Finite Element Method for Sturm-Liouville Problems

Consider a Sturm-Liouville boundary value problem with Dirichlet boundary conditions on some
interval.

We can apply the finite element method to this problem in the usual way by first constructing a

weak form for the equation.
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By splitting the integral on the left into two distinct integrals and then applying integration by
parts to the first of the two integrals we obtain
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Since the test functions satisfy Dirichlet conditions, the first term on the left will vanish leaving us
with
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We now proceed as usual by introducing a family of spike functions {¢;(z)} defined on [a,b]. We
assume that an approximate solution can be written

w(a) = S, ¢5(x)

i=1

If we substitute this into the weak form and use test functions of the form v(z) = ¢;(x) we obtain
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If we introduce matrices
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these equations for i = 1 to n can be written as a matrix equation
Au=AMu

To find the desired approximate eigenfunctions and eigenvalues, we simply have to find the
eigenvalues and eigenvectors of the matrix equation
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The accompanying Mathematica notebook will show a couple of examples of this process.



