
Memory Locations, Address,
Instructions and Instruction Sequencing

Read pages 28-40

Memory locations and addresses

• The simple computer is a good start to
understand computer organizations

• We need to study
– how data/instructions are organized in the main

memory?
– how is memory addressed? – addressing mode

Memory
• Holds both instructions and data
• With k address bits and n bits per location

• n is typically 8 (byte), 16 (word), 32 (long word), ….

k Number of locations
10 2 = 1024 = 1K
16 2 = 65,536 = 64K
20 2 = 1,048,576 = 1M
24 2 = 16,777,216 = 16M

10

16

20

24

n-1 01
Address

1
0

2

2 -1k

. . .

.

.

.

Memory stores both data and instructions
• Consider 32-bit long word in each location which can store

– 32-bit 2’s complement number (integer):

• If n = 32: - 2G – 2G-1 (recall that G = 2)

– 4 ASCII characters

– A machine instruction

(-2) – (2 – 1)
n-1 n-1

30

byte byte byte byte

byte 3 bytes

Op Code Address information

- It is often
convenient to
address operands
which are as short
as 1 byte

Dealing with strings of characters

• Byte addressable machine is almost universal
- Successive addresses refer to successive byte locations
- There are two different schemes for addressing byte:

big-endian little – endian

- Also bit can be numbered the other way around: bit 0
is the MSB

0 2
4
0

8
.
.
.

1 3
4 5 6 7

3 1
4
0

8
.
.
.

2 0
7 6 5 4

Address Address

Memory addressing Example – for a
Computer

- Word = 16 bits

- Byte addressable – uses big-endian

- Long word = 4 bytes

- 24 bits used for address 16 M bytes or 8 M
words

Instructions and instruction sequencing

4 bits 12 bits
Address Inf.

• Example computer instruction format:

- Uses multiple words of 16 bits

- Typical instruction is Add: C = A+B

- Most general instruction is to add 2 numbers in
memory and store in a 3rd location

Add A, B, C [A]+[B]  C

Op Code
Opcode word
(plus some addressing inf.)

Second word

Third word

Problems for instructions with multiple
memory locations

1. Long instructions
- Address of an operand = 24 bits
- Instruction length = 3 x 24 bits + opcode (4 bits) = 76 bits

– too much memory space
- Solutions: a) Use one- or two-address instruction:

Add A, B: [A]+[B]  B
Add A: [A]+[AC]  AC

b) Use general-purpose CPU register
Often 8-64 bits of them
- 8 registers  use only 3 bits to select a CPU reg.

Problems for instructions with multiple
memory locations (continued)

2. Memory access time is too long
– Recall that memory access is always slow
– Multiple memory access consumes a lot of time
– Solutions: use CPU registers to store operands and

temporary results
– Minimizing the frequency with which data moved back

and forth between main memory

Modern CPUs are designed with the above two issues
in mind

e.g. ADD A, D1 [A]+[D1]  D1

Registers on
CPU

All are visible to
programmer.

Compare with our simple computer

1. D7 – D0 are equivalent to AC (accumulator)
2. A7 - A0 are equivalent to ? – none in our simple

computer
3. PC (program counter) is the same as PC
4. SR (status register) – none in our simple computer
5. Where are X, MDR, MAR, and IR?
6. Those are not visible to the programmer
7. Guess how many invisible registers in the CPU?

Some instructions for illustration
• ADD -- 2 operand instruction

– e.g. ADD B, D0 [B]+[D0]  D0

– Either source or destination must be one of the 8 data
registers

– Both can be data register
• MOVE – similar to ADD

– e.g. MOVE A, D0 [A]  D0
– To do C = A+B MOVE.L A, D0

ADD.L B, D0
MOVE.L D0, C

Memory location, data register 0

Some instructions for illustration (continued)

• SUB (subtract)
– e.g. SUB B, D0 [D0] - [B]  D0

• CMP (compare)
– e.g. CMP B, D0 [D0] - [B] and set/reset N, Z, V, C

• MOVEA (move address)
– e.g. MOVEA ADDR, A3 [ADDR]  A3

• CLR A 0  A (clear data register or
– Can use .B, .W, or .L memory location)

• TST A [A] – 0 and set/reset N, Z; make V, C=0
– Can use .B, .W, or .L

• ADDQ #2, D5 [D5] + 2  D5 quick addition

• SUBQ #1, D4 [D4] - 1  D4 quick subtraction

