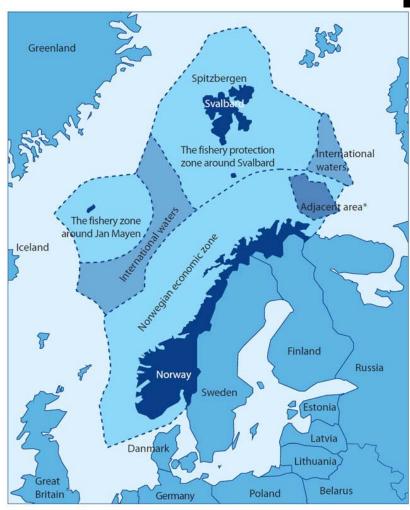


Connectivity between MPAs


Galice Hoarau

Norwegian Marine Environment

- The Norwegian coastline stretches over 2.500 km (> 83.000 km including fjords and islands)
- Territorial sea area (12 nm) = 146 831 km²
- EEZ (200 nm) \approx 1 million km²
- 80% of Norway's population lives <10 km from the sea
- Essential for Norway's economy:
 - -Fisheries
 - -Aquaculture
 - -Oil & Gas (>20% GDP)

^{*} Adjacent area in the Barents Sea is covered by a temporary agreement between Norway and The Russian Federation.

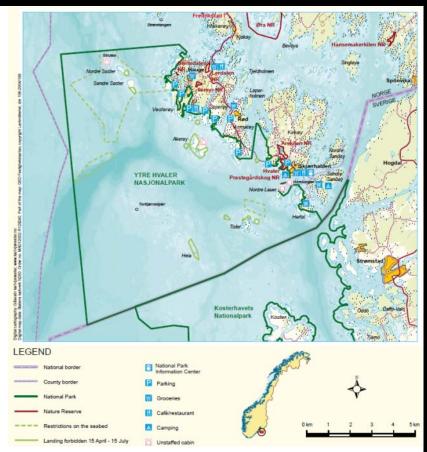
Norwegian Marine Environment

- Very diverse marine ecosystems:
 - Cold water coral reefs
 - Fjords –deep and long, anoxic/stagnant waters
 - Strong currents/tidal flows
 - Kelp forests
- Marine species:
 - •Fish & invertebrate ≈ 7500
 - •Macro-algae ≈ 500

Marine Protected Areas in Norway

- ≈150 areas along the Norwegian coast with local-based management measures:
 - -Protection of spawning grounds
 - -Restriction by gear
 - -Prohibition against fishing for specific species
- 4 pilot MPAs established in 2006 for lobster
- 8 coral reef MPAs
- Total 2700 km2 (≈ 2%)
- 1 National Park

Coral reef MPAs



Lobster MPAs Knutsen et al 2009

Ytre Hvaler Marine National Park

- Officially opened in September 2009
- 354 km²,14 km² of which are land
- Maximum depth > 470 m
- 6,000 marine species, including 220 on Norwegian and Swedish lists of endangered species
- Tisler Coral Reef: <1200 m long and 200 m broad, the largest inshore reef in Europe
- Adjacent to Kosterhavets National Park in Sweden.
- Formal cross-border collaboration
- Sweden and Norway's first transboundary marine park

Photos Ytre Hvaler National Park

www.uin.no

Container vessel *Godafoss* grounded by Asmaløy on 17 february 2011

Photo Greenpeace

- Nearly 500 tons of fuel oil spilled
- Difficult cleaning due to ice
- Impact on the bird populations

NATURRESERVAT / NATURE RESERVE GEOTOPVERNOMRADE / PROTECTED GEOTOP POLHAVET Kong Karls Land Barentsøya BARENTSHAVET © 2009 Norsk Polarinstitutt

Svalbard

- Part of the Kingdom of Norway
- Free economic zone & demilitarized zone
- 7 national parks
 - Marine \approx 20,000 km²
- 21 nature reserves
 - Marine $\approx 58,000 \text{ km}^2$
- In total: 86% of the territorial waters are protected (65% of the land)

Photos www.galice.nl

www.uin.no

National Plan for MPAs

National goal: protect at representative selection of nature

- Strategy: protect a broad range of habitats and thereby a road range of species
- National Advisory Committee for MPAs (Skjoldal report 1003): Proposal for **36** marine protected areas ranging in size rom 5 to 3450 km², **total 16,000** km²
 - Distribution of benthic species along the coast
 - 3 biogeographic regions

Barent Sea

Norwegian Sea

North Sea / Skagerrak

- 6 categories:

Pools (closed marine basins)

Fjords

Strong currents areas

Shallow water areas

Open coastal areas

Transect from coast to shelf

National Plan for MPAs 2011

17 areas are now in the establishment phase
Hearings have started for the remaining 19 areas
Restriction levels will depend on the specific onservation values in each candidate area

Balance between conservation and exploitation, there should be no more restrictions than are onsidered necessary to protect the conservation alues"

Goals of MPAs

•Conservation:

- -Preservation of biodiversity
- -Preservation of particular species
- -Preservation of ecosystems and ecosystem services
- Fisheries management

Goals of MPAs

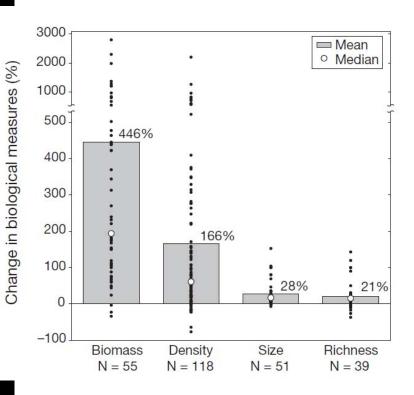
- Conservation
- Fisheries management
 - Prevent the collapse of overexploited stocks
 - Increase the size of the catchable stock

Matching MPAs Design and Objectives

Conservation:

- -Preservation of biodiversity
- -Preservation of particular species
- -Preservation of ecosystems and ecosystem services

Biodiversity representation Genetic diversity Self-sustaining populations


Fisheries management

- Prevent the collapse of overexploited stocks
- Increase the size of the catchable stock

Export of large fishes Export of larvae

Single Reserve

- Majority of the world MPAs are single reserves
- Locations mostly based on non biological factors
- Only a very small fraction of the ocean is protected
- Large benefit mostly within the reserves
 - -Biomass
 - -Density
 - -Size
 - -Diversity

Lester et al 2009 Mar. Ecol. Prog. Ser.

Single reserve Size vs. dispersal

	conservation	small fishery	commercial fishery	overall
	reserve not self-sustaining; most species lost	high periph-to- area ratio but unsustainable	small effect on recruitment	too much loss out of reserve; minimal effect on fisheries
	reserve moderately self-sustaining; some species lost	adequate periph- to-area ratio, with some individuals retained	significant source of recruits to fished areas; moderate reduction of fishing grounds	good balance of benefits for all stake- holders
+	reserve completely self-sustaining; all species retained	low periph-to- area ratio; relatively small amounts of spillover	little recruitment outside reserve; severe reduction of fishing grounds	little export function

Weakness of single reserve

- For most marine species, individual MPAs have a minor conservation benefit for the species as a whole
- To provide significant conservation benefit they must be scaled up:
 - -Increase the size dramatically
 - -Network of MPAs

Networks as imperatives for MPAs

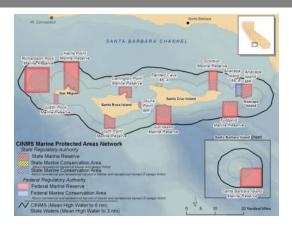
.... the establishment of marine protected areas consistent with international law and based on scientific information, including representative **networks** by 2012

.... complete, designate, finance and ensure effective, management of the Natura 2000 **network** by 2010 (2012 for marine sites)

..... establishing an ecologically coherent **network** of well-managed MPAs in the North-East Atlantic by 2010

.... establishing a well-managed and ecologically coherent **network** of Marine Protected Areas (MPAs) by 2012 (England & Wales)

Network of MPAs

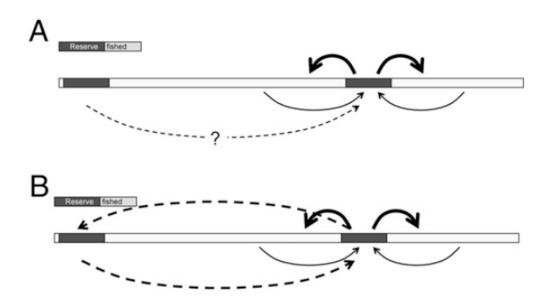

Increased focus on networks of MPAs

Advantage of networks:

- -Synergistic effect
- -Protection of broader variety of habitat types
- -Facilitated connectivity among sites to sustain threatened populations
- -Reduce/Eliminate cost to fisheries
- -Facilitate both conservation and fisheries goals

Two successful networks of marine reserves:

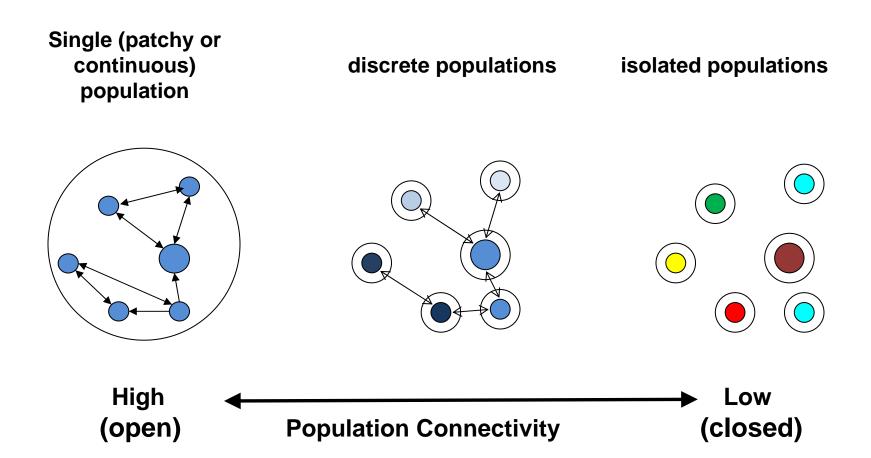
 The Channel Islands Marine Reserve Network, created in 2002 - The Great Barrier Reef Marine Reserve Network, established in 2003



Success of network depends on size, spacing and location -> connectivity

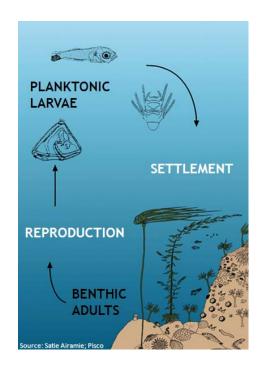
Persistence in a MPA network

- Self-persistence of local populations
- Persistence depending on connectivity
- Demographic synergy


Connectivity

- "The extent to which populations in different parts of a species range are linked by exchange of larvae, recruits, juveniles, or adults"
- A network of MPAs should maximize connectivity between individual MPAs to ensure the protection of ecological functionality and productivity
- Connectivity and ecological linkages include:
 - -Connections of linked habitats
 - -Connections through larval dispersal between and within MPAs
 - -Regular settlement of larvae from one MPA to another MPA
 - -Adults movements within, between and outside of MPAs
- Importance of a system-wide approach in the design of MPA and MPA networks:
 - -Patterns of connectivity within and among ecosystems
 - -Connectivity between two populations

Palumbi 2003 Ecological Applications Jones et al 2007 Oceanography

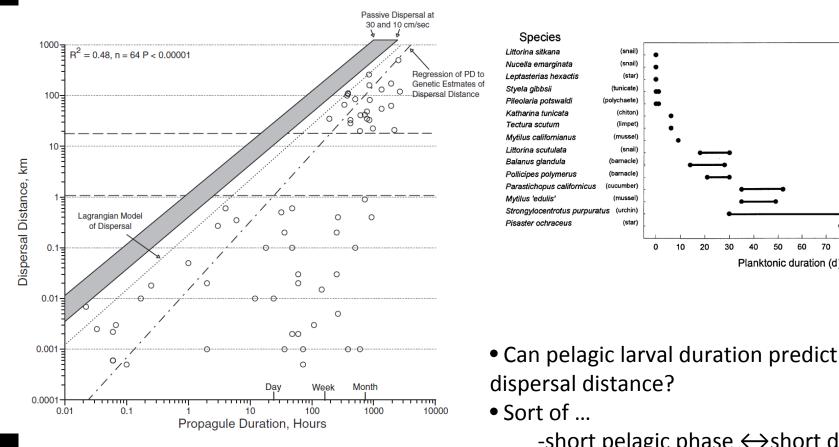

Structure of Marine Population

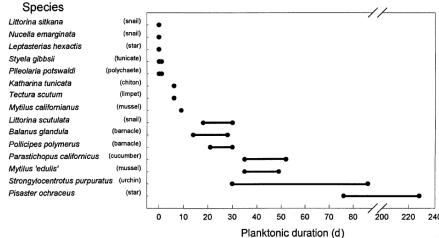
Structure of Marine Populations

- Many marine species have bipartite life histories:
 - Restricted movement of adults
 - Early life history stages (e.g. eggs and larvae) can disperse wide distances
 - Larvae are essentially planktonic
- But marine species can have:
 - -Long distance dispersal of adults
 - -No or very short planktonic phase

Structure of Marine Populations

Paradigm - Larval dispersal connects local populations over large distances

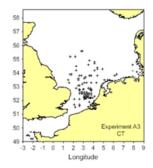

→ Marine populations are open


 BUT more and more evidence show that (some) marine populations are more closed than originally thought

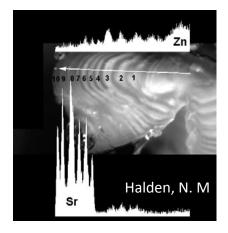
Assessing Connectivity

1. Larval duration & dispersal distance

Shanks 2009 Biol. Bull. Allison et al 1998 Ecological Applications

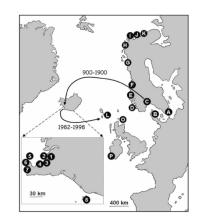

- -short pelagic phase ↔ short distance -long pelagic phase ↔long distance but many discrepancies
- not only passive

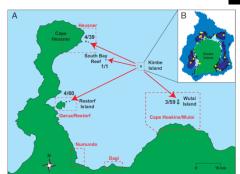
Assessing connectivity 2. Tagging


- Tagging of adults
 - Simple mark/recapture
 - Sophisticated tags, GPS, data logger (DST)
 - Does not integrate a reproductive component (feeding vs. spawning migration...)

Bolle et al 2005 ICES J. Mar. Sci.

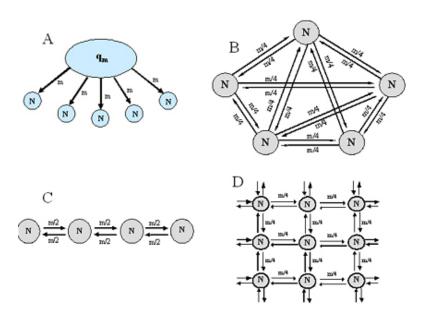
- Chemical / environmental tags
 - -Otoliths and stratoliths micro-chemistry
 - -Both adults and larvae




Assessing connectivity 3. Direct genetic method – "DNA tagging"

- Conceptually similar to physical/environmental tags
- Focus on assignment of individuals to populations of origin or to specific parents
- Use variable molecular markers to calculate the probability that a given individual originated from a particular population
- Assignment methods can be use to infer immigration rates
- -Most effective when the connectivity is low (high genetic structure), can be a problem for many marine species
 - -Most success in tracing source of invasive species
- Parentage analysis can be used to infer larval connectivity
 - -good performance in high gene flow condition but incomplete sampling of potential parents is a major drawback

Hedgecock et al 2007 Oceanography Coyer et al 2006 Eur. J. Phyc. Planes et al 2009 PNAS Saenz-Aqudelo et al 2009 Mol. Ecol.

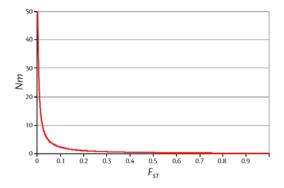


Assessing connectivity 4. Indirect genetic method

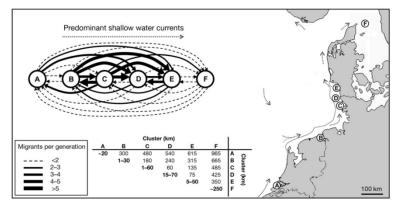
- Estimation of gene flow from genetic differences among population
- ullet Differentiation among population: $F_{\rm st}$
 - -standardized variance in allele frequencies among population

$$-0 \le F_{\rm st} \le 1$$

• Estimates of dispersal rely on theoretical models of population structure



Assessing connectivity


Drawbacks of Indirect genetic method

• Estimation of migration become increasingly inaccurate at low population differentiation → Moderate gene flow can be indistinguishable from random mating

Hedgecock et al 2007 Oceanography

- Difficulties to distinguish evolutionary from contemporary gene flow
- Development of new analytical tools based on coalescent theory

Ferber et al 2008 MEPS

Relevant Temporal Scale

- Direct and indirect methods estimate connectivity on opposite ends of a temporal spectrum:
 - -indirect genetic methods integrate connectivity over evolutionary time frame
 - -direct methods give a "snapshot" of connectivity
- Biologically relevant time frames (ecological/demographic) arein between but escape both methods

Variability of Dispersal Distance

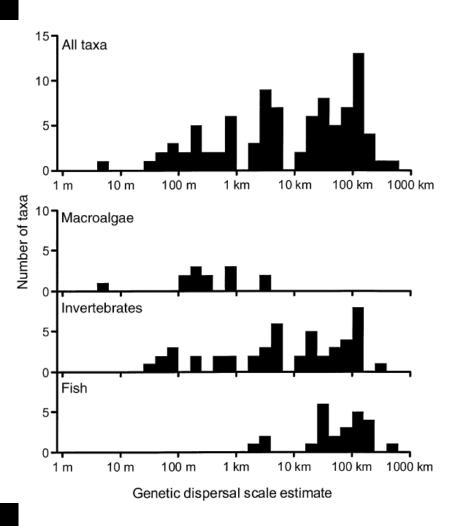
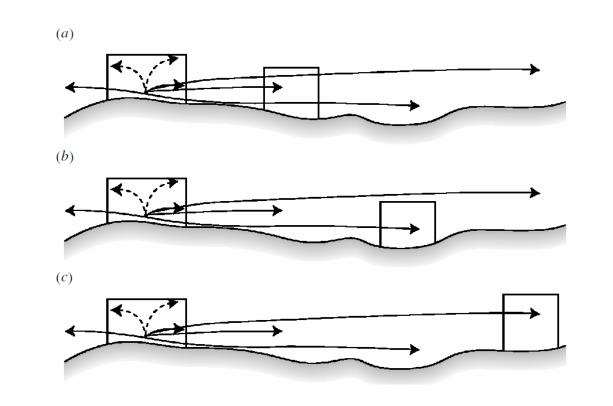
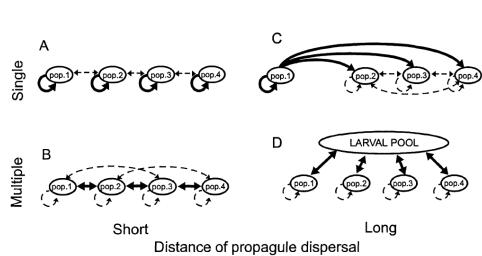


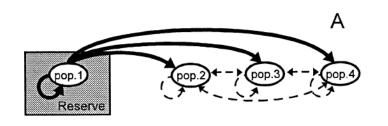
TABLE 2 Approximate adult and larval neighborhood sizes for a variety of marine life history groups^a

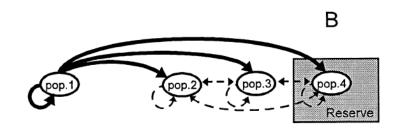

Scale (km)	Adult	Larval	
>1000s	Large migratory species	Intermittent gene flow, many species	
100s-1000s	Large pelagic fish	Some fish	
10s-100s	Most benthic fish Smaller pelagic fish	Most fish Most invertebrates	
1-10s	Small benthic fish Many benthic invertebrates	Algal spores Planktonic direct developers	
<1	Sessile species Species with highly specialized habitat needs	Benthic direct developers	

Palumbi 2004 Annu. Rev. Environ. Resour.

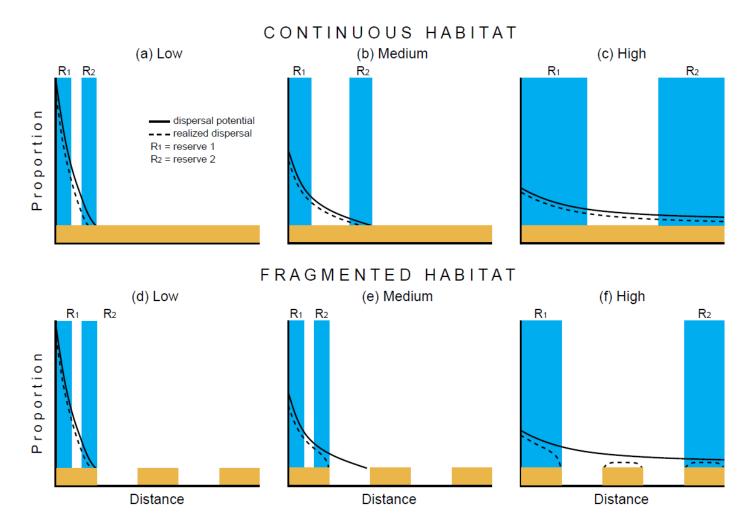
Kinlan & Gaines 2003 Ecology




Connectivity and MPAs Spacing Variable Spacing



Connectivity and MPAs LocationsSource – Sink populations



Connectivity and MPAs Locations Habitat Fragmentation

Connectivity and Resilience to Environmental Changes

- High connectivity can diminish the potential for local adaptation
- BUT connectivity insure the spread of successful/resilient genotype
- Without connectivity populations in the southern range of a species and the local adaptations may become lost in case of a range shift due to global warming

Conclusion

- Connectivity is an essential parameter for MPAs and MPAs network
- Marine species show a broad range of dispersal distances
- High connectivity is common but not the rule
- Accessing connectivity in marine species is still a major challenge
- Multidisciplinary approach combining physical oceanography, larval ecology, tags and genetics are necessary
- MPAs size and spacing... a difficult compromise:
 - -moderate size 10s-100s km²
 - -moderate and variable spacing 10s-100s km

