Bioactive Cycloartane-Type Triterpene Glycosides from Astragalus elongatus

İhsan Çalış^{a,c}, Matej Barbič^b, and Guido Jürgenliemk^{b,*}

- ^a Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, TR-06100 Ankara, Turkey
- ^b Universität Regensburg, Institut für Pharmazie, Lehrstuhl Pharmazeutische Biologie,
 Universitätsstr. 31, D-93053 Regensburg, Germany. Fax: +499419434990.
- E-mail: guido.juergenliemk@chemie.uni-regensburg.de

 ^c Present address: Near East University, Faculty of Pharmacy, Department of
- Pharmacognosy and Pharmaceutical Botany, Nicosia, Turkish Republik of Northern Cyprus

 * Author for correspondence and reprint requests
- Z. Naturforsch. 63 c, 813–820 (2008); received April 10/July 17, 2008

Together with two known cycloartane-type glycosides, askendosides D (3-O-[α -arabino-pyranosyl-(1 \rightarrow 2)- β -xylopyranosyl]-6-O- β -xylopyranosyl-cycloastragenol, **2**) and G (3-O-[α -arabinopyranosyl-(1 \rightarrow 2)- β -xylopyranosyl]-16-O- β -glucopyranosyl-3 β ,6 α ,16 β ,24(R),25-pentahydroxycycloartane, **3**), also a new monodesmosidic cycloartane-type glycoside, elongatoside (**1**), was isolated from the roots of *Astragalus elongatus* and identified as 3-O-[α -arabinopyranosyl-(1 \rightarrow 2)- β -xylopyranosyl]-cycloastragenol. All structures were unambiguously determined by means of spectroscopic and spectrometric methods (1D and 2D NMR, ESI-MS). The isolated compounds were tested for the inhibition of proliferation and ICAM-1 expression *in vitro* using the human microvascular endothelial cell line (HMEC-1). **1** showed weak activity in the ICAM-1 assav.

Key words: Astragalus elongatus, Cycloartane-Type Glycosides, Endothelium