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A simple liquid solution model is proposed to describe the effect of solvent-solute interactions on
the solubility of nonpolar and slightly polar substances in supercritical solvents. Treating the system
as an ideal solution, the effect of pressure on the solubility is zero or nearly zero, as it is governed by
the difference in molar volume of the pure supercooled liquid solute and the pure solid solute, and this
may be nearly zero. Deviations from ideal behavior are given by activity coefficients of the Margules
type with the interaction parameter w interpreted as interchange energy as in the lattice theory. The
hypothesis is put forward that the interchange energy is of the same form as a function proposed by
Liptay and others to describe the effect of the solvent on the wavelength of the absorption maximum
of the solute dissolved in the solvent. The function consists of a radius of interaction aand a function
g(e) of the dielectric constant ¢ of the solvent, treated as a continuum. The function g depends on
pressure through the pressure dependence of the dielectric constant €(P). The attractive feature of
this formalism, introduced by Baumann et al. and here justified thermodynamically, is that plots of
the logarithm of solubility vs. g are linear, except for polar solutes near the solvent’s critical point.
Changes in slope then admit interpretation as changes in the radius of interaction a with possible
clues about the mechanism of solvation of these molecules.
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1. Introduction

The solubility of substances in supercritical sol-
vents is relevant in separation processes such as su-
percritical fluid extraction and chromatography and
for modeling the state of a solute molecule in a sol-
vent [1]. In particular, since near the critical point the
solvent’s density can change by a factor of ten with
only small changes in the temperature and the pres-
sure, it is clear that the solubility of the solute can vary
likewise by a large factor. Enormous changes in the
nature of the solvent, quantified for example by the in-
terchange energy w of the lattice theory, would be re-
quired to bring about the simple “distance” effect due
to the compressibility of the solvent near the critical
point.

It thus appears that the solvent’s density for a solvent
near the critical point is a suitable measure of solvent-
solute interaction and hence of solubility. Accordingly,
plots of the logarithm of solubility vs. the density or
the logarithm of the density obey a linear relationship
in many cases [2]. Since the dielectric constant of the

solvent depends nearly linearly on the density [3], one
may substitute the dielectric constant (P) by the den-
sity p(P) as a measure of solvent-solute interactions in
practical cases.

However, we can proceed further according to the
theories of Lippert [4], Mataga et al. [5] and no-
tably Liptay [6], who showed that in polar solvents
the change due to the solvent in the wavelength at
the maximum of absorption of light by the solute
or solvatochromic shift is a function of (e(P) — 1)/
(a3(2¢(P) + 1)) = g(e)/a’. Further, the shift in so-
lution is towards red relative to the gas phase, that
is the solvent-solute system is stabilized by disper-
sion interactions and by interactions of the dipole of
the molecule with the surrounding dielectric. Since the
function (P) increases monotonically with P, this sta-
bilizing effect for constant a always increases the sol-
ubility, reaching an asymptotic level at high P (but see
below). Thus, here the interchange energy is negative,
leading to negative deviations of Raoult’s law, in con-
trast to the usual positive deviations for nonpolar so-
lutes in nonpolar solvents.
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Numerous models have been proposed for the ef-
fect of the thermodynamic variables temperature T
and pressure P on the mole fraction xg of solute B
in the saturated solution since the work of Schroder
on the effect of temperature on the solubility of naph-
thalene in benzene (see e.g. Pitzer [7]). The present
formalism follows the same steps of Schréder but
considering changes of pressure instead of changes
of temperature. Whereas molar enthalpy is the vari-
able that controls ideal solubility as a function of
temperature, here molar volume controls ideal solu-
bility as a function of pressure. In contrast to the
temperature effect, the ideal pressure effect is, how-
ever, very small or zero, the changes in solubility
arising from real interactions between solvent and
solute.

The model of Kurnik and Reid [8] is possibly one
of the most comprehensive models of solubility of
solids or liquids in compressed gases. Using volumet-
ric data at constant temperature and composition and
some mixing rules, they predict ideal solubility ini-
tially decreasing with pressure, passing through a min-
imum, rising dramatically again as the vapor phase
goes through the critical point and, apparently, going
through a maximum at very high pressure and decreas-
ing solubility thereafter due to “repulsive forces” be-
tween solute and solvent. The steep rise in solubility
near the critical point is attributed to real attractive in-
teractions as evidenced by a vapor-phase fugacity coef-
ficient in the high-pressure gas mixture, which is much
less than one. The present model, starting from an ideal
liquid solution and describing deviations from ideal be-
havior through an energy parameter suggested by the
work of Liptay [6] may be considered a simplification
of the model of Kurnik and Reid [8]; both models at-
tribute enhanced solubility near the critical point to real
attractive interactions between solute and solvent. The
present model cannot predict the minimum in solubil-
ity reported by Kurnik and Reid [8] (which may be of
commercial importance, for example if a stream of gas
is to be kept as free as possible of impurities; but see
discussion below) and as mentioned above, neither can
the maximum reported by them be predicted, as the
type of forces responsible for the solvatochromic shift
are always attractive. A refined model, which takes into
account association of polar solutes for large values of
the interaction parameter and/or large solute concen-
tration, is explained below the discussion. This effect
may contribute or eventually account for the mentioned
maximum.
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2. Thermodynamic M odel

It is often the case for solutes with high melting
points that solid B dissolves in liquid A at a given pres-
sure only up to a certain mole fraction xg called the
equilibrium mole fraction or solubility of the solute in
the solution saturated with the solid. For component B,
equilibrium between a solid phase s and a liquid phase
| is dictated by the equality of chemical potentials

U3 = b (1)
The chemical potential of the pure solid phase B is
,Llé = »ulgs» (2)

where the upper index 0 denotes a pure phase. For the
component B in the mixed phase,

ub = ug'(T,P)+RTInag. ?3)

wg'(T,P) is the chemical potential of the supercooled
pure liquid B with the dependencies on temperature
and pressure indicated explicitly. ag is the activity of
component B in solution and Ris the universal gas con-
stant.

Replacing (2) and (3) in (1) gives:

ug = ug' + RT Inag. (4)

Consider the effect of pressure on activity at T =
constant. Taking derivatives with respect to pressure

(), - () [

For a pure substance

oul oul
dul = (%)Tdm (%)Pdt ©6)
where
o\
(5), v "
and
ou\
(), ?

Vm and Sy, are the molar volume and the molar entropy,
respectively, of the pure substance. For a process at
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constant temperature the second term on the right in (6)
vanishes. Substituting (7) in (5) yields:

d(Inag)
0s __ yy/xl
VA _vm+RT[ ® |, 9)
or rearranging
a(ln ag) _ Vr(r)lS _Vr;I _ _Afusionvm (10)
P |; RT RT ~°

where AfysionVim IS the change in molar volume on melt-
ing the solid to the supercooled liquid. Presumably,
AsusionVim 1S @ positive quantity, so that the slope in (10)
is negative and the activity of the solute decreases with
an increase in pressure at constant temperature. Taking
the liquid and solid substances as incompressible over
a limited pressure range, the quantity AVy, is a constant,
and a simple integration gives

Inag Afusioan P
d(lnag) = — =& [ 4p
./Ina’B ( B) RT P’

T = const.

(11)

This equation is entirely analogous to the Schroder
equation for solubility as a function of temperature [7].
Using P* as the pressure of the pure supercooled liquid
at T we obtain

Afusioan

Inag = — RT (P—P"), (12)
and this may be written
AtusionVi
InaB:co—$P, (13)

where ¢y is a constant.

3. The Activity Coefficient

For an ideal solution ag ~ xg, the mole fraction of
B in solution. Then (13) becomes

Afusioan
RT

With AgysionVm > 0, this equation is reminiscent of
Kurnik and Reid’s result [8] that solubility in the ideal
gas decreases with an increase in pressure. On the
other hand, for a typical solid or liquid molar volume
of 1074 m® and a volume change of melting of 10%
of the volume, the factor AV, /RT ~4-107° Pa~! at

Inxg =co — P. (14)
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T = 300 K. This leaves ideal solubility practically in-
dependent of pressure up to say 30 MPa.

For a real solution ag = ysXg, Where ¥ is the activ-
ity coefficient of the solute B in the solution. Replacing
this in (13) and neglecting the AfysionVim term gives

Inxg =cp—Inys. (15)
For the activity coefficient we adopt the Margules
equation

W
Inys = ﬁxi\. (16)

Xa is the mole fraction of solvent A and k is Boltz-
mann’s constant. In the original Margules equation w
is an energy parameter; in the lattice theory w is the
interchange energy given by

1
W=z FAB—E(FAA-FFBB) , (17)

where I'ag is the potential energy of an (A-B) pair and
likewise Taa and Igg of (A-A) and (B-B) pairs, re-
spectively. z is the coordination number of the lattice.
Physically, w is the energy absorbed in the process of
separating z pairs of type (A-A) and z pairs of type
(B-B) to form 2z dissimilar (A-B) pairs. Calculations
of w from molecular properties are due to Kohler us-
ing London’s theory of dispersion forces. Inadequate
knowledge of intermolecular forces hampers this type
of calculation [1].

Liptay [6], and also Lippert [5] and Mataga et al. [6],
obtained an expression for the effect of the solvent
on the wavenumber of absorption of the dissolved
molecule. The main part of this calculation is the es-
timation of the energy of the dissolved molecule rel-
ative to its energy in the gas phase; while the change
in energy is attributed to the dissolved molecule, nec-
essarily both solute and surrounding solvent molecules
are involved in this change. For the estimation of the
energy, the model of Onsager [9] is used, according
to which the molecule is located at the center of a
cavity within an isotropic and homogeneous dielectric
medium, which represents the solvent. Under the as-
sumption that the permanent dipole of the molecule in
the ground state yg is parallel to the permanent dipole
of the molecule in the given (Franck-Condon) excited
state ,ug, and neglecting polarizability terms, the final
result for the wavenumber v, of the absorption maxi-
mum of the molecule dissolved in an unpolar solvent
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. 1 1
hcv, = const. — f (th + E(u;%)Z - 5(;18)2) . (18)

his Planck’s constant, c the speed of light, and the term
— fheD represents the difference in dispersion interac-
tions between ground and excited states. D is neglected
for polar molecules. f is a positive quantity required in
the description of the cavity. For a spherical cavity of
radius a and the dipole moment of the molecule repre-
sented by a point dipole at the center of the cavity, one
has

1 2 ¢e-1 1

- - < - 19
dregad 2e+1  2megad 9 (19)

where g is the permittivity of vacuum.

The negative sign in front of f in (18) leads to the
red shift toward lower energy from the gas to the dis-
solved molecule for the usual case, where u$ > ug.
The validity of (18) was tested meticulously by Lip-
tay [6], who plotted v, against g for many solvents of
known g and obtained excellent straight lines.

Noting that hcv;, represents the energy of interaction
of the solute with the solvent, Rodrigues et al. [11] and
Neitzel [10] began to plot log solubility vs. g and ob-
tained very good straight lines in many cases. Formally
then, we adopt the following form for the exchange en-
ergy based on (18):

C2

W=C — gg, (20)
and this may be substituted in (15) with (16), redefin-
ing ¢ and c; for constant T and xg — 0:

C1

Inxg =00+§g. (21)
This is the equation used in [10] to correlate a relatively
extensive series of experimental results. If needed, the
temperature which appears in (16) may be passed ex-
plicitly onto this equation to correlate data at dif-
ferent temperatures. A brief summary of the results
follows.

4, Results and Discussion

In order to demonstrate the applicability of the pro-
posed model, data from [10] and [2] are used which
have carefully been read from the published graphs.
The data in [2] are taken directly as mole fraction of
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Fig. 1. g-P isotherms for CO, from [3] showing liquid (L),
vapor (V), coexisting liquid and vapor (L+V) and supercriti-
cal fluid (SCF) regions. Pc = 7.38 MPa, Tc = 304.1 K.

B. The data in [10] are given in units of mmol of B per
Liter, cg, and were converted to mole fraction of B, xg,
in the following way [10]:

N N
N + Na na

XB ) (22)

<<

ng is the number of moles of B, na is the number of
moles of A and p a is the molar density of solvent A in
mmol/I at the given pressure. The cg data in [10] were
measured spectroscopically from a reference concen-
tration using Lambert-Beer’s law.

Two solvents, carbon dioxide, which is an unpolar
molecule, and trifluoromethane, which is a slightly po-
lar solvent were investigated in [10]. e-p-P isotherms
for CO, were taken from [3]; for CF3H, &-P isotherms
over the whole range and e-p isotherms from 0 to
100 kgm—3 were found in [12]. A long extrapolation
up to 700 kg m—2 was then made of the latter data with
the help of the Clausius-Mossotti equation. This was
necessary to obtain the p-P isotherm for the conversion
of the data in [10] to mole fraction according to (22); it
was verified that the result of the extrapolation within
reasonable limits has negligible effect on the results
shown below (see Fig. 5).

Itis instructive to consider first the g-P isotherms for
CO,, (Fig. 1) as the underlying cause of the phenomena
of solubility investigated here. Over the pressure range
from 5 to 16 MPa at T = 313.15 K, where most of
the data lie, gco, increases almost tenfold. As the fluid
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Fig. 2. Ln solubility vs. g for the nonpolar pesticides iso-
proturon and dienochlor in superfluid carbon dioxide at T =
313.15 K.

approaches incompressibility the isotherms of g vs. P
level off. The similarity with p-P isotherms is appar-
ent but the increase in p is only about eightfold at this
temperature.

The simplest data to analyze are nonpolar less
volatile solutes such as the pesticides isoproturon and
dienochlor in the nonpolar solvent carbon dioxide. In
Fig. 2 the Inxg vs. g experimental data points are very
well approximated by straight regression lines with
correlation coefficients r = 0.993 and 0.987, respec-
tively.

To demonstrate the correctness of the procedure em-
ployed in Fig. 2, the same solubility data are replot-
ted in Fig. 3 against pressure along with the solubil-
ity predicted by the linear regression of Figure 2. In
a remarkable way, the regression line of Fig. 2 repro-
duces the complex S-shaped experimental curve prac-
tically exactly. Note that, plotted in this fashion, the
present S-shaped curve bears resemblance to the sim-
ilarly S-shaped curve of Kurnik and Reid [8]. In the
same spirit, one may extrapolate the regression line to-
ward zero pressure until it meets the ideal gas law [1]

Pe
=-B 2
X P’ (23)
where P§ is the saturation (vapor) pressure of pure

solid B and P is the pressure. This would give an idea
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Fig. 3. Ln solubility vs. pressure of the isoproturon and
dienochlor data in Fig. 2, with the regression lines of Fig. 2
replotted in this graph.
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Fig. 4. Ln solubility vs. g for the slightly polar
donor-acceptor molecule 5-dimethylamino-5’-nitro-2,2’-bi-
thiophene in superfluid carbon dioxide at T = 313.15 K
showing normal linear behavior in this plot.

of the minimum in solubility mentioned in the intro-
duction.

Similar results are obtained for polar nonvolatile
molecules such as the donor-acceptor conjugated 5-
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Fig. 5. Ln solubility vs. g for the donor-acceptor molecule in
Fig. 4 dissolved in the slightly polar fluid trifluoromethane
at T = 313.15 K showing some deviation from the linear re-
lation proposed here assuming the equation of state data for
the solvent are correct.

dimethylamino-5-nitro-2,2’-bithiophene in the non-
polar supercritical carbon dioxide solvent, as shown in
Figure 4. A good straight line is obtained again, the
increased scatter being attributed to experimental de-
tection difficulties due to the lower solubility of the
polar solute in the nonpolar solvent. The slope of this
plot is 86.4 in contrast to the lesser slopes of 26.4
and 27.1 reported for the nonpolar solutes isoproturon
and dienochlor in Fig. 2 in accord with the assumption

—o— Naphthalene,328.15K
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made that this slope contains molecular quantities such
as dipole moments and polarizabilities, which describe
the solubility.

To improve the solubility of the polar molecule 5-
dimethylamino-5’-nitro-2,2’-bithiophenea slightly po-
lar solvent, trifluoromethane, was used. The plot of In
solubility vs. gat T = 313.15 K is no longer linear as
shown in Fig. 5, assuming the e-p-P data are correct.

Similarly, the respective plot of Inxg versus g for
more volatile compounds is not linear, as is shown
in Fig. 6 for three polyaromatic hydrocarbons, naph-
thalene at 328.15 K from Spiliotis et al. [13] and
for phenanthrene and phenylanthracene at 313.15 K
from [10].

5. A MoreRefined Theory

A modified theory known as the quasichemical ap-
proximation was introduced by Guggenheim (see [1])
to account for ordering effects for example when polar
molecules are dissolved in nonpolar solvents without
change of volume. The polar solute molecules will tend
to surround themselves with other solute molecules in
favor of the solvent-solute contacts thus lowering solu-
bility. This may explain the downturn in the straight
line observed at high g for the polar solutes e.g. 5-
dimethylamino-5’-nitro-2,2’-bithiophene in Figure 5.

An equilibrium constant K is defined for the “reac-
tion”

(A-A) + (B-B) = 2(A-B). (24)

2 {—m— Phenylanthracene,313.15K
—&— Phenanthrene,313.15K

10 - .

-12

14 \ !

Fig. 6. Ln solubility vs. g for some pol-
yaromatic hydrocarbons in CO, at T =
! 313.15 K. The regression curve is cal-

0.02 0.04 0.06 0.08

0.12 0.14 culated according to the cubic equa-
g tion (33).
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Setting

2w
Aru = NA7

(25)
for the molar energy change of the “reaction” with Na
Avogadro’s number and this in the van’t Hoff equa-
tion, integrating at constant volume and using some
conservation relations gives for the excess energy of
mixing uf
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where UF” is the excess energy of the random mixture

UE" = NawxaXs (27)
and the parameter j3 is:
1/2
B = [1 +4(e2W/2kT - 1)xAxB} / (28)

The excess Helmholtz and excess Gibbs energies are

£ e 2 obtained by integrating the Gibbs-Helmholtz equation
u-=u (ﬁ) ) (26)  at constant volume (V& = 0) with the result [1]:

aE o 2z B —1+2xa B—1+2xs

ﬁ_ﬁ_i[x’*“ wp D) "D | @

For small (w/ZKT), expansion of the exponential, logarithmic and binomial terms up to quadratic terms in both
w and xaxg Yields:

F w 1/ 2w 1/2w\% 1/2w)? 2w\ 2 , 3
RT KT XAXB [l 5 (ﬂ(T XAXB >\ 7T + 5\ 2T XAXB AT (xaXg)“+0O° (W, xaXg) | - (30)

The term in square brackets shows contributions to the excess Gibbs energy up to second order both due to large
w alone and to large w and xaXg combined. That is, even at infinite dilution (xg — 0) there can be ordering

effects, e.g. of solute pairs if w s large.
From thermodynamics,

( )Tpn
ELELLYN
W

nrg
RT
N
2
A

nr is the total number of moles, Nt = na + ng. At infi-
nite dilution xa — 1, Xxg — 0, the final result is:

w 1/ 2w)\?
Replacing this in (15) gives:
w2 /w3
Ian:co—ﬁ+Z—2(ﬁ> . (33)

Since w is negative, this equation shows that the ran-
dom theory predicts an increase in solubility over the
(nearly constant) ideal term cg but, since the last term
on the right is cubic, the quasichemical approximation
provides a correction which diminishes the solubility at

31)

1/2w\? 1/2w 1/ 2w)\?
{1_§<ﬁ) +§(ﬁ)XB(1_3XA)_E(ﬁ> XB[1—3XA+2XAXB(2—3XA)} ;

high negative values of w (high g). This is surprisingly
what the data in Figs. 5 and 6 show. The correction
depends on z, the coordination number of the lattice.
If w from (20) is put into (33) the solubility data Inxg
should be able to be represented by a respective cubic
plot against g. Indeed, Fig. 6 shows that the data points
can very well be simulated by a model curve, cubic
ing.

Several other theories are known to deal with
nonideality of polar solutes in nonpolar solvents.
These are the Wilson equation, the NRTL (nonran-
dom, two-liquid) equation and the UNIQUAC (uni-
versal, quasichemical) theory for molecules of dif-
ferent sizes. Details of these theories are found
in [1].



648
Conclusion

A model is proposed to account for the effect of
pressure on the solubility of nonpolar and slightly po-
lar solutes in supercritical solvents. The development
follows the steps of Schroder, see e.g. [7], but taking
into account changes of pressure instead of changes of
temperature. In contrast to the ideal temperature effect,
which is governed by the enthalpy of fusion, the ideal
pressure effect is controlled by the change of volume
on fusion, and this is a very small quantity.

According to the present model, the much enhanced
solubility observed for solutes near and beyond the
critical point is attributed to the attractive interactions
between solute and solvent, which are rapidly increas-
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ing. The solutions are then extremely nonideal in the
sense of Raoult’s law.

The solvent-solute interaction is modeled according
to the theory of Liptay for the effect of solvent on dis-
placement of the absorption maximum of the molecule
from the gas state to the solvated state.
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