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Energy spectrum and wave functions are obtained numerically with a potential consisting of
Woods–Saxon, Coulomb, and spin–orbit coupling parts for the nuclei 15O, 15N, 17O, and 17F. The
radial parts of the wave functions are used to calculate some matrix elements of electromagnetic tran-
sitions. These results are applied to calculate half-lives of low-lying exited states in the one-particle
17O and 17F as well as in the one-hole 15O and 15N isotopes. The calculated half-lives are compared
with available experimental and theoretical results based on harmonic oscillator wave functions and
Weisskopf units. In comparison with the results calculated from the other methods, our results based
on the Woods–Saxon potential indicate a satisfactory agreement with accessible experimental data.
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1. Introduction

The A-nucleon Schrödinger equation by the Hamil-
tonian with complete nuclear potential cannot be
solved analytically. Therefore, one has to look for rea-
sonable approximation methods to solve this many-
body problem of strongly interacting particles system.
An elegant approximation which is widely used for
such a system is the mean field approximation [1].
The mean-field theory represents the average interac-
tion of one nucleon with the other nucleons of a nu-
clear complex system. Moreover, this theory with phe-
nomenological single-particle potential is a powerful
tool to describe low-energy nuclear phenomena. There
are several potentials that can be a candidate for treat-
ing nuclear structures, of which the most frequently-
used is the three-dimensional harmonic oscillator po-
tential (HO). The single-particle Schrödinger equation
with three-dimensional harmonic oscillator potential
has been solved exactly in literature [2, 3].

Among other existing phenomenological potentials
in literature, the realistic single-particle Woods–Saxon
(W–S) potential [4 – 6] is reasonable to describe many
properties of nuclei such as the nuclear equilibrium de-
formations and moments, the mean square radii, the
nucleon binding energies, the structure of the high-spin

isomers, the fission barriers, and some other proper-
ties of the single-particle effects for strongly deformed
and fast-rotating nuclei [7]. A complete set which con-
sists of Woods–Saxon , Coulomb, and spin–orbit cou-
pling, gives a complete Hamiltonian that reproduces
the experimentally observed single-particle energies
in the mean-field theory. An exact solution of the
Schrödinger equation for the central Woods–Saxon po-
tentials received much interest in recent years. There-
fore, many efforts have been made to solve it [8, 9].
The wave equations with the Woods–Saxon potential
can be solved analytically only for s-waves due to
the centrifugal potential barrier using different meth-
ods [10, 11].

The eigenfunctions and eigenvalues of the Schrö-
dinger equation with mean-field phenomenological po-
tentials can be used to describe various electromag-
netic observables which are related to electromagnetic
transitions [1, 12]. The electromagnetic radiation field
can be expanded as a series of multipoles containing
spherical harmonic oscillators. The field is also quan-
tized in terms of photons. Creation and annihilation of
photons are described in the occupation number repre-
sentation [3]. The electromagnetic processes are excel-
lent tests for the validity of various assumptions under-
lying the shell structure of the nuclei [2]. In particular,
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the decay properties produced by the solutions of the
Schrödinger equation are appropriate indicators for the
degree of validity of the mean-field potential. The tran-
sition from the initial to the final state has been medi-
ated by one of the multipole terms in the expansion of
the radiation field [12].

In this investigation, at first in the second section, we
discuss the nuclear mean field using a complete set of
potentials to obtain the eigenvalues and eigenfunctions
of the single-particle Schrödinger equation for the typ-
ical one-particle 17O−17 F and one-hole 15O−15 N
mirror nuclei. In the third section, various theoretical
numerically calculated results of the electromagnetic
transition properties for the aforementioned nuclei are
presented and compared with the accessible experi-
mental data. Finally, a brief conclusion is provided in
the last section.

2. Solutions of the Radial Schrödinger Equation
for the Nuclear Potential

In the mean-field approximation, each nucleon can
be viewed as moving in an external field created by
the remaining A− 1 nucleons. The nuclear mean-field
Hamiltonian is defined by the equation

HMF = T +VMF , (1)

which is supposed and treated as an A-nucleon sys-
tem. The remaining problem is how to determine the
reasonable mean-field potential. In our example, the
generated mean-field potential is central, i. e. only
a function of r. Two practical and phenomenological
potentials widely used as mean field are [13, 14]

VMF =

VHO(r) =−V1 + 1
2 mNω2r2 ,

VWS(r) = −V0

1+exp
(

r−R
a

) ,
(2)

with R, a, V0, V1, and ω as nuclear radius, surface dif-
fuseness, depth of nuclear well, and angular frequency,
respectively. These parameters are evaluated by fitting
with exact experimental data [7, 14]:

R = r0A
1
3 = 1.27A

1
3 fm , a = 0.67 fm ,

V0 =
(

51±33
N−Z

A

)
MeV ,

V1 = 48.6 MeV , h̄ω =
(
45A−

1
3 −25A−

2
3
)
MeV ,

(3)

where the + and − signs are adopted for protons and
neutrons, respectively. The nuclear Hamiltonian for the
presented complete set of potentials is [3, 7] therefore

H =− h̄2

2mN

[
∇

2
r −

L2

h̄2r2

]
+VWS(r)

+VC(r)+VLS(r)L ·S ,

(4)

where VC(r) and VLS(r) are central coulomb and
spin–orbit coupling potentials, respectively. These
potentials are presented as following [1, 7]:

VC(r) =
Z e2

4πε0

 3−
(

r
R

)2

2R r ≤ R ,

1
r r > R ,

(5)

VLS(r) = υ
(0)
LS

( r0

h̄

)2 1
r

[
d
dr

VWS(r)
]
, (6)

where υ
(0)
LS = −0.44 is the strength of the spin–orbit

coupling interaction. Washing out the angular depen-
dence, the radial part of the Schrödinger equation for
wave function φ(r) is{

− h̄2

2mN

[
∇

2
r −

l(l +1)
r2

]
+VWS(r)

+VC(r)+
1
2

[
j( j +1)− l(l +1)− 3

4

]
· h̄2VLS(r)

}
φnlj(r) = εnljφnl j(r) .

(7)

The notations φnlj(r) and εnlj indicate the radial wave
function and energy spectrum, the parameters n, l,
and j are energy level quantum, orbital, and total
angular momentum quantum numbers, respectively.
This second-order radial differential equation is solved
numerically via Francis [15] by the QR (Q and R stand
for orthogonal matrix and upper triangular matrix,
respectively) factorization algorithm [16] to obtain
the energy spectrum and the corresponding wave
functions. r is considered between 0.01 and 10 fm to
eliminate singularity and by the use of dr = 0.01 steps
to construct a 1000×1000 matrix of the Hamiltonian.
Two constraints are imposed on this solution:

lim
r→∞

φnlj(r) = 0 , (8)∫
∞

0

∣∣∣φnlj(r)
∣∣∣2r2 dr = 1 . (9)

One-particle and one-hole nuclei consist of one par-
ticle outside of an inner core or one hole in a com-
pletely filled valance space with its Fermi level at some
magic number [2]. These nuclei are always odd-mass
or odd-A nuclei, or simply odd nuclei. According to
their proton number Z and neutron number N, they
are called even–odd or odd–even nuclei. Finally, the
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calculated values of the one-particle and one-hole en-
ergy states εnlj of 15O, 15N, 17O, and 17F mirror nu-
clei are presented in Table 1, and the energy difference
between low-lying excited states and ground state are
shown in Table 2. The eigenfunctions φnlj(r) for the
Fermi and first excited states of these typical mirror
nuclei are shown in Figures 1 and 2.

3. Calculation of Electromagnetic Transition
Half-Lives

Consider an electromagnetic transition evolving
a low-lying excited nucleus to its ground state. The
transition from the initial (i) to the final (f) state can
be expanded as multi-pole terms obeying quantum me-
chanical conservation rules on spin and parity [18].
The time-dependent perturbation theory is applied to
calculate the transition probability. Starting point in
this type of calculation is [3]

T (σλ )
fi =

2(λ +1)

ε0h̄λ
[
(2λ +1)!!

]2
·
(

Eγ

h̄c

)2λ+1

B(σλ ; i→ f) ,

(10)

Table 1. Energy spectrum of one-hole 15O−15 N and one-
particle 17O−17 F mirror nuclei by considering Woods–
Saxon, Coulomb, and spin–orbit potentials.

Single εnl j(15O) εnl j(15N) εnl j(17O) εnl j(17F)
particle (MeV) (MeV) (MeV) (MeV)
orbits
(nL j)
1s1/2 −32.260 −28.109 −30.075 −24.954
1 p3/2 −19.361 −15.639 −17.987 −13.396
1 p1/2 −13.795 −10.099 −13.202 −8.633
1d5/2 −6.713 −3.469 −6.0853 −2.085
2s1/2 −4.23 −1.333 −3.823 −0.277

Table 2. Experimental and numerically computed γ-ray emit-
ted energy (MeV) in transition between low-lying excited
states and ground state of the one-hole 15O−15 N and the
one-particle 17O−17 F mirror nuclei by considering Woods–
Saxon, Coulomb, and spin–orbit potentials.

Isotope 15N 15O 17O 17F
Transition 1 p1/2→1p3/2

2s1/2→1d5/2
mode 1 p1/2→1p3/2

2s1/2→1d5/2

Experi-
mental [17] 6.324 6.176 0.871 0.495

Computed
value 5.540 5.566 2.262 2.303
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Fig. 1. Ground state and first excited state wave functions for
one-hole 15O and 15N mirror nuclei.
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Fig. 2. Ground state and first excited state wave functions for
one-particle 17O and 17F mirror nuclei.

where T (σλ )
fi is the transition probability for the multi-

pole transition of order λ . The sources of transition are
either of electric or magnetic type, designated by an
index σ such that σ = E or σ = M. Eγ is the energy of
the emitted γ ray. Also, for both one-particle and one-
hole nuclei, the reduced transition probability B(σλ )
is defined as

B(σλ ; i→ f) =
1

2Ji +1

∣∣∣〈f ‖Mσλ ‖ i〉
∣∣∣2 . (11)

It should be noted that the one-particle states |i〉 and
| f 〉 are the physical single-particle states include the
core, and the physical one-hole states involve the
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Hartree–Fock vacuum |HF〉. The single particle multi-
pole tensor operator Mσλ for electric (MEλ ) and mag-
netic (MMλ ) transition in usual notation with Condon–
Shortley phase convention [19] is

MEλ = Qλ = ∑
µ

A

∑
j=1

e( j)rλ
j Yλ µ(Ω j) , (12)

MMλ = Mλ =
µN

h̄c ∑
µ

A

∑
j=1

[
2

(λ +1)
g( j)

l l( j)

+g( j)
s s( j)

]
·∇ j

[
rλ

j Yλ µ(Ω j)
]
,

(13)

where e( j) is the electric charge, and l( j) and s( j) are
the orbital and spin angular momentum of nucleon j,
respectively. The gyromagnetic ratios are g( j)

s = gp =
5.586 for proton and g( j)

s = gn = −3.826 for neu-
tron. The orbital g factors are g( j)

l = 1 for protons and

g( j)
l = 0 for neutrons [3]. The transition probability is

decreased drastically by increasing the multi-polarity.
Therefore the most probable transition is the lowest
allowed multi-polarity by the angular momentum and
parity selection rules [4]. For a λ -pole transition be-
tween nuclear states of angular momenta Ji and Jf, the
angular momentum selection rule is |Jf − Ji| ≤ λ ≤
|Jf + Ji|, and the parity selection rule is [2]

πiπf =

{
(−1)λ for Eλ

(−1)λ−1 for Mλ .
(14)

From the Wigner–Eckart theorem which is intro-
duced by Wigner [20] and Eckart [21] for the spherical
tensor Yλ presented in (12) and (13), and by consid-
ering parity selection rules, the single particle matrix
elements of multi-pole operators which are presented
in these equations can be rewritten as

〈f ‖ Qλ ‖ i〉= e√
4π

(−1) ji+λ− 1
2

1+(−1)li+lf+λ

2

· λ̂ ĵi ĵf

(
jf ji λ
1
2 − 1

2 0

)
R(λ )

fi ,

(15)

〈f ‖Mλ ‖ i〉= µN/c√
4π

(−1) ji+λ− 1
2

1− (−1)li+lf+λ

2

· λ̂ ĵi ĵf

(
jf ji λ
1
2 − 1

2 0

)
(λ −κ)

·

[
gl

(
1+

κ

λ +1

)
− 1

2
gs

]
R(λ−1)

fi ,

(16)

which contains the usual abbreviation, the ‘hat factors’

λ̂ ≡
√

2λ +1 , ĵi(f) ≡
√

2 ji(f) +1 . (17)

µN is the nuclear magneton, and R(λ )
fi and κ are defined

by the following relations:

R(λ )
fi =

∫
∞

0
φnflf(r)r

λ
φnili(r)r

2 dr , (18)

κ ≡ (−1)li+ ji+ 1
2

(
ji +

1
2

)
+(−1)lf+ jf+ 1

2

(
jf +

1
2

)
.

(19)

Further,

(
jf ji λ
1
2 − 1

2 0

)
is the 3 j Wigner symbol [22].

3 j Wigner symbols are evaluated by the following
modified Wigner’s formula [23]:(

j1 j j2
m1 m m2

)
=4( j1, j2, j)

·

√
( j2−m2)!( j2 +m2)!

( j +m)!( j−m)!( j1−m−m2)!( j1 +m+m2)!

×∑
z
(−1)2 j− j1−m1+z (20)

· ( j + j2−m−m2− z)!( j1 +m1 +m2 + z)!
z!( j2−m2− z)!(u− z)!( j2 +m2−u+ z)!

,

where u = j− j1 + j2 and

4( j1, j2, j) =
{[

( j1 + j− j2)!( j1− j + j2)! (21)

· (− j1+ j+ j2)!
][

( j1+ j+ j2+1)!
]−1
} 1

2

.

The z value satisfies the following inequality:

0 < z≤min( j2−m2,u) . (22)

Obviously, the relations | j1 − j2| ≤ j ≤ j1 + j2 and
− j ≤ m≤ j should also be taken into account.

In order to obtain numerical values of the re-
duced single-particle matrix elements that are pre-
sented by (15) and (16), we need to calculate the ra-
dial integrals R(λ )

fi stated in (18). These quantities can
be calculated using the radial wave functions φnl(r)
which were calculated numerically in the previous sec-
tion. A simple estimate of the reduced transition prob-
abilities, introduced by Weisskopf [24] is the so-called



M. Pahlavani and B. Firoozi · Study of Electromagnetic Multipole Transition Half-Lives 713

Table 3. Transition probabilities T (σλ )
fi (sec)−1 for predominate Eλ and Mλ transitions (B(σλ ) in [e2(fm)2λ ]) unit. In the

second column, the −1 sign is used for a hole; π and ν are proton and neutron labels, respectively.

Nucleus Transition mode (i→ f) predominate Eλ T (σλ )
fi (W. u.) T (σλ )

fi (HO) T (σλ )
fi (W–S)

15N (π 1 p3/2)−1→ (π 1 p1/2)−1 E2 3.416 ·1013 5.438 ·1013 2.915 ·1013

M1 7.477 ·1015 7.439 ·1015 4.995 ·1015

15O (ν 1 p3/2)−1→ (ν 1 p1/2)−1 E2 0 0 0
M1 4.832 ·1015 4.822 ·1015 3.527 ·1015

17O ν 2s1/2→ ν 1d5/2 E2 0 0 0
M3 3.484 ·106 3.113 ·106 2.924 ·106

17F π 2s1/2→ π 1d5/2 E2 2.430 ·1011 2.196 ·1011 2.215 ·1011

M3 1.596 ·106 1.442 ·106 1.455 ·106

Table 4. Allowed electromagnetic multi-pole transition decay half-lives t1/2 (sec).

Nucleus Transition mode (i→ f) t1/2 (W. u.) t1/2 (HO) t1/2 (W–S) t1/2 (Exp.)
15N (π 1 p3/2)−1→ (π 1 p1/2)−1 9.270 ·10−17 9.249 ·10−17 1.379 ·10−16 1.5 ·10−16 [17]
15O (ν 1 p3/2)−1→ (ν 1 p1/2)−1 1.432 ·10−16 1.437 ·10−16 1.965 ·10−16 –
17O ν 2s1/2→ ν 1d5/2 1.989 ·10−7 2.226 ·10−7 2.370 ·10−7 –
17F π 2s1/2→ π 1d5/2 2.852 ·10−12 3.156 ·10−12 3.12 ·10−12 –

Table 5. Theoretical and experimental non-zero electromagnetic multi-pole moment for typical one-particle and one-hole
mirror nuclei. E2 has the unit of area (barn), and M1 has the unit of the nuclear magneton µN.

Nuclei state σλ M(σλ ) (W. u.) M(σλ ) (HO) M(σλ ) (W–S) M(σλ ) (Exp.)
15N (π 1 p1/2)−1 M1 −0.264 −0.264 −0.264 −0.28 [25]

(π 1 p3/2)−1 M1 3.793 3.793 3.793 –
E2 −0.023 −0.030 −0.029 –

15O (ν 1 p1/2)−1 M1 0.638 0.638 0.638 0.72 [25]
(ν 1 p3/2)−1 M1 −1.913 −1.913 −1.913 –

17O (ν 1d5/2) M1 −1.913 −1.913 −1.913 −1.89 [25]
(ν 2s1/2) M1 −1.913 −1.913 −1.913 –

17F (π 1d5/2) M1 4.793 4.793 4.793 4.72 [25]
E2 −0.036 −0.061 −0.074 0.058 [26]

(π 2s1/2) M1 2.79 2.79 2.79 –

Weisskopf unit (W. u.). In this estimation, the radial
wave function is assumed to be constant inside the nu-
cleus and zero outside. Using the normalization condi-
tion, this simple radial wave function is produced as

φnl(r) =

{√
3

R3 r ≤ R ,

0 r > R ,
(23)

where R is the nuclear radius.
The γ-decay half-life from an initial state (i) to a fi-

nal state (f) is

t1/2 =
ln2
Tfi

. (24)

The transition probabilities and the γ-decay half-
lives for under study mirror nuclei between initial low-
lying exited state and final ground state are listed in
Tables 3 and 4. The initial and final single particle ra-
dial wave functions used to calculate these half-lives

are obtained by considering two models of mean-field
potentials, using the Weisskopf unit.

The static electric and magnetic multi-pole moments
are important observable of nuclear structure. These
moments are sensitive to details of the wave func-
tion used for computing them. Comparison of com-
puted multi-pole moments with the measured ones is
a powerful test to check the validity of a nuclear model.
Also, multi-pole coefficients are a measure of typical
deformations. The 2λ -electromagnetic multi-pole mo-
ment of a nucleus in a certain state after applying the
Wigner–Eckart theorem is obtained by the equation

M(σλ ) =
(

J λ J
−J 0 J

)(
ξ , j ‖

(
Qλ

Mλ

)
‖ ξ , j

)
, (25)

where ξ carries all other quantum numbers. Qλ and
Mλ are the single particle multi-pole tensor opera-
tors for electric and magnetic transitions in usual no-
tation with Condon–Shortley phase convention [19]
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which are calculated through (12) and (13), respec-
tively. The electric and magnetic multi-pole moments
are calculated by using wave functions of the complete
set of Woods–Saxon, harmonic oscillator Hamiltonian,
and Weisskopf unit estimation; the non-zero values are
shown in Table 5. The necessary conditions for a non-
vanishing M1 and E2 moment are J ≥ 1

2 and J ≥ 1, re-
spectively. These conditions can already be read from
the 3 j symbol in (20). The electric quadrupole moment
has the unit of area (barn), and the magnetic dipole mo-
ment has the unit of the nuclear magneton µN.

4. Conclusion

In this study, electromagnetic moments, electromag-
netic multi-pole transition probability, and half-lives of
one-particle 15O−15 N and one-hole 17O−17 F mir-
ror isotopes are calculated numerically. The radial
wave functions are computed by considering of two
model phenomenological nuclear mean-field poten-
tials: Woods–Saxon and harmonic oscillator potentials.
The accessible experimental data confirm the theoreti-
cal results of this research. The calculated electromag-

netic transition half-life based on the complete set of
potential consisting Woods–Saxon potential has a good
consistency with the available experimental value of
15N.

The theoretical and experimental single-particle
magnetic dipole moments of the ground state, shown
in Table 5, are agree well with each other. The com-
puted and measured values of the single particle elec-
tric quadrupole moment for the 1d5/2 state of 17F are
also in accordance. The negative computed values of
the single particle quadrupole moments confirm the
fact that in the defined state with M = J, particles move
around the nuclear equator and thus produce an oblate
shape. In the absence of sufficient laboratory results of
electromagnetic multi-pole moments and half-lives for
reviewed nuclei, it was not possible to compare the cal-
culated results with experimental ones.

By comparing the available experimental data
and the numerically computed values shown in Ta-
bles 1 – 5, it may be concluded that the mean-field po-
tential and especially the Woods–Saxon potential can
yield dependable results to describe the nuclear struc-
ture of nuclei with spherical symmetry.
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