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Abstract Three results on hitting a rare set by the increments of an IR? valued random process
with stationary independent increments are presented: the first time that it occurs, the duration

of such a segment and the typical trajectory during the segment.

1 Introduction

Large exceedances in Markov processes are of theoretical and applied relevance, especially in the
context of biomolecular (DNA and protein) data, for assessing statistical significance of a sequence
segment composition [KA90, KDK90]. In the context of sequential decision procedures, the false
alarm rate in detection of change points by the commonly used CUSUM method corresponds
to the location of the first segment with cumulative log-likelihood score exceeding the decision

threshold, cf. [Sie85]. Another example pertains to one—server light traffic queues where the event
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of an unusually long waiting time for completion of service is characterized by segments of high
exceedance, cf. [Ana88, Igl72].

It is helpful to describe the one dimensional problem first. Let {X;} be i.i.d. real (IR valued)
random variables of negative mean and law u, and let {S,,n > 0} be the partial sum process
induced by {X;}. Consider the rare segments {m to n} in which S, — S,, > y for large values
of y. Of special interest is the position and duration of the first such segment, and the empirical
distribution of the increments X; during these large exceedance segments. Formally, let the position

of the first exceedance above level y be
T(y) = inf{n: for some m <n, S, — S, >y},
and determine the duration of this exceedance as

L(y) = T(y) — max{m : Spy) — Sm >y} =T(y) —7(y) -

Dembo and Karlin [DK91b] established the a.s. convergence L(y)/y — 1/ [ ze) ®du as y — oo,
provided X; are bounded and A* is the unique positive solution of [ e)'?dy = 1. They further
ascertained the empirical measure of X; during these large exceedances which converges a.s. (and
in the weak topology) to the Gibbs law u* where u*(B) = [ e ®du for any measurable set B. It
is proved by Iglehart [Igl72] that T'(y)/e*"? converges in distribution, as y — oo, to an exponential
law. In [DK91a, KD92] these results are extended to describe the behavior of large exceedances for

increments governed by an irreducible finite state Markov chain.

In vector scoring of sequences, successive positions are vectors X; € IR¢ with components
corresponding to different attributes. For example, for protein sequences, the components could
be charge, hydrophobicity, and steric measurements of the amino acids. High quality segments
correspond to indices 7(y) and T'(y) of the sequence such that Sp(,) — S;(,) first attains a high
multivariate score corresponding to the rare set yA (y large). Such segments reflect desirable
vector scoring arrays (e.g. for DNA segments having simultaneous high purine content and high
DNA stability); in the queuing context, such segments correspond to large waiting times in queues
with correlated customer behavior patterns; for the sequential detection problem they relate to
simultaneous tests among three or more alternatives using pairwise likelihood ratios. The methods
of [DK91a, DK91b] fail in high dimensions (d > 1), as soon as the set A is not a union of finitely
many half-spaces. A more amenable approach is via large deviations analysis. Preliminary results
are presented in [DZ93, Section 5.5], based on Mogulskii’s [Mog76] large deviations characterization
of the sample path of random walks in IR%. Utilizing results of Freidlin and Wentzell [FW84] (see

also [Puk92, deA93]) we analyze here the continuous time version, namely large exceedances of IR?



valued Lévy processes X; with increments satisfying Cramér’s condition (i.e., E[e*%X1)] is finite
for all A € R%. Hereafter, (\,z) denotes the inner product of A,z € IR%). For example, in the
queuing context, these exceedances give information about the biases of the arrival process and

service times during busy periods in which large overflow occurs (see Example 2 below).

In contrast with [DZ93, Section 5.5] where the special case of Brownian motion is sketched, here
a more involved proof is needed due to the discontinuities (jumps) of the process X; at random times
(in particular, see the proof of Lemma 6 below). We also obtain here stronger results regarding the

behavior of T'(y) (see Theorem 3 below).

2 Statement of main results

Let {X¢}¢>0 be an IR valued random process of stationary independent increments (infinitely
divisible process) with initial value Xy = 0, and logarithmic moment generating function A(\) =
log E[e*X1)], assumed to be finite for all A € IR?. Specifically, for such processes [JS80, 11.4.19],

AN = (A, b) + % (XN + / (™) —1— (A, 2)) v(da) , (1)

R*\{0}
where b = E[X;] # 0 is the drift vector of the process X;, ¥ is a symmetric nonnegative definite
d x d matrix (which corresponds to the covariance of the Gaussian part of X;), and v is a Borel
o-finite measure on IR? for which the latter integral is finite for all A € IR?. For our later needs we
recall the Fenchel-Legendre transform of A()\) defined by
A (z) = sup {(A\,z) —A(N)}.
AeR?

The domain of definition of A*(-) designated D+ consists of all z for which A*(z) is finite. It is
also useful to introduce

Viat) = sup () ~ A} = 1A (%) . zeRY >0, )
S

with V(z,0) = oo for z # 0 and V(0,0) = 0, and for every set E C R? to define the quasi-potential

Ve = a:elEn,£20 V(z,t). (3)

It is convenient to replace y by 1/e and consider the rescaled process Y = eX; /e- The increments
Yf — YE are of mean (¢ — s)b and variance O(¢t — s). Our aim is to estimate the probability of the
rare events {YS — Y € A} for small e. For this objective, we require that A (the closure of A) is

disjoint from the half ray {rb},>0. The set A can be unbounded.



To formalize the results, we define the following random times
T, =inf{t: Js € [0,t) such that Y —-Y; € A}
e =sup{s € [0,T) : Y, —Y; € A} (4)
Li=T.— 7

Under appropriate conditions on A, the main results of this paper are of the following form. There

exist positive finite constants V*, L* and a suitable point z* in A such that

limelogT, = V* in probability , (5)
e—0
lim L, = L* in probability, (6)
€—0
and
lim sup |Us—ug| =0 in probability, (7)
e—0 0<s<L*

where US =Y*

1s — Y for s >0, and u* is the straight line uj = (s/L*)z*, for 0 < s < L*.

The interpretation of (5) is that since the hitting probability of the segment X; — X to the set
%A is exponentially small, of the order e~(V'+o(1))/¢ the waiting time for the first such segment
is of order e(V'to(1))/e with probability tending to one. The limits (6) and (7) assert that the
duration of such a segment is of order 1/e, and its trajectory behaves as a deterministic straight
line u} = (s/L*)x*.

A sufficient condition for (5)—(7) to hold is stated next.

Theorem 1 Let A be a closed, convex set of non-empty interior A°, such that A°N{pz:p >0,z €
Dp+} is non-empty. If for § > 0 small enough, A excludes the cone

K5 ={z: (z,b) > (1—d)|«[[o]} ,

then the limit relation (5) holds with V* = Vy defined in (3). If further A*(-) is finite everywhere
then there exist unique z* € A and t* > 0 such that V(z*,t*) = V4, and the limit relations (6)-(7)
hold with L* = t* and z* defined above.

Remark: With the exception of the above theorem, the set A is not assumed to be convex. In
particular, in Theorem 5 we present weaker conditions on the set A which suffice for (5)—(7) to
hold.

Example 1: Consider the measure v = 0 in (1), i.e. X} is a linear transformation of the standard



Brownian motion. Ignoring possible degeneracies, we take 3 = I. Here, A*(z) = |z — b|?/2 is finite
everywhere, and Vi, = V (=, |z|/|b]) = |z|[b] — (z,b). Therefore, if A is a closed, convex set of
non-empty interior which, for § > 0 small enough, excludes the cone K, then by Theorem 1 the
limit relations (5)—(7) hold with V* = inf,c a{|x||b| — (x,b)}, «* the unique point of A for which
V* = Vi), and L* = |2*|/|b|. In the particular case of A = N{_ {z : z; > a;}, corresponding to the
simultaneous exceedances in all d coordinates it is easy to check that z* = (a1, as,...,aq) as soon
as a; > bj|lz*|/|b| for i =1,...,d.

Example 2: Let the arrival process into a service station, denoted Ny, be a compound Poisson,
non-negative integer valued random process, with finite moment generating function (i.e. b = 0,
3 = 0 and the measure v in (1) is supported on the positive integers). Suppose the service times are
exponentially distributed with parameter y > E[N;], and that the service station allows an infinite
queue. The number of customers waiting for service at time ¢ is sup,,{(Ny — Wi) — (N5 — Wy)},
where W is a Poisson(u) process. Note that X; = (X}, X?) = (N; — Wi, Ny) is an IR2-valued Lévy
process. Let A = {(x1,z2) : 1 > 1}. It is straight forward to check that (P-1)-(P-3) of Theorem
5 hold, with (5)-(7) following. The second component of U corresponds to the (scaled) arrival
process during a busy period in which the number of customers exceeds the high level 1/e. The

information implied in (6) and (7) may help in overflow prevention.

The key to the proof of the limit relations (5)—(7) depends on the following conditions (fixed
time estimates), whose scope of validity is discussed in Section 4.
Condition (C-1) There exist L* € (0,00), * € A and V* € (0,00) such that:

for allT > L* 1i_1)1(1)elog P(T.<T)=-V*. (8)
foralld >0, T>L* limsupelogP(|L—L*|>d§andT. <T)< -V* | (9)
e—0
and
limsupelogP( sup |US—ui|>dand T. <T)< -V*, (10)
e—0 0<s<L*

where u} = (s/L*)z*.
Condition (C-2) lim lim limsupsupelogP (Y € A") < —2V* | where
n—=0C—=00 50 t>C
A" = {z :infyca |y — x| < n}.
The estimates of (C-1) state the most likely way for a “one—shot” hit of A by the increments
process Y — Y during a finite time interval, as well as an assessment of the probability of such

an event (at least on an exponential scale). Condition (C-2) provides for the confinement of L.

to a bounded time interval, by virtue of which the problem can be decoupled to a sequence of



independent “one-shot” attempts at hitting A. In detailing these steps (Lemmas 1-4 below) we

achieve the following two theorems.

Theorem 2 Assume that both (C-1) and (C-2) apply. Then, the limit relations (5)—(7) hold.

Theorem 3 Assume that both (C-1) and (C-2) apply. For n. — oo such that elogne — 0, let
pe = P(T. < n¢). Then, n_'pT. converges in distribution to an Ezponential (1) random variable.
If also

reA=>{yx:v>1}CA, (11)

then the limit relation (5) holds almost surely.

3 Proofs of Theorems 2 and 3

The main difficulty in proving Theorem 2 is that it involves events on an infinite time horizon;
this precludes using directly the fixed time estimates of (C—1). The proof proceeds by reducing the
infinite time horizon to finite time intervals which are loosely coupled and applying the estimates

of (C-1) on the latter intervals. The first step to this end is the following upper bound on T.

Lemma 1 For any § > 0,
lim P(T. > (V" 19/ey = p.
e—0
Proof: Split the time interval [0, e(V"+9)/¢] into disjoint intervals of equal length A = (L* 4 1) each.
Let N, be the (integer part of the) number of such intervals. Observe that
P(T. > eV /) <P(Yiars — Yiass A 0<s<t<A,k=0,...,N.—1).

The above events are independent for different values of k as they correspond to disjoint segments

of Y. Moreover, by the stationarity of the increments of Y€, they are of equal probability. Hence,
P(T. > V" 1/€y < [1 — P(T, < A)™e |

while
N, > celV*+)/e

Y

for some 0 < ¢ < oo (independent of €). Since for all € > 0 small enough (8) implies

P(Te S L* + 1) Z e—(V*+6/2)/€,



it follows that for all € > 0 small enough,
P(T, > eV +0/e) < (1 — e~V +0/2/eyee ™00 < oy (ebf2e) Ly 0. (12)

Lemma 1 is not enough yet, since the upper bounds on T, are unbounded (as ¢ — 0). To

continue we need the following short time estimate which allows for discretizing Y*.
Lemma 2 For any n > 0,

limsupelogP( sup |Y| >n) =—o0 (13)
0<t<e

e—0

Proof: Note that
{sup [V >n} C{ sup |Z|>2L—b]},
0<t<e 0<7<1 €

where Z, = X; — 7b is a Martingale. Bounding the latter event by the union of 2d one-dimensional

events involving thresholding the coordinates of Z, it suffices to show that for every A € R?

1
limelog P( sup {(A,Z;)} >
€—0

3= . (14)
0<7r<1 €

To this end, fix A and note that for every 6, M, = e?™Zr) is a positive sub-martingale. Hence, by

Doob’s maximal inequality, for every 6 > 0,

1
P(sup {(\,Zr)} > =) = P(sup M, >
0<r<1 € 0<r<1
Se—B/eE[Ml] — g O/eHAON)-O(ND)

Since A(-) is finite everywhere, (14) follows by letting first € — 0 and then 8 — co. =

The following lemma, provides for the confinement to the increments within finite time lags.

Lemma 3 There exists a constant C < oo such that

lim P(L > C) = 0.

e—0

Proof: Choose 7, § small enough and C large enough for (C-2) to yield

limsup elog K2supP(Yf € A7) <0, (15)
t>C

e—0



where K, = |e'e(V'+9/¢| 4 1. Now cover the time interval [0,e(V"19)/€] by K, non-overlapping
sub-intervals of size € each, and let ?: be the piecewise constant process obtained by considering

Y- Note that the event {Le¢ > C} is contained in the union

{Te > VUL sup [V =T > /2 HTe(Cym) < V7H0e)

t<e(V*+3)/e
where

T(C,n) = inf{t: 3s€[0,t — C) such that Y; — Y, € A"} .

Consequently, by the union of events bound and the stationarity of increments of Y€
P(L. > C) < P(T. > V' +9/¢) L K.P(sup |Yf| > n/2) + K2supP(Yf € A7) .
0<t<e t>C

Using (12), (13), and (15), one has that for some constant ¢; and all € > 0 small enough,

8/2€

P(L>C)<e ™ fee/c 5 0. (16)

Lemma 4 Let C be the constant from Lemma 3 and for each fized integer n define the decoupled

random times
Ten =inf{t: Y - Y5 € A for some s wheret > s > 2nC|t/(2nC)|} .

Then,
lim lim P(T., #T) =0 .

n—o00 e—0

Proof: Divide [C, o) into the disjoint intervals I, = [(2£ — 1)C,(2£ 4+ 1)C), £ = 1,... Define the
events

Jo={Y—-Y € A for some 7 <t,t, 1€},

and the stopping time
N =inf{f > 1: J; occurs } .

By the stationarity and independence of the increments of Y, the events J; are independent and
equally probable. Let p = P(J;). Then, P(N = £) = p(1 — p)¢~! for £ € Z, . Hence,

P({T. < Top} N {Le < C}) < P( G (N = kn})
k=1

— ip(l _p)lm—l — p(]- _p)nil < 1
k=1 1_(1_p)n—n



Since by definition T, < T, the proof is completed by applying Lemma 3. =

Returning to the proof of the theorem, it is enough to consider the rare events of interest with
respect to the decoupled times for n large enough. This procedure results with a sequence of i.i.d.
random variables corresponding to disjoint segments of Y€ of length 2nC each. The fixed time
estimates of (C—1) can then be applied. In particular, with N, = |(2nC)~'e(V"=9/€¢| 4 1 denoting

v* —6)/6]

the number of such segments in [0, el , the following lower bound on Ty is obtained

. o
P(Te,n < e(V *5)/6) < Z P([ €,nJ :k)

= 2nC
< N.P(T.n < 2nC) < N.P(T, < 2nC)
< (& BT < anc
< (W+ )P(Te < 2nC).

Therefore, with n large enough for 2nC > L*, the estimate (8) implies that

V*—4 eV e s
lim P(Tn < eV =0/ey <lim =~ (V'=8/2)/e —
€—>

e—0 2nC

Hence, for all § > 0, by Lemma 4

lim P(T; < e""79/¢) = lim 1lim P(T., < V" =9/¢) =0,

e—0 n—oo e—0
and (5) results in view of the upper bound of Lemma 1.

Define now
Ten =sup{s: s € [0,T. ), Y’f’e,n -Y e A}.
Clearly, T¢ , > T and if T, ,, = T, then also 7 , = 7.. Moreover, for all n and all ¢, the distribution of

{waﬂ :0 <5 <T,pn—Tepnt is the same as the conditional distribution of {Y , : 0 < s <Te—7c}
given T, < 2nC. The estimates of (C-1) imply that for all § > 0 and any n large enough

limP(|L,— L*| > 8 | T. <2nC) =0 ,
e—0

and

imP( sup |Uf—u;|>6 | Te <2nC)=0.
e—0 0<s<L*

When combined with Lemma 4, the limit relations (6) and (7) are confirmed. m

Proof of Theorem 3: Let T¢,_ be defined as in Lemma 4, but with n. instead of 2nC. By the
same argument as in this lemma, P(T¢, # T.) — 0 as e —» 0. Fix y > 0 and let m, = |y/p| and



Ye = peme. The event {n_'p.T.n. > yc} is merely the intersection of m, independent events each

of which occurs with probability (1 — p.). Consequently,
P(n.'peTen, > ye) = (1 —pe)™ .

Since elogne — 0 it follows from (5) that p. — 0 and y. — y. Therefore, (1 — p)™ — e~ ¥ and the

Exponential limit law of n_1p.T. follows.

Our assumption (11) implies that the stopping times 7 /e are monotonically non-increasing in
€ (sample-wise). Consequently, the almost sure convergence in (5) follows as soon as for every fixed

d > 0, and every v > 0 arbitrarily small
limsup |e, logTe, — V*| < § almost surely, (17)
n—oo

where €, = (1 —~v)". By (12), for some ¢z < o0,

o o n
Z P(T., > V" +/eny < ¢y + Z eee”/ P oo (18)

n=1 n=1

Let C = max(C, (L* +1)/2) where C is the constant from Lemma 3. Let k. = [(2C)'e(V'=9/¢| +1
and note that the event {T, < e(V"=9/¢N L, < C} is contained in U?ii)_lA@-, where

Ay ={Y5— Y , € Aforsome 2C >t >s>0}.
By the stationarity of increments of Y€, one has that P(A,) = P(Ag) = P(T. < 2C). Therefore,
P(T, < eV'=9/¢) < P(L. > C) + 2k P(T. < 2C) .
For all € > 0 small enough (8) implies that
P(T. < 2C) < e~ (V'=9/2)/¢ | (19)

Combining (16) and (19) it follows that

S P(T, < el <00 (20)

n=1

Applying the Borel-Cantelli lemma, (17) follows from (18) and (20). =

10



4 Large deviations and the set A

We turn now to use the Large Deviations Principle (LDP) associated with sample path of Y¢
in order to establish (C-1) and (C-2) as soon as the set A satisfy certain explicit geometrical
conditions. To this end, let D([0,t]) be the space of functions continuous from the right and having
left-hand limits, equipped with the uniform (sup norm) topology. The laws p, of the processes Y,
s € [0,¢t], are supported on this metric space, and satisfy there the LDP with the following rate

function ‘
JEA(By)ds, if ¢ € AC,, ¢ =0
Ii(¢) =

00 otherwise

where AC; is the space of absolutely continuous functions ¢ : [0,t] — IR¢. In the present context

the LDP is summarized in the following theorem.

Theorem 4 (a) For any t < oo and any o < oo, ¥r(a) = {¢ : I;(¢) < a} is a compact set with
respect to the sup norm topology.
(b) For any measurable set of functions I' C D([0,1]),

lim sup elog (') < — inf I;(9) , (21)
e—=0 @€l
and
lim inf €log ue(T") > — o, Ii(9) - (22)

Here measurable is with respect to the o-algebra generated by the coordinate maps s — f(s),

completed by the common null sets of {ue : € > 0}.

Part (a) above is referred to as I;(-) being a good rate function. The bounds of (b) are called
the large deviations upper and lower bounds. Note that the notation ue does not indicate the value
of t considered. In our applications this value will be made clear via the definitions of the relevant

sets.

Proof of the above theorem can be found in [FW84, Puk92, deA93]. It can also be easily deduced
by modifying either the proof of Schilder’s theorem in Section 5.2 of [DZ93], or the alternative proofs
of Schilder’s theorem presented in [DS89, Var84].

The cost associated with a termination point z € IR? at time ¢ € (0,00) is defined as

J(z,t) I(¢) .- (23)

= inf
{p€ ACt: po=0,p1=2}

11



Lemma 5 For all z € R%t > 0,
J(z,t) = Ii(52) = V(z,1), (24)

where V(z,t) is defined in (2). Moreover, V(z,t) is a convezr, nonnegative, lower semicontinuous

function on R x [0, c0).

Proof: By its definition, A*(-) is a convex function. Hence, for all ¢ > 0 and any ¢ € AC; with
¢o = 0, by Jensen’s inequality,

@) =t 86 % s ([[6.%) = (2

with equality for ¢ = sz/t. Thus, (24) follows by the definitions (2) and (23). Since A*(-) is
nonnegative, so is V (z,t). By the first equality in (2), which holds also for ¢t = 0, V(z, t), being the

supremum of linear functions is convex and lower semicontinuous on R? x [0,00). =

Recall that the quasi-potential associated with a set E C IR? is defined as

VE = inf V(.’E, t) .
z€E,t>0

The following theorem relates properties of the function V (-,-) and of the set A, with conditions
(C-1) and (C-2).

Theorem 5 Suppose that A is a closed set with the following properties.

(P-1) V4 = Vgo € (0,00) (where A® denotes the interior of A).

(P-2) There is a unique pair z* € A, t* € (0,00) such that V4 = V(z*,t*). Moreover, the straight
line u} = (s/t*)x* is the unique path with respect to (23) for which the value of V(x*,t*) = V4 is
achieved.

(P-3)

7171_13% Lim Veo(aynge:le/>ry > 2Va,

where co(A) denotes the closed convex hull of A.
Then, (C-1) and (C-2) hold with V* = Vy4, L* =t* and x*, and u* as stated above.

Proof: Proceeding to the verification of (C-1), set

U ={y € D([0,T]) : ¢y — ¢, € A for some 7 <t €[0,T]},

®5 = {¢ € D([0,T)) : ¥+ — ¥, € A for some
T<tel0,T], t—Te€[0,t* =38 U[t"+4,T]},

12



and

U5 ={¢ € D(0,T+t]) : by —¢r € A, sup |Yspr —¢%r —uy[ 20

0<s<t*
for some 7<te[0,T]}.

Observe that

P(Te <T) = p(¥),
P(|[Le—t"| > dandT. <T) < p(®;s),

P( sup |Uf—wu;|>dand T <T) < p(¥%).
0<s<t*

Therefore, in view of the LDP of {uc}, the estimates of (C-1) are consequences of the following

lemma.

Lemma 6 Assume (P-1)-(P-8). Then, for all T > t*

Va= inf I = inf I ) 25
4= Inf T(¥) = jof, Ir(¥) (25)
while for all § > 0,
inf Ip(¢) > Va, (26)
PeED;
and
inf Ipi4(¥) > Vay. (27)
ASE
Proof: Throughout, let || - || denotes the sup norm over the relevant bounded time interval.

Starting with the proof of (25), determine ¥™ € ¥ such that || Y™ — ¢ ||— 0 with ¢ € Cy([0,T]).
Accordingly, there exist 7, < t,, € [0,7] and z, = (¢}, — 7 ) € A. With [0,T] a compact set and
possibly passing to a subsequence, we may take 7, — 7 € [0,T] and ¢, — t € [, T]. It follows that
yn — y where y, = (Y, — ¥r,,) and y = (¢ — ¥, ). Moreover, |z, —yn| — 0 and since A is a closed
set, y € A, implying that ¢ € ¥. Consequently, ¥ N Cy([0,7]) C ¥, and since {¢ : Ir(p) < oo} is
a subset of Cy([0,T]), we have

inf Ip($) = inf Ip() . 28
it 1r(0) = fnf 7r(4) 29
Since T > t*,
Va= inf V(zt)=  inf inf  I_.(¢).
4= et VD= o gy (@)

13



Let the map S, : D([0,t — 7]) — D([0,T]) be defined via ¢ — 1 where

sb s€[0,7)
Vs = Gs—r + T s €[rt)
Gt r+Tb+(s—t)b se[t,T].

Then, with A*(b) =0, clearly I; ,(-) = I7(S;(-)) and hence also

Va = I7(S:(¢)) = inf Ir(y).

inf inf
z€A,r<te[0,T] {¢:¢1—r=z} Ypev
The set
U= {¢ € D([0,T)) : ¥y — ¢, € A° for some 7 <t € [0,T]},

is open, for if ) € U then there exist 7 < ¢ € [0,T], x € A° and n > 0 such that © = ¥ — ¢, and
By o) C A°, and consequently

l¢—vl<n = ¢€¥.

Since U C ¥ it follows that

inf T < inf T = inf Viz,t
b8 T < L W) = e V1)

and the proof of (25) is complete by showing that for all T > ¢*,

inf Vie,t) =Vy4. 29
zeAf},Itle[o,T] (%) A (29)

To this end, observe that VA(0) = E(X7) = b and hence A*(z) > 0 for z # b. Moreover, A*() is a
good rate function, so also

a= inf A*(z)>0.
2 <[bl/2

Hence by (2), for all » > 0,

inf inf V(z,t)> inf inf ¢A* (f>z2m/|b|. (30)
jal<r 20/ b £220/[b] 1)< I8l t

Consequently, by (P-1) and (P-3), there exists an r < oo such that

Va=Vso = inf V(z,t) . (31)

zeA°,|z|<rt<lr

Consider an arbitrary sequence (xn, t,,) satisfying z,, € A?, |z,| <7, t, € [0,7] and V(z,,t,) = Va.

Such a sequence admits at least one limit point, say (z,t), and by the lower semicontinuity of V' (-, )

Va = n]i_)IIOIOV(:L‘n,tn) > V(z,t).
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However, z € A and t < oo implying by (P-2) that z = z*, ¢t = ¢t* (and for all T > t* eventually
tn € [0,7]). When combined with (31) the conclusion of (29) is assured.

Now suppose that (26) is false for some § > 0. Then, since I7(-) is a good rate function, there
exists ¢ € 5 with Ir(¢) < V4 < oco. Consequently, paraphrasing the reasoning leading to (28),
one may find a ¢ € ®; such that Ir(¢) < V4. Fix 7 <t € [0,T] such that both |t —7 —¢*| > § and
¢t — ¢r € A. Then,

VA Z IT(QS) Z It—r(¢s—|—r - ¢T) Z V(¢t - ¢Tat - T) )

and hence by (P-2), t — 7 = t* resulting with a contradiction.

Fix § > 0, 9™ € U5 and ¢ € Cy([0, T+t*]) such that || ™ — ||— 0. There exist 7, < ¢, € [0,T]
such that ¢p — 4T € A, and

su oYt k>,
Ogsgt* |¢5—|—Tn "prn s| -

The same argument as above yields (on a subsequence) t, — t, 7, — 7 and (¥ — ¥7 ) —
(Y — ;) =y € A. Moreover, since ¥ € Cy([0,T +t*]) and 7, — T,

sup ‘1[)?—#7',1 - ’gbfn - (1/)34—7' - 1[)7')| —0.
0<s<t*

Therefore, sup |¢si1r — Py —u}| >4, ie., ¢ € V.
0<s<t*

Suppose that (27) is false. Then, since I, (-) is a good rate function, there exists ¢ € Uy
with I 4 (¥) < V4 < o0, and by the above argument also ¢ € 5. Fix 7 < ¢t € [0,T] such that
both 9; — ¥, € A and

sup |172;8+T - ¢~T - U:| >9. (32)
0<s<t*

Consequently,

VA > IT+t* (1/;) > It—T(1/)~3+T - 1)ZT) > V(f@zt - Q)ZTat - T) .

Thus, by (P-2), t — 7 = t*, i — ¥, = «* and s, — ¥, = u* contradicting (32). It follows that
(27) must hold. =

Turning now to the proof of (C-2), observe that by Chebycheff’s inequality, for any A € IR,

and any compact, convex K C R¢,

P(Yf € K)= P(eXt/e €K) < E eXp(</\,Xt/€> - (A z)/e)

inf
rzeK

_ e[tA(A)—infmeK(A,a:)}/e
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Hence, by the min-max theorem (c.f. [ET76], pg. 174 ),

elogP(Yf € K) < — sup inf [(A,z) —tA(A\)] = — inf V(z,t)
AcR4 TeK zeK

This inequality extends to every convex, closed K by intersecting it with a sequence of balls centered
at the origin and of radii that monotonically increase to oo. In particular, applying the above to
the closed, convex sets co(A"), it follows that (C—2) holds as soon as

lim lim inf Ve, t) >2Va .
1—0 C—00 2ECO(AN), t>C

The latter inequality holds by combining (30) and (P-3) (recall that co(A") C co(A)"). m

Remark: As evident in the above proof, even when (P-2) fails, both (C-2) and the estimate (8)
for all T' large enough hold as soon as (P-1) and (P-3) hold. Hence, these suffice for (5) to hold

true.

Proof of Theorem 1: In view of Theorems 2 and 5, and the above remark it suffices to show
that the conditions of the theorem imply that (P-1) and (P-3) hold true, and if A*(:) is finite
everywhere, then (P-2) holds as well.

We shall start by proving (P-1). The existence of a point pz € A° such that A*(z) < co implies
that Vi < Vo < V(pz,p) < co. With A*(z) having compact level sets and unique minimum at
z =b, it follows that a, = inf.¢p,  A*(z) > 0 for all p > 0 (where By, denotes the ball of radius p
centered at b). As b # 0, for p > 0 small enough By, C Ks5. Consequently, for some a = a,,

V(z,t) >at VzeA

Moreover, by (2),

V(z,t) > |z| —t sup A(N),
A=1

and hence V(z,t) > (2V4 + 1) for all t < (2V4 + 1)/a once |z| > r for some 7 large enough.
Combining the above estimates it follows that V4 is the infimum of V (z,t) over (z,t) € AN By, X
[0, C] for some finite 7, C large enough. The existence of the pair z* € A, t* € (0, 00) now follows
by the compactness of the latter set and the lower semicontinuity of V'(-,-). Since z* € A, it follows
that «*/t* # b, and consequently V4o > V4 > 0. Consider the point pz € A° such that z € Dj«.
For all a € (0,1] both ¢o = apz + (1 — a)z* € A° and z, = az + (1 — a)z*/t* € Dp+ Note that
Vao < V(¢a,ta) = taA*(23), where to = ap + (1 — a)t* and B = ap/ts, € (0,1]. As a N\, 0, both
to — t* and A*(2z3) — A*(z*/t*) (see [Roc70] Corollary 7.5.1). Consequently, V4o = V4.

With A(-) finite everywhere, it follows by dominated convergence that A(-) is differentiable

everywhere, and hence A*(-) is strictly convex in the relative interior of its domain (see [Roc70]
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Corollary 26.4.1). Consequently, (P—2) holds as soon as z*/t* is in this set. In particular, (P—2)

holds when A*(:) is finite everywhere.

Turning now to the proof of (P-3), observe that co(4)"N{xz : |z| > r} excludes the cone Ky for

§' < 8 — 2p/r. Hence, (P-3) follows paraphrasing the argument used when proving the existence

of (z*,t*).
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