Operating Systems
CS240

Dr. Axel Krings
JEB 320
208 885-4078
krings@uidaho.edu
http://www.cs.uidaho.edu/~krings

Sequence 1 CS 240

Computer System Overview

Chapter 1

Sequence 1 CS 240

Sequence 1

Operating System

Exploits the hardware resources of one
Or more Processors

Provides a set of services to system users

Manages secondary memory and I/O
devices

CS 240 3

Sequence 1

Basic Elements

Processor
Main Memory

— volatile

referred to as real memory or primary memory

I/O modules

— secondary memory devices

— communications equipment

— terminals
System bus

— communication among processors, memory, and
I/O modules

CS 240 4

Processor

* Two internal registers
— Memory address register (MAR)

* Specifies the address for the next read or write

— Memory buffer register (MBR)

* Contains data written into memory or receives
data read from memory

— 1/O address register
— 1/0 buffer register

Sequence 1 CS 240 5

Top-Level Components

CPU Main Memory
T 0
System o 1
. 2
vk | |t :
Stru .
Stru
Stru
MER .
1/0 AR A .
o
Data
1/0 BR
Dat:
Dat:
1/0 Module . n-2
n-1
. PC = Program counter
Buffers IR = Instruction register
MAR = Memory address register
MBR = Memory buffer register
/O AR = Input/output address register

VOBR = Input/output buffer register

Figure 1.1 Computer Components: Top-Level View

Sequence 1 CS 240 6

Processor Registers

» User-visible registers

— Enable programmer to minimize main-
memory references by optimizing register
use

+ Control and status registers

— Used by processor to control operating of
the processor

— Used by privileged operating-system
routines to control the execution of
programs

Sequence 1 CS 240 7

User-Visible Registers

* May be referenced by machine language

* Available to all programs - application
programs and system programs

* Types of registers
— Data
— Address

* Index
* Segment pointer
« Stack pointer

Sequence 1 CS 240 8

User-Visible Registers

* Address Registers

— Index

* Involves adding an index to a base value to get
an address

— Segment pointer

* When memory is divided into segments,
memory is referenced by a segment and an
offset

— Stack pointer
* Points to top of stack

Sequence 1 CS 240 9

Control and Status Registers

* Program Counter (PC)

— Contains the address of an instruction to be fetched
¢ Instruction Register (IR)

— Contains the instruction most recently fetched
* Program Status Word (PSW)

— Condition codes
— Interrupt enable/disable
— Supervisor/user mode

Sequence 1 CS 240 10

Control and Status Registers

 Condition Codes or Flags

— Bits set by the processor hardware as a
result of operations
— Examples
* Positive result
* Negative result
* Zero
* Overflow

Sequence 1 CS 240 11

Instruction Execution

* Two steps

— Processor reads instructions from memory
* Fetches

— Processor executes each instruction

Sequence 1 CS 240 12

Instruction Cycle

Fetch Stage Execute Stage

Fetch Next Execute .
(START) Instruction Instruction HALT

Figure 1.2 Basic Instruction Cycle

Sequence 1 CS 240 13

Instruction Fetch and Execute

 The processor fetches the instruction
from memory

* Program counter (PC) holds address of
the instruction to be fetched next

+ Program counter is incremented after
each fetch

Sequence 1 CS 240 14

Instruction Register

 Fetched instruction is placed in the instruction
register
 Categories
— Processor-memory
¢ Transfer data between processor and memory
— Processor-1/0
 Data transferred to or from a peripheral device
— Data processing
* Arithmetic or logic operation on data
— Control
* Alter sequence of execution

Sequence 1 CS 240 15

Characteristics of a
Hypothetical Machine

| Opcode | Address I

(a) Instruction format

0 1 15
| S | Magnitude

(b) Integer format

Program Counter (PC) = Address of instruction
Instruction Register (IR) = Instruction being executed
Accumulator (AC) = Temporary storage

(c) Internal CPU registers
0001 =Load AC from Memory
0010 = Store AC to Memory
0101 = Add to AC from Memory

(d) Partial list of opcodes

Figure 1.3 Characteristics of a Hypothetical Machine

Sequence 1 CS 240 16

Example of Program Execution

Memory CPU Registers Memory CPU Registers
300 40 3 0 0]PC | 300 40 301|PC
301 4 11 | Ac] 301 41 0 00 3]AC
30 4 1 19 4 0JIR | 302 4 1 19 4 0]IR

T T
9400 0 0 3 9400 0 0 3
9410 0 0 2 9410 0 0 2
Step 1 Step 2

Memory CPU Registers Memory CPU Registers
300 40 301]PC 300 40 3 2|pC
301 41 0 0 3] Ac| 301 41 0 00 S]AC
302[2 94 1] W54 iR |30 41(5 4151

T T
9400 0 0 3 940{0 0 0 3 3+2=5
941|{0 0 0 2 9410 0 0 2
Step 3 Step 4

Memory CPU Registers Memory CPU Registers
3001 9 40 0 2] pPC 300! 40 3 0 3]pC
301(5 9 41 0 0 S]AC|301[5 9 41 0 00 S|AC
32(2 94 I—»209 4 1|IR |302[2 9 4 1 204 1|IR

T T
940(0 0 0 3 9400 0 0 3
9410 0 0 2 9410 0 0 §
Step 5 Step 6

Figure 1.4 Example of Program Execution

Sequence 1
au (contents of memory and registers in hexadecimal)

Direct Memory Access
(DMA)
* I/O exchanges occur directly with
memory

* Processor grants I/O module authority to
read from or write to memory

+ Relieves the processor responsibility for
the exchange

Sequence 1 CS 240 18

Interrupts

Interrupt the normal sequencing of the
processor

Most I/0 devices are slower than the
processor

— Processor must pause to wait for device

Sequence 1 CS 240 19
Table 1.1 Classes of Interrupts

Program Generated by some condition that occurs as a result of an instruction
execution, such as arithmetic overflow, division by zero, attempt to execute
an illegal machine instruction, and reference outside a user's allowed
memory space.

Timer Generated by a timer within the processor. This allows the operating system
to perform certain functions on a regular basis.

o Generated by an I/O controller, to signal normal completion of an operation
or to signal a variety of error conditions.

Hardware failure Generated by a failure. such as power failure or memory parity error.

Sequence 1

CS 240 20

10

Program Flow of Control
Without Interrupts

User vo

Program § Program

—l ..'..-" .- g : o

WRITE © i Command

®

END

©)

WRITE

®

1w

WRITE

Sequence 1 21

(a) No interrupts

Program Flow of Control With
Interrupts, Short I/O Wait

User 1/0

Program Program
— o]
S
0] 47 1 |@
A
o H
- Pl 10
—— i o™
WRITE oo " i Command
T if
e | /f
if
X -df
. T
1 S Interrupt
@ ".;'_.' "\ i"\., Handler

i'-' }l\':: H @

WRITE
Sequence 1 P upts; short VO wait 2

11

Program Flow of Control With
Interrupts; Long [/O Wait

Program n o Program
®j A j@

 feee
WRITE aeee"™"" # Command
Interrupt
Handler
1 ...-.é' se
T el
i 47 END
WRITE »
Sequence 1 23

(c) Interrupts; long VO wait

Interrupt Handler

 Program to service a particular [/O
device

* Generally part of the operating system

Sequence 1 CS 240 24

12

Interrupts

* Suspends the normal sequence of

execution

User Program

8

Interrupt Handler

v

i
Interrupt —»

occurs here i+1
.
M
Sequence 1 Figure 1.6 Transfer of Control via Interrupts 25
Fetch Stage Execute Stage Interrupt Stage
« Interrupts
Disabled
Check for
A 4 N Fetch next N Execute interrupt;
(START) i instruction i instruction Interrupts| iMitiate interrupt
Terrup handler
— — bl e
HALT ’
Figure 1.7 Instruction Cycle with Interrupts
Sequence 1 CS 240 26

13

Interrupt Cycle

* Processor checks for interrupts

* If no interrupts, fetch the next instruction
for the current program

« If an interrupt is pending, suspend
execution of the current program, and
execute the interrupt-handler routine

Sequence 1 CS 240 27

Timing Diagram Based on Short

| [/O Wait

® ©

® @
P e @ |
© ©
© o

® ® L=
P e @
©

® D

to numbers in Figure 1.5b)

(a) Without interrupts
(circled numbers refer
to numbers in Figure 1.5a)

Sequence 1 § 28
Figure 1.8 Program Timing: Short I/O Wait

14

Timing Diagram Based on Long
/O Wait

ol ol
@ SON

Time

Processor 1o @
. operation o
operation
Processor
®
o
Processor V0 ———— | operation
wait operation Processor
wait

e 9
@ (b) With interrupts

(circled numbers refer
to numbers in Figure 1.5¢)

(a) Without interrupts
(circled numbers refer
to numbers in Figure 1.5a)
29

Sequence 1
q Figure 1.9 Program Timing: Long I/O Wait

Simple Interrupt Processing

Hardware Software

Device controller or
other system hardware

issues an interrupt -
Save remainder of
process state

information
Processor finishes
execution of current l
instruction
l Process interrupt

Processor signals
acknowledgment l
of interrupt

Restore process state
information
Processor pushes PSW
and PC onto control l
stack
Restore old PSW
J, and PC
Processor loads new
PC value based on
interrupt
Figure 1.10 Simple Interrupt Processing 30

Sequence 1

I-M
Control [| Y
Stack |——| |
i i
Program
Counter
Changes ln o Interrupt General
Service Registers
Memory and Y + I [Rewra] Routine -
< Stack
Registers for an p—‘
Processor
Interrupt
— I-M
N] User's
| Program
Main
Memory
(a) Interrupt occurs after instruction
at location N
Sequence 1

Figure 1.11 Changes in Memory and Registers for an Interrupt

T-M

Control -
Stack

T

]

<
£

Interrupt
Service
Y + L [Retum| Routine

Program

v Users

General
Registers

Stack
Pointer

Processor

(b) Return from interrupt

Multiple Interrupts

 Disable interrupts while an interrupt is

being processed

terrupt

User Program Handler X

]
N—

[

(

Lerrerreeenel

(a) Sequential interrupt processing
Sequence 1 I

Interrupt
Handler Y
—

AIIIIIIIIII

32

16

Multiple Interrupts

* Define priorities for interrupts

Interrupt
User Program Handler X
[

= ;\
= T =
E Interrupt
= andler Y
= ~_
(b) Nested interrupt processing
Sequence 1 CS 240 33

Multiple Interrupts

Printer Communication

User Program
8 Interrupt service routine Interrupt service routine

= = L-
- o - B -
z % z z
= b =
= -’§% =
= L =
- . - Disk
= 90 - Wpl service routine
- M —
= ‘s
= &

Figure 1.13 Example Time Sequence of Multiple Interrupts

Sequence 1 CS 240 34

17

Sequence 1

Interrupts

Think of testing or verifying the
correctness of a program.

What issues or potential problems can
you think of w.r.t. user defined
interrupts?

CS 240 35

Sequence 1

Multiprogramming

Processor has more than one program to
execute

The sequence the programs are executed
in depends on their relative priority and
whether they are waiting for I/0

After an interrupt handler completes,
control may not return to the program
that was executing at the time of the
interrupt

CS 240 36

18

Memory Hierarchy

* Faster access time, greater cost per bit
* Greater capacity, smaller cost per bit
« Greater capacity, slower access speed

Sequence 1 CS 240 37

Memory Hierarchy

Sequence 1 Figure 1.14 The Memory Hierarchy 38

19

Sequence 1

Going Down the Hierarchy

Decreasing cost per bit
Increasing capacity
Increasing access time

Decreasing frequency of access of the
memory by the processor

— Locality of reference

CS 240

39

Secondary Memory

* Nonvolatile

Sequence 1

Auxiliary memory
Used to store program and data files

CS 240

40

20

Sequence 1

Disk Cache

A portion of main memory used as a
buffer to temporarily to hold data for the
disk

Disk writes are clustered

Some data written out may be referenced
again. The data are retrieved rapidly
from the software cache instead of
slowly from disk

CS 240 41

Sequence 1

Cache Memory

Invisible to operating system
Increase the speed of memory

Processor speed is faster than memory
speed

Exploit the principle of locality

CS 240 42

21

Cache Memory

Block Transfer

Word Transfer I\L/\
CPU > Cache > Main Memory
Figure 1.16 Cache and Main Memory
Sequence 1 CS 240 43

 Contains a copy of a portion of main
memory

* Processor first checks cache

» If not found in cache, the block of
memory containing the needed
information is moved to the cache and
delivered to the processor

Sequence 1 CS 240 44

22

Cache/Main Memory System

Line Memory
Number Tag Block address
0 0
1 1
2 2 Block
3 (K words)
.
.
C-1
Block Length
(K Words)
.
(a) Cache :
Block
2"-1
« Word __
Length
(b) Main memory
Figure 1.17 Cache/Main-Memory Structure
START
RA -read address
Receive address
RA from CPU
Access main
memory for block
containing RA
Allocate cache
slot for main
memory block
Load main Deliver RA word
memory block to CPU
into cache slot ©
Sequence 1 Figure 1.18 Cache Read Operation 46

23

Cache Design

» Cache size
— Small caches have a significant impact on
performance
 Block size

— The unit of data exchanged between cache and
main memory

— Larger block size: what are the consequences?
— Smaller block sizes: what now?

Sequence 1 CS 240 47

Cache Design

* Mapping function
— Determines which cache location the block
will occupy

* Replacement algorithm

— Determines which block to replace
— E.g. Least-Recently-Used (LRU) algorithm

Sequence 1 CS 240 48

Cache Design

« Write policy
— When the memory write operation takes
place
— Can occur every time block is updated

— Can occur only when block is replaced
* Minimizes memory write operations

+ Leaves main memory in an obsolete state

Sequence 1 CS 240 49

Programmed I/O

 commandto [{CPU— 1O
1/0 module

* 1/O module performs the
action, not the processor oo fro-ceu

* Sets appropriate bits in the I/O
status register

Error

* No interrupts occur

* Processor checks status until
operation is complete o

CPU — memory

— this is “polling”

Next instruction
(a) Programmed 1/O

Sequence 1 CS 240 50

Sequence 1

Interrupt-Driven I/O

Processor is interrupted when 1/0
module ready to exchange data

Processor saves context of
program executing and begins
executing interrupt-handler

No needless waiting

However, still consumes a lot of
processor time because every
word read or written passes
through the processor

CS 240

Issue Read CPU — /O
—» command to Do something
VO module [1~~ >

Write word
into memory

'CPU — memory

No
Yes

Next instruction
(b) Interrupt-driven I/O

51

Sequence 1

Direct Memory Access

Transfers a block of data
directly to or from memory

An interrupt is sent when
the transfer is complete

Processor continues with
other work

CS 240

Issue Read PU — DMA
block command| Do something
VO module [~ ~ Pelse

= == Interrupt
DMA — CPU

Next instruction

(c) Direct memory access

52

26

