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Abstract In the Middle East, species of Garra are

believed to have invaded the area in two independent

waves from the Indo-Malayan biogeographic region.

This hypothesis is based on the structure of the mental

disc, a unique specialization of the lower lip, which is

believed to be an adaptation to fast-flowing waters.

While several species have such a mental disc, others

completely lack a mental disc, being adapted to slow-

moving water or to subterranean life. In this study, the

phylogenetic relationships of Middle Eastern Garra

species, including 16 described and 4 undescribed

species, were analysed usingmitochondrial cytochrome

c oxidase I sequences. The results are concordant with

traditional hypotheses on two invasion events; however,

these invasion events are independent from the pres-

ence, absence or shape of the mental disc. We postulate
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convergent reduction of the mental disc in 5–6 inde-

pendent lineages of Garra in the Middle East.

Keywords COI � Cyprinidae � Labeonin � Mental

disc reduction � Middle East

Introduction

Biogeographical realms and their subunits, such as

ecoregions, capture the uneven distribution of species

and communities on Earth more accurately than do

units based on gross biophysical features, such as

rainfall, temperature (Holdridge, 1967; Walter & Box,

1976; Schultz, 1995; Bailey & Ropes, 1998), or

vegetation structure (Ellenberg & Mueller-Dombois,

1969; De Laubenfels, 1975; Schmidthüsen, 1976). The

overwhelming importance of biogeography and the

role of tectonic and climatic changes on the distribution

of biodiversity have long been appreciated by biolo-

gists (Wallace, 1876; Shermer, 2002). The re-connec-

tion of formerly separated continents by tectonic plate

movements led to large-scale exchanges of species.

Such exchanges occurred after the crash of the Indian

subcontinent into Asia in the Paleogene (around 50

MYA;Karanth, 2006), the connection ofAfrica toAsia

by the rotation of the Arabian plate in the late Miocene

(Hedges, 2001), and the connection of South America

to North America in the Pliocene (Marshall, 1988).

TheWestern Palearctic (Europe and theMiddleEast)

became connected to the Asian continent as soon as the

early Oligocene period when the Turgai Strait dried,

allowing East Asian freshwater fishes to move west

(Bănărescu, 1992; Briggs, 1995; Rögl, 1999). The

process of freshwater fish faunal exchange between

Europe and Siberia lasted until the very recent post-

glacial past (Durand et al., 2003). In contrast, the Indo-

Malayan or Oriental biogeographical realm was, and

still is, isolated from Europe and northern Asia, most

likely due to mountain ranges including the Himalayas

uplifted by the northward-pushing Indian plate. As a

consequence, none of the species of primary freshwater

fishes found in the Indus River occur further west than

Baluchistan in the Iran-Pakistan border area (Talwar,

1991). From the great diversity of Asian freshwater

fishes, only a few genera are hypothesized to have

entered the Palearctic region, namely some lineages of

families Bagridae, Cyprinidae, Mastacembelidae,

Nemacheilidae, and Sisoridae. All of these lineages

have species that are endemic to the Middle East, most

in the Persian Gulf basin, which is adjacent to the Indo-

Malayan biogeographical realm. This region has been

proposed to be a transition zone between the Palearctic

and the Indo-Malayan realms (Coad, 2010).

One of the freshwater fish genera believed to have

invaded the Middle East from the Indo-Malayan

biogeographical realm is the cyprinid genus Garra

Hamilton,1822 (Menon,1964).Menon (1964) proposed

two independent ‘‘waves’’ of migration from a hypo-

thetical area of origin in Yunnan (southern China) to the

Middle East, with one of the waves also reachingAfrica

(Tang et al., 2009; Yang & Mayden, 2010). Menon’s

(1964) hypothesis of two invasion events is based on

morphological differences in themental disc among two

groups ofGarra species in the Middle East. The mental

disc is an expansion of the lower lip in Garra and some

related genera such as Discocheilus Zhang, 1997;

Discogobio Lin, 1931; and Placocheilus Wu, 1977

(Zhang, 2005). Species of theGarra variabilis (Heckel,

1843) group have a small, poorly differentiated mental

disc, which Menon (1964) interpreted as an ancestral

character state, while species of theGarra rufa (Heckel,

1843) group have a large, highly differentiated mental

disc, a character state that he interpreted as a derived

state. However, Menon did not comment on the fact that

no species with the presumed ancestral character state

occurred in Yunnan, the proposed area of origin of the

genus (Chu & Province, 1989). Only recently, Zheng

et al. (2012) postulated that the mental disc in labeonin

cyprinids has independently become reduced in several

lineages.This viewgains additional support by checking

the position of the respective character states within

phylogenetic tree reconstructions presented by Geiger

et al. (2014) andYang et al. (2012).All species lacking a

mental disc found to be nested within Garra by Zheng

et al. (2012), Yang et al. (2012), Geiger et al. (2014) had

been described as belonging to different genera,

although the presence of themental disc is the diagnostic

character state for the genus (Menon, 1964). In the

Middle East, labeonin cyprinid species without amental

disc that formerly had been placed in the genera

Hemigrammocapoeta Pellegrin, 1927, Crossocheilus

Kuhl & van Hasselt, 1823, Gonorynchus McClelland,

1838, IranocyprisBruun&Kaiser, 1944 orTylognathus

Heckel, 1843 (Hashemzadeh Segherloo et al., 2012;

Farashi et al., 2014; Behrens-Chapuis et al., 2015) have

later been moved to the genus Garra (Hamidan et al.,
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2014). Also, Yang et al. (2012) found G. variabilis, a

species with a small mental disc, to be nested among

other species of the genus having a large and fully

developedmental disc. Based on this, Yang et al. (2012)

questioned the interpretation of a small and less

structured mental disc as the ancestral character state

in Garra species. The hypothesis that species of Garra

having a small, or even absent mental disc might

represent a derived rather than an ancestral character

state is inconsistentwithMenon’s (1964) hypothesis and

leads to different biogeographical conclusions.

In this context, our main objective was to assess the

phylogenetic relationships of all Garra species in the

Middle East, to test the hypothesis that a small or

absent mental disc has independently evolvedmultiple

times in Garra, and that species without a mental disc

nest within species groups having a normally devel-

oped mental disc. To do so, we analysed a full set of

species of Garra species found in the Middle East,

excluding those from the Arabian Peninsula, which

were recently studied by Hamidan et al. (2014). A

second objective was to shed light on the potential

ecological drivers for the reduction of the mental disc

in species of Garra. Many species of Garra are highly

rheophilic, inhabiting rapids and fast-flowing rivers

(our own field data). The mental disc in Garra is a

structure which is interpreted as an adhesive structure

allowing fish to hold a stationary position in high water

velocities (Zhang, 2005; Zhou et al., 2005). Thus, it is

plausible that species with a reduced mental disc

inhabit different habitats than species with a fully

developed mental disc. If the mental disc functions as

an adhesive structure, stagnophilic species should lack

or show a reduced mental disc. To test this hypothesis,

we compared general habitat information collected

through our own fieldwork in the Middle East.

Materials and methods

Fish specimens (n = 150) of 16 described and 4

undescribed species were collected by electrofishing

(Supplementary Table 1). The taxonomy of all species

studied here follows strictly the latest version of the

Catalogue of Fishes (Eschmeyer et al., 2016). Fish

were killed by over-anaesthesia using clove powder,

chlorobutanol or tricaine methanesulfonate (MS222).

The right pectoral fin was clipped and fixed in 96%

ethanol for subsequent DNA extraction and genetic

analyses. Voucher specimens were preserved in 5%

formaldehyde, and stored in 70% ethanol.

DNA extraction was performed using the Chelex

100 method (Estoup et al., 1996) or NucleoSpin�

Tissue kits (Macherey & Nagel GmbH). Either the

complete mtDNA cytochrome c oxidase subunit I

(COI) gene was amplified using primers FCOI20 (50-
AACCTCTGTCTTCGGGGCTA-30) and RCOI20 (50-
AGTGGTTATGYGGCTGGCTT-30) (Hashemzadeh

Segherloo et al., 2012), or the 50 end of COI was

amplified using primers FishF2_t1 (50-TGTAAAAC
GACGGCCAGTCGACTAATCATAAAGATATCG

GCAC-30), FishR2_t1 (5-CAGGAAACAGCTAT

GACACTTCAGGGTGACCGAAGAATCAGAA-

30), VF2_t1 (50-TGTAAAACGACGGCCAGTCAAC
CAACCACAAAGACATTGGCAC-30), and FR1d_t1
(50-CAGGAAACAGCTATGACACCTCAGGGTGT
CCGAARAAYCARAA-30) (Ivanova et al., 2007).

Polymerase chain reaction (PCR) conditions were as

follows: a 25-ll final reaction volume containing

2.5 ll of 10X Taq polymerase buffer, 0.5 ll of

(50 mM) MgCl2, 0.5 ll of (10 mM) dNTPs, 0.5 ll
(10 lm) of each primer, 0.5 ll of Taq polymerase (5u

ll-1), 2 ll of total DNA, and 18 ll of H2O. Ampli-

fication cycles were as follows: denaturation for

10 min at 94�C; 35 cycles at 94�C for 1 min, 52�C
for 1 min, and 72�C for 1 min; and a final extension

for 10 min at 72�C. The 50 end of the COI gene was

sequenced in both direction using primer FCOI20 on

an ABI-3130xl DNA sequencer using the manufac-

turer’s protocol (Life Technologies, www.

lifetechnologies.com), or at Macrogen Europe Labo-

ratories with the forward sequencing primer M13F (50

GTAAAACGACGGCCAGT) and reverse sequencing

primer M13R-pUC (50 CAGGAAACAGCTATGAC).
DNA sequence data were aligned and processed

using ClustalX (Thompson et al., 1997) and MEGA6

(Tamura et al., 2013). To determine the haplotype

groups and the related frequencies, a parsimonynetwork

was constructed using TCS 1.21 (Thompson et al.,

1997) with parsimony probability of 90%; haplotype

frequencies were extracted manually from the resulting

groups. All generated sequences were deposited in the

NCBI GenBank database (Supplementary Table 1).

The COI haplotype sequences generated were com-

pared to published cyprinid sequences following

BLAST searches (Altschul et al., 1997), identifying

similar sequences for use in phylogenetic analysis

(Table 1). Kimura two-parameter (K2P) distances
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(Kimura, 1980) were computed at the intra- and

interspecific levels usingMEGA6 (Tamura et al., 2013).

For the phylogenetic analyses, the sequences were

treated in two different ways. In the first approach, no

evolutionary difference among the codon positions

was assumed and hence all codon positions were

exposed to regular non-partitioned phylogenetic anal-

ysis. In the second approach, the sequences were

exposed to codon partitioning and analysed as differ-

ent partitions to test for possible differences in

phylogenetic inferences.

For the non-partitioned phylogenetic analysis, the

best-fit model of base substitution was selected based

on the Akaike information criterion (AIC) and

Bayesian information criterion (BIC) using jModeltest

2.1.8 (Darriba et al., 2012). Bayesian inference was

used to analyse the sequences with MrBayes 3.1

(Huelsenbeck &Ronquist, 2001; Ronquist & Huelsen-

beck, 2003). The MCMC search was run for 5,000,000

generations, sampling the Markov chain every 1000

generations. The first 25% (1,250) of the resulting trees

were discarded as burn-in. The Maximum Likelihood

analysis was performed using PhyML program (Guin-

don et al., 2010). In order to analyse the codon positions

under different partitioning schemes, the best schemes

for both the Bayesian and Maximum likelihood

inferences of phylogeny were selected using Parti-

tionFinder (Lanfear et al., 2012). Five different com-

binations of codon positions were checked using BIC

criterion, and the best combination of model/s for each

partitioning scheme was selected among the models.

The Bayesian phylogenetic analysis was performed for

2,600,000 generations, sampling the Markov chain

every 100 generations, with the first 25% of the

resulting trees discarded as burn-in. Codon-partitioned

Maximum Likelihood analysis was performed using

RAxML (Stamatakis, 2006) with 1,000 bootstrap

replicates as branch support. Five labeonin species—

including Labeo rohita, Cirrhinus mrigala, Labeo

bata,Bangana sp., andLabeo chrysophekadion—were

used as out-group species based on other studies of

labeonin phylogeny (Yang et al., 2012) and our

preliminary analysis of data. In addition to the

sequences produced in this study, sequences from 28

species from GenBank (NCBI) were included in the

analysis (Table 1). Substitution saturation was

checked using the substitution test (Xia et al., 2003;

Xia & Lemey, 2009) implemented in DAMBE soft-

ware (Xia, 2013).

The molecular clock test was performed by com-

paring the ML value for the given topology with and

without the molecular clock constraints under the

Table 1 List of DNA sequences included from the NCBI GenBank database and associated accession numbers

Species Accession no. Species Accession no.

Bangana sp. JX074149.1 Garra lamta JX074158.1

Cirrhinus mrigala (Hamilton, 1822) GU195083.1 Garra longipinnis Banister & Clarke, 1977 KM214701.1

Garra barreimiae Fowler & Steinitz, 1956 KM214783.1 Garra mullya (Sykes, 1839) JX074155.1

Garra bicornuta Narayan Rao, 1920 JX074156.1 Garra nasuta (McClelland, 1838) JX074219.1

Garra bourreti (Pellegrin, 1928) JQ864601.1 Garra nasuta JX074219.1

Garra congoensis Poll, 1959 HM418168.1 Garra orientalis Nichols, 1925 GU086602.1

Garra cyrano Kottelat, 2000 JX074214.1 Garra orientalis JQ864603.1

Garra cyrano JX074214.1 Garra orientalis HM536884.1

Garra dembeensis (Rüppell, 1835) KT192819.1 Garra ornate (Nichols & Griscom, 1917) JX074202.1

Garra dembeensis KF929909.1 Garra sahilia Krupp, 1983 KM214682.1

Garra flavatra Kullander & Fang, 2004 JF915607.1 Garra salweenica Hora & Mukerji, 1934 KM610651.1

Garra gotyla (Gray, 1830) FJ459493.1 Garra tengchongensis Zhang & Chen, 2002 JQ864607.1

Garra gotyla JF915613.1 Garra turcica Karaman, 1971 KM214696.1

Garra gravelyi (Annandale, 1919) JF915614.1 Garra waterloti (Pellegrin, 1935) JX074212.1

Garra hughi Silas, 1955 HQ219117.1 Garra waterloti JX074212.1

Garra jordanica KJ553525.1 Labeo bata (Hamilton, 1822) KC757216.1

Garra kempi Hora, 1921 JX074161.1 Labeo chrysophekadion (Bleeker, 1849) AP011199.1

Garra lamta (Hamilton, 1822) JX074157.1 Labeo rohita (Hamilton, 1822) JN412817.1
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Tamura-Nei (1993) model as implemented in MEGA

6 (Tamura et al., 2013). The null hypothesis of equal

evolutionary rate throughout the tree was rejected

(P\ 0.05). Hence, to check for the divergence times

among the Middle Eastern and Afro-Asian species of

the genus, a molecular clock was calibrated using

BEAST v 1.7 (Drummond et al., 2012). The time of

the most recent common ancestor of the Middle

Eastern G. rufa and its African sister clade has been

estimated to be around 8–10 Ma (the possible con-

nection period between the Africa and Asia via the

Red Sea, Tang et al., 2009) and 23.4 Ma for the

divergence of Labeo Cuvier, 1816 from Garra (Tang

et al., 2009). The analyses were performed using the

SRD06 model of sequence evolution, the relaxed

uncorrelated lognormal (UCLN) molecular clock

model, a Yule prior set on the tree, and other priors

left as default (Tsigenopoulos et al., 2010). The

analysis was performed for 107 generations. Parame-

ters were logged every 1,000 generations, and the first

10% was discarded as burn-in. Because our molecular

clock could not be calibrated with fossils, time

estimates must be interpreted cautiously.

Results

COI sequence variation

Among the 150 individuals sequenced, 60 haplotypes

were recovered. A total of 232 bp of the 652 bp were

variable, and of these 199 sites were parsimony

informative. The base composition over all sites was

on average 29.2% (T), 26.2% (C), 26.1% (A), and

18.4% (G). There was no significant saturation in

codon positions (ISS\ ISSC; P\ 0.01). The mean

interspecies K2P distances ranged from 1.31%

between Garra mondica Sayyadzadeh, Esmaeili &

Freyhof, 2015 and G. sp. (Kol) to 19.75% between

Garra kemali (Hankó, 1925) and Garra ghorensis

Krupp, 1982 (mean ± SD; 9.55 ± 4.84). The mean

intraspecies genetic distances ranged between 0.1% in

Garra thyphlops (Bruun &Kaiser, 1944) and 2.05% in

Garra gymnothorax Berg, 1949 (mean ± SD;

0.33 ± 0.48). The mean between-group K2P distance

between the two major phylogenetic groupings (Clade

I and Clade II, Fig. 1) was 15.9%. The mean within-

group distances among the members of the clade I and

clade II were 8.4 and 5.4%, respectively.

Phylogenetic analysis

The best mutational model based on AIC and BIC

values was the GTR?C?I model with an a value of

1.49. Phylogenetic trees reconstructed by Bayesian

and Maximum Likelihood methods resulted in similar

topologies. Under the codon partitioning approach, the

best partitioning scheme for both the Bayesian infer-

ence of phylogeny and Maximum Likelihood methods

was the scheme in which each codon position consid-

ered as a separate partition. The best mutational

models to be used for Bayesian inference of phylogeny

were SYM?I?G (for the 1st codon position), F81?I

(for the 2nd codon position), and GTR?G (for the 3rd

codon position). For the codon-partitioned Maximum

Likelihood analysis of phylogeny, the 3-partitioned

scheme was selected as the best scheme, but only one

model (GTR?G) was used. The phylogenetic trees

resulting from different approaches and models were

mostly similar in topology, and the only observable

difference between the non-partitioning and partition-

ing approaches was changes in support values related

to each approach. Under the Bayesian method, in some

cases, the posterior probability values were lower in

the phylograms reconstructed via the codon partition-

ing approach, and for the Maximum Likelihood

method the bootstrap support values were improved

in some cases. Here the phylogram reconstructed via

the codon partitioning approach is presented; in cases

where the support values or posterior probabilities

were different between the partitioned and non-

partitioned analyses, we indicate that in the text as

npBS and npBI.

In the phylogram (Fig. 1), the Middle Eastern

species of Garra form two major clades that are called

here clade I (BS: 58; npBS: 59, npBI: 0.95) and clade

II (BS: 95; npBS: 89, npBI: 1.00). In our analysis, the

African Garra clade is the sister to clade II (BS: 76;

npBS: 65; npBI: 0.96). Clade I is composed of Garra

rossica (Nikolskii, 1900), G. kemali, Garra mendere-

sensis (Küçük, Bayçelebi, Güçlü & Gülle, 2015), and

G. varibilis. Within clade II, there are a number of sub-

clades, including sub-clades A (Garra culiciphaga

(Pellegrin, 1927); BS: 99; BI: 1.00; npBS:96), B

(Garra lorestanensisMousavi-Sabet & Eagderi, 2016,

Garra typhlops (Bruun & Kaiser, 1944), G. gym-

nothorax; BS: 68; BI: 0.98; npBS:55; npBI:0.96), C

(Garra jordanica Hamidan, Geiger & Freyhof, 2014

and G. ghorensis; BS: 93; BI: 0.99), D (G. sp.
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Nahralkabir and Orontes; BS: 78), E (Garra persica

Berg, 1914; BS: 84; BI: 0.99), F (Garra widdowsoni

(Trewavas, 1955), Garra turcica, Garra elegans

(Günther, 1868), G. mondica, G. sp. Tigris, G. sp.

Kol; BS: 70; npBS:64), and G (G. rufa; BS: 54;

npBS:58), with Garra festai (Tortonese, 1939) as the

sister group of other sub-clades of clade II.

Molecular clock calibration

Based on the molecular clock calibration applied here,

the mean divergence rate (substitution per site in million

years) over all taxa included in the analysis was

0.008 ± 0.00007 (mean ± SE). According to the

molecular clock calibration, clade I probably diverged

from some Asian species of Garra about 12 Ma (95%

HPD: 8.09–16.75), and from the other group that

includes clade II around 15.7 Ma (95% HPD:

12.07–19.90). The divergence of G. rossica from other

members of clade I probably occurred around 10 Ma

(95%HPD:6.46–14.36). The divergence ofG. variabilis

from G. kemali and G. menderesensis occurred around

5.5 Ma (95%HPD: 2.96–8.46). The divergence of clade

II from the Asian and African Garra clades probably

occurred around 10.5 Ma (95% HPD: 8.81–12.59) and

9.3 Ma (95% HPD: 8.21–10.47), respectively.

Discussion

Subdivisions and dispersal of Garra clades

in the Middle East

Middle Eastern Garra forms two major clades

supported with low to high bootstrap values of

58–95% (npBS: 59–89). The two clades concord with

the two-invasion-wave hypothesis proposed by

Menon (1964). Menon (1964) even postulated that

G. variabilis and G. rossica are closely related as both

have a small and poorly structured mental disc, a result

confirmed by our study, although with low likelihood

support (BS: 58; npBS: 59) (Fig. 1). In addition to G.
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C
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Fig. 1 Bayesian phylogram

reconstructed based on the

50 end of the mitochondrial

COI gene using a codon

partitioning approach. The

values on the branches are

the maximum likelihood

bootstrap values and

Bayesian posterior

probability values (after

slashes) calculated as node

supports for the Bayesian

phylogram (higher than

0.95). Green branches = no

mental disc, blue

branches = reduced mental

disc, and black

branches = fully developed

mental disc. The triangle

and circles denote the

African and non-Middle

Eastern/Asian haplotypes,

respectively. The codes

presented after the names

are unique voucher IDs

containing the species name,

main river basin, country of

origin of the specimen, and

the unique voucher code for

the specimens used in this

study. The out-groups are

not shown
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variabilis and G. rossica, G. kemali and G. mendere-

sensis that lack a mental disc are nested in this clade.

The inclusion of these species in the G. variabilis

clade also is supported by the phylogeny reconstructed

based on the rhodopsin gene (Behrens-Chapuis et al.,

2015).

G. kemali and G. mendrensis are endemic to lakes

Tuz and Iskili in central Anatolia, and G. variabilis is

distributed in the Orontes and Tigris–Euphrates sys-

tems. According to the geographic proximity of the

Anatolian lakes and the Orontes system, the species

may have their origin in the Orontes system. The

molecular clock calibrated based on the dates proposed

in Tang et al. (2009) suggests that the divergence ofG.

kemali and G. menderesensis from G. variabilis

occurred around 5.5 Ma (95% HPD: 2.96–8.46). This

period is concordant with the Mesenian salinity crisis

of the Mediterranean Sea, during which confluence of

the freshwater habitats may have occurred. Based on

the molecular clock, the divergence betweenG. kemali

of the Lake Tuz and G. menderesensis of Lake Iskili

would have been occurred around 2 Ma (95% HPD:

0.90–4.10), which may be related to local-scale

geodynamics in central Anatolia. It should be noted

that these molecular clock dates may not be precise,

since they are based only on COI sequences and

geological data. As mentioned above, no Garra fossil

data with relevant extant species exist from theMiddle

East to be used for molecular calibration. The only

fossil data in the region are reported from Armenia

(Vasilyan & Carnevale, 2013) where there is no extant

Garra species and so no molecular data for clock

calibration. The relationship of the clades I and II is not

supported (BS\ 50). The African species are sister to

clade II (BS: 76; npBS: 65; npBI: 0.96). This inference

is concordant with the Asia-to-Africa movement of the

species of Garra proposed by Tang et al. (2009) and

Yang et al. (2012). This relationship can be supported

by the land bridge created between Africa and Asia

around 8–10 Ma when sea levels decreased to about

60 m below the current level and connection of Asia to

Africa became possible via the Red Sea (Tang et al.,

2009).

Based on the COI phylogeny, seven sub-clades can

be defined within clade II (Fig. 1). Sub-clade A

includes G. culiciphaga, a species lacking the mental

disc, of the Seyhan, Ceyhan and Orontes River

drainages, all located in the northeastern Mediter-

ranean basin. The approximate time of their

divergence is around 4 Ma, which may be related to

river confluences that provided the possibility of

invasion from the Orontes drainage to the Seyhan/

Ceyhan drainages. However, one must keep in mind

that the molecular clock calibrated for the Garra

species may not be precise.

Sub-clade B includes G. gymnothorax, G. typhlops,

and G. lorestanensi. Garra typhlops lacks the mental

disc, but the other two species have a fully developed

mental disc. These three species inhabit the Karun and

Karkheh river drainages in the Iranian Tigris catch-

ment. They show a high level of mtDNA divergence

that may be due to the habitat isolation of G.

lorestanensi and G. typhlops from G. gymnothorax.

Based on our data, G. lorestanensis and G. typhlops,

two sympatric subterranean species, probably resulted

from two different colonization events of the subter-

ranean habitat. This justification also can be the case

for G. widdowsoni of sub-clade F, which is a

subterranean species diverged from its surface-dwell-

ing relatives. The members of sub-clade C, including

G. jordanica and G. ghorensis—both with well-

developed mental disc—occur in the Dead Sea basin

and show close relationships to one another.

The non-disc-bearing G. cf. persica also nests

among members of the sub-clade D, which includes

the disc-bearing G. persica from the Persian Gulf

basin. Garra cf. persica is highly diverged from G.

persica and inhabits the Kesh River (Makran Basin)

draining to the Sea of Oman. This pronounced level of

divergence has resulted from the historic isolation of

the basins in the Persian Gulf region and the Sea of

Oman, a region which was not as strongly affected as

the Persian Gulf during the last ice age. Hence, any

interchange of the freshwater ichthyofauna between

the two basins should relate to earlier periods.

Sub-clade F includes G. widdowsoni (Euphrates),

G. turcica (Ceyhan drainage), G. elegans (Tigris), G.

sp. (Tigris), G. mondica (Mond), and G. sp. (Kol). All

the members of this sub-clade except G. elegans have

a fully developed mental disc. Colonization events for

members of this sub-clade, spanning the region from

the Tigris to the Mond and Kol Basins in the Persian

Gulf region, may have occurred during the last ice age

via the watershed confluence events in the Persian

Gulf. The members of this sub-clade in the Mond

Basin were recently described as Garra mondica

(Sayyadzadeh et al., 2015). The centre of origin of

sub-clade F based on the haplotype network produced
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using the present haplotypes cannot be resolved

(Fig. 2), since none of the available haplotypes show

to be ancestral. This question may be resolved via

more intensive sampling to obtain more ancestral

haplotypes.

Sub-clade G includes populations of G. rufa, all

found in the Persian Gulf basin. Their close

relationship may indicate recent dispersal of the sub-

clade during the last ice age (18,000 years bp). At that

time, the Persian Gulf was dry, and the smaller Iranian

rivers, including the Mond, were part of the greater

Tigris drainage (Fagan, 2014). Hence, colonization

events among the respective rivers were possible.

According to the haplotype network, it seems that
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Fig. 2 Haplotype network showing mutational connections of

different haplotypes in sub-clades D, E, F, and G. The large

circles denote different haplotypes, the related species and the

geographic locality. The size of the circles is not related to

haplotype frequencies. The colours of the circles denote: black

sub-clade D; grey: sub-clade E; green: sub-clade F; and blue:

sub-clade G. The blue circles with black outline are the possible

ancestral haplotypes. The blue lines connecting the haplotypes

denote the mutational links and the numbers beside each line

indicate the number of point-mutational differences between

each pair of neighbouring haplotypes. The smaller black circles

show the hypothetical haplotypes that lead to observed

haplotypes
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haplotype a observed in the Euphrates (Turkey),

Maharlu (Iran), and Zohreh (Iran) systems is appar-

ently one of the ancestral haplotypes due to its wide

geographic distribution and more connections to other

haplotypes. Among the other haplotypes, haplotypes

b and c also seem to be old haplotypes, since they are

intermediate haplotypes located on the mutational

path between haplotype a and the G. persica and G.

mondica groups, respectively. Other haplotypes

within sub-clade G are probably newer haplotypes

with fewer connections and terminal positions in the

network (Fig. 2).

Because our G. rufa samples are mostly from Iran

with only a few specimens from other regions, samples

of this species may not be sufficiently informative

derive an inference regarding the centre of origin of

sub-clade G. However, since an east–west direction of

invasion is accepted (Tang et al., 2009) for labeonins,

the direction of the G. rufa colonization also may be

inferred from easterly drainages to the Tigris–

Euphrates. This also may be confirmed by observation

of intermediate haplotypes connecting the eastern G.

persica (sub-clade D) andG. mondica (sub-clade F) to

G. rufa (sub-clade G) (Fig. 2). Clearly, this inference

cannot be confirmed until more specimens and addi-

tional molecular data are collected and analysed.

Disc shape

Menon (1964) synthesized his hypothesis regarding

two waves of invasion of Garra from East Asia to

the Middle East based on morphological attributes,

including characters of the mental disc. He assumed

the reduced disc character as the ancestral state and

the disc-bearing state as a derived state. We argue,

however, that the mental disc may have been fully

reduced independently in 6–7 lineages in the Middle

East (Fig. 1). This reduction may have occurred

once in clade I, in which G. kemali and G. mendere-

sensis lack a mental disc, while G. variabilis and G.

rossica have a small and partly reduced mental disc,

respectively. Within clade II, 5–6 independent

lineages apparently have reduced the mental disc,

depending upon whether G. festai is or is not related

to Garra nana (Heckel, 1843) (Fig. 3). Tree

topologies presented by Behrens-Chapuis et al.

(2015) place G. culiciphaga, G. nana, and G. festai

in one group, while our data separate G. festai from

the other two species. As disc evolution in labeonins

had been shown to be bidirectional by Zheng et al.

(2012), the question is whether the mental disc was

reduced in convergence or developed in conver-

gence. As the structure of the mental disc is

identical or differs in very minor aspects in all

disc-bearing species studied here, as well as Garra

species from Africa (Stiassny & Getahun, 2007) and

Asia (Menon, 1964), we see convergent reduction as

the most parsimonious explanation of the phenom-

ena described here.

Possible character displacement

Based on our own field data in which general habitat

and microhabitats were noted, up to three Garra

species with different disc forms can be found

sympatrically (Table 2). This is especially true in

Fig. 3 Ventral views of

heads showing the mental

disc. From the left: G.

rufa, FSJF 3368, 102 mm

SL, Nalparez River, Iraq; G.

variabilis, FSJF 2845,

95 mm SL, Tigris River,

Turkey; G. festai, FSJF

3268, 65 mm SL, Ammiq

Marshes, Lebanon. Heads

are not shown in scale
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springs, where open gravel fields with outflowing

water occur closely adjacent to densely vegetated,

stagnant microhabitats. Species with a fully developed

mental disc are generally the only species in rapids and

riffle habitats with fast-flowing water. Species with a

reduced or absent mental disc are absent from fast-

flowing waters and instead occur in slow-flowing

streams, marshes and densely vegetated parts of

springs. Different field collection notes reveal that

sympatric G. rufa and G. variabilis show remarkable

differences in microhabitat choice, with G. rufa being

strongly connected to gravel and flowing water, andG.

variabilis associated with submerged vegetation and

standing water. Other sympatric species, for example,

G. typhlops and G. lorestanensis collected at the

opening of the subterranean water layer in Iran, seem

to differ in their ecological niches. Based on several

observations during different periods of the year, the

disc-bearing species appear at the opening during the

pluvial periods of the year when there is water flow, but

the non-disc-bearing species (G. typhlops) can be

observed at the locality all year-round. These obser-

vations may indicate niche isolation driven by disc

form and water flow. This situation might be inter-

preted as indicating character displacement (Brown &

Wilson, 1956; Gray et al., 2005; Pfennig & Pfennig,

2010, 2009; Robinson & Pfennig, 2013; Robinson &

Wilson, 1994; Schluter, 2000), allowing the species to

reduce competition in the subterranean habitat. Char-

acter displacement leading different species to avoid

competition in sympatry may have allowed the eco-

logical co-occurrence of otherGarra species after their

secondary contact. Admittedly, our data are not

sufficient to rigorously support this hypothesis. Testing

of this hypothesis will require more data collected both

in situ and used for more detailed phylogenetic

assessment. Our observations indicating a possible

relationship between mental disc shape and habitat

preferences should be checked using a more quantita-

tive approach recording habitat parameters and habitat

selectivity for fish with different mental disc forms.
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