


 



 

bovenal is de zee koude soep ... 
(Kamagurka) 



 



 

Promotor: 

 Prof. Dr. Ann Vanreusel (Universiteit Gent) 

 

Leden van de leescommissie: 

 

Dr. Jean Pierre Féral (UMR - Station Marine d'Endoume Marseille) 

Prof. Dr. Filip Volckaert (Universiteit Leuven)  

Prof. Dr. Koen Sabbe (Universiteit Gent) 

 

Leden van de examencommissie:  

 

 Prof. Dr. Magda Vincx (Universiteit Gent) 

 Prof. Dr. Jacques Vanfleteren (Universiteit Gent) 

 Prof. Dr. Jan Mees (Universiteit Gent/ Vlaams Instituut voor de Zee) 

 Dr. Peter Weekers (Universiteit Gent) 

Prof. Dr. Wim Vyverman (Universiteit Gent) 



 



TABLE OF CONTENTS 
 

 

TABLE OF CONTENTS 

 
 

Acknowledgements/Dankwoord ....................................................................................i 

Summary .......................................................................................................................v 

Samenvatting ................................................................................................................ix 

 

Chapter 1 

 General introduction and outline .......................................................................1 

 

Chapter 2 

Phylogenetic relationships within the Mysidae (Crustacea, Peracarida, Mysida) 

based on nuclear 18S ribosomal RNA sequences …………………………...25 

 

Chapter 3 

Evidence of genetic differentiation of the brackish water mysid Neomysis 

integer (Crustacea, Mysida) concordant with Pleistocene glaciations. Pilot 

study …………………………………………………………………………39 

 

Chapter 4 

Patterns of genetic diversity, contemporary gene flow and postglacial 

colonization history of a low dispersal mysid, Neomysis integer (Crustacea, 

Mysida), along the northeast Atlantic coasts ………………………………...53 

 

Chapter 5 

Phylogeographic patterns within the mysid Mesopodopsis slabberi (Crustacea, 

Mysida): evidence for high molecular diversity and cryptic speciation……...87 

 

Chapter 6 

Patterns of genetic diversity of the brackish water mysid Neomysis integer 

(Crustacea, Mysida) within the Westerschelde estuary: panmictic population 

or local differentiation in a highly variable environment? …………………121 



TABLE OF CONTENTS 
 

 

Chapter 7 

Morphological differentiation between geographically separated populations 

of Neomysis integer and Mesopodopsis slabberi (Crustacea, Mysida)……..145 

 

Chapter 8 

 General conclusions and perspectives………………………………………163 

 

References ................................................................................................................175 

 

 

 



DANKWOORD 

 i

Finally! Eindelijk kan ik aan dat laatste stukje tekst beginnen ... 

Ik zou een heleboel mensen willen bedanken zonder wiens hulp, steun & liefde dit 

werk nooit tot een goed einde zou gekomen zijn! 

 

Vooreerst zou ik mijn promotor, Prof. Dr. Ann Vanreusel, willen bedanken voor alle 

hulp, steun, vertrouwen en vrijheid die ze mij gegeven heeft om dit werk tot een goed 

einde te brengen. Bedankt voor het lezen van de vele teksten en de aanmoedigingen 

tijdens de zware schrijfdagen! Daarnaast mag ik ook Prof. Dr. Magda Vincx alleszins 

niet vergeten te bedanken voor de unieke kans de ze mij gegeven heeft om dit 

doctoraatsonderzoek te starten en mij hierin gedurende de voorbije vijf jaar volop te 

steunen! Ook verdient Prof. Dr. Jacques Vanfleteren een speciale vermelding want 

zonder de gastvrijheid van zijn labo en het ter beschikking stellen van al hun 

faciliteiten hadden mijn eerste stappen op het gebied van moleculair onderzoek 

waarschijnlijk veel moeizamer verlopen! 

 

Verder wil ik ook Prof. Dr. Filip Volckaert en Prof Dr. Thierry Backeljau bedanken 

voor de interessante discussies die mijn onderzoek, zeker en vast gedurende de eerste 

jaren, hebben gestuurd. Els Gysels wil ik bedanken voor het lezen en herwerken van 

aantal van mijn manuscripten en vooral ook voor de opbeurende woorden toen ik bij 

momenten het bos niet meer door de fylogenetische bomen zag ... Peter Weekers dank 

ik voor de hulp bij de fylogenetische analyses. 

 

De vele mensen die mij geholpen hebben met het labowerk verdienen zeker een 

pluim! Danny Peelaers, en laborant ‘ad interim’ voor een paar maanden, Joris 

Muylaert wil ik bedanken voor de ontelbare DNA extracties, PCRs, SSCP analyses, ... 

Andy Vierstraete voor mij in te wijden in de wondere moleculaire wereld van DNA 

extracties, PCRs, agarosegels, fylogenetische analyses en natuurlijk voor al het 

sequeneringswerk, de deskundige hulp bij het aligneren en runnen van mijn 

fylogenetische bomen, en vooral de nuttige tips en vele oplossingen voor al mijn 

moleculaire problemen! Ook een speciale dank aan iedereen van het labo Vanfleteren, 

met in het bijzonder Annemie De Vreese bij wie ik steeds terecht kon met mijn vragen 

en labo-problemen. 



DANKWOORD 
 

 ii 

Daarnaast wil ik ook Bart Hellemans, Jeroen Van Houdt, Jan Pinceel en Sofie Geenen 

bedanken voor het aanleren van de SSCP analyses en de vele nuttige tips die geholpen 

hebben bij het optimaliseren van de SSCP techniek! 

Dirk Vangansbeke, Dannielle Schram en Annick Van Kenhove dank ik voor alle 

bestellingen, technische hulp en bijstand. En natuurlijk ook een grote merci aan Sofie 

Derycke voor het delen van het ‘moleculaire leed’, het zoeken naar oplossingen voor 

tal van laboprobleempjes en de goede sfeer op het moleculair platform! 

 

Mijn thesisstudente Tine Bourgois verdient hier ook een vermelding, bedankt voor je 

voortreffelijk werk!  

 

Ook een woordje van dank voor mijn collega “mysidologen”: Jan Mees, Nancy 

Fockedey en Tim Deprez voor hun hulp, steun en enthousiasme die het Mysida 

onderzoek levendig houden! 

 

Bedankt aan de volgende personen die zo bereidwillig waren om mij van ‘staaltjes 

aasgarnalen’ ter aller lande te voorzien, zonder jullie was van dit doctoraat geen 

sprake geweest: Risto Väinöla, Asta Audzijonyte, Basia Malinga, Jan Witt, Martin 

Solan, Jean-Claude Dauvin, Benoit Sautour, Marine Cunha, Pilar Drake Moyano, 

Geoff Oliver, Stephen Roast, Shawn Shellito, Ana Margarida Sardo, Manuel Ramirez 

Pastorinho, Carmen Barbera, Carles Ribera, Tris Wooldridge, Jan Mees, Nancy 

Fockedey, Annick Verween, Kris Hostens, Steven Degraer, Tom Gheskiere, Tim 

Verslycke, An Ghekiere. Daarnaast ook dank aan de trouwe mysid-vissers op het 

strand of op zee: Guy Desmet, Danny Peelaers, Bart Beuselinck, (en in vroegere 

tijden) Bernard Timmerman, en natuurlijk ook de bemanning van de Belgica en 

Zeeleeuw. Alsook de grondel-mannen uit Leuven: Jef Guelinckx en Bram Geysen, 

bedankt om jullie grondels af en toe wat in te tomen zodanig dat ik ook wat 

aasgarnaaltjes kon meepikken uit jullie strandstalen! 

 

En natuurlijk een grote merci aan alle marbiollers voor de aangename jaren, de goede 

sfeer, de leuke feestjes, ... met in het bijzonder mijn bureaugenoten Saskia, Sofie & 

Sofie en verder ook Jan Wittoeck, Nancy Fockedey, Annick Verween, Ilse De Mesel, 

Tom Gheskiere, Maarten Raes , Isolde De Grem, Henni Hampel, ... 



DANKWOORD 

 iii

De “bende uit Heusden” (Jeroen & Katrien, Jan & Katrien & kleine Irene, Aline); 

Tomme & Schoen; en de ‘oud’ medestudenten (Saaas, Annick, Veerle & Joeri) 

bedankt voor jullie vriendschap, hopelijk komt er nu wat meer tijd voor sociale 

activiteiten ... 

 

Mijn ouders en zusje Anne wil ik speciaal bedanken voor al hun steun gedurende de 

vele jaren dat ik met mijn garnalen bezig was! Ook veel dank aan de familie Brys 

(Erik & Christiane, Dirk & Nadia & lieve Elena) voor al hun aanmoedigingen en 

interesse!  

 

En tenslotte ... Kristel, bedankt voor al je liefde, steun, en natuurlijk ook voor het 

verbeteren van die ontelbare puntjes & comma’s! Het ‘kluizenaarsbestaan’ boven in 

de groene kamer achter mijn computer was niet altijd even gemakkelijk, maar dat zal 

ik vanaf nu dubbel en dik proberen goed te maken!!! 

 

 

Thomas, 

Gent, 15 maart 2005. 

 

 

 

 

 

 

 

 

 

 

 

Dit onderzoek werd financieel gesteund door het GOA BOF project (1205398) 

‘Biodiversiteit van mariene benthische gemeenschappen langsheen ecologische 

gradiënten’ van de Universiteit Gent, het FWO project G029200 en het 

onderzoeksproject TROPHOS van het federaal wetenschapsbeleid. 



 



SUMMARY 

 v

SUMMARY  

 

The present study deals with the molecular diversity and genetic population 

structure of two mysid species along the European coast. The overall aim is to provide 

insights in the levels of molecular genetic diversity, i.e. diversity (variation) at the 

level of the individual genes, within and between species of the order Mysida 

(Crustacea, Peracarida). A detailed understanding of the levels of genetic diversity of 

species is of fundamental importance since the intraspecific genetic variability 

provides a mechanism for populations to adapt to their ever-changing environment, 

and hence determines the ecological and evolutionary potential of species. Over the 

last decades, many marine studies have focused on the spatial patterns of genetic 

diversity in natural populations, providing evidence of significant genetic 

differentiation, even in taxa with long-life pelagic larvae and hence high dispersal 

potential. However, the amount of information on the genetic patterns within marine 

taxa with poor dispersal abilities, especially along the northeast Atlantic, remains 

scarce. Given the expected genetic differentiation between populations in poor 

dispersers and the uncovering of substantial cryptic diversity in morphological 

identical species in a wide variety of marine taxa, the levels of genetic diversity in 

poorly dispersing species may have been underestimated. 

The present study focuses on mysid species within the species-rich Mysidae 

family, with in particular emphasis on the European species Neomysis integer and 

Mesopodopsis slabberi, two key species in coastal marine and estuarine ecosystems, 

which occur sympatrically in Northeast Atlantic estuaries. Both species have typical 

life history characteristics, like brooding behaviour and the absence of free-living 

larvae, which may result in a low dispersal potential and restricted gene flow between 

populations. Hence, a study of the phylogeographic patterns of both species 

throughout their distribution range might contribute to an understanding of molecular 

patterns within low dispersive marine invertebrate species. Moreover, both species 

have marked differences in their physiological tolerance and habitat preferences: N. 

integer is a typical brackish water species occurring in (natural) fragmented habitats 

(e.g. estuaries, brackish lagoons); M. slabberi has a broader distribution, occurring in 

both coastal marine and estuarine habitats, suggesting a more continuous habitat. A 

comparison of the genetic patterns within both species offers an opportunity to 

elucidate the importance of several intrinsic (i.e. biological, ecological or behavioural) 
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and extrinsic (i.e. physical, geological, environmental) factors on the phylogeographic 

structuring.  

In chapter 2 a molecular phylogenetic study within the Mysidae family based 

on 18S ribosomal RNA sequences is presented. Two of the three subfamilies 

(Gastrosaccinae and Mysinae) included in this study did not appear to be 

monophyletic. The split of these subfamilies in different groups (‘Gastrosaccus’ and 

‘Anchialina’ group in case of the subfamily Gastrosaccinae; and a split of the tribe 

Mysini, within the subfamily Mysinae, in two groups), as suggested by the present 

molecular data, is also supported by several morphological differences. Hence, the 

18S rRNA based phylogeny urges a taxonomic revision of the speciose Mysidae 

family. 

Chapters 3 and 4 deal with the phylogeographic patterns of the brackish water 

mysid N. integer along the northeast Atlantic coast. First, a baseline study is presented 

using a limited number of DNA sequences of the mitochondrial cytochrome b gene, 

cyt b (Chapter 3). Subsequently a more extended analysis is performed on a total of 

461 specimens from 11 sampling sites (mainly estuaries), using Single Stranded 

Conformation Polymorphism (SSCP) analyses on two fragments of the mitochondrial 

cytochrome c oxidase I gene, COI (Chapter 4). The results of both studies are largely 

concordant, showing a significant genetic differentiation throughout the distribution 

range of N. integer with a low level of intra-population variability. They corroborate 

the expectations of the genetic patterns observed in a low dispersal species with 

brackish water habitats. Different phylogeographic analyses (AMOVA, nested clade 

analysis, mismatch distributions) point to a complex genetic pattern shaped by the 

Pleistocene glaciations. The patterns clearly contradict the general expectations 

according to the current paleoclimatological models for terrestrial and freshwater 

species. These models predict that taxa inhabiting northern temperate regions were 

forced to southern latitudes in glacial refugia (the Iberian & Italian peninsula, Balkan 

region) during glacial periods because of the decreased temperatures. At the end of a 

glacial period the warming climate and the retreat of the glaciers led to a rapid 

migration of species out of the refugial areas. These subsequent waves of northward 

postglacial colonisation and compression of the distribution range during glacial 

periods generally lead to a reduction in the levels of genetic diversity compared to 

refugial areas. In addition, the northern populations are less structured than 

populations inhabiting refugial areas. In the case of N. integer, the phylogeographic 
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analyses of the mitochondrial COI gene pointed to the following contrasting results: 

(i) no decline in haplotype diversity is detected in formerly glaciated areas, with 

exception of a decrease at both the northern and southern distribution edge, (ii) the 

Iberian peninsula did not act as a single glacial refugium, and it seems that these 

southern refugial populations did not participate in the most recent postglacial range 

expansion after the last glacial maximum. The existence of multiple (northern) glacial 

refugia is suggested, probably located in the southern North Sea or English Channel, 

around the British Isles and in the Bay of Biscay. Moreover, both the COI and cyt b 

analyses show a clear phylogeographic discontinuity at the southern distribution edge, 

between the Guadalquivir and all other Atlantic populations. 

 The phylogeographic patterns among Atlantic and Mediterranean populations 

of M. slabberi are analysed by means of DNA sequencing of a 458 bp fragment of the 

mitochondrial cytochrome c oxidase subunit I (COI) gene and a 487 bp fragment of 

mitochondrial 16S ribosomal RNA gene (Chapter 5). Contrary to N. integer, the mean 

levels of within-population molecular diversity are very high (mean h = 0.807 and π = 

0.0083), a common characteristic for many marine species. A very high degree of 

phylogeographic structuring is apparent, and the COI and 16S phylogenies are 

resolved in four highly divergent, monophyletic clades (two Mediterranean and two 

Atlantic clades). The levels of nucleotide divergence between those clades probably 

exceed the intraspecific level and hence suggest the existence of various cryptic 

species. Along the northeast Atlantic coast M. slabberi shows similarities with N. 

integer in the degree of population structuring at a macrogeographic scale, which 

could be linked to the absence of free-living larvae in both species. However, on a 

smaller (meso-) geographical scale less structuring is observed between M. slabberi 

populations compared to N. integer, probably due to the higher continuity of available 

habitats. In contrast, the relatively discrete, natural fragmented estuarine and brackish 

habitats of N. integer results in more ‘closed’ populations, resulting in limited gene 

flow even at smaller geographic scales. 

 Chapter 6 describes the fine-scale (intra-estuarine) and temporal genetic 

variation, an aspect that has been very often ignored in many large-scale studies, of 

the brackish water mysid N. integer within the Westerschelde estuary. Different 

samples along an environmental gradient of salinity and pollution, and from different 

habitats (subtidal, brackish lake and harbour site) are collected in three consecutive 



SUMMARY 
 

 viii

years (representing 9 generations) and analysed with SSCP. Within two years a small, 

but significant genetic differentiation is observed within the Westerschelde estuary. 

However, there is no evidence for temporal stability of this genetic structure. Hence, it 

remains unclear if this is a result of stochastic events, sampling error, or caused by the 

unpredictable environmental changes, typical for brackish water habitats. 

Furthermore, the estimates of the effective female population size of N. integer are 2 

to 3 order of magnitude below the estimates of the census population size. This could 

indicate that despite their large population size, the populations of N. integer may be 

prone to rapid loss of genetic diversity. 

 In addition to the genetic analyses of populations of N. integer and M. 

slabberi, variation in 12 morphometric and two meristic characters is assessed in three 

populations each (Chapter 7). Multivariate analysis show clear morphometric 

differences (related to eye and telson morphology) between populations of both 

species. The morphological differentiation within M. slabberi is highly concordant 

with the available genetic data from mitochondrial loci, pointing to a large divergence 

between the Atlantic and Mediterranean populations. However due to some overlap of 

individuals between the different populations, the present morphometric analysis does 

not suffice to assign the different populations to a separate species status. In the case 

of N. integer, the largest divergence is observed for the Gironde population. 

Morphometric differences are mainly related to the eye morphology of N. integer. 

Possible interactions of this morphological character in association with 

environmental conditions, such as higher turbidity within the Gironde estuary, could 

be responsible for the observed pattern. 

 In conclusion, a high degree of differentiation is observed between mysid 

populations of both species based on several mitochondrial markers, as well as on 

morphometric characters. These results corroborate the expectations for species with 

low dispersal capacities (brood protection) and fragmented brackish habitats. The 

intraspecific molecular patterns show a clear phylogeographic structure, at least for N. 

integer pointing to a complex postglacial recolonisation of northern Europe from 

multiple glacial refugia. In the case of M. slabberi, the mitochondrial DNA analyses 

suggest to the existence of multiple cryptic species. Finally, the analyses of ribosomal 

18S sequences at a higher taxonomic level, within the speciose Mysidae family, prove 

to be helpful in re-evaluating the morphology-based classification within this family. 

Based on these results the family Mysidae is in need for a taxonomical revision. 
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Deze studie behandelt de moleculaire diversiteit en genetische 

populatiestructuur van twee soorten aasgarnalen langs de Europese kust.  Het doel van 

de studie is inzicht te verstrekken in de graad van moleculair genetische diversiteit, 

d.i. diversiteit (variatie) op het niveau van individuele genen, binnen en tussen species 

van de orde Mysida (Crustacea, Peracarida).  Deze kennis is van fundamenteel 

belang: genetische diversiteit zorgt er immers voor dat populaties zich kunnen 

aanpassen aan hun steeds veranderende omgeving, en bepaalt zo het ecologische en 

evolutionaire potentieel van soorten.  In marien onderzoek is het aantal studies van de 

ruimtelijke patronen van genetische diversiteit in natuurlijke populaties gedurende de 

laatste 20 jaar sterk toegenomen. Vele van deze studies leverden bewijs van 

significante genetische differentiatie, zelfs in taxa met langlevende pelagische larven 

en bijgevolg een hoog dispersiepotentieel.  Over genetische patronen in mariene taxa 

met een laag dispersiepotentieel is echter relatief weinig geweten.  Rekening houdend 

met de te verwachten genetische differentiatie tussen populaties met een lage 

dispersiecapaciteit, en de recente ontdekking van een aanzienlijke hoeveelheid 

cryptische diversiteit in morfologisch identieke soorten bij een groot aantal mariene 

taxa, zijn de niveaus van genetische diversiteit in deze soorten mogelijks ten zeerste 

onderschat. 

Deze studie handelt over aasgarnalen in de soortenrijke Mysidae familie; met 

nadruk op de Europese soorten Neomysis integer en Mesopodopsis slabberi,  twee 

sleutelsoorten in kustgebonden mariene en estuariene ecosystemen.  Beide soorten 

hebben typische karakteristieken in hun levensgeschiedenis, zoals broedgedrag en de 

afwezigheid van vrijlevende larven, die mogelijks resulteren in een laag 

dispersiepotentieel en beperkte genenflux (gene flow) tussen populaties.  Het 

bestuderen van de fylogeografische patronen van beide soorten langsheen hun 

verspreidingsgebied kan bijdragen tot een inzicht in de moleculaire patronen van 

mariene invertebraten met een lage dispersiecapaciteit.  Bovendien vertonen beide 

soorten duidelijke verschillen in hun fysiologische tolerantie en habitatvoorkeur: N. 

integer is een typische brakwatersoort die voorkomt in (natuurlijk) gefragmenteerde 

habitats (vb. estuaria, brakwaterlagunes); M. slabberi heeft een bredere distributie, 

voorkomend in zowel kustgebonden mariene als estuariene habitats, wat 

waarschijnlijk resulteert in een meer continu habitat.  Een vergelijking van de 
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genetische patronen in beide soorten kan het belang van verscheidene intrinsieke (d.i. 

biologische, ecologische of gedragsgebonden) en extrinsieke (d.i. fysische, 

geologische, omgevingsgebonden) factoren op de fylogeografische structurering 

verhelderen. 

In hoofdstuk 2 wordt een moleculaire fylogenetische studie binnen de Mysidae 

familie en gebaseerd op 18S ribosomale RNA sequenties voorgesteld. Twee van de 

drie onderzochte subfamilies vormden duidelijk geen monofyletische groep 

(Gastrosaccinae en Mysinae). Verder werd een opsplitsing van deze subfamilies in 

verschillende groepen (een ‘Gastrosaccus’ en ‘Anchialina’ group in het geval van de 

Gastrosaccinae subfamilie; en een splitsing van de tribe Mysini, binnen de Mysinae 

subfamilie, in twee verschillende groepen) ondersteund door verschillende 

morfologische kenmerken. Bijgevolg dringt de huidige 18S rRNA fylogenie aan op 

een taxonomische revisie van de soortenrijke Mysidae familie. 

Hoofdstukken 3 en 4 handelen over de fylogeografische patronen van de 

brakwater-aasgarnaal N. integer langs de noordoostelijke Atlantische kust. Eerst werd 

een basisstudie uitgevoerd op een beperkt aantal DNA-sequenties van het 

mitochondriaal cytochroom b gen, cyt b (Hoofdstuk 3).  Vervolgens werd een meer 

gedetailleerde analyse uitgevoerd op een totaal van 461 specimens afkomstig van 11 

staalnamepunten (voornamelijk estuaria), gebruik makend van Single Stranded 

Conformation Polymorphism (SSCP) analyses op twee fragmenten van het 

mitochondriaal cytochroom c oxidase I gen, COI (Hoofdstuk 4).  De resultaten van 

beide studies kwamen in grote lijnen overeen; ze vertoonden een significante 

genetische differentiatie over het ganse verspreidingsgebied van N. integer, met een 

lage intra-populatie-variabiliteit. Bijgevolg stemmen deze resultaten overeen met de 

verwachte genetische patronen in een soort met lage dispersiecapaciteit, voorkomend 

in brakwaterhabitats. De verschillende fylogeografische analyses duiden op een 

complex genetisch patroon beïnvloed door de Pleistocene glaciaties.  Deze patronen 

strookten niet met de algemene verwachtingen op basis van de huidige 

paleoklimatologische modellen voor terrestrische en zoetwater soorten. Volgens deze 

modellen werden taxa uit noordelijk gematigde regio’s tijdens de glaciale periodes, 

ten gevolge van de sterk gedaalde temperaturen,  verdrongen naar zuidelijke glaciale 

refugia (op het Iberische & Italiaans schiereiland, de Balkan regio). Op het einde van 

een glaciale periode zorgde de opwarming van het klimaat, en de terugtrekking van de 

ijskappen voor een snelle verspreiding van soorten uit de refugiale gebieden. Deze 
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opeenvolgende golven van noordwaartse postglaciale colonisatie en compressie van 

het verspreidingsgebied gedurende glaciale periodes resulteert meestal in een reductie 

van de genetische diversiteit in de noordelijke gebieden. Bovendien vertonen de 

noordelijke populaties minder genetische stucturering in vergelijking met refugiale 

populaties. In het geval van N. integer vertoonde de fylogeografie op basis van het 

mitochondriaal COI gen een aantal contrasterende resultaten: (i) de graad van 

haplotype diversiteit vertoonde geen afname in door ijstijden beïnvloede gebieden, 

met uitzondering van een afname aan zowel de noordelijke als zuidelijke 

distributierand, (ii) het Iberisch Schiereiland vormde geen enkelvoudig glaciaal 

refugium, en het ziet ernaar uit dat deze zuidelijke refugiale populaties niet hebben 

bijgedragen in de meest recente postglaciale distributie expansie na het laatste glaciaal 

maximum. Het bestaan van meerdere (noordelijke) glaciale refugia wordt 

gesuggereerd, hoogstwaarschijnlijk gesitueerd in de zuidelijke Noordzee of in het 

Kanaal, rond de Britse Eilanden en in de Golf van Biskaje.  Daarnaast vertoonden 

zowel de COI als cyt b analyses een duidelijke fylogeografische breuk ter hoogte van 

de zuidelijke distributierand, nl. tussen de Guadalquivir en alle andere Atlantische 

populaties. 

De fylogeografische patronen van de Atlantische en Mediterrane populaties 

van M. slabberi werden geanalyseerd met behulp van DNA-sequenering van twee 

fragmenten in het mitochondriale COI gen en het mitochodriale 16S ribosomale RNA 

gen (Hoofdstuk 5).  In tegenstelling tot N. integer waren de gemiddelde moleculaire-

diversiteitswaarden binnenin populaties erg hoog, karakteristiek voor vele mariene 

soorten.  Een zeer hoge graad van fylogeografische structurering werd teruggevonden, 

en de fylogenieën op basis van de COI en 16S genen vertoonden 4 sterk 

gedifferentieerde, monofyletische clades (2 Atlantische en 2 Mediterrane clades). De 

graad van nucleotide divergentie tussen deze verschillende clades overschrijdt 

waarschijnlijk het intra-specifieke niveau, en bijgevolg suggeren deze patronen de 

aanwezigheid van verschillende cryptische soorten. Bovendien was de 

fylogeografische breuk waargenomen tussen de Atlantische en Mediterrane populaties 

één van de grootste tot nu gerapporteerd in mariene taxa. Langsheen de Atlantische 

kust vertoonde M. slabberi gelijkenissen met N. integer in de graad van populatie 

structurering over een macro-geografische schaal, welke waarschijnlijk gerelateerd is 

aan de afwezigheid van vrijlevende larven in beide soorten. Op een kleinere (meso-) 

geografische schaal werd echter minder genetische structurering waargenomen tussen 
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M. slabberi populaties in vergelijking met N. integer, dit kan waarschijnlijk 

gerelateerd worden aan de hogere continuïteit van beschikbare habitats voor M. 

slabberi. De relatief discrete, natuurlijk gefragmenteerde estuarine en brakwater 

habitats van N. integer daarentegen, vormen eerder gesloten populaties, wat resulteert 

in beperkte gene flow, zelfs over kleinere geografische schaal. 

Hoofdstuk 6 beschrijft de fijnschalige (intra-estuarine) en temporele 

genetische variabiliteit (een aspect dat heel vaak genegeerd is in vele grootschalige 

moleculaire studies) van de brakwater aasgarnaal N. integer binnen het Westerschelde 

estuarium. Verschillende stations werden hiervoor bemonsterd langsheen een 

omgevings-gradiënt (saliniteit, pollutie) en uit verschillende habitats (subtidaal, 

brakwater plas, haven lokatie) in drie opeenvolgende jaren (9 generaties), deze 

werden geanalyseerd met SSCP. Binnen twee onderzochte jaren werd een kleine, 

maar significante genetische differentiatie waargenomen binnen het Westerschelde 

estuarium. Er was echter geen bewijs voor temporele stabiliteit van deze genetische 

structurering. Bijgevolg blijft het onduidelijk of de huidige patronen het resultaat zijn 

van stochastische processen, staalnamefouten, of veroorzaakt zijn door 

onvoorspelbare omgevingsveranderingen, welke typisch zijn voor brakwater habitats. 

Bovendien waren de schattingen van de effectieve (vrouwelijke) populatie omvang 

van N. integer twee tot drie grootte ordes kleiner dan de census populatie omvang 

schattingen. Dit zou erop kunnen wijzen dat ondanks hun omvangrijke 

populatiegrootte, de populaties van N. integer vatbaar zouden kunnen zijn voor een 

snel verlies aan genetische diversiteit. 

Ter aanvulling van de genetische analyses van N. integer en M. slabberi 

populaties, werd de variatie in 12 morfometrische en 3 meristische kenmerken 

geanalyseerd in drie populaties van beide soorten (Hoofdstuk 7). Met behulp van 

multivariate analyses werden duidelijke morfometrische verschillen (met betrekking 

tot de morfologie van het telson en de ogen) aangetoond tussen de verschillende 

populaties. In het geval van M. slabberi waren de morfologische patronen 

overeenstemmend met de beschikbare moleculaire data van mitochondriale loci, 

waarbij nogmaals de grote divergentie tussen de Atlantische en Mediterrane 

populaties werd bevestigd. Door de overlap van een beperkt aantal individuen tussen 

de verschillende populaties, waren deze morfometrische patronen echter niet 

voldoende om de aanwezigheid van verschillende (sub)soorten te bevestigen. In het 

geval van N. integer werd de grootste divergentie waargenomen voor de Gironde 
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populatie. De morfometrische verschillen zijn hoofdzakelijk gerelateerd aan de 

morfologie van het oog bij N. integer. Mogelijke interacties van dit morfologisch 

kenmerk met verschillende omgevingsomstandigheden, zoals verhoogde turbiditeit in 

het Gironde estuarium, kunnen verantwoordelijk zijn voor het geobserveerde patroon. 

Samenvattend, een hoge graad van differentiatie werd waargenomen tussen 

aasgarnaal populaties, zowel gebaseerd op een aantal mitochondriale moleculaire 

merkers, als op basis van morfometrische kenmerken. Deze resultaten bevestigen de 

algemene verwachtingen voor soorten met lage dispersie capaciteiten (broedgedrag) 

en gefragmenteerde brakwaterhabitats. De intraspecifieke moleculaire patronen 

vertoonden een duidelijk fylogeografische structuur, die voor N. integer het resultaat 

is van een complexe postglaciale colonisatie van de Noord-Europese kusten vanuit 

verschillende glacial refugia. In het geval van M. slabberi suggereren de 

mitochondriale DNA analyses het bestaan van verschillende cryptische soorten. 

Tenslotte, bleken de analyses van de ribosomale 18S sequenties binnen de 

soortenrijke Mysidae familie nuttig om de morfologie-gebaseerde classificatie binnen 

deze familie te reëvalueren. Gebaseerd op deze resultaten is een taxonomische revisie 

binnen de Mysidae familie noodzakelijk. 
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ABSTRACT 

   
 The present study deals with the molecular diversity and genetic population 

structure of two mysid species along the European coast. This introductory chapter 

starts with a description of the concept ‘molecular biodiversity’. A brief overview is 

presented on the different factors which shape the levels of genetic diversity and on 

the molecular tools used to assess molecular biodiversity. We review the main 

mechanisms and (contemporary, as well as historical) factors responsible for 

population genetic and phylogeographic structure in marine organisms. A summary 

on the distribution, biology and ecology of the mysid species under study is given. 

Finally, the main objectives and outline of this thesis are presented. 

  

GENERAL INTRODUCTION AND BACKGROUND 

 

What is molecular biodiversity, and how does one study it? 

 

 Biodiversity is an umbrella term encompassing many interrelated aspects 

(from genetics and molecular biology to community structure and habitat 

heterogeneity), but most commonly it refers to the full range of species on Earth (see 

reviews by Wilson, 1988; Féral, 2002). Given the various scales of biodiversity, it can 

be described at several levels: (i) genetic diversity, (ii) species diversity, (iii) 

ecosystem diversity, and (iv) an additional fourth level, the sea- (land)scape diversity, 

which integrates the type, condition, pattern, and connectivity of natural communities 

or ecosystems (Solbrig, 1991; NRC, 1995; Ormond et al, 1997). The 1992 Earth 

Summit in Rio de Janeiro defined biodiversity as: the variability among living 

organisms from all sources, including, inter alia, terrestrial, marine and other aquatic 

ecosystems and the ecological complexes of which they are part: this includes 

diversity within species, between species and of ecosystems.  

Research in the present doctoral study is focused on the molecular genetic 

diversity level of marine invertebrates, and more specifically of mysid species 

(Crustacea, Mysida). Genetic diversity can be defined as “the total variation in the 

amount of genetic information within and among individuals of a population, a 

species, an assemblage, or a community”. Genes are the blueprints for life that are 
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passed on from generation to generation, and intraspecific genetic variation forms the 

raw material for evolution. It provides the foundation for diversity among species and 

ultimately for the diversity among ecosystems. Moreover, it determines the ecological 

and evolutionary potential (i.e. evolutionary adaptation to a changing environment) of 

species (Féral, 2002). 

 Genetic variation arises due to mutation (i.e. a single nucleotide change in a 

DNA sequence), recombination (in the case of nuclear genes) and horizontal gene 

transfer (viruses). Mutation is the ultimate source of all genetic variation. These 

changes can be neutral - having no effect - or they can result in new variants of the 

gene called alleles. When a new allele appears in a population, it has the potential to 

change the genetic make-up of successive generations. However, the probability of 

this change is largely dependent on the interplay of three forces: selection, random 

genetic drift and migration (Hartl, 2000). Natural selection, already proposed by 

Darwin in 1859 as the driving force of evolution, alters the frequency of alleles within 

a population via differential survival and reproductive success of individual 

organisms. Those individuals with well-adapted phenotypes (i.e. a greater “fitness”) 

will pass a greater proportion of their genes on to the next generation. Random genetic 

drift refers to fluctuations in allele frequency that occur by chance, particularly in 

small populations, as a result of random sampling among gametes (mostly in case of a 

founder effect or genetic bottleneck). Finally, migration involves the exchange or 

transfer of genes and alleles (i.e. gene flow) in a population by the introduction 

(immigration) or loss (emigration) of individuals. Migration tends to have a 

homogenizing effect on the population structure. 

The molecular tools used to study genetic diversity have experienced a large 

evolution during the last decades (see Jarne & Lagoda, 1996; Hoelzel, 1998; Mueller 

& Wolfenbarger, 1999; Féral, 2002; Morin et al, 2004). The advent of molecular 

techniques in the mid 1960’s enabled evolutionary researchers to detect genetic 

variation in proteins, i.e. allozyme analysis (Hubby & Lewontin, 1966). However, the 

development of the Sanger dideoxy sequencing method in the late 1970s (Sanger et 

al, 1977) and the polymerase chain reaction (PCR) in the mid 1980s by Kary Mulis 

(Mulis & Faloona, 1987) induced a real methodological revolution. Since then, a 

dramatic progress has been made in the ability to obtain DNA sequence data, which 

recently gives access to virtually the entire genome of almost every organism. The 

relative ease with which we are now able to obtain DNA sequence data through the 
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development of universal primers (e.g. Kocher et al, 1989; Folmer et al, 1994) has 

produced a concomitant shift from typically higher level phylogenetic studies of taxa 

to studies that also address within-species variability. In addition, the development of 

high resolution mutation detection techniques, such as Single-Stranded Conformation 

Polymorphism (SSCP) (Orita et al, 1989), has produced new opportunities for 

researchers to efficiently screen a large number of samples without large resource 

investments. Hence, the applicability of such techniques in genetic diversity and 

population genetic studies is very high (see Sunnucks et al, 2000). 

One of the most notable evolutions in molecular diversity studies is the 

development of phylogeography, a research field that deals with the processes 

determining the geographic distribution of genealogical lineages within and among 

species (Avise, 2000). Phylogeography seeks to interpret the mode by which historical 

processes in population demography may have left evolutionary footprints on the 

contemporary geographic distributions of gene-based organismal traits. This analysis 

and interpretation of lineage distributions usually requires extensive input from 

molecular genetics, population genetics, ethology, demography, evolutive biology, 

paleontology, geology, and historical geography (Avise, 2000). The potential 

usefulness and advantages of mitochondrial DNA (mtDNA) as a tool for population 

genetics and phylogeographic research have been extensively reviewed (see Avise, 

2000; Hewitt, 1999). Approximately 70% of all phylogeographic studies conducted to 

date involved analysis of animal mtDNA (Avise, 2000). The higher mutation rates 

and smaller effective population size (about one-fourth of the nuclear DNA; Birky et 

al, 1983), because of the maternal inheritance and haploidy of the mitochondrial 

genome, mean that mitochondrial variants are likely to reach equilibrium more 

quickly and provide a better signal, as opposed to nuclear markers, for current or more 

recent patterns of gene flow (Moritz et al, 1987). The absence of recombination in the 

mitochondrial genome (Birky, 2001) (but see exceptions: e.g. Mytilus 

galloprovincialis, Ladoukakis & Zouros, 2001) makes them extremely useful for 

phylogenetic studies since a matrilineal genealogy can be reconstructed, because they 

are hierarchical and show clear relationships among individuals (Hewitt, 2004). In 

addition, supporters of the DNA-based identification of species (‘DNA barcoding’; 

see Blaxter, 2003; Hebert et al, 2003a; Tautz et al, 2003) advocate the use of 

mitochondrial genes, and in particular the cytochrome c oxidase subunit 1 (COI), 
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which could serve as the core of a global bioidentification system (Hebert et al, 

2003a, b). 

 

Molecular phylogenetics 

 

Traditionally, phylogenetic trees have been used to represent the historical 

(evolutionary) relationships of groups of organisms, often species. Classic 

phylogenetics dealt mainly with physical or morphological features (e.g. size, color, 

number of appendages, etc.). Modern phylogeny uses information extracted from 

genetic material, mainly DNA and protein sequences. Molecular phylogenetics can 

approach many problems previously considered intractable by morphologists. For 

instance, there are very few homologous morphological characters that can be 

compared among all living organisms. In contrast, a number of genes with 

fundamental biochemical functions are found in all species and they can be 

sequenced, aligned and analysed to study phylogenetic relationships even among the 

deepest part of the tree of life (Hillis & Dixon, 1991; Page & Holmes, 1998). 

By using a comparative approach, genetic diversity can be organized into a 

meaningful estimation of the evolutionary relationships among lineages of organisms, 

i.e. a phylogeny. Reconstructing the phylogenetic relationships between gene 

sequences is a crucial first step towards understanding their evolution. The 

phylogenetic tree can therefore be thought of as the central metaphor of evolution, 

providing a natural and meaningful way to order data, and with an enormous amount 

of evolutionary information contained within its branches (Page & Holmes, 1998). 

However, it must be noted that a fundamental difference exists between a species tree, 

representing the true evolutionary pathways of a groups a species, and a gene tree, 

often constructed based on one gene. The gene tree and the species tree are not 

necessarily congruent in terms of topology or branch lengths, owing to gene 

duplication (resulting in paralogous genes), lineage sorting and horizontal gene 

transfer (Page & Charleston, 1999). 

The task of molecular phylogenetics is to convert information in sequences 

into an evolutionary tree for those sequences. A great (and ever increasing) number of 

methods have been described for doing this. They can be classified into two general 

categories: distance methods, where the estimated genetic distance between pairs of 

taxa reflects the degree of relatedness (e.g. Neighbour-Joining), and discrete methods 
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(tree searching methods), which in contrast to distance methods operate directly on 

the sequences, or on functions derived from the sequences, rather than on pairwise 

distances (e.g. maximum parsimony, maximum likelihood and Bayesian methods). 

For intraspecific datasets at the population level, however, several phenomena (e.g. 

low sequence divergence, extant ancestral nodes, multifurcations, reticulation, large 

sample sizes) violate the assumptions of these ‘traditional’ phylogenetic 

reconstruction methods, leading to a poor resolution or inadequate portraits of 

genealogical relationships. Hence, new phylogenetic methods such as network 

reconstruction methods, which take into account the population evolutionary patterns, 

may be more appropriate (Posada & Crandall, 2001).  

The genes of the nuclear ribosomal DNA (rDNA), which code for the RNA 

component of the ribosome, have been widely used in phylogeny reconstruction. The 

rDNA is a multigene family (Fig. 1.1) with nuclear copies in eukaryotes arranged in 

tandem arrays, in which each gene is separated from the next by regions known as 

spacer DNA, which varies in length and sequence among species. A single cluster 

consists of the rDNA genes for 18S (small subunit), 5.8S, and 28S (large subunit) 

rDNA molecules which are separated by internal transcribed spacers (ITS-1 and ITS-

2). Adjacent clusters which have a length of about 10,000 nucleotides each are 

separated by external transcribed spacer regions (ETS). Different selective forces are 

acting on the rDNA region with as consequence varying degrees of sequence 

conservation across single repeat units. Therefore, each part can be employed for 

specific phylogenetic questions across a broad taxonomic spectrum (Hillis & Dixon, 

1991). The 18S rDNA molecule is a popular phylogenetic marker for tracing 

relationships among distantly related taxa. It has been argued that 18S rDNA 

sequences cannot unambiguously resolve cladogenetic events separated by less than 

40 Myr (Philippe et al, 1994) and that they are unsuitable for comparing taxa that 

diverged since the Cretaceous (Hillis & Dixon, 1991). However, 18S rDNA 

sequences have been used with fairly good results in phylogenetic analyses of 

congeneric species (see Winnepenninckx et al, 1998 and references therein). Hence, 

these studies suggest that it might also be a reliable phylogenetic marker for resolving 

recent divergences (Winnepenninckx et al, 1998). On the other hand, the faster 

evolving spacer regions (e.g. ITS) have been employed for population and congeneric 

phylogenies and have become a popular choice for phylogenetic analysis of closely 

related species and phylogeographic studies within species (e.g. Dahlgren et al, 2000; 
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Patti & Gambi, 2000; Rodriguez-Lanetty & Hoegh-Guldberg, 2002; Wörheide et al, 

2002; Duran et al, 2004a; Schilthuizen et al, 2004). 

 

 
Fig. 1.1: Schematic overview of the ribosomal DNA gene cluster (ETS = external 
transcribed spacer, ITS = internal transcribed spacer). 
 
 

Dispersal, gene flow and population genetic structure in the marine environment 

 

 A large amount of marine studies have focused on the spatial patterns of allelic 

frequencies in natural populations (e.g. Avise, 1994). Such an approach has been 

particularly useful in marine biology because the life cycle of most marine species 

exhibits a dispersal phase in an environment that often lacks natural boundaries.   The 

mode of reproduction of marine species is crucial for the dispersal potential and thus 

for the level of genetic structuring and gene flow between geographically separated 

populations. Hence, it is not surprising that genetic divergence among populations of 

species with planktotrophic larvae and a continuous habitat is typically low, compared 

to species which lack a pelagic dispersal stage. A number of empirical studies indeed 

corroborated these expectations and lead to the general presumption that the long 

range of larval stages and the high fecundity of marine organisms are associated with 

high gene flow, and hence genetic homogeneity over vast distances (Waples, 1987; 

Palumbi, 1992; Ward et al, 1994; Palumbi, 1996; Shaklee & Bentzen, 1998). These 

presumptions are further strengthened by the findings that even a small amount of 
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gene flow between populations is usually sufficient to prevent differentiation. For 

example, if one migrant per generation settles and enters a local breeding population, 

then this small amount of genetic exchange is enough to prevent the accumulation of 

large genetic differences (Slatkin, 1987).  

However, an increasing number of studies on marine species have highlighted 

instances where long-life pelagic larvae do not result in broad dispersal (Palumbi, 

1997; Lessios et al, 1999; Luttikhuizen et al, 2003; Taylor & Hellberg, 2003; 

Ovenden et al, 2004). This emphasizes the importance of other factors, besides 

dispersal ability, in creating and maintaining population differentiation. Several 

factors may have a significant role, either singly or in combination, including 

behavioral mechanisms limiting dispersal (Beheregaray & Sunnucks, 2001), selective 

processes and local adaptation (Schmidt & Rand, 1999; Lemaire et al, 2000), complex 

oceanographic currents (Benzie & Williams, 1997; Palumbi et al, 1997; Stepien, 

1999), habitat discontinuities (Johnson & Black, 1995, 1998; Riginos & Nachman, 

2001) and historical barriers to gene flow (Avise, 1992; Lavery et al, 1996; Williams 

& Benzie, 1998). Last decade several studies have tried to identify, as well as unravel, 

the interplay between the intrinsic (i.e. biological, ecological, physiological or 

behavioural) and extrinsic (i.e. physical, geological, environmental) factors which 

influence the population structuring (see Avise, 1994, 1998). Especially the 

comparative assessments of the population genetic structure of sympatric (sister) 

species seem to provide valuable information on the effects of these intrinsic factors 

on the dispersal ability and the phylogeographic patterns (e.g. Dawson et al, 2002; 

McMillen-Jackson & Bert, 2003). On the other hand, broadscale studies have shown 

clear phylogeographical boundaries with concordant patterns in several divergent 

marine taxa, which are mainly attributed to extrinsic factors such as historical 

vicariant events (see Avise, 1994). Areas of interest, where numerous well-

documented cases of strong genetic differentiation are available, seem to be located 

along the southeast coast of the USA, on either side of Cape Canaveral (Florida), 

separating the Western Atlantic and the Gulf of Mexico (reviewed in Avise, 1992, 

1994). Likewise, populations of Indo-Pacific marine invertebrates and fish separated 

by the Indonesian Archipelago often show strong genetic differences (reviewed in 

McMillan & Palumbi, 1995; Palumbi, 1997; Williams & Benzie, 1998; Duda & 

Palumbi, 1999). Within Europe, genetic breaks have been observed in marine taxa 
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with an Atlantic-Mediterranean distribution (e.g. Borsa et al, 1997 Perdices et al, 

2001; Bargelloni et al, 2003; Gysels et al, 2004; Roman & Palumbi, 2004). 

Since most research dealing with the previously described topics has focused 

almost exclusively on marine taxa with moderate to high dispersal capabilities which 

are able to maintain genetic connectivity, genetic patterns within marine taxa with 

poor dispersal abilities have been little-studied to date. It is generally predicted that 

poor dispersal taxa exhibit even more genetic differentiation than high dispersal taxa 

(Waples, 1987). Several studies corroborated these expectations (e.g. Avise et al, 

1987; Burton & Lee, 1994; Schizas, 1999). Moreover, the brooding behavior of 

species, which can be considered as the ultimate evolutionary stage of nonpelagic 

lecitotrophic development, can be responsible for some peculiarities in the pattern of 

genetic differentiation (e.g. see for brooding Antartic echinoids, Poulin & Féral, 

1996). The brood protecting species have low dispersal capacity and hence their 

populations can be genetically differentiated at separating distances of a few 

kilometers (see Kwast et al, 1990; Poulin & Féral, 1994; Poulin & Féral, 1997; Ayre 

& Hughes, 2000; Sponer & Roy, 2002). The lack of sufficient gene flow between 

populations leads to gradual transformation of the isolated gene pool by random 

genetic drift and/or by natural selection by the local environment. Hence, the reduced 

gene flow associated with nondispersal larvae can induce an increase of speciation 

rates compared to those developing via pelagic larvae (Poulin & Féral, 1996). 

The general pattern of highly geographically structured populations in poor 

dispersers render them more suitable in tracking biogeographical processes than more 

dispersive taxa (see Wilke & Davis, 2000; Gysels et al, 2004; Kirkendale & Meyer, 

2004). Given the expected genetic differentiation in poor dispersers, together with the 

substantial cryptic diversity which has been uncovered by molecular analyses in a 

wide variety of marine taxa (reviewed by Knowlton, 1993, 2000), geographical 

structure and cryptic speciation within widely distributed, poorly dispersing species 

may have been greatly underestimated.  
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Impact of Quaternary climate changes on the genetic diversity 

 

 Organisms live in an environment that is not constant over time; the genetic 

patterns that we describe today are the result of both contemporary and historical 

factors (Avise et al, 1987). The relative significance of both factors is often difficult 

to distinguish based on contemporary observations. For example, genetic 

homogeneity among the populations of a species can be due to a recent common 

ancestry or contemporary gene flow. In general, species showing reduced levels of 

contemporary gene flow are better suited for elucidating phylogeographic patterns 

since these species are often composed of genetically and geographically highly 

structured populations (e.g. Lee, 2000; Wilke & Pfenninger, 2002; Gysels et al, 

2004). 

 The Pleistocene glaciations were arguably the most significant historical event 

that has occurred during the evolutionary lifespan of most extant species (e.g. 

Bernatchez & Wilson, 1998; Taberlet et al, 1998; Hewitt, 2000). During the past 2.5 

My, the climatic and environmental fluctuations of the Pleistocene have forced 

species to adjust the distributional areas according to their adaptive ability, resulting 

in periodical extinction-recolonisation events. Up to 20 glaciation events may have 

occurred during the Pleistocene (Martinson et al, 1987), with each glaciation spanning 

approximately 100,000 years, and the interglacial periods lasting 10,000 – 12,000 

years (Dawson, 1992). The most recent European glaciation event (‘Weichselian’) 

reached its maximum ice coverage about 20,000 – 18,000 years ago. As shown in 

figure 1.1, ice sheets covered Scandinavia and most of the British Isles (Lowe & 

Walker, 1997) and the southern Bight of the North Sea was dry due to glacio-eustatic 

sea level drops (115-120 m below the present-day level) (van der Molen & de Swart, 

2001). It should be noted that although the importance of the Pleistocene glaciations is 

stressed here, more ancient historical events that occurred during the Miocene through 

the Pliocene may have also played a role in shaping the pattern of genetic diversity in 

extant populations (e.g. within the Mediterranean region, see Box 1.1). 

 The impact and dramatic changes determined by the Quaternary climate 

events have been well documented in terrestrial and freshwater habitats of northern 

temperate regions (e.g. Hewitt, 1996, 2000). Comparative studies among various taxa 

lead to the designation of different glacial refugial areas (see Fig. 1.2) and putative 

northward post-glacial colonization routes (see Taberlet et al, 1998; Hewitt, 1999). 
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Much less is known about the effects of Pleistocene climate changes on marine 

coastal organisms. Moreover, the majority of the available marine studies have been 

focused on the genetic patterns of high dispersal fish or invertebrates. However, the 

understanding of the effects of Pleistocene climate changes on marine organisms of 

temperate regions could be important for the prediction of the effects of current rapid 

climate change driven by human activities on marine populations (Maltagliati, 2003; 

Cognetti & Maltagliati, 2004).  

 

 

 

 

 
 
 

Fig. 1.2: Maximum extension of ice 
sheets in Europe during the last 
glacial maximum (20 – 18 kya) 
(redrawn from Frenzel et al, 1992). 
R1, R2, and R3 indicate the three 
main potential refugia on the Iberian, 
Italian Peninsula and in the Balkans, 
respectively. The southern limit of the 
permfrost is indicated by the scaled 
line. Lowered sea shore is shown by a 
thinner line at the 100 m submarine 
contour. Figure redrawn from 
Taberlet et al, 1998. 
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PLIOCENE: (5.3 - 1.8 Mya) 
 

6 – 5.5 Mya: Messinian salinity crisis: desiccation of the Mediterranean basin and transformation 
into a series of hypersaline lakes with thick evaporate deposition (Krijgsman et al, 1999) 
5.3 Mya: reflooding of the Mediterranean basin (re-establishing the Atlantic-Mediterranean 
connection) 

 
PLEISTOCENE (1.8 Mya - 10 kya) 
 

490 – 410 kya: Elsterian (glacial) 
410 – 380 kya: Holsteinian (interglacial) 
380 – 130 kya: Saalian (glacial) 
130 - 110 kya: Eemian (interglacial)  
110 – 10 kya: Weichselian (last glacial event) 
 

 22 –18 kya: Last Glacial Maximum:  
• ice cover north of 50° latitude (Scandinavia & most of the British Isles) (Lowe & Walker, 

1997; Benn & Evans, 1998) 
• southern Bight of the North Sea was dry due to glacio-eustatic sea level drops (115-120 m 

below the present-day level) (van der Molen & de Swart, 2001) 
• closure of the Gibraltar Straits (fragmentation of the Altantic Ocean and Mediterranean Sea) 
 
12 kya: formation of the Baltic Ice Lake (i.e. an ice-dammed freshwater lake) in the Baltic region 
(Andrén et al, 2002) 
10.3 kya: Yoldia transgression: connection between North Sea and Baltic Ice Lake (brackish water 
period) (Donner, 1995) 
10 kya: re-establishment of the North Atlantic Current (Harland & Howe, 1995) 
9.3 kya: isolation of the Baltic Sea due to the isostatic rebound of southern Sweden (Benn & Evans, 
1998), freshwater period (Ancylus Lake) 
8 kya: opening of the Danish Straits with colonisation of the Baltic Sea (Björck, 1995), inflow of 
salt water, with gradually decline of salinity since then.  
7.5 kya: the present connection between the southern North Sea and the Atlantic Ocean was formed 
through the English Channel (landbridge between England and France disappeared) 
1.7 – 1.55 ka BP: Younger Drias (‘Little Ice Age’), a short cold (glacial?) period. 

Box 1.1: Time scale of the major palaeogeographical events during the late Miocene, 
Pliocene & Pleistocene relevant for European marine taxa. 
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Mysid taxonomy, biology, ecology and distribution 

 

Mysids (Crustacea, Peracarida, Mysida) are relatively small (the majority 

between 5 – 25 mm) shrimp-like animals that occur in vast numbers in various aquatic 

habitats all over the world, including freshwater, groundwater, brackish, estuarine, 

coastal and oceanic habitats (Tattersall & Tattersall, 1951; Mauchline, 1980). They 

are often referred to as ‘opossum shrimp’ due to the presence of a ventral marsupium 

in female mysids, and in which the entire larval development takes place. The order 

Mysida currently comprises 1053 species and 165 genera (see NeMys database, 

http://intramar.ugent.be/nemys, Deprez et al, 2004). 

 The present study focuses on species within the Mysidae, the most speciose 

family (157 genera, 1004 species) within the order Mysida. Based on the geographical 

distribution, ecological significance and specific habitat requirements, two species 

were selected for detailed phylogeographic and population genetic research: Neomysis 

integer and Mesopodopsis slabberi. On morphological grounds, both species are 

placed in the same subfamily and same tribe (Table 1.1). The next two paragraphs 

summarize the available information on their distribution, biology and ecology. 

 

Phylum Arthropoda
Subphylum Crustacea

Class Malacostraca
Subclass Eumalacostraca

Superorder Peracarida
Order Mysida

Family Mysidae
Subfamily Mysinae

Tribe Mysini
Mesopodopsis slabberi (van Beneden, 1861)
Neomysis integer (Leach, 1814)  

Table 1.1: Systematic position of Mesopodopsis slabberi and Neomysis integer within 
the phylum Arthropoda (after Müller, 1993). 
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Biology of Neomysis integer Leach, 1814 
 

The genus Neomysis Czerniavsky consists of 

more than twenty species, of which only two 

representatives inhabit the northern Atlantic: N. 

americana (NW Atlantic) and N. integer (NE Atlantic; 

Fig. 1.3) (see NeMys database, 

http://intramar.ugent.be/nemys, Deprez et al, 2004). 

Morphological characteristics of N. integer are the 

subtriangular, elongated telson without a cleft and the pointed distal end of the 

antennal scale (Tattersall & Tattersall, 1951).  

N. integer is one of the most common mysids around the coasts of Europe. Its 

distribution ranges from the Baltic Sea to the north African coasts of Morocco; it is 

absent from the Mediterranean Sea (Fig. 1.4). It is a euryhaline and eurytherme 

species (see Box 1.2), which typically dominates the hyperbenthic communities of the 

brackish part of estuaries (Tattersall & Tattersall, 1951; Mees et al, 1995; Cunha et al, 

1999). It is also common in the Baltic Sea, in 

various brackish habitats such as small ponds, 

sea loughs and lagoons (Parker, 1979 and 

references therein), and in freshwater bodies 

which in recent geological history were 

connected to the sea (Bremer & Vijverberg, 

1982). Occasionaly, N. integer is observed in 

fully marine conditions, especially during 

winter months when the floodwater discharge 

from estuaries is higher (Beyst et al, 2001). 

 N. integer is a typical omnivorous species which mainly utilizes 

mesozooplankton (e.g. the calanoid copepod Eurytemora affinis, cladocera of the 

genus Bosmina, rotifers of the genus Keratella and Brachionus), and macrophytal 

detritus and amorphous material originating from suspended sediment flocs 

(Fockedey & Mees, 1999), and an important prey for demersal and pelagic fish (e.g. 

Pomatoschistus minutus, P. lozanoi, Trisopterus luscus, Merlangius merlangus, 

Pleuronectes flesus, P. platessa, Clupea harengus, Sprattus sprattus, Dicentrarchus 

labrax, Anguilla anguilla) and larger epibenthic crustaceans (e.g. Crangon crangon) 

Fig. 1.3: Neomysis integer, 
adult female 

Fig. 1.4: Distribution of 
Neomysis integer 
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(Mauchline, 1980; Hostens & Mees, 1999; Hostens, 2003; Maes et al, 2003). As such 

it is believed to be a key species in estuarine ecosystems. The life history and growth 

of N. integer are well studied in the Westerschelde estuary. Reproduction starts in 

early spring (when water temperature > 10°C) and lasts until late September/October. 

This results in three generations per year (spring, summer and overwinter generation) 

(Mees et al, 1994). However, at lower latitudes the life cycle can be more complex, 

with breeding almost continuous throughout the year (Sorbe, 1981). 

 Ecophysiological tolerances, temperature and salinity effects on post-

marsupial growth and embryogenic development of N. integer have gained increasing 

interest during last years, especially since N. integer has been proposed as a 

toxicological test species for estuarine systems (Roast et al, 1998; Verslycke 2004). 

Under laboratory conditions its temperature tolerance ranges from 0 to 30°C (Arndt & 

Jansen, 1986) and it tolerates salinities of 0.5 to 40 psu (Vlasblom & Elgershuizen, 

1977; Barnes, 1994; Roast et al, 2001). Lab experiments have shown that N. integer is 

distinctly euryplastic regarding temperature and salinity. It is described as 

thermophobic with optimal resistance to salinities higher and lower than its isosmotic 

point (16-19 psu) in the lower temperature ranges (Arndt & Jansen, 1986). N. integer 

seems to be extremely tolerant to very large, short-term salinity fluctuations between 

1 and 30 psu, showing no distinguishable behavioural changes when exposed to such 

large variations in salinity (Moffat & Jones, 1992; Roast et al, 1998). An extremely 

efficient osmoregulatory physiology (hyper-hypo-osmoregulator) (McLusky & Heard, 

1971) that attains osmotic balance within 2 h of exposure to a change in salinity 

(Moffat, 1996) is a necessary adaptation for life in the variable environment of the 

upper estuarine regions (Roast et al, 1999). The upper tolerance limits of temperature 

and salinity for N. integer range between 20-25°C and 25-30 psu, with a substantially 

increase in mortality at higher salinity and temperature values (Kuhlman, 1984). Field 

observations corroborate these trends; the southern distribution range (Guadalquivir 

estuary) corresponds to an average summer water temperature of 29°C (Drake et al, 

2002). In well-oxygenated western European estuaries the maximum abundance is 

located at around 5 psu (Mees et al, 1995), and it is generally rare in waters of more 

than 20 psu (Tattersall & Tattersall, 1951; Vlasblom & Elgershuizen, 1977). 

 N. integer has a sigmoid growth pattern, which can be described by the von 

Bertalanffy growth model (Winkler & Greve, 2002; Fockedey et al, submitted). N. 

integer growing at 15 psu has the shortest intermoult period and yields the largest 
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animals (and hence the largest fecundity; Mees et al, 1994), those growing at 30 psu 

the smallest; this is independent of temperature. Growth at 15°C and at 15 psu results 

in mysids with a larger standard length in comparison with other temperatures 

(Winkler & Greve, 2002; Fockedey et al, submitted). The generation time of N. 

integer is 70 d at 15°C. Fertilized eggs are released from the marsupium after 19 d 

incubation as post-larvae, and after 9 to 10 moults maturity (mean length = 8 mm) is 

reached in 50 d. At 10°C maturity occurs after 15 to 16 moults and at an age of 110 d 

(Winkler & Greve, 2002). Experiments on the effect of temperature and salinity on 

the marsupial growth and embryogenic development in N. integer have shown that the 

highest survival (60%) and hatching (40%) of the embryos falls within a salinity range 

of 14 – 17 psu, under temperatures below 15°C (Fockedey et al, in preparation). 

 

Neomysis integer Leach, 1814

Adult size 10 - 17 mm
Distribution NE Atlantic
Habitat Brackish water, estuarine,

marshes & brackish lagoons
hyperbenthic
swarming behaviour in relation to tidal flow

Physiology euryhaline (0.5 to >25 psu, optimum: 2 - 5* psu), eurythermal (< 20°C)
Feeding omnivorous (mainly mesozooplankton & detritus)
Reproduction brooder
Breeding season April to late September (in Westerschelde estuary)
Generation time 3 - 6 months (shorter at lower latitudes)
Fecundity 10 - 80 embryos per brood (related to size1, salinity & temperature2)
# chromosomes n = 343

 
Box 1.2: Ecological, distributional and biological characteristics of Neomysis integer 
(* optimum in the Westerschelde estuary around 8 psu, see Mees et al, 1995).  
1Mees et al, 1994; 2Mauchline, 1973; 3Salemaa,1986. 
 

In order to retain its position within the estuarine environment and avoid a 

seaward transport, N. integer has developed some behavioural adaptations such as 

alterations in swimming activity at different tidal phases. Hough & Naylor (1992) 

reported that N. integer could maintain its position in a tidally-mixed estuary by 

increasing its swimming activity on the flood tide to counter seaward displacement on 

the ebb tide. Further experiments on the swimming behaviour of N. integer in relation 

to tidal flow have shown that it can tolerate current velocities of 6 and 9 cm s-1, a few 

could swim at speeds of up to 27cm s-1, but this was not sustainable for more than a 
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few seconds (Roast et al, 1998). This corresponds with field observations, where 

mysids were found consistently in slower moving water (<15 cm s-1), such as in the 

lee of rocks and macroalgal clumps, and were absent in faster flowing water (>20 cm 

s-1) (Roast et al, 1998; Lawrie et al, 1999). Moreover, at higher velocities, N. integer 

can utilise the substratum and the bottom boundary layer, where flow is reduced, in an 

attempt to prevent displacement (Roast et al, 1998) 

Little is known about the actual dispersal potential of N. integer. Apart from 

evidence of migration over small geographic scales, such as vertical diurnal 

migrations, tidal migration and seasonal migrations within an estuary (Mauchline, 

1980; Hough & Naylor, 1992; Mees et al, 1993b), nothing is known about the 

dispersal capacities of N. integer over larger scales, e.g. between neighbouring 

estuaries, or even over larger distances. However, since N. integer lives in discrete 

brackish water habitats and lacks a planktonic dispersal stage, it has been assumed 

that its dispersal potential ranges from 100 – 1000m and that long-range dispersal 

events are probably rare (Mauchline, 1980). 

  

Biology of Mesopodopsis slabberi van Beneden, 1861 
 

The mysid Mesopodopsis slabberi has typical 

morphological characteristics and hence can be 

easily distinguished: it has a very slender and 

delicate, transparent body (length: 11-15 mm) and its 

eyestalks are exceptionally long (twice as long as the 

diameter of the carapace in the gastric region) (Fig. 

1.5). The telson of this mysid species lacks an apical 

cleft. Instead, the telson ends terminally in two 

lateral and one larger median lobe, armed with spines (see descriptions in Tattersall & 

Tattersall, 1951 and Wittmann, 1992). In the field this mysid shows an astonishing 

agility and is often hard to recognize due to its complete transparency. However, its 

presence can be betrayed by its very black eyes (Tattersall & Tattersall, 1951).  

The genus Mesopodopsis Czerniavsky is found in a wide geographical area 

extending from the East Atlantic, Mediterranean, the Black Sea, the Indian Ocean and 

Australian waters in temperate to tropical zones. The taxonomy of this genus, and of 

the species M. slabberi in particular, has long been a matter of controversy. The most 

Fig. 1.5: Mesopodopsis 
slabberi, adult female 
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recent revision by Wittmann dates back to 1992. Based on morphogeographic 

variations this genus can be split in two groups: (i) the Euro-African species (with a 

spine below the statocyst): M. slabberi van Beneden, 1861, M. aegyptia Wittmann, 

1992, M. tropicalis Wittmann, 1992, M. wooldridgei Wittmann, 1992, M. africana 

O.S. Tattersall, 1952 and (ii) the Indo-Australasian species (without a spine below the 

statocyst): M. orientalis W.M. Tattersall, 1908 and M. zeylanica Nouvel, 1954. 

 M. slabberi is widely distributed along 

the European coasts (Fig. 1.6), ranging from 

the western Baltic, northeast Atlantic to the 

entire Mediterranean, Marmara, Black, and 

Azov Seas (Tattersall & Tattersall, 1951; 

Mauchline 1980; Wittmann 1992). It tolerates 

a wide range of salinities (1.3 – 43 psu) and is 

therefore dominantly observed in the surf 

zone hyperbenthos of temperate beaches 

(Beyst et al, 2001), coastal zones (Dewicke et al, 2003) as well as in estuaries where it 

lives sympatrically with N. integer (Gomoiu, 1978; Greenwood et al, 1989; Moffat & 

Jones, 1993; Mees et al, 1995). As an omnivore feeding on phytoplankton, 

zooplankton and detritus (Tattersall & Tattersall, 1951; Wittmann, 1992), and as a 

prey for numerous species of fish (e.g. Sprattus sprattus, Clupea harengus, 

Pomatoschistus microps, P. minitus, P. lozanoi, Stizostedion lucioperca, Anguilla 

anguilla, Belone belone) (Greenwood et al, 1989; Hostens & Mees, 1999; Maes et al, 

2003), M. slabberi is believed to be an important part of the food web in these 

ecosystems and is likely a key species regarding trophic interactions (Azeiteiro et al, 

1999). 

As opposed to N. integer, the ecophysiological tolerances of M. slabberi and 

the responses of postmarsupial growth in relation to temperature and salinity are less 

well studied. According to its large geographical range, the temperature tolerance of 

M. slabberi should be broad with winter temperatures in the field ranging from 0°C in 

the Western Baltic to 15°C in the Eastern Mediterranean Sea and summer 

temperatures varying from 26°C (Western Baltic) to 30°C (East Mediterranean). M. 

slabberi is a euryhaline species, tolerating salinities between 1.3 and 43 psu 

(Tattersall & Tattersall 1951). Adults seem to tolerate the full range of salinities, but 

ovigerous females are more euryhaline than males, with the highest tolerance within 

Fig. 1.6: Distribution of 
Mesopodopsis slabberi 
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the range of 10.5 – 24.5 psu (Greenwood et al, 1989). Juveniles seem to survive less 

well than adults in low saline waters and hence occur slightly down-river of adults 

(Bhattacharya, 1982; Greenwood et al, 1989). Embryos of M. slabberi take from 9 to 

16 days to complete development at 15°C and brood mortality of M. slabberi was 

estimated as 23% (Greenwood et al, 1989). The Mediterranean populations of M. 

slabberi seem to have a reduced fecundity (~5 embryos per brood, Delgado et al, 

1997) in comparison to the British populations (maximum 25 – 29 embryos per brood, 

Greenwood et al, 1989; Moffat, 1996). 

Extensive seasonal migrations have been observed for M. slabberi, mainly 

triggered by reduced temperatures. During the cold months it is virtually absent from 

the estuary and in the surf zone, while it seems to occur in the adjacent shallow 

subtidal, suggesting a migration towards deeper waters to avoid low temperatures 

(Mees et al, 1993b; Beyst et al, 2001; Dewicke et al, 2003). In early spring M. 

slabberi enters again the surfzone and the marine part of the estuary, and in summer it 

migrates into the brackish reaches of the estuary (Mees et al, 1993b; Beyst et al, 

2001). Such seasonal onshore/offshore migrations may also have underlying salinity-

related reproductive significance (Greenwood et al, 1989). Diurnal migratory 

movements are also characteristic for M. slabberi. During daytime it is typically 

hyperbenthic, gathering in large and dense swarms or schools close to the substrate. 

During night or in turbid waters it becomes planktonic and disperses between bottom 

and surface waters (Wittman, 1992). Similar to N. integer, little is known about the 

actual dispersal potential of this mysid. M. slabberi may have restricted dispersal 

capacities due to its brooding behaviour, but on the other hand, the more continuous 

distribution of available habitats and the larger physiological tolerance, as compared 

to N. integer, may enhance the connectivity between populations. 
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Mesopodopsis slabberi van Beneden, 1861

Adult size 5 - 11 mm
Distribution NE Atlantic, Mediterranean & Black Sea
Habitat Coastal marine (depths < 30m), surfzone beaches, estuarine,

marshes & brackish lagoons
hyperbenthic & pelagic
extensive swarming behaviour

Physiology euryhaline (1.3 – 43 psu) , eurythermal (0 - 30°C)
Feeding omnivorous (phyto- & mesozooplankton, detritus)
Reproduction brooder
Breeding season April to late September (all year round in Mediterranean)
Generation time 3 - 6 months (shorter at lower latitudes)
Fecundity 5-25 embryos per brood (related to size & temperature1)
# chromosomes n = 222

 
Box 1.3: Ecological, distributional and biological characteristics of Mesopodopsis 
slabberi. 1Mauchline, 1973; 2Mauchline, 1980. 
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OBJECTIVES AND THESIS OUTLINE 

 

The overall aim of this study is to provide insights in the levels of molecular 

genetic diversity within and between species of the order Mysida (Crustacea, 

Peracarida). The few attempts to study phylogenetic relations, as well as the absence 

of molecular DNA studies within this species-rich order, indicate that the evolutionary 

relationships at different taxonomical levels (families, subfamilies, tribes, genera and 

species) may not be fully understood.  

The two mysid species (Neomysis integer and Mesopodopsis slabberi) selected 

for this doctoral study show large similarities in their ecological significance, 

geographical distribution (at least along the NE Atlantic coasts) and dispersal 

potential (brooders, absence of pelagic larvae), but they also have marked differences 

such as in their physiological tolerance and habitat preferences (fragmented brackish 

habitat vs. more continuous coastal marine, estuarine habitat). Hence, a study of the 

phylogeographic patterns of both species within Europe could not only contribute to 

the understanding of molecular patterns within low dispersive marine invertebrate 

species, a comparison of the obtained genetic patterns within both species could also 

give insights on the influence of the different intrinsic and extrinsic factors (see 

General introduction) on the population genetic structure. Therefore we studied and 

compared the phylogeographic patterns of the mysids N. integer and M. slabberi 

using mitochondrial DNA analyses from (mostly estuarine) population samples of 

both species throughout their distribution range (Chapters 3, 4 & 5). In addition, the 

fine-scale (intra-estuarine) and temporal genetic variation of the brackish water mysid 

N. integer within the Westerschelde estuary (Chapter 6), as well as the morphometric 

variation in populations of both mysids (Chapter 7) were assessed. 

In Chapter 2 the result of a molecular phylogenetic analysis within the 

Mysidae, the largest family within the order Mysida, based on nuclear 18S ribosomal 

RNA sequences is presented. The aim of this study was to offer complementary 

information (based on 18S sequences) on the phylogenetic relations in order to 

identify the evolutionary relationships within this speciose family and to verify if the 

current morphology-based accepted systematic knowledge is supported by genetic 

evidence. This chapter has been published as Remerie T., Bulckaen B., Calderon J., 

Deprez T., Mees J., Vanfleteren J., Vanreusel A., Vierstraete A., Vincx M., Wittmann 

K.J., Wooldridge T. (2004). Phylogenetic relationships within the Mysidae 
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(Crustacea, Peracarida, Mysida) based on nuclear 18S ribosomal RNA sequences. 

Molecular Phylogenetics and Evolution 32, 770 - 777. 

Both Chapters 3 and 4 deal with the distribution of genetic variation 

throughout the whole distribution range of the mysid Neomysis integer. In Chapter 3, 

a baseline study is presented using a limited number of DNA sequences of the 

mitochondrial cytochrome b (cyt b) gene. The aims of this study were: (1) to give 

insights in the patterns of genetic structure within a low dispersal mysid; and (2) to 

interpret the observed patterns in function of the Pleistocene glaciations. This chapter 

has been submitted for publication in Vie et Milieu as Thomas Remerie, Els Gysels, 

Andy Vierstraete, Jacques Vanfleteren and Ann Vanreusel (submitted). Evidence of 

genetic differentiation of the brackish water mysid Neomysis integer (Crustacea, 

Mysida) concordant with Pleistocene glaciations. 

In Chapter 4 a thorough phylogeographic study of the brackish water mysid 

N. integer along the northeast Atlantic coasts is presented. As molecular techniques, a 

combination of the Single Stranded Conformation Polymorphism (SSCP) technique 

with DNA sequencing was used in order to detect variation within a fragment of the 

cytochrome c oxidase subunit 1 (COI) gene. These techniques provide an efficient, 

fast and relatively cheap way to analyse a large number of samples with a relatively 

high mutation detection resolution (up to 99% for 200 – 300bp fragments) (Sunnucks, 

2000). The change from cyt b to COI as molecular marker was done for comparative 

reasons with the Mesopodopsis slabberi data set (chapter 5), since the amplification of 

the cyt b gene consistently failed or gave dubious results for this species. In particular, 

within this study we wanted to (1) assess and compare the levels of genetic diversity 

throughout the distribution range of N. integer, with specific emphasis on the 

latitudinal trends, (2) reconstruct the most likely historical processes that led to the 

current distribution of mitochondrial haplotypes, and (3) estimate the levels of genetic 

exchange that currently take place among European populations of N. integer. The 

results of this study were also put in the light of other marine, as well as terrestrial and 

freshwater phylogeographic studies in Europe. This chapter has been submitted for 

publication in Molecular Ecology as T. Remerie, A. Vierstraete, D. Peelaers, J. R. 

Vanfleteren, A. Vanreusel (submitted). Patterns of genetic diversity, contemporary 

gene flow and postglacial colonisation history of a low dispersal mysid, Neomysis 

integer (Crustacea, Mysida), along the northeast Atlantic coasts. 
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 The patterns of genetic differentiation and diversity of Atlantic and 

Mediterranean populations of the mysid Mesopodopsis slabberi are discussed in 

Chapter 5. By means of DNA sequence analysis of the mitochondrial cytochrome c 

oxidase subunit I (COI) and 16S rRNA (16S) genes, the geographic patterns of 

genetic variation were examined at different spatial scales, i.e. at a mesogeographic 

scale (50-400 km), at a macrogeographic scale within the Atlantic and Mediterranean 

basin (> 1000s km) and across the Atlantic-Mediterranean biogeographic boundary. In 

addition, the patterns of Atlantic-Mediterranean differentiation were compared with 

those of other marine species. This manuscript is submitted as Thomas Remerie, Tine 

Bourgois, Kimberly Murray, Danny Peelaers, Andy Vierstraete, Jacques Vanfleteren 

& Ann Vanreusel (submitted). Phylogeographic patterns within the mysid 

Mesopodopsis slabberi (Crustacea, Mysida): evidence for high molecular diversity 

and cryptic speciation to Marine Biology. 

 Chapter 6 focuses on the fine-scale (intra-estuarine) and temporal genetic 

variation of the brackish water mysid N. integer within the Westerschelde estuary. In 

order to test for intra-estuarine differentiation, different samples along an 

environmental gradient (salinity, pollution) and from different habitats (subtidal, 

brackish lake, harbour site) were analysed with the SSCP technique. The temporal 

stability of the genetic structure was assessed by analysing samples over 3 

consecutive years (9 generations). This fine-scale and temporal approach may be 

important in assessing the role of microevolutionary processes in producing genetic 

divergence among populations. This manuscript is submitted as Thomas Remerie, 

Danny Peelaers, Andy Vierstraete, Jacques Vanfleteren & Ann Vanreusel (submitted). 

Patterns of genetic diversity of the brackish water mysid Neomysis integer 

(Crustacea, Mysida) within the Westerschelde estuary: panmictic population or local 

differentiation in a highly variable environment? to Estuarine, Coastal and Shelf 

Sciences. 

 The relation between the morphometric differentiation of populations of both 

N. integer and M. slabberi and the patterns of genetic differentiation within both 

species obtained in the previous chapters, are the scope of Chapter 7. For this 

purpose, three population samples of each species were examined morphologically by 

measuring several morphometric and meristic characters. The patterns and the extent 

of morphometric variation were analysed with multivariate methods. This chapter has 

been submitted for publication in Hydrobiologia as Thomas Remerie, Tine Bourgois 
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& Ann Vanreusel (submitted). Morphological differentiation between geographically 

separated populations of Neomysis integer and Mesopodopsis slabberi (Crustacea, 

Mysida). 
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ABSTRACT 

 

 

Species of the order Mysida (Crustacea, Peracarida) are shrimp-like animals that 

occur in vast numbers in coastal regions of the world. The order Mysida comprises 

1,053 species and 165 genera. The present study covers 25 species of the well-defined 

Mysidae, the most speciose family within the order Mysida. 18S rRNA sequence 

analysis confirms that the subfamily Siriellinae is monophyletic. On the other hand 

the subfamily Gastrosaccinae is paraphyletic and the subfamily Mysinae, represented 

in this study by the tribes Mysini and Leptomysini, consistently resolves into three 

independent clades and hence is clearly not monophyletic. The tribe Mysini is not 

monophyletic either, and forms two clades of which one appears to be closely related 

to the Leptomysini. Our results are concordant with a number of morphological 

differences urging a taxonomic revision of the Mysidae. 
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INTRODUCTION 

 

Mysid phylogeny is poorly understood and few attempts were made over the 

last decades to revise the earlier established systematic relationships between higher 

taxonomic levels within the Mysida. These attempts dealt with the status of orders and 

suborders within the superorder Peracarida (De Jong & Casanova, 1997; Spears & 

Abele, 1997; Jarman et al, 2000; De Jong-Moreau & Casanova, 2001; Martin & 

Davis, 2001; Richter & Scholtz, 2001; Casanova et al, 2002). These studies gave 

more insight in the evolutionary link between the formerly accepted suborders 

Lophogastrida and Mysida within the order Mysidacea, which now can be considered 

different orders while the “old” Mysidacea disappears. However this ongoing debate 

does not discuss the status of lower taxonomic levels within the order Mysida 

(families, subfamilies, tribes and genera). The latest systematic overviews, not based 

on a phylogenetic approach, date back to 1977 and 1993 (Mauchline, 1977; Müller, 

1993), indicating the lack of novel morphological evidence since the early years of 

mysid systematics.  Some recent efforts to study mysid phylogenetics were based on 

the foregut morphology (Kobusch, 1998), and statolith composition (Ariani et al, 

1993; Wittmann et al, 1993). The development of molecular techniques and their 

application in recent phylogenetic research provides a useful tool to verify if the 

current morphology-based accepted systematic knowledge is supported by genetic 

evidence. DNA sequencing indeed could offer complementary information on 

phylogenetic relations in order to identify evolutionary relationships among 

morphologically similar taxa within the Mysida, as done for many other invertebrate 

and particularly crustacean taxa (e.g. Abele, 1991; Abele et al, 1992; Spears & Abele, 

1997; Palumbi & Benzie, 1991; Giribet et al, 2001; Braga et al, 1999). To our 

knowledge no phylogenetic study of the order Mysida has been published so far using 

both molecular and morphological data.  

 In the present study 25 species from 19 genera of the largest family within the 

Mysida, the Mysidae, were analysed based on 18S rRNA sequence data. The selected 

species represent a worldwide coverage of the three most important subfamilies in 

terms of numbers of species and /or genera i.e. the Siriellinae, the Gastrosaccinae and 

the Mysinae. This is particularly true for the large subfamily Mysinae (sensu Müller, 

1993) that comprises 91% of the genera and 80% of all species classified within the 

Mysidae. No members of the subfamilies Boreomysinae (1 genus), 
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Rhopalophtalminae (1 genus) or Mysidellinae (3 genera) were included. However the 

selected species should already provide a basis for beginning to infer the molecular 

phylogeny of the family Mysidae. Indeed, the present data analysis provides a tool to 

test the morphology-based classification of the Mysidae. The large subfamily 

Mysinae, which contains many genera and species compared to other subfamilies, can 

be questioned as a natural group. A molecular approach can supply additional 

evidence for, or reject the monophyletic character of the Mysinae, which are 

represented here by five genera of the tribe Leptomysini and nine genera belonging to 

the Mysini. It is of particular interest to test the relationships between these tribes, in 

order to validate their phylogenetic strength. We show that both molecular and 

morphological evidence urges a taxonomic revision of the family Mysidae. 
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MATERIALS & METHODS 

 

A total of 25 mysid species were analysed (Table 2.1) in addition to four 

outgroup species from other crustacean taxa. All samples were stored in ethanol (70 – 

95%) at 4°C. Genomic DNA was extracted using a modified CTAB protocol (Kocher 

et al, 1989). Mysid tissue was crushed using a beadbeater and afterwards incubated 

for a minimum of 3 hours at 60°C in 500 µl CTAB buffer with 6 µl proteinase K (1 

mg 100 µl-1). After an overnight incubation at 37°C the DNA was extracted with 

phenol/chloroform/isoamylalcohol (25:24:1 PH 8) and chloroform:isoamylalcohol 

(24:1). Finally, DNA was precipitated with isopropanol and rehydrated in 25 µl water. 

Small aliquots of extracted nucleic acids were used as template for polymerase chain 

reaction amplification (PCR). The 18S ribosomal gene (1990 bp) was amplified using 

the 5’-EM (5’-TYC CTG GTT GAT YYT GCC AG-3’) and 3’-EM (5’-TGA TCC 

TTC CGC AGG TTC ACC T-3’) primers (Weekers et al, 1994). Cycle conditions 

were 95°C for 1 min, 55°C for 1.5 min, and 72°C for 2 min for 35 cycles. PCR 

amplification products were sequenced using a Perkin Elmer ABI Prism 377 

automated DNA sequencer. PCR product was treated with shrimp alkaline 

phosphatase (1 U/µl, Amersham E70092Y) and exonuclease I (20 U/µl, Epicentre 

Technologies X40505K) for 15 minutes at 37 °C, followed by 15 minutes at 80 °C to 

inactivate enzymes.  This material was then used for cycle sequencing without any 

further purification, using the ABI Prism BigDye Terminator Cycle Sequencing kit. 

The sequencing conditions were 30 sec at 96 °C, 15 sec at 50 °C and 4 min at 60 °C 

for 27 cycles.  Cycle sequence products were precipitated by adding 25 µl of 95 % 

ethanol and 1 µl 3 M sodium acetate, pH 4.6 to each cycle sequencing reaction (10 

µl).  The samples were placed at –20 °C for 15 minutes and centrifuged at 14,000 rpm 

for 15 minutes.  After precipitation, an additional wash of the pellet was performed 

with 125 µl of 70 % ethanol and centrifuged at 14,000 rpm for 5 minutes.  The pellet 

was dried in a Speedvac concentrator, redissolved in loading buffer and run on a 48 

cm 4.25 % acrylamide:bisacrylamide (29:1) gel. All sequences have been submitted to 

EMBL (accession numbers: AJ566084-AJ566109). 

Four 18S ribosomal RNA sequences of the more or less closely related 

crustaceans Diastylis sp. (Peracarida, Cumacea), Euphausia pacifica (Eucarida, 

Euphausiacea), Squilla empusa (Hoplocarida, Stomatopoda) and Nebalia sp. 

(Leptostraca, Nebaliida) were obtained from GenBank and used as outgroups in the 
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analysis. All sequences were aligned with ClustalX (Version 1.74, Thompson et al, 

1997) using the default settings (pairwise alignment parameters: Slow-Accurate 

pairwise alignment method, Gap opening penalty= 15.00, Gap extension penalty= 

6.66, IUB DNA weight matrix; and multiple alignment parameters: Gap opening 

penalty= 15.00, Gap extension penalty= 6.66, Delay divergent sequences= 30%, DNA 

transition weight= 0.50), followed by limited manual editing to improve inferences of 

positional homology. Parsimony analysis was performed using PAUP 4.0b10 

(Swofford, 2001) with the following heuristic search settings: 100,000 random taxon 

addition replicates followed by tree-bisection-reconnection (TBR) branch swapping. 

Nodal support was assessed by calculating bootstrap values (Felsenstein, 1985) from 

1,000 bootstrap replicates obtained by heuristic search with 10 random sequence 

addition replicates each. In addition, taxon jackknifing was performed to assess the 

effects of taxon sampling on the tree resolution (Lanyon, 1985). In this analysis, 

individual taxa were sequentially removed and the resulting data set of n-1 taxa was 

analyzed using parsimony with 1,000 random addition replicates. All Jackknife 

generated trees were evaluated manually by comparing the nodes in each consensus 

tree with those in the bootstrapped parsimony tree generated by the full data set. 

The likelihood ratio test in MODELTEST 3.06 (Posada & Crandall, 1998) was used 

to determine the model of DNA evolution that best fitted the dataset. Based on this 

test, the general time-reversible substitution model with a discrete gamma correction 

for among site variation and corrected for invariable sites (GTR + G + I model) 

(Rodriguez et al, 1990) was chosen for maximum likelihood analysis. ML was 

performed using the heuristic search option with TBR branch swapping, MulTrees 

option in effect, no steepest descent, rearrangements limited to 10,000 and with 50 

random sequence addition replicates. Bootstrap values were determined from 100 

bootstrap replicates obtained by heuristic search with 10 random sequence addition 

replicates each.  
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RESULTS   

 

Sequence data and alignment 

 

 A total of 25 different mysid species were sequenced, the length of the mysid 

18S rRNA gene varies between 1,788 bp (Schistomysis spiritus) and 1,811 bp 

(Archaeomysis japonica). GC content varies between 46.6% (Acanthomysis 

longicornis) and 49.8% (Anchialina agilis), and has an average of 48.6%. The block 

of aligned 18S rRNA sequences contains 1,889 positions; 1,175 (62.2%) characters 

are constant, 439 (23.2%) are parsimony non-informative and 275 (14.6%) are 

parsimony informative. No obvious large expansion segments are observed within the 

aligned 18S sequences. 

 

Parsimony analysis 

  

The parsimony (MP) analysis with heuristic search generated three most 

parsimonious trees of 2,192 steps (consistency index= 0.5132, retention index= 

0.5266, rescaled consistency index= 0.2703) that had some topological changes. The 

strict consensus MP tree is shown in Fig. 2.1. The subfamily Gastrosaccinae is 

resolved as a paraphyletic group, while the Siriellinae are resolved as a well-defined 

monophyletic clade supported by high bootstrap values (100%) (Fig. 2.1). The 

relationships within the subfamily Gastrosaccinae are less clear, two most 

parsimonious trees suggests that Bowmaniella sp. is more closely related to the genus 

Archaeomysis than to Gastrosaccus, while the other tree suggest the opposite (trees 

not shown). The analysis also shows that the subfamily Mysinae, represented by the 

tribes Mysini and Leptomysini, is polyphyletic. One group of species belonging to the 

tribe Mysini (Mysini-A-group) forms a monophyletic clade that is closely related to 

the subfamily Siriellinae (Fig. 2.1). The MP analysis fails to resolve the two species of 

the genus Schistomysis as sister taxa. The three other species of this tribe (Neomysis 

integer, Holmesimysis costata and Acanthomysis longicornis) form a clade (Mysini-

B-group) closely related to the species of the tribe Leptomysini (Fig. 2.1). It should 

also be noted that the genus Mysidopsis is resolved as a paraphyletic taxon by the MP 

analysis. Few trees obtained from the parsimony analysis with taxon jackknifing 

displayed deviations from the strict consensus MP tree. In particular the exclusion of 
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the ingroup species Gastrosaccus psammodytes, Bowmaniella sp. and Anchialina 

agilis and the outgroup species Squilla empusa caused changes in the position of 

Gastrosaccinae and Siriellinae and the relationships within the Mysini-A clade.  

 

 
Fig. 2.1: Strict consensus Maximum Parsimony tree of 2192 steps obtained after 
100,000 replicates  (CI= 0.5132, RI= 0.5266, RC= 0.2703). The numbers along the 
branches indicate MP bootstrap support, only bootstrap values higher than 50% are 
shown.  
 

 

Maximum likelihood analysis 

Maximum likelihood (ML) analysis was performed using the GTR + G + I 

model of molecular evolution with following values: substitution rates R= (1.1617, 

2.2699, 1.4924, 0.646 and 4.569), proportion of invariable sites= 0.3798 and gamma 

shape parameter, α= 0.4756. The most likely tree had a -lnL = 12,677.09 and is 

shown in Fig 6.2. The subfamilies Siriellinae and Gastrosaccinae are each 

monophyletic, the latter only with 68% bootstrap support (Fig. 2.2). Interestingly, the 
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Gastrosaccinae are now shown as a sister group to all other subfamilies. Also the ML 

tree confirms the morphology-based grouping of the genera within the subfamily 

Gastrosaccinae: Bowmaniella sp. is more closely related to the genus Archaeomysis 

than to Gastrosaccus. The polyphyly of the tribe Mysini within the subfamily 

Mysinae is indicated by the ML tree, with the split of the tribe Mysini in two different 

clades (Mysini-A and Mysini-B) as proposed by the MP analysis being confirmed by 

ML. The tribe Leptomysini is also resolved by ML as a monophyletic clade, and again 

the genus Mysidopsis is shown as a paraphyletic taxon. ML, unlike MP, supports the 

monophyly of the genus Schistomysis.  

 

 
 

Fig. 2.2: Heuristic Maximum Likelihood tree based on the GTR + G + I model of 
sequence evolution and with  -lnL = 12,677.09. The parameters were: nucleotide 
frequencies: A=0.2488, C=0.2171, G=0.2701, T=0.264; substitution rates R= (1.1617, 
2.2699, 1.4924, 0.646 and 4.569); proportion of invariable sites= 0.3798 and gamma 
shape parameter, α= 0.4756. The numbers along the branches indicate ML bootstrap 
support, only bootstrap values higher than 50% are shown. 
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DISCUSSION 

 

The family Mysidae is divided into six subfamilies of which only three were 

represented in this study: Siriellinae, Gastrosaccinae and Mysinae. In terms of 

numbers of species and genera these three subfamilies can be considered as the most 

important groups of the family, although the omission of the other three subfamilies 

(Boreomysinae, Rhopalophthalmidae and Mysidellinae) lowers the value of the 

analysis in terms of general conclusions on phylogenetic relationships within the 

whole family. 

According to the different methods (MP and ML) applied here to reconstruct 

phylogenetic relationships, the subfamily Siriellinae can be considered as a 

monophyletic clade. Some typical morphological characteristics support the 

monophyly of this group: the exopod of the uropod is devided into two segments, the 

mandibular molar process is reduced, the marsupium consists of three oostegites and 

males of almost every species have the typically spirally coiled pseudobranchiae at 

the pleopods (morphological data was taken from the NeMys database, 

http://intramar.ugent.be/nemys, see also Deprez et al, 2004)  

The paraphyly of the Gastrosaccinae is caused by the deviant placement of 

Anchialina agilis. The group formed by members of Bowmaniella, Archaeomysis and 

Gastrosaccus can be considered as a well-defined monophyletic group. 

Morphologically this group of species (the “Gastrosaccus–group”) indeed displays 

several differences with members of the genus Anchialina. Common characteristics 

for the whole subfamily are the presence of a spine on the antennal scale (which is 

setose all around), the typical shape of the telson (with a cleft, armed with spines, 

without setae), and the presence of spine on the labrum (absent in all other Mysinae 

species). Considering the combination of these characteristics taxonomists grouped 

the Anchialina species within the Gastrosaccinae subfamily although there are 

morphological differences, mainly in pleopod structures. Within the genus Anchialina 

the first pair of thoracopods bears a strongly developed claw on the dactylus, 

uniramous female pleopods are present and the third pair of the male pleopods has an 

only slightly elongated exopod. In the “Gastrosaccus-group” at least the first pair of 

female pleopods are uniramous and in members of Archaeomysis and Bowmaniella 

also the second to the fifth pair are biramous. This may be an argument why in two of 

the three most parsimonious trees (Fig. 2.1, MP tree #2&3) and in the ML analysis 
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(Fig. 2.2) Bowmaniella sp. is closer related to Archaeomysis than to Gastrosaccus. 

Members of Anchialina posses an uniramous first male pleopod while all male 

pleopods are biramous in the “Gastrosaccus-group”. 

Morphological evidence strongly suggests that the genus Gastrosaccus is the 

sister group to the genera Bowmaniella and Archaeomysis, which is partly supported 

by our molecular analysis (ML analysis). Biramy is considered to be more ancestral 

then uniramy (e.g. Wilson, 1989). By this criterion Bowmaniella and Archaeomysis 

are assumed to be more closely related to the ancestral form, while members of 

Gastrosaccus are more derived. Based on these morphological characteristics we can 

also classify the members of the subfamily Gastrosaccinae not included in this study 

either in the “Anchialina-group” (e.g. Pseudanchialina Hansen, 1910 and 

Paranchialina Hansen, 1910 species) or in the “Gastrosaccus-group” (e.g. 

Haplostylus Kossmann, 1880 and Iiella Bacescu, 1968 species). Already in 1882 

Czerniavsky erroneously created the “divisio Anchialidae” (= tribe Anchialini in 

current terminology; this taxon was rejected by subsequent authors) based on the 

morphological characteristics that diverge the Anchialina species from the “true” 

Gastrosaccinae. A more profound study that would include more species might 

provide additional evidence for the creation of two monophyletic subfamilies as also 

indicated by our molecular analysis. 

The subfamily Mysinae, represented in this study by the tribes Mysini and 

Leptomysini, consistently resolves into three clades (Leptomysini: 1 clade; Mysini: 2 

clades) and hence is clearly not monophyletic. This subfamily was originally split into 

different tribes based on morphological characteristics (Hansen, 1910; Tattersall, 

1955; Ii, 1964; Bacescu & Iliffe, 1986). Only two of the six tribes (Leptomysini with 

31 genera and Mysini with 52 genera) are represented in our analysis. The subfamily 

Mysinae comprises the largest number of species (806) and genera (143) of the entire 

family Mysidae (157 genera, 1004 species) and even of the order Mysida (165 genera 

and 1053 species). The division into different tribes permitted structuring of this large 

subfamily, but the taxonomic value is doubtful – as reflected in our analysis. 

Relationships within the Mysini are much less straightforward, since two 

clades are resolved in the analyses. One group includes Praunus flexuosus, Hemimysis 

anomala, Schistomysis kervillei, S. spiritus, Limnomysis benedeni, Diamysis 

mesohalobia mesohalobia and Paramesopodopsis rufa (Mysini-A-group). The other 

group includes the species Neomysis integer, Holmesimysis costata and Acanthomysis 
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longicornis (Mysini-B-group) and appears to be more closely related to the 

Leptomysini than to the Mysini-A-group. This is confirmed by the topology of all tree 

construction methods. The Mysini are usually differentiated based on the following 

morphological characteristics: the second male pleopod is rudimentary and 

uniramous, and the fourth male pleopod is elongated and mostly modified. The 

uniramous character of the second male pleopod constitutes the most important 

difference between the tribes Mysini and Leptomysini. Morphological indications for 

the splitting of the Mysini in two separate clades can be found in the exopod on the 

third male pleopod which is reduced in the Mysini-B-group whereas in the Mysini-A-

group this structure is either slightly or well developed, and a cleft in telson is present. 

The Mysini-B-group seems to correspond to the definition of the tribe Mysini by 

Hansen (1910): the exopod of the male third pleopod has one or two segments, and 

mostly an entire telson. The genera Acanthomysis, Neomysis and Holmesimysis 

display a very similar appearance, causing their pooling under a single generic name, 

Neomysis (Zimmer, 1915) in the past.  

The Mysini-A-group comprises three species (H. anomala, D. mesohalobia 

mesohalobia, L. benedeni) that have calcareous (as the mineral vaterite) statoliths. 

The remaining four species of this group (S. kervillei, S. spiritus, P. flexuosus and P. 

rufa) precipitate fluorite, as do the great majority of Mysidae. Although weakened by 

the absence of some essential taxa (e.g., Mysis, Paramysis) the present molecular 

analysis is in keeping with the conclusion of Ariani et al (1993) that within the Mysini 

both calcareous and fluorite statoliths originate from common ancestors. These 

ancestors had the ability or predisposition to form calcareous statoliths, favouring a 

phylogenetically rapid shift of statolith mineral composition from fluorite to vaterite. 

The actual distribution of the mineral types (vaterite versus fluorite) seems to be 

paraphyletic with respect to the true phylogeny (i.e., mineral type represents analogy, 

not homology). The grouping of the closely related genera of Mysini in a ‘Diamysis 

group’ (Diamysis, Limnomysis and Antromysis Creaser, 1936) and the ‘Paramysis 

group’ (Paramysis Czerniavsky, 1882; Katamysis, Sars, 1877 and Schistomysis) based 

on features of antennal scale and male pleopods as suggested by Ariani et al (1993) is 

also confirmed by our molecular analysis. However, more detailed molecular and 

morphological analyses covering members of the other tribes are needed to reach a 

more detailed and correct view of the genealogy of the different clades within the 

Mysidae. 
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The tree topology for the Leptomysini is nearly identical in all analyses.  

Morphological evidence suggests that Mysidopsis sensu Sars (1864) is more closely 

related to Leptomysis. The genera Metamysidopsis, Brasilomysis Bacescu, 1968 and 

Americamysis were more recently created and in many cases are synonymous with 

Mysidopsis species (e.g. Americamysis almyra was formerly known as Mysidopsis 

almyra Bowman, 1964; Metamysidopsis munda was formerly known as Mysidopsis 

munda Zimmer, 1918). However, even after later revisions the genus Mysidopsis 

sensu Price seems to remain a paraphyletic mixture of species (Price et al, 1994). This 

is consistent with our results and indicates that this genus is taxonomically not well 

defined and needs to be profoundly revised.  

Based on molecular and morphological arguments we can conclude that the 

subfamily Siriellinae is a well-defined taxonomic unit. On the other hand the 

subfamily Gastrosaccinae is found to be paraphyletic and a split in two monophyletic 

subfamilies (the “Gastrosaccus-group” and the ”Anchialina-group”) should be 

considered. The third subfamily present in this study, Mysinae, represented here by 

the tribes Mysini and Leptomysini, is clearly not monophyletic. A revision of the 

Mysini is suggested in order to tune taxonomy to phylogenetic relationships based on 

morphological and molecular data. On the other hand the tribe Leptomysini appears to 

be a well-defined taxonomical unit, although a revision of the genus Mysidopsis and 

its related genera (e.g. Metamysidopsis, Americamysis) is needed. Obviously, future 

research should include more genes and more species, since the selection of taxa has a 

large and unpredictable effect on phylogeny (Lecointre et al, 1993). First, a sufficient 

number of representatives of the subfamilies Boreomysinae, Rhopalophthalmidae and 

Mysidellinae, not included here, should be analysed to evaluate the taxonomic rigidity 

of the Mysidae. Second, species belonging to all existing tribes within the subfamily 

Mysinae must be included to assess the value of these taxonomical units as well as 

their relations. 
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ABSTRACT 

 

The genealogical relationships and distribution of molecular variation of the mysid 

Neomysis integer was examined throughout most of its geographical range, in order to 

interpret phylogeographic patterns. N. integer (Leach, 1814) is a common 

hyperbenthic species that typically dominates the brackish part of estuaries and occurs 

along the northeastern Atlantic from the Baltic Sea to Morocco.  As a pilot study, nine 

samples, comprising 45 individuals, were collected across the species’ range of 

distribution, and sequenced using a segment of 390 base pairs of the mitochondrial 

cytochrome b gene. A clear geographic structuring was found with one common 

haplotype occurring in most samples, while two samples (the Guadalquivir and 

Gironde estuary) consist solely of unique variants. At the southern distribution range a 

remarkable genetic break was observed between the Guadalquivir population and all 

other samples. These findings are discussed in the perspective of the presence of 

glacial refugia and postglacial recolonisation routes of low-dispersal organisms along 

the northeastern Atlantic coasts. 
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INTRODUCTION 

 

The population genetic structure of a species tends to be determined by current 

population dynamics like contemporary gene flow, as well as by historical patterns of 

gene flow shaped by past climate events (Avise et al, 1987). Climate oscillations 

during the Pleistocene were responsible for a series of contractions and expansions of 

species ranges all over the world, particularly as documented for terrestrial species of 

northern temperate regions (Hewitt, 1996, 2000). Decreased temperatures in these 

regions during ice ages pushed the geographical distribution of many species to 

southern regions (Hewitt, 2000). At the end of the last glacial maximum (18 kya) the 

warming climate and the retreat of the glaciers led to the rapid migration of species 

out of refugial areas as they spread into previously unavailable or unsuitable habitats. 

Evidence and effects of these contractions and expansions on the genome have been 

reported for several marine species (e.g. Dawson et al, 2001; Edmands, 2001; Wares, 

2002). Although the number of phylogeographic studies along the northeastern 

Atlantic coasts is growing, most studies have focused on postglacial colonisation 

routes of fish like anadromous salmonids (Verspoor et al, 1999; Consuegra et al, 

2002), highly vagile mackerel (Nesbø et al, 1999), flounder (Borsa et al, 1997a) and 

small demersal gobies (Gysels et al, 2004). Phylogeographic information of marine 

invertebrates along the northeastern Atlantic remains scarce and is mostly focused on 

species with high dispersal capacities like bivalves (e.g. Nikula & Väinölä, 2003; 

Luttikhuizen et al, 2003), gastropods (Wilke & Davis, 2000), krill (Zane et al, 2000). 

Despite the importance of these studies in gaining knowledge of the molecular 

diversity and population genetic structuring, it is quite possible that the signatures of 

the Pleistocene glaciations have been erased in high gene flow species. On the other 

hand, species with restricted levels of gene flow are often composed of genetically 

and geographically highly structured populations, which in general are shaped by past 

palaeoclimatological events. Consequently, the present study may provide insights in 

the impact of Pleistocene glaciations on coastal populations of species with limited 

dispersal capacity. 

Neomysis integer (Leach, 1814) is one of the most common mysids around the 

northeastern Atlantic coasts (from the Baltic Sea to Morocco). It is a hyperbenthic, 

euryhaline and eurythermic species, typically occurring in high numbers in estuarine, 

brackish water environments (Tattersall & Tattersall, 1951; Mauchline, 1971a). 
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Several recently published studies indicate N. integer as the dominant species in the 

brackish part of West European estuaries, both in terms of densities and biomass 

(Mees et al, 1995; Cunha et al, 1999). It is an omnivorous species which mainly 

utilizes mesozooplankton and detritus carbon pools (Fockedey & Mees, 1999), and an 

important prey for demersal and pelagic fish and larger epibenthic crustaceans 

(Mauchline, 1980; Hostens & Mees 1999). As such it is believed to be a key species 

in the ecosystems of the brackish part of estuaries. Like most mysids, N. integer is a 

brooder. Females possess a brood pouch (marsupium) attached to the bases of the 

pereiopods in which the eggs hatch and the young develop until they can survive 

individually. Little is known about the dispersal capacities of N. integer, since studies 

provide evidence for migration (tidal, diel, seasonal) only over small geographic 

scales (10 km), but not for greater distances (Mauchline, 1980; Mees et al, 1993b). 

Since N. integer lives in discrete brackish water habitats and lacks a planktonic 

dispersal stage, it has been assumed that long-range dispersal events are probably rare 

(Mauchline, 1980). If this hypothesis is true this should result in low rates of current 

gene flow. These putative low dispersal features render N. integer useful to study 

phylogeographic patterns along the northeast Atlantic coasts, and may clarify the 

impact of climate oscillations on the patterns of genetic variation in marine species. 

Nothing is known about the genetic diversity in mysids on a macrogeographic 

scale along the northeastern Atlantic coast. Using mtDNA sequences we address the 

following issues: firstly, since the dispersal abilities of N. integer are probably very 

limited, the patterns of genetic variation that were created during the establishment of 

its current distribution should have been preserved. This will probably produce 

geographically highly structured populations. Secondly, haplotype distribution should 

reflect postglacial recolonisation routes and possible glacial refugia for N. integer. 

The present distribution range of N. integer is necessarily the result of a northward 

range expansion after deglaciation, since northern Europe was unsuitable as habitat 

during glacial periods (see Fig. 3.1 for a reconstruction of the sea-level during the last 

glacial maximum). We expect that N. integer survived the Pleistocene glaciations in a 

glacial refugium along the Iberian and north African coasts, as proposed for other 

marine species such as salmon and brown trout (García-Marín et al, 1999; Consuegra 

et al, 2002). However, the possible existence of small northern refugia, located in ice-

free habitats in the English Channel and southern North Sea, as proposed for 

salmonids (García-Marín et al, 1999; Verspoor et al, 1999), gobies (Gysels et al, 
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2004) and snails (Wilke & Davis, 2000) cannot be excluded. If so, the signature of a 

postglacial recolonisation event from multiple refugia may also be observed in the 

phylogeographic pattern of N. integer. 

 

MATERIALS AND METHODS 

 

Sampling 

 

Specimens of Neomysis integer were collected from 9 European estuaries (Fig. 

3.1).  Samples from each estuary were collected with a hand net or a hyperbenthic 

sledge (mesh size 1 mm). After collection, the samples were stored in ethanol (70 – 

95%) or acetone at 4°C.  

 

DNA extraction, PCR and Sequencing 

 

DNA was extracted using a modified CTAB protocol (Kocher et al, 1989). 

Mysid tissue was crushed using a beadbeater and afterwards incubated for minimum 3 

hours at 60°C in 500 µl CTAB (2% (w/v) CTAB, 1.4M NaCl, 0.2% (v/v) 

mercaptoethanol, 20 mM EDTA, 100 mM Tris/HCl pH 8) with 6 µl proteinase K (1 

mg 100 µl-1). After an overnight incubation at 37°C, the DNA was purified with 

phenol/chloroform/isoamylalcohol (25:24:1 PH 8) and chloroform:isoamylalcohol 

(24:1). Finally, DNA was isopropanol-precipitated and rehydrated in 25 µl water. 

Small aliquots of extracted nucleic acids (1 µl) were used as template for polymerase 

chain reaction amplification (PCR). The conditions for the cyt b amplifications were: 

10 x PCR buffer with (NH4)2SO4, 2 mM MgCl2, 0.2mM dNTP, 1 µM forward and 

reverse primer and 1.25 units Taq polymerase. Cytochrome b amplifications used the 

universal molluscan primers 151F (5’-TGTGGRGCNACYGTWATYACTAA-3’) and 

270R (5’-AANAGGAARTAYC AYTCNGG YTG-3’) (Merritt et al., 1998). The 

following thermocycle profile was used:  denaturation of template DNA at 94°C for 2 

min, followed by a stepdown PCR of 4 cycles (30s at 94°C, annealing at 53°C for 90 

s, extension at 72°C for 90 s) with a decrease in annealing temperature of 1°C for 

each cycle, followed by 40 cycles of 30 s at 94°C, 90 s at 49°C and 2 min at 72°C, 

followed by a final extension of 5 min at 72°C. A small aliquot (5 µl) of each 

amplification was loaded on a 1 % agarose gel, stained with ethidium bromide, and 
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visualized under UV light. PCR products were purified with exonuclease I (10 U µl-1; 

Amersham) and shrimp alkaline phosphatase (1 U µl-1; Amersham). Purified products 

were cycle sequenced using BigDye Terminator Mix (PE Applied Biosystems) and 

following conditions: 25 cycles of 96°C for 30 s, 50°C for 15 s and 60°C for 4 min. 

Cycle sequencing products were electrophoresed on a Perkin-Elmer ABI Prism 377 

DNA sequencer. After trimming both ends of the sequences we obtained a fragment 

of 390 bp. 

 

Data analysis 

 

Alignment of the data was produced with the Clustal X program (Version 

1.74, Thompson et al, 1997). When needed, the alignment was manually corrected 

with the program GeneDoc Version 2.6 (Nicholas & Nicholas, 1997). A parsimony 

network between the haplotypes was constructed to visualize evolution among 

haplotypes, haplotype frequency and geographical representation with the program 

TCS (version 1.13, Clement et al, 2000). This method estimates an unrooted tree and 

provides a 95% plausible set for all haplotype connections within the unrooted tree. 

Overall levels of molecular diversity (nucleotide and haplotype diversity, π and h 

respectively) were calculated using ARLEQUIN 2.0 (Schneider et al, 2000). An 

analysis of molecular variance (AMOVA) was used to examine hierarchical 

population structure (Excoffier et al, 1992). This method was used to partition the 

genetic variance into components of within population, among individuals, and 

among population differences. In addition an AMOVA was performed on different 

groups of samples in order to detect further significant geographic group structure. All 

analyses were performed using 10,000 permutations with the ARLEQUIN 2.0 

software (Schneider et al, 2000). 
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RESULTS 

 

A total of 8 haplotypes was observed among the 45 individuals analysed from 

9 different locations along the northeastern Atlantic. Sixteen variable positions (4.1%) 

between the different haplotypes were recorded, including 9 (2.3%) parsimony-

informative characters. All the polymorphisms were due to single nucleotide changes, 

and all but three of them were transitions. Most nucleotide changes were silent 

mutations, corresponding to transitions at the 3rd codon position. Four nucleotide 

changes involved 2nd and 1st codon positions, producing amino acid changes (Table 

3.1). Considering that mutations on the 2nd codon are extremely rare, we re-sequenced 

these putative haplotypes. However, this yielded the same results, confirming that 

these are genuine haplotypes and not a laboratory artefact. Pair-wise DNA differences 

between haplotypes ranged from 0.26% (a single substitution) to 2.82% nucleotide 

divergence (11 base substitutions). The overall haplotype diversity (h) was 0.665 and 

nucleotide diversity (π) amounted to 0.00679.  

 

 

Table 3.1: Variable nucleotide positions of the 8 cyt b haplotypes (A – H) observed in 
Neomysis integer with indication of the EMBL Accession numbers of the haplotypes, 
parsimonious sites (P) and the codon positions. aa1 and aa2 indicate the amino acid 
changes in both haplotypes after mutation (amino acid codes: T=Threonine, 
A=Alanine, M=Methionine, V=Valine, G=Glycine, P=Proline, S=Serine). 

Haplotype 4 8 52 58 73 76 199 229 255 256 307 316 325 357 362 367 EMBL N°

A A A G G C G T C C A C A T T C G AJ549186
B . . . . . A . . . . . . . . . . AJ549187
C . . . . . A . . . C . . . . . . AJ549188
D . . . . . . . . . . . G . . . . AJ549189
E G G . . . . . . . . . . . . . . AJ549190
F . . C A T . C T . . T . C . . A AJ549191
G . . C A T . C T T . T . C . . A AJ549192
H . . . . . . . . . . . . . G T . AJ549193

P P P P P P P P P
codon pos. 3 1 3 3 3 3 3 3 2 3 3 3 3 2 1 3

aa1 T T V P
aa2 A M G S  
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Fig. 3.1: Geographic location of sampling sites and relative frequency of the different 
haplotypes at each location. Dashed line indicates the shoreline during the last glacial 
maximum (18 kya) (redrawn from Frenzel et al, 1992).  

 

The geographic distribution of the 8 haplotypes is shown in Table 3.2 and 

Figure 3.1.  The most common haplotype A (n = 25), present in more than half of the 

analysed specimens, was observed at all locations except in the Gironde and the 

Guadalquivir, the most southern location.  The second most frequent haplotype D was 

observed at 3 different locations: Seine, Westerschelde and Weser. Of the 8 

haplotypes identified, 2 were singletons (E and G, i.e. represented by only one 

individual). Four of the 9 locations studied possessed unique haplotypes (Tvärminne, 

Ythan, Gironde and Guadalquivir) and in two of them (Gironde and Guadalquivir) 

solely unique haplotypes were found.  

 
Table 3.2:  Distribution of the cyt b haplotypes among the 9 locations studied, with 
indication of the sample size, total number of specimens analysed and number of 
haplotypes found in each location. 
 

Location Sample size A B C D E F G H # haplo.
Tvärminne 5 3 0 0 0 0 0 0 2 2

Vistula 5 5 0 0 0 0 0 0 0 1
Weser 5 2 0 0 3 0 0 0 0 2

Westerschelde 5 4 0 0 1 0 0 0 0 2
Ythan 5 4 0 0 0 1 0 0 0 2
Seine 5 2 0 0 3 0 0 0 0 2

Gironde 5 0 2 3 0 0 0 0 0 2
Ria de Aveiro 5 5 0 0 0 0 0 0 0 1
Guadalquivir 5 0 0 0 0 0 4 1 0 2

TOTAL 45 25 2 3 7 1 4 1 2  
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The evolutionary history of the observed haplotypes was determined by 

constructing a statistical parsimony network (Fig. 3.2). The most frequent haplotype 

A is located in the center of the network and all other haplotypes, except two (F and 

G), are connected by one or two mutation steps. This suggests that haplotype A is the 

ancestral haplotype from which the haplotypes B, C, D, E and H have more or less 

recently, radiated. Haplotypes F and G, unique in the Guadalquivir sample, are 8-10 

mutation steps separated from all other haplotypes, which corresponds with a 

significantly large phylogeographic break.  

 

 
Fig. 3.2: Statistical parsimony network among cyt b haplotypes found in Neomysis 
integer. Branches connecting circles represent mutation steps and the small open 
circles indicate missing haplotypes. The area of each circle is representative of the 
frequency with which the haplotypes occurred in the total sample. Circles are shaded 
according to their geographic occurrence. 

 

The results of the AMOVA analyses are summarized in Table 3.3. For the 

analysis conducted on all samples, most of the variation (78.42%, P<0.001) is found 

among the populations. The overall fixation index (ΦST) amounts to 0.7842, which 

points to a high genetic structuring. However, much of the apparent among-population 

structure is due to the inclusion of the very divergent haplotypes of the Guadalquivir 
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sample. If this sample is excluded from the AMOVA analysis, the among-population 

component decreases by nearly half, to 43.58 %, with a corresponding increase in the 

within-population component. However the null hypothesis of panmixia could still be 

rejected, with a ΦST value of 0.4358 (P<0.001). In order to assess whether any 

significant geographical structuring of samples could be detected, we performed an 

AMOVA dividing samples in three groups: (1) a ‘northern group’ with the Baltic 

samples (Tvärminne and Vistula) and the Scottish Ythan sample, (2) the southern 

North Sea and the English Channel samples (Seine, Weser and Westerschelde) and (3) 

the samples south of the English Channel (Gironde and Ria de Aveiro). The 

Guadalquivir sample was excluded to avoid distortion of the results because of its 

uniqueness. A significant amount of between-group variation was found 

(ΦCT=0.1969, P=0.011). When grouping the samples in two groups, a northern group 

(Tvärminne, Vistula, Ythan, Weser, Westerschelde and Seine) and a southern group 

(Gironde and Ria de Aveiro), the among group variance component was slightly 

lower, albeit not significant (ΦCT=0.1862, P=0.073). 

 
 
Table 3.3: Results of the AMOVA analyses of mtDNA haplotype variation without 
and with geographic structuring of the samples. Note that in the AMOVA’s with 
geographic structuring the Guadalquivir sample was excluded from the analyses. 
Sampling site abbreviations: TV, Tvärminne; VI, Vistula; YTH, Ythan; WE, Weser; 
WS, Westerschelde; SEI, Seine; GI, Gironde; RdA, Ria de Aveiro. 

 

Analysis Source of variation % variation Fixation indices P
All samples

Among populations 78.42 ΦST = 0.7842 < 0.001
Within populations 21.58

Without Guadalquivir sample
Among populations 43.58 ΦST = 0.4358 < 0.001
Within populations 56.42

Two groups (TV, VI, YTH, WE, WS, SEI) (GI, RdA)
Among groups 18.62 ΦCT = 0.1862 0.073

Among populations 30.96 ΦSC = 0.3805 < 0.001
within groups

Within populations 50.42 ΦST = 0.4958 < 0.001
Three groups (TV, VI, YTH) (WE, WS, SEI) (GI, RdA)

Among groups 19.69 ΦCT = 0.1969 0.011
Among populations 26.67 ΦSC = 0.3320 0.002

within groups
Within populations 53.64 ΦST = 0.4635 < 0.001  
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DISCUSSION 

 

The samples of Neomysis integer along the Atlantic coast show a clear 

geographic mtDNA structure with the following striking patterns: (1) the complete 

distinctness of the Guadalquivir sample, (2) the occurrence of one dominant haplotype 

(A) that is common to the Baltic Sea, the North Sea, the English Channel and the 

Portuguese estuary Ria de Aveiro, and (3) the apparent isolation of the Gironde 

sample, which consisted solely of 2 unique haplotypes which are closely related to the 

most frequent haplotype A. The high degree of differentiation between the 

Guadalquivir and all the other samples points to a large phylogeographic break in the 

area. The Gironde population has probably been isolated too, but to a lesser extent.  

The ubiquitous distribution of the most common haplotype A along the 

sampled range, with exception of the Gironde and Guadalquivir samples, does not 

contradicts with our initial hypothesis about a postglacial northward range expansion 

from the proposed refugium along the coast of the Iberian peninsula. The interior 

position of haplotype A in the statistical pasimony network suggests this may be an 

ancestral haplotype for the northern group, from which the others radiated. Hence, it 

is not unlikely that haplotype A survived in the Iberian glacial refugium, as proposed 

for a variety of other marine and anadromous marine species, and spread out 

northward after deglaciation (Garcia-Marin et al, 1999; Consuegra et al, 2002). 

However, our data indicates also that the Iberian Peninsula may not have acted 

as the only glacial refugium from where northern areas were colonized after the last 

glaciation. For example, the second most common haplotype D, which was not 

observed along the Portuguese coast, seems to be restricted to the English Channel 

and the Southern Bight of the North Sea (Seine, Westerschelde and Weser samples) 

and was found in a relatively high frequency in these samples (46%). A possible 

explanation for this distribution could be the existence of a ‘northern’ glacial 

refugium, possibly located in the Southern Bight of the North Sea. Since N. integer is 

a euryhaline and eurythermic species, it should be capable of surviving in ice-free 

shallow areas such as a large glacial lake that has existed in the southern North Sea 

during the Elsterian glaciation (late Middle Pleistocene, 450-420 kya). This ice-

dammed lake had massive proportions; the Thames, Rhine, Meuse, Scheldt and 

possibly the Ems all discharged into it, and it remained unglaciated (Benn & Evans, 

1998; Gibbard 1988). During the consecutive interglaciations and glaciations (Saalian 
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and Weichselian) the southern North Sea floor has been repeatedly submerged and 

emerged and there have been a series of estuarine like environments, at shifting 

locations where N. integer could have survived (Cohen, pers com), provided it was 

able to withstand the less than hospitable conditions that must have reigned in the area 

by then.  

An alternative hypothesis would be that the postglacial recolonisation of 

northern European areas took place from a single highly polymorphic refugial 

population when sea level rose. However, detailed analysis of the mitochondrial COI 

gene, and comprising a larger amount of samples, are largely congruent with the 

present study and may support the hypothesis of recolonisation from multiple refugia 

(see Chapter 4). Our data are also in line with those for fish and invertebrates pointing 

to a glacial refugium in the English Channel or the Southern Bight of the North Sea 

(e.g. polychaetes: Breton et al, 2003; snails: Wilke & Davis, 2000; bivalves 

Luttikhuizen et al, 2003; sand and common goby: Gysels 2003, 2004; salmon: 

Verspoor et al, 1999 and brown trout: Garcia-Marin et al, 1999). Since the 

dominating haplotype observed within the Baltic Sea was the most common Atlantic 

haplotype A, an invasion by this haplotype from the North Sea after opening of the 

Danish Straits 8000 year ago (Björck, 1995) can be suggested.  

The absence of the most common haplotype A and the exclusive presence of 

unique haplotypes in the Guadalquivir sample point to a complete isolation of this 

population for a considerable period of time. The genetic distances between the 

Guadalquivir haplotypes and all other Atlantic haplotypes (ranging from 0.021 to 

0.032 using the Kimura 2-parameter model) seem to fall within the range of 

intraspecific variation when compared with genetic divergence values observed 

among other invertebrate taxa of different taxonomic levels (Rocha-Olivares et al, 

2001) and among vertebrate taxa (Johns & Avise, 1998). When using a general 

mutation rate for crustacean mtDNA COI ranging from 1.4 to 2.6% of nucleotide 

divergence per million years (Knowlton et al, 1993; Patarnello et al, 1996), then the 

time of divergence of the Guadalquivir population corresponds to an estimated 0.78 – 

1.23 million years ago (early Pleistocene). Due to the limited literature available on 

the Pleistocene palaeogeography of the Guadalquivir basin, we have no direct 

evidence for a historical change in coastal topography that could have caused a long-

term isolation of the Guadalquivir N. integer population. Bearing in mind the limited 

sample size, the significant geographic structuring of genetic variation in the 
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mitochondrial cyt b gene of N. integer supports the expectation that low-dispersal 

species are highly structured genetically. Populations of species with brooding 

behaviour tend to be more differentiated than those with a planktonic dispersal stage 

(e.g. Breton et al, 2003; Wares, 2001). In addition to these biological restrictions to 

dispersal, the estuarine habitat of N. integer may also form a barrier to gene flow, 

since estuaries represent spatially discrete habitats that are isolated from each other by 

barriers to dispersal or physiological tolerance (Bilton et al, 2002). Local, genetically 

differentiated populations of typical brackish species have been demonstrated, which 

sometimes may lead to cryptic species complexes (see examples in Cognetti and 

Maltagliati, 2000 and Bilton et al, 2002). However, in order to draw more firm 

conclusions regarding the amount of gene flow, a much larger sample size is needed. 

Preliminary analyses of larger samples (see Chapter 4) confirm the apparent limited 

degree of gene flow between populations of N. integer along the Atlantic coasts of 

Europe. Likewise intriguing, albeit less pronounced, is the genetic differentiation of 

the Gironde sample. Despite the fact that two unique haplotypes were observed, their 

closer relationship to the other Atlantic haplotypes results in a reduction of the among 

population variation component in the AMOVA analysis. The low sample size 

doesn’t allow us to make further inferences and hence additional analyses are needed 

to find out if the Gironde sample is part of a separate glacial refugial population. 
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CONCLUSIONS 

 

Despite the fact that this study is based on a low number of individuals, which 

may result in an inaccurate measurement of molecular diversity values, an interesting 

population genetic differentiation along the distribution range of Neomysis integer 

was observed, with a remarkable genetic break between the Guadalquivir population 

and all other samples. The distribution of the haplotypes is concordant with a 

northward recolonisation from a southern glacial refugium. The presence of a 

haplotype which was so far only found in the English Channel and the North Sea may 

suggest an additional glacial refugium in this area. Alternatively, a single 

recolonisation event from a highly polymorphic population may offer an alternative 

explanation. Obviously, future research of other loci and more individuals per 

sampling site is needed to reach a more detailed view of the genetic structuring and 

the possible postglacial recolonisation routes of the mysid N.  integer. 
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ABSTRACT 

 

The brackish water mysid, Neomysis integer, is one of the most common mysids 

along the coasts of the northeast Atlantic, with a distribution that extends from the 

Baltic Sea to Morocco. It typically dominates the hyperbenthic communities of 

estuaries and brackish water environments where it is believed to play a key role in 

these ecosystems. In the present study the phylogeographic patterns of this low 

dispersal mysid were examined throughout its distribution range. A total of 461 

specimens from 11 sampling sites were analysed by means of single stranded 

conformation polymorphism (SSCP) combined with sequence analysis of a 447 bp 

fragment of the mitochondrial cytochrome c oxidase I (COI) gene. The present study 

corroborates the expectations of the genetic patterns observed in a low dispersal 

species with estuarine habitats. A large heterogeneity was observed between the 

analysed populations (global ΦST = 0.787), as evidenced by the disparate distribution 

of the COI haplotypes.  All populations north of the English Channel shared several 

common haplotypes, while the southern samples consisted solely of unique 

haplotypes. Moreover, a clear genetic break (2.4% sequence divergence) occurred 

between the southernmost Guadalquivir population and all other Atlantic populations. 

Phylogeographic analysis revealed a complex pattern pointing to the existence of 

multiple glacial refugia and suggested multiple past expansion events possibly 

predating the last glacial maximum. The levels of genetic diversity were relatively 

uniform throughout the distribution range, with exception of a decline at the northern 

and southern edge of distribution.  
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INTRODUCTION 

 

As opposed to terrestrial and freshwater studies, only recently there has been a 

growing interest in phylogeographic studies of marine taxa in Europe (e.g. Wilke & 

Pfenninger, 2002; Coyer et al, 2003; Luttikhuizen et al, 2003; Gysels et al, 2003, 

2004; Olsen et al, 2004). Environmental perturbations and the transformation of the 

northern European geography during the Pleistocene glaciations are thought to have 

had a major impact on the phylogeographic patterns in extant species with range 

compression and expansion in function of glacial events (Avise et al, 1998; Taberlet 

et al, 1998; Hewitt, 2000). In addition to these historical changes, current population 

dynamics (like contemporary gene flow), which are related to specific life-history 

traits (e.g. dispersal capacity, existence or absence of pelagic larvae), might also affect 

the distribution of genetic variation. Both historical and contemporary factors have 

their own specific effect and they can either counteract each other and erase historical 

patterns of genetic diversity (e.g. in highly vagile species), or act in similar directions, 

hereby making it possible to detect the historical processes that lead to the present 

genetic patterns (e.g. in species with restricted dispersal capacities).  

Data on terrestrial and freshwater biota provide convincing evidence that the 

southern European regions, in particular the Iberian, Italian peninsula and Balkan 

region served as refugia during glacial events, harbouring the greatest amount of 

genetic diversity (Taberlet et al, 1998; Hewitt, 1999). The postglacial range expansion 

of limited and/or genetically homogenous numbers of colonists, possibly in 

combination with bottlenecks, is probably the cause of the usually lower degree of 

diversity at higher latitudes (Hewitt, 1996, 2000, 2001; Ibrahim et al, 1996). 

However, the picture in marine species is less clear. Indeed, some marine taxa 

including gobies, copepods and seaweed (Edmands, 2001; Coyer et al, 2003; Gysels 

et al, 2004) show a correlation between higher latitude and reduced diversity, while 

others fail to show the expected decline in variation in more northern areas 

(Consuegra et al, 2002; Marko, 2004; Olsen et al, 2004). In addition, 

contemporaneous populations of several species in refugial regions (e.g. the Iberian 

peninsula) might be impoverished due to the post-glacial warming starting from about 

11 500 years BP. This event may have constituted a strong selective force for refugial 

populations resulting in a (southward) decline in genetic diversity (Dahlgren et al, 

2000; Consuegra et al, 2002; Coyer et al, 2003).  
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A second analogy with terrestrial studies could be expected in the location of 

glacial refugia. Several studies indicate that the present distribution of molecular 

variation in western European taxa can be explained by a northward dispersal from a 

southern Iberian refugium (see Taberlet et al, 1998; Hewitt, 1999). Although this 

pattern has been confirmed by several marine taxa along the northeastern Atlantic 

(Garcia-Marin et al, 1999; Consuegra et al, 2002), other studies provide evidence for 

additional ‘northern’ glacial refugia (e.g. Verspoor et al, 1999; Breton et al, 2003; 

Coyer et al, 2003; Luttikhuizen et al, 2003; Gysels et al, 2004).  Hence, populations 

of these species should have survived range compression during glacial periods and 

post-glacial expansions in unglaciated areas. Since the comparison of 

phylogeographic patterns between different species in the same geographic region is a 

potential powerful tool to evaluate alternative biogeographical scenarios (e.g. post-

glacial colonization routes) or the location of glacial refugia (Avise, 2000), 

phylogeographic studies of species with restricted dispersal capacities could be very 

valuable. 

In the present study we examined the phylogeographic structure of the 

brackish water mysid, Neomysis integer (Crustacea, Mysida) along the northeast 

Atlantic coasts. N. integer (Leach, 1814) is one of the most common mysids around 

the northeastern Atlantic coasts (from the Baltic Sea to Morocco) and it is believed to 

be a key species in the marine ecosystems of these regions (Mees et al, 1994; Mees et 

al, 1995; Fockedey & Mees, 1999; Hostens & Mees, 1999). It is a euryhaline and 

eurythermic species that dominates the hyperbenthic fauna of estuarine, brackish 

water environments in western European estuaries (Mees et al, 1995; Cunha et al, 

1999). Apart from evidence of migration over small geographic scales, as vertical dial 

migrations, tidal migration and seasonal migrations within an estuary (Mauchline, 

1980; Mees et al, 1993b), nothing is known about the dispersal capacities of N. 

integer over larger scales, e.g. between neighbouring estuaries, or even over larger 

distances. However, its specific life history traits might suggest that long-range 

dispersal events are probably rare. Like most mysids N. integer is a brooder, and 

hence lacks a planktonic dispersal stage so that the actual dispersal should only take 

place through the movement of juveniles or adults. In addition, N. integer lives in 

discrete brackish water habitats and is rarely encountered in offshore or coastal waters 

(Mauchline, 1971a). An earlier study on the genetic differentiation of N. integer 

throughout its distribution range based on DNA sequences of the mitochondrial 
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cytochrome b gene supports the hypothesis of limited gene flow resulting in the 

genetic differentiation of populations (see Chapter 3). Most striking in that study was 

the genetic break at the southern distribution range of N. integer, pointing to the 

existence of multiple glacial refugia. Although these analyses were based on a very 

limited number of samples, the results strongly suggested that N. integer is a 

promising candidate for elucidating the phylogeographic patterns of low dispersal 

marine invertebrates along the NE Atlantic coasts. 

Therefore the present study was designed to explore in greater detail the 

phylogeographic structure and patterns of molecular diversity and contemporary gene 

flow throughout the whole distribution range of N. integer by analyzing 447 bp of the 

mitochondrial cytochrome c oxidase I gene (COI) of a more extended number of 

specimens (30-60 individuals per sample) from 11 samples with single stranded 

conformation polymorphism (SSCP) analysis (Orita et al, 1989; Sunnucks et al, 2000) 

combined with DNA sequencing. In particular, we wanted to (1) assess and compare 

the levels of genetic diversity throughout the distribution range of N. integer, with 

specific emphasis on the latitudinal trends, (2) reconstruct the most likely historical 

processes that led to the current distribution of mitochondrial haplotypes, and (3) 

estimate the levels of genetic exchange that currently takes place among European 

populations of N. integer. The genetic structure of N. integer was examined by using a 

progression of phylogenetic, demographic and population genetic analyses of mtDNA 

sequence data. Such an approach has proven to be useful in elucidating not only 

geographic structure, but also the evolutionary history producing that structure 

(Althoff & Pellmyr, 2002). 
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MATERIALS AND METHODS 

 

Sampling 

 

A total of 461 specimens 

were collected from 11 locations 

comprising eight estuaries, one 

coastal site (Tvärminne), one low 

salinity lagoon (Kilkeran Lake) and 

one estuary-coastal lagoon system 

(Ria de Aveiro) (Fig. 4.1). This 

sampling scheme covers most of 

the current distribution range of 

Neomysis integer. Samples from 

each site were collected with a 

hand net or a hyperbenthic sledge 

(mesh size 1 mm) and collections 

were made between 1999 and 

2001. After collection, the samples 

were stored in ethanol (70 – 95%) or acetone (Fukatsu, 1999) at 4°C. N. americana 

specimens were collected from the Damariscotta River (Maine, USA).  

 

DNA extraction, PCR, single-stranded conformation analysis and sequencing 

 

DNA was extracted using a modified CTAB protocol (Kocher et al, 1989). 

Mysid tissue of single individuals was crushed using a beadbeater and afterwards 

incubated for minimum 3 h at 60°C in 500 µl CTAB buffer (2% (w/v) CTAB, 1.4M 

NaCl, 0.2% (v/v) mercaptoethanol, 20 mM EDTA, 100 mM Tris/HCl pH 8) with 6 µl 

proteïnase K (1 mg 100 µl-1). After an overnight incubation at 37°C, the DNA was 

extracted with phenol/chloroform/isoamylalcohol (25:24:1 PH 8) and 

chloroform:isoamylalcohol (24:1). Finally, DNA was isopropanol-precipitated and 

rehydrated in 25µl water. A 651 bp fragment of the cytochrome c oxidase subunit I 

gene (COI) was amplified using the universal primers LCO1490 and HCO2198 

(Folmer et al, 1994). The conditions for the COI amplifications were: 10 x PCR 

 
Fig. 4.1: Geographic location of the 
sampling sites of Neomysis integer. Shaded 
area represents the distribution range of N. 
integer. For details on the sampling locations 
and abbreviations see Table 4.1. 
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buffer with (NH4)SO4 included (MBI Fermentas), 2 mM MgCl2, 0.2mM dNTP, 1 µM 

forward and reverse primer and 1.25 units Taq polymerase. The following 

thermocycle profile was used:  denaturation of template DNA at 94°C for 2 min, 

followed by a stepdown PCR (annealing temperature decrease of 1°C per cycle) of 4 

cycles (30s at 94°C, annealing at 59°C for 50 s, extension at 72°C for 90 s), followed 

by 40 cycles of 30 s at 94°C, 50 s at 55°C and 2 min at 72°C, followed by a final 

extension of 5 min at 72°C. PCR products were purified with exonuclease I (10 U µl-1 

; Amersham) and shrimp alkaline phosphatase (1 U µl-1; Amersham). Purified 

products were cycle sequenced using BigDye Terminator Mix (PE Applied 

Biosystems) and the following conditions: 25 cycles of 96°C for 30 s, 50°C for 15 s 

and 60°C for 4 min. Cycle sequencing products were electrophoresed on a Perkin-

Elmer ABI Prism 377 DNA sequencer.  

For the single-strand conformation polymorphism (SSCP) analysis (Orita et al, 

1989) two sets of internal primers were designed within the 651bp COI fragment, 

generating two COI fragments of size < 250 bp. This was done to ensure a high 

mutation detection resolution of the SSCP technique within the COI fragment, as the 

sensitivity of SSCP is generally inversely proportional to the size of the fragment; e.g. 

single base pair differences are resolved 99% of the time for 100-300 bp fragment, 

while > 80% for 400 bp ones (see Sunnucks et al, 2000). The position of both 

fragments within the COI gene was chosen based on the variability observed in a 

small pilot study of 10 COI sequences of 651 bp from different sampling sites. The 

amplification of the two COI fragments (COI-1 and COI-2, 215 bp and 232 bp 

respectively) used the primer sequences: LCO1490 (Folmer et al, 1994) and COIR3 

(5’-GAG GGA AAG CTA TAT CTG GAG C-3’), COIF2 (5’-TTT AGC AGG GGC 

TTC CTC TA-3’) and HCO2198 (Folmer et al, 1994). Conditions for the PCR were 

as previously described, but with an annealing temperature of 56°C instead of 55°C. 

SSCP analysis were performed using 0.5 mm thick nondenaturing polyacrylamide 

gels (250 x 110 mm). The ideal running conditions for the SSCP analysis of both COI 

fragments were assessed by using different conditions (electrophoresis temperature 

and gel composition) and comparing the banding patterns of all gels. An 

electrophoresis at a constant power of 8 W at 5°C for the COI-1 fragment and at 12°C 

for COI-2 for 3.5 h using polyacrylamide gels with T = 12.5% and C = 2% proved to 

give the best resolution. Bands were visualized with a DNA silver staining kit 

(Amersham Biosciences) and scored by their relative mobility. Samples showing 
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mobility differences were sequenced in both directions under the previously described 

conditions. At least two replicates of each haplotype were sequenced, with the 

exception of haplotypes only found in one individual.  

 
Sequence alignment and phylogenetic analysis 

 

In the further phylogenetic and phylogeographic analysis the DNA sequences 

of both COI fragments screened with SSCP (COI-1 and COI-2) were combined, 

producing a COI fragment of 447 bp, in order to enhance the resolution of the 

different statistical methods. Alignment of the sequence data was produced with the 

Clustal X program (Version 1.74, Thompson et al, 1997). When needed, the 

alignment was manually corrected with the program GeneDoc (Version 2.6, Nicholas 

& Nicholas, 1997). Phylogenetic relationships between the haplotype sequences were 

investigated by building a tree with the neighbour joining (NJ), maximum parsimony 

(MP) and maximum likelihood (ML) algorithm in PAUP 4.0b8 (Swofford, 1998). The 

likelihood ratio test in MODELTEST 3.06 (Posada & Crandall, 1998) was employed 

to determine the appropriate substitution model of DNA evolution that best fitted the 

dataset. Sequences of the mysids Neomysis americana (AJ852562), Mysis relicta 

(AY529027), Tenagomysis australis (AF052394), Paramysis kroyeri (AY529036), 

Pseudomma sp. (AY624281) and the euphausiids Euphausia superba (AF177182) 

and Meganyctiphanes norvegicus (AF177191) were added to root the phylogenetic 

tree. Bootstrap values were calculated after 1,000 replications for NJ and MP and 100 

replications for the ML analysis. In addition, a network between the haplotypes was 

constructed to visualize evolution among haplotypes, haplotype frequency and 

geographical representation. This haplotype network was created using a parsimony 

criterion in the program TCS (version 1.13, Clement et al, 2000).  

 



CHAPTER IV – MATERIALS & METHODS 
 

Phylogeography of the mysid Neomysis integer 61

Population and phylogeographic analysis 

 

Nucleotide diversity (π, the mean number of differences between all pairs of 

haplotypes) and haplotype diversity (h, the probability that two randomly chosen 

haplotypes are different in a sample) and its standard deviation (SD) were calculated 

for each population using the program ARLEQUIN 2.0 (Schneider et al, 2000). An 

exact test of population differentiation based on haplotype frequencies (Raymond & 

Rousset, 1995) was used to test the null hypothesis of random distribution of the 

observed haplotypes with respect to sampling location. These analyses where 

performed using 10 000 randomizations with the ARLEQUIN 2.0 program (Schneider 

et al, 2000). 

The geographical differentiation of haplotypes was quantified using a 

hierarchical analysis of variance (AMOVA, Excoffier et al. 1992) using ARLEQUIN 

2.0 program (Schneider et al, 2000). The significance of variance components and Φ-

statistic analogues was tested by multiple (1000) random permutations. Pairwise ΦST 

values were calculated based on Tamura-Nei (1993) genetic distances using the 

gamma value obtained in MODELTEST. Their significance was tested by multiple 

(1000) random permutations. When necessary, corrections for multiple tests were 

applied according to the sequential Bonferroni correction (Rice, 1989). 

Times of divergence of population pairs (T) were estimated based on the mean 

nucleotide divergence between populations corrected for within-group variation (Nei, 

1987) (i.e. net nucleotide divergence corrected for ancestral polymorphisms). Because 

there is no fossil record and no geological or climatic event that would be useful in 

calibrating a clock of mtDNA divergence specifically for mysids, we used a general 

molecular clock for crustacean COI mtDNA of 1.4% to 2.6% of nucleotide 

divergence per million years. These estimates of mutation rates were adopted from 

several calibrations for crustacean taxa thought to have been divided by the Isthmus of 

Panama (e.g. snapping shrimp, Alpheus sp., Knowlton & Weight, 1998) and crab 

species thought to have been subdivided since the trans-Arctic interchange (Sesarama 

sp., Schubart et al, 1998). A similar molecular clock calibration was used in molecular 

divergence studies of krill species (order Euphausiacea) (Patarnello, 1996; Zane et al, 

2000), which are based on 28S rRNA sequences closely related to the Mysida order 

(Jarman et al, 2000). 
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Correlation of pairwise genetic distances over geographical distances for all 

pairs of samples were tested in order to determine if the pattern of genetic 

differentiation among sampling sites could be explained by geographical distance. 

This isolation by distance test was conducted using a regression of genetic distances 

between all sampling locations (ΦST) against minimum coastline distance between all 

pairs of sampling sites. The strength and statistical significance of associations 

between geographical distance and genetic differentiation was tested with reduced 

major axis regression and Mantel permutation tests using the program IBD v1.52 

(Bohonak, 2002). 

 

Nested Clade Analysis 

 

A nested clade analysis (NCA, Templeton et al, 1995, 1998, 2004) was 

performed to test for associations between haplotypes and geography, and aims at 

separating patterns of population history and gene flow. The haplotype network 

obtained with TCS was nested into clades using the nesting rules given in Templeton 

et al (1987) and Crandall (1996). Ambiguities in the haplotype network were resolved 

following the criteria suggested by Crandall & Templeton (1993). Subsequently, an 

exact permutational contingency test was conducted for each clade and a chi-squared 

statistic was calculated from the contingency tables (clades vs. geographical locations) 

by treating sample locations as categorical variables. The statistical significance of the 

clade distance (Dc) and nested clade distance (Dn) was calculated by comparison with 

a null distribution (no geographical association of clades and clade dispersal distances 

are not significantly different from random) derived from 10 000 random 

permutations of clades against sampling locations using the program GEODIS 2.2 

(Posada et al, 2000). The interpretation of the observed distance patterns was done 

using a revised version of the inference key of Templeton (1998), published by 

Templeton (2004). 

 

Historical population dynamics 

 

The distribution of pairwise differences ('mismatch distribution') was 

computed in ARLEQUIN. Mismatch distributions and Rogers’ (1995) parameters of 
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mismatch distribution (τ, θ0, θ1) were assessed by Monte Carlo simulations of 1000 

random samples using the ARLEQUIN 2.0 package. Additionally Tajima’s D 

(Tajima, 1989) and Fu's Fs (Fu, 1997) neutrality test was used to infer the nature of 

sequence evolution (e.g. rapid selection or neutral) and probable historic population 

movements. Significant negative values of Tajima’s D are expected to occur when 

there has been recent population expansion (Slatkin & Hudson, 1991; Fu, 1997; 

Knowles et al, 1999) or a selective sweep (Maruyama & Birky, 1991; Fu, 1997; 

Filatov et al, 2000) and significant negative Fu's Fs values are indicative for an excess 

of rare alleles, which might be caused by a recent population expansion (Fu, 1997). 

When a signature of a recent population expansion was detected, the corresponding 

time of expansion could be estimated using the formula τ = 2uT (Rogers & 

Harpending, 1992), where T is the number of generations since time of expansion, τ is 

the mode of the mismatch distribution and u is the mutation rate for the whole 

sequence (u = 2µk, with µ: mutation rate per nucleotide and k: the total number of 

nucleotides analysed).  
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RESULTS 

 

SSCP and sequencing results 

 

The SSCP technique distinguished 19 haplotypes within the COI-1 fragment 

and 20 haplotypes within the COI-2 fragment. The combined information led to the 

identification of 34 haplotypes among the 461 specimens analysed from 11 samples. 

All the differences observed using SSCP were confirmed by sequencing analysis. 

DNA sequencing detected a total of 35 polymorphic positions (7.8%) among the 34 

different haplotypes. Most polymorphisms were due to single nucleotide changes, and 

constitute 29 transitions and 7 transversions; 20 characters were parsimony-

informative (see Appendix I). Eight nucleotide changes resulted in an amino acid 

change. Pairwise DNA differences between haplotypes ranged from 0.22% (a single 

substitution) to 2.68% (12 base substitutions) nucleotide divergence. 

 
Table 4.1: Geographic location, sample size, number of haplotypes (Nh), diversity 
measures (h: haplotype diversity, π: nucleotide diversity) and percentage of private 
haplotypes (%PH) for the 11 samples of Neomysis integer. 

Sample
Sampling location Code Latitude Longitude Size Nh h (SD) π (SD) %PH

Tvärminne TV 59° 51' N 23° 12' E 41 3 0.0963 (0.0624) 0.00065 (0.00078) 33.3
Vistula VI 54° 21' N 18° 56' E 41 1 0 0 0
Weser WE 53° 25' N 08° 30' E 39 3 0.5263 (0.0688) 0.00534 (0.00330) 0
Ythan YTH 57° 18' N 02° 00' W 39 4 0.5803 (0.0430) 0.00147 (0.00129) 75
Westerschelde WS 51° 25' N 04° 00' E 60 6 0.4689 (0.0652) 0.00335 (0.00227) 50
East Looe EL 50° 24' N 04° 26' W 36 5 0.3048 (0.0970) 0.00194 (0.00155) 80
Kilkeran Lake KILK 51° 33' N 08° 57' W 43 5 0.2957 (0.0875) 0.00078 (0.00087) 100
Seine SEI 48° 26' N 00° 10' E 48 4 0.4193 (0.0810) 0.00329 (0.00225) 25
Gironde GI 45° 33' N 00° 55' E 44 3 0.4894 (0.0500) 0.00472 (0.00298) 100
Ria de Aveiro RdA 40° 41' N 08° 45' W 30 5 0.6115 (0.0510) 0.00272 (0.00198) 100
Guadalquivir GU 36° 55' N 06° 17' W 40 5 0.2359 (0.0880) 0.00128 (0.00118) 100  

 

Seventeen unique haplotypes (50%) were observed (Table 4.1 & 4.2). The 

haplotypes strongly segregated with geographical origin. Only four haplotypes (12%) 

were shared between different sampling sites while the remaining 30 and thus the 

majority of the observed haplotypes (88%) were population-specific. Interestingly the 

shared haplotypes were only observed in sampling locations north of the English 

Channel with exception of the Irish population (KILK), which possessed only private 

haplotypes. The most common haplotype (Df) was observed in 5 different locations 



CHAPTER IV – RESULTS 
 

Phylogeography of the mysid Neomysis integer 65

and was present in 29.2% of the analysed individuals. All sampling sites except two 

(VI and WE) possessed private haplotypes and four locations (KILK, GI, RdA and 

GU) consisted solely of private haplotypes. 
TV VI WE WS YTH SEI EL KILK GI RdA GU TOTAL

Df 39 41 1 42 3 135
Ee 1 25 1 36 63
Ga 36 36
Cc 35 35
Ha 30 30
Fh 20 7 3 29
Aa 28 28
Fg 4 13 17
Fa 16 16
Bb 15 15
Fd 14 14
Id 13 13
Ja 4 4
D'i 2 2
Fj 2 2
Kc 2 2
Fk 2 2
Fl 1 1

Fm 1 1
D'n 1 1
Eo 1 1
Lc 1 1
Mp 1 1
Cq 1 1
Ih 1 1
Gr 1 1
Je 1 1
Ds 1 1
Na 1 1
Ot 1 1
Pa 1 1
Qd 1 1
Ra 1 1
Rh 1 1  

Table 4.2: Distribution of the COI haplotypes (columns) among populations (rows) of 
Neomysis integer. For sampling site abbreviations see Table 4.1. 
 

Intraspecific evolution 

 

Mean nucleotide diversity (π) among all locations was 0.002323, ranging from 

0 to 0.00534 (Table 4.1). Lowest levels of nucleotide diversity were observed in the 

Baltic Sea (VI and TV) and in the Irish population (KILK). Highest levels were 

observed in the Weser estuary. Values of haplotype diversity (h) ranged from 0 to 

0.6115 and had an average of 0.3662. Lowest h values were observed within the 
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Baltic Sea (TV & VI), while haplotype diversity in the Portuguese sample of Aveiro 

(RdA) and the North Sea samples from the Ythan and Weser were almost twice the 

average. No significant correlation was observed between haplotype diversity and 

latitude (P = 0.49).  

 

 
Fig. 4.2: Maximum parsimony consensus tree (519 steps) of the COI haplotypes of 
Neomysis integer obtained after a heuristic search of 100,000 random sequence 
addition replicates followed by tree-bisection-reconnection (TBR) branch swapping 
(CI = 0.6609; RI = 0.6349; RC = 0.4196). For each node the MP, ML and NJ 
bootstrap support is indicated, only bootstrap values > 50% are indicated. 
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The general time-reversible substitution model with a correction for significant 

invariable sites and rate heterogeneity (GTR + I + G) (Rodriguez et al, 1990) proved 

to be the best model fitting the COI data. The transition/transversion ratio (ti/tv), 

proportion of invariable sites (i) and gamma shape parameter (α) were estimated to be 

ti/tv = 2.45, i = 0.2366 and α = 0.5045 respectively. Base frequencies amounted to A 

= 0.3025, C = 0.1438, G = 0.1691, T = 0.3845; and the substitution matrix was [A-C] 

= 1.2112, [A-G] = 5.4729, [A-T] = 1.2653, [C-G] = 1.4337, [C-T] = 7.2169, [G-T] = 

1.0000. Only minor topological differences were found between the NJ, MP and ML 

trees (Fig. 4.2). The low degree of sequence divergence between haplotypes resulted 

in a poorly resolved tree with low bootstrap support. Only one clade, containing all 

haplotypes observed in the Guadalquivir sample was supported by bootstrap values 

above 70%. The Portuguese (RdA) and the Irish (KILK) sample constituted separate 

clusters despite low bootstrap values.  

 

The parsimony network is shown in Fig. 4.3. The center of the network 

consisted of haplotypes observed in the North Sea (YTH) and English Channel (EL & 

SEI). Most haplotypes were relatively closely related to each other, with the exception 

of all haplotypes observed in the Guadalquivir population (Cc, Kc, Lc, Mp, Cq), 

which formed a divergent subgroup, separated with at least six mutational steps from 

the central haplotypes (1.3% of uncorrected genetic divergence). Likewise the 

haplotypes from the Gironde population were more divergent from the central 

haplotypes (0.5 – 0.9% of uncorrected genetic divergence). Other subgroups within 

the haplotype network involved clustering of haplotypes from the same sample, as 

observed for the haplotypes of the Kilkeran Lake and the haplotypes (except 

haplotype Id) of the Portuguese Ria de Aveiro population. 
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Fig 4.3: The 95% plausible parsimony network showing the mutational relationships 
among the COI haplotypes of Neomysis integer. Each line in the network represents a 
single mutational change and haplotypes are represented by a circle. The surface of 
each circle is proportional to its frequency of occurrence and the circles are shaded 
according to their geographic occurrence. Small empty circles indicate missing 
haplotypes. 
 

 

Spatial genetic structure 

 
Statistically significant differences were observed in haplotype frequencies 

among all samples (global test) and among all pairs of samples (P <0.0009 in all 

cases), except the two Baltic samples (P = 0.489). Genetic differentiation between 

sampling locations was assessed by an analysis of molecular variance (AMOVA) 

(Table 4.3). This analysis showed that a significant proportion of the genetic variation 

is partitioned among populations (78.67%). The global ΦST value across all samples 

amounted to 0.7867 (P < 0.001), indicating a significant differentiation between the 

samples. Additional significant geographic structuring was tested by grouping the 

different samples. The Guadalquivir was excluded to avoid distortion of the results 
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because of the large divergence of its haplotypes. When dividing the samples in two 

groups, one group with the samples north of the English Channel (TV, VI, WE, WS, 

YTH, SEI, EL) and one southern group (KILK, GI, RdA), a significant amount of 

between-group variation was observed (ΦCT = 0.2488, P = 0.0078). However, still the 

largest amount of variation was observed at the level among populations within 

groups. If a three group division was used, with one group comprising the Baltic 

samples (VI&TV) and the North Sea Westerschelde (WS) sample, a second group 

with the North Sea and English Channel samples (WE, YTH, SEI and EL) and a third 

group with the southern KILK, GI and RdA samples, a highly significant 

differentiation between groups was observed (ΦCT = 0.4056, P = 0.001) and now the 

among group variance component becomes slightly higher then the within group 

variation (see Table 4.3). Genetic distances between pairs of samples were calculated 

in order to identify those samples that might account for deviation from panmictic 

conditions, pairwise ΦST values are shown in Table 4.4. Virtually all pairwise 

comparisons were significant with the exception of the pairwise genetic distances 

between the WE and SEI samples and between both Baltic samples (VI and TV). 

Highest differentiation was found between the Guadalquivir (GU) and the Vistula 

(VI) population (ΦST = 0.976). Genetic distances within the English Channel, North 

Sea and Baltic Sea ranged from low (ΦST = 0) and moderate values (ΦST = 0.5) 

(comparisons involving geographically closely located samples) to high values (ΦST > 

0.8) (comparisons involving the Baltic and the YTH and EL samples). 
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% Total
Analysis Source of variation variance Fixation indices P
All samples Among populations 78.67 ΦST = 0.7867 < 0.001

Within populations 21.33
 without GU sample Among populations 71.39 ΦST = 0.7139 < 0.001

Within populations 28.61

Two groups (TV, VI, WE, WS, YTH, SEI, EL) (KILK, GI, RdA)
Among groups 24.88 ΦCT = 0.2488 0.0078
Among populations/ 50.43 ΦSC = 0.6713 < 0.001
within groups
Within populations 24.69 ΦST = 0.7531 < 0.001

Three groups (TV, VI) (WE, WS, YTH, SEI, EL) (KILK, GI, RdA)
Among groups 28.55 ΦCT = 0.2855 0.019
Among populations/ 45.47 ΦSC = 0.6363 < 0.001
within groups
Within populations 25.99 ΦST = 0.7401 < 0.001

Three groups (TV, VI, WS) (WE, YTH, SEI, EL) (KILK, GI, RdA)
Among groups 40.56 ΦCT = 0.4056 0.001
Among populations/ 33.87 ΦSC = 0.5697 < 0.001
within groups
Within populations 25.57 ΦST = 0.7442 < 0.001

 

Table 4.3: Results of the hierarchical analysis of molecular variance (AMOVA). (For 
the sample codes see Table 4.1) 

 

 
 

 
 
 

 
 
 
 

 
 
 

 
 

 

Table 4.4: Pair-wise ΦST values among the 11 samples of Neomysis integer. (ns, not 
significant: P > 0.05). 
 

TV VI WE WS YTH SEI EL KILK GI Rda GU
TV  -
VI 0.000ns  -
WE 0.622 0.666  -
WS 0.127 0.166 0.454  -
YTH 0.816 0.874 0.381 0.521 -
SEI 0.778 0.814 0.041ns 0.624 0.517  -
EL 0.882 0.916 0.440 0.726 0.692 0.505 -
KILK 0.949 0.972 0.755 0.830 0.867 0.817 0.885 -
GI 0.806 0.829 0.544 0.710 0.639 0.602 0.649 0.810 -
Rda 0.833 0.874 0.452 0.641 0.457 0.551 0.663 0.790 0.612  -
GU 0.963 0.976 0.842 0.901 0.932 0.879 0.916 0.961 0.871 0.911  -  
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The Mantel test showed a highly significant positive correlation between 

geographical distance and genetic distance (ΦST) among all samples (P = 0.008). This 

indicates an isolation by distance pattern, with geographical distance explaining 

18.8% of the mitochondrial DNA variation found (r = 0.43346). At a smaller 

geographic scale isolation by distance was detected in the samples of the Baltic Sea, 

North Sea and English Channel (r = 0.4572, P = 0.0158), with 21% of the variation in 

genetic differentiation explained by geographic distance. A plot of the genetic 

distance vs. the geographical distance showing the pattern of isolation-by-distance is 

depicted in Fig. 4.4. Even when excluding the outliers from the analysis still a 

significant correlation could be detected (P = 0.0014). 

 

 

 
Fig 4.4: Pairwise genetic distances (ΦST) between the Baltic Sea, North Sea and 
English Channel samples plotted as function of the geographical distance (minimal 
coastline distance) between the samples. The slope had a value of 2.43 × 10−4 and R2 
of 0.209 with 95% confidence intervals for the slope (-8.33 × 10−4, 1.19 × 10−3) and 
R2 (0.00295, 0.997). 
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Nested Clade Analysis 

 

The 34 haplotypes fitted into 17 one-step clades, 8 two-step clades and 3 

three-step clades (Fig. 4.5). The nested contingency analysis detected significant 

associations between haplotypes and geography within 8 nested haplotype clades 

(Table 4.5).  NCA detected signals of contemporary processes such as restricted gene 

flow with isolation by distance (IBD) at lower level nesting groups (1-4 and 1-9). The 

distribution of these 2 one-step clades (1-4 and 1-9) seems to be restricted to the 

English Channel, North Sea and Baltic Sea samples (Fig. 4.6B). IBD was also 

detected at two higher nesting groups (2-7 and 3-2); however in these cases an effect 

of past fragmentation and/or range expansion could not be ruled out due to an 

inadequate sampling scheme (Table 4.5). At higher nesting groups (two-step and 

three-step clades) several historical demographic events, as past population 

fragmentation and range expansion could be inferred. A contiguous range expansion 

from the English Channel throughout the North Sea into the Baltic Sea is inferred for 

clade 2-4, which is restricted to the samples of the English Channel, North Sea and to 

a less extent the Baltic Sea (Fig. 4.6C).  Similarly, the signals of past fragmentation 

and range expansion detected in nested clade 2-3 are caused by the restricted 

distribution of interior clade 1-5 (haplotypes Fa and Fk, found in the YTH sample) 

and the tip clade 1-6 (restricted to the RdA sample). However the polarity of the range 

expansion is rather dubious; the haplotype network suggests an expansion from the 

western North Sea (older interior clade 1-5) into the Portuguese coast (younger tip 

clade 1-6), which is opposed to the general believed expansion from southern to 

northern areas (Hewitt 2000). It should be noted that due to the lack of Iberian 

samples, the effect of long distance colonization cannot be ruled out. This process 

seems not plausible in the case of N. integer due to its presumably low dispersal 

capacities. 
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Fig. 4.5: Haplotype network among COI haplotypes of Neomysis integer with nesting 
design used in the Nested Clade Analysis. Geographical distribution of the 2-step 
clades is indicated. 
 
 
Table 4.5: Nested contingency analysis of geographical associations (*: significant at 
the 5% level) with phylogeographic inferences from the Nested Clade Analysis 
(Templeton, 1998). For the nesting design see Fig. 4.5. 

Clade Chi-square Probability Inference
statistics

1-1 2.4178 0.4210
1-4 57.3481 0.0000* 1-2-3-4-No Restricted gene flow with isolation-by-distance
1-9 96.9841 0.0010* 1-2-11-17-4-No Restricted gene flow with isolation-by-distance
1-13 14.0000 0.0760
2-1 2.2021 1.0000
2-2 6.1714 0.2650
2-3 34.0000 0.0000* 1-2-11-12-13-14-Yes Range expansion, Long distance colonization and/or

Past fragmentation (sampling design inadequate)
2-4 92.6135 0.0000* 1-2-11-12-No Contiguous Range Expansion
2-7 56.0000 0.0000* 1-2-3-5-15-16-18-No Past fragmentation, Range expansion or Isolation by Distance

(inadequate sampling scheme)
3-1 125.1341 0.0000* 1-2-11-12-No Contiguous Range Expansion
3-2 609.6668 0.0000* 1-2-3-4-9-10-No Past fragmentation or Isolation by Distance

(inadequate sampling scheme)
Total 772.3222 0.0000* 1-2-11-13-13-14-Yes Range expansion, Long distance colonization and/or

Past fragmentation (sampling design inadequate)  
 

At the level of the total cladogram the haplotype network shows a grouping 

into three clades (3-1, 3-2 and 3-3) that have a different geographical distribution (Fig. 

4.6D). Clade 3-3 is restricted to the southern GU sample, clade 3-1 seems to have a 

northern distribution, dominating the Baltic and North Sea samples, whereas clade 3-2 
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dominates the more southern samples (RdA, GI, SEI, EL and KILK). Zones of 

geographical overlap of both clades are found in the English Channel (EL and SEI 

samples) and the North Sea (YTH and WE samples). NCA revealed that the pattern at 

the level of the total cladogram might be caused by a range expansion and past 

fragmentation. But again due to the lack of northern Iberian samples and intermediate 

samples between the Portuguese Ria de Aveiro sample and the southern Guadalquivir 

sample, a long distance colonization process might have caused a similar pattern. 

 

 
Fig. 4.6: Geographical distribution of 0-step, 1-step, 2-step and 3-step clades. Dashed 
line indicates the shoreline during the last glacial maximum (18 kya) (redrawn from 
Frenzel et al, 1992). A: distribution of the shared 0-step clades (i.e. haplotypes), the 
coloured shoreline indicates the hypothetical distribution range of a given haplotype, 
arrows indicate range expansion from glacial refugia B: distribution of the 1-step 
clades identified in the NCA (see the nested haplotype network in Fig. 4.5), C: 
distribution of the 2-step clades (arrows indicate putative colonisation routes), C: 
distribution of the 3-step clades. 
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Demographic history 
 

The overall mismatch distribution was clearly multimodal (distribution not 

shown) and hence a fit to the sudden expansion model of Rogers (1995) was 

significantly rejected (P(SSDobs) = 0.04). Likewise, signals of a postglacial population 

expansion could not be detected in the North Sea/English Channel region (P(SSDobs) 

= 0.02). In addition both Tajima’s D and Fu’s Fs values were not significantly 

different from zero, which further supports the hypothesis of a stable population 

structure (Table 4.6). Only the mismatch distributions from the Irish (KILK) and the 

southern Guadalquivir sample seemed to fit the distribution underlying the sudden 

expansion model of Rogers (1995) (P(SSDobs) = 0.46 and P(SSDobs) = 0.07 

respectively). However, the results of the Tajima’s and Fu’s neutrality tests were not 

in all cases congruent with the mismatch distributions, and hence did not always 

support the model of sudden population expansion. In case of the Guadalquivir 

sample, Fu’s Fs value was negative, but nonsignificant, while for the Irish (KILK) 

sample Tajima’s D value was marginally nonsignificant (P = 0.051). Estimations of 

the approximate time of expansion (T) for the samples fitting the model of sudden 

expansion could be calculated based on the mismatch distribution parameter τ and 

using a mutation rate of 1.4 - 2.6% per My for crustacean mitochondrial DNA COI 

(Knowlton & Weight, 1998; Schubart et al, 1998) and a generation time of 

approximately 4 months (Mees et al, 1994). Times of expansion for the Irish KILK 

and the Guadalquivir sample amounted to 14 - 22 kya (late Pleistocene) and 43 - 67.4 

kya (late Pleistocene) respectively. 

 

Table 4.6: Tests of neutrality within the pooled samples of the major geographical 
regions of Neomysis integer. 
 

samples Tajima's D P Fu's  Fs P
All samples -0.3415 0.3940 -5.8146 0.1120
Baltic Sea VI & TV -2.0403 0.0000 -1.7188 0.0950
North Sea WE, WS & YTH 1.0602 0.8760 0.3368 0.6120
English Channel EL & SEI 0.0436 0.6000 -0.0280 0.5310
Ireland KILK -1.4587 0.0510 -3.1766 0.0080
Bay of Biscay GI -0.4632 0.5790 4.8800 0.9750
Portugal RdA -0.0995 0.5130 -0.1123 0.4760
Gulf of Cadiz GU -1.8069 0.0080 -1.8330 0.0800  
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DISCUSSION 

 

The present study of the mtDNA structuring along the distribution range of the 

brackish water mysid Neomysis integer revealed some striking patterns. Firstly, there 

is a clear geographic clustering of the haplotypes, showing a completely different 

picture in the sites north and south of the English Channel. Samples from the areas 

north of the English Channel share several common haplotypes, while the southern 

samples show a high amount of unique haplotypes per sample (see Fig. 4.6A and 

Tables 4.1 & 4.2). Secondly, the haplotypes observed in the southern Iberian 

Guadalquivir sample display a large divergence. Thirdly, the Baltic samples show an 

extremely low level of variability and consist solely of haplotypes that are 

predominant in the adjacent North Sea. Fourthly, no clear correlation between the 

molecular diversity and latitude is observed, except of a lower diversity at both the 

northern and southern edge of the distribution range. 

 

Levels of genetic diversity 

 

Values of haplotype and nucleotide diversity observed for N. integer along the 

NE Atlantic range from 0 to 0.6115 and from 0 to 0.005 respectively. These are 

comparable to values reported for other marine and brackish water invertebrates 

(Bucklin & Wiebe, 1998; Dahlgren et al, 2000; Small & Gosling, 2000; Wilke & 

Davis, 2000; Zane et al, 2000; Wares, 2001; Wares & Cunningham, 2001; Breton, 

2003). The relatively low (< 0.5%) levels of sequence divergence between haplotypes 

within populations are thought to be typical for brackish water species (Bucklin et al, 

1997). In these populations most of the variation is observed between populations 

rather than within populations (Cognetti & Maltagliati, 2000; Bilton et al, 2002; 

Maltagliati, 2002). 

 

A complex phylogeographic pattern in Neomysis integer 

 

The uniqueness of the Guadalquivir population 

 

The Guadalquivir population is clearly distinguished from all the others 

through (1) its low variation compared to the other Iberian sample and (2) its 
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constituting solely of unique and highly divergent haplotypes. Taken together, these 

data point to a long-lasting isolation of this population as was already suggested 

earlier on for N. integer (see Chapter 3). Divergence times are estimated to be 500 – 

700 kya or 320 - 450 kya using respectively a fast (2.6% per My) and slow molecular 

clock (1.66% per My), pointing to a middle-Pleistocene separation. Enhanced levels 

of genetic drift, due to the isolation of this population, could have lowered the levels 

of molecular diversity. 

In addition, the low level of molecular diversity may also be due to the fact 

that this population is on the edge of the species’ distribution. It is well-known that 

diversity declines at the edges of a species’ distributional range, probably because of 

the enhanced selection under more extreme conditions (Lesica & Allendorf, 1995; 

Hewitt, 2000; Coyer et al, 2003; Hoffman & Blouin, 2004). The lower than expected 

densities of N. integer in the Guadalquivir estuary support the hypothesis that the 

habitat may not be optimal for the species (Drake et al, 2002). Alternatively, the 

reduced levels of molecular diversity may simply indicate the declining status of 

many southern populations caused by the post-glacial warming starting from about  

11 500 years ago (Dahlgren et al, 2000; Consuegra et al, 2002; Coyer et al, 2003). 

Hence, the current diversity levels of the Guadalquivir populations may not be 

representative for those surviving in the glacial refugium during the last glacial 

maximum (LGM). 

 

Evidence for multiple glacial refugia along the Atlantic coasts of western Europe and 

Great-Britain? 

 

The Bay of Biscay 

 
The divergence of the haplotypes in the Bay of Biscay population (GI) is 

estimated to have occurred around 170 – 350 or 100 – 220 kya (Holsteinian 

interstadial/ Saalian glaciation) using respectively a slow (1.66%) and fast (2.6%) 

molecular clock, and hence clearly predates the timing of the LGM (18kya). This 

points to a complementary refugium in that area. Although Pleistocene 

paleogeography of this region is lacking, the observed isolation is congruent with a 

previous study of N. integer (see Chapter 3) and with other marine species. 

Luttikhuizen et al (2003) found a significant differentiation of the Gironde population 
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of the bivalve Macoma balthica, which clearly predated the LGM and suggested a 

survival of this species in this area during the last glaciation. Similarly, a significant 

differentiation of the flatfish Pleuronectes platessa (plaice) in the Bay of Biscay was 

reported by Hoarau et al (2004). 

 

The Iberian Peninsula 

 
The high level of diversity in the Ria de Aveiro population apparently supports 

the hypothesis of a glacial refugium along the Iberian coast as suggested for many 

terrestrial and aquatic species (Hewitt, 1996, 1999; Taberlet, 1998). Higher levels of 

molecular diversity are typical for refugial areas (Hewitt, 2000) and is suggestive for 

an older age of this population since older populations are assumed to harbour more 

genetic diversity through persistent accumulation of alleles compared to younger ones 

(Crandall & Templeton, 1993). This hypothesis is also supported by the more central 

position of the common haplotype Id from the Ria de Aveiro sample in the haplotype 

network. However, not a single haplotype of the Ria de Aveiro sample was found in 

any other sampling location. This may indicate that, like the Guadalquivir and 

Gironde populations, the Ria de Aveiro estuary constitutes an isolated population. 

Alternatively, genetic drift and selection could have altered the genetic structure of the 

Iberian refugial population since the last ice age such that the modern populations in 

these areas are not representative of the population structure during the LGM (see 

Consuegra et al, 2002). 

 

The North Sea or the English Channel 

 

The presumably younger, northern populations are predicted to be less 

structured as a result of repeated founder-flush cycles during Pleistocene glaciations 

(Hewitt, 1996). However, our data shows a relatively high heterogeneity of the 

samples in that area (English Channel and North Sea). Moreover, the absence of any 

southern haplotypes, the high proportion of unique haplotypes, the levels of 

divergence between haplotypes of the northern samples, the rejection of a 

demographic expansion in the samples of the English Channel and North Sea, the 

absence of a star-like haplotype network and the detection of an isolation-by-distance 

pattern all reflect a temporally more stable demography and near mutation-drift 
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equilibrium conditions for these samples (Rogers & Harpending, 1992). This is 

suggestive of the presence of a northern refugium where N. integer survived the 

Pleistocene glaciations. Although it is generally accepted that the Pleistocene 

glaciations have dramatically altered the shoreline in northern Europe (see Fig. 4.6 for 

a reconstruction during the LGM) (Lambeck et al, 2002), paleogeographical data from 

several studies have provided evidence for the existence of a large ice lake, an 

extended network of rivers, estuarine-like environments and several small glacial 

lakes in the southern North Sea and English Channel region during the Elsterian (450-

420 kya), Saalian (380-140 kya) and Weichselian (100-18 kya) glaciations (Gibbard, 

1988; Cameron et al, 1992; Törnqvist et al, 2003; Ehler & Gibbard, 2004). Given that 

N. integer is a euryhaline and eurythermal species (Mauchline, 1971a), and provided 

it was able to withstand the lower temperature minima in these areas during glacial 

periods, populations may have survived compression of the distribution range in 

separate ‘northern’ refugia in these ice-free regions. Hence, different populations 

could diverge from each other during following glaciations and were able to retain 

their molecular identity. A similar scenario was suggested in a previous study of N. 

integer (see Chapter 3) and has been proposed as an explanation for the distribution of 

genetic variation in a number of other marine species along the European coasts 

including salmonids, gobies, polychaetes, gastropods, bivalves, and seaweed (Wilke 

& Davis, 2000; Consuegra et al, 2002; Breton et al, 2003; Coyer et al, 2003; Gysels, 

2003; Luttikhuizen et al, 2003; Gysels et al, 2004; Jolly et al, 2005; Provan et al, 

2005). 

 

The British Isles 

 
The high number of private alleles observed in the samples of the British and 

Irish coasts (75% in YTH, 80% in EL and 100% in KILK) is remarkable and 

surprising given that samples from the western European coasts at similar latitudes 

(SEI, WS and WE) possess much less private alleles. The divergent haplotypes 

uniquely observed in the Irish KILK sample suggest a refugium in the Celtic Sea or 

off the Atlantic shelf. The divergence time of the Irish haplotypes suggests that N. 

integer became isolated during the Saalian glacial (120 - 380 kya) and survived the 

subsequent glaciation (Weichselian). A similar isolation of the Irish populations was 

suggested for common goby (Gysels et al, 2004) and brown trout (Hynes et al, 1996). 
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Putative postglacial recolonisation routes along European Atlantic coasts 

 

Throughout continental Europe, a continuous postglacial range expansion is 

assumed for many terrestrial species (Taberlet et al, 1998; Hewitt, 2000). A similar 

expansion has been confirmed for a variety of marine species along the NE Atlantic 

(Garcia-Marin et al, 1999; Consuegra, 2002; Gysels et al, 2004), NW Atlantic (Wares 

& Cunningham, 2001; Wares, 2002) and NE Pacific (Marko 1998, 2004; Dawson 

2001; Hellberg et al, 2001; Hickerson & Ross, 2001; Johnson & Taylor, 2004). 

According to the present data it seems that the southern refugial populations of N. 

integer (e.g. from the Ria de Aveiro estuary) did not participate in the most recent 

range expansion to northern areas after the LGM. In contrast, NCA revealed only at 

higher clade levels evidence of a range expansion from the Iberian coast to northern 

European regions (see Fig. 4.6C, putative range expansion from the Iberian to the 

Irish and northern UK coasts). This could imply that during the Holsteinian or Eemian 

interglacials (400 – 370 and 120 - 100 kya respectively) mysids from a southern 

refugium, located on the Iberian coasts, colonized northern Europe. However, instead 

of being pushed back south during the following glaciations (Saalian and 

Weichselian); some of these populations might have survived the subsequent 

glaciations in northern refugia (see previous discussion). Alternatively, highly 

structured and diverse refugial populations may have inhabited a compressed southern 

distribution range (e.g. on the northern Iberian coasts) during glacial periods. Several 

subsequent postglacial colonization events of northern areas through different routes 

after the LGM may have caused the co-occurrence and/or the disparate distribution of 

different lineages. Although this hypothesis and the ‘northern refugia’ hypothesis are 

not exclusive, we cannot fully discriminate between them due to the lack of mysid 

fossil data and the absence of more northern Iberian and Bay of Biscay samples. 

Clearly, a good fossil record is important in determining the limits of refugial ranges 

(Hewitt, 2004). 

The fact that the Scottish Ythan population does not share any haplotypes with 

the other North Sea samples (WE and WS) points to a colonisation of the North Sea 

from different refugia and in different phases. More than half of the analysed 

specimens of the Ythan estuary possessed the haplotype Fh, which is also common in 

English Channel, suggesting a colonisation of the eastern UK and the English Channel 

coasts from the same refugial population (see Fig. 4.6A). Remarkably, it seems that 
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this haplotype was not able to undertake a northward range expansion along the 

eastern North Sea coasts and within the Baltic Sea. On the other hand, the high 

proportion of unique haplotypes (75%) in an appreciable frequency (48.7%) within 

the Ythan estuary may be indicative of a colonisation from another refugium. 

Similarly a very high proportion of unique haplotypes (91%) was observed in the 

southern UK sample of East Looe. Hence, the northern, northeastern, and southern 

UK coasts may be zones of secondary contact between different mitochondrial 

lineages expanding from separate glacial refugia. In contrast, the coasts of the 

northern European continent and the Baltic Sea seem to be colonized by the same 

gene pool expanding from a glacial refugium probably located in the southern North 

Sea or English Channel (see Fig. 4.6A and C). 

 

Latitudinal trends of genetic diversity 

 

A gradient of declining genetic diversity from south to north of species in 

continental Europe and North America has been well established (Hewitt, 1996, 2000, 

2004; Avise, 2000). In the present study the highest level of molecular diversity was 

observed in the southern (Portuguese) sample of the Ria de Aveiro (h=0.612), while 

the northernmost samples (Baltic Sea) showed much less diversity (h=0.096). 

However, no clear gradient in molecular diversity was observed for the samples in-

between, considering that the average haplotype diversity of the North Sea samples 

was only slightly lower than in Ria de Aveiro (see Table 4.1). Whereas founder events 

may be the explanation for the low levels of genetic diversity in the Baltic Sea, the 

surprisingly high levels of diversity in the English Channel and the North Sea require 

another explanation. For example, high levels of genetic diversity at northern 

locations could be the result of a wholesale range shift caused by the extensive rapid 

dispersal, as has been suggested for the seagrass Zostera marina (Olsen et al, 2004). 

However, a similar mechanism seems unlikely for N. integer due to its discrete 

estuarine habitats and its lack of a dispersal stage, which might be necessary for an 

extensive rapid post-glacial colonization of northern areas. Alternatively, a very slow 

colonization process might be more plausible for N. integer. Computer simulations 

have shown that a slow post-glacial colonization (‘phalanx’ or diffusive expansions) 

tends to retain the levels of genetic diversity (Nichols & Hewitt, 1994; Ibrahim et al, 

1996). This slow process involves a high proportion of individuals dispersing over 
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short distances in a continuous front, a pattern that would be expected in a strictly 

estuarine species as N. integer. Hence, the subsequent range expansion does not 

involve a subsampling of the genetic diversity of source populations through founder 

events and the effective population sizes remain much larger then in the case of a fast 

pioneer colonization process. As a consequence new populations will maintain the 

genetic diversity of the original population (Nichols & Hewitt, 1994). Additional 

evidence for this slow colonization process in N. integer are the rejection of a 

demographic expansion and the detection of an isolation-by-distance pattern which is 

suggestive for a temporally more stable population structure.  

Species-specific attributes such as colonizing ability (related to dispersal 

capacities and/or physiological tolerance) may largely influence the general prediction 

of declining diversity with increasing latitude (Taberlet, 1998). Furthermore, 

migration behaviour of species during interglacial periods and the presence of more 

northern refugia may have blurred this pattern (Petit, 2003). Indeed, the admixture of 

divergent lineages colonizing northern areas from separate refugia may also be a large 

cause of the higher genetic diversity at intermediate latitudes. This has been observed 

for other marine taxa (Consuegra et al, 2002; Coyer et al, 2003) and in the case of N. 

integer the North Sea area may be a secondary contact zone between haplotypes from 

different refugia (see discussion above). 

 

Contemporary gene flow and Isolation by Distance 

 

The limited dispersal capacity of N. integer combined with the estuarine 

habitat, imply a reduced genetic neighbourhood and strong population differentiation. 

However, during occasional and stochastic events, such as exceptional rainfalls or 

floods, very low gene flow might occur between proximate estuaries by plumes of 

floodwater discharge that extend out to sea (see hydrodynamical model of Lacroix et 

al (2004) in the southern North Sea). This mechanism has been observed in several 

estuarine species (Maltagliati, 2002; Burridge et al, 2004). Low densities of N. integer 

(year average of 12 ind. 100 m-2) have been reported in the surf zone hyperbenthos of 

Belgian sandy beaches (Beyst et al, 2001), especially during winter months, when 

floodwater discharge was higher and the salinity tolerance of N. integer increased 

with lower temperatures (Vlasblom & Elgershuizen, 1977; Kinne, 1955). 
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The present study corroborates these expectations. The high component of 

genetic variation attributed to among-population differences detected in the AMOVA 

(78.67%, see Table 4.3) may reflect these dispersal-limiting life-history traits. Also 

the pairwise ΦST values were in general relatively high indicating restricted gene flow. 

The majority of the comparisons revealed a pairwise ΦST value > 0.5 or even > 0.8. 

Pairwise ΦST values of the southern Iberian Guadalquivir population attained almost 

1, which corresponds to a reproductive isolation of this population. Only in the case of 

both Baltic samples and the North Sea samples from the Seine and Weser estuaries a 

non-significant pairwise ΦST value was observed. Homogeneity of the Baltic samples 

could be caused be the recent colonization of the Baltic (last 8000 years) resulting in a 

migration-drift balance that has not yet attained equilibrium. Alternatively, high rates 

of gene flow within the Baltic Sea could be linked with the specific environmental 

characteristics of the Baltic Sea. The water in the Baltic Sea is brackish with an 

average salinity lower than 10 PSU, this could result in a higher connectivity between 

suitable habitats for N. integer leading to higher rates of gene flow within the Baltic. 

In addition, the inference of restricted gene flow at different levels in the NCA 

is also consistent with high levels of population subdivision (Table 4.5). Surprisingly, 

two clades analysed in the NCA suggested long-distance dispersal among geographic 

regions as one of the possible inferences. It appears more likely to us that this 

inference is due to the inadequate sampling scheme, rather than a biological reality. 

Finally, the detection of an isolation-by-distance pattern, i.e. the decrease of genetic 

correlation with increasing geographic distance (Wright, 1943), provides further 

evidence for the restricted contemporary gene flow between adjacent estuaries, 

consistent with the one-dimensional stepping stone model of Kimura & Weiss (1964). 

This type of metapopulation structure has been observed in several other estuarine and 

brackish water species with disjunct distributions (e.g. Maltagliati, 1999; Burridge et 

al, 2004). It implies that the pattern of population divergence is maintained by very 

limited gene flow between adjacent populations and that genetic drift is primarily 

influencing the levels of genetic variability within populations (Maltagliati, 1999). 
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CONCLUSIONS 

 

The present study of mitochondrial COI variation in populations of the mysid 

Neomysis integer revealed a significant differentiation throughout its distribution 

range with a complex phylogeographic structure. Despite the extensive population 

surveys across the whole distribution range, the historical dynamics of N. integer 

along the NE Atlantic coasts remains largely speculative. The levels of nucleotide 

divergence between the mitochondrial lineages is suggestive for a pre-LGM 

differentiation, even when taking into account a large error on the calibration of the 

molecular clock. Moreover, the heterogeneous distribution of the haplotypes in 

northern Europe points to a colonisation of these areas prior to the last glaciation and 

a survival in several northern refugia. This contradicts the general expectations 

derived from to current paleoclimatological and -oceanographic models. Although 

supported by a previous study of N. integer and some other marine species, additional 

analyses of samples from ‘critical’ areas such as the northern Iberian Peninsula, Bay 

of Biscay and coasts of Brittany may be useful the validate the current hypothesis. 

Likewise, additional analyses of unlinked nuclear loci might be needed since the 

genetic pattern observed at a single (mitochondrial) locus represents just one 

realization of an evolutionary process with a large stochastic component (Maddison, 

1997; Nichols, 2001). Only then a distinction can be made between the genetic 

patterns generated by selective sweeps or the neutral variation shaped by random 

genetic drift and gene flow (Mishmar et al, 2003; Ballard & Whitlock, 2004).  
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APPENDIX I: Variable nucleotide positions of the COI haplotypes observed in 
Neomysis integer with indication of the EMBL accession numbers of the haplotypes. 
The first letter of each compound haplotype indicates the COI-1 fragment, and the 
second corresponds to the COI-2 fragment. An asterisk at a nucleotide indicates a 
substitution resulting in an amino acid change. 
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ABSTRACT 

 

The phylogeographic patterns among populations of Mesopodopsis slabberi 

(Crustacea, Mysida), an ecological important mysid species of marine and estuarine 

habitats, were analysed by means of DNA sequencing of a 458 bp fragment of the 

mitochondrial cytochrome c oxidase subunit I (COI) gene and a 487 bp fragment of 

mitochondrial 16S ribosomal RNA gene. Samples of M. slabberi collected from five 

Atlantic and two Mediterranean populations were investigated. Very high levels of 

within-population molecular diversity were observed in all samples (mean h = 0.807 

and π = 0.0083), with exception of the Mediterranean Ebro sample which contained 

just one haplotype. Differentiation among populations was high (ΦST = 0.9115), and a 

clear phylogeographic break was observed between the Atlantic and Mediterranean 

populations. Moreover, a strong differentiation was detected between both locations 

in the Mediterranean basin (Alicante and Ebro delta), while two divergent lineages 

occurred in sympatry within the Atlantic Mondego sample. The high congruence 

between both the COI and 16S rRNA sequence data, the reciprocal monophyly of the 

different mitochondrial clades and the levels of nucleotide divergence between them 

suggest the presence of a complex of cryptic species. Estimations of divergence time 

between the different mitochondrial lineages indicate that a split occurred during the 

late Miocene/ early Pliocene, which could be concordant with sea-level changes 

within the Mediterranean region during that time. However within the Mediterranean, 

the potential of divergence through ecological diversification cannot be ruled out. The 

present phylogeographic patterns within the mysid M. slabberi are compared with 

other marine species with an Atlanto-Mediterranean distribution. 
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INTRODUCTION 

 

 Mesopodopsis slabberi van Beneden, 1861 is one of the most common mysid 

species (Crustacea, Mysida) along the European coasts. It tolerates a wide range of 

salinities (1.3 – 43 psu) and is therefore dominantly observed in the surf zone 

hyperbenthos of temperate beaches (Beyst et al, 2001), coastal zones (Dewicke et al, 

2003) as well as estuaries (Gomoiu, 1978; Greenwood et al, 1989; Moffat & Jones, 

1993; Mees et al, 1995). As prey for numerous species of fish (Greenwood et al, 

1989; Hostens & Mees, 1999) M. slabberi is believed to be an important part of the 

food web in these ecosystems and is likely a key species regarding trophic interactions 

(Azeiteiro et al, 1999). Moreover, it has recently been proposed as a potential test 

organism for ecotoxicological research (Sardo et al, 2005). Seasonal variation in 

salinity preferences of M. slabberi has been described. During summer it prefers 

marine and metahaline conditions, while during the rainy season or winter it is more 

abundant in brackish conditions (Tattersall & Tattersall, 1951; Greenwood et al, 1989; 

Webb & Wooldridge, 1990; Wittmann, 1992; Azeiteiro et al, 1999). In addition, these 

seasonal migrations might also be triggered by changes in temperature, since a 

migration to deeper waters with decreasing temperature has been observed 

(Mauchline, 1980; Beyst et al, 2001; Dewicke, 2001). Diel migratory movements are 

also characteristic for M. slabberi. During daytime it is typically hyperbenthic, 

gathering in large and dense swarms or schools close to the substrate. At night or in 

turbid waters it becomes planktonic and disperses between bottom and surface waters 

(Wittman, 1992). However, little is known on long-range dispersal. M. slabberi might 

have restricted dispersal capacities since it possesses a brood pouch (marsupium) and 

hence lacks a planktonic dispersal stage. 

M. slabberi has a wide geographical distribution. It was thought to be a 

monomorphic cosmopolitan species found in a wide area extending from the Baltic 

Sea, and the coasts of Europe, to the Mediterranean Sea, the Black Sea and south-

eastern Africa (Tattersall & Tattersall, 1951; Pillai, 1968). However, the taxonomy of 

the genus Mesopdopsis Czerniavsky, and in particular of the species M. slabberi, has 

been a matter of controversy (see Bacescu, 1940; Tattersal & Tattersall, 1951; Pillai, 

1968). After the most recent revision of the genus given by Wittmann (1992) based on 

morphogeographic variations, the formerly accepted cosmopolitan M. slabberi was 

split into the South African M. wooldridgei, the west African M. tropicalis, the 
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Mediterranean M. aegyptia and the nominal form from the NE Atlantic, 

Mediterranean and Black Sea. Variation within species of the genus Mesopodopsis, 

and in mysids in general, have not been profoundly studied. Wittmann (1992) 

reported small and statistically overlapping morphologic differences between Atlantic, 

Mediterranean and Black Sea populations of M. slabberi. The lack of morphological 

diversification or the confounding effects of high phenotypic plasticity in marine 

invertebrates has often hampered the assessment of biodiversity by using traditional 

morphological methods (e.g. Lee, 2000; Müller, 2000; Pfenninger et al, 2003; Witt et 

al, 2003). The advent of molecular and biochemical methods last decades has 

revealed a substantial amount of ‘hidden’ diversity within morphologically 

delimitated species. Broad geographical surveys of genetic variation within marine 

species, and in particular invertebrates, have led to the recognition of discrete 

evolutionary units, ranging from genetically divergent populations to cryptic species 

complexes (Knowlton, 1993, 2000). Within crustaceans genetic analyses of species 

boundaries have demonstrated surprisingly large genetic differences between cryptic 

species given their morphological similarity (e.g. Bucklin et al, 1995; Knowlton & 

Weight, 1998; Lee, 2000). The identification of cryptic species may have large 

consequences in the understanding of ecological patterns since cryptic species have 

independent population dynamics and may interact differently with other species and 

their environment (Knowlton, 1993, 2000). 

In the present study the patterns of genetic differentiation of Atlantic and 

Mediterranean populations of the mysid M. slabberi were examined by means of 

DNA analyses of the mitochondrial cytochrome c oxidase subunit I (COI) and 16S 

rRNA (16S) genes. Owing to the relative large distribution range of M. slabberi and 

the fact that gene flow must be somewhat restricted, due to the lack of planktonic 

larvae, considerable genetic differentiation between populations and possibly the 

occurrence of cryptic species can be expected. In addition, the Atlantic-Mediterranean 

distribution of M. slabberi may be of special interest since this biogeographical 

transition is considered to have caused a strong genetic differentiation in a wide 

variety of marine taxa (e.g. Borsa et al, 1997b; Duran et al, 2004a, b; Peijnenburg et 

al, 2004). Lowered sea-level during the Quaternary glaciations, resulting in a 

significant restriction of gene flow between the Atlantic and Mediterranean basin, in 

combination with low levels of contemporary gene flow through the Straits of 

Gibraltar, is thought to have played a major role in the divergence between 
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populations of both basins. However, a recent study has shown that differences in the 

sensitivity to barriers or selective gradients, differences in effective population size 

and other ecological and/or demographical factors may have influenced the degree of 

Atlantic-Mediterranean divergence as well, even between closely related species with 

comparable dispersal capacities (Bargelloni et al, 2003). Since research has focused 

mainly on commercially important species, information on ecological important 

invertebrate species remains scarce. Hence, the present study may largely contribute 

to the knowledge of genetic differentiation between Atlantic and Mediterranean 

populations of invertebrate key species. 

The aim of this study is to examine geographic patterns of genetic variation at 

different spatial scales, i.e. at a meso-geographic scale (50-400 km), at a 

macrogeographic scale within the Atlantic and Mediterranean basin (> 1000s km) and 

across across the Atlantic-Mediterranean biogeographic boundary. In addition, the 

time scales, isolation dynamics and historical demography involved in generating the 

intraspecific mitochondrial structure are assessed. Finally, the Atlantic-Mediterranean 

subdivision of M. slabberi populations is compared with those of other marine 

species. 
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MATERIALS & METHODS 

 

Sampling 

 

Specimens of Mesopodopsis slabberi were collected from 7 European 

locations (Fig. 5.1), comprising five northeast Atlantic estuaries, one Mediterranean 

estuary and one Mediterranean coastal site (Alicante), covering a significant range of 

the Atlantic and western Mediterranean distribution of the species’ distribution.  

Specimens of M. wooldridgei were collected from the Gamtoos estuary (South 

Africa). Samples from each estuary were collected with a hyperbenthic sledge or a 

hand net (mesh size 1 mm). After collection, the samples were stored in ethanol (70 – 

95%) or acetone at 4°C.  

 

 

 
 
Fig. 5.1: Map of Europe showing the sample locations of Mesopodopsis slabberi. 
Shading represents the distribution range of M. slabberi. See Table 5.1 for sampling 
site codes. 
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DNA isolation, PCR amplification, and DNA sequencing 
 

DNA was extracted using a modified CTAB protocol (Kocher et al, 1989). 

Mysid tissue was crushed using a beadbeater and afterwards incubated for minimum 3 

hours at 60°C in 500 µl CTAB with 6 µl proteinase K (1 mg 100 µl-1). After an 

overnight incubation at 37°C, the DNA was purified with a standard 

phenol/chloroform extraction protocol using phenol/chloroform/isoamylalcohol 

(25:24:1 PH 8) and chloroform:isoamylalcohol (24:1). Finally, DNA was isopropanol-

precipitated and rehydrated in 25 µl bidi. A 651 bp fragment of the mitochondrial 

cytochrome c oxidase subunit I gene (COI) was amplified by polymerase chain 

reaction (PCR) using the universal primers LCO1490 and HCO2198 (Folmer et al, 

1994). The conditions for the COI amplifications were as described in Chapter 4. A 

small aliquot (5 µl) of each amplification was loaded on a 1 % agarose gel, stained 

with ethidium bromide, and visualized under UV light. PCR products were purified 

with exonuclease I (10 U µl-1; Amersham) and shrimp alkaline phosphatase (1 U µl-1; 

Amersham). Purified products (forward and reverse) were cycle sequenced using 

BigDye Terminator Mix (PE Applied Biosystems) and following conditions: 25 

cycles of 96°C for 30 s, 50°C for 15 s and 60°C for 4 min. Cycle sequencing products 

were electrophoresed on a Perkin-Elmer ABI Prism 377 DNA sequencer. Because of 

the poor amplification success of the universal COI primers LCO1490 and HCO2198 

(Folmer et al, 1994), one set of species specific internal COI primers (COMSF 5’-

GTA CTT TGC TTT TGG AGC CTG-3’ and COMSR 5’-AGG TGC TGG TAT 

AGA ATA GGG-3’) were designed. Conditions for the PCR were the same as for the 

universal primers, except for the annealing temperature which was 54°C. 

After initial phylogenetic analysis (see below), three to four individuals for 

each clade inferred with COI sequences were chosen for additional analysis with 

partial mitochondrial 16S ribosomal RNA sequences. The 16S fragment was 

amplified using the primers 16Sar5’ (5’-CGC CTG TTT ATC AAA AAC AT-3’) and 

16Sbr3’ (5’-CCG GTY TGA ACT CAG ATC AYG T-3’) (Palumbi et al, 1991) and 

under the following thermocycle profile: initial denaturation at 94°C for 2 min, 

followed by 40 cycles (94°C for 30 s, 48°C for 90 s and 72°C for 2 min) and final 

extension of 5 min at 72°C. Amplified 16S fragments were sequenced as described 

above. Identities of all sequences were confirmed with BLAST searches in 

GENBANK and were thereafter deposited in GENBANK. 
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Data analysis 

 

Sequences were aligned using Clustal X (Version 1.74, Thompson et al, 1997) 

followed by manual adjustment. Gaps resulting from the alignment (indels) were 

treated as missing data. Phylogenetic relationships were estimated separately for the 

two datasets (COI and 16S rRNA) with PAUP* 4.0b10 (Swofford, 1998) using the 

neighbour joining (NJ), maximum parsimony (MP) and maximum likelihood (ML) 

method of phylogenetic inference. Sequences of the species Neomysis integer and M. 

wooldridgei were used as outgroup. The appropriate best-fit substitution model of 

DNA evolution was determined by a likelihood ratio test implemented in 

MODELTEST 3.06 (Posada & Crandall, 1998). Parsimony analysis was performed by 

heuristic searches under TBR branch swapping and 10 000 random taxon addition 

replicates. Maximum likelihood analyses were also run in PAUP, using the model and 

parameters selected by MODELTEST through neighbour-joining or heuristic 

searches. Robustness of the resulting phylogenetic trees was tested by bootstrapping 

(Felsenstein, 1985), with 1000 replications for the NJ and MP analyses and 100 

replications for the ML analysis. Each gene was analysed independently. In addition, 

a network between the COI haplotypes was constructed using the minimum spanning 

tree algorithm (MST) (Excoffier et al, 1992) implemented in ARLEQUIN 2.0 

(Schneider et al, 2000). 

Population genetic statistics were estimated for the COI dataset using ARLEQUIN 

2.0 (Schneider et al, 2000). Standard diversity values as haplotype diversity (h; Nei, 

1987) and nucleotide diversity (π; Nei, 1987) were calculated for each sample. A 

hierarchical analysis of molecular variance (AMOVA, Excoffier et al, 1992) was 

performed in order to quantify the geographical differentiation of haplotypes. In 

addition, pairwise genetic divergences between populations were estimated using the 

fixation index φST (Excoffier et al, 1992). Significance of variance components and 

pairwise population comparisons was tested by 10 000 permutations. Mismatch 

distributions, which represent the frequency distribution of pairwise difference among 

haplotypes in a sample, were analysed to further explore the historical demography of 

the populations and the species (Slatkin & Hudson, 1991; Rogers & Harpending, 

1992; Schneider & Excoffier, 1999). A fit of the observed mismatch distribution to 

the model of a sudden population expansion was calculated by quantifying the sum of 
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squared deviations (SSD) between the observed and simulated distributions on one 

hand and the expected distribution on the other. This distribution is usually unimodal 

for lineages that experienced a recent bottleneck or population expansion, and 

multimodal for a lineage whose population is in demographic equilibrium or is 

subdivided into several units. Rogers’ (1995) parameters of mismatch distribution (τ, 

θ0, θ1) were assessed by Monte Carlo simulations of 1000 random samples. 

Additionally Tajima's D statistic (Tajima, 1989) and Fu's Fs test (Fu, 1997) for 

selective neutrality were calculated. For neutral markers significant negative values 

can be expected in case of a population expansion (Knowles et al, 1999). All analyses 

were performed using the ARLEQUIN 2.0 package. Isolation-by-distance was 

evaluated by plotting pairwise genetic distances over geographical distances for all 

pairs of samples. The mean sequence divergence between samples corrected for 

within-sample divergence (dA) was used as genetic distance measure. dA was 

calculated as dA = Pxy – (Px + Py)/2, where Pxy is the mean sequence divergence 

between populations, and Px and Py are the mean sequence divergence within 

population x and y (Nei & Li, 1979). Geographical distance was calculated as the 

shoreline distance between sites. The strength and statistical significance of 

associations between geographical distance (calculated as minimal shore-line 

distance) and genetic differentiation was tested with reduced major axis regression 

and Mantel permutation tests using the program IBD v1.52 (Bohonak, 2002).



CHAPTER V – RESULTS 
 

Genetic differentiation within the mysid Mesopodopsis slabberi 96 

RESULTS 

 

Sequence variation 

 

 A fragment of 458 bp from the mitochondrial COI gene was obtained for 101 

individuals of the mysid Mesopodopsis slabberi from five Atlantic and two 

Mediterranean locations (Table 5.1 and Fig. 5.1). A total of 148 variable sites (32%) 

were detected, of which 124 were parsimony informative (see Appendix 1). No indels 

were observed. Most substitutions involved transitions, with a transition/transversion 

ratio amounting to 5.25. Changes at the third codon position were more then six times 

more common then first codon changes (86% and 14% respectively), while 

substitutions at the second codon position were non-existent. Only eight substitutions 

caused a replacement mutation resulting in an amino acid substitution (see Appendix 

1). The mutation rate among sites along the COI fragment of M. slabberi was 

heterogeneous yielding a low value for the gamma shape parameter, alpha (α = 

0.898). The 101 individual sequences yielded a total of 79 different haplotypes of 

which the majority was only represented once, resulting in a very high haplotype 

diversity (h= 0.9835 ± 0.0061). Pairwise differences between haplotypes ranged from 

0.21% (a single substitution) to 19.43% nucleotide divergence (89 substitutions). 

 

Table 5.1: Geographical location and sampling date of the different sampling 
locations. The number of individuals analyzed per sampling location for each 
molecular marker are specified. 
 

Sampling site Code Latitude Longitude Sampling date COI 16S
Westerschelde (Atl) WS 51° 25' N 4° 0' E Aug 2001 25 3
Seine (Atl) SEI 48° 26' N 0° 10' E May 2001 19
Mondego (Atl) MO 40° 09' N 8° 49' W Jul 2000 10 6
Ria de Aveiro (Atl) RdA 40° 41' N 8° 45' W Jun 2002 16
Guadalquivir (Atl) GU 36° 55' N 6° 17' W May 2001 18 3
Alicante (Med) ALI 38° 18' N 0° 27' W Dec 2003 8 3
Ebro (Med) EB 40° 43' N 0° 54' E Apr 2002 7 3  

 

 The analysis of the 16S rRNA fragment yielded a fragment of 487 bp. With 

inclusion of the congeneric species M. wooldridgei, a total of 64 variable sites (13%) 

were detected, of which 42 were parsimony informative, defining 13 distinct 
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haplotypes (see Appendix 2). The transition/transversion amounted to 3.63. Three 

indels were observed, of which two were specific to M. wooldridgei and the third 

deletion was specific to the haplotypes of the Mediterranean Alicante (ALI) 

population. Pairwise differences between haplotypes ranged from 0.21% (a single 

substitution) to 6.16% nucleotide divergence (30 substitutions). 

 

Phylogenetic relationships 

 

 The hierarchical likelihood ratio test and the Akaike Information Criterion 

(AIC) test performed with MODELTEST 3.06 (Posada & Crandall, 1998) indicated 

the the transversion model (TVM) with correction for invariable sites (I) and rate 

heterogeneity (G) and TVM + G as the appropriate nucleotide substitution model for 

the COI and 16S dataset respectively. For the COI dataset the proportion of invariable 

sites (i) and the gamma shape parameter (α) were 0.3724and 0.6187 respectively. The 

base frequencies were estimated to be A = 0.3000, C = 0.1442, G = 0.1673, T = 

0.3886. In case of the 16S dataset the model parameters were: α = 0.7757 and the 

base frequencies A = 0.3424, C = 0.1513, G = 0.1604 and T = 0.3459. 

 

mitochondrial COI gene 

 

 Phylogenetic analysis of the mtCOI sequences under the parsimony criterion 

yielded 36 most parsimonious trees of 895 steps (Consistency index (CI) = 0.4737, 

Homoplasy index (HI) = 0.5263, Retention index (RI) = 0.7354). The bootstrap 50% 

majority-rule consensus tree is shown in Fig. 5.2. The maximum likelihood and 

distance (neighbour-joining) heuristic search resulted in a tree nearly identical to the 

MP topology. The (single) most likely tree had a likelihood of -ln L = 4369.34396. 

Bootstrap support for the NJ and ML tree are indicated on the consensus MP tree (see 

Fig. 5.2). The phylogenetic tree was characterised by four major clades which all had 

moderate to relatively high bootstrap support. The different clades showed a clear 

geographic structuring. A first, large, clade contained the majority of the Atlantic 

haplotypes (hereafter called the ‘Atlantic clade’). Some degree of substructuring was 

apparent, like the existence of a small subclade containing Portuguese haplotypes 

(Mondego & Ria de Aveiro), however most nodes lacked a relevant bootstrap support. 



CHAPTER V – RESULTS 
 

Genetic differentiation within the mysid Mesopodopsis slabberi 98 

A second highly supported clade included four haplotypes of the Portuguese Mondego 

sample. The two divergent sympatrical clades in the Mondego (MO) sample is 

remarkable, and therefore the codes MO-A and MO-B will be used in the future 

analyses to refer to the Mondego haplotypes belonging to the Atlantic clade and 

belonging to this second divergent clade respectively. A third clade contained the 

single haplotype found in the Mediterranean Ebro sample (‘MEDIT 1 clade’). And 

finally, a fourth clade included all haplotypes of the Mediterranean Alicante sample 

(‘MEDIT 2 clade’). 

 
 
Fig. 5.2: Maximum parsimony consensus tree (895 steps) of the mitochondrial COI 
haplotypes of Mesopodopsis slabberi obtained after a heuristic search of 1,000 
random sequence addition replicates. For each node the MP, ML and NJ bootstrap 
support is indicated, for clearness only bootstrap values > 50% are indicated.  = 
Westerschelde,  = Seine,  = Mondego,  = Ria de Aveiro,  = Guadalquivir,  
= Alicante,  = Ebro. 
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This phylogeographic structure of M. slabberi was also highly supported by 

the minimum spanning haplotype network (Fig. 5.3). The two haplotypes that were 

common to the Westerschelde and Seine samples (H9 and H15) had a central position 

in the network. All other haplotypes of the Westerschelde and Seine samples were 

more or less related to these central haplotypes (uncorrected sequence divergence 

ranging from 0.22 – 1.09%) generating a star-like phylogeny. The majority of the 

haplotypes belonging to the Iberian Guadalquivir sample were also related to the 

central haplotype H9, albeit more divergently (1.09 – 2.4%). The haplotypes of the 

Portuguese Ria de Aveiro and Mondego samples formed a subgroup with a minimal 

uncorrected sequence divergence of 2.18% between the central haplotype H9 and this 

subgroup. The three other highly divergent subgroups within the network correspond 

to the ‘MO-B clade’, ‘MEDIT 1’ and ‘MEDIT 2’ clades. Average sequence 

divergence within and between the major clades are listed in Table 5.2. The deepest 

split was observed between both Mediterranean clades (MEDIT 1 and MEDIT 2) and 

the Atlantic clade, with an average net divergence (i.e. sequence divergence corrected 

for ancestral polymorphism according to Nei & Li [1979]) of 16.31%. However, net 

divergences between both Mediterranean clades (14.93%), between the MEDIT 2 and 

MO-B clades (15.53%) and between the Atlantic and MO-B clades (14.63%) fell in a 

similar range. The split between the MO-B and MEDIT 1 clades seemed to be 

younger (net divergence of 6.53%). Using a mutation rate of 1.4 - 2.6% per My for 

crustacean mitochondrial DNA (Knowlton & Weight, 1998; Schubart et al, 1998; 

Patarnello, 1996; Zane et al, 2000) the split between the Atlantic and Mediterranean 

lineage was estimated at 6.3 – 9.8 million years ago. 

 

Table 5.2: Average sequence divergence (%) between major mitochondrial COI 
clades. Diagonal: average uncorrected sequence divergence within clades. Above 
diagonal: average uncorrected sequence divergence between clades. Below diagonal: 
average sequence divergence between clades corrected for ancestral polymorphism. 
 

Atlantic MO-B MEDIT 1 MEDIT 2
Atlantic 1.80 15.68 17.01 17.65
MO-B 14.63 0.31 6.68 16.12
MEDIT 1 16.11 6.53 0.00 15.37
MEDIT 2 16.31 15.53 14.93 0.88  
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Fig. 5.3: Minimum spanning network showing the mutational relationships among the 
mitochondrial COI haplotypes of Mesopodopsis slabberi. Each line in the network represents 
a single mutational change and haplotypes are represented by a circle if the haplotype 
frequency > 1. The surface size of each circle is proportional to its frequency of occurrence 
and the circles are shaded according to their geographic occurrence. Small empty circles 
indicate missing haplotypes. 
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16S rRNA 

 

 MP analysis on the 16S rRNA sequences resulted in a single most 

parsimonious tree of 682 steps (CI = 0.8211, HI = 0.1789, RI = 0.7399). One most 

likely tree with a likelihood of -Ln L = 3151.17927 was obtained by the ML analysis. 

The tree topology of the 16S phylogeny (Fig. 5.4) is highly congruent with the COI 

phylogeny (Fig. 5.3). Four clades were supported by high bootstrap values, and 

correspond to the ‘Atlantic’, ‘MO-B’, ‘MEDIT 1’ and ‘MEDIT 2’ mtCOI clades. 

Levels of nucleotide divergence between those clades showed the same patterns as for 

the COI dataset, however they were much lower; divergences between the Atlantic 

and Mediterranean clades, the Atlantic and MO-B clades and both Mediterranean 

clades ranged from 4.7 to 6.4%, and now the split between the MO-B and MEDIT 1 

clades (1.23%) seemed to fall in the range of nucleotide divergence within the 

Atlantic clades (0.2 – 1.32%). 

 
Fig. 5.4: Maximum parsimony consensus tree (682 steps) of the mitochondrial 16S 
rRNA haplotypes of Mesopodopsis slabberi obtained after a heuristic search of 1,000 
random sequence addition replicates. For each node the MP, ML and NJ bootstrap 
support is indicated, only bootstrap values > 50% are indicated.  = Westerschelde, 

 = Mondego,  = Guadalquivir,  = Alicante,  = Ebro. 
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Population diversity and structure 

 

 Mitochondrial COI haplotype diversity within the samples was very high, 

since almost every individual analysed possessed a unique haplotype (Table 5.3), with 

exception of the Mediterranean Ebro sample where the five analysed specimens bear 

the same haplotype. In addition, only three out of the 79 haplotypes were found in 

more then one sample (see Appendix 3). Nucleotide diversity ranged, when excluding 

the invariable Ebro sample, from 0.008461 (RdA) to 0.089956 (MO). The very high 

levels of nucleotide diversity in the Mondego sample are caused by the existence of 

two divergent mitochondrial lineages (MO-A and MO-B). Separately, haplotype and 

nucleotide diversity of these mtDNA lineages amounted respectively to 0.7000 (± 

0.2184) and 0.004367 (± 0.003429) for MO-A and 0.9000 (± 0.1610) and 0.003057 (± 

0.002601) for MO-B. 

 

Table 5.3: Standard diversity values per sampling location. Nh= number of 
haplotypes, h= haplotype diversity, π= nucleotide diversity.  Standard deviations of 
haplotype and nucleotide diversity values are indicated between brackets. 
 

Sampling Sampling Sample
location location size Nh h π

Westerschelde WS 25 21 0.9667 (0.0292) 0.010888 (0.006104)
Seine SEI 19 16 0.9766 (0.0267) 0.010483 (0.005985)
Mondego MO 10 7 0.9111 (0.0773) 0.089956 (0.048351)
Ria de Aveiro RdA 16 11 0.9500 (0.0364) 0.008461 (0.005022)
Guadalquivir GU 18 18 1.0000 (0.0185) 0.019993 (0.010789)
Alicante ALI 8 7 0.9643 (0.0772) 0.008812 (0.005599)
Ebro EBR 5 1 0 0  
 

An AMOVA using the Tamura & Nei (1993) distance performed on the 

mtDNA COI sequence data set of the Atlantic clade (comprising the WS, SEI, RdA, 

MO-A and GU samples) revealed significant heterogeneity among the Atlantic 

populations. Although the variance component within populations (59.92%) was 

higher, a highly significant amount of variation was observed between populations 

(ΦST = 0.4001, P < 0.001). 
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Pairwise ΦST values between the Atlantic samples are listed in Table 5.4. Of 

all the possible ΦST comparisons only two were not significant. These comparisons 

involved the geographical proximate samples WS & SEI and RdA & MO-A. A 

Mantel test detected a marginally significant correlation of pairwise genetic distance 

and geographical distance (r = 0.7040, P < 0.05) pointing to an isolation-by-distance 

pattern. The RMA regression showed that almost 50% of the observed variance was 

explained by this correlation. 

  

Table 5.4: Below diagonal: pairwise ΦST values between sampling sites based on 
pairwise Tamura & Nei (1993) distances. Significant values at 99% level (***) were 
calculated from 10,000 permutations and are indicated. Above diagonal: Average 
pairwise differences between sampling sites corrected for within-sampling site 
ancestral polymorphism (DA) calculated based on the Tamura & Nei (1993) model. 

WS SEI RdA MO-A
WS  - 0 6.75 7.12
SEI 0ns  - 6.83 7.21
RdA 0.5904*** 0.6035***  - 0

MO-A 0.5931*** 0.6119*** 0ns  -  
 

Patterns of historical demography 

 

The mismatch distribution for the pooled sample was clearly not unimodal, 

and hence deviated significantly from the expected distribution under the sudden 

expansion model (Fig. 5.5). The first peak (around 10 bp of pairwise differences) 

represents differences within the major mitochondrial clades, while the smaller peaks 

around 30, 70 and 80 bp of pairwise differences represent differences between 

different mtDNA clades. However, within the different mitochondrial clades and at a 

more regional scale evidence of population expansion could be detected as shown by 

the mismatch distributions and the Tajima’s D and Fu’s Fs tests of neutrality (Fig. 5.5 

and Table 5.5). Because of the lack of differentiation between the Westerschelde and 

Seine samples (WS+SEI) and the Ria de Aveiro and Mondego samples (RdA + MO-

A), these samples were pooled and considered as panmictic metapopulations for the 

demographic analyses. A fit to the sudden expansion model of Rogers (1995) could 

not be significantly rejected for all regional samples, however only the mismatch 

distributions of the WS+SEI and GU samples were clearly unimodal. These samples 

had also significantly negative Tajima’s D and Fu’s Fs values, further supporting a 
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population expansion. The estimates of the pre- and post-expansion effective 

population sizes (θ0 and θ1) showed a very large increase in size for the GU sample, 

suggesting rapid population expansion (Table 5.5). In contrast, the much lower 

increase of the population size of the WS+SEI sample might be indicative for a more 

recent expansion. The Mediterranean ALI sample (belonging to the MEDIT 2 clade) 

had a clearly more ragged mismatch distribution, which together with the marginally 

non-significant Fu’s FS value (P = 0.051) could be due to the smaller sample size (n = 

8). Mismatch distributions of the MEDIT 1 and MO-B clades were not calculated due 

to the low sample size and the presence of only one haplotype in the Ebro population 

(MEDIT 1 clade). 

 An approximate time of expansion was estimated for the WS+SEI and GU 

samples using the equation T= τ/2µ (Rogers & Harpending, 1992). Based on a 

mutation rate (µ) of 1.66 - 2.6% per My for crustacean mitochondrial DNA 

(Knowlton & Weight, 1998; Schubart et al, 1998; Patarnello, 1996; Zane et al, 2000) 

and a mean generation time of approximately 4 months (Delgado et al, 1997; 

Uppabullung, 1999), the expansion was estimated to have occurred 44-69 kya in the 

WS+SEI sample and 133-200 kya in the GU sample.  

 

Table 5.5: Mismatch distribution parameters for the regional samples of 
Mesopodopsis slabberi. (θ0 and θ1 = pre- and post-expansion effective population 
sizes; τ = time in number of generations, elapsed since the sudden expansion episode; 
SDD, sum of squared deviations. P-values for the rejection of the sudden expansion 
model are indicated. For the neutrality tests, the statistical significance are shown 
(***: P < 0.01, ns: not significant, P > 0.05). 
 

WS+SEI RdA+MO-A GU ALI
Mismatch mean 4.873 3.414 9.157 4.036
θ1 2.245 0.000 0.000 0.000
θ2 37.017 14.990 66655.000 4682.500
τ 3.153 4.532 9.485 4.547
Test of goodness-of-fit
SSD 0.0009 0.0144 0.0169 0.0293
P 0.900 0.290 0.060 0.430
Neutrality tests
Tajima's D  -2.1701***  -1.1809ns  -1,8516***  -1,5473***
Fu's Fs  -25.5756***  -5.5425***  -10,9733***  -2,4358ns
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Fig. 5.5: Mismatch distribution of the samples; for sampling site abbreviations see 
Table 5.1. In each case the bar represents the observed frequency of the pairwise 
differences among haplotypes, while the solid line shows the distribution expected 
under a model of sudden demographic expansion (Rogers, 1995). 
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DISCUSSION 

 

Patterns of molecular variation 

 

The analysed fragment of the mtDNA COI gene of Mesopodopsis slabberi 

was extremely variable. The DNA sequence analysis revealed that more than 32 % of 

the nucleotide positions were variable, whereas in the mitochondrial COI gene of the 

related mysid Neomysis integer only 8.5% of the nucleotide positions were 

polymorphic (see Chapter 4). Extremely high values of haplotype diversity were 

observed in the majority of the samples, with a very high proportion of unique 

haplotypes present in low frequencies. This high variability is not uncommon in 

marine species (see Bucklin & Wiebe, 1998; Duran et al, 2004b; Peijnenburg et al, 

2004; Stamatis et al, 2004; Zardoya et al, 2004) and could be attributed to the 

enormous population sizes, resulting in the retention of many unique haplotypes 

during population growth or expansion (Watterson, 1984; Bucklin & Wiebe, 1998). 

The large difference in levels of molecular variation compared with N. integer could 

be partly explained by the existence of highly divergent mitochondrial COI lineages 

within M. slabberi, and the larger spatial sampling of the present study. However, 

levels of molecular diversity within the different mtCOI clades of M. slabberi (mean h 

= 0.807 and π = 0.0083) are still considerably larger than in N. integer (mean h = 

0.366 and π = 0.0023). A possible explanation for these differences could be the 

constraints on gene flow between populations of the strictly brackish N. integer in 

combination with the biological adaptations to the unpredictable instability of 

chemical-physiological parameters in brackish-water environments (Battaglia et al, 

1978; Röhner, 1997). The genetic impoverishment of the brackish water fauna has 

been widely reviewed (Cognetti, 1994; Maltagliati, 1999; Cognetti & Maltagliati, 

2000; Bilton et al, 2002). On the other hand, the higher environmental heterogeneity 

of the habitats where M. slabberi is found (estuaries, coastal zones, surf zones, salt 

marches), and hence the increase in available niches and microhabitats, might result in 

a higher level of genetic variation, as reported for marine gobies (Wallis & 

Beardmore, 1984). 
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Apart from ecological processes (e.g. differences life history, population 

dynamics, environmental interactions), also evolutionary dynamics (mutation, genetic 

drift, natural selection) which act on a species over different temporal and spatial 

scales may have caused different patterns of population genetic diversity in species 

(Bucklin & Wiebe, 1998). For instance, the differences in the number of haplotypes 

and the levels of nucleotide diversity within M. slabberi and N. integer might be 

related to the different age of both species. Based on coalescence theory it is generally 

assumed that older lineages harbour more genetic diversity through persistent 

accumulation of alleles compared to younger ones (Crandall & Templeton, 1993). 

Differences in the relative age of both species may also be reflected in the level of 

species diversity of the genus Mesopodopsis and Neomysis within the Atlantic Ocean 

and the different biogeographical distribution of both genera. The genus 

Mesopodopsis harbours the highest level of species diversity within the Atlantic and 

Indian Ocean, while the diversity ‘hot-spot’ of the genus Neomysis lies within the 

Pacific Ocean (see NeMys database, http://intramar.ugent.be/nemys, Deprez et al, 

2004). Hence, this could imply a ‘more recent’ colonization of the northern Atlantic 

by Neomysis from the Pacific following the opening of the Bering Strait in the late 

Pliocene (Vermeij, 1991), with a subsequent radiation into the NW Atlantic N. 

americana and the NE Atlantic N. integer. In addition, historical changes in effective 

population size, variance in reproductive success, differential response to historical 

range compression and changes in the selective regime are also thought to affect 

species differently, resulting in interspecific variations of the levels of molecular 

diversity (Avise et al, 1988; Hedgecock, 1994a; Bucklin & Wiebe, 1998). 

  

The Mediterranean Ebro population of M. slabberi seems to be an exception to 

the general trend of high genetic diversity within M. slabberi populations. Only one 

haplotype (H 38) was shared by the five specimens analysed. Since this reduced level 

of molecular diversity could be caused by the lower sample size (n = 7), a more 

extended sample of 25 specimens was screened with Single-Strand Conformation 

Polymorphism (SSCP) analyses and the preliminary results confirm the pattern of 

reduced diversity. Low levels of mitochondrial DNA diversity can be attributed to 

several events such as severe population fluctuations, inbreeding, strong natural 

selection, population extinctions and recolonizations due to environmental 

modification of natural and/or anthropogenic origin, or alternatively caused by a 
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recent founding event (Cognetti & Maltagliati, 2004; Stamatis, 2000). The latter 

event, a recent colonization and founding event, seems unlikely since M. slabberi is 

widely distributed throughout the whole Mediterranean Sea. On the contrary, strong 

demographic bottlenecks resulting in the removal of the genetic diversity seems more 

plausible. Temporal fluctuations in population size, sometimes leading to a complete 

removal of M. slabberi from the Ebro Delta, has been observed (Ribera, pers. com.) 

probably as a result of the treatment of rice fields within the delta with toxic 

chemicals (organophosphorous pesticides such as fenitrothion) (Solé et al, 2000). 

Consequently, these temporal population crashes could lead to reduced levels of 

genetic diversity. 

 

Intra- or interspecific variation? 

 

 Analysis of the mitochondrial COI and 16S rRNA genes revealed extremely 

high levels of genetic divergence between morphologically indistinguishable 

populations of M. slabberi. Four clades were apparent in the COI and 16S 

phylogenies and in the COI haplotype network. The levels of nucleotide divergence 

for the COI gene between these clades as listed in table 5.2 clearly shows that the 

different clades are largely differentiated from each other. Moreover, most values 

seem to fall within the range of nucleotide divergence between the morphological 

distinguishable species M. wooldridgei and M. slabberi (14.9 – 17.9% of uncorrected 

nucleotide divergence). Furthermore, these values are much higher than the 

intraspecific divergences reported for the brackish water mysid N. integer (0.22 – 

2.68%) or even between the congeneric N. integer and N. americana (10%) (see 

Chapter 4). On the other hand, divergences within the different M. slabberi clades are 

similar to the intraspecific divergences observed within N. integer. When compared to 

other marine crustaceans, these values seem to be equivalent to those of closely 

related species or between cryptic species (see Lee, 2000; Rocha-Olivares et al, 2001; 

Holland, 2004). Thus, the reciprocal monophyly of the different clades in the 

mitochondrial COI phylogeny as well as in the more conserved 16S rRNA gene tree, 

the levels of nucleotide divergence and the presence of a high number of fixed 

differences between the different M. slabberi clades (see Table 5.2 and Appendices I 

and II) indicate that this nominal species is most probably a complex of cryptic 

species. Clearly, analysis of additional molecular markers (e.g. nuclear genes) and a 
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more extensive sampling would be needed to validate the exceptional degree of 

divergence among M. slabberi clades and to draw further conclusions on the 

taxonomic status of this species. 

  

Phylogeographic patterns along the northeast Atlantic and Mediterranean coasts 

 

M. slabberi populations of the Atlantic and Mediterranean Sea are clearly 

differentiated as shown by the AMOVA. The pairwise ΦST values indicate a long-

term interruption of gene flow and suggest that current lineages undergo no genetic 

exchange. The degree of genetic divergence found between the Mediterranean and 

Atlantic lineages suggests that the different clades have evolved independently in 

vicariance. Last decade the Atlanto-Mediterranean transition has been studied for a 

variety of marine taxa, showing a clear break between both basins for several species, 

whereas for other no differentiation at all was detected (see overview in Table 5.6). 

The observed nucleotide divergence between the Atlantic and Mediterranean M. 

slabberi clades are, together with those for Carcinus maenas (Roman & Palumbi, 

2004), amongst the highest reported thus far for marine invertebrates (see Table 5.6). 

Historically, the connection between the Atlantic and Mediterranean through the 

narrow Strait of Gibraltar has been blocked on several occasions. Firstly, during the 

Messinian salinity crisis (6 – 5.5 Mya) when the Mediterranean basin desiccated and 

transformed into a series of hypersaline lakes with thick evaporate deposition 

(Krijgsman et al, 1999). Secondly, during the Quaternary glaciations (1.8 Mya – 18 

kya) when glacio-eustatic sea level drops (115-120 m below the present-day level) 

resulted in a fragmentation of the Atlantic and Mediterranean (Nilsson, 1982; 

Maldonado, 1985). On a more contemporary time scale a restriction of exchange 

exists between both basins caused by an oceanographical density front located in the 

Alboran Sea (the Oran-Almeria Front; Tintore et al, 1998; Millot, 1999), as 

demonstrated for a number of species (Quesada et al, 1995; Sanjuan et al, 1996; Zane 

et al, 2000). The estimations of divergence time between the Atlantic and 

Mediterranean mitochondrial lineages of M. slabberi suggest that the split occurred 
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Table 5.6: Overview of phylogeographic studies of marine taxa with an Atlanto-
Mediterranean distribution. For each study the used molecular marker is indicated 
and, if available, the degree of nucleotide divergence and timing of the split between 
the Atlantic and Mediterranean populations. NA = not available. 
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about 9.8 – 6.3 Mya. Hence it is clear that the Atlanto-Mediterranean divergence 

predates the onset of the Pleistocene and date back to the late Miocene, even when 

taking into account the large stochastic errors associated with the estimates of 

divergence time.  

 

Within the Mediterranean samples two divergent lineages could be identified; 

one was restricted to the Ebro sample (MEDIT 1) and the other lineage was observed 

in the Alicante sample (MEDIT 2). It remains unclear how these different 

Mediterranean clades evolved. One possible hypothesis could be that both clades 

originated in allopatry in separated basins which were formed within the 

Mediterranean Sea when sea-level dropped during the Messinian salinity crisis (late 

Miocene, 5.5 – 6 Mya) (Hsü et al, 1977; Por, 1989; Krijgsman et al, 1999; Duggen et 

al, 2003). After sea-level rise the different lineages colonized separate regions within 

the Mediterranean Sea where they remained isolated from each other due to restricted 

gene flow. Estimates of divergence time between both clades corroborate such an old 

split (9 - 5.7 Mya, using a molecular clock of 1.66 – 2.6% per My). However, thus far 

no molecular research has been done on other mysid populations throughout the 

Mediterranean Sea. The only evidence of differentiation between mysid populations 

within the Mediterranean comes from a detailed morphological and ecological study 

of Diamysis mesohalobia populations, which are thought to be reproductive isolated 

and evolved in allopatry during the Messinian sea-level drops (Ariani & Wittmann, 

2000). On the contrary, recent simulations has shown that the creation of large 

divergences doesn’t necessary imply an evolution in allopatry. Deep phylogeographic 

breaks can be formed within a continuously distributed species even when there are 

no barriers to gene flow, but given that the individual dispersal distance and 

population size are low enough (Irwin, 2002). Likewise, at some loci extreme 

divergences can occur by stochastic events (Rosenberg, 2003). 

Alternatively, the two clades could have originated from a parapatric 

speciation (see Gavrilets et al, 2000) and/or ecological speciation (see Schluter, 2001; 

Doebeli & Dieckmann, 2003) between populations in fully marine conditions (e.g. 

MEDIT 2 clade in the Alicante population), and those in more sheltered, brackish 

water environments (e.g. MEDIT 1 clade in the Ebro population). This speciation 

event could have been driven by divergent selection for characteristics that allow a 

better adaptation to this particular kind of environment, resulting in a ‘quick’ genetic 
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divergence between marine and brackish populations of M. slabberi. A similar 

hypothesis of ecological radiation has been used for explaining the differentiation 

between cryptic species of the interstitial flatworm Monocelis lineata separately 

occurring in marine and brackish habitats (Casu & Curini-Galletti, 2004), and the 

ascidian Clavelina lepadiformis from inside harbours and from the rocky littoral 

(Tarjuelo et al, 2001).  

  

Finally, the co-distribution of two divergent mtDNA lineages within the 

Mondego estuary (MO-A and MO-B) is remarkable. A more detailed morphological 

examination of the remaining specimens from this sample revealed no morphological 

differences between them suggesting that this divergent lineage is morphologically 

cryptic with M. slabberi. The large divergence between both lineages suggests that 

they are reproductively isolated. Although sympatric speciation has become more 

accepted in the past decade (see Vai, 2001), for several reasons it seems an unlikely 

cause for the present pattern. Firstly, both lineages seemed to co-occur under the same 

environmental conditions, however further analysis are necessary to validate this. 

Secondly, if the observed pattern is caused by sympatric speciation it remains unclear 

why this pattern is not more widespread in M. slabberi. Thirdly, the phylogenetic and 

network analysis suggests that the MO-B lineage has not an Atlantic origin but seems 

to be more related to the Mediterranean haplotypes, and more specifically to those of 

the MEDIT 1 clade. The nucleotide divergence between the MO-B and MEDIT 1 

clades was more than half the divergence between the MO-B and the Atlantic clades 

for the COI dataset (6.53 and 14.63% respectively), and for the 16S gene the MO-

B/MEDIT 1 divergence (1.23%) even seemed to fall within the Atlantic intra-clade 

divergence range (0.2 – 1.32% respectively). The result are suggestive for an invasion 

of the MO-B lineage, with Mediterranean origin, by natural means or caused by 

ballast water of ships into the Mondego estuary (Carlton, 1985; Carlton & Geller, 

1993; Lavoie et al, 1999; Wonham et al, 2000). Ship ballast water transport might be 

an efficient mechanism for the transfer and dispersal of most taxonomic groups 

(Carlton and Geller, 1993), and could have a homogenization effect on the genetic 

pattern or lead to the existence of highly divergent haplotypes within a local 

population (see Roy & Sponer, 2002; Nobrega et al, 2004; Caudill & Bucklin, 2004; 

Shefer et al, 2004). Within mysids the anthropogenic transport by means of ship 

ballast water has been invoked to explain some recent invasions, e.g. the invasion of 
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the Mediterranean endemic mysid Diamysis bahirensis in the Atlantic Ria de Aveiro 

estuary (Cunha et al, 2000). Clearly, the limited number of specimens analysed 

doesn’t allow us to make firm conclusions and hence detailed molecular and 

morphological studies are needed to resolve the identity and evolutionary origin of 

this divergent lineage. 

 

Population structure within the Atlantic clade of Mesopodopsis slabberi 

 

Within the Atlantic clade the null hypothesis of panmixia could be 

significantly rejected (ΦST = 0.40, P < 0.001). The genetic heterogeneity along the 

Atlantic coasts is also supported by the highly significant pairwise ΦST values. The 

very high proportion of population-specific haplotypes and the existence of few 

shared haplotypes, only distributed in geographically closely located samples, suggest 

a restriction of gene flow on a large geographic scale (i.e. > 500 km). However, on a 

meso-geographical scale (i.e. between the northern Westerschelde and Seine, and the 

Iberian Ria de Aveiro and Mondego populations) no significant differentiation was 

observed, indicating high levels of gene flow. The detection of isolation-by-distance, 

i.e. the decrease of genetic correlation with increasing geographic distance (Wright, 

1943), further corroborates this pattern. Hence, the large tolerance range and 

seemingly continuous habitat of M. slabberi enables an exchange of mysids between 

adjacent populations, while the absence of a dispersal stage (such as pelagic larvae) 

tends to restrict gene flow on a larger geographic scale. The observed genetic 

differentiation along the Atlantic coasts could be the result of this isolation by 

distance pattern whereby no obvious barriers to gene flow are necessary to explain the 

genetic heterogeneity. On the other hand, the effect of latitudinal differences in 

selective forces or the existence of historically separated populations (e.g. in multiple 

glacial refugia), as observed for the mysid N. integer (see Chapter 4), cannot be ruled 

out as a potential cause for the pattern of genetic differentiation. 

 Demographic analysis of the Atlantic mtCOI clade point to a population 

expansion in the northern samples (WS and SEI), as shown by the unimodal mismatch 

distribution and the highly significant negative Tajima’s D and Fu’s FS values. In 

addition, the haplotype network showed a star-shaped genealogy for the haplotypes of 

these samples, which is also thought to be a signature of a recent demographic 
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expansion (Slatkin & Hudson, 1991). On the contrary, a temporal stable population 

structure was suggested for the Iberian samples of the Ria de Aveiro and Mondego 

estuary. The demographic expansion of the northern populations could be dated back 

to the Pleistocene epoch, which is concordant to the currently accepted 

paleoclimatological model of the NE Atlantic during the Quaternary. During the last 

glacial maximum (about 18 kya) the polar front is hypothesized to have been located 

near the present-day northern coast of the Iberian peninsula (Frenzel et al, 1992), sea 

level lowered 100-120 m (Lambeck et al, 2002) and as a result the North Sea and 

English Channel were mainly dry land (Andersen & Borns, 1994). These drastic 

climatological changes forced most temperate species to the south where they 

survived in glacial refugia (e.g. off the Iberian Peninsula). After the last glacial 

maximum when the conditions in northern Europe ameliorated and sea level rose, new 

habitats became available and were rapidly colonised by mysids from the southerly 

located refugia, followed by a demographic population expansion in these areas 

(Hewitt, 1999, 2004). These results contrast with the patterns observed in the mysid 

N. integer, where no evidence of a sudden population expansion was found in the 

North Sea and English Channel populations, probably caused by the existence of 

multiple northern refugia (see Chapter 4). This could be indicative for the higher 

susceptibility to climate oscillations, and in particular lowered temperatures, of M.  

slabberi compared to N. integer. However, these results and conclusions require 

future validation by means of more extended geographic sampling (e.g. along the UK 

coasts, North Sea and western Baltic Sea). 
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CONCLUSIONS 

 

 In conclusion, the present phylogeographic study revealed very high levels of 

genetic divergence with a strong geographic pattern among morphological identical 

populations of the mysid Mesopodopsis slabberi. The levels of divergences observed 

in the mitochondrial COI gene and in the more conserved 16S rRNA gene suggest 

that populations of M. slabberi have evolved into possible cryptic species during the 

late Miocene/ early Pliocene. Hence, the current species status within the genus 

Mesopodopsis, may still be an underestimate of the actual species diversity of this 

genus. Since mitochondrial DNA evidence alone should not justify taxonomic 

decisions (Hudson & Coyne, 2002), evidence from unlinked molecular markers (e.g. 

nuclear genes) might be appropriate. The discovery of cryptic species is not 

uncommon in the marine realm and the existence of cryptic species, especially in 

invertebrates seems to be a far more widespread phenomenon as previously thought 

(see Knowlton, 1993, 2000). However, the present study is to our knowledge the first 

in reporting evidence of cryptic speciation within a mysid species. Continued 

molecular studies of M. slabberi with a more complete geographic sampling of 

habitats of M. slabberi within the Atlantic and Mediterranean Sea, will undoubtedly 

yield more insights into the phylogeographic patterns and cryptic speciation of this 

ecological important key species. Moreover, analyses of nuclear markers could be 

useful to detect reticulate patterns, such as resulting from hybridization and 

introgression among the different lineages detected in the present study. 
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APPENDIX 1: Variable nucleotide positions observed in the 458 bp fragment of the 
mitochondrial COI gene of the Mesopodopsis slabberi and M. wooldridgei 
(M_woold) haplotypes. Colors in the first column indicate geographical origin of the 
haplotypes (same colour scheme as in Fig. 5.3), dots indicate an identical nucleotide 
base, dotted horizontal lines delimitate the different mtDNA clades as observed in the 
MP tree (see Fig. 5.2). Squares represent nucleotide substitutions resulting in an 
amino acid change. For each nucleotide substitution the codon position at which a 
change occurred is indicated in the last row. 
  

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2
1 1 2 2 2 3 3 3 3 3 4 4 4 5 5 6 7 7 7 8 8 8 9 9 9 0 0 0 1 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 6 7 7 8 8 8 8 8 9 9 9 0 0 0 0 1 1

3 6 9 3 5 1 4 7 0 1 3 6 9 2 5 8 1 7 3 2 5 8 1 4 7 3 6 9 2 5 8 1 4 7 8 0 3 9 3 5 8 1 4 7 0 3 6 9 2 5 8 4 7 3 4 6 7 9 5 6 8 1 4 7 8 0 6
H35 A T C T A G T C G A C C T A T G A T C C C T G T A T A T C G T C T G T G C C T A G C A C A T T T T A T A A G C T C T T T T A T A C T G
H36 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H37 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H38 . . . . . . . T . . . . . . . . . . . . . . . G . . . . . . . T . . . . T T . . . T . . . C . . . . C . . . . . . . . G . . . . . . .
H39 . . . C T T C . . . . T . . . T . . T T . . . C G . G C . C . A . . C A T . C . . G . T G . . . . . C G G A T A . C A G G . . . . . A
H40 . . . C T T C . . . . T . G . T . . T T . . . C G . G C . C . A . . C A T T C . . G . T G . . . . . . G G A . A . C A G G . . . . . A
H41 . . . C T T C . . . . . . . . T . . T T . . . C G . G C . C . A . . C A T T C . . G . T G . . . . . . G G A T A . C A G G . . . . . A
H42 . . . C T T C . . . . T . . . T . . T T . . . C G . G C . C . A . . C A T T C . . G . T . . . . . . . G G A T A . C A G G . . . . . A
H43 . . . C T T C . . G . T . . . T . . T T . . . C G . G C . C . A C . C A T T C . . G . T G . . . . . . G G A T A . C A G G . . . . . A
H44 . . . C T T C . . . . T . . . T . . T T . . . C G . G C . C . A C . C A T T C . . G . T G . . . . . . G G A T A . C A G G . . . . . A
H45 . . . C T T C . . . T T . . . T . . T T . . . C G . G C . C . A . . C A T T C . . G . T G . . . . . . G G A T A . C A G G . . . . . A
H1 G . T C . A C . . . T T C . A A C . T T . . A . . C . . G . . T C A C A . T . . . A T T . . . . . . . G . . . . T G . G C . . G . . A
H46 G . T C . A C . . . T T C . A A C . T T . . A . . C . . A . . T C A C A . T . . . A T T . . . . . . . G . . . . T G . G C . . G . . A
H47 G . T C . A C . . . T T C . A A C . T T . . A . . C . . G . . T C A C A . T . . . A T T . . . . . . . G . . . . T G . G C . . . . . A
H3 G . T C . A C . A . T T C . A A C . T T . . A . . C . . G . . T C A . A . T . . . A T T . . . . . . . G . . . . T G . G C . . G . . A
H48 G . T C . A C . A . T T C . A A C . T T . . A . . C . . G . . T C A . A . T . . . T . T . . . . . . . G . . . . T G . G C . . G . . A
H49 G . T C . A C . A . T T . . A A C . T T . . A . . . . . G . . T C A . A . T . . . A T T . . . . . . . G . . . . T G . G C . . G . . A
H50 G . T C . A C . A . T T C . A A C . T T . . A . . C . . G . . T C A . A . T . . . A T T . . . . . . . G . . . . T G . G C . . G . . A
H51 G . T C . A C . A . T T C . A A C . T T . . A . . C . . G . . T C A . A . T . . . A T T . . . . . . . G . . . . T G . G C . . G . . A
H4 G . T C . A C . A . T T C . A A C . T T . . A . . C . . G . . T C A . A . T . . A A T T . . . . . . . G . . . . T G . G C . . G . . A
H52 G . T C . A C . A . T T C . A A C . T T . . A . . C . . G . . . C A . A . T . . . A T T . . . . . . . G . . . . T G . G C . . G . . A
H53 G . T C . A C T A . T T C . A A C . T T . . A . . C . . G . . . C A . A . T . . . A T T . . . . . . . G . . . . T G . G C . . G . . A
H54 G . T C . A . . A . T T C . A A C . T T . . A . . C . . G . . T C A . A . T . . . A T T . . . . . . . G . . . . T G . G C . . G . . A
H55 G . T C . A C T A . T T C . A A C . T T . . A . . . . . G . . T C A . A . T . . . A T T . . . . C . . G . . . . T G . G C . . G . . A
H56 G . T C . A C . A . T T C . A A C . T T . . A . . C . . G . . T C A . A . T . . . A T T . . . . . . . G . . . . . G . G C . . G . . A
H57 G G T C . A C . A . T T C . A A C . T T T . A . . C . . G . . T C A . A . T . . . A T T . . . . . . . G . . . . . G . G C . . G . . A
H5 G . T C . A C . A . T T C . A A C . T T . . A . . C . . G . . T C A . A . T . . . A T T . . . . . . . G . . . . . A . G C . . G . . A
H15 G . T C . A C . A . T T C . A A C . T T . . A . . C . . G . . T C A . A . T C . . A T T . . . . . . . G . . . . . G . G C . . G . . A
H16 G . T C . A C . A . T T C . A A C . T T . . A . . C . . G . . . C A . A . T C . . A T T . . . . . . . G . . . . . G . G C . . G . . A
H58 G . T C . A C . A . T T C . A A C . T T . . A . . C . . G . . T C A . A . T C . . G T T . . . . . . . G . . . . . G . G C . . G . . A
H59 G . T C . A C . A . T T C . A A C . T T . . A . . C . . G . . T C A . A T T C . . A T T . . . . . . . G . . . . . G . G C . . G . . A
H60 G . T C . A C . A . T T C . A A C . T T . . A . . C . . G . . T C A . A . T C . . A T T . . . . . . . G . . . . . A . G C . . G . . A
H17 G . T C . A C . A . T T C . G A C . T T . . A . . C . . G . . T C A . A . T C . . A T T . . . . . . . G . . . . . G . G C . . G . . A
H12 G . T C . A C . A . T T C . A A C . T T . . A . . . . . G . . T C A . A . T C . A A T T . . . . . . . G . . . . . G . G C G . G . . A
H13 G . T C . A C . A . T T C . A A C . T T . . A . . . . . G . . T C A . A . T C . . A T T . . . . . . . G . . . . . G . G C . . G . . A
H14 G . T C . A C . A . T T C . A A C . T T . . A . . C . . G . . T C A . A . T C . . A T T . . . . . . . G . . . . . G . G C . . G . . A
H61 G . T C . A C . A . T T C . A A C . T T . . A . . C . . G . . T C A . A . T C . . A T T . . . . . . . G . . . . . G . G C . . G . . A
H62 G . T . . A C . A . T T C . A A C . T T . . A . . C . . G . . T C A . A . T C . . A T T . . . C . . . G . . . . . G . G C . . G . . A
H19 G . T C . A C . A . T T C . A A C . T T . . A . . C . . G . . T C A . A . T . . . A T T . . . . . . . G . . . . . G . G C . . G . . A
H63 G . T C . A C . A . T T C . A A C . T T . . A . . C . . G . . T C A . A . T . . . A T T . . . . . . . G . . . . . G . G C . . G . . A
H18 G . T C . A C . A . T T C . C A C . T T . . A . . C . . G . . T C A . A . T . . . A T T . . . . . . . G . . . . . G . G C . . G . . A
H20 G . T C . A C . A . T T C . A A C . T T . . A . . C . . G . . T C A . A . T . . . A T T . . . . . . . G . . . . . A . G C . . G . . .
H21 G . T C . A C . A G T T C . A A C . T T . . A . . C . . G . . T C A . A . T . . . A T T . . . . . . . G . . . . . G . G C . . G . . .
H32 G . T C . A C . A . T T C . A A C . T T . . A . . C . . G . . T C A . A A T . . . A T T . . . . . . . G . . . . . G . G C . . G . . A
H9 G . T C . A C . A . T T C . A A C . T T . . A . . C . . G . . T C A . A . T . . . A T T . . . . . . . G . . . . . G . G C . . G . . A
H11 G . T C . A C . A . T T C . A A C . T T . . A . . C . . G . . T C A . A . T . . . A T T . . . . . . . G . . . . . G . G C . . G . . A
H22 G . T C . A C . A . T T C . A A C . T T . . A . . C . . G . . T C A . A . T . . . A T T . . . . . . . G . . . . . G . G C . . G . . A
H10 G . T C . A C . A . T T C . A A T . T T T . A . . C G . G . . T C A . A . T . . . A T T . . . . . . . G . . . . . G . G C . . G . . A
H64 G . T C . A C . A . T T C . A A C . T T . . A . . C . . G . . T C A . A . T . . . A T T . . . . . . . G . . . . . G . G C . . G . . A
H8 G . T C . A C . A . T T C . A A C . T T . . A . . C . . G . . T C A . A . T . . . A T T . . . C . . . G . . . . . G . G C . . G . . A
H65 G . T C . A . . A . T T C . A A C . T T . . A . . C . . G . . T C A . A . T . . . A T T . . . . . . . G . . . . . G . G C G . G . . A
H6 G . T C . A C . A . T T C . A A C . T T . . A . . C . . G . . T C A . A . T . . . A T T . . . . . . . G . . . . . G . G . . . G . . A
H7 G . T C . A C . A . T T C . A A C . T T . . A . . C . . G . . T C A . A . T . . . A T T . . . . . . . G . . . . . G . G C . . G . . A
H66 G . T C . A C . A . T T C . A A C . T T . . A . . C . . G . . T C A . A . T . . . G . T . . . . . . . G . . . . . G . G C . . G . . A
H67 G . T C . A C . A . T T C . A A C C T T . . A . . C . . G . . T C A . A . T . . . A T T . . . . . . . G . . . . . G . G C . . G . . A
H68 G . T C . A C . A . T T C . A A C . T T . . A . . C . . G . . T C A . A . T . . . A T T . . . . . . . G . . . . . G . G C . . G . . A
H69 G . T C . A C . A . T T C . A A C . T T . . A . . C . . G . . T C A . A . T . . . A T T . . . . . . . G . . . . . G . G C . . G . . A
H33 G . T C . A C . A . T T C . A A C . T T . . A . . C . . G . . T C A . A . T . . . A T T . . . . . . . G . . . . . G . G C . . G . . A
H70 G . T C . A C . A . T T C . A A C . T T . . A . . C . . G . . T C A . A . T . . . A T T . . . . . . . G . . . . . G . G C . C G . . A
H28 G . T C . A C . A . T T C . A A C . T T . . A . . C . . A . . T C A . A T T . . . A C T . . . . . . . G . . . . . G . G C . . G . . A
H71 G . T C . A C . A . T T C . A A C . T T . . A . . C . . G . . T C A . A . T . . . A C T . . . . . . . G . . . . . G . G C . . G . . A
H29 G . T C . A C T A . T T C . A A C . T T . . A . . C . . G . . T C A . A . T . . A A T T . . . . . . . G . . . . . G . G C . . G . . A
H30 G . T C . A C T A . T T C . A A C . T T . . A . . C . . G . . T C A . A . T . . . A T T . . . . . . . G . . . . . G . G C . . G . . A
H23 G . T C . A C T A . T T C . A A C . T T . . A G . C . . G . . T C A . A . T . . . A T T . . . . . . . G . . . . . G . G C . . G . . A
H24 G . T C . A C T A . T T C . A A C . T T . . A . . C . . G . . T C A . A . T . . . A T T . . . . . . . G . . . . . G C G . . . G . . A
H72 . . T C . A C T A . T T C . A A C . T T . . A . . C . . G . . T C A . A . T . . . . T T . . . . . . . G . . . . . G . G . . . G . . A
H25 G . T C . A C T A . T T C . A A C . T T . . A . . C . . G A . T C A . A . T . . . A T T . . C . . . . G . . . . . G . G C . . G . . A
H26 G . T C . A C T A . T T C . A A C . T T . . A . . C . . G . . T C A . A . T . . . A T T . . . . . . . G . . . . . G . G C . . G . C A
H73 G . T C . A C T . . T T C . A A C . T T . . A . . C . . G . . T C A . A . T . . . A T T . . . . . . . G . . . . . G . G C . . G . . A
H31 G . T C . A C T A . T T C . A A C . . T . . A . . C . . G . . T C A . A . T . . . A T T . G . . . . . G . . . . . G . G C . . G . . A
H74 G . T C . A C T A . T T C . A A C . T T . . A . . C . . G . . T C A . A . T . . . A T T . . . . . . . . . . . . . G . G C . . G . . A
H27 G . T C . . C T A . T T C . A A C . T T . . A . . C . . G . C T C A . A . T . . . G T T . . . . . . . G . . . . . G . G C . . G . . A
H75 G . . C . A C T A . . T C . A A C . T T . . A . . C . . G . . T C A . A . T . . . A T T . . . . . . . G . . . . . A . G C . . G . . A
H76 G . . C . A C T A . T T C . A A C . T T . . A . . C . . G . . T C A . A . T . . . A T T . . . . . . . G . . . C . A . G C . . G . . A
H77 G . . C . A C T A . T T C . A A C . T T . . A . . C . . G . . T C . . A . T . . . A T T . . . . . . . G . . . . . A . G C . . G . . A
H78 G . T C . A C T A . T T C . A A T . T T . . A . . C . . G . . T C A . A . T . . . A T T . . . . . . . G . . . . . G . G C . . . . . A
H79 G . T C . A C T . . T T C . A A C . T T . . A C . C . . G . . T C A . A . T . . . A C T . . . . . . . G . . . . . G . G . . . G . . A

M_woold . . . . . . . T A . . T . . A A . . T T T C A G G C . . T . C A C . . A T T . G A A . T . . . . . G . . . A . C T A C G G . . . T G .
codon 3 3 3 1 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 1 3 3 1 3 3 3 3 1 3 3
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H35 G T G T G G G A A A G G A G T T T T G T C A T C A G T T G T A T G A C T C T C T G T G G C A T A A T C A T A G T T A T A T C A A C T A T T C C G G A G T T T G G T
H36 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C . .
H34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C . .
H37 . . . . . . . . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C . .
H38 . . A . . . . . G . . . . . . . . C A . . . . . G T . . A . G . A . . . . . . . A G . . . G C . . . . G . . . C . . C . . T . G . . . . . . . A . . . . . C C A C
H39 A . A C A A . . G . C A . C . . G . A . T T . . G T C . . . T A A . . C . . T . A G A . T . G C . . T . A G . . C G C T . T . G T . . . . . T . . T . . A . T A .
H40 A . A C A A . . G . C A . C . . G . A . T C . . G T C . . . T A A . . C . . T . A G A . T . G T . . T . A G . . C G C T . T . G T . . . . . T . . T . . A . T A .
H41 A . A C A A . . G . C A . C C . G . A . T C . . G T C . . . T A A . . C . . T . . G A . T . G T . . T . A G . . C G C T . T . G T . . . . . T . . T . . A . T A .
H42 A . A C A A . . G . C A . C . . G . A . T C . . G T C . . . T A A . . C . . T . A G A . . . G T . . T . A G . . C G C T . T . G T . . . . . T . . T . . A . T A .
H43 A . A C A A . . G . C A . C . . G . A . T C . . G T C . . . T A A . . C . . T . A G A . T . G T . . T . A G . . C G C T . T . G T . . . . . T . . T . . A . T A .
H44 A . A C A A . . G . C A . C . . G . A . T C . . G T C . . . T A A . . C . . T . A G A . T . G T . . T . A G . . C G C T . T . G T . . . . . T . . T . . A . T A .
H45 A . A C A A . . G . C A . C . . G . A . T C . . G T C . . . T A A . . C . . T . A G A . T . G T . . T . A G . . C G C T . T . G T . . . . . T A . T . . A . T A .
H1 A A A . A . T . G T T A C C C . . C . G T G C . G T . G T . . G . G T . . A T C A . . A T . C T . . T . . . . . C . G G . T . . . . . C . . . T A G . . . . C . .
H46 A A A . A . T . G T T A C C C . . C . G T G C . G T . G T . . G . G T . . A T C A . . A T . C T . . T . . . . . C . G G . T . . . . . C . . . T A G . . . . C . .
H47 A A A . A . T . G T T A C C C . . C . G T G C . G T . G T . . G . G T . . A T C A . . A T . C T . . T . . . . . C . G G . T . . . . . C . . . T A G . . . . C . .
H3 A A A . A . T . G T T A C C C . . C . G T G C . G T . G T . . G . G T . . A T C A . . A T . C T . . T . . . . . C . G G . T . . . . . C . . . T A G . . . . C . .
H48 A A A . A . T . G T T A C C C . . C . G T G C . G T . G T . . G . G T . . A T C A . . A T . C T . . T . . . . . C . G G . T . . . . . C . . . T A G . . . . C . .
H49 A A A . A . T . G T T A C C C . . C . G T G C . G T . G T . . G . G T . . A T C A . . A T . C T . . T . . . . . C . G T . T . . . . . C . . . T A G . . . . C . .
H50 A A A . A . T . G T T A C A C . . C . G T G C . G T . G T . . G . G T . . A T C A . . A T . C T . . T . . . . . C . G G . T . . . . . C . . . T A G . . . . C . .
H51 A A A . A . T . G T T A C A C . . C . G T G C . G T . G T . . G . G T . . A T C A . . A T . C T . . T . . . . . C . G G . T . G . . . C . . . T A G . . . . C . .
H4 A A A . A . T . G T T A C A C . . C . G T G C . G T . G T . . G . G T . . A T C A . . A T . C T . . T . . . . . C . G G . T . . . . . C . . . T A G . . . . C . .
H52 A A A . A . T . G T T A C A C . . C . G T G C . G T . G T . . G . G T . . A T C A . . A T . C T . . T . . . . . C . G G . T . . . . . C . . . T A G . . . . C . .
H53 A A A . A . T . G T T A C . C . . C . G T G C . G T . G T . . G . G T . . A T C A . . A T . C T . . T . . . . . C . G G . T . . . . . C . . . T A G . . . . C . .
H54 A A A . A . C . G T T A C A C . . C . G T G C . G T . G T . . G . G T . . A T C A . . A T . C T . . T . . . . . C . G G . T . . . . . C . . . T A G . . . . C . .
H55 A A A . A . T . G T T A C C C . . C . G T G C . G T . G T . . G . G T . T A T C A . . A T . C T . . T . . . . . C . G G . T . . . . . C . . . T A G . . . . C . .
H56 A A A . A . T . G T T A C C C . . C . . T G C . G T . G T . . G . G T . . A T C A . . A T . C T . . T . . . . . . . G G . T . . . . . C . . . T A G . . . . C . .
H57 A A A . A . T . G T T A C C C . . C . . T G C . G T . G T . . G . G T . . A T C A . . A T . C T . . T . . . . . . . G G . T . . . . . . . . . T A G . . . . C . .
H5 A A A . A . T . G T T A C C C . . C . . T G C . G T . G T . . G . G T . . A T C A . . A T . C T . . T . . . . . . . G G . T . . . . . C . . . T A G . . . . C . .
H15 A A A . A . C . G T T A C C C . . C . . T G C . G T . G T . . G . G T . T A T C A . . A T . . T . . . . . . . . C . G G C T . . . . . C . . . T A G . . . . C . .
H16 A A A . A . C . G T T A C C C . . C . . T G C . G T . G T A . G . G T . T A T C A . . A T . . T . . . . . . . . C . G G C T . . . . . C . . . T A G . . . . C . .
H58 A A A . A . C . G T T A C C C . . C . . T G C . G T . G T . . G . G T . T A T C A . . A T . . T . . . . . . . . C . G G C T . . . . . C . . . T A G . . . . C . .
H59 A A A . A . C . G T T A C C C . . C . . T G C . G T . G T . . G . G T . T A T C A . . A T . . T . . . . . . . . C . G G C T . . . . . C . . . T A G . . . . C . .
H60 A A A . A . C . G T T A C C C . . C . . T G C . G T . G T . . G . G T . T A T C A . . A T . . T . . . . . . . . C . G G C T . . . . . C . . . T A G . . . . C . .
H17 A A A . A . C . G T T A C C C . . C . . T G C . G T . G T . . G . G T . T A T C A . . A T . . T . . . . . . . . C . G G C T . . . . . C . . . T A G . . . . C . .
H12 A A A . A . T . G T T A C C C C . C . . T G C . G T . G C . . G . G T . T A T C A . . A T . . T . . . . . . . . C . G G C T . . . . . C . . . T A T . . . . C . .
H13 A A A . A . C . G T T A C C C . . C . . T G C . G T . G T . . G . G T . T A T C A . . A T . . T . . . . . . . . C . G G C T . . . . . C . . . T A G . . . . C . .
H14 A A A . A . C . G T T A C C C . . C . . T G C . G T . G C . . G . G T . T A T C A . . A T . . T . . . . . . . . C . G G C . . . . . . C . . . T A G . . . C C . .
H61 A A A . A . C . G T T A C C C . . C . . T G C . G T . G T . . G . G T . T A T C A . . A T . C T . . . . . . . . C . G G C T . . . . . C . . . T A G . . . . C . .
H62 A A A . A . C . G T T A C C C . . C . . T G C . G T . G T . . G . G T . T A T C A . . A T . C T . . . . . . . . C . G G C T . . . . . C . . . T A G . . . . C . .
H19 A A A . A . C . G T T A C C C . . C . . T G C . G T . G T . . G . G T . T A T C A . . A T . C T . . . . . . . . C . G G C T . . . . . C . . . T A G . . . . C . .
H63 A A A . A . C . G T T A C C C . . C . . T G C . G T . G T . . G . G T . T A T C A . . A T . A T . . . . . . . . C . G G C T . . . . . C . . . T A G . . . . C . .
H18 A A A . A . C . G T T A C C C . . C . . T G C . G T . G T . . G . G T . T A T C A . . A T . . T . . . . . . . . C . G G C T . . . . . C . . . T A G . . . C C . .
H20 A A A . A . C . G T T A C C C . . C . . T G C . G T . G T . . G . G T . T A T C A . . A T . . T . . . . . . . . C . G G C T . . . C . C . . . T A G . . . . C . .
H21 A A A . A A C . G T T A C C C . . C . . T G C . G T . G T . . G . G T . T A T C A . . A T . . T G . . . . . . . C . G G C T . . . . . C . . . T A G . . . . C . .
H32 A A A . A . C . G T T A C C C . . C . . T G C . G T . G T . . G . G T . T A T C A . . A T . . T . . . . . . . . C G G G C T . . . . . C . . . T A G . . . . . . .
H9 A A A . A . C . G T T A C C C . . C . . T G C . G T . G T . . G . G T . T A T C A . . A T . . T . . . . . . . . C . G G C T . . . . . C . . . T A G . . . . C . .
H11 A A A . A . C . G T T A C C C . . C . . T G C . G T . G T . . G . T T . T A T C A . . A T . . T . . . . . . . . C . G G C T . . . . . C . . . T A G . . . . C . .
H22 A A A . A . C . G T T A C C C . . C . . T G C . . T . G T . . A . G T . T A T C A . . A T . . T . . . . . . . . C . G G C T . . . . . C . . . T A G . . . . C . .
H10 A A A . A . C . G T T A C C C . . C . . T G C . G T . G T . . G . G T . T A T C A . . A T . . T . . . . . . . . C . G G C T . . . . . C . . . T A G . . . . C . .
H64 A A A . A . C . G T T A C C C . . C . . T G C . G T . G T . . G . G T . T A T C A . . A T . . T . . . . . . . . C . G G C T . . . . . C G . . T A G . . . . C . .
H8 A A A . A . C . G T T A C C C . . C . . T G C . G T . G T . . G A G T . T A T C A . . A T . . T . . . . . . . . C . G G C T . . . . . C G . . T A G . . . . C . .
H65 A A A . A . C . G T T A C C C . . C . . T G C . G T . G T . . G . G T . T A T C A . A A T . . T . . . . . . . . C . G . C T . . . . . C G . . T A G . . . . C . .
H6 A A A . A . C . G T T A C C C . . C . . T . C . G T . G T . . G . G T . T A T C A . . A T . . T . . . . . . . . C . G G C T . . . . . C . . . C A G . . . . C . .
H7 A A A . A . C . G T T A C C C . . C . . T G C . G T . G T . . G . G T . T A T C A . . . T . . T . . . . . . . . C . G G C T . . . . . C . . . A A G . . . . C . .
H66 A A A . A . C . G T T A C C C . . C . . T G C . G T . G C . . G . G T . T A T C A . . A T . . T . . . . . . . . C . G G C T . . . . . C . . . T A G . . . . C . .
H67 A A A . A . C . G T T A C C C . . C . . T G C . G T . G C . . G . G T . T G T C A . . A T . . T . . . . . . . . C . G G C T . . . . . C . . . T A G A . . . C . .
H68 A A A . A . C . G T T A C C C . . C . . T G C . G T . G . . . G . G T . T A T C A . . A T . . T . . . . . . . . C . G G C T . . . . . C . . . T A G . . . . C . .
H69 A A A . A . C . G T T A C C C . . C . . T G C . G T . G . . . G . G T . T A T C A . . A T . . T . . . . . . . . C . G G C T . . . . . C . . . T A G . C . . C . .
H33 A A A . A . C . G T T A C C C . . C . . T G C . G T . G . . . G . G T . T A T C A . . A T . . T . . T . . . . . C . G . C T . . . G G C . . . T A G . . . . C . .
H70 A A A . A . T . G T T A C C C . . C . . T G C . G T . G . . . G . G T . T A T C A . . A T . . T . . . . . . . . C . G G C T . . . . . C . . . T A G . . . . C . .
H28 A A A . A . T . G T T A C C C . . C . G T G C . G T . G T . . G . G T . T A T C A . . A T . . T . . . . . . . . C . G G C T . G . . . C . . . T A G . . . . C . .
H71 A A A . A . T . G T T A C C C . . C A . T G C . G T . G T . . G . G T . T A T C A . . . T . . T . C . . . . . . C . G G C T . . . . . C . . . T A G . . . . C . .
H29 A A A . A . C . G T T A C C . . . C . G T G C . . T . A T . . G . G T . T A T C A . . A T . . T . . . . . . . . C . G G C T . . . . . C . . . A A . . . . . . . .
H30 A A A . A . C . G T T A C C C . . C . G T G C . . T . G T . . A . G T . T A T C A . . A T . . T . . . . . . . . C . G G C T . . . . . C . . . A A G . . . . T . .
H23 A A A . A . T . G T T A C C C . . C . G T G . . . T . A T . . G . G T . T A T C A . . A T . . T . . . . . . . . C . G G C T G . . . . C . . . T A G . . . . C . .
H24 A A A . A . T . G T T A C C C . . C . G T G C . G T . G T . . G . G T . T A T C A . . A T . . T . . . . . . . . . . G G C T . . . . . C . . . T A G . . . C C . .
H72 A A A . A . T . G T T A C C C . . C . G T G C . G T . G T . . G . G T . T A T C A . . A T . . T . . . . . . . . C . G G C T . . . . . C . . . T A G . . . . C . .
H25 A A A . A . C . G T T A C C C . . C . G T . C . G T . G T . . G . G T . T A T C A . A A T . . T . . . . . . . . C . G G C T . . . . . C . . . T A G . . . . C . .
H26 A A A . . . C . G T T A C C C . . C . G T G . T G T . G T . . G . G T . T A T C A . A A T G . T . . . . . . . . C . G G C T . . . . . C . . . T A G . . . . C . .
H73 A A A . A . C . G T T A C C C . . C . G T G C . G T . G T . . G . G T . T A T C A . . . T . . T . . . . . . . . C . G G C T . . . . . C . . . T A G . . . . C . .
H31 A A A . A . C . G T T A C T . . . C . G T G C . G T . G T . . G . G T . T A T C A . . A T . . T . . . . . . . . C . G G C T . . . . . C . . . T A G . . . . T . .
H74 A A A . A . C G G T T A C T C . . C . G T G C . G T . G T . . G . G T . T A T C A . . A T . C T . . . . . . . . C . G G C T . . . . . C . . . T A G . . . . C . .
H27 A A A . A . C . G T T A C C C . . C . G T G C . G T . G T . . G . G T . T A T C A . . A T . C T . . . . . . . . C . G G C T . . . . . C . . . T A G . . . . C . .
H75 A A A . A . C . G T T A C C C . . C . G T G C . G T . G T . . A . G T . T A T C A . . A T . . T . . . . . . . . C . G G C T . . . . . C . . . T A G . . . . C . .
H76 A A A . A . C . G T T A C C C . . C . G T G C . G T . G T . . G . G T . T A T C A . . A T . . T . . . . . . . . C . G G C T . . . . . C . . . T A G . . . . C . .
H77 A A A . A . C . G T T A C C C . . C . G T G C . G T . G T . . G . G T . T G T C A . . A T . . T . . . . . . . . C . G G C T . . . . . C G . . T A G . . . . C . .
H78 A A A . A . C . G T T A C C C . . C . G T G C . G T . G T . . G . G T . T A T C A . . A T . C T . . T . . . . . C . G G . T . . . . . C . . . T A G . . . . C . .
H79 A A A . A . C . G T T A C C C . . C . G T G C . G T . G T . . G . G T . T A T C A . . A T . C T . . . . . . . . C . G G . T . . . . . C . . . T A G . . . . C . .

M_M_woo A G A . A A . . . . T A . T . . . . A . A . . T . T . . . . T . A . T . . C T . A . . T . . G G T . T . . . A . . . . T . T . . T C . . . T A A . . A . . . T A C
codon 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 1 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 3 3 3 3 1 3 3 3 1 3 3 1 3 3 3 3 3 1 3 3 1 3 1
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APPENDIX 2: Variable nucleotide positions observed in the 487 bp fragment of the 
16 rRNA gene of the Mesopodopsis slabberi and M. wooldridgei (M_woold) 
haplotypes. The first column indicates the geographical origin of the haplotypes (for 
sampling site abbreviations see Table 5.1), dots indicate an identical nucleotide base, 
dotted horizontal lines delimitate the different mtDNA clades as observed in the MP 
tree (see Fig. 5.4). - : gap, ? : unknown nucleotide. 
 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
1 1 2 2 3 3 4 4 0 3 4 4 5 5 5 5 5 5 6 7 7 8 3 3 4 4 4 5 5 5 5
8 9 0 3 1 2 6 8 9 9 5 9 1 2 4 6 7 9 9 2 3 8 2 4 7 8 9 0 1 2 3

MO 3643MesoC233 A A A T G G T G G G C A T A A A C T A C T A T T T A T G T T T
MO 3644MesoC236 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EB 3620MesoC1080 . . . . . . . . . . T . . . . . T . . . . . . . . . C . . . .
GU 3635MesoC980 T G G . . . . . . . . . C G . . T C . T . . . . G G G C . C .
GU 3637MesoC988 T G G . . . . . . . . . C G . . T C . T . . . . G G G C . . .
GU 3633MesoC307 T G G . . . . . . . . . C G . . T C . T . . . . G G G C . . .
WS 3624MesoC1161 T G G . . . . . . . . . C G . . T C . T . . . . G G . C . . .
WS 3623MesoC1160 T G G . . . . . A . . . C G . . T C . T . T . . G G . C . . .
MO 3638MesoC235 T G G . . . . . . . . . C . . . T C . T . . . . G G . C . . .
MO 3687MesoC349 T G G C . . . . . . . . C G . . T C . T . . . . G G . C . . .
WS 3626MesoC1171 T G G . . . . . . . . . C G . . T C . T . . . . G G . C . . .
ALI 4246MesoC1836 . . G A . . A A . . T G . G . G T C T . C . C C . . . A . . A
ALI 4247MesoC1837 . . G A . . A C ? . T G . G ? G . C T . ? . C C . . C A C . .

M. wooldridgei . . G A A A . T A A T . . G G G . . . . . . C . . . A A A C .  
 

2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4
6 7 7 7 9 9 9 9 0 1 1 1 1 1 1 3 3 6 7 7 7 8 8 8 9 9 9 2 2 3 4 7 7 7
2 4 6 8 1 4 6 9 8 2 3 4 5 6 7 3 8 8 1 2 9 0 2 6 1 3 4 1 7 9 6 1 4 5

MO 3643MesoC233 G C G A A G C A C A C T A T C T G G T T A C A C A A C A - A A A T T
MO 3644MesoC236 . . . . . . . . . . . . . . . . . . . . . . G . . . . . - . . . . .
EB 3620MesoC1080 . . . . . A . . . . . . . C . . A . . . . T . . . . . . - . . . . .
GU 3635MesoC980 . . A G . C . . . . A . G . T . A . C C G . G T G . . G - . . . A C
GU 3637MesoC988 . . A G . C . . . . A . G . T . A . C C G . G . G . . G - . . . A C
GU 3633MesoC307 . . A . . C . . . . A . G . T . A . C C G . G . G G . G - . . . A C
WS 3624MesoC1161 . . A G . C . . . . A . G . T . A . C C G . G . G . . G - . . . A C
WS 3623MesoC1160 . . A G . C . . . . A . G . T . A A C C G . . . G . . G - . . . A C
MO 3638MesoC235 . . A G . C . . . . A . G . T . A . C C G . . . G . . G - . . G A C
MO 3687MesoC349 . . A G . C . . . . A . G . T . A . C C G . . . G . . G - . . G A C
WS 3626MesoC1171 . . A G . C . . . . A . G . T . A . . C G . . . G . . G - . . . A C
ALI 4246MesoC1836 . . A . . - . . . G G A . . T A A . . C . . . . G . . G - C . . . .
ALI 4247MesoC1837 . . A . . - . . . G A A . . T A A . . C ? . . . G . . . - C . . . .

M. wooldridgei A T A . T C T T T G G A . . T A A . . C . . . . . . T - C . T G . .  
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APPENDIX 3: Mesopodopsis slabberi: distribution of haplotypes per sampling site 
(for abbreviations see Table 5.1) 
 

                
  WS SEI MO RdA GU ALI EBR 

H1   3 3    
H3   1     
H4   1     
H5 1       
H6 1       
H7 1       
H8 1       
H9 1 1      

H10  1      
H11  1      
H12 1       
H13 1       
H14  1      
H15 5 3      
H16  1      
H17  1      
H18  1      
H19 1       
H20 1       
H21  1      
H22  1      
H23     1   
H24     1   
H25     1   
H26     1   
H27     1   
H28     1   
H29     1   
H30     1   
H31     1   
H32 1       
H33     1   
H34   1     
H35   1     
H36   1     
H37   2     
H38       7 
H39      1  
H40      1  
H41      1  
H42      1  
H43      1  
H44      2  
H45      1  
H46    1    
H47    2    
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APPENDIX 3 (continued) 
 
 

                
  WS SEI MO RdA GU ALI EBR 

H48    1    
H49    1    
H50    2    
H51    2    
H52    1    
H53    1    
H54    1    
H55    1    
H56  2      
H57 1       
H58  1      
H59  1      
H60 1       
H61 1       
H62 1       
H63 1       
H64 1       
H65  1      
H66 1       
H67 1       
H68 1       
H69  1      
H70  1      
H71 1       
H72     1   
H73     1   
H74     1   
H75     1   
H76     1   
H77     1   
H78     1   
H79         1     
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ABSTRACT 

 

 In the present study, the spatiotemporal variability in the genetic population 

structure of the brackish water mysid Neomysis integer within the Westerschelde 

estuary was assessed by means of Single Stranded Conformation Polymorphism 

(SSCP) analyses on a fragment of the mitochondrial cytochrome c oxidase subunit 1 

gene (COI). Intra-estuarine patterns of genetic variation were examined by analysing 

different samples along an environmental gradient (salinity, pollution) and from 

different habitats (subtidal, brackish lake, harbour site). The temporal genetic 

variation within the Westerschelde estuary was examined on samples collected over 3 

consecutive years (9 generations). Samplings were carried out in 2001, 2002, 2003 

and a total of 480 mysids were analysed. Within two of the three years surveyed 

(2001 and 2002) a small, but significant genetic differentiation was observed within 

the Westerschelde estuary. However, there was no evidence for temporal stability of 

this genetic structure, and it remains unclear if this is a result of stochastic events, 

sampling error, or unpredictable environmental changes within an estuary. 

Furthermore, the effective female population size of N. integer within the 

Westerschelde estuary was estimated to be 2 to 3 orders of magnitude below the 

estimates of the census female population size, resulting in very low Nef/Nf ratios. 

Hence, this could serve as a warning that large population sizes, as in N. integer, do 

not necessarily confer a high level of genetic diversity. 
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INTRODUCTION 

 

Estuaries are harsh ecosystems subject to highly variable environmental 

conditions such as large fluctuations in submersion, salinity, temperature, etc., which 

generally result in a low species diversity and a high adaptability of the estuarine 

fauna. Located at the interface between sea and land, estuaries have as ecosystems 

several vital functions (e.g. nursery areas for juvenile fish and shrimp, habitats for 

estuarine residents) (Day et al, 1989). Most European estuaries are subjected to high 

anthropogenic stress, and the Westerschelde estuary seems to be no exception to this. 

Moreover, due to the high degree of industrialisation and urbanisation, this estuary 

has been transformed into a major drain for industrial and domestic wastes. 

Consequently, the Westerschelde is believed to be one of the most heavily metal 

polluted estuaries of the world (Bayens, 1998). Despite the numerous ecological 

surveys of the hyperbenthic communities of several major European estuaries, 

including the Westerschelde (e.g. Mees & Hamerlynck, 1992; Mees et al, 1993a,b; 

Mees et al, 1995; Cunha et al, 1999; Mouny et al, 2000; Drake et al, 2002), the levels 

of molecular diversity and degree of genetic population structuring of typical 

estuarine species, and in particular of hyperbenthic invertebrates such as mysids, are 

poorly studied. Yet a detailed knowledge of the distribution of genetic variation 

within populations of a species is of great importance since the ability of a species to 

respond to variable environmental conditions may depend to a large extent on the 

genetic variability (diversity) that exists within populations of that species. An 

adequate knowledge of marine biodiversity is also a basic requirement in planning 

conservation efforts on intraspecific levels of biological diversity (Cognetti & 

Maltagliati, 2004). 

 The brackish water mysid, Neomysis integer, is one of the most common 

mysid species in Europe, where it typically dominates the hyperbenthic communities 

of estuaries (Mees et al, 1995). Its ecological relevance has been studied profoundly 

(Fockedey & Mees, 1999; Hostens & Mees, 1999). As phytoplankton, zooplankton 

and detritus consumers and as important prey item for fish, bird and larger crustacean 

species, N. integer is believed to be a key species in estuarine food webs where it is an 

important link in the energy transfer to higher trophic levels (Mees et al, 1994). N. 

integer is also a relevant organism for ecotoxicological research and it has recently 

been proposed as a potential test organism for the evaluation of environmental 
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endocrine disruption (Roast et al, 1998; Verslycke et al, 2004). Recent studies on the 

distribution of molecular diversity throughout the whole distribution range of N. 

integer revealed a large genetic heterogeneity of populations where most variability is 

observed among-populations rather than within-populations (see Chapters 3 & 4). 

This pattern of natural fragmentation of a single species into genetically differentiated 

populations, adapted to different environmental conditions, is increasingly observed in 

the marine environment, and above all in brackish water populations (see Cognetti & 

Maltagliati, 2000; Bilton et al, 2002). In addition, the dispersal limiting life history 

traits of N. integer, and of mysids in general (absence of pelagic larvae), might limit 

the introduction of lost and/or new genetic variation into these naturally fragmented 

populations. Populations of N. integer may therefore be especially prone to rapid loss 

of genetic diversity under changing environmental conditions. An adequate 

knowledge of the levels of molecular diversity, as well as of the temporal variation of 

the genetic structure of a species are of major scientific importance when 

safeguarding these estuarine habitats and in gaining knowledge on the dynamics of 

genetic change in natural populations. 

 The scale at which genetic differentiation occurs in the marine environment 

seems difficult to predict from dispersal capacities of a species alone. The general 

assumption that the high dispersal potential of most marine species and the lack of 

obvious barriers to gene flow in the marine realm results in low population structure 

and high molecular homogeneity does not hold true for many species (see Palumbi, 

1997; Lessios et al, 1999; Luttikhuizen et al, 2003). Moreover, several surveys have 

shown that, even in high gene flow species, sometimes a clear fine-scale structure can 

be observed (e.g. Stepien, 1999; Lemaire et al, 2000; Beheregaray & Sunnucks, 2001; 

McPherson et al, 2003; Pampoulie et al, 2004). In estuarine species, several studies 

have even shown differentiation within a single estuary system (see Bilton et al, 2002 

and references therein). This genetic heterogeneity on a microgeographic scale could 

be the result of a combination of factors acting on the genetic population structure of a 

species, such as genetic drift, temporal variation in reproductive success, differential 

selection on several environmental gradients (e.g. salinity, pollution) or local 

adaptation (Beheregaray & Sunnucks, 2001; Planes & Lenfant, 2002).  

The objectives of this study were: (1) to assess the levels of genetic variability 

of the mysid N. integer within the Westerschelde estuary, and (2) to examine the 

temporal variation of the genetic structure of N. integer within the Westerschelde 
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estuary by analysing mitochondrial DNA variation in samples collected over 3 

consecutive years (9 generations). In order to test for intra-estuarine differentiation, 

different samples along an environmental gradient (salinity, pollution) and from 

different habitats (subtidal, brackish lake, harbour site) were analysed. The temporal 

analysis may be important in assessing the role of microevolutionary processes in 

producing genetic divergence among populations, as well as in giving insight in the 

degree of population stability and the effect of habitat heterogeneity in maintaining 

genetic variability (Lessios et al, 1994). 
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MATERIALS AND METHODS 

 

Sampling 

 

Mysids were sampled from the Westerschelde estuary over a 3-year period 

(February /March 2001, March 2002 and July 2003). In total nine different stations 

were sampled, from which seven are subtidal (HA, WA, ZUI, SAE, BA, DO and AP) 

covering the major distribution range of Neomysis integer. In addition samples were 

taken twice (October 2002 and July 2003) from a site within the harbour of Antwerp 

at the dock of BASF (DOCK) and once (July 2003) from Galgenweel (GAL), a 

brackish water pond near the river Sheldt, Antwerp (Fig. 6.2, Table 6.1).  

 

Table 6.1: List of all sampling sites within the Westerschelde estuary, with indication 
of the abbreviation code and the total number of individuals analysed in each year. 

 

No. of individuals analysed
Locality code 2001 2002 2003
Hansweert HA 0 28 29
Schaar van Waarde WA 31 0 0
Zuidergat ZUI 30 30 0
Saeftinghe SAE 25 0 30
Bath BA 62 30 30
Doel DO 0 0 30
Antwerp AP 0 0 29
Antwerp harbour dock (BASF) DOCK 0 39 29
Galgenweel GAL 0 0 28

Total 148 127 205  
 

Most subtidal samples were collected actively by trawling a hyperbenthic 

sledge (mesh size 1x1 mm) over the bottom in front of the tidal current, except for the 

most upstream stations of Doel (DO) and Antwerp (AP) where the sampling was done 

passively by putting the hyperbenthic sledge on the bottom with the opening 

orientated against the current flow. Neighbouring sampling stations in the upstream 

part of the estuary were collected in the same tidal phase of subsequent days. This was 

done to avoid sampling of the same water mass moving longitudinally with the tide 

over the sampling traject. All samples were taken during daytime when hyperbenthic 
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animals are known to be concentrated near the bottom. Adult N. integer specimens 

were sorted out on board and the collected mysids were kept at –80°C or stored in 

aceton until molecular analysis. Mysids from the BASF dock and Galgenweel were 

collected by hand net (mesh size 1x1 mm). Salinity, dissolved oxygen concentrations 

and temperature were measured at all sampling sites (see Table 6.2). 

 
Table 6.2: Temperature, salinity and dissolved oxygen concentrations for all 
sampling sites (ns = not sampled, NA = not available). 
 

HA WA ZUI SAE BA DO AP DOCK GAL
2001
Temperature (°C) ns 7.9 8.4 8.3 8.3 ns ns ns ns
Salinity (PSU) ns 10 8 7 5 ns ns ns ns
Dissolved oxygen (mg/l) ns 8.84 8.39 8.3 7.11 ns ns ns ns
2002
Temperature (°C) 7.2 ns 7.7 ns 7.9 ns ns 19.3 ns
Salinity (PSU) 15.3 ns 7.5 ns 5.5 ns ns 6.3 ns
Dissolved oxygen (mg/l) 8.46 ns 9.0 ns 5.8 ns ns 7.6 ns
2003
Temperature (°C) 20.2 ns ns 20.9 21.2 21.4 21.8 21.8 NA
Salinity (PSU) 20.1 ns ns 17.5 12.9 10.8 5.8 6.8 NA
Dissolved oxygen (mg/l) 7.9 ns ns 7.3 6.7 5.9 2.4 3.9 NA  
 
 
 

DNA extraction, PCR and single-stranded conformation analysis. 

 

DNA was extracted using a modified CTAB protocol (Kocher et al, 1989). 

Mysid tissue was crushed using a beadbeater and immediately incubated for minimum 

3 hours at 60°C in 500 µl CTAB buffer (2% (w/v) CTAB, 1.4M NaCl, 0.2% (v/v) 

mercaptoethanol, 20 mM EDTA, 100 mM Tris/HCl pH 8) with 6 µl proteinase K (1 

mg 100 µl-1). After an overnight incubation at 37°C, the DNA was extracted with 

phenol/chloroform/isoamylalcohol (25:24:1 PH 8) and chloroform:isoamylalcohol 

(24:1). Finally, DNA was isopropanol-precipitated and rehydrated in 25µl water. A 

235 bp fragment of the COI gene was amplified using the COIF2 (see Chapter 4) and 

HCO2198 (Folmer et al, 1994). The conditions for the COI amplifications were as 

previously described in Chapter 4. The amplified fragments were analysed with the 

single-strand conformation polymorphism (SSCP) technique (Orita et al, 1989). SSCP 

analyses were performed using 0.5 mm thick nondenaturing polyacrylamide gels (250 

x 110 mm) (T=12.5%, C=2%). Electrophoresis was performed at a constant power of 

8 W at 5°C for 3.5h. Bands were visualized with a DNA silver staining kit 



CHAPTER VI – MATERIALS & METHODS 
 

Small-scale and temporal genetic variation of Neomysis integer 128 

(Amersham Biosciences) and scored by their relative mobility. Samples showing 

mobility differences were sequenced on a Perkin-Elmer ABI Prism 377 DNA 

sequencer under the conditions described in Chapter 4. At least two replicates of each 

haplotype were sequenced, with the exception of haplotypes found only in one 

individual.  

 

Statistical analysis 

 

Alignment of the haplotype sequence data was produced with the Clustal X 

program (Version 1.74, Thompson et al, 1997). When needed, the alignment was 

manually corrected with the program GeneDoc (Version 2.6, Nicholas & Nicholas, 

1997). A minimum spanning network (Excoffier & Smouse, 1994) was constructed 

using the ARLEQUIN 2.0 software (Schneider et al, 2000) in order to visualize the 

phylogenetic relationships among the different COI haplotypes. Levels of mtDNA 

diversity were assessed by calculating mitochondrial haplotype diversity (h), 

nucleotide diversity (π) and Tajima’s D using the ARLEQUIN software. Temporal 

and spatial genetic variation among samples was evaluated by an Analysis of 

Molecular Variance (AMOVA, Excoffier et al, 1992) using M-statistics based on 

haplotype frequencies and Tamura-Nei (1993) genetic distances, and F-statistics 

(based on haplotype frequencies only). Genetic variation among samples was 

quantified by estimating an analogue of Wright’s FST, MST (Excoffier et al, 1992). 

Pair-wise MST values were calculated following Tamura-Nei (1993). The statistical 

significance of MST estimates was determined by using a permutation test (1000 

permutations) in ARLEQUIN 2.0 (Schneider et al, 2000). To visualize the genetic 

relationships among samples, we performed a multidimensional scaling analysis 

(MDSA) on the pair-wise Tamura-Nei (1993) genetic distances in STATISTICA 6.0 

(STATSOFT 2001). 

Effective population size (Ne), which in case of mtDNA represents the 

effective female population size (Nef) since it is maternally inherited, was calculated 

using two approaches. First, Nef was calculated using the formula θ = 2 Nef v (Tajima, 

1993). Where theta, θ, was estimated from the mean number of pairwise differences 

(Tajima, 1983) under the infinite-sites model, as implemented in ARLEQUIN 2.0 

(Schneider et al, 2000).  The parameter v could be calculated as mµ, where m is the 
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sequence length and µ the mutation rate per generation. When assuming a general 

molecular clock for crustacean mitochondrial DNA ranging from 1.4 to 2.6% per My 

(Knowlton and Weight, 1998; Schubart et al, 1998; Patarnello, 1996; Zane et al, 

2000) and a mean generation time of 4 months (Mees et al, 1994), the mutation rate 

per generation (µ) of M. slabberi ranged from 5.53 × 10-9 to 8.66 × 10-9 bp-1 

generation-1. A second approach, based on coalescent theory (Kingman, 1982), 

estimates Nef from the genealogical structure of the mitochondrial haplotypes. For this 

analysis, we used the program MIGRATE (Beerli & Felsenstein, 1999, 2001), where 

a maximum-likelihood approach that considers the history of mutations and the 

uncertainty of the mtDNA genealogy is used to estimate θ by means of Markov chain 

Monte Carlo (MCMC) sampling of gene trees (Beerli & Felsenstein, 1999). The 

female effective population size can be determined using the formula θ = 2 Nef µ with 

µ being the mutation rate per generation. FST estimates of effective population sizes 

were used as initial values. Ten short chains with 100,000 sampled genealogies each 

and three long chains with 1,000,000 sampled genealogies each were run. One of 

every 20 reconstructed genealogies was sampled. A heating scheme with four 

temperatures (1.0, 1.5, 3.0 and 6.0) was used. The contemporary-method and 

coalescent-based estimates of Nef can differ in some cases, since the coalescent 

method estimates the historical Ne which is a long-term estimate integrated over time 

to common ancestry of all alleles in the population (Avise, 2000). On the other hand, 

historical and contemporaneous estimates of Ne may agree if population effective size 

has remained stable over a long period (see Turner et al, 2002). 

The census population size of N. integer in the Westerschelde estuary was 

calculated as follows: first, the densities (ind./ 1000 m²) in 20 stations located along 

the salinity gradient were averaged over a period of one year (April 1990 – April 

1991) using data collected by Mees (1994) and consulted through the Integrated 

Marine Environmental Readings and Samples (IMERS) database (VLIZ, 2004) (see 

Fig. 6.1). Then, the 20 stations were grouped according to the 13 compartments of the 

Westerschelde as presented by Soetaert & Herman (1995) (Fig. 6.1) and the average 

density per compartment was calculated. By multiplying the average densities 

(ind./1000 m²) by the compartment surface, as reported in Soetaert & Herman (1995), 

a total number of mysids could be estimated in each compartment (see Table 6.3). 
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Fig. 6.1: Top: Map of the Westerschelde estuary with indication of the 13 
compartments (redrawn after Soetaert & Herman, 1995). Below: average densities in 
each sampling station of the Westerschelde over a period of one year (April 1990 – 
April 1991), with indication of the grouping of the different samples in each of the 13 
compartments. 
 

 
 Table 6.3: Surface size and 

density of Neomysis integer in 
the 13 compartments of the 
Westerschelde estuary 
 

Comp. Surface Density
No. (10³ m²) ind. 10³ m-2

1 2973 ns
2 3075 0
3 6387 1
4 2854 138
5 7772 0
6 16420 6507
7 14380 5187
8 14380 1563
9 13360 1556

10 34600 42
11 30300 4
12 49360 0
13 63620 0
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RESULTS 

 

The SSCP analyses of a 235 bp fragment of the mitochondrial COI gene of 

480 Neomysis integer specimens detected six haplotypes (Table 6.4). Two haplotypes 

(n & v) were singletons, while 65% and 29% of all specimens possessed the 

haplotypes f and g. The distribution of the haplotypes within the samples in each year 

is indicated in Fig. 6.2. The overall haplotype and nucleotide diversity values were 

relatively low (h = 0.4891 and π = 0.0046). Interannual variation in levels of 

molecular diversity was low, except for a slightly higher haplotype diversity in the 

2002 samples (h = 0.5713). In contrast, nucleotide diversity was similar between the 

different years when taking into account the large standard deviations (Table 6.4). 

Polymorphism within each year was consistent with neutral expectations, as 

evidenced by the non-significant Tajima’s D values (P > 0.05; Table 6.4). 

 

 
 

Fig. 6.2: Map of the sampling locations within the brackish to freshwater part of the 
Westerschelde estuary, with indication of the haplotype frequencies per sampling site 
(NS = not sampled, S = sampled, not analysed). Sampling years are indicated in the 
left column, N= total number of mysids analysed, for sampling location abbreviations 
see Table 6.1. 
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Table 6.4: Genetic diversity values with indication of the number of specimens 
analysed (N), number of haplotypes (Nh), haplotype and nucleotide diversity (h and π) 
and Tajima’s D value. Standard deviations for h and π are given in parentheses. 

 

N Nh h π Tajima's D
2001 148 5 0.4365 (0.0376) 0.0039 (0.0030) 0.0504 (P = 0.591)
2002 127 3 0.5713 (0.0308) 0.0059 (0.0040) 1.6463 (P = 0.946)
2003 205 5 0.4673 (0.0262) 0.0041 (0.0031) 0.4900 (P = 0.533)
Overall 480 6 0.4891 (0.0186) 0.0046 (0.0031) 0.3848 (P = 0.719)  

 
 

Among the six different haplotypes, a total of 6 polymorphic sites were 

observed (2.55%) (Table 6.5). All haplotypes were closely related as observed in the 

haplotype network (Fig. 6.3), with a maximum divergence of 6 substitutions (2.55% 

of uncorrected nucleotide divergence). Most haplotypes were connected by one 

mutation, except for the haplotypes g and e which were connected to the others by 2 

and 3 mutations respectively. 

 

 
 
 
Fig. 6.3: Minimum spanning network among COI haplotypes of Neomysis integer 
within the Westerschelde estuary.. Branches connecting circles are mutation steps and 
the small open circles indicate missing haplotypes. The area of each circle is 
representative of the frequency with which the haplotypes occurred in the total 
sample. 
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Polymorphic sites
1 1 1 1

1 9 0 1 9 9
Haplotype 8 7 7 7 5 8
g T T C G T G
u . . . . C .
f C . . A . .
v C . T A . .
n C A . A . .
e . C . A . C  

 

The AMOVA analysis indicated that, when pooling all data per year, a low but 

significant amount of genetic variance occurred among temporary samples (1.75%, 

ΦST = 0.0175; P = 0.0106) (Table 6.6). The same pattern was observed when 

performing an AMOVA solely based on haplotype frequencies (F-statistic), but now 

the between-years variance component was reduced to 1.19% (FST = 0.0119; P = 

0.0469). Within years, a significant rejection of panmixia was detected, both using the 

Φ and F-statistics, of the 2001 and 2002 samples (Table 6.6). Although most variance 

was detected within the samples, a small fraction of the total variance was attributed 

to the among-samples component within these years. Finally, when performing a 

hierarchical AMOVA incorporating the temporal (among years) and spatial 

component (among samples, within years), the spatial variance was greater than the 

temporal component (ΦSC = 0.0537, P < 0.001 and ΦCT = 0.0030, P = 0.3566). 

The multidimensional scaling analysis (MDSA) based on the pairwise ΦST 

distances clearly revealed this heterogeneity between the samples (Fig. 6.4). The low 

stress value (0.0827, i.e. < 0.10 see Clarke, 1993) indicated a good and useful 2D-

representation of the structuring of the samples. The 2003 samples formed a 

homogenous group (as evidenced by the very low, non-significant pairwise ΦST 

distances; see Appendix I) comprising as well the 2002 samples, with exception of the 

2002 DOCK sample. The divergence of this sample is mainly due to the higher 

frequency of the haplotype e (see Fig. 6.2). When excluding this sample in the 

AMOVA analysis, the 2002 samples appeared to be homogenous (ΦST = -0.024; P = 

0.800). Similarly, the heterogeneity of the 2001 samples is only caused by the 

divergence of the Bath sample (‘BA 2001’), which is mainly the result of a higher 

frequency of the haplotype g within this sample.  

Table 6.5: Polymorphic positions 
observed in the 235 bp fragment of the 
COI gene screened for Neomysis integer. 
Dots indicate that the same nucleotide is 
present as in haplotype g. 
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Table 6.6: Results of the analysis of molecular variance (AMOVA) for spatial and 
temporal samples of Neomysis integer within the Westerschelde estuary, displaying 
the Φ-statistics (based on haplotype frequencies and molecular divergence based on 
Tamura-Nei (1993) genetic distances) and F-statistics (based on haplotype frequencies 
only). 
 

Source of variation % total Φ-statistics P % total F -statistics P
Pooled per year

Among years 1.75 ΦST = 0.0175 0.0106 1.19 FST = 0.0119 0.04692
Within years 98.25 98.81

2001 samples
Among samples 9.11 ΦST = 0.0917 0.0017 10.16 FST = 0.1016 0.0006
Within samples 90.89 89.84

2002 samples
Among samples 9.4 ΦST = 0.0940 < 0.001 7.82 FST = 0.0782 0.0039
Within samples 90.6 92.18

2003 samples
Among samples -2.83 ΦST = -0,0282 0.9955 -2.62 FST = -0.0262 0.9831
Within samples 102.82 102.62

Total dataset, grouped per year
Among groups 0.3 ΦCT = 0.0030 0.3566 0.35 FCT = 0.0035 0.3831
Among populations/ 5.36 ΦSC = 0.0537 < 0.001 3.8 FSC = 0.0382 < 0.001
within groups
Within populations 94.34 ΦST = 0.0566 < 0.001 95.84 FST = 0.0416 < 0.001  

 
 

 
Fig. 6.4: Multidimensional scaling analysis on the samples of Neomysis integer 
collected within the Westerschelde and based on pairwise Tamura-Nei genetic 
distances. Colour scheme: green = 2001, red = 2002 and blue = 2003 samples. 
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The estimation of the census population size resulted in a total population size 

of 226.7 × 106 mysids (see Table 6.3). An estimation of the sex ratio using data from 

the same database (number of females/ number of males) provided, despite minimal 

temporal fluctuations, an average value close to 1. Hence, the total female population 

size (Nf) was estimated to be 113.4 × 106 females. The estimations of θ based on the 

mean number of pairwise differences ranged from 0.920 ± 0.708 to 1.376 ± 0.945, 

with an overall θ amounting to 1.076 ± 0.786. The overall effective female population 

size (Nef) was calculated to be 264157 to 413740 (Table 6.7). The maximum-

likelihood estimates of θ using the coalescence based approach are listed in Table 6.8, 

the corresponding estimates of the female effective population size ranged from 

476,885 to 1,419,579. The Nef/Nf ratios based on the summary statistics and on the 

maximum-likelihood coalescence approach ranged between 0.0016 – 0.0035 and 

0.0041 – 0.0125 respectively (Tables 6.7 and 6.8). 

 

 
 
Table 6.7: Estimates of θ based on the mean number of pairwise differences, with 
indication of the standard deviation in parentheses, effective female population size 
(Nef) and Nef/Nf ratio within the samples pooled per year. 
 

2001 2002 2003 Overall
θ 0.920 (0.708) 1.376 (0.945) 0.974 (0.735) 1.076 (0.786)
N ef 220335 - 345103 181179 - 283773 249673 - 391054 217513 - 340682
N ef /N f 0.0019 - 0.0030 0.0016 - 0.0025 0.0022 - 0.0035 0.0019 - 0.0030  

 
 

 

Table 6.8: Estimates of θ obtained by the coalescence method, with indication of the 
95% confidence intervals, effective female population size (Nef) and Nef/Nf ratio 
within the samples pooled per year. 
 

2001 2002 2003
θ 0.00981 0.01571 0.00811
95% CI 0.00873 - 0.0104 0.01068 - 0.02442 0.00716 - 0.00922
N ef 565962 - 886446 906347 - 1419579 467885 - 732832
N ef /N f 0.0050 - 0.0078 0.0080 - 0.0125 0.0041 - 0.0065  
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DISCUSSION 

 

Spatiotemporal variation in the genetic population structure of Neomysis integer? 

 

 The analysis of molecular variance (AMOVA) detected a significant amount 

of variation among the different years (see Table 6.6). The largest temporal variation 

was observed between the years 2001 – 2002 and 2002 – 2003, while the years 2001 – 

2003 did not show significant variation. However, when considering the whole 

Westerschelde estuary not as a single panmictic population unit for N. integer, and 

taking into account possible spatial variations between the Westerschelde samples of 

N. integer within sampling years, only a very small, albeit not significant, amount of 

variation (0.3%) was observed between years (see results of the AMOVA using three 

hierarchical levels in Table 6.6). Hence, the spatial pattern of the samples within the 

Westerschelde estuary seems to override the (limited) temporal fraction. As evidenced 

by the AMOVA and the MDS plot of the pairwise genetic distances between samples, 

a clear pattern of genetic differentiation was apparent within the years 2001 and 2002. 

In contrast, all the samples collected in 2003 were genetically homogeneous 

notwithstanding a high sampling intensity along the whole salinity range over which 

N. integer is distributed and the extensive molecular analysis (# analysed specimens 

per sampling station ≥ 28). Interestingly, the semi-closed brackish water pond 

Galgenweel (GAL 2003) does not seem to be isolated from the subtidal N. integer 

population. This implies that the occasional (seasonal) opening of this pond enables 

sufficient gene flow between the populations in the Westerschelde estuary and 

Galgenweel, counteracting genetic differentiation within this pond. Within 2001 the 

significant genetic structure was caused by the shift in frequencies of the haplotypes f 

and g in the Bath sample (BA 2001). The differentiation of this sample is remarkable 

and surprising since the distance to the Saefthinge sample is less then 10 km. The 

genetic structure within 2002 was caused by the divergent genetic composition of the 

sample collected within the harbour site of BASF (DOCK 2002). However, finding 

possible causes for these genetic heterogenities will be puzzling since there was no 

evidence for temporal stability of the spatial genetic patterns within the Westerschelde 

estuary (see Fig. 6.2). 

Genetic differentiation within a single estuary system has been demonstrated 

in a wide range of taxa (see review in Bilton et al, 2002). Although some of these 
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assumed intraspecific studies may in fact represent the differential distribution of 

several reproductively isolated cryptic species or different ecotypes (Schizas et al, 

2002; Takahashi et al, 2003; Caudill & Bucklin, 2004; Derycke et al, submitted), 

others attribute this microgeographic genetic differentiation to inbreeding or 

stochastic events (drift – gene flow) (see references in Bilton et al, 2002). 

Alternatively, clinal variation in the frequency of alleles has also been linked to 

differential selection along several environmental gradients within an estuary (e.g. 

salinity, pollution) (see references in Bilton et al, 2002; De Wolf et al, 2004). It is 

clear, however, that the different haplotypes observed within N. integer of the 

Westerschelde samples represent closely related variants which are not reproductively 

isolated. Neither seems environmentally induced selection to have an influence on the 

observed spatial variation in N. integer. First of all, the mitochondrial COI gene 

screened is assumed to be selectively neutral (but see Ballard & Kreitman, 1995; Blier 

et al, 2001; Ballard et al, 2004), which was confirmed by the overall test of neutrality 

showing no differences from neutral expectations (see non-significant Tajima’s D 

values in Table 6.4). Moreover, the discordance in the genetic pattern of the subtidal 

samples between years (see Fig 6.2, structure in 2001 vs. homogeneity in 2002 & 

2003) does not add to the hypothesis of selection playing a role in maintaining a 

genetic differentiation along an environmental gradient. However, additional 

(seasonal) sampling would be appropriate to further unravel any environment – 

genotype interactions and potential seasonal fluctuations in the selective pressure. 

Could the specific life history traits (brooding behaviour, absence of pelagic 

larvae) and aggregation (swarming) behaviour of N. integer promote intra-estuarine 

differentiation?  Field observations have shown that swarming behaviour of N. integer 

may be extensive, resulting in a patchy distribution of N. integer within an estuary 

(Mauchline, 1971a; Lawrie et al, 1999; Roast et al, 2004). Swarming behaviour in 

marine invertebrates, such as in krill species, seems to promote genetic differentiation 

even on very small geographic scales (< 20 km) (Zane & Patarnello, 2000; Jarman et 

al, 2002). Studies on within-swarm variability in Antarctic krill has shown that these 

swarms represent associations of krill that are more related to each other than to 

individuals from other swarms (Jarman et al, 2002). Although our results of the 2001 

samples are in line with such a hypothesis, the results of the 2002 and especially the 

2003 samples do not corroborate this. Hence, it seems that such a ‘differentiation 

between swarms’ pattern doesn’t hold true for a shallow water mysid. Firstly, the 
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swarming behaviour observed in N. integer is probably more a random aggregation of 

individuals swimming in the same direction, triggered by physical environmental 

parameters (e.g. tidal flow; Roast et al, 1998; Lawrie et al, 1999), rather than a 

breeding aggregation as observed in deep water mysids and krill species (Mauchline 

& Fisher, 1969; Mauchline, 1971a). Secondly, if different breeding entities could be 

formed within a population of N. integer, it seems unlikely that these aggregations are 

able to maintain a long-term cohesion of related individuals, especially in a highly 

turbulent environment as the Westerschelde estuary. 

Although selection in relation to different environmental parameters does not 

seem to be a plausible explanation the spatial and temporal variation in the genetic 

structure of the harbour samples of BASF (DOCK 2002 & DOCK 2003), temporal 

variations in dissolved oxygen (DO) concentrations could provide more insight in the 

dynamics of the population structure of N. integer at this harbor site. Dissolved 

oxygen concentrations below 40% of the saturation value (~ 4.2 mg/l at 15°C) are a 

critical threshold for hyperbenthic life (Mees et al, 1995). Detailed recordings of the 

seasonal variation in the DO concentrations at the BASF dock site have shown regular 

drops in DO concentrations, sometimes well below 40% of the saturation value 

(Verween, pers. comm.). Hence, the situation at the harbour site of BASF could 

resemble a dynamic metapopulation structure, with frequent extinctions of the N. 

integer population and followed by a recolonisation after environmental amelioration. 

As a consequence, large temporal shifts in the genetic composition at the BASF site 

may not be unexpected. In addition, the restricted connectivity of the harbour docks 

with the Westerschelde estuary through the presence of ship locks may be responsible 

for restricted gene flow between the subtidal population of N. integer and the 

population present within the harbor docks. Furthermore, the watermass composition 

within the harbour docks of BASF is also influenced by the inflow of the nearby 

Scheldt – Rhine Canal (Verween, pers. comm.). Consequently, episodic immigration 

from sources with different allele frequencies compared to the subtidal Westerschelde 

population (e.g. a small N. integer population within the Scheldt – Rhine canal) may 

cause rapid, although sometimes transient, shifts in allele frequencies (cfr. BAS 2002 

pattern). However, without further spatial and temporal sampling these hypotheses 

remain speculative. 
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Effective female population size estimates 

 

Although the effective population size is rarely measured for natural 

populations of marine invertebrates, it is one of the most important parameters in 

evolutionary biology and population genetics. It is defined as the size of an ideal 

Wright-Fisher model population subject to the same rate of random genetic change as 

the studied population (Wright, 1931; Hartl & Clark, 1989) and hence determines the 

genetic properties of a population (e.g. population fitness). Generally, the effective 

population size is much smaller than the census population size, since not all 

individuals contribute progeny to the next generation with equal probability 

(Frankham, 1995). 

The estimates of the effective female population size (Nef) of the 

Westerschelde population of N. integer obtained in the present study ranged from 1,81 

× 105 to 1.42 × 106 females. The estimates of Nef obtained by the two methods were 

different, with the Nef obtained by the coalescent method being slightly higher. 

However, when taking into account the large variances associated with the calculation 

of θ, both estimates seem to fall within the same range (see Tables 6.7 & 6.8). 

Interannual variation in Nef was low. The estimates of the current census female 

population sizes (Nf) were made based on average densities of N. integer within the 

Westerschelde estuary over a period of one year. However this value (226.7 × 106 

mysids) should be treated with caution since it probably is an underestimate of the 

actual census population size. Firstly, our calculations were based only on density 

data of subtidal samples, hereby extrapolating these densities for probable denser 

shallow areas (Mees & Hamerlynck, 1992). Secondly, the vertical distribution of N. 

integer in the water column was not inferred since only densities in a zone of 1 m 

above the bottom were used. Moreover, densities per compartment were calculated 

using compartment surface (m²) instead of compartment volumes (m³). Especially in 

the maximum turbidity zone, the N. integer population is evenly distributed over the 

complete water column (Mees & Hamerlynck, 1992; Fockedey & Mees, 1995). 

Finally the net efficiency of the hyperbenthic sledge may not be 100%, since mysids 

could be capable of avoiding nets (Mauchline, 1980; Mees & Hamerlynck, 1992). 

Nevertheless, since no one has yet attempted to provide a good estimate of the N. 
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integer census population size, our values may be useful for comparative purposes 

with the molecular estimates, bearing in mind the possible underestimations.  

The effective female population size estimations obtained for N. integer are 

about 2 to 3 orders of magnitude below the estimates of census female population 

size, with a Nef/Nf ratio ranging from 0.0016 to 0.0125 (Table 6.7 & 6.8). These values 

are very low when compared to Ne/N ratios obtained from theoretical studies ranging 

between 0.25 and 0.75 for most organisms (Nunney & Elam, 1994). In a review of 

empirical studies that estimated Ne, Frankham (1995) found that the average Ne/N 

ratio across 102 species was 0.11, thus one or two orders of magnitude larger than 

those found for N. integer. However, low Ne/N ratios are not that uncommon in 

marine species, even in populations with a census size of several millions of 

individuals (Carvalho & Hauser, 1994). Estimates of the Ne/N ratio as low as 0.001 

and 0.25 × 10-5 have been reported for the red drum (Sciaenops ocellatus) and the 

New Zealand snapper (Pagrus auratus) (Hauser et al, 2002; Turner et al, 2002). 

Temporal genetic analysis of North Sea cod (Gadus morhua) gave a Ne/N ratio of 3.9 

× 10-5 (Hutchinson et al, 2003). The few studies that estimated Ne for marine 

invertebrates such as for krill and copepods, reported much lower Ne/N ratios: 5.28 – 

8.30 × 10-10 for Antarctic krill (Euphausia superba; Zane et al, 1998), 8.30 – 13 × 10-4 

for European krill (Meganyctiphanes norvegica; Zane et al, 2000) and 3.62 – 5.38 × 

10-11 for pelagic copepods (Nannocalanus minor and Calanus finmarchicus; Bucklin 

& Wiebe, 1998). A case study of the Pacific oyster (Crassostrea gigas) showed that 

the effective population size was about 10,000 times less than the number of oysters 

harvested per year (Hedgecock 1994a). These low Ne/N ratios suggest that only a 

small portion of the actual population contributes successfully to the next generation, 

as could be the case in species with very high fecundity and high mortality of early 

life stages (Hedgecock, 1994a; Li & Hedgecock, 1998). Several ecological and 

evolutionary factors could be responsible for low Ne/N ratios: large variance in female 

reproductive success, fluctuations in population size through time or unequal sex ratio 

(Avise et al, 1988; Hedgecock, 1994a,b; Nunney, 1996; Vucetich et al, 1997). All 

these factors have a complex combined effect, which makes it difficult to assign the 

low Ne/N ratio of N. integer to one specific cause only. N. integer has a moderate 

fecundity, with females producing ~20 – 80 larvae/brood (Mauchline, 1973; Mees et 

al, 1994). Although N. integer has some mechanisms to improve survival of the 

offspring, e.g. simultaneous release of the juveniles from the female brood pouch at 
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an advanced development stage, social aggregations in a shoal and behavioral 

adaptations in order to prevent displacement from the estuary (Mauchline, 1971a; 

Roast et al, 1998), variance in reproductive success could be high since the success or 

failure of each entire brood may depend on the fate of the mother. Moreover, the 

ecology of N. integer which seems to be a compromise between an r-strategy (i.e. a 

relative unspecialized opportunist, poor competitor, large salinity tolerance, small in 

size and intense reproduction during most favorable period of the year) and a K-

strategy (i.e. brooder with small number of offspring) might be fallible for species 

inhabiting unstable brackish habitats, and hence N. integer could experience large 

fluctuations in population density (Parker & West, 1979). In addition, since the Nef 

estimation using DNA sequence genealogies reflects the end results of processes that 

may have occurred over a very long time period. Pleistocene changes in the 

population size of N. integer may also have played a role in reducing Nef (Avise et al, 

1988; Neigel, 1996). 

 

Conclusions and recommendations 

 

 In conclusion, within two of the three years surveyed (2001 & 2002) a 

significant rejection of panmixia was observed within the Westerschelde estuary. 

However, there was no evidence for temporal stability of this genetic structure. 

Whether the temporal instability of the population structure results from stochastic 

events, sampling error or unpredictable environmental changes, which are not 

uncommon in estuarine habitats, remains largely unanswered and demands further 

research. In addition, research of small scale, intra-estuarine genetic variation within 

other mysid or invertebrate species could be very valuable in order to quantify the 

signal:noise ratio of the molecular marker with more precision, leading to a more 

accurate estimation of the spatial population structure. 

 The estimations of the effective female population size of N. integer we 

obtained in the present study were about 2 to 3 orders of magnitude below the 

estimates of the census female population size, resulting in very low Nef/Nf ratios. 

Further estimates of the effective female population size of other brackish water 

invertebrates would be useful to find out if such low Ne/N ratios are commonplace in 

these species. But the present results could already serve as a warning for 

conservation biologists that large population sizes, as in N. integer, do not necessarily 
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confer a high level of genetic diversity. Such populations could be prone to genetic 

erosion.  

Furthermore, future estimates of the spatial genetic structuring, as well as of 

the effective population sizes of N. integer should preferably make use of a multilocus 

approach. Not only does it reveal genetic differences that remained undetected in the 

present study, it would also increase the accuracy of the effective population size 

estimations (Nunney & Elam, 1994; Neigel, 1996; Roman & Palumbi, 2003). 

Screening a larger amount of genetic information in both coding and noncoding 

regions, and tracking several unlinked loci may also provide information on whether 

any regions of the genome are under selective pressure (see Nevo, 2001). 
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APPENDIX I: Pairwise ΦST distances between samples, calculated using Tamura-
Nei (1993) genetic distances. Significant values at the 95% level are indicated in bold. 
For sampling site abbreviations see Tabel 6.1. 
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ABSTRACT 

 

 
 Morphological variation was examined in Neomysis integer and Mesopodopsis 

slabberi, two abundant, low dispersal mysid species of the European coasts. Both 

species dominate the hyperbenthic communities in the northeast Atlantic, and M. 

slabberi is also widely distributed in the Mediterranean and Black Sea. Three 

populations of each species were sampled throughout their distribution range. 

Samples of N. integer were collected in the northeast Atlantic Eems-Dollard, Gironde 

and Guadalquivir estuaries. In the case of M. slabberi, mysids were sampled in two 

northeast Atlantic estuaries (Eems-Dollard and Guadalquivir) and one Mediterranean 

site (Ebro Delta). A total of 12 morphometric and two meristic characters were 

measured from 30 – 64 mysids per sample. Multivariate analysis showed clear 

morphometric differences between populations of both species. The morphological 

differentiation within M. slabberi was highly concordant with the available genetic 

data from mitochondrial loci, pointing to a large divergence between the Atlantic and 

Mediterranean populations. However, due to overlap between populations, the 

morphometric analysis does not suffice to assign the populations to a separate species 

status. In the case of N. integer, the morphometric patterns showed a divergence of the 

Gironde population. Potential interactions of the mysid morphology and 

environmental conditions are discussed. 
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INTRODUCTION 

 

Multivariate analysis of a set of morphometric and meristic characters has 

been widely used in stock identification of freshwater and marine fish species 

(Mamuris et al, 1998; Cadrin, 2000; Murta, 2000; Pakkasmaa & Piironen, 2001; 

Cabral et al, 2003), and to a lesser extent in marine invertebrates (e.g. Henderson et 

al, 1990; Kassahn et al, 2003). The method is regarded more appropriate than the use 

of single morphological characters for investigating taxonomic problems in 

determining relationships between populations or closely related (cryptic) species 

(e.g. Scapini et al, 1999; De Grave & Diaz, 2001; Clark et al, 2001; Debuse et al, 

2001; Doadrio et al, 2002; Lee & Frost, 2002). Moreover, morphometric analyses can 

be a tool in assessing habitat-specific differentiation of populations, such as 

differentiation related to predation pressures, salinity, temperature, food availability, 

etc. (e.g. Gee, 1988; Scapini et al, 1999; Maltagliati et al, 2003). Differences in 

morphometric and meristic characters among populations of a species are thought to 

be the result of genetic differences or environmental factors, or their interactions 

(Lindsey, 1988; Scheiner, 1993; Hoffman & Merilä, 1999). Strong genetic 

differentiation of populations, accompanied with reproductive isolation, may lead to 

local adaptation. On the other hand, changing environmental conditions may produce 

phenotypic plasticity in genetically similar populations (Thompson, 1991). Hence, the 

comparison of the degree of variation in molecular markers with morphological 

characters may be important in assessing the degree of phenotypic plasticity shown by 

a species (O’Reilly & Horn, 2004).  

Neomysis integer and Mesopodopsis slabberi are two of the most common 

mysid species in European coastal (M. slabberi) and brackish (M. slabberi and N. 

integer) habitats, where they are believed to play a key role (Mees et al, 1995; 

Azeiteiro et al, 1999; Hostens & Mees, 1999). Both species are euryhaline and 

eurythermic, and have a wide distribution: N. integer occurs along the NE Atlantic 

from the Baltic Sea to the North African coasts of Morocco (Tattersall & Tattersall, 

1951) and M. slabberi is distributed from the western Baltic, the NE Atlantic, up to 

the entire Mediterranean, Marmara, Black and Azov Seas (30 - 59°N, 10°W – 41°E) 

(Wittmann, 1992). This wide distribution of both species spanning different 

biogeographical regions (Subarctic, Celtic, Lusitanian and Mediterranean region, cfr 

Adey & Steneck, 2001) with varying environmental conditions, combined with the 
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limited dispersal capacities of these mysids (brooding behavior and lack of free-living 

larvae), may be expected to produce differences in both molecular and morphological 

traits among populations (Planes, 1998; O’Reilly & Horn, 2004).  

The taxonomy of the genus Mesopodopsis, and in particular of the species M. 

slabberi has been a matter of controversy, mainly due to the limited phylogenetic 

resolution of the morphological characters used to describe and diagnose different 

species within this genus. Based on a study by Wittmann (1992) on the 

morphogeographic variations within the genus Mesopodopsis, the cosmopolitan M. 

slabberi was split into four species: M. slabberi (NE Atlantic, Mediterranean, Black 

Sea), M. aegyptia (Mediterranean), M. tropicalis (equatorial W-Africa) and M. 

wooldridgei (South Africa). Morphological differences between Atlantic, 

Mediterranean and Black Sea populations of M. slabberi were reported by Wittmann 

(1992). However, the observed variation was small and statistically overlapping, 

without any consistent pattern related to environment or geography. It must be noted 

that this study did not use a multivariate statistical analysis of morphometric 

characters to elucidate variation between populations. On the other hand, 

morphological variation within N. integer is considered to be small (Tattersall & 

Tattersall, 1951; Parker & West, 1979), but has not been studied in detail. A number 

of ‘forms’ or varieties within the species N. integer were introduced by Czerniavsky 

(1882), but since these varietal divisions were based on trivial differences, they have 

been largely ignored in subsequent descriptions (Tattersall & Tattersall, 1951). 

However, given the slight taxonomic differences observed between populations of the 

North American congeneric N. americana (Williams et al, 1974), morphometric 

variation between populations of N. integer may be expected. 

Previous studies on genetic variation between populations of N. integer and M. 

slabberi, based on several mitochondrial loci, have shown significant heterogeneity 

within both species (see Chapters 3, 4 & 5). Analysis of Atlantic and Mediterranean 

populations of M. slabberi showed a clear differentiation between both basins, with 

very high genetic distances, probably pointing to the existence of different cryptic 

species (see Chapter 5). Phylogeographic analyses of N. integer identified a large 

genetic break at the southern distribution range (= divergent Guadalquivir population) 

and showed a genetic isolation of each population south of the English Channel, 

including the Irish population (see Chapters 3 & 4). In this respect, a morphometric 
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analysis within both species could lead to a better understanding of the intraspecific 

evolutionary and systematic diversity and its biological significance. 

The aims of this study were to (i) examine the pattern and the extent of 

morphometric variation in populations of the mysids N. integer and M. slabberi, and 

(ii) compare these results with the available genetic data. For this purpose, three 

population samples of each species, covering, at least for N. integer, most of its 

geographical distribution range, were examined morphologically and analysed using 

multivariate methods. 

 

 

 

 

 
Fig. 7.1: Sampling locations (N = Neomysis integer, M = Mesopodopsis slabberi), 
sampling site abbreviations: ED = Eems-Dollard, GI = Gironde, GU = Guadalquivir, 
EB = Ebro
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MATERIALS AND METHODS 

 

Sampling 

Samples of Neomysis integer were collected in three NE Atlantic estuaries 

covering most of the species’ distribution range. Mesopodopsis slabberi was collected 

in two NE Atlantic and one Mediterranean estuary (see Fig. 7.1). Most samples were 

collected with a hyperbenthic sledge, with exception of the sample of the Ebro delta, 

which was collected with a hand net (mesh size 1 mm). All sampling was done during 

the summer months between 1991 and 2001. The samples were either stored in 7% 

formaldehyde (all N. integer samples and M. slabberi from the Eems - Dollard) or in 

70% ethanol (M. slabberi samples from the Guadalquivir and Ebro). The ethanol-

preserved samples of M. slabberi were also used for molecular analyses (see Chapter 

5). 

Measurements and statistical analyses 

From each sample a random number of about 50 adult, and mostly gravid, 

females were examined morphologically. A total of 12 metric (Fig. 7.2) and two 

meristic characters. The metric measurements were related to the shape of the telson, 

antennale scale, eyes and uropods. The meristic counts included the number of spines 

on the lateral margin of the telson (only for M. slabberi) and on the inner margin of 

the uropod endopodite. Standard length was measured from whole animals under a 

binocular microscope. Other characters were measured from slide mounts of the 

appendages under a microscope and recorded with a digitizer. 

 All statistical analyses were performed using the STATISTICA 6.0 software 

package (STATSOFT 2001). The most conspicuous outliers were excluded when 

suspecting measurement error and missing data were case-wise deleted in the 

statistical analyses. To minimize size effects in all analyses, the continuous variables 

were divided by standard length followed by an arcsin transformation. Univariate 

analysis of variance (ANOVA) was performed, in case of homogeneity of the 

variances, to test whether the different populations showed significant differences in 

morphometric measurements and meristic characters. In those cases where 

homogeneity of variances was violated, even after transformations of the raw data, a 

non-parametric test was used (Kruskall-Wallis and Mann-Whitney). The data set 

(only metric measurements with exclusion of the standard length) was subjected to a 

backward stepwise Discriminant Function Analysis (DFA). DFA finds linear  
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Fig. 7.2: Morphometric measurements: 1: Standard length (SL); 2, 3, 4 & 5: Telson of 
Neomysis integer (2&4) and Mesopodopsis slabberi (3&5), A = telson length 
(TELL), B = distal telson width (TELDW), C = caudal telson width (TELCW), D = 
caudal telson length (TELCL); 6 & 7: Antennale scale of Neomysis integer (6) and 
Mesopodopsis slabberi (7), A= length of antennale scale (ANTL), B = width of 
antennale scale (ANTW); 8 & 9: Uropode of Neomysis integer (8) and Mesopodopsis 
slabberi (9), C = exopodite length (EXOL), D = endopodite length (ENDOL); 10 & 
11: Eye of Neomysis integer (10) and Mesopodopsis slabberi (11), A = cornea length 
(CORNEA), B = length of eyestalk (EYESTL), C = width of eyestalk (EYESTW). 
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 combinations of variables (roots), that maximize differences among a priori defined 

groups (in this case populations). The resultant discriminant functions were used to 

classify individuals into samples. The classification success rate (cross-validation test) 

was evaluated based on the percentage of individuals correctly classified in the 

original sample. Alternatively, a principal components analysis (PCA) was performed 

and in order to eliminate the size effect the first principal component (PC1) was 

eliminated. Subsequently the other PC scores (PC2–n) were subjected to a canonical 

variate analysis (see Väinölä et al, 2002). However, since a similar pattern was 

obtained as with the DFA, the results of the PCA-method are not presented. 

 

 

Table 7.1: Mean and standard deviation (in parenthesis) of the different metric and 
meristic characters. Metric values are in mm. For the sampling site and metric 
measurement abbreviations see Figs. 7.1 and 7.2. Meristic character abbreviations: 
#SPENDO = number of spines on the inner margin of the uropod endopodite, 
#SPTEL = number of spines on the lateral margin of the telson. 
 
 

      Neomysis integer  Mesopodopsis slabberi
OVERALL ED (N = 50) GI (N = 54) GU (N = 64) OVERALL ED (N = 50) GU (N = 52) EB (N = 30)

STDL 10.29 (1.61) 10.60 (1.33) 10.30 (0.82) 10.03 (2.19) 8.45 (0.94) 8.49 (0.85) 8.87 (0.89) 7.64 (0.63)
EYESTW 0.46 (0.07) 0.53 (0.05) 0.39 (0.02) 0.46 (0.05) 0.31 (0.03) 0.33 (0.03) 0.28 (0.03) 0.30 (0.02)
CORNEA 0.26 (0.05) 0.31 (0.05) 0.21 (0.02) 0.26 (0.03) 0.21 (0.03) 0.23 (0.03) 0.21 (0.03) 0.19 (0.02)
EYESTL 0.43 (0.06) 0.48 (0.06) 0.41 (0.04) 0.42 (0.05) 0.72 (0.06) 0.73 (0.05) 0.74 (0.06) 0.68 (0.04)

TELL 1.64 (0.23) 1.73 (0.21) 1.66 (0.12) 1.53 (0.29) 0.78 (0.14) 0.88 (0.08) 0.81 (0.08) 0.58 (0.05)
TELDW 0.75 (0.08) 0.78 (0.08) 0.74 (0.05) 0.73 (0.10) 0.54 (0.06) 0.56 (0.04) 0.57 (0.05) 0.46 (0.04)
TELCW 0.10 (0.02) 0.10 (0.02) 0.10 (0.03) 0.09 (0.02) 0.37 (0.04) 0.39 (0.03) 0.38 (0.03) 0.32 (0.02)
TELCL 0.15 (0.04) 0.18 (0.04) 0.16 (0.03) 0.11 (0.02) 0.24 (0.05) 0.27 (0.03) 0.24 (0.03) 0.18 (0.02)
ANTW 0.30 (0.04) 0.33 (0.03) 0.29 (0.02) 0.28 (0.05) 0.20 (0.02) 0.20 (0.01) 0.21 (0.01) 0.16 (0.02)
ANTL 2.73 (0.39) 3.02 (0.34) 2.66 (0.20) 2.51 (0.38) 1.25 (0.17) 1.29 (0.10) 1.29 (0.21) 1.23 (0.09)
EXOL 2.18 (0.33) 2.39 (0.25) 2.17 (0.17) 2.02 (0.39) 1.69 (0.20) 1.75 (0.12) 1.80 (0.16) 1.45 (0.12)

ENDOL 1.52 (0.20) 1.64 (0.15) 1.51 (0.14) 1.43 (0.22) 1.12 (0.11) 1.17 (0.07) 1.16 (0.08) 0.96 (0.06)
#SPENDO 28.55 (4.07) 28.36 (4.82) 28.93 (5.05) 28.38 (1.89) 20.97 (1.24) 20.66 (1.68) 21.65 (0.48) 20.40 (0.56)
#SPTEL  -  -  -  - 6.56 (0.81) 6.96 (0.20) 7.00 (0.34) 5.57 (1.07)  
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RESULTS 

 

 

Neomysis integer 

 

 The mean standard length of Neomysis integer across all populations 

amounted to 10.29 mm (SD 1.61). A significant difference in standard length was 

observed between the three populations (Kruskal-Wallis test: H (2, N= 168) = 8.55; P 

= 0.0139), with the mysids of the Eems-Dollard population having the largest length 

(mean = 10.60 mm; SD 1.33) and those of the Guadalquivir being the smallest (mean 

= 10.03 mm; SD 2.19) (see Table 7.1). 

 All morphometric characters could be used in the discriminant analysis since 

no multicollinearity was registered between the variables (for all correlations: R < 

0.7). The backward stepwise Discriminant Function Analysis (DFA), using 

geographical origin of each population as separator factor, revealed that four of the 12 

morphometric characters contributed significantly to the multivariate discrimination 

between the three N. integer populations (Table 7.2). 

 
Table 7.2: Summary of the Discriminant Function Analysis.  
 

Wilks' Partial F-remove P -level Toler. 1-Toler.
Lambda Lambda (2,139) (R-Sqr.)

EYESTW 0.2190 0.5953 47.2443 < 0.0001 0.4278 0.5722
CORNEA 0.1496 0.8715 10.2433 < 0.0001 0.7302 0.2698
TELDW 0.1837 0.7095 28.4490 < 0.0001 0.4599 0.5401
TELCL 0.2691 0.4845 739.581 < 0.0001 0.9495 0.0505  

 

Wilks’ lambda amounted to 0.1304 and was 

highly significant (appox. F8,278 = 61.489; P < 

0.001). The morphometric characters showed 

a low degree of overlap (maximal 57.22% in 

case of the eyestalk width (EYESTW), see 

Table 7.2). Squared Mahalonobis distances (D2) between populations (i.e. a distance 

measure between the group centroids) are listed in Table 7.3. All distances were 

significant (P < 0.001) and the largest distance was observed between the Eems-

Dollard (ED) and Gironde (GI) populations, while the distance between the Eems-

ED GI GU
ED - *** ***
GI 14.3579  - ***
GU 6.0109 14.0135  -

Table 7.3: Squared Mahalanobis 
Distances 
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Dollard and Guadalquivir (GU) populations seemed to be smaller. A scatterplot of the 

individual canonical scores is presented in Fig. 7.3. The relative importance of Root 1 

in distinguishing the three populations was up to 3 times higher than Root 2 

(Eigenvalue of Root 1 = 2.8666, Eigenvalue of Root 2 = 0.9836), and the first 

discriminant function accounted for 74.5% of the explained variance. A clear 

separation of the Gironde population could be observed along Root 1. In contrast, 

Root 2 separated the Eems-Dollard (ED) and Guadalquivir (GU) populations, 

although some overlap existed between both populations. The segregation along Root 

1 was mainly caused by differences in the variables eyestalk width (EYESTW) and 

cornea length (CORNEA) (Gironde < Eems-Dollard & Guadalquivir mysids), as 

evidenced by the high correlation of these morphometric characters and the canonical 

Root (Table 7.4). The differences along Root 2 were almost exclusively related to the 

variable caudal telson length (TELCL) (Guadalquivir < Gironde < Eems-Dollard 

mysids). The cross-validation test using the discriminant functions derived from the 

morphometric characters showed that overall 87.34% of the a priori grouped cases 

were correctly classified, with the within-group correct classifications ranging from 

78.18 (GU) to 96.23% (GI) (see Table 7.5). 

 

Table 7.4: Structure matrix of discriminant loadings for each of morphometric 
variable selected by the backward stepwise Discriminant Function Analysis (DFA). 
 

Root 1 Root 2
EYESTW -0.6785 0.1669
CORNEA -0.6112 0.1503
TELDW -0.1200 -0.0583
TELCL 0.2151 0.9306  
 

Table 7.5: Results of the discriminant analysis classification, showing the numbers 
and percentage of specimens classified in each group (Rows: Observed classifications, 
Columns: Predicted classifications). 
 

%
Correct ED GI GU

ED 88 44 0 6
GI 96.23 0 51 2
GU 78.18 8 4 43
TOTAL 87.34 52 55 51  
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Analyses of the meristic characters (spines on the inner margin of the uropod 

endopodite) revealed no significant differences between the three populations 

(Kruskal-Wallis test: H (2, N = 163) = 5.0697 p = 0.0793). In addition, a total of 12 

aberrant telsons were recorded (ED = 5, GI = 3, GU = 4); the morphology of these 

telsons were similar to those described in Mees et al (1995). 

 

 
Fig. 7.3: Neomysis integer: Scatterplot of the DFA scores along the first and second 
root. For sampling site abbreviations see Fig. 7.1. 
 

Mesopodopsis slabberi 

 

Mean standard length of Mesopodopsis slabberi across all populations 

amounted to 8.45 mm (SD 0.94). A significant difference in standard length was 

observed between the three populations (ANOVA: F2,193 = 23.91; P < 0.001), with the 

mysids of the Mediterranean Ebro population having the lowest standard length (mean 

= 7.64 mm; SD 0.63) (see Table 7.1). 

Again, no multicollinearity was registered between the variables and 

consequently all morphometric characters could be used in the discriminant analysis. 

The backward stepwise DFA revealed that only three out of the 12 morphometric 
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characters contributed significantly to the multivariate discrimination between the 

three M. slabberi populations (Table 7.6). The largest Mahalanobis (D2) distances 

were observed between the Mediterranean Ebro population and both Atlantic 

populations (Table 7.7). The canonical analysis showed that most of the observed 

variance between the populations (83%) was observed along Root 1 (Eigenvalue = 

3.44 vs. Eigenvalue Root 2 = 0.70), with a clear distinction between the Ebro (EB) 

and Eems-Dollard (ED) populations (Fig. 7.4). The differentiation along Root 1 

mainly correlated with the variables telson length (TELL) and caudal telson length 

(TELCL) (ED > GU > EB mysids), while the differences along Root 2 were related to 

the variable eyestalk width (EYESTW) (ED > EB > GU mysids) (Table 7.8). The 

morphometric discriminant analysis correctly classified, on average, 83.85% of the 

individuals (Table 7.9). The highest classification success rate was obtained for the 

Ebro mysids with 93.33%, while a lower amount of individuals (74%) were correctly 

classified in case of the Guadalquivir mysids. 

 

Table 7.6: Summary of the Discriminant Function Analysis. 

 

Wilks' Partial F-remove P -level Toler. 1-Toler.
N=114 Lambda Lambda (2,109) (R-Sqr.)
EYESTW 0.2458 0.5370 46.9902 < 0.0001 0.8585 0.1415
TELL 0.2310 0.5713 40.9025 < 0.0001 0.7854 0.2146
TELCL 0.1629 0.8102 12.7675 < 0.0001 0.9068 0.0932  

 

 

 

 

 

 

ED GU EB
ED  - *** ***
GU 5.1972  - ***
EB 21.0172 13.5901  -   

 
 

 

 
 

Table 7.7: Squared Mahalanobis 
Distances between populations. 
 

Table 7.8: Structure matrix of 
discriminant loadings for each of 
morphometric variable selected by 
the backward stepwise Discriminant 
Function Analysis (DFA). 
 Root 1 Root 2

EYESTW -0.0733 -0.9403
TELL 0.8057 -0.2767
TELCL 0.6674 -0.3742
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Fig. 7.4: Mesopodopsis slabberi: Scatterplot of the DFA scores along the first and 
second root. For sampling site abbreviations see Fig. 7.1. 
 

Analysis of the meristic characters showed a significant difference in the 

number of spines on the inner margin of the uropod endopodite (#SPENDO) and on 

the lateral margin of the telson (#SPTEL) between the different populations (Kruskal-

Wallis test for #SPENDO: H (2, N = 128) =36.013 P < 0.001; #SPTEL: H (2, N = 

132) = 75.82 P < 0.001). Mysids of the Mediterranean Ebro populations had, on 

average, less spines on the lateral margin of the telson, while those of the 

Guadalquivir population possessed, on average, more spines on the inner margin of 

the uropod endopodite (Table 7.1). Contrary to N. integer, no aberrant telsons were 

observed in the samples of M. slabberi. 

 

 

% Correct ED GU EB
ED 88 44 6 0
GU 74 10 37 3
EB 93.33 0 2 28
TOTAL 83.85 54 45 31  

 

Table 7.9: Results of the discriminant 
analysis classification, showing the 
numbers and percentage of specimens 
classified in each group (Rows: Observed 
classifications, Columns: Predicted 
classifications). 
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DISCUSSION 

 

 The multivariate analyses of morphometric characters revealed a significant 

differentiation between populations of both Neomysis integer and Mesopodopsis 

slabberi throughout their distribution range. Very often, such differences are to a large 

extent related to sexual dimorphism, allometric growth and/or different cohort size 

(Thorpe, 1976; Mamuris et al, 1998; De Grave & Diaz, 2001). In order to minimize 

the variances caused by these parameters, the present study used only adult, (mostly 

gravid) female specimens from the summer generation. In addition, all measurements 

were size standardized and transformed prior to statistical analysis. The method used 

here to correct the measurements for size proved to be effective, since all correlation 

coefficients which were close to 1 decreased to lower values after data transformation. 

Moreover, the second method used to eliminate the size effect gave similar results 

(i.e. performing a PCA and subsequently performing a canonical variate analysis on 

the individual PC scores (PC2 – 12) with elimination of the first principal component, 

see Materials & Methods). 

  Both species showed significant latitudinal differences in standard length. In 

the case of N. integer, the mysids of the southern Guadalquivir population had, on 

average, a shorter length. For M. slabberi, the Mediterranean mysids were smaller 

than those of the Atlantic populations. Considerable variations in life history 

characteristics (e.g. length, growth rate, number of cohorts, brood size) of mysid 

species at different latitudes, including N. integer and M. slabberi, have been reported 

(Pezzack & Corey, 1979; Mauchline, 1980; Sorbe, 1984; Morgan, 1985; Greenwood 

et al, 1989; San Vicente & Sorbe, 1995; San Vicente, 1996; Delgado et al, 1997). 

Water temperature, light cycle and food conditions seem to be the principal 

environmental factors influencing the growth and reproductive cycle of crustaceans 

(Pezzack & Corey, 1979; Winkler & Greve, 2002). In general, there is a tendency 

towards an extended reproductive season with decreasing latitude in shallow-water 

mysid species (Delgado et al, 1997). In the case of M. slabberi, the Atlantic 

reproductive cycle with three generations (spring, summer and winter generation) 

shifts to a more or less continuous breeding throughout the whole year in 

Mediterranean populations (Delgado et al, 1997; Azeiteiro et al, 1999; Uppabullung, 

1999). Hence, the present results corroborate the general observations of lower 

cohort-size in populations with an extended breeding season. 
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Phenotypic variation in populations of Neomysis integer and Mesopodopsis slabberi 

 

 Extensive variation in morphometric characters was apparent between all three 

populations of N. integer and M. slabberi. This was not only supported by the DFA 

scores along the first two roots, but also by the significant, large Mahalanobis 

distances between the populations of both mysids (see Tables 7.3 and 7.7) and the 

high percentage of correctly reclassified specimens in the original groups 

(populations) (see Tables 7.5 and 7.9). For N. integer, the variables of primary 

importance in separating the populations along Root 1 were related to eye 

morphology: eyestalk width (EYESTW) and cornea length (CORNEA). While the 

morphometric variable related to the caudal telson morphology, caudal telson length 

(TELCL), had the largest discriminatory power along Root 2. 

 In the case of M. slabberi, the DFA showed that again the morphometric 

variables related to telson (TELL: telson length, TELCL: caudal telson length) and 

eye morphology (EYESTW: eyestalk width) were the most important variables in 

differentiating the populations. Contrary to N. integer, a significant difference in 

meristic characters was observed between the Atlantic and Mediterranean 

populations. According to Mauchline (1980) the number of spines in the margins of 

telsons and both endopod and exopod of the uropods is correlated to the overall body 

size of several mysid species. However, in the present study the size effect on spine 

numbers between populations is thought to be minimal since we tried to uniform our 

samples by selecting only adult (gravid) females of the summer generation. The 

assumption that meristic characters are independent of mysid size was further 

confirmed by the absence of correlations between the meristic characters and standard 

length or uropod endopodite/telson length. 

 

Causes of the phenotypic variation 

 
 The causes of morphological differences between populations are often quite 

difficult to explain. In general, changes in morphology are under control of 

environmental conditions or genetic background, or (most often) a combination of 

both. However, separating the effects of environmental induction from those under 

genetic control can be one of the most intricate problems in the analysis of geographic 

variation (Thorpe, 1976). Genetic differences and reproductive isolation between 
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populations can lead to local adaptation, which is reflected in morphology, behaviour, 

physiology and/or life history traits (Taylor, 1991). The alternative possibility is that 

morphological variation may result from phenotypic plasticity in response to varying 

environmental conditions (e.g. temperature, salinity, food availability, flow regime, 

predator/prey interactions, etc.) within different geographical areas (Scheiner, 1993). 

 Extensive genetic surveys of different mitochondrial loci revealed a significant 

differentiation of populations of both N. integer and M. slabberi (see chapters 3, 4 and 

5). Although not yet supported with nuclear markers, a large phylogeographic break 

was observed between Atlantic and Mediterranean populations of M. slabberi, 

indicating the possible existence of cryptic species. On the other hand, the observed 

genetic distances between populations throughout the whole distribution range of N. 

integer were smaller. Still, an isolation of the Gironde population and a well-

supported break at the southern distribution range (i.e. of the Guadalquivir population) 

could be observed. Concordance between the molecular data and the present 

morphometric analyses were noticed for M. slabberi, where the largest molecular and 

morphometric distances were found between the Mediterranean and Atlantic 

populations. Hence, the combination of the genetic differentiation (with possible 

reproductive isolation) and the adaptations to environmental conditions may have 

played a role in the Atlantic-Mediterranean separation and the morphological 

variability (mainly related to telson morphology) between both regions. In contrast, 

the patterns of genetic differentiation within N. integer do not correspond fully with 

the present morphometric results. Largest squared Mahalanobis distances were 

observed for the Gironde populations (Table 7.3), while the largest genetic divergence 

was found for the Guadalquivir and not the Gironde population (see Chapters 3 & 4). 

However, it must be noted that the patterns of genetic differentiation within N. integer 

were only based on a single mitochondrial marker and hence need further validation 

of other (unlinked) molecular markers in order to fully correlate them with the present 

morphometric results. 

One of the morphometric characters of primary importance in separating the 

populations, both in N. integer and M. slabberi, was related to the eye morphology. It 

is not unlikely that this morphological character can vary in association with 

environmental conditions. Mysids have well-developed compound eyes, and are 

known to use vision in various situations, e.g. schooling behaviour and choice of 

specific habitats, diurnal migrations, feeding and predator avoidance behaviour 
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(Fulton, 1982; Nilsson & Modlin, 1994; Lindström, 2000; Lindén et al, 2003). A 

study on the eye function of mysids has shown that there may be functional 

intraspecific differences in the visual systems of mysids living in different photic 

environments (Lindström, 2000). Another study has shown differences in predator 

avoidance behaviour of mysids, and more specifically in the way of predator detection 

(chemical or visual signals) related to habitat characteristics (light vs. darker water) 

(Lindén et al, 2003). Hence, it is not unlikely that the higher turbidity of the water in 

the Gironde estuary (Castel, 1993) could lead to a slightly reduced development of the 

eye in the case of N. integer (e.g. narrow eyestalks and reduced cornea size). 

However, at this moment this hypothesis remains very speculative and additional 

morphological analyses, as well as breeding experiments under different 

environmental conditions could be useful to further elucidate these patterns and to 

disentangle the functional relationships. 

 

Implications for species status and general conclusions 

 

 The final question which arises is whether the morphologically differentiated 

populations of N. integer and M. slabberi deserve a separate subspecies or species 

status. Although the discriminant analysis showed that the classification rate of 

individuals to correct populations was high (87.34% and 83.85% in case of N. integer 

and M. slabberi respectively), there is still morphological overlap of individual 

mysids. Thus, no individual mysid can be assigned unambiguously to a particular 

geographical area (‘population’) on the basis of linear measurements. In addition, the 

observed variation in meristic characters (e.g. number of spines on the lateral margin 

of the telson of M. slabberi), which generally is thought be a variable with more 

operational taxonomic utility than morphometric measurements (Spotte, 1997; De 

Grave & Diaz, 2001), did overlap between the populations despite the significant 

differences detected between their averages. 

 Intraspecific geographical variation within other mysids has been observed, 

such as variation in the numbers of spines on the lateral margins of the telson between 

populations of Praunus flexuosus and P. neglectus (Mauchline, 1971b), geographical 

differences in the proportions of the antennal scale of N. americana (Williams et al, 

1974), and differences in the numbers of ommatidia in Atlantic and Mediterranean 

populations of Eucopia hanseni (Cassanova, 1977). However, these variations are 
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considered to be of a minor nature and could be consistent with the normal patterns of 

variation expected within species (Mauchline, 1980). In his review of the genus 

Mesopodopsis, Wittmann (1992) also reported (minor) morphological differences 

between Atlantic, Mediterranean and Black Sea populations of M. slabberi. However, 

the residual differences were found to be small and statistically overlapping and hence 

Wittmann (1992) noted that a reintroduction of the Czerniavsky’s (1882) species 

(goesi and cornuta) and varieties (major and minor) was not appropriate. 

 In conclusion we can state that despite the limited number of populations 

analysed within both species and the selection of only adult female specimens which 

lowers the value of the present analyses in terms of general conclusions for both 

species, clear morphometric differences were observed between populations of N. 

integer and M. slabberi. These results corroborate the expectations for a species 

inhabiting a wide geographic range and possessing limited dispersal capacities. 

However, the present morphometric analysis in itself does not allow us to conclude 

that the present species status of both mysids is in need of a revision. Hence, the 

observed morphological variation should be interpreted as geographical variation. On 

the other hand, the strong concordance of the morphometric results with the 

mitochondrial DNA data in the case of the Atlantic-Mediterranean separation of M. 

slabberi probably indicates that these populations are approaching the species stage in 

the evolutionary continuum of speciation. This aspect definitely deserves more 

attention. Consequently, future research should focus on a larger number of 

populations and morphological characters, preferably using geometric morphometric 

techniques since these ‘new’ morphometric techniques are regarded as more powerful 

in analysing the external morphology and shape differences among organisms (Rohlf 

& Marcus, 1993; O’Reilly & Horn, 2004).  
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1. Phylogeography of the brackish water mysid Neomysis integer: restricted gene 

flow, multiple glacial refugia and complex postglacial recolonisation. 

 

 Because of its typical life history characteristics (brooder and absence of free-

living larvae) and the particular habitat preferences (brackish part of estuaries, 

brackish lagoons), the mysid Neomysis integer was selected as a potential model 

organism for inferring the impact of the Pleistocene glaciations on low dispersal 

marine taxa along the northeast Atlantic coast. The results of the mitochondrial DNA 

analyses (of both the cytochrome b, cyt b, and cytochrome c oxidase 1, COI, genes) 

clearly corroborated these expectations (see Chapters 3 & 4). A clear phylogeographic 

structure was observed with a very high proportion of population-specific haplotypes 

(up to 88% in the case of COI). The cyt b gene turned out to be more conserved, since 

one dominant haplotype was distributed throughout the whole distribution range with 

exception of the Gironde and Guadalquivir populations. 

 These results were interpreted in relation to historical patterns and processes 

using paleoclimatic and paleobiogeographic knowledge. This lead to some striking 

patterns which contradicted the general expectations according to the current 

paleoclimatological models: 

 no trend of declining haplotype diversity was detected at higher 

latitudes, the levels of genetic diversity were relatively uniform throughout 

the whole distribution range, even in glaciated areas, with exception of a 

decline at the northern and southern edge of the natural distribution range. 

 the Iberian Peninsula did not act as a single glacial refugium for N. 

integer, and according to the COI data these southern refugial populations 

did not participate in the most recent range expansion after the last glacial 

maximum (LGM). 

 there are multiple northern refugia, probably located in the southern 

North Sea or English Channel, around the British Isles, and an additional 

refugium in the Bay of Biscay, leading to a complicated recolonisation 

history. 

 

These observations are supported by several facts, such as the relatively high 

heterogeneity of populations in glaciated areas, the apparent lack of a (postglacial) 

demographic expansion of the populations in these areas, levels of divergence 
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between northern mitochondrial lineages pointing to a pre-LGM differentiation, the 

detection of an isolation-by-distance pattern in glaciated areas and the lack of any 

southern haplotype in these areas. Moreover, similar patterns (e.g. northern refugia) 

have been observed in other marine vertebrates, as well as invertebrates (see 

references in Chapters 3 & 4). 

 However, due to the lack of mysid fossil data along the NE Atlantic, the 

absence of a species-specific molecular clock and the use of a single (mitochondrial) 

locus in the present research, alternative scenarios cannot be discarded. Hence, future 

research should focus on the use of several (unlinked) molecular markers combined 

with a more intensive sampling on the Iberian Peninsula, the Bay of Biscay and the 

coasts of Bretagne. In addition, new studies on the phylogeographic patterns within 

mysid species should also consider the impact of Holocene warming on the genetic 

composition of the southern populations (see Dahlgren et al, 2000; Consuegra et al, 

2002; Coyer et al, 2003). At this moment it still remains unclear whether the observed 

divergence of the southern Guadalquivir population and the genetic diversity 

decline at these latitudes is linked to enhanced selective pressure at the distribution 

edge of N. integer related to increased Holocene temperatures. Extensive geographic 

sampling within the Gulf of Cadiz (and north African coasts) combined with detailed 

molecular analysis might generate complementary information. It would also provide 

insights in the sustainability of these southern N. integer populations. 

 

 2. Phylogeography of the mysid Mesopodopsis slabberi: strong genetic divergence 

between Atlantic and Mediterranean populations with complex patterns of cryptic 

speciation. 

 

 The mitochondrial DNA analyses of both the COI and 16S rRNA genes of the 

mysid Mesopodopsis slabberi revealed an extraordinary degree of phylogeographic 

structuring throughout its distribution range. Four monophyletic clades were 

apparent in the COI and 16S phylogenies: a large Atlantic clade, two Mediterranean 

clades corresponding to the haplotypes observed in the Ebro and the Alicante samples, 

and a fourth clade comprising a subset of the haplotypes of the Atlantic Mondego 

sample. In general, the levels of divergence between the different clades obtained 

from the 16S fragment were lower than those from the COI fragment, probably 
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caused by the higher conservation, and slower evolution of the mitochondrial 16S 

rRNA gene (Simon et al, 1994).  

 As mentioned in chapter 5, unravelling the evolutionary history that lead to the 

contemporary distribution of the different mitochondrial lineages in the populations of 

M. slabberi remains challenging. When putting the observed divergences between 

the Atlantic and Mediterranean populations (16%) in a broader perspective, they 

seemed to be amongst the largest thus far reported for Atlanto-Mediterranean marine 

taxa (see Table 4.7). The estimates of divergence time date back to the late Miocene/ 

early Pliocene (9.8 - 6.3 Mya), pointing to a vicariant event during the Messinian 

salinity crisis when sea-level dropped 115-120 m below the present-day level 

(Nilsson, 1982; Maldonado, 1985). The two divergent mitochondrial clades within 

the Atlantic Mondego estuary further complicate the phylogeographic patterns within 

M. slabberi. However, the lower genetic distances, at least for the 16S fragment, 

between this clade and the haplotypes of the Ebro population suggest a 

Mediterranean origin of this divergent Mondego clade. Ship’s ballast water 

transport may have played a role in the transportation of these mysids to Atlantic 

waters. Analysis of the major ship routes from Mediterranean to Portuguese ports, as 

well as a more detailed sampling within the Mediterranean Sea (in potential ‘source 

regions’) are needed to resolve the identity and evolutionary origin of these 

haplotypes. Moreover, detailed analysis of Mediterranean M. slabberi populations 

inhabiting different habitats (estuaries, brackish lagoons, coasts) will also clarify the 

underlying evolution of the disjunct Mediterranean populations of M. slabberi 

(allopatric, parapatric divergence or ecological diversification between populations in 

marine and brackish environments). 

Finally, the question remains whether the different mitochondrial clades 

should be considered cryptic species? The answer largely depends on the species 

concept that is favoured. If Cracraft’s (1989) phylogenetic species concept (i.e. 

species are defined as minimum diagnosable units) is used, the answer is yes, since a 

high number of fixed differences is present between the different mitochondrial 

clades. However, purely applying this species concept could lead to the recognition of 

trivially divergent taxa at the species level. In addition, it is also greatly dependent on 

the polymorphic level (variability) of the selected marker system (Knowlton, 2000; 

Müller, 2000). According to Avise & Wollenberg (1997), a better criterion for 

recognizing species boundaries would be the existence of multiple concordant 
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differences at several (unlinked) loci. This approach also resembles that of the 

biological species concept (i.e. a species can be defined as a group of actually or 

potentially interbreeding individuals, with boundaries between species defined by 

intrinsic barriers to gene flow that have a genetic basis; Mayr, 1963), because 

reproductive barriers will emerge during the long-lasting geographic isolation that is 

required for many (unlinked) loci to acquire fixed (diagnostic) differences (Avise & 

Ball, 1990; Avise & Wollenberg, 1997). 

The difficulty in defining species boundaries is further evidenced by the 

results of the morphometric analyses (Chapter 7). Although multivariate analyses 

clearly separated the Atlantic and Mediterranean populations based on telson and eye 

morphology and meristic characters, some (small) overlap existed between both 

populations. Hence, no individual mysid could be assigned unambiguously to a 

particular geographical area (‘population’) on the basis of these linear measurements 

alone. Moreover, phenotype-environment interactions (‘phenotypic plasticity’) could 

further confound the species division based purely on morphometric grounds. 

In conclusion, our results (and especially the mitochondrial data) largely 

suggest the existence of different cryptic species within M. slabberi, but further 

evidence from unlinked genetic markers (e.g. nuclear genes) are needed to 

confirm these patterns. Future research should preferably make use of an integrative 

approach, using molecular (joint analysis of mitochondrial and nuclear loci), extended 

morphometrical (using geometric morphometric techniques) and environmental 

information (e.g. Rocha-Olivares et al, 2001; Pfenninger et al, 2003).  

 

 3. Are the differences in molecular diversity and genetic population structure 

between Neomysis integer and Mesopodopsis slabberi related to species-specific 

characteristics? 

 

 Both Neomysis integer and Mesopodopsis slabberi lack free-living larvae 

resulting in a low dispersal potential, which is reflected by a high phylogeographic 

structuring. But on the other hand, both species show some marked differences in 

their habitat preferences and physiological tolerance. N. integer is a true brackish 

water species, occurring in relatively discrete (‘natural fragmented’) habitats such as 

estuaries and brackish lagoons (= ‘closed’ populations). In contrast, M. slabberi lives 

in marine (coastal, surfzone) and estuarine habitats, and hence may have a more 
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continuous distribution (= ’open’ populations). The geographical distribution of both 

species along the European coasts shows some differences, N. integer is restricted to 

Atlantic waters, while M. slabberi is also distributed throughout the whole 

Mediterranean and Black Sea. Along the NE Atlantic the distribution of both species 

largely overlaps, but N. integer seems to occur far further north (whole Baltic Sea, and 

even the White Sea, although recent observations are lacking) than M. slabberi. The 

evolutionary history of both genera, as well as the temperature tolerance (N. integer 

restricted by higher temperatures, M. slabberi restricted by colder temperatures) may 

have largely affected the contemporary distribution of both species. 

 A comparison of the genetic diversity patterns in both species may be useful 

for recognizing the effects of intrinsic (= biological, ecological, physiological or 

behavioural) differences on phylogenetic and phylogeographical patterns. Several 

studies in various marine taxa have shown that relatively small difference in species-

specific intrinsic factors may result in the development of quite disparate patterns of 

population genetic structure and phylogeography for sympatric species (e.g. Wilke & 

Davis, 2000; Dawson et al, 2002; Bargelloni et al, 2003; McMillen-Jackson & Bert, 

2003). 

 The standard diversity values (number of haplotypes, haplotype and nucleotide 

diversity) showed large differences between N. integer and M. slabberi (Table 8.1). 

Haplotype diversity of almost all M. slabberi populations was more than twice 

the values for N. integer. In addition, the levels of nucleotide diversity were much 

higher in the M. slabberi populations. The AMOVA’s in both species further 

corroborate these patterns: in N. integer the highest percentage of variance was 

observed among populations while for M. slabberi the within population variance 

component was the largest (Table 8.2). These discrepancies in genetic diversity levels 

between both species may not be surprising. High levels of within population 

haplotype diversity have been considered a typical phenomenon of many marine 

species, as evidenced for both vertebrates and invertebrates (Baldwin et al, 1998; 

Grant & Waples, 2000; Benzie et al, 2002; McMillen-Jackson & Bert 2003; 

Karaiskou et al, 2004), while low within-population variability is a common 

characteristic for brackish-water species (Maltagliati 1999; Cognetti & Maltagliati, 

2000;Bilton et al, 2002; Maltagliati, 2002). A common explanation for the high 

haplotype diversity and for the large numbers of low frequency haplotypes may lie in 

the enormous population sizes of marine organisms, which could cause a retention of 
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numerous haplotypes and result in an undersampling of the populations (Bucklin & 

Wiebe, 1998). However, given the sometimes astonishing densities of N. integer in 

the Westerschelde estuary (peaks of 100s of thousands mysids per 1000 m² and yearly 

averages up to 6500 mysids per 1000 m², Mees et al, 1993a, 1995; see also census 

population size estimations of N. integer in chapter 6), other ecological and 

evolutionary processes may have been involved in the reduction of genetic diversity 

(e.g. environmental interactions, natural selection, a population bottleneck, different 

age of both species, small or historical variable effective population sizes; see Bucklin 

& Wiebe, 1998 & discussion in Chapter 5).  
 

Table 8.1: Standard diversity values for the overlapping sampling locations of 
Neomysis integer and Mesopodopsis slabberi. Nh = number of haplotypes, h = 
haplotype diversity, π = nucleotide diversity. Standard deviations of h and π are 
indicated between brackets. All values were calculated from the mitochondrial COI 
data presented in Chapters 4 & 5. 
 

Sample
Sampling location Size Nh h  (SD) π (SD)
Neomysis integer
Westerschelde 60 6 0.4689 (0.0652) 0.00335 (0.00227)
Seine 48 4 0.4193 (0.0810) 0.00329 (0.00225)
Ria de Aveiro 30 5 0.6115 (0.0510) 0.00272 (0.00198)
Guadalquivir 40 5 0.2359 (0.0880) 0.00128 (0.00118)
Mesopodopsis slabberi
Westerschelde 25 21 0.9667 (0.0292) 0.010888 (0.006104)
Seine 19 16 0.9766 (0.0267) 0.010483 (0.005985)
Ria de Aveiro 16 11 0,9500 (0,0364) 0,008461 (0,005022)
Guadalquivir 18 18 1.0000 (0.0185) 0.019993 (0.010789)  

 
Table 8.2: Comparison between the results of the hierarchical analysis of molecular 
variance (AMOVA). Top: Neomysis integer, AMOVA on all the Atlantic samples 
and a separate AMOVA excluding the Guadalquivir samples (GU); Below: 
Mesopodopsis slabberi, AMOVA on all the Atlantic samples, with exclusion of the 
divergent haplotypes in the Mondego sample (MO-B, see Chapter 5). 
 

% Total
Source of variation variance Fixation indices P

Neomysis integer
All samples Among populations 78.67 ΦST = 0.7867 < 0.001

Within populations 21.33
without GU sample Among populations 71.39 ΦST = 0.7139 < 0.001

Within populations 28.61
Mesopodopsis slabberi
Atlantic samples Among populations 40.08 ΦST = 0.4001 < 0.001

Within populations 59.92  
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 A comparison of the pairwise genetic distances between populations of both 

species revealed a clear difference of the genetic structure at a meso-geographic 

scale (i.e. between the Westerschelde and Seine populations). In the case of N. integer 

both populations were significantly differentiated, while for M. slabberi no 

differentiation was observed. This could imply high levels of contemporary gene flow 

between these M. slabberi populations, or recent common ancestry (which seems not 

unlikely for populations inhabiting areas that have been severely affected by 

glaciations) (Avise et al, 1987). At a 

macro-geographic scale (> 500 km) 

both species showed similar trends, 

with exception of the higher 

differentiaton of the N. integer 

population in the Guadalquivir estuary. 

The peculiar pattern of the M. slabberi 

Guadalquivir population (= higher 

similarity with the northern 

Westerschelde & Seine populations than 

with the geographically closer Ria de 

Aveiro populations) remains 

unexplained and will need further 

examination. 

Since both species occur sympatrically along the NE Atlantic, it can be 

assumed that they must have been subjected to the same paleoclimatological events 

(e.g. Pleistocene glaciations). Hence, a comparison of the phylogeographic patterns 

along the NE Atlantic within both species could reveal something about the species-

specific responses to these historical climate events. However, the lopsided sampling 

regime in both studies (461 mysids from 11 sampling sites for N. integer, 78 mysids 

from 5 Atlantic sampling sites for M. slabberi) might hamper a clear comparison of 

the phylogeographic patterns, and hence, the conclusions for M. slabberi must be 

considered provisional. Nevertheless, some remarkable differences were apparent 

between both species, probably pointing to a different response of M. slabberi to 

changing climatological conditions. 

 When comparing the mismatch distributions of different geographical samples 

for both species (Fig. 8.1) the situation for the northern populations (North Sea & 

WS SEI Rda GU
WS  - 0ns 0.590 0.219
SEI 0.624  - 0.604 0.215
Rda 0.641 0.551  - 0.471
GU 0.901 0.879 0.911  -

Table 8.3: Pairwise genetic distances 
(Tamura & Nei, 1993) based on the 
mitochondrial COI data. Above diagonal: 
genetic distances of Mesopodopsis 
slabberi. Below diagonal: genetic 
distances of Neomysis integer. ns = value 
not significant at the 95% level. 
Population abbreviations: WS, 
Westerschelde; SEI, Seine; Rda, Ria de 
Aveiro; GU, Guadalquivir. All data 
compiled from Chapters 3 and 4. 
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English Channel) was clearly different. The distribution was unimodal for M. 

slabberi, which is consistent with a model of rapid population growth from a small 

number of mysids, while a fit to the sudden expansion model was significantly 

rejected for N. integer, pointing to a more stable population structure (see also 

mismatch distribution parameters in Chapters 4 & 5). These differences are also 

visible in the haplotype networks, with a star-like network for M. slabberi (see 

Chapters 4 & 5). The mismatch distributions for the Portuguese samples seemed 

concordant for both species; a fit to the sudden expansion model was rejected. 

Compression of the distribution range of M. slabberi to southern Europe (in the Bay 

of Biscay or maybe the northern Iberian Peninsula) during glacial periods caused by 

lower temperatures and absence of suitable habitats, followed by a postglacial 

range expansion to northern Europe, which is a common pattern in many European 

biota (see Hewitt, 1996, 2000), could have produced the unimodal mismatch 

distribution of the northern populations. In contrast, N. integer seemed to be able to 

withstand the glacial conditions in northern Europe and could have survived in 

isolated northern refugia (see previous discussions). 

In conclusion, the present phylogeographic study of M. slabberi has opened 

some interesting research perspectives. Especially the large phylogeographic breaks 

(signals of cryptic speciation?) between M. slabberi populations and the disparate 

phylogeographic patterns of the sympatric mysids N. integer and M. slabberi, 

probably triggered by differences in eco-physiological tolerances, deserve detailed 

future research. 
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Fig. 8.1: Comparison of the mismatch distributions of different geographical samples 
for Neomysis integer and Mesopodopsis slabberi. In each case the bar represents the 
observed frequency of the pairwise differences among haplotypes, while the solid line 
shows the distribution expected under the model of a sudden demographic expansion 
(Rogers, 1995). 
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4. Small-scale and temporal patterns of genetic differentiation within Neomysis 

integer.  

 

 Most studies on the genetic structuring within species, including the present 

study of both mysid species, have focused on geographical patterns of genetic 

variation regardless of the temporal variation. However, the assessment of both 

spatial and temporal components of the genetic structure of a species is necessary to 

thoroughly understand the microevolutionary processes that influence the genetic 

variability and relationships among its populations (Maltagliati & Camilli, 2000). 

Therefore we conducted a temporal, as well as a fine-scale (intra-estuarine) genetic 

study of the Westerschelde population of N. integer. Although (small) intra-

estuarine differentiation was detected within two of the three analysed years, and 

there seemed to be no evidence for temporal stability of this structure, the (single 

locus) molecular marker used in this study has several limitations in terms of 

interpretation of these contemporary genetic patterns (Allendorf & Seeb, 2000; 

Nevo, 2001; Wan et al, 2004). Hence, future research on the temporal and small-scale 

variation within mysids should preferably make use of a multilocus approach (e.g. 

microsatellites). In addition, the observations that N. integer has migrated further 

upstream, to more polluted sites, within the Westerschelde during the last decade 

warrants future investigation by continuing genetic monitoring. Bearing in mind the 

strong genetic differentiation of populations of N. integer (linked to the natural 

fragmented habitat and low dispersal capacities), the very low (female) effective 

population size estimations (see chapter 6) and the high potential of bioaccumulating 

endocrine disrupters and other toxicant compounds (Roast et al, 1999, 2000, 2002; 

Verslycke, 2003), these populations may be especially prone to rapid loss of genetic 

diversity. 

 

5. The family Mysidae is in need for a taxonomical revision, as evidenced by the 

18S rRNA phylogeny. 

  

 A phylogenetic study of the Mysidae, the largest family within the order 

Mysida, based on 18S rRNA sequences was conducted in order to test the 

morphology-based classification within this family. The molecular analysis did not 

support the monophyly of two of the three subfamilies included in the study. The 
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subfamily Gastrosaccinae was clearly resolved in two groups: “Gastrosaccus-group” 

and “Anchialina-group”, which was further supported by morphological evidence. 

The paraphyly of the large subfamily Mysinae (comprising 91% of the genera and 

80% of all species classified within the family Mysidae) highlights the problematic 

division into tribes, once introduced to permit an ‘easier’ structuring of this large 

subfamily. Hence, a revision of the tribes within this subfamily is suggested in order 

to tune taxonomy to phylogenetic relationships based on morphological and molecular 

data. In addition, representatives of the subfamilies Boreomysinae, 

Rhopalophtalmidae and Mysidellinae, which were not analysed in the present study, 

should be included in future research to evaluate the taxonomical rigidity of the whole 

Mysidae family. 
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