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Endemic plants inhabiting coastal sand dunes show augmented extinction risks due to the dynamic nature of dunes
and strong human pressure on coastal areas. To investigate the survival strategies and threats to long-term
survival of such species, we combined genetic, morphological and biogeographical approaches, using the example
of Hieracium eriophorum (Asteraceae) and its putative cryptic sister species H. prostratum, which are endemic to
the longest coastal sand dune in Europe. An analysis of amplified fragment length polymorphism revealed high
within-population genetic variability, and slight isolation by distance was the only indication of genetic population
structure. Thus, no signs of genetic threats to survival were found. Furthermore, genetic and morphometric data
provided no evidence for the existence of two species. Therefore, we propose to synonymize H. prostratum with
H. eriophorum and provide a nomenclatural overview with typification. Finally, an analysis of historical distribu-
tion records showed that, during the last 100 years, the species was lost from its range margins, where its habitat
became fragmented. Taken together, our results suggest that one successful survival strategy of narrow endemics
may be the achievement of large local population sizes on a small geographical scale, thus avoiding the genetic
problems inherent to small and fragmented populations. Dune management policies should thus take care that the
current tendencies to allow more erosion will not result in too severe fragmentation of the remaining continuous
stretches of dune habitat. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012,
169, 365–377.
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INTRODUCTION

Species that are geographically restricted to a small
area are often termed ‘narrow endemics’ (e.g. Kruck-
eberg & Rabinowitz, 1985). As a consequence of their
limited range, narrow endemics have a high risk of
extinction from a combination of stochastic, environ-
mental and genetic factors (e.g. Ellstrand & Elam,
1993; Avise & Hamrick, 1996). Therefore, they are of
high conservation priority (Primack, 1995).

Coastal habitats harbour many narrowly distrib-
uted plant species. For instance, along European sea-
shores, 25% of all species are endemic to a province or
a county (van der Maarel & van der Maarel-Versluys,
1996). Shorelines are under heavy pressure for indus-
trial, agricultural and recreational use (e.g. Martinez
& Psuty, 2004). As a consequence, 37% of the Euro-
pean littoral plants are endangered (van der Maarel
& van der Maarel-Versluys, 1996). Many of the costal
endemics are specialists of sand dunes (vanden
Berghen, 1964; Bakker, 1976; Géhu & Franck,
1985), a habitat that is particularly threatened by*Corresponding author. E-mail: david.frey@unifr.ch
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destruction due to urbanization and erosion (e.g.
Géhu, 1989; Heslenfeld, Jungerius & Klijn, 2004).

Molecular markers have been used in coastal plants
to elucidate modes of dispersal and phylogeography
and to clarify the phylogenetic origin of endemics (e.g.
Purdy, Bayer & McDonald, 1994; Purdy & Bayer,
1996; Chapman & Abbott, 2005; Kadereit et al., 2005;
Pillon et al., 2007; Westberg & Kadereit, 2009). Such
information is relevant for species conservation, as it
helps to define conservation units and to preserve
genetic diversity (Ellstrand & Elam, 1993; Primack,
1995; Avise & Hamrick, 1996). Investigations of
genetic diversity and genetic population structure
may also help to explain the high degree of endemism
in this habitat. In fact, the high degree of endemism
may seem surprising because sand dunes are
dynamic habitats, potentially characterized by fre-
quent cycles of extinction and re-colonization which
may erode genetic diversity and exacerbate the
threats to survival already imposed by the small
geographical range (e.g. Gilpin, 1991; McCauley,
Raveill & Antonovics, 1995; Jacquemyn et al., 2008).

Here we study genetic diversity and genetic popu-
lation structure of a sand dune endemic using the
example of Hieracium eriophorum St.-Amans, a sand-
dune specialist, which occurs exclusively along a
narrow stretch of 80 km of the Atlantic sea coast in
south-western France (Department of Landes; Faven-
nec, 2002a). The species inhabits the longest continu-
ous sand dune in Europe, which is only interrupted by
a few towns and villages (Favennec, 1998). On the
dune, it occurs in zones with moderate erosion (semi-
fixed dune), where it experiences only low levels of
interspecific competition and where it can form high-
density stands of thousands of individuals together
with other endemic plant species (Géhu & Franck,
1985; Favennec, 2002a; Forey et al., 2008).

In the last 150–200 years, the distribution area of
H. eriophorum has experienced large-scale transfor-
mations. The previous, up to 10-km-wide system of
several parallel ridges of highly dynamic sand dunes
was forested during the 19th century leaving only a
single, 200- to 500-m-wide dune, which is actively
managed to prevent erosion (Favennec, 2002b, 2002c).
Based on historical maps, we estimate that 93%
of potential habitat was lost (a reduction from
c. 465 km2 to 33 km2, D. Frey, unpublished data).
However, because the semi-stabilized dune is
favoured by management practices, the actual degree
of change in the amount of available habitat is
unknown (Favennec, 2002d). Today, H. eriophorum
is classified as ‘vulnerable’ (Dupont, 1995), but due
to the uncertainties about habitat loss and the
response of the species to dune management prac-
tices, this classification is only weakly supported by
data (Lesouëf, 1986; Géhu, 1989). Today, the largest

threats to its survival are habitat loss and habitat
fragmentation due to erosion (e.g. by trampling) and
urbanization (Dupont, 1995; Favennec, 1998).

The conservation of H. eriophorum is complicated
by the existence of a putative sister species, H. pros-
tratum DC., reported to co-occur with H. eriophorum
in the same region and habitat (e.g. de Candolle,
1813; Zahn, 1922; Sell & West, 1976). However,
its taxonomic status is controversial, and it is unclear
whether it represents a separate taxon or not.
Although H. prostratum was mentioned in many
standard floras and checklists (e.g. Sell & West, 1976;
Kerguélen, 1993; van der Maarel & van der Maarel-
Versluys, 1996; Greuter, 2006–2009), it was omitted
in the Red Book of France (Dupont, 1995). As a
consequence, no conservation status is currently
assigned to this taxon, and it is not protected by law
(Lesouëf, 1986; Dupont, 1995; Favennec, 1998).

In the current study, we assessed the genetic
diversity and genetic population structure of H.
eriophorum using amplified fragment length polymor-
phisms (AFLPs; Vos et al., 1995) to investigate poten-
tial genetic signatures of extinction–recolonization
dynamics and other signs of genetic drift and loss of
genetic variation which may threaten the long-term
survival of the species. Furthermore, to define unam-
biguous conservation units, we investigated the exist-
ence of the putative sister species H. prostratum
using morphometric and genetic analyses. Such a
combined approach has been successfully applied in
other threatened species (e.g. de Oliveira et al., 2008;
May-Itza et al., 2010). In Hieracium L., AFLPs have
proved useful for discrimination between closely
related species (Rich, McDonnell & Lledó, 2008; Roni-
kier & Szeląg, 2008) or detection of interspecific
hybridization (Mráz, Chrtek & Fehrer, 2011). Finally,
using historical and current distribution records, we
attempted to elucidate whether H. eriophorum has
suffered a recent range contraction and to help deter-
mine the conservation status and management pri-
orities for this species and its habitat.

MATERIAL AND METHODS
STUDY SPECIES

Hieracium eriophorum is a perennial herb with a
dense hair cover (indumentum, trichome cover) and a
semi-prostrate habit. These characters are considered
adaptations to a sand dune environment (Danin,
1996). As in other species of the genus, the achenes
have a hairy appendix (pappus), which allows long-
distance dispersal by wind. The genus has a holarctic
distribution and shows widespread polyploidy and
apomixis, which considerably complicates taxonomy
(e.g. Sell & West, 1976). However, H. eriophorum is
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diploid (2n = 2x = 18) (Merxmüller, 1975; Chrtek
et al., 2007), and diploid Hieracium spp. are obligately
sexual and outbreeding (Mráz, 2003). Cross pollina-
tion is mediated by insects (Thomson, 1978). The
putative sister species, H. prostratum, has been
reported to differ from H. eriophorum by having a
more prostrate habit and by being less hairy, espe-
cially on the involucral bracts (leaves surrounding the
flower heads; Zahn, 1922; Sell & West, 1976). In spite
of the close morphological and phylogenetic relation-
ship of H. eriophorum and H. prostratum to section
Hieracioides Dumort. (synonym Umbellata Fr.) (cf.
Fehrer, Krak & Chrtek, 2009), traditional classifica-
tions treat both taxa within the separate section
Eriophora (Arv.-Touv.) Zahn (e.g. Zahn, 1922; Stace,
1998).

GENETIC ANALYSES

Leaves were collected from eight individuals from
each of the six populations (Table 1; Fig. 1). Vouchers
are deposited in the Natural History Museum Fri-
bourg (NHMF). Between 10 and 20 mg of dried mate-
rial was ground with glass beads. Total DNA was
extracted using the DNeasy Plant Mini Kit (Qiagen)
following the manufacturer’s instructions and stored
at -20 °C. The following AFLP protocol was used: c.
200–250 ng of genomic DNA was restricted with
EcoRI and MseI (New England Biolabs) and ligated
to the adaptors 5′-CTCGTAGACTGCGTACC-3′/3′-
CATATGACGCATGGTTAA-5′ and 5′-GACGATGAG
TCCTGAG-3′/3′-TACTCAGGACTCAT-5′ using 1.1 mL
T4 DNA Ligase buffer 10¥ (Qiagen), 1.1 mL of 0.5 M

NaCl, 0.55 mL of bovine serum albumin (1 g L-1), 5 mM

EcoRI adaptor, 50 mM MseI adaptor, 5 units of EcoRI
(New England Biolabs), 1 unit of MseI (New England
Biolabs) and 0.99 units of T4 DNA ligase (New
England Biolabs), all in a total volume of 11 mL.
Reactions were then incubated at 37 °C for 3 h. A
pre-selective amplification of the restricted-ligated
DNA was performed using 4 mL of 20¥ diluted
restriction-ligation product, 0.2 mL of each of the two
preselective primers (5′-GACTGCGTACCAATTCA-3′
and 5′-GATGAGTCCTGAGTAAC-3′; each c. 29 mM),
2 mL 10¥ PCR buffer (Qiagen), 0.2 mL of each dNTP
(10 mM each), 0.5 units of Taq Polymerase (Qiagen),
all in a total volume of 10 mL with the following cycle
profile: 94 °C for 2 min; 94 °C for 20 s, 56 °C for 30 s
and 72 °C for 2 min (20 cycles); followed by 60 °C for
30 min and 4 °C thereafter. After a 20-fold dilution of
pre-selective PCR products, the selective PCR step
was carried out as a multiplex reaction using three
fluorescent selective primers (EcoRI-6-FAM-CTA,
EcoRI-NED-CG and EcoRI-HEX-CTC; Applied Bio-
systems, ABI) combined with MseI-CTA. These three
primer combinations were selected from 12 combina-
tions tested, as they gave the best reproducible and
polymorphic profiles. The selective PCR was per-
formed using the following profile: 94 °C for 2 min;
94 °C for 20 s, 66 to 56 °C (DT = -1 °C per cycle), 72 °C
for 2 min (nine cycles); 94 °C for 20 s, 56 °C for 30 s,
72 °C for 2 min (20 cycles); 60 °C for 30 min and 4 °C
thereafter. Then, 1 mL of selective PCR product was
mixed with 10 mL of HiDi formamide (ABI) and
loaded for 40 min on an ABI 3130 Genetic Analyzer
(ABI). One individual per population was replicated

Table 1. Sampling sites of Hieracium eriophorum for molecular and morphometric analyses and within-population
genetic diversity measures based on AFLP data

Locality Code Lat. (°N) Long. (°W) N* Nbds† %Poly‡ h§ IR¶

AFLP analysis
Mimizan-Plage MIMN 44°13′51.8″ 1°17′33.0″ 7 34 68 0.316 0.83
Petre Morue PET 43°58′33.5″ 1°21′19.0″ 8 37 73 0.310 0.92
Huchet HUCH 43°53′02.8″ 1°22′56.8″ 8 37 64 0.219 0.89
Plage de Soustons PDS 43°46′16.2″ 1°25′09.0″ 7 38 75 0.325 1.06
Hossegor HOSC 43°39′32.9″ 1°26′37.4″ 8 40 82 0.343 1.05
Tarnos-Plage TARN 43°33′58.8″ 1°29′36.9″ 8 38 75 0.314 1.00

Morphometric analyis
Biscarosse-Plage BIS 44°27′8.6″ 1°15′05.5″ 14 – – – –
Moliets-et-Maa MOL 43°50′39.8″ 1°23′43.4′ 26 – – – –
Tarnos-Plage TAM 43°33′10.5″ 1°30′14.9″ 24 – – – –

*Number of individuals analysed per population.
†Total number of AFLP bands.
‡Percentage of polymorphic bands.
§Nei’s gene diversity.
¶Index of rarity.
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twice to assess the level of reproducibility. After
removal of non-reproducible markers, the average
overall reproducibility reached 98.3% (Bonin et al.,
2004). The presence and absence of the AFLP frag-
ments were then scored manually with GeneMapper
(version 4.1; ABI). Only polymorphic fragments were
considered in the analyses.

As a measure of within-population genetic diver-
sity, the proportion of polymorphic loci, Nei’s gene
diversity (Nei, 1987) and the ‘index of rarity 1’ (IR)

were calculated using the ‘AFLPdat’ script (Ehrich,
2006; see updated manual at http://www.nhm.uio.no/
english/research/ncb/aflpdat/) within the R environ-
ment (R Development Core Team, 2009). The IR
corresponds to the ‘down-weighted value’, a measure
of the frequency of rare/private alleles in a population
(Schönswetter & Tribsch, 2005). We used a neighbor-
joining cluster algorithm (NJ) based on Euclidean
distance computed from allele frequencies to estimate
relatedness among populations, where a population
was defined as one sampling location. NJ was per-
formed also at the individual level and it was based
on Jaccard’s index of similarity computed from the
presence and absence of bands. Statistical support
of nodes was computed using 99 bootstrap replicates
for analysis at the population level, and 999 replicates
for analyses of individual plants. We also conducted
a principal coordinate analysis (PCO) based on
Jaccard’s index of similarity. Analysis of molecular
variance (AMOVA; Excoffier, Smouse & Quattro,
1992) was used to partition the genetic variance into
within- and among-population components. Isolation
by distance pattern (the correlation between Euclid-
ean genetic and geographical distance between popu-
lations) was assessed using a Mantel test with 999
permutations. All analyses mentioned above and plot-
ting were performed using the ‘ade4’, ‘ape’, ‘pegas’ and
other basic packages (Chessel, Dufour & Thioulouse,
2004; Paradis, Claude & Strimmer, 2004; Paradis,
2010) within R environment. Population structure
was further assessed using a Bayesian clustering
algorithm implemented in STRUCTURE (version
2.3.3; Pritchard, Stephens & Donnelly, 2000; Falush,
Stephens & Pritchard, 2007). We ran STRUCTURE
for 900 000 iterations following a burn-in period of
100 000 iterations with k = 1–10 using the correlated
allele frequencies model and assuming admixture
(the default values). Every run was repeated five
times with the exception of the last four runs (k =
6–10) in which fewer runs (two to four) were
performed.

MORPHOMETRIC ANALYSES

The morphometric analysis was based on 14–30
plants collected from each of three distant sampling
sites (Table 1), which were not included in the genetic
analysis. One intact flowering stem per individual
(i.e. not the entire plant) was sampled and subse-
quently deposited in the herbarium of the Natural
History Museum Fribourg (NHMF). The height of
the plant and the height of the first branching
above the ground were directly measured in the field.
Other characters were measured on the pressed
herbarium material. In total, 28 characters were
recorded (Table 2), including all characters considered

Figure 1. Historical and current distribution of
Hieracium eriophorum and sampling sites (see Table 1).
The thick line and the filled circles represent sites with
presence records between 2001 and 2010 (the thick
line representing the continuous distribution without
gaps > 2 km). Empty circles show absence records collected
between 2001 and 2010, but not all absence records are
mapped to simplify the illustration. Crosses indicate
extinctions, i.e. sites with former (1850–2000) records but
confirmed absence between 2001 and 2010.
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to discriminate between H. eriophorum and H. pros-
tratum (De Candolle, 1813; Zahn, 1922). In addition,
we tested for the correlation between pair-wise
genetic distances (based on Jaccard’s coefficient of
similarity between individuals) and pair-wise pheno-

typic distances in hairiness (Euclidian distance in
trichome density between individuals) measured on a
stem leaf in the upper part of the plant, as this trait
should discriminate between H. eriophorum and
H. prostratum (e.g. Zahn, 1922). This Mantel test was

Table 2. Variables used for the morphometric analysis of Hieracium eriophorum

Variable Description

Continuous quantitative characters
HP Plant height (mm): perpendicular distance between the ground and the base of the uppermost

capitulum, measured in the field
HFB Height of first branching (mm): perpendicular distance between the ground and the first ramification,

measured in the field
DST Stem diameter (mm): measured at the base of the stem
LST Length of stem (mm): measured from the base to the basal part of the principal capitulum
LFB Length of stem to the first branching (mm)
LIN Length of synflorescence (mm): calculated as LST – LFB
LLL Length of the longest stem leaf (mm)
WLL Width of the longest stem leaf (mm)
LLT Length of longest tooth of the longest stem leaf (mm)
LLB Length of the longest lateral branch (mm)
LA Length of acladium (mm)
LLBR Length of the longest bract of the principal capitulum (mm) or another capitulum
LTB Length of the longest eglandular trichome on bract (mm) of the principal capitulum or another

capitulum
LTA Length of the longest eglandular trichome on acladium (mm) or of another peduncule
LTUT Length of the longest eglandular trichome in the upper third of the stem (mm)
LTMT Length of the longest eglandular trichome in the middle third of the stem (mm)
LTSB Length of the longest eglandular trichome at the stem base (mm)
LTLUT Length of eglandular trichomes on the stem leaf (L1) of the upper third of the stem (mm): mean

of four measures per leaf
LTLMT Length of eglandular trichomes on the stem leaf (L2) of the middle third of the stem (mm):

mean of four measures per leaf
LTLLT Length of eglandular trichomes on the stem leaf (L3) from the lower third of the stem (mm):

mean of four measures per leaf
LS Length of seeds (mm): mean of four measures
LP Length of longest pappus bristle (mm)

Discrete quantitative and semi-quantitative characters
NL Number of stem leaves (excluding small bract-like leaves)
NT Number of teeth including ‘mucronate glands’ at the leaf margin of the longest leaf
NC Number of capitula per stem
TDL1 Density of simple eglandular trichomes of L1: ± glabrous (1), scattered (2), moderate (3), dense (4),

very dense (5)
TDL2 Density of simple eglandular trichomes L2: ± glabrous (1), scattered (2), moderate (3), dense (4), very

dense (5)
TDL3 Density of simple eglandular trichomes L3: ± glabrous (1), scattered (2), moderate (3), dense (4), very

dense (5)

Binary characters
SC Seed colour: various brown tints (1) or beige/greyish (0)
GH* Glandular hairs on bracts: present (1) or absent (0)
Ratio characters
LLL/WLL, NC/LIN

*This character was not included in the PCA, because this trait was invariable in all individuals.
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done using 35 of the 46 individuals included in the
genetic analysis.

The results of the morphometric analysis were visu-
alized using principal component analysis (PCA). We
performed two PCAs, one including all variables and
one including only the variables related to hairiness
and plant habit, the putative discriminant characters
between H. eriophorum and H. prostratum. Analyses
were performed using the ‘ade4’ package implemented
in R software. Confidence ellipses delineating the
phenotypic spaces of three populations were con-
structed using the gravity centre and 1.5 standard
deviations.

ANALYSIS OF THE HISTORICAL AND

ACTUAL DISTRIBUTION

Historical and actual distribution data were taken
from (1) herbarium specimens, (2) available literature
and (3) records of the French National Forestry Office
(ONF) (Favennec, 2002a; J. Favennec, unpubl. data),
the environmental agency managing most of the sand
dunes in the study region. In addition, our own dis-
tribution records from fieldwork in 2009 and 2010
(including absence data) were included. No distinc-
tion was made between H. eriophorum and H. pros-
tratum. The ArcGIS software (version 9.3; ESRI) was
used to map all presence and absence data.

1. Herbarium records and specimens were checked
from 13 herbaria (AIX, ANG, AUT, AV, G, G-DC,
GRM-ARV, LISU, LMS LY, MPU, P, TL; abbrevia-
tions according to Thiers, 2011). Only specimens
with unambiguous information on sampling site
and sampling date were considered. Only a single
record per year and site was retained. In total, 103
of 313 specimens collected between 1804 and 1998
were used for the analysis.

2. The existing literature on sand dune vegetation
was screened for information on the presence and
absence of the species. Absence data were taken
into account only for studies covering sand dune
habitats within 60 km to the south and 125 km to
the north from the current distribution of the
species, as there are no indications that the species
ever occurred outside this region (e.g. Grenier &
Godron, 1850; Lloyd & Foucaud, 1886; Rey, 1960;
Jeanjean, 1961; Aseginolaza Iparragirre et al.,
1984; Favennec, 1998). Presence/absence records
of the following sources were used: vanden
Berghen (1964), Lahondère (1979), Géhu (1981),
Lesouëf (1986) and Royaud & Lazard (1998).

3. Two ONF vegetation monitoring data sets from
1997 and 2003 were screened for presence and
absence records of the species (Favennec, 2002a).
These data cover 230 km of French Atlantic sand

dunes, including 51 to 52 geo-referenced transects
across the current and historically documented
range of the species (Favennec, 2002a).

RESULTS
AFLP

The three primer combinations yielded 44 polymor-
phic and reproducible fragments ranging from 70 to
500 bp. Each of the 46 individuals had a unique
multilocus genotype (Fig. 2). The NJ tree (Fig. 2) and
the PCO (Supporting Information, Fig. S1) showed no
clustering of plants from the same population and
populations did not cluster together (supporting
Fig. S3). Bayesian clustering analyses implemented
in STRUCTURE, indicated that the most likely
number of populations (K) was one (supporting
Fig. S2). According to the AMOVA analysis, 92.2% of
the overall genetic variation occurred within sam-
pling sites and only 7.8% among sampling sites
(Table 3). This small but significant (P < 0.01) amount
of genetic differentiation between populations was
positively correlated with distance among sampling
sites (Mantel-test, r = 0.4; P = 0.02; Fig. 3). Generally,
the genetic diversity was similar and high at each
sampling site (Table 1). Only the proportion of rare
alleles (index of rarity) was somewhat higher at
southern compared with northern sampling sites
(Table 1).

Figure 2. Unrooted neighbor-joining tree of 46 Hieracium
eriophorum individuals based on Jaccard’s distances (scale)
based on AFLP data. Bootstrap values > 50% are indicated.
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MORPHOMETRIC ANALYSIS

Univariate statistics of quantitative characters
(mean, SD, minimum, maximum, 5% and 95% per-
centiles) are given in supporting Table S1. Both PCA
analyses revealed a similar pattern: most individuals
from the three sampling sites formed a single cluster,
but a few individuals from the northernmost site
(BIS) were somewhat separated along both axes
(Fig. 4). In the PCA including all variables, the first
two components accounted for 26.8 and 12.4%, respec-
tively, of the total variation (Fig. 4A). Hairiness
(TDL1, LTA and LTUT), stem length (LST) and leaf
form (LLL, WLL) were most correlated with the first
axis, whereas stem diameter (DST), length of the
inflorescence (LIN) and number of capitula (NC) con-
tributed most to the second axis (supporting
Table S2). In the PCA including only characters
related to habit and hairiness, the first two axes
accounted for 39.5 and 16.0%, respectively, of the total
variation (Fig. 4B). Whereas variation along the first
PCA axis was explained mainly by traits related to

hairiness (TDL1, LTLUT, more negative values indi-
cating stronger hairiness), the traits related to habit
(HFB, HP, LST) were most positively correlated
with the second principal component (supporting
Table S2). The individuals from the BIS site which
did not fall into the main cluster tended to show a
denser hair cover and a more erect habit than the
remaining individuals from the same site and
the individuals from the other two sites (Fig. 4). The
Mantel test between genetic distance and phenotypic
distance in hairiness did not reveal a significant
correlation (N = 35, r = 0.02, P = 0.38).

DISTRIBUTION DATA

In total, we obtained 284 dated presence/absence
records (103 from herbarium specimens, 30 from the
literature, 194 from the ONF and 45 from our own
observations; supporting Tables S3 and S4). These
records cover the period between 1804 and 2010. The
data after 1985 cover the entire potential range of the
species (Fig. 1), but the data prior to 1946 come
mainly from three easily accessible sites. We found
that H. eriophorum currently occurs only in the
Department of Landes, where its presence has been
documented since the early 19th century. In the
neighbouring departments (Gironde, Pyrénées-
Atlantiques), the species was present in the 19th
century, but records are lacking for the last three
decades, except for four individuals on a golf course in
Anglet (Pyrénées-Atlantiques), just across from the
border of Landes, found by us in 2010. Thus, a lati-
tudinal range contraction took place in the second
half of the 20th century at the southern and northern
margins of the historically documented distribution
(Fig. 1). The range contraction was probably more
pronounced than implied by the extinction records in
Figure 1 because it is likely that most absence records
also represent extinctions. The species was described
as being continuously distributed along the coast of
Landes and on the dunes of the adjacent departments
during the 19th century (e.g. Grenier & Godron, 1850;
Rey, 1960), but no exact dates or locations were given,
so these sites were not included as formerly occupied
in our analysis. The range contraction coincides with

10 20 30 40 50 60 70

1.
4

1.
6

1.
8

2.
0

Pairwise geographical distances (km)

E
uc

lid
ea

n 
pa

irw
is

e 
ge

ne
tic

 d
is

ta
nc

es

Figure 3. Correlation between genetic and geographical
distances for all pairs of populations of Hieracium erio-
phorum (Mantel test, r = 0.528, P = 0.02).

Table 3. Analysis of molecular variance of Hieracium eriophorum based on AFLP data

Source of variance d.f.
Sums of
squares

Mean
square

Variance
components

% total
variance*

Among populations 5 2.014 0.403 0.02060 7.8
Within populations 40 9.799 0.245 0.24497 92.2
Total 45 11.813 0.262 0.26557

*P < 0.01.
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increased fragmentation of the dune in these areas
due to urbanization after World War II and also due
to natural and human-induced erosion (Duffaud et al.,
1997; Favennec, 1998; Prat, 2002). In contrast to the
latitudinal range, it was not possible to document
the probable longitudinal range contraction due to the
forestation of the inland dunes in the 19th century
because the localities indicated on the labels of the
herbarium specimens lacked precision. Now, the
species exclusively inhabits the single, unforested
dune located next to the coast.

DISCUSSION
TAXONOMY

Multivariate morphometrics revealed a high degree of
variation in morphological characters, in particular in
those which presumably differentiate between the
two putative sister species. About eight individuals
from the BIS site fit the original description of
H. eriophorum, as they had a more erect habit than
the remaining individuals from BIS and the two other
sites, and they also had a denser hair cover and
longer trichomes than the average. However, the
majority of plants which had a prostrate habit do not
fully fit the description of H. prostratum, because
their habit was not correlated with trichome length or
density, which is considered, with habit, to be impor-

tant for discrimination between H. prostratum and
H. eriophorum. Indeed, the PCA failed to reveal two
distinct morphological clusters of individuals, which
would be expected if the sampled individuals
belonged to two different species. Rather, the morpho-
logical variation was continuous with a particularly
large spread in individuals from the BIS site, which
showed all possible trait combinations of hairiness
and habit. Similarly, high morphological variation
was found, although not to the same extent, at the
two other sampling sites. Although the individuals
from the BIS site had on average a denser hair cover,
longer trichomes and a more erect habit, this might
be explained by environmental factors. In fact, all but
one of the BIS plants that showed an unusually
upright habit grew inside shrubs, contrasting with a
prostrate or semi-prostrate habit of plants growing in
close vicinity but not inside shrubs (Fig. 4B). Similar
observations have been reported by other authors
(Granereau, 1985; Favennec, 1998), suggesting that
the erect habit of these individuals is explained by
shading or mechanical support (Skálová & Krahulec,
1992; van Hinsberg & van Tienderen, 1997). The
explanation of the variation in hairiness is less
straightforward, but strong intraspecific variation in
this character is also known to occur in another
diploid, Hieracium umbellatum L. (e.g. Turesson,
1922). In addition to the purely morphological data,
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the lack of a correlation between phenotypic distance
in hairiness and genetic distance among individuals
also suggests that the sampled individuals belong to
a single species. Due to complete or partial reproduc-
tive isolation, different species should differ not only
in morphological characters, but also in neutral
genetic markers. Thus, based on morphometric data
(morphological distribution does not fall into two
clearly distinct clusters) and genetic data (morpho-
logically dissimilar individuals do not show particu-
larly great genetic distances) we find no evidence for
the existence of these two putative sister species, but
rather strong within-species morphological variation
in both hairiness and habit partly influenced by the
environment. Therefore, for the remainder of the dis-
cussion, we will treat all individuals as belonging to
the same species. Moreover, based on the above rea-
soning, we propose to synonymize H. prostratum with
H. eriophorum (see nomenclatural overview in the
Appendix).

GENETIC STRUCTURE AND DIVERSITY

The results of our AFLP study revealed similar high
levels of genetic diversity within sampling sites and
only weak genetic differentiation between popula-
tions. Individuals sampled from the same sites
showed almost as many genetic differences as indi-
viduals sampled from different sites (Fig. 2). Thus,
the observation of low population differentiation was
not due to lack of statistical power, but was also
observed in absolute terms. This indicates that it is
unlikely that higher sample sizes at each site would
have substantially changed the observed patterns.
Hence, our results suggest that levels of genetic drift
and drift-related inbreeding are low, and that gene-
tic bottlenecks (e.g. due to extinction–recolonization
dynamics) are rare because all these processes would
decrease within-population diversity and increase
genetic differentiation among populations (e.g. Gilpin,
1991; McCauley et al., 1995; Jacquemyn et al., 2008).
Thus, it is likely that the species exists as a single,
outcrossing population with only low degrees of iso-
lation by distance. This finding is consistent with the
nearly continuous distribution of the species and its
great abundance where its optimal habitat is still
largely intact and continuously present (albeit only as
a single rather than as several parallel dunes). In this
large and continuous population, gene flow via pollen
and/or seeds appears to be almost unrestricted except
for the longest distances, as evidenced by the weak
isolation by distance. A similar genetic structure has
also been found in Cakile maritima Scop. (Brassi-
caceae) and Eryngium maritimum L. (Apiaceae), two
non-endemic dune species studied in the same study
region by Westberg & Kadereit (2009). These species

are common, and at least one of them occurs in a
large and continuous population, similar to H. erio-
phorum. However, in contrast to H. eriophorum, the
seeds of both species disperse efficiently via sea
currents, which may explain their larger (i.e. non-
endemic) range (Kadereit et al., 2005; Westberg &
Kadereit, 2009).

In contrast to the regions where it is continuously
distributed, H. eriophorum has disappeared from
those regions where the coastal dune has become
fragmented due to urbanization and increased erosion
(Favennec, 1998; Prat, 2002). This suggests that
H. eriophorum may be vulnerable to habitat fragmen-
tation, small population size and, perhaps, genetic
factors, such as inbreeding depression, which are
known to most strongly influence species that other-
wise live in large and diverse populations (e.g.
Ellstrand & Elam, 1993). Thus, our results suggest
that one successful survival strategy for narrow
endemics may be the achievement of large local popu-
lation sizes on a small geographical scale, perhaps
helped by low levels of competition in a highly spe-
cialized habitat. By achieving large local population
sizes, these species may avoid the genetic problems
inherent to small and fragmented populations. An
alternative strategy for endemic species might be to
find a way to cope with low genetic diversity and high
genetic drift (Cole, 2003), but this appears not to be
the case in our study species. The continuity and
abundance of dune habitats in our study region before
the forestation may also have favoured a similar
strategy in other sand dune endemics.

CONSERVATION AND MANAGEMENT IMPLICATIONS

Our results do not provide evidence for the existence
of a sister-species relationship and indicate low levels
of population subdivision. Hence, H. eriophorum
should be treated as a single conservation unit. Fur-
thermore, our results suggest that in situ conserva-
tion of this species may depend on the maintenance of
large, continuous stretches of its optimal habitat, the
semi-stabilized dune. In earlier times (i.e. before the
forestation of the inland dunes), large areas of semi-
stabilized dune probably occurred at any given time
in the formerly much larger range for H. eriophorum.
After forestation, the semi-stabilized dune was
favoured by the stabilization of the remaining coastal
dune, hence offering an ideal habitat to H. eriopho-
rum and other species adapted to low levels of erosion
and concurrence (Favennec, 2002b, d; Forey et al.,
2008). However, current dune management practices
aim at maintaining a more dynamic equilibrium (i.e.
allowing more natural erosion; Favennec, 2002c). As a
consequence, the semi-stabilized dune may become
fragmented, which may threaten H. eriophorum and
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other specialists of the semi-stabilized dune. For
instance, we observed that individuals at the BIS site
occurred in a strongly eroding dune sector at the edge
of the forest and that many individuals at this site
were dead due to root and rhizome exposure (D. Frey,
pers. observ., 2010). While the new management poli-
cies might not favour species of the semi-stabilized
dune, they may of course favour species that can more
easily cope with erosion. Thus, we suggest that these
new management policies should be implemented in
some parts of the region, whereas other (large and
continuous) parts should be stabilized, unless inland
dunes can be re-established at least in part of this,
the largest dune system in Europe.
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APPENDIX. NOMENCLATURAL OVERVIEW
OF HIERACIUM ERIOPHORUM

Symbols used: ‘≡’ a nomenclatural synonym, ‘=‘ taxo-
nomic synonym.
Hieracium eriophorum St.-Amans Bull. Sci. Soc.
Philom. Paris 3: 26, 1801.
Ind. loc.: ‘Sur les dunes maritimes de sable quartzeux
pur et mobile des environs de la tête de Buch [La
Teste-de-Buch], département de la Gironde’.
Lectotype (designated here): Plate II, Fig. 1 in
St.-Amans Bull. Sci. Soc. Philom. Paris 3, 1801.
≡ Hieracium umbellatum subsp. eriophorum
(St.-Amans) Bonnier, Fl. Ill. Fr. 7: 14, 1924.
= Hieracium eriophorum var. intermedium Arv.-Touv.
Hier. Gall. Hisp. Cat.: 443, 1913.
Ind. loc.: ‘France occid.-mérid.: Gironde: Arcachon:
dune du cap Ferret (avec le type); Basses-Pyrénées:
Biarritz, à la Chambre d’Amour, etc’.
Lectotype (designated here) [the plant on the right]:
‘France occidentale-mérid. (Gironde): Arcachon: dunes
du cap Ferret (avec le type); (Basses-Pyrénées): Biar-
ritz, à la Chambre d’Amour’, 2 août 1902 et 4 août
1901 (Hieraciotheca Gallica no. 1036, GRM-ARV:
MHNGr.1914.36006, leg. J. Neyraut, det. C. Arvet-
Touvet ut ‘Hier. eriophorum var. intermedium’).
= Hieracium eriophorum var. [b] umbrosum Rouy Fl.
France, 9: 402, 1905.
Ind. loc.: ‘dunes herbeuses près d’Arcachon’.
Neotype (designated here): ‘France, Gironde, dunes
boisées à Arcachon’, 15 septembre 1895 (LY-Rouy, leg.
G. Rouy, not determined). (note: no suitable material
for lectotypification could be traced.)
= Hieracium prostratum DC. in Mém. Agric. Soc.
Agric. Dépt. Seine 11: 78, 1808.
Ind. loc.: ‘Vallons de dunes à Bayonne, près de
l’embouchure de l’Adour’.
Lectotype (designated here): Bayonne, 30 août 1804
(G-DC, leg. et det. A.P. De Candolle ut ‘Hieracium
nouveau, tige couchée’).
≡ Hieracium eriophorum var. [b] prostratum (DC.)
Gren. & Godr. Fl. France, 388, 1850.
≡ Hieracium eriophorum subsp. [*] prostratum (DC.)
Fr. Uppsala Univ. Årsskr. 1862: 132, 1862.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article:

Figure S1. Principal coordinate analysis of the AFLP data from 46 individuals from six sampling sites, based
on Jaccard’s similarity distances. The first two principal coordinates axes are plotted.
Figure S2. Log-likelihood probability of the number of inferred clusters (K) estimated using STRUCTURE
(Pritchard et al., 2000).
Figure S3. Neighbor-joining tree of the six sampling locations, based on Euclidean distance of allele
frequencies.
Table S1. Univariate statistics of measured/scored quantitative characters of Hieracium eriophorum. Character
abbreviations and units are explained in Table 3. Min., minimum; 5%, 5% percentile; SD, standard deviation;
Max., maximum; 95%, 95% percentile.
Table S2. Eigenvector values showing correlations of characters measured on Hieracium eriophorum with the
first two principal components for the PCA based on all traits (PCA A), and the PCA based on the reduced set
of traits (PCA B).
Table S3. List of herbarium records.
Table S4. Absence and presence records used for maps.

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials
supplied by the authors. Any queries (other than missing material) should be directed to the corresponding
author for the article.
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