXVII, figs. 277, 278. (p. 327.$)$

Op. cit., p. 153, 1859; A. Agassiz, Catalogue, p. 187, figs. 311-315. Globiceps tiavella Agres, Proc. Boston Soc. Nat. Hist., vol. iv, p. 193, 135\%. Encmryne elegans Leidy, op, cit., p. 136, Plate 10, figs. 1-5, 185. GLobieeps tiarclla Agrassiz, Contributions, vol. iv, p. 344, 186?.
Charleston, South Carolina, to Massachusetts Bay. Great Egg Harbor, New Jersey ; near New Haven; Vineyard Sound, common, low-water to 10 fathoms, and on floating algæ.

Ectopleura ochracea Agassiz. (1. 455.)
In Agrassiz, Contributions, vol. iv, 1. 343, 1862; Catalogne, p. 191, figs, 320-323.
Buzzad's Bay, Naushon (A. Agassiz).

Corymorpha pendula Agassiz. Plate XXXVI, fig. 273. (p. 510.)
Contributious, vol. iv, pp. 276, 343, Plate 26, figs. 7-17, 1862 ; A. Agassiz, Catalogne, p. 192, fig. 324. Corymorpha nutans Stimpson, Invert. of Grand Manan, p. 9, 1853.

Block Island to Gulf of Saint Lawrence. Common in Casco Bay and Bay of Fundy, 8 to 30 fathoms; off Block Island, 29 fathoms. Off Cape Cod (A. S. Bickmore).

Hybocodon prolifer Agassiz. Plate XXXVIII, fig. 282. (p. 32S.)
Contributions, vol. iv, pp. 243, 343 , Plate $23^{\text {a }}$, figs. 10,11 , Plate 25, figs. 1-15, 1862 ; A. Agassiz, Catalogue, p. 193, figs. 325-328.
Vineyard Sound to Massachusetts Bay.
Parypha crocea Agassiz. Plate XXXVI, fig. 274. (p. 390.)
Contributions, vol. iv, pp. 249, 342, Plates 23, 23a , figs. 1-7, 1862; A. Agassiz, Catalogne, p. 195. ? Tubularia cristata McCready, op. cit., p. 156, 1859=Parypha cristata Ag., op. cit., p. 342.
Brooklyn, New York, to Boston, Massachusetts. Very abundant near New Haven, on piles in harbor, and in 2 to 6 fathoms, off Thimble Islands; Wood's Hole, on piles, abundant. Warren Bridge, Boston (Agassiz).

This is probably not distinct from P. cristata, which is abundant at Charleston, South Carolina, aud Fort Macon, North Carolina.

Thamnocnidia tenella Agassiz. (p. 407.)
Contributions, vol. iv, pp. 275, 342, Plate 22 , figs. 21-30, 1862; A. Agassiz, Catalogne, p. 195.
Rhode Island to Bay of Fundy. Off Watch Hill, 4 to 5 fathoms; Vineyard Sound, 6 to 10 fathoms; common in Casco Bay and Bay of Fundy, low-water to 40 fathoms.

Hydractinia polyclina Agassiz. (p. 407.)
Contributions, vol. iii, Plate 16 ; vol. iv, pp. 227, 339, figs. 33-35, Plate 26, fig. 18, 1862 ; A. Agassiz, Catalogne, p. 192, figs. 329, 330. Hydractinia echinata Leidy, op. cit., p. 135, Plate xi, fig. 35, 1855 (? not of Johnston).
New Jersey to Labrador. Very abundant in Long Island Sound, Vineyard Sound, Casco Bay, and Bay of Fundy, low-water to 60 fathoms. Saint George's Bank (S. I. Smith). Labrador (Packard). Greenland (Mörch). ? Charleston, South Carolina (McCready).

The ideutity of this with the European species is somewhat doubtful, though united by Hincks and others. The latter extends southward on the European coasts to Great Britain and Frauce.

## Physophork.

Nanomi cara A. Agassiz. (p. 455.) .
Proc. Buston Soc. Nat. Hist., vol. ix, p. 181, 1863; Catalogne, p. 200, figs. 332-350. Newport, Rhode Island ; Massachusetts Bay ; Nahant (A. Agassiz).

## I'orpiter.

Pifisaba pelafica Lamatek. (p, tion.)




 Araliphes, Pate 11 (explamation). Physalin arefhese Tilesins, in Krusensterns



W:amer parts of the Atlantic Ocean and Gulf of Mexico, eoming northward in the Galf strean to the sonthern coast of New England and Lomg Island; and off Sant George's Bank and Nova Scotia. Not uncommon, in good condition, in Vineyard Sound and Inzzard's Bay. Watch Hill, Rhorle lsland (D). (. Eaton). Bast of Saint (ieorgeis Bamk (S. I. Smith). Fort Macon, North Carolina (coll. Dr. Yarow).

Thelella mutica Lamarck. (p. 45\%.)
Syst. des Anim. sans Yert., 1 . 35̈n, 1ヶ01; Bose, Hfist. Nat. des Vers., vol. ii, p. 15R;
 liphes, p. nil, Ilate 12, ligs. 1,2; A. Agassiz, Catalogne, p. Plf, ligs. 35̄-357. Meduse tellla Limé, Ssst. Nat., wd. xii, 1. 1093.
Tropical parts of the Atlantic and Gulf of Mexico, coming northward in the Gulf Stream as far as Nantucket and off Saint George's Bank. Aspinwall (coll. F. H. Bradley) ; coasts of Florida (Agassiz) ; Long Island Sound (A. Agassiz).

## POLYPI or ANTHOZOA.

## alcyonaria.


I'roc. American Assuciation for Alv. of Science, 18.50, 1, 209 ; Verrill, Revision of Polyps of Eastern Coast U. S., in Memoirs Boston Soc. Nat. Hist., vol. i, p.


Rhode Island to Gulf of Saint Lawrence. Off Watch Mill, Rhode Island, 4 to $\overline{5}$ fathoms; off Cuttylnmk Island, 10 to 15 fathoms; off Gay Head, S to 10 fathoms ; common in Massachmsetts Bay, Caseo Bay, Bay of Fundry, and coast of Nova Scotia, low-water to 80 fathoms. Gulf of Saint Lawrence (Whiteaves). Saint George's Bank (S. I. Simith).

## Leptogorgia temuis Verrill.

Memoirs Boston Soc. Nat. Ilist., vol. i, p. 8, 1864. Gorgonia tenuis Verrill, Proc. Boston Soc. N. M., vol. $5, ~$,. 339, 1 ~ 66. Leptogorgia teres (error typ.) Verrill, Amer. Jour. Science, vol. xlviii, p. 4:0, $1=69$.
"Bay of New York." Specimens in the museum of lale College are supposed to have come from long Island Sound, but the exact locality is not known.

## AC'TINARIA.

Metridium marginatum Milne-Eimards. (p. 329.)
Hist. Nat. des Coralliaires, vol. i, p. 254,1857 ; Verrill, Revision of Polyps., in Mem. Boston Soc. Nat. Hist., vol. i, p. 22, 1864 ; Proc. Boston Soc. Nat. Hist., vol. x, p. 337, 1866 ; American Naturalist, vol. ii, p. 252 ; 'Tenney, Natural History, p. 523 , figs. $515-517,1865$; A. and Mrs. E. C. Agassiz, Sea•Sido Studies, p. 7, figs. 2-7, 1865. Actinia marginata Lesneur, Journal Acad. Nat. Sciences, Philad., vol. i, p. 172, 1817 ; Gould, Invert. Mass., ed. i, p. 349, 1841; Leidy, Journ. Acad. N. S., Philad., ser. ii, vol. iii, p. 140, 1855 Agassiz, Contributions, vol. iii, p. 39, fig. 8, 1850. Actinia lionthus Dawson, Cauadian Naturalist and Geologist, vol. iii, p. 402, figs. 1, 2, 1858.
New Jersey to Labrador. Common in Long Island Sound, Buzzard's Bay, and Vineyard Sonnd, but mostly smaller than farther north; abundant in Massachusetts Bay, Casco Bay, and Bay of Fundy, lowwater to 90 fathoms.

Sagartia leucolena Verrill. Plate XXXViti, fig. 284. (p. 329.)
Proc. Boston Soc. Nat. Hist., vol. x, p. 336, 1866; American Naturalist, vol. ii, p. 261.
North Carolina to Cape Cod. Common in Long Island Sound, Buzzard's Bay, and Vineyard Sound; Great Egg Harbor, New Jersey. Fort Macon, North Carolina (coll. Dr. Yiarow).

Sagartia modesta Verrill. (p. 330.)
Proc. Boston Soc. Nat. Hist., vol. x, p. 337, 1866.
Long Island Sound to Vineyard Sound. Savin Rock, near New Haven; Goose Island; Stony Creek; Naushou Island; low-water, buried in sand or gravel.

Paractis rapiformis Milne-Edwards. (p. 363.)
Hist. Nat. des Coralliaires, vol. i, p. 249, 18.7\% ; Verrill, American Jonrnal of Science, vol. iii, p. 436, 1872; Dana, Corals and Coral Islands, p. D3, figure, (in ed. i, as Sagartia modesta V.). Actinia rapiformis Lesueur, Jonru. Acad. Nat. Sciences, Philad., vol. i, 1. 171, 1817 ; Verrill, Memoirs Boston Soc. Nat. Hist., vol. i, p. 35, 1864 ; Proc. Boston Soc. N. H., vol. x, p. 338.
North Carolina to Long Island Somnd. Fort Macon (coll. Dr. Yarrow); New Jersey (Lesueur); near New Haren (Dana).

Halocampa producta Stimpson, MSS. Plate XXXVIII, fig. 285. (p. 330.)

Vervill, Revision, in Memoirs Boston Soc. Nat. Hist., vol. i, p. 30, Plate 1, figs, 10, 11, 1864. Actinia proolucfa Stimpsou, Proc. Boston Soc. Nat. Hist., vol. v, p. 110, 1856. Corynactis albida Agassiz, Proc. Bost. Soc. Nat. Hist., vol. vii, p. 24, 1859. Ifalcampa albilla Verrill, Memoirs Buston Soc. Nat. Hist., vol. i, p. 29, 1864; A. and E. C. Agrassiz, Sea-Side Stndics, p. 16, fig. 15, 1865; Verrill, Proc. Bost. Soc. Nat. Hist., vol. x, p. 338,1870 (Halocampa).
South Carolina to Cape Cod. Shores of Long Island Sound, at Stony Creek, etc. ; Nanshon Island; Martha's Vineyard ; Nantucket; Cape Cod. Charleston, South Carolina (Stimpson).

Edwardsia farinaced Verrill. (p. 510.)
American Jomrnal of Scimee, vol. xlii, p. 118, 1866.
Off Gay Head, 1!) fathoms; Caseo Bay, 10 to 70 fathoms; Bay of Fundy, S to 90 fathoms.
Edwardsia lineata Verill, sp. nov. (p. 497.)
Body cylindrieal, elongated, covered over the base and sides with a dirty, brownish, slightly rongh and wrinkledepidermis, except anterionly, below the tentacles, where it is smooth, translucent, and usually with eight impressed, longitudinal, thake-white lines, showing throngh. Tentacles, $2+t$ to 30 , or more, in the larger specimens, slender, tapering, obtuse, white or pale thestocolor, each with a tlake-white, longitmbinal line along the imner side. Disk, with a white cirele around the month, and often with S , or more, radiating, white lines, extending to the base of the inner tentacles; border of the month sometimes pale red ; naked part of coltum pate tlesh-color, often with a circle of white below the bases of the tentacles, and usually with eight oblong or finsiform flake-white spots between the longitudinal impressed lines.

Length, $25^{m m}$ to $33^{m m}$; diameter, $2.5^{m m}$ to $3^{m m}$. A very young specimen had 18 slender, equal. long tentacles, each with a median longitudinal line of white on the inside; disk with 6 radiating lines of white; naker part of the eolmm with 6 impressed white lines, and with 6 oblong, flake-white spots between them. Breadth aeross the expanded tentacles, $3^{\mathrm{mm}}$.

This species is remarkable for not having, in any of the specimens fomb, a naked basal area, nor any trne disk for attachment, thus differing both from Phellia and the other species of Edacardsia. This may be due to its peenliar habit of nestling in the erevices and interstices bretween rocks, aseidians, worm-tubes, ete.

Oft Watch Hill, Rhode Island, 4 to 5 fathoms, in eavities in and beneath Astrangia, ete.; Vineyard Sound and off Gay Hearl, 6 to 12 fathoms, among ascidians, anmelid-tubes, etc., abmiant.

Arachnactis bracholata A. Agassiz. (p. 451.)
Proc. Boston Soc. Nat. Hist., vol. ix, p. 159, 1e62; Boston .Journal of Nat. Ilist., vol. vii, p. $5 \because 5,1863$; Verrill, Memoirs Boston Soc. N. H., p. 33 ; Proceedings, vol. x, p. 343.
Mr. A. Agassiz has recently ascertained that this is only a larval form of some species of Edarardsia. As it lad already developed 16 tentacles, it must belong to one of the species having mmerons tentarles when adult.

## Peachia parasitica Verrill.

Proe. Boston Soc. Nat. Hist., vol. x, p. 333, $1=66$; Bicidium parasificum Agassiz, Proc. Boston S. N. If., vol. vii, p. 24, 1859; Verrill, Revision of Polyps, in Memoirs Boston S. N. H., vol. i, p. 31, Plate 1, figs. 14, 15, 1864; A. and Mrs. E. C. Agassiz, Sea-Side Studies, p. 15, fig. 14, 1865.
Cape Cod to Bay of Fundy, on Cyanea arctica; Eastport, Maine, buried in gravel at low-water mark (two specimens, of very large size). I am
not aware that this species has been found sonth of Cape Cod, but it will probably be fonnd hereafter, since the Cyanea is common.

Epizoantifus Americanus Verrill. Plate NXXVIH, figs. 286, 287. (p. 510.)

American Journal of Science, vol. ii, p. 361, 1871 ; Dana, Corals and Coral Islands, ed. i, p. 62, figs 1, 2, 1872. Zoanthus parasiticus Vervill, Revision of Polyps, in Mem. Boston Soc. N. H., vol. i, p. 34, 1864, (not of Duch. and Mich., 18fi0.) Zornthus Americamus Verrill, op. cit., p. 45; Proc. Boston Soc. Nat. Hist., vol. x, p. 335, 1866. Gemmariu Americana Verrill, American Naturalist, vol. ii, p. 9 , fig. 42.

Off New Jersey to Gulf of Saint Lawrence, in deep water. Off Block Island, 29 fathoms, on shells ocenpied by Eupagurus ; off Grand Manan, in 40 to 50 fathoms, on shells covering Eupagurus, and in 109 fathoms, on rocks; off Saint George's Bank, 430 fathoms, on rocks, (S. I. Smith and O. Harger); Saint George's Bank, 60 fathoms, ou shells ocenpied by Eupagurus (Smith and Harger) ; Gulf of Saint Lawrence, on rocks, (Whiteares); Massachnsetts Bay (J. E. Gray). Off New Jersey, N. lat. $40^{\circ}$, W. long. $73^{\circ}, 3 \geq$ fathoms, on shells inhabited by Eupagurus pubescens, (coll. Captain Gedney).

## MADREPORARIA.

## Astrangia Dane Agassiz. (p. 40s.)

Proc. American Assoc., vol. ii, p. 68, 1849 (not of Edw. and Haime, 1850) ; Verrill, Revision Polyps, p. 40, 1864 ; A. and Mrs. E. C. Agassiz, Sea-Side Studies, p. 16, figs. 16-20, 1865 ; Yerrill, Proc. Boston Soc. Nat. Hist., vol. x, p. 335, 1866; Dana, Corals and Coral Islands, p. 63, figures, 187\%. Astrangia astraiformis Edw. aud Haime, Anu. des. Sci. Nat., vol. xii, p. 181, 1850 ; Coralliaires, vol. ii, 1. 614, 1857 ; Leidy, Journ. Acad. Nat. Sciences, Philad., vol. iii, p. 139, Plate x, figs. 9-16, 1855 ; Verrill, Revision of Polyps, p. 39, 1864.

North Florida and west Florida to Cape Cod. Common in Long Island Sound, near New Haven, at Savin Rock, off Thimble Islands, ete., 1 to 6 fathoms, rocks; Watch Hill, Rhode Islant, 4 to 5 fathoms; Vineyard Sound and Buzzard's Bay, 2 to 15 fathoms ; Fort Macon, North Carolina (coll. Dr. Yarrow). Charleston, South Carolina (Agassiz). West Florida (E. Jewett).

## 

## PORIFERA or SPONGIæ.

## calcarea.

Grantia ciliata Fleming. (p. 330.)
British Anim., p, 325; Johnston, Brit. Sponges and Lithophytes, p. 176, Plate 20, figs. 4, 5, Plate 21, figs. 6, 7, 1842; Bowerbank, Monog. British Spongiada, vol. i, Plate 26, figs. 345, $346^{\mathrm{n}}$; vol. ii, p. 19, 1866. Spongia ciliata Fabricins, Fanua Gronlaudica, p.448, 1780. Sycandra ciliata Hreckel, Die Kalkschwämme,
 Bllis and kolamer, Zoophytes, p. 190, llate 5 , figs, 8, !. (irantia coronuta Hassall, Amm, ame Mag. Nat. Hist., Vol. vi, p. 1i.1.
Rhode Island to Greenland ; morthern coasts of Emrope. Common in Casco Bay and Bay of Fomdy, low-water to fol fathme; Vineyard Somed, not meommon. Point Judith, Rhode Island (Leidy).

## ? Levcosolevia botryombe bowebamk. (p. jou.)





Marthas Vineyard to Ginf of Sant Lawrence ; northern coasts of Europe to England and France.

I refer some of our langer specimens to this species with considerable donlst. They appear to be distinct from the following species, with which they have formerly been confomided.

## Ascomtis fragilis Ireckel.

Op. cit., vol. if, p. 74, llate 11, figs. 5-9, Plate 12, figs. 5a-5i, 187:. Leucosoldia thummoides Harekel, l'rodrom., p. ©4:3, spec. 70. Leurnsolenin bohyoides II. .J. Clark, Mem. Boston Eoc. Nat. Hist., vol. i, part 3, p. :e th, (sep. copies, p. 1! ), Plate 9. firs. 40-4, Plate 10, fig. 6.1, $1 \approx 66$ (not of Bowerbank); this Report, P1, 3:34, 391. Grautial botryoides Leids, op. cit., p, 135, 185.5.
Loug Island Sound to Gulf of Saint Lawrence. Western coast of Norwas, at Bergen, etc. (Hacekel). Common in Long Island Somad, near New Haven, at Thimble Islands, ete; Watch Hill, Rhode Isamm; Vineyard Somul; (asco Bay, ete. Massachusetts Bay (II. J. Clark).

Hackel names the form figured by Clark var. bifidu.

## silicea.

## Michociona prolifera Verill.

Spongia prolifera Ellis and Solander, Zö̈phstes. p. 1-9, Plate 5a, fig. in, 1ヶ-6: Lamomonx, Expos. Methorlipue, 1. 31, Plate $5^{2}$, tig. it. Red sponge, this Re. port, pp. 340, 409, 476.
This species, when foumg, forms broad, thin, bright red inerustations orer the surfaces of stones and shells. In this stage it agrees well with the British speries of Microciona deseribed by Bowertunk, all of which are said to be incrusting forms. Onr species, at a later period, rises in into irregular lobes and tuberenar prominences, which eventnally become elongated and subdivided into slember branches, until they often form a profusely and intricatels brameh sponge, freguently six indes high and as moch in diameter. The branches are repeatedly dielootomons, more or less flattened, and often disertate or palmate at the ends They also fredmently anastomose iregulary. The bramelhes, when dry, are bittle and hisping. They consist of stont, homy libers, which matiate ontward and upward from the axis to the periphery, terminating in
more or less irregular, slender, blunt papillie, each of which bears a tuft of nnmerons slender, acute, more or less bent spicnles, arising from its lateral and terminal surfaces. At the tips of the branches the papilia are more slender and divergent, and the texture is more open and loose. During life these papillie are connected together by a thin dermal membrane, through which the spicules project but little. The oscules are small and scattered over the snrface. Color, when living, dark red to orange-red; wheu dried, generally dark grayish brown or umber-colored, fading to dull yellowish brown and gray. . Diameter of branches mostly $2^{\mathrm{mm}}$ to $5^{\mathrm{mm}}$.

Sonth Carolina to Cape Cod. Very ahmolant in Long Island Sonnd and Vineyard Sound, low-water to 10 fathoms, on oysters and other shells, stones, ete.; Great Egg Harbor, New Jersey ; Fort Macou, North Carolina (coll. Dr. Yarrow).

Isodictya, species undetermined.
Watch Hill, Rhode Island; Vineyard Sound and Nantucket, washed ashore after storms in winter; Casco Bay ; Bay of Fundy.

The specimens from Watch Hill have few broad, thick, palmate branches, with large oscules and an open texture, with multispiculose fibers. They resemble Isodictya palmata Bowerbank.

Cilalina ogulata Bowerbank. (p. 497.)

> British Spongiadte, vol. i, p. 208 , Plate 13 , fig. 262 ; vol. ii, p. 361. Spongia ocnlata Linné, Syst. Nat., ed. x, sp. 2; ed. xii, p. 1299 ; Pallas, Elench. Zooph., p. 390 , 1766. Malichoudria oculata Johuston, op. cit., p. 94, Plate 3.

Rhode Island to Labrador ; northern coast of Europe to Great Britain. Off' Watch Hill, Rhode Island, 4 to 5 fathoms; off Gay Head, 4 to 15 fathoms; very common in Massachusetts Bay, Casco Bay, and Bay of Frudy ; low-water to 80 fathoms.

Chaliva arbuscula Verrill, sp. nov. (p. 409.)
Sponge profusely branched, from close to the thick base ; branches repeatedly dichotomous, slender, round or somewhat compressed, seldom broad or palmate. Oscules small, round, irregularly scattered. Texture of the surface finely reticulated when dry, with very delicate fibers, which nsually have but a single row of very slender fusiform spicules, covered by a thin layer of homs matter ; the reticulations do not usually exceed the length of a single spicule. Primary longitudinal fibers of the larger branches strong, horny, with several lines of spicules; secondary fibers at right angles to the primary ones, much smaller, with fewer spicules. The spicules are slender, fusiform ("acerate"), much smaller and more slender than in the preceding species. Color, when living, dull gray; when dried, brownish, yellowish, or white. The largest specimens are about one foot high; more commonly 6 to 8 inches ( $150^{\mathrm{mm}}$ to $200^{\mathrm{mm}}$ ) ; breath often nearly as much; diameter of branches,
[743] INVERTEBRATE ANIMALS OF VINEYARD SOUND, ETC. 449
$4^{m m}$ to $10^{\mathrm{mm}}$, mostly about $5^{m m}$ to $6^{m m}$; diameter of the osenles, in dry speremms, abont $1^{\text {min. }}$.

North Carolina to Cape Cod. Very common in Long Island Somad and Vineyard Somd, 1 to 8 fathoms; Wateh Hill, Rhode Island; Great Hag llarbor, New Jersey.

This species has a moch finer and more delicate texture than C. oculata, due to the smaller fibers and spientes, as well as to the smaller meshes of the skeleton. The bramehes are also smaller and much more momerous than they usually are in that species.

Haligifondeia panicea Johinston.
Brit. Sponges, p. 114, Plate 10, Plate 11, fig. 5, 1812; Bowerhank, British Spongiadie, vol. i, p. 195, l'ate 19, figs. 300, 303; vol. ii, p. We9, Iotib. Spomiat panicea Pallas, Elench. Zooph., p. 3-s, 126ib. Telania (?), this Report, p. 49x.
Rhode Island to the Aretic Ocean ; northern coasts of Emrope to Great Britain. Abmmant at Wateh Hill, Rhode Island, on algie, in 4 to 8 fathoms; oif Gay Mead ; Casco Bay; Bay of Fundy.

Halichondria, species undetermined, $a$.
Wateh Hill, Rhode Island, associated with the preceding.
Grows in large tuberons masses, on algie, like the last, but has a smoother surface and finer and firmer textnre. (See p. 498.)

Halichondria ?, species undetermined, b. (p. 334.)
Long Island Somd near New Haven; Vineyard Somnd.
Forms broad, uneven incrustations on the under side of stones, at low-waier mark. Color when living, bright yellow. Oscules rather large, conspicnous.

Malichondria?, species undetermined, $c$.
Vinesard Sonnd, on the under side of overhanging banks, on the salt marshes near Waquoit; on the piles of whares at Wood's Hole.

Forms large, irregular, thick masses, often containing much foreign matter; surface uneven, rising into irregular prominences. Soft and bittle.
This is, perhaps, a species of Reniera Schmieit (Hymeniacidon Bowsrbank).*

Reniera?, species undetermined, a. (p. 334.)
Vineyard somud, 1 to 10 fathoms. Forms large, irregular, soft masses, 3 to 5 inches in diameter, of a light gellow color when living.

Reniela ?, species midetermined, $b$.
Vineyard Sound, 3 to 10 fathoms. Forms large, irregular, thick masses, with mumerous acute, irregular, often ragged, conical prominences, rising from its upper suface.

[^16]Halisarca?, Species modetermined, a.
Watch Hill, Rhote Island, 4 to 5 fathoms. Forms small, soft, somewhat gelatinous masses, on red alge. (See p. 498.)
Suberites compacta Verill, sp. nor.
This species is remarkable for the compactness of its tissues and the smalhess of the canals and pores permeating its substance, as well as for the large size of the plates and crest-like lobes in which it grows. A transrerse section of the dried sponge shows rery numerons inegular canals, most of them not larger than pin-holes (or less than $0.15^{m m}$ in diameter). The tissue is very compact thronghont, but is more dense elose to the surface, which is nealy smooth, the oscules being small and inconspicuous. The spicules are rery aboudant, cowded, very slender, mostly pin-shaped (spinulate), with the point very ache ami the "head" but little enlarged, and often largest a slight distance firom the emd, so as to give the head a slightly ovate form. Color, wheu living, bright yellow.

Off Martha's Vineyard, 10 fithoms, sand; Nantucket; Eastern Shore of Virginia.

This is the species lescribed as a "firm siliceons sponge," on page 503. In general appearance it somewhat resembles Subcrites suberea Gray (Hymeniacidon suberea Bowerbank).
(Clona sulphurea Verrili. (p. 421.)
Spongia sulphurea Desor, Proc. Boston Soc. Nat. Hist., vol. iii, p. 62, 1843.
South Carolina to Cape Cod; local father north. Great Eqg Marbor, New Jersey ; very abundant in Long Island Sound aml Vineyam Somm, on oysters and various other shells, 1 to 15 fathoms. Porthand Ifubor, Maine, in sheltered localities (C. B. Fuller).

## ? Polymastia robusta Bowerbank. (p. 497.)

British Spongialie, vol. i, p. 185, P'iate 29, fig. 352; vol. ii, p. 62, 1 266.
Off Gay Head, 18 to 20 fathoms; common in Casco Bay and Bay of Fumly, 8 to 70 fathoms. Coast of Great Britain (Bowerbank).

The American specimens do not agree in all respects with the descripr tion, and may prove to be distinct when a direct comparison ean be made. In our specimens the surface is finely hispid; the dermal tissme is firm, and tilled with small, slender, oftencarved, needle-shaped ("achate"), and pin-shaped ("spinnate") spicules, which project firom the surface. The latter form is the pradominant one, but the "heal" is very small, and they pass gradually into the fomer kind, in which the "head " is ohsolete, or not larger than the shaft. The spicales of the large, madiating fascicles in the body of the sponge are long aud large, needleshaped, with the central portion thickest ("fusiformi-acuate"). The large spicules in the longitudinal faseicles of the cloacal fistula are of the same form; the secondary fascicles of the body and the transverse secondary spicules of the fistula also have the same form, though much
smaller. The "chaneal fistulae" are mamerons, athe, when living, are rombland tapering, bit when dry hereme flat and bent, of conven to one
 near the base.

Several other species of sponges were eollectent, which have not been examined.

I have heen mable to identify any of one specimens with the spongine wecoluta of Desor (Procerdings Buston Soc. Nat. History, vol. iii, p. (iit). Possibly it was based on a peculially-shaped young specimen of Microciona prolifera.

## FORAMINIFERA.

Nomerons speces were eollected, especially in the decper parts of Vinesard Somd and off Martha's Vineyand, but they have not been identitied.

## ADDENDA.

## Crustacea.

CaxCER BOREALIS Stimpson. (p. 546.)
A small specimen of this species was dredged off Watch Hill, Rhode Tsland, in 4 to 5 fathoms, among rocks and alge, in April. It was fomd in abmudance, and of large size, at Peak's Island and Pomkin Knob, in Casco Bay, Maine, in Angust, clinging to the sea-weeds, and in tidepools, above low water mark.

Ocypodi arenaria Say. (Megalops stage.) (p. 337.)
The megalops of this spectes was found in large mmbers, swimming at the surtace of Vineyard Somul in September, by Mr. Vinal N. Edwatrls.

## Homarus Americayus Edw. (Lobster.) (p. 492.)

Snbsequent observations have shown that the breeding-season of the lobster extends ores a latge part of the year. In Caseo Bay fomale lobsters were fond carring eggs in Angnst and Soptember. Mr. Vinal N. Edwats has formaded two living females, of medimm size, taken in Vinevarl Sonnd, December 10th, both carying an aboudane of freshly laid cos.s. He states that he finds abont "one in twenty" carruing eggs at that season.

Timemisto, species undelermined.
A species of this gembs was taken in large quantities in Vineyard Sound, in Srptember, by Mr. Vinal N. Edwards. It oecomed swmming at the surface in vast ambers, and was thrown mp the wates in windrows, extemling several miles along the shores of Marthas Vineyard.

## Conilera concharum Harger. (p. 572. )

This species, previously quite rare, was taken this year in large numbers, in Vineyard Sound, both in spring and autumn, by Mr. Vinal N. Edwards.

## Annelida.

Procerea ornata Verrill, sp. nov.
Autolytus (?), banded species, this Report, p. 398.
Head short and broad, bluntly rounded or subtruneate above, slightly bilobel or emarginate below. Eyes moderately large ; the anterior pair wider apart. Median antema white, very long, slender, varionsly curled, reaching to abont the twelfth borly-segment; posterior tentaeles also very long and slender, reaching to about the ninth segment, white at the tips; inner antenne abont one-fourth as long as the median one; the other two pairs of antemme and tentacles abont onefourth as long as the mediau one; tentacular cirri of the seeond (postbnceal) segment short, abont equal to the diameter of the body. Dorsal cirri short, abont one-third as long as the breadth of the bods; setigerous lobe short and broally romnded; setie short. Gizzard small, short, elliptical, situated at about the eighth segment. Caudal cirri two, slender, tapering, their leugth about equal to the diameter of the bods. Color of the borly white or pale gellowish, annulated with bands of bright red at unequal distances. Length, about $15^{\mathrm{mm}}$; breadth, $0.5^{\mathrm{mm}}$.

Long Island Sound, oft New Haven; and at Thimble Islameds, 1 to 5 fathoms, among hydroids and bryozoa.

Eteone robusta Vemill. (p. 588.)
This species, previonsly known only from a single specimen, was taken at Wood's Hole, in abundance, and of large size, in November, by Mr. Yinal N. Edwards.

## Turbellaria.

## Rhynchoscolex papillosus Diesing.

Revision der Turbellarien, op. cit., vol. xlv., p. 245, 1862. Rhynchoprobolus papillosis Schmarda, Nene wirbell. Thiere, i, p. 1, 11, Plate 2, fig. 25 (t. Diesing). Hoboken, New Jersey, in brackish water, (Schmarda).
Polygelis mutabilis Verrill, sp. nov.
Body much depressed, thin, changeable in form, often elliptical or oral, frequently broad and emarginate in front, and tapered posteriorly. Marginal ocelli minute, black, forming several rows along the front border, but only one row laterally. Dorsal ocelli larger, forming three pairs of rather ill-lefined clasters ; the outer clusters are largest, convergent backward; a pair of smaller clusters are situated a little in advance, and nearer together; the third pair is a little farther forward
and closer together, often more or less confased with those next behind them. Color, yellowish brown, darker centrally; or bale yellowish, thickly specked with yellowish brown. Length, about $\boldsymbol{7}^{\text {min }}$ to ! man, brealth, $5^{\text {mim }}$ to $6^{\mathrm{mmm}}$.

Thmble Islands, 1 to 2 fathoms, among algite

## Bryozoa.

## Grmellaria loricata Busk.

Catal. Mar. Polyzoa, Brit. Mus., part i, p. 34 ; Smitt, opr, cit., p. 2xij, Plato 17, fig. 51. Serfularia ioricula Limmé, Syst. Nat., ed. x, 1. D. 5 (t. Smitt). Gemellaria loriculatu Johnston, Brit. Zoüph., ed. ii, pl'.293, 477, 1 late 47, figs. 12, 13.
Nantucket to the Dretic Ocean ; northern coasts of Europe to Great Britain. Very common in Casco Bay and Bay of Eundy, low-water to 110 fathoms.

The specimens from Nantucket differ somewhat from the ordinary form. They consist of rather dense tufts of stout stems, two or three inches high, and rather sparingly branched. The cells are larger than usual, clongated oborate, fise or six times as long as broad; those of the same pair are not exactly opposite. Aperture deeply crescentshaped, facing a little outward. Many of the cells, toward the base of the stems, gire rise to one or more curions processes from near the base of the cell; these are, at first, slender tubes, rising from a thin roundish spot on the cell, but soon they divide at the tip into two, three, or four forks, which are at first regularly recurved; later these become much elongated, and are converted into slender rootlets or stolons.

## ERRRATA.

lage 307, line 23 , for cavalnten, reat convolutent.
Page 311 , line E, page 401 , lime $1:$, and elsewhere, for Ostrote, read Ostrec.
Page : 2es. line es, for Folidia, read Moutagun.
l'age :ses, line 26 , for Carolina, real Coryphella.
Jige :30:, line e:3, for micropthalma, read microphthatma.
I'age 39:3, last line, for Sargatia, read sugartia.
P'age 399, line 21 , for Leptochiton, read Chetoplenra.
Page 399, line :3, for Leptocliton, read Trachydermon.
Page 405. line ~\%, for E"ucrute, real Eucratea.
Page $4 n \pi$, line 32 , for reproducsive, read reproductive.
I'age 415 line 25 , for L'uicola, read Vuciola.

Page 43:3, line 34 , for Amphipholis, read Amphiura.
Page 44 , line 12 , for tilleutath, read tridentata.
Page 45̃, line 39, for Paudaru, read Pundurus.
Page 459, line 36, for Echthrogalus, read Echthrogalens.
Pinge 487 , line 10, for A. planaria, read A Planaria.
Pige 45s, line 4, for cantemula, read catemula.
Page 490. line 23 , for A. ternata, read C. ternata.
Page 492, lime 5, for Tedania, read Halichombria panicea.
Page 49, line 30, for Augustus, read angnstus.
Page 504, line 41, for page 433 , read 432 .
Page 50z, line 5, for Acutum, read A. acutum.
P'ige 509, line 18 , for levigata, read discors,
Page 509, line 32, for thraci-formis, read thraciformis.
Page 509, line 33, for Simpson, read Stimpson.
Page 547, line 15, for P'anopias, read l'anopeus.
Page 561, line 43, for pingus, real pinguis.
l'age 619, line 16 , for Cosco, read Casco.
lage 619, last line, for Cisco, read Casco.
Page G10, first line, for fig. 127 , read fig. 124.
Page 666, line 15, after Montagna pilata, insert Plate XXV. fig. 124.
Page 6:0, line 18 , for $185, \mathrm{~B}$. read $184, \mathrm{~B}$.
Page 695, line 34, for fig. 23s, read 243 .
Pnge 716 , line 35 , for tig. 368 , read 268 .

## ALPHABETICAL INDEX TO THE REPORT ON TIIE INTERTEBRATA OF SOUTHERN NEIT ENGLAND.

[In the following index the first reforenere, for the names of genera and species, in fo the systrmatio
 references to the nominal hists have beod omitted. The figmes roter to the inside paging of thin ripht.]

Acalephar ...-. . . . . . . . . . . . . . . . . - \% -	Amane prsilla ..................... (i1:3
Acantherephalat..................... 45 .	Amarrecimu constellatmo....704, 3-x, 30:3,
Aeclis cremmlata . . . . . . . . . . . . . . . . $6: 31$	$403,411,4 \geq 4$
Acmata testmelinalis..... .661, 307, 33:3, 485	pallislum .-. - . . . . . . $70.5,496$
Acmostommm eremulatmm.......... (i3l	pellucidum -703, 397, 401, 411,
Acoru-shell-.... . . . . . . . . . . . . . . . 30.4	415, 419, 424
Actaeon muncto-striatat ............664, 518	stellatum . . $704,402,411,419$,
trifitus ....-. . . . . . . . . . 656	42.4
Actinıria.... ...... ................ 738	
Actinia dianthms. .................. 738	Ammodytes, sp . . . . . . . . . . . . . . . . $5 \pm 1$
marginata.................. 733	Ammotrypane fimbriata . . . . . . . . .604, 508
prouluctia................... 738	Amonroncinn pellucidnm. . . . . . 703 , 亏fo
rapiformis .... ............. 733	stellatum. .-. .-....- 704
Actinobolus borealis............... 683	Ampelisear, species. $561,431,43.1,452,514$,
Novanglia............ 68.4	519
Aldenda . . . . . . . . . . . . . . . . . . . . - 745	Ampharete gracilis..... ......... .612, 50-
Ega concharum...-.-............- 57 -	setosa .... $612,416,422,432,434$
Foolidia pilata. . . . . . . . . 666, 383, 393, 749	Amphitesma :rqualis .............67!, 518
Ȧolis farinacea. . . . . . . . . . . . . . . . . 666	Amphipholis ablita...... $2 \cdot 00,433,435,749$
papillosa .............. 666,486495	elegans . . . . $\boldsymbol{i 2 0}$, $420,424,44$
pilata..... ...-.-....... .-. .-. 666	tenuis ................ $\quad 720$
Eruorea abida ...................	Amphiporla.....-................... 555
Gromlandica............ 729	Amphisphyra debilis............... . 663
Etra anguine:2..........710, 405, 411, 424	pellucida. . $6633,482,435,517$
Aglaophenia :uborea. .............. 730	Amphithoie comptan. $564,3 \% 0,377,352,362$,
Ahnfeltia plicata.-................- 40.5	¢ 3.4
Alcyonaria - - .-. . . . . . . . . . . . . . . 738	cremmlata.............. 557
Alcyonilimm gelatinosum........ $700,496 \cdot$	inermis................ - 557
hirsutum... $708,333,403,411$,	luvinsenla.............. 50.0
$484,476,407$	longimathat...563, 370, 37\%, 40!,
hispidım... 0 (0e, 31:, 33:3 04	45.2
411, 427	maculata.....563, 31.5, 331, 409,
parasiticum. $702,404,411,424$	415, $4020,450,4-6,493$
pellucidum.......... 703	valida ... $5633,315,33151,370,375$
$\begin{array}{r} \text { ranuosum... } 70-, 3: 33,404,411, \\ 419,4: 4 \end{array}$	Amphitrite ornata...613, $3: 30,3: 31,3: 32,342$, 365, 357, 3c2, 4:2, 4:2~, 453
Alcyonimm carnemm..........737, 4>5, 497	Amphiura abrita................. - : 2
gelatinosum............ 709	Eugrnie................
hirsutum .... ..--...... 702	elegans .......... . . . . . $\quad$ T00
parasiticum ............ 703	squamata ........ ..... $\quad 720$
Alecto dentata..................... T® $^{\text {d }}$	Anaehis avara.. . $643,306,313,3333,3 \times 3,392$,
Alexiat myosotis.... . . . . . . . . . $60.5,3-3,393$	$410,417,483,420$
Alitta virens....................... 590	similis ...-.-............. 6. 64
Allorchestes littoralis.............. 556	Anaperus Bryareus................ 715


Anaperus Carolinns.................. Page. nisemitia.............. 715	
Anatifia dentatia..................... . 559	laticaudit ............5\%4, 45: 459
striatat .... ................. 580	latus................574, 452, 459
	megalops ........... $575,452,4.9$
Le:alı. . . . . . . . . . . . . . . . . . 673	species ........ . . . . . . . . . 4399,457
p:pyracear............... .673, 517	Aricia ornata.. .-............ $596,344,365$
papyratia.... ............. . 673	Artemia gracilis ................... 573
Anchorella mucinata.............. 57 e, 460	Ascaltis botryoides...... ........... 741
Angler .-. .-................... ... . . 516	Ascaris .... .... .................... . 457
Anguinaria spatulata. .............. 710	Ascidia amphora .................. $69 \%$
Angulus modestus...... $67 \%$, $418,423,429$	carnea .-................... 10. 10
teneflus ..... .-. . . . . . . . 687	echinatat .................. 702
tener..675, $358,365,372,378,423$	Manhattensis.............. 699
$426,429,435,519,520$	ocellata ... ... .-. . . . . . . . 698
Amelida .............. ............. 5 . 50	tenellar .-................... 698
Anomia aculeata................... 697	Ascidians, larve of.................. 454
elertrica........ . . . . . . . . 6906	Ascurtis fragilis.... ................ 741
ериірріпи ............... 696	Asiacus marians...... ............. 549
glabra. . $696,311,333,393,401,410$,	Astarte castamea. . . . 685, 42:3, 429, 432, 4:55
$418,424,429,435,476,495,509$	lumulata....... . . . . . . . . . . . 685
squammlı. . . . . . . . . . . . . . . 696	lntea..-................. . . . . 684, 509
tridentata .............. . . 669	mactracea .............. . . . 685 , 518
Anomoura .................-....... 548	Portlandica................. 685
Antedon dentatns.-............... 72.8	qnadrans ...-...... . . . . . . . 655, 509
Anteunularia antemmina. ..... .-. . . 730,491	sulcata ................... . .684, 509
indivisa..-...........- 730	mudata . . . . . . . . . . . . . . . . 6 ( 5 - 4,508
Anthosoma crassum ...............577, 460	Asteracanthion berylinus.......... 718
Smithii .........-...... 577	Forbesii ........... 718
Anthostoma acutum $599,416,422,423,501$,	pallidns. .......... 718
508	Asterias aculeata .................. 716
fragile ........... $598,344,365$	arcuicola . . 718, $326,333,363,366$,
robustum . . 597, 343, 348, 365,	376, 378, 389, 393, 406, 411, 420,
$4: 8$	$447,454,476,429,432,433,435$,
species....... $600,416,422,508$	$433,424,427$
Anthozoa........... .-............. 737	berylinns. ................. 447
Authura brachiata.................. 573	compta..................... 719
	Forbesii ......-............ 718
Aumrida maritima.......544, 331, 464,482	oculata..................... 719
Aphrodita aculeata....... ........ 580, 507	pallıla ...... ....... ....... - 447
cirrata .......-.......... 582	rubens .-.................. 718
imbricata .............. 58.2	samgninolenta ............. 719
punctata................ 581	spongiosa.................. 719
squamata................ 581	vnlgaris ....718, $389,432,447,454$,
Appendicularia, species....... $707,446,454$	486, 496
Arachnactis brachiolata...........739, 551	Asterioider ...... ..... ..... . . . . . . . 718
Arachnida........................... - 544	Astrangia astrex iformis ............. 740
Arbacia punctulata......717,326, 333, 406, $411,420,424,433$	Danie.....740, $330,334,397,408$, $412,421,425,485,494$
Arca pexata.................-...... 692	Astrophyton Agassizii .............. 72.
ponderosa . . . . . . . . . . . . . . . 692	Astyris limata...........-. .-. . . . . 645
transversa ...-.....-.......... 691	lunata...645, 306, 333, 355, 365, 37.
Arenicola cristata.................. . 367	377, 383, 392, 399, 410, 417, 4き3,
Argina pexata..692, 309, 333, 372, 378, 401, $410,424,435,515$	$428,463,479$ rosacea.............. $645,495,508$


INDEX．	
Astyris Tmonhmllii ．．．．．．．．．．．．．．．．．Page．（if．	Bays amd sommes，list of spuecies of mudely shomes．
Atwood＇s shark．．．．－．．．．．．．．．．．．． $45 \%$ ，	Bays amd stmmels，list af sprecios of
Atylus cremulatus．．．－．．．．．．．．．．	piles，timbres，buoys，vessels．．．．$: 39.2$
	1：3ys and sommes，list of spuedes of
vulgaris ．．．．．．．．．．．．．．5\％	rocky luttoms．．．．．．．．．．．．．．－．． 10 －
Anlacomyal lamatus．．．．．．．．．．．．． 6 ． $60: 3$	Ihays athe sommis，list of species of
Aurelia amrita．．．．．．．．．．．．．．．．．－ien	rocky shoros．．．．．．．．．．．．．．．．．．$: 331$
flavidula．．．．．．． $723,447,445,451$,	Bays and sommts，list of species of sandy hotfoms． $\qquad$
	Bays and somuls，list ol species of sandy shores．
myosotis．．．．．．．．．．．．．．．．．60． 68	Bays and sommes，list of species of
Antolytus cormatus．．500， $390,397,410,403$	surlitee．．．．．．．．．．．．．．－．．．．．．．． 451
$410,459,49.4$	Bays and somuls，list of species of
sprecies．．． $590,746,410,422,452$	surface in winter ．．．．．．．．．．．．．．．． 4 ．
Autonö゙－．－．．．．．．．．．．．．．． $56 \cdot$ ，409，415，4：3	Bilclla marina ．．．．．．．．．．．．．．．．．．． $54,4,331$
Avenella finsca ．．．．．．．．．．．．．．．．．．．．．． 710	oblongri ．．．．．．．．．．．．．．．．．．．． 514
Balamoglossus anrantiacus ， $6 \cdot 7,351,365,45 \%$	
Kow：alevskii．．．．．．．．62\％，3\％）	lidellomra camlida．．．．．．．．．．．．．． $03.34,4.40$
Balams amphitrite．．．．．．．．．．．．．．． 5 万人	prarsitica ．．．－．．．．．－．．．．（i）． 4
balamoides．．．39， $304,3: 31,381,30 \cdot 2$ ，	rustica ．．．．．．．．．．．．．．．．．．．（i3）
$45 \pm, 4 \cdots 2,4{ }^{2}$	Bela harpulariat ．．．．．．．．．．．．．．．．（i3） $6, ~$ ．0ヶ
crenatus．．． $599,381,392,391 ; 409$ ，	pleurotomaria ．．．．．．．－．．．．．．．（i：3
415，サ2，515	plicata．．．．．6：37， $38: 3,302,423,432,135$
conrneus．．－．．． $579,381,302$ ，4＊＊	Bembidinm constrictum．．．．．．．．．．541，464
clongatus．．．．．．．．．．．．．．．．－ $5 ⿰ 彳 亍$	contractum．．－．．．．．． 541 ， 504
improvisus ．．．．．．．．．．．．．．． 589	Bicinlinn parasiticun ．．．．．．．．．．． 83.3
ovularis ．－．－．－．．．．．．．．．．． 5 －${ }^{\text {a }}$	Bittimm Greenii．．．．．．．．．．．．．．．．．．．．－ 61 －
rngosins．．．．．．．．．．．．．．．．．．． 589	nigrum． $642,305,333 \%, 355,365,37 \%$ ，
tintinnabnlum ．．．．．．57＊，391，39\％	377，383，393，410，417，493，4：2，
lavve ．．．．．．．．．．．．．．．．． 455	463， $179, .15$
Batrachus tau ．．．．．．．．．．．．．．．．．．．．． 516	Black bass．．．．．．－．．－．．－．．－．．－．．．．
Bays amd somnds，filuta of．．－．．．．．． 300	Blacknish．．．．．．．．．．．．．．－．－．－．．－．．－ 515
Bays and somels，fama of gravelly and shelly hottoms．．．．．．．．．．．．．．． 412	Bledius cordatus．．．．．．．．．． $543,361,16!, 164$ pallipennis．．．．．．． $543,361,46: 2,54$
Bays and sounds，fama of moddy	species ．．．．．．．．．．．．．．．． 3 ： 3 ）
bottoms．．．．．．．．．．．．．．．．．．．．． 430	．Blood－drop ．．．．．．．．．．．．．．．．．．．． 3 ． 1
Bays and somuds，fimma of muddy	Bloody－clans ．．．．．．．．．．．．．．．．．．．． 309
shores ．．．．．．．．－．．．．．．．．－．． 366	Blue－crab ．．．．．．．．．．．．．．．．．．．．． 364 ， $46 \varepsilon^{\circ}$
Bays and sommes，fimma of piles，tim－	Blue－fish ．．．．．．．．．．．．．．．．．．．．．．．．516， 339
her，vessels，moys ．．．．．．．．．．．．378	Blue－shark ．．．．．．．．．．．．．．．．．．．．．．－ $5: 21$
Bays and somuds，finma of rocky	Bolina alata ．．．．．．．．．．．．．．．．．．．．．．． 451
bottoms．．．．．．．．．．．．．．．．．．．．．．．．． 39.4	Boitenia reniormis ．－．．．．．．．．．．．．．．． \％
B：ys and sounds，fanna of rocky	bunito ．．．．．．．．．．．．．．．．．．．．．．．．．．． 516
storer．－．．．．．．－．．．．．．．．．．．．．．．．．．． 303	
bays and sommds，fimma of sammy	Borlasiat olvacea ．．．．．．．．．．．．．．． 6 －
bottoms ．．．．．．．．．．．．．．．．．．．．．．．． 405	Botryllus Couldii．．．702，375，375，：3\％－，：3－2），
Bays and somuds，finmal of samdy	：\％，4＂
shores．．．．．．．．．．．．．．．．．．．．． 33.4	
Bays and somuds，finmat of surface．． 436	vilr．ammata ．．．．．．．．．．．
bays and sommds，list of species of gravelly and shelly bottoms ．．．．． 421	vir．atrox．．．．．．．．．．．．．．．．．．．．．． 386 var．bicolon．．．．．．．．．．．．．．． 376
Bays and sommds，list of specties of	var．farinaceal ．．．．．．．．．．－． 376
muddy hottoms．．．．．．．．．．．．．．．．．．． 434	vilr．stella．．．．．．．．．．．．．．．． 376




Clam, bloorly .................-...... $\begin{gathered}\text { Page. } \\ 309\end{gathered}$	Copeoporla................................. P73, 455
long...---. ...... ....... $463,357,309$	Copeporls, free..........-. . . . . . . . . 451,452
maninose......-. .-..-. .-. . . . 464	Corallina officinalis.......-. .-...... 316
quahog. .......... ....... . . . . . 359	Corbula contracta........672, 418, 423,423
round ...... . . . . . . . . . . - - - . - 359	Cordylophora, species....-.......... 734
sea..--........ . . . . . . . . . . . . 358	Coronula diadema . . . . . . . . . . . . . . 579, 460
soft-shell.-..................... . 464	Corophiun cylindricum. .566, 392, 382, 37\%,
surf.......-... .....-. .-. .-. . 358	370, 434, 42:, 415
Clam-wormus........................-. 319	Corymorpha untans................ 736
Claval leptostyla...............734, 328,334	pendula.............. 736,510
multicorvis......-.......-. - 734	Coryuactis albida........-.-.-. .-. 733
Clidiophora trilineatal... $673,418,423,489,485$	Coryne gravatil....... ................... 735   mirabilis .................... 735
Clio borealis...... .................. . 668	Coryphella gymnota................ 667
limacina.............. .-. . .-. . 668	Cosmocephala ochracea..630, $325,332,365$,
Miquelonensis.............-. -- - 668	410, 493, 434
Cliona retusa....... .-............... 668	Crab, blue...... ..................... . 36.
Clione borealis...................... 668	edible.... ........ .-. ....-. - . 367 - 458
limacina...................- 668	fiddler.... ....... . . . . . . . . . . 336,367
papillonacca.... ......669, 444, 453	green........................... 312
sulphmrea....744, 430, 409, 412, 421,	hermit.............. $313,339,368,415$
425, 427	horseshoe . . . . . . . . . . . . . . . 340 , 370
Clitellio irrorata.... .623, $321,332,365,463$	lady-... ....-.....--.-........ 338
Clupea elongata..................... 520	land............................ 337
Clytia bicophora................... 725	mul.-........................ 312
cylindrica..................- 726	oyster....-...--...............- 367
intermedia............ $726,402,411$	rock........................... 312,415
Johustoni.......... 725,$334 ; 408,411$	sand..................... .-. .- 338
poteriuu1...... .-. - . . . . . . 720	soft-shelled.................... 368
uniflora..-................-. . 726	spicler.-................. $339,368,395$
volubilis....... ...... . . . . . - 726, 725	Crangon boreas....... --. .-. . . . . . 400
Clymeuella...... ................... 60 -	septemspinosus..... .-. .-. 550
torquata............... 60 s	vulgaris.... $550,339,364,369,377$,
Clymene torquatus. . . $608,343,365,422,428$	$395,400,409,415,422,428,434$,
urceolata.................. 610	$451,455,463,464,479,490,493$,
Cochlorlesma Leanum.... 673, 418, 423, 429	501, 514, 515, 516, 518, 519, 520,
Cod........... ................. .-. 516	521,529
Cod-fish, mollusks fonnd in........ . 517	Crassina castanea..-. .-. .-. .-. .-. - 685
Cold waters of the ocean shores,	latisulca....... ........... 681
famma of.-......-................. 484	Crassivenus mercenaria............ 681
Coleoptera.............-... ....... 540,335	Crenella glandula... $695,418,424,435,518$,
Collisella Dalli....... .-............. . 661	519
Columbella avara................... 043	Crepidula acuta..................... 650
dissimilis.....-. .-. . 645	convexa...650, 333, 355, 365, 371,
Gouldiana............. 645	$377,423,429,435,463,479$
lunata ...... .......... 645	foruicata..649, $333,355,365,410$,
rosacca.....- ........- 645	412, 414, 417, 423, 429, 435, 475,
translirata............ 644	515
Common muscle................... 307, 361	glanca.............-.-. 650
Common prawn . . . . . . . . .-. . . . . . . 339	plauil..................... 650
Common skate.................-. -- 521	nuguiformis...650, 333, 355,365 ,
Conchoderma aurita. ............ 580,392	$410,417,423,429,435,475,515$
rirgata.....-. - .-. 580,392	Cribella ocnlata..... .............. 719
Conilera concharum. $572,746,426,422,459$,   521	Cribrella sanguinolenta.719, 407, 411, 420, $424,433,447,455,496$


	Diaphama debilis.................. $\begin{array}{r}\text { Page. } \\ \text { (itis }\end{array}$
	Diastoputia patinat ........... $7(17,405,111$
119, $494,4!4,515$	Diastylis abhreviata ............... Sin
Cmmibulnu striatume (i.71, 3919, 410,117, We:	¢иartrispinosa .......inu, 5月, 507
Crıstacca .... . . . . . . . . . . . . . . . . . 5 .	sculpra .................
	Dihumbliata .................... (i3.
Creptoporlia gramulatal................ . . .	Dimemouta altal ............. ..... .
C'terophor: ........................	
	Diodom pilosils. .................... 460 , $\mathrm{T}^{2}$
Ctenostomatat ......................	Dinne comvexa ...................... fis
Culex, speries.... . . . . . . . . . . . . . . isis, tifi	1:3, 1:3
Cumace: . . . . . . . . . . . . . . . - - . . - 4iv, -5.	Diptera . . . . . . . . . . . . . . . . . . . . . 5330 , 33\%
	Dipurnea conica...................
(13\%)	
Cyancancticar .. $823,410,417,419,450,454$,	Discopotar coecinea.......714, 3:33, 424,496
4\%5, 730	
fulvia .......................	
Postelsii ................... $7 \times 3$	Dog-fish...........................
	Doliolum, species ............ - 17 , 4.46, 45.4
Cyelocarlia borealis..fs:3, $412,483,435,502$	Donax fosior .... . . . . . . . . . . . . . (if)
Cyclocardia Novanglise..6-1, $42,42: 3,435$,	Doridella obsenmal .. .fibl, 307, 33:3, 400, 110
508	93:
Crelostomata.........-. . . . . . . . . . 707	Doris arhorescens . . . . .-........... (60)
Cylichua alla . . . . . . . . . . . 613, 502,512	bifid:1 ..-. . . . . . . . . . . . (ifil, :305, 3:3:3
oryza...... 663, 426, 429, 43: 435	coronata .................... 665
Cryllene furciger .................... . 533	illuminata.................... 665
lignorиm ................. 571	
Cymotlon ovalis...-............... 58.	Doto coronata ... $665,400,410,423,480,495$
Cynoscion rexrlis...-............... 515	Drill...... . . . . . . . . . . . . . . . . . . . . 306,399
Cynthiaı carnea. . . . . . . . . . . . . . . . $701,49.5$	Dusky slıark...- .-. . . . . . . . . . . - . . 520
eclinata . . . . . . . . . . . . . . $50.40,45$	Dynamena corvicina.............in3, $7 \cdot 9$ ?
gutta ...................... $\% 01$	1mmilat................ $7: 3: 3$
Lirsuta. .-.-. - . . - . . . . . - 70 -	Dysmorplosa fulgurans...... $7334,41^{2}$, 4.4
partita -701, 311, 3:3:, :3-2, 39:3, 401.   $411,19-4,43.5,515$	Echinarachnins parma... $717,3 \mathrm{H}^{2}, 36 \mathrm{Bif}, 427$, $499,490,50: 3,515,5 に, 500$
plarenta .-..... ......... 701	Echinaster oculatus.......... ..... 719
rugresa ..................... 701	sangumolentus ........ 715
stellifirat . . . . . . . . . . . . . . . . , 0 I	Echinocidaris Davisii ............. 717
	pmactuhata.........- $\quad 717$
	Echinodermata ................... 715
Cytlerea consrxa.................. fixl	Echinoirlea ...... . . . . . . . . . . . . . . . 716
morrhn:ma.............681, 51.	
	gramularis...... . ....... 716
Siyii . . . . . . . . . . . . . . . . fi\&1	gramulatus.... . . . . . . . . .
	negrectus.... . . . . . . . . . . 716
445)	реитаиюик................ 817
	punctulatıs.... ......... 717
Lntrancia hicarinata............... (6:32	
Vrahlii ................... (i:\%)	
Delesseriasimmosa . . . . . . . . . . . . . . 4982 , 4906	Écrobia minuta .. . . . . . . . . . . . . - finis
Demutroerslat......................... (6ite	
Dendronotus arhorescens.-......... (ifi.)	Edible crab .-.....................ins, 1.8
Diacria trispinosa ............669, 44, 4, ${ }^{\text {a }}$	Elwardsia clegatus ............... $\downarrow 51$


Page.	Page.
Edwardsia farinacea..........739, 451, 510	Eudendrium ramosum....... $734,408,411$
lineata .......739, $4 \cdot 21,4 \cdot 55,497$	teune ...-........... 734
Eel-grass . . . . . . . . . . . . . . . . . . - . . . 460	Eudorella hispida...... .......... 555
in brackish water, animals	jusilla ..........-....... 554
iuhabiting............. 458	Eugomphodus littoralis ........... 521
list of species inhabiting	Engyra pilularis...........-. .-. . 700,509
the................... 480	Eulalia annulata.... .-.... .-.... . 585
Elysia chlorotica.............. .... 66\%, 480	gracilis..................... . 586
Elysiella catulus...... . . . . . . . . . . 668, 480	graunlosa .--......... ..... 585
Embolus panper ................... 715	species . . $459,332,349,302,397,410$,
$\begin{array}{ll}\text { Enchytrams triventralopectinatus.. } & 624\end{array}$	422,434
Engraulis vittatus................ 516	Enlamia Milherti . . . . . . . . . . . . . . . $5 \geqslant 1$
Ensatella Americana.674, $356,365,426,499$,	obscura. . . . . . . . . . . . . . 520, 576
490,521	Enlima oleacea..655, 418,420, 423, 427,460
Ensis Anericana................... 674	Eumidia Americana............... 581,494
Entomostraca ....429, 434, 573, $331,337,409$	papillosa ...... .-....... 584
Eolidia despecta.................. 667	pistacia ................. 584
Eolis despecta ..................... $66 \%$	species.... -452, $332,349,392,397$,
gyminota...-......... ........- 668	410, 402, 452
Eone gracilis.......................- 596	vivida ................... 584
Epelys montosus.571, $316,331,370,377,434$	Eunice sanguinea ..... .......... 593
trilolous . $571,370,375,422,428,4: 34$,	Eupagurns Bernhardus........... 543,501
$45 \cdot, 464$	larve............. .... . 451 ,
Ephydra, species............. . $540,464,466$	longicarpus . . $549,313,331,339$,
Epizoanthas Americanns......... . 440,510	$364,363,395,375,409,415,429$,
Ergasilus labraces .............. . . 573,459	$426,423,434,463,464,479,515$,
Erichsonia atteunatar... .580, 350, 3\%\%, 479	pollicaris.542, 313, 3:31, 364,362 ,
tiliformis $570,316,331,409,4 \because 2$,	377, 395, 409, 415, 417, 4 42.426 ,
$45 \cdot 4.494$	$42 \leq, 434,515,521$
Eristalis, species ...... ............. . 5.0	$1 \mathrm{mbescens} \mathrm{............}$.
Esclara Pallasiana................. 113	Wuplenra caudata ...642, 332, $3 \mathrm{3} 1,3 \hat{7}, 123$,
pilosi .......-. .-. .-. . . . . . 712	428, 4:35
scabra ...... .............. 714	Euryechinus Dröbachiensis .......- 716
Escharella variabilis $713,312,333,361,366$,	graunlatus........... . 716
389, 393, $403,411,419,424,427,429,476$	Entliora cristata...... ...... ...... 492
Escharina ............................ 713	Entima limpida .... ............... 729,454
lineata.................. . 712	Fahricia Leidyi. . 619, 323, 332, 397, 410, 422
pediostoma .-........... 713	False scorpion...... . . . . . . . . . . . . . 331
variabilis ................ 713	Farrella familiaris ................ 110 , 4 ¢
Escharipora pmetata....713, $403,411,434$	pedicellata............... . 710
Eteone limicola. .- . . . . . . . . . . . . . . 580	Fasciolaria ligata..................542, 517
iohusta ...... ..... .... .... . 588 , 746	Fiddler cralos ...... ......... . $336,45 \%, 467$
	File-fish . . . . . . . . . . . . . . . . . . . . . . . 520,327
species...589, $349,364,397,425,452$	Fishes, food of. . .-. .-. .-. .-. .-. . . . 514
Encheilota doodecimalis.......... 255,454	list of external parasites ob-
ventricnlaris .........i25, 454	served on . ............... 459
Euchone clegrans . . . . . . . . 618, 432, 4:4, 500	parasites of..... . . . . . . . . . 455
spucies -...... .-... 422,392,416	Flounder, ocellated, or summer. . . 1 19, 339
Eucope altwrata...................	spotted.-............... 520
	winter .-........ ....... . 520
pentapora ................ 717	Flustra avicularia ............... . 711
polygena ..............-. 7 - 7 \%	Ellisii .-.................... 711
Encoryne elegans................. - 73 -	lıispitar...... .-.......... 708
Eucratea chelata..... $10,40 \overline{2} .411,424,249$	lincata ................... $\quad$ \%12
Eudendrium dixpar......734, 408, 411, 425	Murrayana ................ 711


Heteronereis ascimilis $-\ldots$ -
glancopis ..... 5 ..... 551
Page.
arertebrate ammals, halbits and dis- tribution of the ..... 294
grandifolia
Ifeterofusus Alexandri ..... 669 ..... 669
balea. ..... 669
Hickory slaul ..... 520
Hippa talpoida . $548,332,364,42 \mathrm{~A}, 451,430$,5:30
Hippocrene Carolinensis ..... 73:
superciliaris ..... 733
Hippolyte pusiola...550, 395, 409, 429, 457,493,51.1
Hippothoa rugosa ..... 712
Holothuria Briarens ..... 715
physalis ..... $7: 3$
Holothmioidea ..... 715
Homarns Americanns. . . . 549, 313, 331, 395,$409,415,42 \cdot, 426,428,451,492,515$,$520,521,745$
Horseshoe-crab ..... 340,468
IIorse-mackerel ..... 516
Horse-mnsele ..... 309
Hyas coarctatus ..... 545
Hyalra cornea. ..... 669
tridentata ..... 669
trispinosa ..... 669
Hyale littoralis......556, 315, 331, 392, 486
Hybocodon proliter ..... 736, 322, 33
Hydractinia echinata ..... 736
polyclina... $736,328,3: 34,363$,$376,378,407,411,405,427,429$Hydrallmania falcata....733, 403, 411, 425
Hydroidea ..... 725
Hydrophilus quadristriatus ..... 541, 469
Hymeniacidon ..... 743
suberca ..... 
Hyperia, species..........567, 439, 452, 459
Ichthyobriella Funduli ..... $624,452,460$
Idotea cieca. $569,340,364,420$
irrorata . 569, 316, 331, 340, 364, 370,$377,392,439,452,479,486$,494,514
montosa ..... 581
phosphorea. .569, 316, 331, 392, 40!,42,452
robnsta ..... $569,439,455$
triloba ..... 571
Tuftsii $569,340,334,501$
Idyia roscola. $723,418,451,454$
Ily:massa obsoleta. . $(241,313,330,354,355$,$365,36-371,377,383,392,422,435$,463, 469, 479, 516
Infusoria, ciliated ..... 155
Insecta. ..... 539
Imphimelia vnlgaris ..... 557
Irish moss ..... 404
Isodictsia palmata ..... 742
species ..... 742
Isopoda ..... 567
I vory-barnacle ..... 381
Jara copiosa... 571,315,331,382,392,486nivalis571
Jamiuia exigua ..... 650
productia ..... 656
seminnda ..... 6.7
Janthina fragilis ..... 660
Jingle-shell ..... 311
Kedilia plaunlata-688, 310, 333, 374, 378, 41~,42:3, 435
rubra ..... 680
King-crab ..... 340
King-fish ..... 515, 3:39
Lacuna divaricata ..... (fis)
frigida ..... (62)
labiosa ..... (35:
neritoidea ..... 653,495
solidula ..... $65:$
vincta.. $630,305,33: 3,355,305,372$,$377,410,417,423,45$
Lady-crai ..... 338, 426.
Levicasdamn Mortoni. . . $653,358,365,426$,
$4: 9$
Lafora calcarata. $720,334,403,411,425,454$
coruuta ..... 729
Lamellibranchiata ..... 6 6i?
Laminasria digitata. ..... 492
longicrura ..... 492
satecharina ..... 492
Lamdicen calcarata ..... 729
Laowedea :mphora ..... 227
dichotoma ..... T28
divaricata ..... 727
llexnosa ..... 726
gelatinosa ..... 728,727
geniculata ..... ร9\%
gigantea ..... 703
longissima ..... 793
Laphystins stmriouis ..... 459
Larvar of halanus ..... 455
Larv:lifia ..... 707
Larval namporra ..... $45 \%$
Leta limatula ..... (8.)
obeses ..... 690
sapotilla ..... $6,5!$
temuisuleata ..... 690,509, 519
thraciaformis ..... 693
I：ave。

anuila ..... 5ーシ
allserifura ..... $5 \cdots 2,3 \times 3,39$
balamoides ..... $59!$
diathemia ..... $5 \%!$
lisscienlaris ..... $57!,: 3 \times 2,4.5$
mectinatat ..... 5\％！，3ー，392
virg：atit ..... 5， 0
Leperphtherines salmomis ..... 2\％6
suecies ..... 535， 4.30Lepinturtylis dytisens．．．． $5.56,335$, ，314，109，$12: 4,422$
Lepialonote armatillo ..... 581
cirrata ..... $5 \cdot 3$
Lepidonotus angustus． ..... 51,494
sublevis．．．．5～1，：320，3：32，397，
410，4：
squamatus ..... $321,320,332$
$302,397,410,4 \% 2$
Leprear rubra （615，3～2，39：2，453
Lepralia hyalina ..... 71：3
Pallasiana ..... 713， 420
I＇eachii ..... 714
perliostomra ..... 71：3
pmuctata ..... 713
species ..... $496,421,3: 33$
variolosa ..... 713
Leptasterias comptis ..... 719
Leptochiton apiculatus．． $661,403,399,410$ ，$74!$
ruber．．．．（60）， $309,410,495,749$
Leptoclinum albidum．．． $705,40: 3,411,4 \cdot 4$ ，515
lnteolıun．．． $5065,403,411,10$ ：
Leptagorgia tenuis ..... 7：37
tres ..... $7: 3$
Lepton filhagella ..... 18゙ン
Lppopplana folinm ..... （i3），－1－7


tenuis ..... 716
Lernie：branchialis． ..... ぶ，460
mocinat： ..... \％s
Lermerceral ractiata ..... 5． $\mathrm{S}^{2}$
Lemeonema raliata ..... $\pi \pi, 1 i)^{4} 46$
Lesthemria liyhopera ..... 7．2． 4.4
Lencosotenia botryoides．．． $741,3: 31,: 391,394$thammoides．．．．．．．．．．．$\quad$ t1$1: 31,4: 3,511, . i 21$（1ubia …．．．．．．42，：36ะ，：377，4：31，4：34
Limacina batea ..... 669
Limax papillosus ..... 666
$\mathrm{P}_{\text {ithe }}$ ．
 1－
terobralls ..... ก\％
Limpret ..... ：30，
Limulus ansfralis ..... $\therefore=0$
：30，： $377,103,1: 31$ ，
4：1，45： $164,166^{2}$
Linkial oculata ..... 7！！
pertusa ..... －1！
Liocardian Mortoni ..... （5－．）
LIssial lissimostraz ..... 54
Listsof spereies fomud in the stomachs of fishes． ..... 514
List of parasites observed on fishos． ..... 45
List of species inhahiting cel－grass in hrackish water＇s． ..... 120
List of speeies inhabiting glavelly bottonss of the onter waters．．．．． ..... 50.4
List of species inhabiting sravellyand shelly bottons of the baysand sommes．421
List of species inlatbiting muld？ bottoms of hays and sommes． ..... 434
List of speceies inhabiting muldy bottomes of brackish waters．．．．．． ..... 470
List of species inbabiting sandy or soft muldy bottoms of onter watters． 11
List of species commonly found on muddy shores of hays ：and semuls． ..... $3 \%$
List of specie＇s inlathiting muldyshores and bottoms of butckishwaters410
List of epecies inhabiting oyster－ beck in brackish water＂s． ..... 176
List of species inhatiting piles of whares amb brideres，buthes，hot－ toms of ressels，dec，in biys amd somends ..... 392
List of speries inlathiting piles of wharves，floating timbers，de．，in brackish waters ..... 422
List of species iulabiting rocky bot－ toms of the hays and somuls． ..... 409
List of species inhabiting rocky bot－ toms of the outer waters． ..... 495
List of surecies inhabiting the rocks shores of the hays and sombls．．．． ..... ：3：31
List of species found on the rocky shores of the outer coist ..... f－7
List of speces inhabiting samely bot－ toms of hays and soumds ..... 123
Page.
Page.
List of species inhabiting sandy bot- toms of estuaries ..... 464
List of species inhabiting sandy bot- toms of onter waters. ..... 50.4
List of species inhabiting sandy shores of bays and sommels ..... 364
List of species inlabiting sandy shores and bottoms of estuaries. ..... 461
List of species inhabiting sandy shores of the onter coast ..... 490
List of species inbilbiting surface Waters ..... 451
List of species inhabiting surfice waters in winter ..... 455
Lithodomns ..... 309
Lithothammion polymorphnm _899, 492, ..... 49.
Littorina urctica ..... 659
Groenlandica ..... 651
irrorata ..... $651,372,377$
limata ..... $65^{\circ}$
littoralis ..... $65 \%$
marmorata ..... 6.5
neglecta ..... 65:
neritoiclea ..... 652
palliata 65?, $305,333,383,393,485$
Peconica ..... $65 \%$
rndissima. ..... (5.) 2
rudis.. $651,305,333,333,: 393,4,55$
saxatilis ..... 65:
sulcata ..... 6.51
tenelorosa ..... 651
zonaria ..... $65 \div$
Littorinella levis ..... 653
minnta $333,392,469,65: 3$,
Livoneca ovalis ..... $5 \%, 459$
Lizzia grata ..... 448
Lobster and other crustacea, meta- morphoses of. By S. I. Smith ..... $52 \cdot$
Lobster, habits ..... $395,492,745$
Loligo illecebrosa ..... 634
pallida. $635,441,453,514$
Pealii .- $635,416,423,440,453,515$$516,520,521$
punctata ..... 635
Long clam ..... $309,357,458,490$
Long-tailed sting-ray ..... 521
Lophins Anmericanus ..... $.516,457$
Lophopsetta maculata ..... 520
Lophothuria Fabricii ..... 519
Lottia testudinalis ..... 661
Lucina contracta ..... $6-6$
deutata ..... $6<6$
divaricata. ..... 686
filosa ..... 686,509
flexuosa ..... 686


Margelis Camolinmsis ．．． $73: 3,33.1,451,451$
 410，102，1：3， 17
Marshes，fammat of tho ．．．．．．．．．．．．．． 460
Martesia cmuciformis．．．．．．．．．．．．．．．．．（if1
Meckelia ingens．630， $3: 4,304,319,3(36,4 \div 3$ ， $4: 2,43: 431,45: 3$
lactea．．．．．．．．．．．．．．． 6330,350, ，30

Pocalmontas．．．．．．．．．．．．．．．．（i：3）
rosea．． $630,324,332,350,365,4: 23$
Medusa diritale．．．．．．．．．．．．．．．．．．．．．．．．．
caravella ．．．．．．．．．．．．．．．．．．．．．
velella．．．．．．．．．．．．．．．．．．．．．．．．．．． $7: 3$ ．
Megalops and zoca－．．．．．．．．．．．．．．．．．． 451
Melampus bidentatus ．． $662,463,469,520$
Melanogrammas seghlilinns ．．．．．．．．．． 518
Melinna cristata ．．．．．．．．． $613,430,431,507$
Melita nitida．560， $314,3: 31,3 \times 3,392,434,479$
Mellita pentapora ．．．．．．．．．．．．．．．．．．．．$\quad 717$
qиinquefora ．－．．．．．．．．．．．．．．．． 717
testurlin：uria．．．．．717，427，429， 749
testudinata ．．．．．．．．．．．．．．．．．． 717
Membranipora lineata ．． $712,33: 3,406,411$ ，
$4: 4,4 \div 7,429$
pilosa．．．．712，333，393，406，
411，494， 496
tomis ．．．．．．． $712,420,424$
Menestlıo albula ．．．．．．．．．．．．．．．．．．．．． 670
Menhaden ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Menipea ternata ．．．．．．．．．．．．．．．．．．．．．． 711
Menticirrus mebulosus ．－．．．．．．．．．．．．．．．． 15
Mercenaria mercelaria ．．．．．．．．．．．．．．（isl
violacea．．．．．．．．．．．．．．．．．．（が1
Mesodesma aretata．－．－．．．．．．．．．．．．．．．．．．699，51～

Metamorplioses of the lobster and other ernstacea．liy S．1．Smith．5w2
Metridium marginatum． $7: 38,329,334,391$ ，
$393,41 \div, 425$
Microciona prolifera ．．．．．．．．．．．．．．．．．． 745,741

Microgalns tom－colns．．．．．．．．．．．．．．．．．．．$\quad$ ． 19
Milleporat retionlatia ．．．．．．．．．．．．．．．． 71.4

Mncmiopsis Levilyi．．．720， 149 ，450，4．54，4．7
Morlecris，species．．．．．．．．．．．．．．．．．．．．． 45 ．
Modiola diser＂pans．．．．．．．．．．．．．．．．．．． 69.1
glamlula ．．．．．．．．．．．．．．．695，518
hamatus ．．．．693，384，37－，172，47．5
lavigata ．．．．．．．．．．．．．．．．．．．．（i91
modiolus．．．693，309，3333，401，110，
$41=, 424,495,515$
Modiola mex：

Prarn ..... （6）．1，51 31ідวа
1：1pи：11н： ..... （6）：
plicatula …（i9） $3,307,3: 3,371,: 30$16\％，175
semienst： ..... （6）：
Morliolaria cormgata ..... （2） 1, 5（0）
lliscors ..... 15.19
lavigrata ..... （69．1，50） $9,7.19$
nigra ．694， $418,4 \div 1,43: 3,1: .5,518$
Mura levis．．559，315，3331，403，426，45り，519
Molamat，species ..... 51：3，：3：1，3： $1:$

Manhattensis ．．$(690,311,3: 3: 3,311$ ，$366,37 \times, 3 \cdots, 3: 33,: 37.5,401$,$411,424,4 \div 7,429,435,415$
papillosa ..... （099，4！
pellucida ..... 699， $4 \div 6,4 \div!$
pilularis ..... 700
producta ..... 699，50：2，510
Mullia hyalina ..... 71： 7 （ $0.5,411,1: 10,1:$
Molluse： ..... （6：） 4
Mollusks fomd in stomarlh of cot－ fish ..... 517
Mollnsks fonnel in stomach of hat－ dock ..... $51 \sim$
Molpadial ö̈litica ..... （15，$: 10$
Monocelis agilis ..... $6: 31$ ：325，$: 332$
Monoculodes，species ..... $5.5(5,5) 2,45$
Monoculus Polyphemus． ..... $\therefore=1$
Momops agilis． ..... $6: 31$

elevatia．．． $022,112,493,435,512$
Montagna Gomldii ..... 667
gymmotat． ..... （667
pilat：a ..... 666
vermifera ..... 666
Monomyaria ..... （0．0．）
Norone Americana ..... 51：
Murl－crabs ..... 463
Muddy bottoms of hates and sonnds，list of species inhabiting ..... 13.4
Mndly hottoms of the open coast， famma of ..... 5010
Maddy shores and loottoms of brack－
ish waters，fimma of ..... 465
Mulinia lateralis．．．．（ $6=0,37,3,372,43: 3,409$ ，$43: 435,470$
Morex camaliculatus ..... f． 110
carica ..... （i．1）
Mnscidar ..... i． 40
larvie ..... 364，421， 461
Muscle，common ..... $4: 3$
horse ..... $4: 2$
ribber ..... 1：12



Page. viridis .................... 628
Nemopsis Bachei ...................... 733,454 Gibbesi ....................... 733 bncera...................583, 416, 429 ciliata ...................... 583 picta . . . . . $583,342,364,422,428$ ingens..... .583, 431, 434, 507, 521

Nereilrpas fucata ...................... 591
Nereis ciliata........................... . 583
сицеа .-. . . . ....... .-....... 593 -
fucata........................... . 591, 494
Linluta 500 :318, $230,311,301,321$ $377,38: 2,392,492,440,453,463,516$ pelagiea .... . 591, 319, 332, 397, 410, $422,428,434,453$
virens ...500, $317,332,341,364,367$, $371,377,440,453,455,463,468$, $487,514,519$

Nerine agilis..............600, 346, 365, 490
cirrata ....................... 602
coniocephala ............... 602
Nerocila munda......................... 571,459
Nenroptera.................................. か.
Neverita duplicata .. 616, 354, 365, 426, 429, 490
Nicomache dispar........................60々, 508
Nicolea simplex.....613, 321,332, 382, 392, 397, 410, 422, 453, 494
Ninoë nigripes. . . . . . . . . . . . . . . . . . . 595, 508
Nogagus Latreillej ............. . 576, 457, 459 tenax................ $577,457,459$
Notomastns filiformis. $611,: 342,365,: 371,377$
Imidus.. 610, 342,365, 371,377
Notospermus víridis .................. 608
Nincula corticata...................... 691
delphinodonta ... .......... 691,509
Gouldii ................ ........ 690
limatnla..................... . . 689,518
miunta........................ . 690
navicularis ....... .. .. .. .. . . 690
proxima ....691, 418, 424, 430, 435, $515,518,519,520$
radiata ....................... 691
sapotilla..................... . 689, 518
teunis ....................691, 518, 519
thracieformis.... ......... . . 690
thraciformis . ............... . 690, 749
liti4
Nudibranchiata ．．．．．．．．．．．．．．．．．．．．．．．．（iti407，111，19．
diaphana 7・フ，3：27，33．4，••！
dichotomia T2゙，410～，411，12．divaricatib ．．．．．．．．．．．．．．．．．．．．．．． $\boldsymbol{\tau} \boldsymbol{\gamma}$thabellatal ．．．．．．．．．．．7．2－， $390,303: 3,497$fusiformis．．．．．．．．．．．．．．．．407，411，1：4
gelatinosil 12－，391，393， 4 ど
geniculata ．．． $727,2: 33 \cdot 4,33: 3,414,411$ ，$4: 4,4 \times 7,494,495,496$
lomgissima ..... 7－
polygent ..... 727
priformis รั27， $334,: 390,39:$
specie＇s． $476,363,376,4.17,45.1$
Oceanial langnida ..... $7 \cdot 5,45 \cdot 4$
Ocean shores and onter cond waters， fallual of ..... 134
Ocellatm flommer ..... 519
Ocypula arenamit ．．．545， $76,336,3: 37,364$, ..... $5: 3$
Ocyporle pugilator ..... 545
Odostomia bisnturalis ．．． $0.05,3,37,3: 3: 3,383$, ..... 39：3，4：3：3
dealbata ..... 656
exicyat ..... 656
fuscet $.650,307,3333,393,42: 3,435$impressa ．． 660 ，（i．36， $333,418,423$insenlptat656
limmoidea ..... 653
prodhetal－．－．． $656,33: 3,418.423$semimula－ $65 \overline{5}, 41^{2}, 423,42 \alpha, 4: 35$tritidlat 6ã $6,307,3333,393,418,423$
Oligochiata ..... $6 ?$
Ommastrephes Bartramii ..... 635
illecebrosil ．．．． $934,4,41,453$
sagittatns ..... 63.4
Onchideris pallida ..... 665,495
Onisens ..... 399
Open coant，fama of gravelly bot－ toms． ..... 500
Open coast，fama of muldy bot－ toms ..... 506
Open coast，faluna of rocky lot－ toms ..... 491
Open coast，fillua of samely bot－ toms ..... 500
Open coast，finnla of rocky shores． ..... 125
Open coast，fanma of samdy shores． ..... $1 \times 9$
Ophelia simplex ..... $100: 3,319,33 \cdot 2,410$
Ophitium marginatum ..... ：3
Ophiocoma bellis ..... 719
ueglecta ..... 720
Ophioderma olivacemom ..... \％19
Ophiolepis scolopendrica ..... 719
Ophiolepis temis 1＇ay＂ ..... ！bellis．．．．．．．．．．．．．．． \％1！ 400

seolopemdric：a

seolopemdric：a .....  ..... \％！ .....  ..... \％！ ..... ！
Ophiura hellis．
Ophiura hellis． ..... 715 ..... 715
elegans ..... \％ 20
olivace：2 $\ldots \ldots .715,3633,3366,427,4: 4$
Ophinroidea ..... 319

4154，4－6
longicornis ..... 5.56
6
megalophthalma ..... $5.5 \%$
palustris ..... 55,468
Oreymus thmmina ..... 516
Ortharoriscus mola ..... 575
Orthopyxis caliculatar ．．．ieli， $3: 31,402,411$
poterimu ..... 726
Osteodesma hyalina ..... （i）：
Ostrea borealis ..... （i） 9
Camatemsis ..... 199
Istandica ..... （996
Virginiana ．．．697，712，310，33：3，：344，：378，386，39：3，40i，110，424，435，45：3
Viryinic：a ..... 697
Otion Cuvieri ..... 5－0
Outer coast，fallua of，on rocky shores ..... $4-5$
Outer coast，fauna of on samiy shores ..... $4: 9$
Outer coast，fimma of，on wravelly bottoms ..... $5(i 0$
Onter coast，fiama of，on rocky bottomis ..... 491
Outer coast，fimma of，on saludy bottoms ..... 500
Onter coast，list of species of muddy bottoms ..... 511
Onter coast，list of species of
rocky bottoms ..... 498
Outer coast，list of species of rocky shores ..... 45
Onter const，list of specios of saumly and gravelly bottoms ..... 50.4
Outer coast，list of apecies of samdy shores＇s ..... 490
Oyster ..... 172,355 ..... 350
Oyster－beds in brackish waters， animals inhabitum． ..... $4 \% 2$
Oyster－beds in batackish water＇s，list of sprecies iulabiting． ..... 176
Oyster－crab． ..... 367
Pagurus Bevilandus ..... 5.45
longicarpus． ..... 549
pollicaris ..... 54 s
Ophiopholis ：menleata ．．．． 719 ，fou，490，万1
9
$4: 1$ ช

P	Ige
gurus pubescens................. 549	Periploma paprracea. $673,4 \geqslant 9,485,509,517$
Palemon vulgaris .-.-.............- 550	Perophora viritis... . $70 \cdot 2,388,393,401,411$,
Palamonetes volgaris .- .550, 339, 364,369 ,	42.4
, 5:0,	Petricola dactrins ................. 680
529	fornicata ................ 680
Palinnrichthys pereiformis ........ 515	pholadiformis..680, 372, 378, 435,
llene. species . . . . . . . . . . . . 544, 409, 421	70,515
Pandalns annulicornis ... 550, 493, 511, 519	Phaleria testacea.........-.-. .-... - 543,464
Pandarns, species .................457, 459	Phascolusoma Bermhardus......... 627
branchii .-.............. 576,459	cementarium .....627, 422,
sinuatus .............. 577, 459	425, 434
Pandora trilineatar.-................ 673	Gonldii ....627, $353,428,521$
Panopens depressms .547, $312,331,367,377$,	Phasianella bifasciata.............. (65)
$382,392,395,409,415,422$,	652
431, 434, 468, 479, 514,515	fasciata .............. 652
Harrisii ....... 547, 313, 331, 468	striata ..-.............. 652
Herbstii ................547, 472	sulcata ....... ......... - 651
Say i . $547,312,331,367,37 \%, 382$,	Philhร̧drus perplexus .............. - 542
392, 395, 409, 415, 42: , 431, 434,	reflexipennis...........- 542
$468,479,514,515,516,749$	Philoscia vittata........-........-. - 569
Parasites, external, observed on fishes, \&e.............................. . 459, 455	Pholas costata ................670, 433, 435
Paractis rapiformis ......738, $363,366,430$	1,517
Parypha cristata................... 736	trmneata . $68 \% 0,3 \% 2,378,433,435,170$
crocea ..........736, $390,393,482$	Phoxichilidimm maxillare ....544, 415, 421
Pasithea nigra...................... 648	Phoxns Krojeri. ..........556, 434, 501,511
Patella alvens .-..................... 661	Phronima, species............ 567, 439, 452
nicata .................... 649	Plyylactolemata .-................. 707
testudinalis .... . . . . . . . . . . 661	Phyllobranchns Ravenelii.......... 624
Peachia parasitica ..--.-.-.-.-. .-. 739	Phyllodoce catenula .........---- - . 587, 494
Peaked-rused skate ................ . 591	gracilis ................. 586,494
Pecten brinneus.-................. 696	maculata ............... 586
concentricus ................. 695	species. . $332,349,382,397,410$,
firsens .-. .-....... . . . . . . . . 696, 518	$422,434,452$
irradians .-. 695, $361,365,372,374$,	Phyllophora Brodisei ................... 492 . 496
$37 \pm, 418,424,4 \div 6,429,515$	
Islaudicns .................. 696	membranifolia -- $492,496,404$
Magellanicus ..-.-. .-. - . . . - 696	Physalia arethonsa $\qquad$ $. .737,450,455$
Pealii ....-.-. .-. . .-. -. . . - 696	amrigera ................. $7: 37$
tennicostatus.....696, 397, 509, 518	cararella .................. ${ }_{\text {pelar }}$
Peetiuaria anricoma ............... 61:	
Belgica ...... . . . . . . . . . 612	Physalis pelagica .................. 73 .
Pectinibranchiata........-..-. --. - 636	Physophorte .... ......... .... .- . . . 736
Pedicellina Americaua. . $707,333,405,411$,	Phytosns Balticns....................... 万42 littoralis. .............. . $542,364,464$
424	
Pelagia çanella .................... 784	Pill-bng .-. .-. .-.-. . . . . . . . . . . . . . 399
quinquecirrha............. . 72.	Pilummus lfarrisii .................. 547
Pelia mutica .....548, 395, 409, 415, 422, 515	l'immixia eylindrica ......546, 367, 377, 520
Penteus Brasilicnsis................ 551	Pinnotheres macnlatns.. .546, $309,434,459$
Penella filosa $\qquad$ 578	$\begin{array}{r} \text { ostreum } \ldots .546,309,317,377, \\ 434,438,451,459 \end{array}$
Peunaria tiarelia .... $\mathbf{6} \cdot 5, .627,3.34, .95,411$,	lisa mntica .............................. 548
Pentamera pulcherrima..715, 420, 424,427 ,	

Planaria species ..... $1-7$
Planaria vididis ..... （i：2
Planamians ..... （i：3）
Planocera melonlosia ..... $(3: 3,3,3 \cdot, 3,3: 3$
Platycareinus irromatas ..... 5．4i Salvi ．．．．．．．．．．．．．．．．．．． $5 l l i$万316，5：3：3Pleurobrachia rlmbedactyla．．．．．．eve， 111.118 ，$450,451,45 \%$
Plenrotoma bicarinatum $6: 3^{2}, 11 \alpha, 4: 3$
lymbue： ..... （i：）
cerínum ..... $16: 3$
plicata ..... （63）
plicos：a fi：37
Plumatel\}a dimuliaris. ..... 710
Plumularia arborea ..... 230
Cathartille ..... 732
 ..... $73: 2$
faleata ..... 73：
spereics ..... 407,411
tenellat ..... 7：31
Podarke obsemra ．．．is9，：319，33： $3 \times 2,302$,$410,440,45 ;$
Podocrens cylindriens ..... 566
fucicola ..... 561，49：3
Polia obsempa ..... 628

$410,4: 3$
Polycera Lessonii ．．．665， $3: 3: 3,400,110,42: 3$ ，Polychartal580
Polyeirus eximins．（ $116,: 300,332,: 371,377$ ，$3 \sim \cdot, 392,410,4: 2,4: 3,453,46^{2}$
Polyenstina ..... 451
Polydora ciliatum ..... $60: 3,345,3(44,45: 3$
species ..... $402,416,10 \cdot 3$
Polymastial rolnsta ..... 74
Polynoe：cirrata ..... 5s：）
dasypus． ..... 5×1
stenannat at ..... 5－1
Polyphemms oceidentalis ..... 5～1）
Polypi ..... $73 \%$
Polyplacophora ..... 661
Polyzoia ..... 707
Pomatemulns salt atrix ..... 516
Pomolobns metiocris ..... i20
Ponds，brackish，timna of ..... 160
Pontoldr－lla vaphax ..... （ien），45～， 46
Pontogeneia inermis ..... 
453,155vacillatum ．． $7: 3.1,206,33,13.1$
Porgee ..... 514
1゙はロー。
I＇orifer＂：
P：＊＊＊
P：＊＊＊ ..... 710
1＇oromothas triac：athfins． ..... $11!$
1＇0＇pita ..... 7：3\％
Porfth110．piclas． ..... is7
l＇otamillat porlophat hathiat

 ..... ：：3：9
I＇rionulas C＇alolinus ..... ：16；
I＇rocerades firmpuras． ..... 
Whe：alandii ..... （i：3）
l＇rof（m） ..... 5xil
I＇rotoza： ..... 740
1’：almmobial linsea ..... （6）
Psombuplemonectes Amercams ..... 50
l＇sulus phtantapus． ..... ． 119
1＇teroperetal ..... fits
I＇filuta cleg：ans ..... $45 \cdot 2$
519
Dychatiactus ligatus． ..... （6f：， 517
Pulmonatia ..... 1i62
Ры＂pura lapilln．s $16.12,304,330,4-5$
Pychogomidea ..... 541
Pymula camahenlatar ..... 6.41
carica ..... 6．10
Pyramis lineal ..... （i5） 6
Quahogetlan ..... ：309， 46
Rabhit－lish ..... $5: 1$
Rarliata ..... 715
Ratia diaplaana ..... $5 \times 1$
lirvis． ..... 52 1
kemella camblata ..... 64
Katzor－shell ..... 3．5（5， 490
Renicras，speseies ..... 34， $3: 31,304$
Rlabloenda ..... （i）
dilughaterles teminis． ..... $7 \cdot 9$ ） 154
lilippilughossat ..... 661
Rlortine attemmata ..... （i0！），512
Rlom！ymenia palmata ..... H！6， 192
46：3
（6ibranchiatus．596，：3．3：，341，
：34，：37，：37，4：－431，43．1，4133，
Rhyuchoprobolus pipipllosus ..... if1；
Rhyucluacolex papillosus． ..... $\div 16$
Rissoat achlens ..... （5） $4,2015,333,3-3,3,392$
aretica ..... （i．） 1
－xamata ..... $654,495,518$
Mighelsii ..... （i．）． 1
mituta ..... （i3： 3
Slimpsomi ..... （in． 3
Rocens liuratus ..... 21.1
Rock ..... 514


Sea－nwhin ．．．．．．．．．．．．．．Paqu．Sea－mehin$326,433^{2}, 445$
frmele erpualis （52！）， $51-$
$410,416,422,426,123,476$
porrecta ..... （is）
lucida ..... （ies）
spirorbis ..... （i2）
Serripes Gromenalicns ..... ： 18
Sertularia angnina ..... 710
antennina ..... 730
mrgenten ．． $733,3: 3.4,40 k, 411,4 \cdot 5$
chelata ..... 710
（ornicina－．．． $7: 3: 3,729,408,411$
cuscuta ..... TUS
enpressina ．．．． $7: 52,403,411,425$
diehotomar ..... 708
binnea ..... 707
taleata ..... 73：3
gelatinosa ..... 7 78
geniculata ..... 7．27
longissima ..... $7 \because 9$
loricat： ..... 747
pmila ．．． $732,327,334,391,393$ ，402,487
temerissima ..... 733
muillora ..... 705
volubilis ..... 726
Sertularina ..... 725
Sesama reticulata ..... 546，367，377， 467
Shad ..... 520
Ship－worm ..... 379，：383
Shrimp，common ..... 369
sand ..... 339
Sigalion Mathildie ..... $5 \times 2$
Silicea ..... 741
Siliqua costata $675,358,365,426,429$
Siliquaria gibba ..... 675
notata ..... 675
Siplo Islandicus ..... 517
Siphourecetes cuspidatus ..... $566,50[, 511$
Siphonostoma ..... 573
Siphonostomm aftine ..... 605
Sipunculoids ..... f0ヶ ， $3 \% 3$
Sipuuculus Berulaardus ..... 6：3
remmentarins． ..... fin
Gomldii ..... $6: \%$
Skate，common ..... 5： 1
Skenea planorhis ..... 655，33：3，38：3
serpuloides ..... （6）
Small tumiy ..... 516
Suith，S．I．Catalogue of crustacea． ..... 54
smith，S．1．Metamorphoses of the lobster and other cristacea ..... 529
Soft－sheellerl crabs ..... 367
solecurtus bidens ..... （iaf）
Soldeniman C＇aribarlas ..... I＇ag＇。 ..... 6ิ：
divisus ..... （お）
rragilis ..... お人
gribbus ..... （67）
Solomya horealis ..... （
Solen Americanns． ..... （iす！
bidens ..... （iati
C：aribiriss ..... 68.5
rentralis ..... （ioli；
costatus ..... （is．）
divisus． ..... （i） $1 ;$
r－1sis ..... （i） 1
liagrilis ..... 1iff
gibbus ..... （itio
（inine ensis ..... （i）$\%$
Sayii ..... （i）：
virislis． ..... （if：）
Solenomya borealis． ..... （is）
velum．．．． $6 \times 8,: 360,: 36,420,4: 35$,450
Spharoma＇prambridentata ..... $560,315,3: 31$
Spider－crab ..... $-3: 3,366^{2}$
Spio robusta ..... （ $303,345,365$
setosa $60 \cdot, 344,365,4.3: 3$
Spirialis Flemingii ..... 669
Gouldii 669，44：，453，516
Spirorbis borealis ..... 621
lucidus ..... fise
sinistrorsa ..... （is：
species ..... 453
spirillmm $621,332,302,4 \div 2$
Spirula Peronii ..... （i33f）
Spisula Sayii ..... 5－0
solidissima ..... （ia）
Sponge，massive siliceons ..... 430
red ..... 11：3
Spongia botryoides ..... 841
ciliata ..... 2.10
coronata ..... i． 41
prolifera ..... 74
oculatta ..... $74:$
pauicea ..... i4：3
sulplarea ..... 34
mecolata ..... 81.
Spongise ..... 7.10
Springtails ..... ：3：1
Squeteague ..... $\therefore 1$.
Squicl ..... 440， 441
f（6， $2,515,: 336$
Squilboidea ..... 5.1
Standella lateralis ..... （6）
Staphylinitie ..... ：3：3：5
Star－fish ..... $4: 3$
Stamroceplatus ןallidus ..... 59．5， $34^{2}, 364$

Page.	
Stenosoma irrorata . . . . . . . . . . . . . 569	Tellina calcarea..................... $67 \%$
filiformis . . . . . . . . . . . . . 570	Fabricii .----.... -.......- 676
Stcreoderma unisemita...-.........715, 503	Grenlandica ................ 676
Sternaspis fossor . . . . . . . . . . . . . . . . 606, 507	lata .........-.-. .-. .-. ..... . 676
Stenotomus argrrops............... 514	proxima..--................ 68 .
Stimpsonia anrantiaca. ...........627, 359	tenera....................... . $67 \%$
Sthenclais Leidyi................... 582	tenta.........678, $489,432,435,470$
pictal $582,342,364,422,428,501$	sabulosa..................... $67 \%$
Sting-ray ....... .................... 521,458	sordida...........-. .-....... 677
Stomachs of fishes, speeies found in. 514	versicolor .................. 68 . 68
Stomolophus meleagris............. 724	Temperature of water $298,299,436,485,506$
Stomotoca apicata ................. 734,455	Terebella oruata................... 613
Striperl bass . . . . . . . . . . . . . . . . . . . 514,339	Terebellides Stroümi . . . . . . . . . . . .613, 507
Strongylocentrotns chlorocentrotus. 716	Teredo .... . . . . . . . . . . . . . . . . 378 8, 380, $3 \times 3$
Dräbachicusis 716,326,	dilatata.-................... 680
6, $411,4: 0,4: 4,438$,	navalis....... $669,384,393,453,48: 3$
$454,426,496,447$	megotara .... . . . . . . . . $670,387,393$
Stylifer Stimpsonii ................. 655,460	palmulata .-.-.............. 670
Styliola vitrea................ . $668,443,45: 3$	Thomsonii .............670,387, 393
Stylochopsis littoralis........ 632, 325, 332	Tergipes despectus.................667, 49\%)
Suberites compacta................ 744	'Tetrastemma arenicola . . . . . . 629, 351, 36\%)
suberea...... .-. . . . . . . 744	Thammocnidia tenella . . . $736,407,411,425$
Surface and free swimming animals 436	Thaumantias diaphana............. 727
Surface species in winter........... 455	Thecosomatal ....................... 66 .
Surf-clam .-........... ............ 358 , 490	Themisto, species ..........-.......- 74.$)$
Summer flonuder'.............. ..... 458,519	Thracia Conradi .-............ 673, 426, 429
Summer skate .......-......-. .-. . . 521	truncata.............. 674, 509, 517
Sycandra ciliata .................... 340	Thyasirit Gouldii..................... 686
Sycotypus canaliculatus $.640,332,355,365$, $399,410,417,423,428$	Thyone Briareus 715, $362,366,376,378,418$, $420,424,427,429,433,435$
Syllis, specics......-.............. 590,453	Thyropus, species.................. $56 \gamma$
Syncoryna..-........................ 734	Thysanopoda, species ........554, 452,516
Synapta Ayresii .................... 716	Tiaropsis diademata................ 795 , 454
Girardii .................. . 716	Tiger-beetles .... ......... .......... 335
acilis................... $\quad 16$	Tiger-shark........................ - 521
tenuis .-.................- 716	Tima formosa............. $729,448,454,455$
Syneoryne gravata.................. 735	Toad-fish ..-....-.-.........-.-. --. - 516
Syngnathus Peckianus ............. 516	Tom-cod ..........-...-............ 519,331
Treniobranchia ...............-..... 706	Tomopteris, species ........... .-. . 626, 453
Tagelus divisus...............676, 43.7,518	Tornaria ........................... 3 . 38
gibbus ......675, 373, 378, 435, 470	Tornatella puncto-striatal......... .664, 518
'Talitrus longicornis............... . 556	Toruatina canaliculata............ 663
quadrifidus................ 556	Torquea exiuia...................- 616
Talorchestia longicomis . $556,336,364,462$,	Tottenial gemma.682, 359,365, 426, 429, 445
464, 489, 54:3	Manhattensis............. 60\%
megalophthalma 556, 336, 364,	Toxopmenstes Dröbachiensis...... 216,447
$462,464,490$	Trachydermon ruber............... 66 .
l'anais filum. . . . . . . . . . . $573,381,392,452$	Trachynema digitale .......... . . . 725 \%, 454
'T:ure-worms . . . . . . . . . . . . . . . . . . . - 456	Travisia carnea.......... 604, 431, 434, 508
'Tautog -.......... . . . . . . . . . . . . . . . . 515	
T'antoga onitis....................... 515	Trichina ...... .................... . 454
Tectibranchiata ................... 662 $^{\text {a }}$	Triforis nigrociuctus.648, $305,333,382,377$,
Teetura alvens...................... 661	$383,39: 3,410,417,423,428,515$
testudinalis................ 661	Tritia obsoleta............---.-.... ( 641
Tedania, species. $743,33.1,391,394,41: 2,425$, 498,749	trivittata. $641,: 332,354,365,233,393$ $410,42: 3,428,435,463,515,519$

Tellina calcarea ..... $67 \%$Groulandica676
ata6.7
tenera ..... sabulosa675versicolor675Terebella oruata61:3Tcredo378, 380, 3-゙
dilatata ..... 670megotara(170, 387, 39:3TlinTergipes despectus....................667, 49\%;'Tetrastemma arenicola. ...... 639, 351, 36:Thanmocnidia tenella.... $736,407,411,425$
Thannantias diapkana66
Themisto, species ..... 4.5
smmer flonnder521
Sycandra ciliata
Thyone Briareus 715, 362, 366, 376, 378, 418,
$420,424,427,429,433,435$
1ыyropus, species. ..... 567
725, 454
Tiger-bcetles ..... 335
521Tig formo
Toad-fish ..... 16
19, 331Tomopteris, species
Tornaria ..... 35ะToruatina canaliculata663
nea eximia ..... 616Toxopmenstes Dröbachiensis316, 447
Tra725, 45.4
Travisia carnea456
Trichina ..... $45 ;$Tritia obsoleta(i41


## INDEX.



## EXPLANATION OF PLATE I.

Figure 1.-Pinuixa cylindrica Say, (p. 546 ;) male, enlarged four diameters.
2.-Pinnotheres ostreum Say, (p. 546 ;) male, enlarged four diameters.
3.-Panopeus depressus Smith, (p. 547 ; ) male, natural size.
4.-Platyonichus ocellatus Latreille, (p. 547 ;) male, slightly reduced in size.
(All the figures were drawn by J. H. Emerton.)

Fin. 1 .


Fig. 3.


Fig. $\sim$.


Fig. 4.


## EXPLANATION OF PLATE II.

Figure 5.-Hippa talpoida Say, (p. 548;) dorsal riew, enlarged abont two diameters. 6.-Pandalus annulicornis Leach, (p. 550 ;) dorsal view, slightly reduced in size.
7.-Gebia affinis Say, (p. 549 ;) female ; lateral view, slightly enlarged.
8.-Callianassa Stimpsoni Smith, (p. 549 ;) larger cheliped; outside, natural size.
9.-Palæmonetes vulgaris Stimpson, (p. $550 ;$ ) male; lateral view, enlarged one and one-half diameters.
(All the figures were drawn by J. H. Emerton.)

Plate II.

Fitr.


Ni. .nio

Fint.


No. 515

Fig. 7.


Fig. *.

.308

Fig. 9.


## EXPLANATION OF PLATE III.

Figure 10.-Crangon valgaris Fabr., (p. $550 ;$ ) male : dorsal view, natural size.
11.-Virbins Zostericola Smith, (p. 550 ;) female; lateral view, slightly enlarged.
12.-Mysis stenolepis Smith, (p. 551 ;) young female; lateral "view, enlarged four diameters. The anterior margin of the carapax is not well represented in this figure; see description.

- 13.-Diastylis quadrispinosa G. O. Sars, (p. 5.: ; ; ) lateral view, enlarged seren diameters.
(All the figures were drawn by J. II. Emerton.)

F゙ir． 10.


ドis． 11.


Fig． 12.


Fis． 13


## EXPLANATION OF PLATE IV.

Figure 14.-Orchestia agilis Smith, (p. 555 ;) male; lateral riew, enlarged five diameters.
15.-Gammarus ornatus Edwards, (p. 557 ;) male ; lateral view, eularged two diameters.
16.-Amphithoë maculata Stimpson, (p. 563 ;) male ; lateral view, enlarged two diameters.
17.-Ampelisca sp., (p. 561 ;) lateral view, enlarged five diameters.
18.-Cerapus rubricornis Stimpson, (p. 565 ;) female; lateral view, enlarged five diameters; and hand of the second pair of legs of the male, enlarged the same amount.
19.-Unciola irrorata Say, (p. 567 ;) male; dorsal view, enlarged six diameters.
(All the figures were drawn by J. H. Emerton and S. I. Smith.)

Fi゙ir． 14.


24

Fig．17．


Fig． 18.


522

So．52：

Fig．19．


52；

## explanation of plate V.

Figure 20.-Caprella geometrica Say, (p. 567;) lateral viers, enlarged about three diameters.
21.-Spheroma quadridentata Say, (p. 569 ;) dorsal view, enlargel five dian:eters.
22.-Ilotea cæса Say, ( p .569 ; ) male ; dorsal view, enlarged three diameters.
23.-Idotea irrorata Edwards, ( p .569 ; ) male; dorsal view, enlarged two diameters.
24.-Idotea robusta Krojer, (p. 569 ;) maile ; dorsal view, enlarged two diameters.
(Figures 20, 21, 23, and $\underset{\sim}{2} 4$, were drawn by J. H. Emerton; figure 22 by O. Harger.)

Fig． 20.


Fig．： 1.


No． 332

Fig． 23.


Fig r．


N゙n．ごっ

Fig． 24.

2.21
-

## EXPLANATION OF PLATE VI.

Figlie 25.-Limnoria lignornm White, (p. 571 ;) dorsal view, enlarged ten diameters. 26.-Erichsonia filiformis Harger, ( $1.5 \% 0$;) dorsal vierr, enlarged five diameters.
97.-Erichsonia attenuata Harger, (p. $5 \% 0$; ) dorsal view, enlarged three diameters.
ㄹ․․ Epelys trilobus Smith, (p. 5.1 ;) 乌dorsal view, enlarged teu diameters.
29.-Livoneca ovalis Harger, (p. 572;) dorsal view, enlarged three diameters.
(Figure 25 was drawn by S. I. Smith ; 26 and 23 by O. Harger ; 27 an 1291 y J. H. En ertoz.)

Fig． 25.


Fig． 26.


Fig．


Fig． 29.


## EXPLANATION OF PLATE VII.

Figure 30.-Lerneonema radiata Stcenstrup aud Lütken, (p. 578 ;) female, enlarged two diameters.
31.-Pandarus, (p. 576 ;) female ; dorsal view, eularged five diameters.
32.-Nogagus Latreillii, (p. 576;) male; dorsal view, enlarged five diameters
33.-Sapphirina, (p. 573 ;) male ; dorsal view, enlarged ten diameters.
34.-Lepas fascicularis Eilis and Solander, (p. 579;) lateral view of a single animal from a large cluster, slightly enlarged.
20.-Phoxichilidimm maxillare Stimpson, (p.544;) male; dorsal view, enlarged two diameters.
(Figure 33 was drawn by S. I. Smith; all the otleers by J. II. Emerton.)

Plate VII.

Fig. 30.


Fig. 31.


Fig. 32.


Fig. 33.


No. 536

No. $53 \%$

Fig. 35.
Fig. 34


## EXPLANATION OF PLATE VIII.

Figune 36.-Squilla empusa Say, (p. 536 ; ) lateral view of the free-swimming larvio in one of its later stages, enlarged ten diameters.
37.-Zoëa of the common erab, Cancer irroratus, (p. 5.30 ; ) in the last stage just before it changes to the megalons condition; lateral view, enlarged seventeen diameters.
33.-Megalops stage of the same, just after the change from the zoëa condition; dorsal view, enlarged thirteen diameters.
(All the figures were drawn by J. II. Emerton.)

F゙is. 31i.


Fig . 3 .


Fig. $37 a$.


## EXPLANATION OF PLATE IX.

Larval young of the Lobster, Homarus Americamus Edwards, (p. 5i2.)
Figure 38.-A. Lateral view of the larval joung in the first stage olserved, enlarged seven diameters.
B. The same in a dorsal view, the abdomen held horizoutally.
C. Antennula, enlarged fourteen diameters.
$D$. One of the thoracic legs of the second pair, enlarged fourteen diameters ; $a$, exopodus; $b$, epipodus ; $c$, branchie.
39.-E. Lateral view of the larval young in the third stage, enlarged five and one-half diameters.
$F$. Terminal portion of the abdomen seen from above, enlarged ten diameters; $a$, one of the small spines of the posterior margin of the terminal segment, enlarged fifty diameters.
G. Basal portion of one of the legs of the second pair, showing the epipodus and branchite, enlarged fourteen diameters.
(All the figures were drawn from alcoholic specimens, by S. I. Smith.)
lis. 3.


11

Fig. 39.


No. 512

6
rime

## EXPLANATION OF PLATE X.

Figure 40.-Lepidonotus squamatus, (p. 581 ; ) anterior part of the body, head, and proboscis; dorsal view.
41.-The same; end of the proboscis; front view, showing the jaws and papill:
42.-Lepidonotus sublevis, (p. 581;) dorsal view.
43.-Rhynchobolus dibranchiatus, (p. $596 ;$ ) anterior part of bod $\bar{y}$, month and head; lower side.
44.-The same; lateral appendage, showing the dorsal cirrus, the upper and lower branchis and the sctigerous lobes between them.
45.-Rhynchobolus Americanus, (p. $596 ;$ ) anterior part of the body and extended proboscis; dorsal view.
46.-The same; lateral appendages, showing the dorsal cirrus, the branched gill, the setigerous lobes, and the ventral cirrus.
(Figures 40, 41, 42, 45, were drawn from nature by J. H. Emerton; 44 by A. E. Terrill; 43 and 46 Were copied from Ehlers.)

Plate X.

Fin. 4 4.


Nu. 31

Fig. 42.


Fig. 41.


Fig. 44.


No. 55 s

Fig. 46.


No. 560

## EXPLANATION OF PLATE XI.

Figties 47.-Nereis virens, (p. 590 ; ) head little more than natural size ; dorsal view.
48.-The same ; extended proboscis; dorsal view.
49.-The same; probosci; sventral view.
50.-The same ; lateral appendage.
51.-Nereis limbata, male, (p.590;) a few segments of the middle region of the
body, anterior region, head and extended proboscis; dorsal view.
$52 .-N e r e i s ~ p e l a g i c a, ~ f e m a l e, ~(p . ~ 591 ;) ~ n a t u r a l ~ s i z e ; ~ d o r s a l ~ v i e w . ~$
53.-The same; male, natural size ; dorsal view.
54.-The same; head more enlarged ; dorsal view.
55.-The same; proboscis; ventral view.
56.-Phyllodoce gracilis?, (p. 586;) head ; dorsal view.
(Figure 51 was drawn from nature by J. H. Emerton; 47, 43, 49, 50, 59, 53, ware copied from Ehlers; 54, 55 , from Malmgren; 56 , from A. Agassiz.)

Fig. Ii.


Fig. 48. Fig. 49.


Fig. 53. Fig. Ss.

${ }^{1}$ Fig. 50.


No. 518

Fig. 54.


No. Sin

Fig. 55.
Fig. 56.


1. 65


## EXPLANATION OF PLATE XII.

Figure 57.-Nephthys picta, (p. 583 ;) anterior part of body and head, much enlarged; dorsal view.
58.-Nephthys bucera, (p. 583;) antcrior part of body and head, enlarged ; ventral view.
59.-Nephthys ingens, (p. 583 ;) anterior part of body and extended proboscis ; rentral view.
60.-The same ; dorsal view.
61.-Podarke obscura, (p. 589 ;) dorsal view, from a specimen preserved in alchohol and much contracted in length.
62.-Nectonercis megalops, (p. 592;) ventral view.
63.-The same ; anterior region of body and head; dorsal view.
64.-Marphysa Leidyi, (p. 593;) anterior part of borly and head, enlarged about three diameters; dorsal view.
(Figures 57 and 58 were copied from Ehlers; all the rest were drawn from nature by J. H. Enerton)

Fig. (6).


Vig. 3 \%.


F R


Fig. 63.


Fig. 64.


Fig. 10.


No. itis

## EXPLANATION OF PLATE XIII.

Figune 65.-Autolytus cornutus, (p. $590 ;$ ) an asexual individual, from which a male is about to separate ; dorsal view, enlarged about six diameters; A, A, A, autennse of the former; $\mathbf{C}, \mathbf{C}, \mathbf{C}, \mathbf{C}$, two tentacles and one tentacular cirrus on each side, followed by the dorsal cirri; F, the intestine; $d$, the long setre and dorsal cirri of the male.
66.-The same; anterior part of a female, more enlarged; the letters as before ; $b$, the eyes; $e$, the eggs; $f$, the intestine; 3 , one of the appendages of the anterior region of the body; $c$, the dorsal cirrus; $h$, the setigerous tubercle, supporting hooked setie.
67.-Diopatra cuprea, (p. 593 ;) head and anterior part of body, showing part of the branchia ; side view.
68.-The same; rentral view, showing the mouth open and jaws thrown back. 69.-Lumbriconcreis opalina, (p. 594 ;) anterior part of body ; dorsal view. 70.-The same; lateral appendage and setie.
(Figures 65 and 66 were copied from A. Agassiz; 67, 68, 69 were lrawn from nature by J. H. Emerton; 70, by A. E. Verrill.)

下is. 6i9.


No. 555

F゙ig. 65.


No.

Fig. 0 .


Ao. 5.56

Fig. 6x.


Fig. it.



## EXPLANATION OF PLATE XIV.

Figlen 71.-Clymenella torquata, (p. 608 ;) natural size; lateral view.
72.-The same; head and extended proboseis; front view.
73.-The same ; posterior and eandal segments ; dorsal view.
74.-Sternaspis fossor, (p. 606 ; ) dorsal view.
75.-Trophonia affinis, (p. 605 ; ) anterior portion ; dorsal view.
76.-Anthostoma robustum, (p. 597 ;) anterior portion of body, head, and extended proboseis; dorsal view, natural size.
7\%.-Spio setosa, (p. 602 ; ) anterior segments and head; side view; only one of the two large tentaeles is representerl.
78.-Polydora eiliatum, (p. $603 ;$ ) anterior and posterior parts ; dorsal view.
(Figures 71, 72, 73, 75, 76, were drawn from nature by J. H. Emerton ; 74, by A. E. Verrill ; 77, 78, were copied from A. Agassiz.)

Fig. 71.


Nu. $\overline{2}$

Fig. 7 .


Fig. 3.3 .


No. 379

F゙is. 74.


No. 576

Fig. 76.


Fig. 75.


Fis. 76.


Fig. is.

5.0

## EXPLANATION OF PLATE XV.

Figure 79.- Ammotrypane fimbriata, (p. 604;) ventral view.
80.-Cirratulus grandis, (p. 606 ;) natural size, from a living specimen; lateral view.
81.-The same ; natural size, from a preserved specimen ; dorsal view.
(Figures 79 and 81 were drawn from nature by J. H. Emerton ; figure 80, by A. E. Verrill.)

Fig. 7!.


Fig. - 0 .


Fig. 81.


## EXPLANATION OF PLATE XVI.

Figure 82.-Amphitrite ornata, (p. 613 ;) lateral view, somewhat reduced, from a living specimen.
83.-Ampharete gracilis, (p. 612;) lateral view.
84.-Enchone elegans, (p. 618 ; ) lateral view.
85.-Polycirrus eximius, ( p .616 ;) dorsal view of a living specimen creeping by means of its teutacles; natural size.
(Figures 82, 84, 85, were drawn from nature by A. E. Verrill ; 83, by J. H. Emerton.)

Fig. No.


No. 586
fig. *is.


Fig. 83.


Fig. 85.


No. $5 \times 7$

## EAPLANATION OF PLATE XVII.

Figure 86.-Potamilla oculifera, (p. 617;) in its tube, with branchice fully expanded, from a living specimen, found at Lastport, Maine. 87.-Cistenides Gouldii, (p. 612 ; ) lateral view.
sia.-The same; head and branchix, dorsal view.
88.-Sabellaria vulgaris, (p, 611;) lateral view.

8ea.-The same; view of the operculum and tentacles, from above.
(Figures $84,88,8 \varepsilon a$ were drawn from nature, by J. II. Emerton; 87, sia by A. E. Verrill.)

Fig. Mi.


No. its

Fig. **


No. 381

Fig. Era.


## EXPLANATION OF PLATE XVIII.

Figure 89.-Branchiobtella Ravenclii, (p. 624;) dorsal view, natural size.
90.-Malacobdella obesa, (p. 625 ;) torsal view.
91.-Pontoblella rapax, (p. 625 ;) dorsal view.
92.- Phascolosoma camentarimm, ( $p$. 627 ; ) lateral view.
93.-I'. Gonldii, (p. 6:\% ; ) lateral view, reduced one-half.
94.-Pontoncma marinum, (p. 634;) female, lateral view, enlarged 15 diameters; $o$, cggs ; $r$, genital orifice.
(Figure 94 was drawn from a living specimen. by 1 . E. Verrill ; all the others were drawn from pre"erved specimens, by J. HI. Emerton.)

Fig. 89.


Fig. 9I.


No. 589

Fig. 94.

Fig. 92.


No. 590

Fig. 93.



$$
1
$$

## EXPLANATION OF PLATE NLX.

Figrae 95.-Cosmocephala ochracea, (p. 630 ;) anterior portion, enlarged nearly three diameters, dorsal view.
95a.-The same; ventral view.
96.-Meekelia ingens, ( $\mathrm{p} .630 ;$ ) anterior portion of a specimen not full grown, natural size.
$96 a$.-The same; ventral view of the auterior portion and head of a larger specimen, in a different state of contraction, natural size.
97.-Polinia glutinosa, (p. 631 ;) dorsal view, enlarged twe diameters.
98.-Tetrastemma arenicola, (p. 699 ;) dorsal viem.
99.-Stylochopsis littoralis, (1. 632 ;) dorsal view.
100.-Planocera nebnlosa, (p. 632;) dorsal view.
(All the fignres were drawn from living specimens, by A. E. Verrill.)

Fig. 96.


No. 59]

Fig. 98.


Fig. 95.


Fig. 95 $a$.


Fig. 96ia.


## EXPLANATION OF PLATE XX.

Figure 101.-Loligo pailida, (p. 635 ;) dorsal view, about one-third natural size. 101a.-The same; the "pen" dorsal side.
102.-Loligo Pealii ?, (p. 635 ; ) a cluster of the eggs.
103.-The same; an embryo just before hatehing, much enlarged ; $a^{\prime}, a^{\prime \prime}, a^{\prime \prime \prime}$, $a^{\prime \prime \prime}$, the right "arms" belonging to four pairs; $c$, the side of the head; $e$, the eye; $f$, the caudal fins; $h$, the heart; $n$, the mantle in which color-vesicles are already developed and eapable of changing their colors ; o, the internal cavity of the ears; $s$, the siphon $; y$, the portion of the yolk not yet absorbed.
104.-The same; an embryo in an earlier stage of development, more highly magnified; the letters are the same as before.
105.-The same; a young specimen, recently hatched, found swimming at the surface, dorsal view.
(Figures 103, 104 are camera-lucida drawings made from the living specimens, by A. E. Vervill; all the others were drawn from preserved specimens, by J. II. Emerton.)

Fig. 103.


Fig. 10.1.


Ni. Hel

Fig. 101.


Fig. 102.


Fig. $101 a$.


## .

## EXPLANATION OF PLATE XXI.

Figure 106.-Pleurotoma lncarinatum, (p. 638;) natural size. 107.-Bela plicata, (p. 637 ; ) natural size.
108.-Bela harpularia, ( $\mathrm{p} .636 ;$ ) natural size.
109.-Anachis similis, (p. 614 ;) natural size.
110.-Astyris lunata, (p. 645 ;) enlarged.
111.-Astyris zomalis, (p. 645 ;) enlarged.
112.-'ritia trivittata, ( p .641 ; ) matural size.
113.-Ilyanassa olsoleta, (p. 641 ;) natural size.
114.-Nassa vibex, ( 1.640 ; ) natural size.
115.-Neptunea pygmea, (p. 639 ;) natural size.
116.-Urosalpinx cinerea, (p. 641 ;) natural size.
117.-Eupleura caudata, (p. (642;) natural size.
118.-Purpura lapillus, (p. 642;) natural size.
119.-The same ; banded variety.
120.-The same ; egg-capsules, enlarged one-third.
121.-Buccinum undatum, (p. 638 ; ) natural size.
122.-Sealaria multistriata, (p. 660 ;) enlarged.
123.-Scalaria lineata, ( 1,660 ; ) enlarged.
(Figure 120 was drawn from nature by J. T. Emerton; the rest are from Binney's Gould, drawn by E. S. Morse.)

Fig. $11 \%$


## Fing. 10:1.

Fig. 111


Fig. 1111.


Fig. 11:3.

Fig. 10~.


Fir. 11\%.


Fig. II.



Fig. 11.


Fig. 117.


Fig. 116.


Fig. 1き1.


Fig. $1 \geqslant 2$.


Fig. 123.


[^17]
## EXPLANATION OF PLATE XXII.

Figure 124.-Fulgur carica, (p. 640 ;) natural size.
(From Binner's Gould, drawn by E. S. Morse.)


```
 I
I
```


## EXPLANATION OF PLATE XXIII.

Figure 125.-Crucibulnm striatum. (p. 651 ;) natural size. 126.-The same; side view.
127.-Crepidula plana, (p. 650 ; ) natural size.
128.-C. convexa, ( 1.6 .50 ; ) natural size.
129.-C. fornicata, (p. 649 :) natural size.

129a.-The same; young specimen.
130.-Neverita duplicata, (p. 646;) natural size.
131.-Lunatia immaenlata, (p. 646;) natural size.
132.-Natica pusilla; (p. 647;) slightly enlarged.
133.-Lunatia heros, (p. 646;) natural size.
134.-The same; with the animal extended, as in crawling; dorsal view.
135.-The same, rariety triseriata, (p. 354 ; ) roung, natural size.
136.-The samo variety; uatural size, lower side.
(From Binney's Gould, drawn by E. S. Morse.)

a
Fion, 130.

Fig. 130.


F゚is. 135. Fins 136\%.


## EXPLANATION OF PLATE XXIV.

Figune 137.-Littorina rulis, (p. 651 ; ) natural size.
138.-Littorina palliata, (p. C82; ;) natural size.
139.-Lacuna viucta, (p. 652 ;) enlarged.
140.-Littorinella minuta, (p. 653 ;) enlarget.
141.-Rissoa aculeus, (p. 654 ;) enlarged.
142.-Skenea planorbis, (p. 655 ; ) enlarged.
143.-Odostomia producta, (p. (in6;) enlarged.
144.-O. fusea, (p. $656 ;$ ) enlarged.
145.-O. trifida, (p. $656 ;$ ) enlarged.
146.-O. trifida, var., (p. 656 ;) enlarged.
147.-O. impressa, (1. 6.56;) enlarged.
148.-O. seminuda, (p. 657 ; ) enlarged.
149.-Eulima oleacea, (p. 655 ;) natural size.
150.-Cerithiopsis terebralis, (p. 643 ; ) enlarged.
151.-C. Emersonii, (p. 643 ;) enlarged.
152.-Triforis nigrocinctus, (p. 645: ) enlarged.
153.-Cerithiopsis Greenii, (p. 647 ; ) enlarged.
154.-Bittium nigrum, (p.648;) enlarged.
155.-Turbonilla elegans, ( $\mathrm{p} \cdot 657$; ) much enlarged.
156.-Margarita obscura, (p. 661 ;) natural size.

157:-Vermetus radicula, (p. 649:) natural size.
158.-Crecum pulchellum, (p. $(449$; ) natural size and enlarged.
159.-Acmea testudinalis, (p. 661 ;) natural size.

159a.-The same; lower side,
1596.-The same, variety alveus; natural size.
(Figure 155 was drawn from nature, by A. E. Yerrill; the others are from Binney's Gonld, mostly drawu by E. S. Morse.)

Fig. 1:37.
14ir. 138.
Sig. 13! .
1ig. 1.10.
Fig. 111.
lig. 1 12.



Fig. 143.
Fig. 14.
Fig. 145
Fig. 146 .
Fig. 147.
lig. 14s.
1゙is. 14!
(2)


Fig. 150.


Fig. 152.
A

Fig. 153.


Fig. 156.


Fig. 158.


Fig. $150 b$.


Fig. $15 \%$.


## EXPLANATION OF PLA'TE XXV.

Figule 160.-Utriculus canaliculatus, (p. 663;) enlarget.
161.-Bulla solitaria, (p. 662; ) natural size.
162.-Amphisphyra debilis, (p. 663;) enlarged.
163.-Crlichua alba, (p. 664 ; ) natural size.
164.-Cylichna oryza, (p. 664 ;) enlarged.
165.-Actiron pmeto-striata, (p. 664;) enlargeci.
166.-Trachydermon ruber, ( $\mu .662$; ) natural size.
167.-Chetopleura apiculata, (p. 661 ;) natural size.
168.-Alexia myosotis, (p. 66\% ;) natural size.
169.-Melampus bidentatus, (p. 66\% ; ) natural size.

169a.-The same; banded valiety, (p. (602:) natural size.
170.-Doto coronata, (p. 665; ) a, (iorsal view, enlarged ; b, head, from abor* $c$, one of the branchia.
171.-Elysiella catnlus, (p. $66{ }^{2}$;) enlarged three diameters.
179.-Elysia chlorotica, (p. 667 ; ) enlarged two diameters.
173.-Doridella obscura, (p. 664;) a, dorsal view; b, ventral view, enlarged.
174.-Montagua pilata, (1. 666 ; ) natural size.
175.-Hermea cruciata, ( p .667 ;) enlarged.
176.-Doris bifida, (p. 664;) enlarged three diameters.
177.-Cavolina triclentata, ( p .669 ;) natural size.
178.-Styliola vitrea, (p. 668;) enlarged three diancters.
(Figures 171, 172, 173, 17t, 172 were drawn from nature, lis 1. E. Verrill: $169 a, 130$ liy E. S. Morse; 175 by A. Agassiz; $17 \pi$, by J. H. Emerton ; 177 was copied from C'urier, (last ill. eil.). The rest are from Binney's Gould, mostly ly E. S. Mon'se.)

Fig. 160. Fig. 161. Fig. $162 . \quad \mathrm{Fig} .163 . \quad \mathrm{Fig} .161 . \quad \mathrm{Fig} .165 . \quad \mathrm{Fig}$. 166.
(i) $(5)$
$\sqrt{*}$
2



Fig. 170.


Fig. 172.
Fig. 171.


Fig. 168.
ig .16 m .


Fig. 177.


Fig. 173. b


Vig. 169 a.
Fig. 167.


Fig. 178.


Fig. 175.


No. 70

## EXPLANA'TION OF PLATE XXVI.

Fuctef 179.-Mya arenaria, ( $\mathbf{p} .600$; ) with animal in extension, reduced to one-half. the natural size.
180.-Angulus tener, (p. 67\%;) animal reduced one-half.
181.-Tagelus gibbus, (p. 675;) with animal, the siphons not fully extended, one-half natural size.
192.-Ensatella Americana, (p. 674;) with animal extended, one-half natural size. The figure at the right shows some of the terminal papillie enlarged.
183.-Teredo navalis, (p. 669 ;) enlarged two diameters.

184, A.-Venus mercenaria, (p. 681 ;) natural size.
184, B.-Mulinia lateralis, ( $\mathrm{p}, 680$;) natural size.
('Ahe figutes were all drawn from nature, by A. E. Verrill.)


Fig. 183


Fig. 184.

-
( 1

## ENPLANATION OF PLATE XXVII.

Figites 186.-Teredo navalis, ( 1.669 ; ) shell and pallets. 187.-Teredo Thomsoni, (p. (670;) shell and pallets. 188.-Terclo megotara, ( p .670 ; ) shell and pallets. 189.-Xylotrya fimbriata, (p. 670 ;) shell and pallets. 190.-Gastranella tumida, (p. 678;) shell, enlarged six diameters. 191.-Corbula contracta, (p. 672;) natural size.
192.-Saxicava arctica, (p. 671 ; ) natural size.
193.-Clidiophora trilineata, (p. 673;) natural size, with animal.
194.-Lyonsia hyalina, (p. 672 ;) natural size.
195.-Thracia truncata, (p. 674 ; ) natural size.
196.-Thracia myopsis, (p. 673 ;) natural size.
197.-Periploma papyracea, (p. 673 ;) natural size.
198.-Cochlodesma Leanum, (p. 673 ;) natural size.
199.-Petricola pholadiformis, (p. 680 ;) natural size.
$\mathfrak{2 0 0}$ - Pholas truncata, (p. $670 ;$ ) natnral size.
(Figure 190 was drawn hy A. E. Tenill: all the best are from Binney's Could, mosfly drawn by E. S. Morse.)

Fig. 186.

(-7

Fig. 188.


Fig. 192.
9

Fig. If0.



Fig. 191.
Fig. 195.
Fig. $1 \times 4$.

\& (

Fig. 193.


Fig. 194.


Fig. 196.


Fig. 199.


Fig. 200.


Fig. 197.


Fig. 198.


## .

14
-

7

## EXPLANATION゙ ()F PLATE XXVHI.

Figite 201.-Cyprina Islandica, (1, 6-3;) natural size. 202.-Mactra solidissima, (p. 680 ;) natural size.
(The figures are looth from Binney's Gonld, drawn by E.S. Morse.)

Fig $\because 01$.


Fig. 20:2


## EXPLANATION OF PLATE NXIX.

Fiocre 203.-Astarte undata, (p. 684;) somewhat reduced.
204.-Astarte castanca, (p. 685 ;) natural size.
205.-Astarte quadraus, (p. 685 ;) uatural size.
206.-Gouldia mactracea, (p. 685 ;) natural size.
207.-The same, inside of one valve, enlarged.
208.-Lavicardium Mortoni, (p. 683 ;) natural size, with animal.
209.-Cardium piunulatum, (p. 683 ; ) natural size.
210.-Solenomya velum, (p.688;) natural size.
:211.-Cyclas dentata, ( $1.686 ;$ ) natural size.
212.-Lucina filosa, (p. 686;) natural size.
213.-Cryptodou Gouldii, (p. 686;) enlarged two diameters.
214.-Cryptodon obesus, (p. 687 ;) enlarged threc diameters.
215.-Cyclocardia Novanglize, (p. 684;) natural size.
216.-Cyclocardia borealis, (p. 683 ;) natural size.
(Figures $203,20 \%, 214$ were drawn by A. F. Terrill : 215 by E. S. Morse ; the rest from Binney's Gould and mostly drawn by F.S. Mme.)


Fig. 215.


Fig. 213.
(2)


# ENPLANATHN OF PLATE XXX. 

Figure 21\%.-Tagelus gibbus, ( p . G75; ) uatural size. 216.-Tagelus divisus, ( p .6 6 6 ; ) natural size. 219.- Callista convexa, (p.681;) natural size. 220 .-Tottenia gemma, ( 1.682 ; ) enlarged.
2.2.-Cumingia tellinoides, (p. 675:) natural size.
222.-Macoma fragilis, var. fusea, (p. 676;) matural size.

203 —Angulus tener, (p. $67 \%$; ) natural size.
224.-Angulus tenellus, ( 1 . 67才; ) natural size.
$225 .-T e l l i n a ~ t e n t a, ~(p .678 ;)$ natural size.
226.-Kellia planulata, (p. 6®ะ;) enlarged.
227.-Argina pexata, (p. 692:) natural size.
228.-Scapharea transversa, ( p .691 ; ) natural size.
229.-Nueula delphinodonta, (p. 691 ;) enlarged.
230.-Nueula proxima, (p. 691 ;) natural size.
231.-Yoldia sapotilla, (p. $0 \& 9$; ) natural size.
232.-Yoldia limatula, ( 1,689 ; ) natural size.


## Fig 217.



Fig. 刃in.


Fig. 920.


Fig. $2 \geq 2$.


Fig. 224.
Fig. 223.


Fig. 289.


Fig. 231.


Fig. 220


Fig. 22マ.


Fig. 23~.


## EXPLANATION OF PLATE NXXI.

Figule 253.-Crenella glandula, (p.695.)
234.-Mytilus edulis, (p. 692.)
235.-Modiolaria corrugata, (p. 694.)
236.-Modiolaria nigra, (p. 694.)
237.-Modiola modiolns, (p. 693.)
238.-Modiola plicatula, (p. 693.)
(All the tigures are of natural size, and from Binmer* (rould, drawn by E. S. Morse.)

Fin．2：33．


Fig 2：4．

litir ：wisti．


F＇is．2：3\％．

F゙i＿ジア゙


## EXPLANATION OF PLATE XXXII.

Figcre $2: 39$ - Anomia aculeata, ( 1 , 6\% ; ) lower side, nathmal size.
240 .-The same, upper side.
240a.-The same, portions of the mper side magnified.
241. - Anomia glabra, (p. $696 ;$ ) profile view, natural size.
242.-The same, (p. 696 ; ) lower side.

242a.-The same, (p. $696 ;$ ) roung, natural size.
243.-Pecten irradians, (p, 695; ) natural size.
244.-Siliqua costata, (p. 675 ;) natural size.
245.-Ensatella Americana, (p. 674; ) natural siz.
(The figures are from Rinney's fiould, drawn hy E. S. Morse.)


## ENPLANATION OF PLATE XXXIII.

Figure 246.-Cynthia partita, variety stellifera, (p. 701; ) natural size.
247.-Cyntlia caruea, (p. 701:) natural size.
242.-The same, (p. 701;) Fonnger specimens, natural size.
249.-Enryra pilularis, ( p .700 ; ) natural size.

250 .-Molgula Manbatteusis, (p. 694 ; ) smooth variets, natural size.
251.-Molgula arenata, (p. 699 ;) natural size.
252.-Botryllus Gouldii, (p. 102 ;) colony incrusting the stem of Tubularia, somewhat enlarged.
253.-The same; one of the zöids, enlarged ten diameters; $a$, anal tube and orifice; $s$, somach; $g$, groove and ressels along the edre of the brauchial sac, inside; o, left ovary: $b$, lud, attached by a slender stolon.
254.-Salla Cabotti, (1. 706 ; ) solitary individual, from the dorsal side, enlarged ; $h$, heart; $s$, small chain of salpe budding within the old one.
255.-The same; one of the individuals from a mature chain, three-quarter view enlarged ; $a$, posterior or anal opening; $b$, anterior or branchial opening; c, processes by which the individuals of the chain were nuited ; $h$, heart ; $n$, nervons ganglion; o, nucleus ; $r$, gill.
256.-Escharella variabilis, ( P .713 ;) few of the cells, much enlarged.
 drawn by A. F. Ferrill.)


Fing 254.


750

Fig. 2.j\%.


Fig. :24!


Eugyra
719

Fis. 253.


Fiz. シin。

i.15

Fig. 250.



So. 7if

## EXPLANATION OF PLATE XXXIV.

FigCre 25\%.-Alcronitium ramosum, ( $\mathrm{p} .70 \mathrm{z}^{\text {; }}$ ) a young unbranched speeimen, eularged t wo diameters.
258.-Bngula turrita, (p. 712 ;) extremitr of a branch, eularged.
259.-The same; a branchlet more highly maguified.

259a.-The same; a branchlet bearing ovicells.
260.-Crisia ebnruea, (p. 707 ; ) a cluster of branches, enlarged.
261.-The same; a branch bearing an ovicell, more bighly magnified.
262.-Membranipora pilosa, (p. II: ;) a fer of the cells, seen from above, magnified.
$262 a$. The same; a single cell, seen in profile.
263. - The same ; one of the zoöids expanded.
264.-Mollia hyatina, (p. 713 ;) one of the zoöids in expansion, highly maguified.
(Figures 257, 259. 259a were drawn by A. E. Verrill : the rest were furnished bs A. Hyatt.)


Fig. Wis3.


No. 769

Fig. : 2io


No. $\because \square 1$

Fig. 257.

7.3

Fig. 202a.


No. 76 s

Fig. 264.


No. $\because: 3$

## EAPLAN゙ATION OF PLATE XXXV.

Figure 20̃.-Lentosyuapta Girardio, ( $\mathrm{p} .716 ;$ ) anterior part of the bodr, enlarged onehalf.
266.-The same; perforated plates from "the skin, and the "anchors," highly magnified.
207.-Echinarachnins parma, (p. 817 ; ) upper surface with the spines partly removed, natural size ; $a$, ambulacral zones; $b$, interambulacral zones.
263.-Strongylocentrotus Dröbachiensis, (p. 716;) side view, natural size. 269.-Asterias arenicola, (p. 718 ;) dorsal view, somewhat reduced. 270 .-Ophiopholis aculeata, ( p .719 ;) dorsal view, about onc-half natural size
(Figures 265, 266 were drawn by d. E. Verrill ; $36 \%$, 269 were copied from A. Agassiz; 268, 2\% were drawn by E. S. Morse.)

Fig. 267.


Fig. 270.


617

Fig. 269.


616

Fig. : 26.

Fig. : 2 6.


## EXPLANATION OF PLATE XXXVI.

Figure 271.-Aurelia flavidula, (p. 723 ;) upper side, akout one-fourth the natural size.
272.-Dactjlometra quinquecirra, (1. 724;) lateral vier, one-fourth the natural size.
273.-Corymorpha pendula, (p. 736;) natural size. 274.-Parypha crocea, (p. 736 ;) natural size.
(Figure 272 was copied from A. Agassiz, Catalogne Acalephs; the others were copied from L. Agassiz, Contributions to Natural History of Cuited Staten.)

F゙に゙ッシー


No． 613

Vias ： $2=3$



Sin．ill
Fig． 272

Fig．274．


## EXPLANATION OF PLATE IXXVII.

Figure 20.5.-Zygodactyla Groulandica, (p. 799 ;) profile view, one-half natural size, 276.-Bongainvillia superciliaris, ( $\mathrm{p}, 733$; ) a branch, much enlarged.
277.-Peunaria tiarella, (p. 735 ;) a branch, natural size.
2.3.-The same; one of the hydroids, with medusx, buds developing at the base of the proboscis.
279.-Sertularia pumila, ( 1 . 732 ; ) part of a colony on a frond of sea-weed natural size.
¿=0.-Scrtularia argentea, (p. 732 ;) a branch bearing reproductive capsules (gonothece,) with the soft parts remored, much enlarged.
231.-Obelia commissuralis, (p. 720;) a branch bearing hydroids and one female gonotheca, much enlirged.
(Figures 375 and 279 were copied from A. Agassiz ; 96 and 251 from L. Agassiz; 278 from J. Leily ; Ti and 230 were drawn by A. E. Verrill.)

19ヶ.


Nu. 612

Fir. is.
Fig. 981.


No. 603

Fig. Ms,


No. 605

Fig. :2\%.


611


No. 606

Fig. 2:\%.


No. 610

## EXPLANATION OF PLATE XXXYTI.

Figure 282.-Hybocodon prolifer, (p. 736 ; ) natural size, the head seen from the back side.
283.-Alcyonium carneum, (p. 737 ; ) three of the polyps fully expanded, much enlarged.
284.-Sagartia leucolena, ( p .738 ; ) natural size, in expansion, but the tentacles are not fully extended; the *indicates the long odd tentacle.
28\%.-Halocampa producta, (p. 738 ;) natural size, well expanded, but the body may be much more clongated.
286.-Epizoanthus Americanus, (p. 740 ;) a colony which had completely corered and absorbed a shell occupied ly a hemnit-crab, (Enpagnms pubescens, ) which still lived within the cavity; the polyps are not expanded, natural size.
257.-The same; oue of the polyps in full expansion, natural size.
(Figure 222 was copied from L. Agassiz; 286 is from the American Naturalist, drawn by E. S. Morse: the rest were drawn by A. E. Ferrill.)

Fig. 2ธ゙3.

$$
I
$$

No. 595

Fig. 284.


Fig. 28.5.

$\because 0.600$


[^0]:    * On Alternate Generation in Annelids, and the Embryology of Autolytus cornutus; Boston Journal of Natural History, Vol. VII, p. 384, 1863.

[^1]:    ＊Annals of the Lyceum of Natural Mistory of New York，Vol，10，p．83，18\％：．

[^2]:    ＊Catalogue of North American Acalephar，1． 49.

[^3]:    * Report on the Osster-Fisherics, Potomac River Shad and Merring Fisheries, and the Water-fowl of Maryland, to his excellency the governor and other commissioners. of the State oyster-police force, Jannary, 1-7.2.

[^4]:    *since the acconnt of the Teredo maralis, on page 334 , has been in type, I have learned some additional facts in regard to it from Mr. V.N. Elwards. The statement that the buors are taken up every six months does not apply to the spar-buoys, which are taken up only once a sear, in April and May. Mr. Elwards states that the Teredos wonld destroy an monainted spar-bnoy in one year, but when painted with verdigris they will only work where the paint becomes rubbed off. They grow to full size in one prar. They first attack bnors or piles just below the water's edge, but erentually will ilestroy the entire submerged part of the spar-buogs. He thinks that some of them live throngh the winter.

[^5]:    ＊Jonrmal of the Acadeny of Niatural sciences of Philadelphia，ed series，vol．iii， 1ご5．

[^6]:    * Proceedings Boston Socicty of Natural History, vol. x, p. 11, 1866.

[^7]:    Figure 3. Original tigure of Astarte lutea, natural size. From the Proceedings of the Boston Society of Natural History.

[^8]:    * The results of the observations made at Great Egg Harbor were published by the writer in the American Naturalist, vol. v, p. 397, 1871.

[^9]:    * Embryo, some time before hatching, removed from the external envelope and shown in a side view enlarged twenty diameters; $a$, $a$, dark-green yolk mass still malosomed ; b, lateral margin of the carapax maked with many dendritic spots of red pigment ; $c$, eye; $d$, antemuma ; r, antenna ; $f$, external maxilliped ; $g$, great cheliped which forms the big claw of the adnlt ; h, onter swimming branch or exopodus of the same: $i$, the four ambulatory legs with their exopodal branehes ; $k$, intestime; $l$, heart ; m. bilobed tail seen edgewise. [Drawn by S. I. Smith.]
    $t$ To prevent confusion, the terms here nsed are those proposed by Milne Edwards to designate the different hanches of the cephatothomeic appendages: cmopordus, for the
     dus, for the dabelliform appendage, (b;) and endognuthus, exognathus, and epignathus, for the corresponding hranches of the mouth organs.

[^10]:    * The nmmber of branchite, or branchial pyramids, in the American lohster is twenty on each site: a single small one upon the second maxilliped, thee well developed ones mon the extermal maxilliped, thee mpon the first cephatothoracic leg. fom each upor the second, thind, and fourth, and one noon the fifth.

[^11]:    * The Coleoptera were mostly determined by Dr. George H. Horn.

[^12]:    * The deseriptinn of Scyphzcella arenicola and the reference of Jdotea triloba to Fpelys are taken from Mr. Smith's unpublished mannscript, and his name, therefore appears as anthority in these cases.

[^13]:    

[^14]:    * In mentioning this species, on page 321 , it was stated that it has but three gill-, and, in fact, this is the most frequent number. Among the numerous examples examined, I have only recently found a specimen with both pairs of gills iu their nommal coudition.

[^15]:    * Binney's, llate xxti, Figs. 341-341, emoneonsly referred to Loligopsis paro, apparently represents this species.

[^16]:    * It was not studied carefully when recent ; and I have no specimens of this and sereral of the other species at hand, fur most of the sponges were sent elsewhere for comparison with named types, and have not yet been retmmed.

[^17]:    - 

