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Abstract

CAZAC (Constant Amplitude Zero Auto-Correlation) sequences are important in waveform design

because of their optimal transmission efficiency and tight time localization properties. Certain classes

of CAZAC sequences have been used in radar processing for many years, while recently discovered

sequences invite further study. This paper compares different classes of CAZAC sequences with respect

to the discrete periodic and aperiodic ambiguity function; and it analyzes the ambiguity function behavior

of the phase coded waveforms associated with given CAZACs. The techniques are taken from classical

signal processing methodologies, as well as from number theoretic and frame theoretic ideas which arise

in a natural way. Computational results for different CAZAC classes are presented.
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The Role of the Ambiguity Function in

Waveform Design and Phase coded Waveforms

I. I NTRODUCTION

The design of radar waveforms has received considerable attention since the 1950s. In 1953, P.M. Wood-

ward [Woo53b], [Woo53a] defined thenarrow band radar ambiguity functionor, simply, ambiguity

function. It is a device formulated to describe the effects of range and Doppler on matched filter receivers

(see the Appendix). Woodward acknowledged the influence of Shannon’s communication theory, from

1948, on his ideas; and he explained the relevance of “ambiguity” in radar signal processing, perhaps best

conceived in terms of a form of the uncertainty principle (see Sections II and III). His book [Woo53a]

ends with the astonishing, self–deprecating, heartfelt, statement:

“The reader may feel some disappointment, not unshared by the writer, that the basic question

of what to transmit remains substantially unanswered.”

However, in the 50 odd years since Woodward’s book appeared, radar signal processing has used the

ambiguity function as an intricate and flexible tool in the design of waveforms to solve diverse problems

in radar. In the process, substantial connections were established in mathematics, physics, and other areas

of signal processing.

The rich history of the field and limitations of space preclude the presentation of a comprehensive

summary on waveform design. Therefore, we focus on a specific piece of the waveform design problem

as pertaining to the use of constant amplitude zero autocorrelation sequences in this paper. Constant

amplitude (CA) sequences with zero autocorrelation (ZAC), which often serve as coefficients of the

translates of the sampling function used to design a given waveform, arise naturally in a host of problems

associated with radar, communications, coding theory, and various areas of signal processing. There are

major books and surveys, such as [Lev04] and [Hel98], in the area, and literally thousands of articles

from the second half of the 20th century.

As such, we are introducing two new methods, in Sections IV and V, respectively, which can be

formulated in a relatively small space, but which fit in the broader context reflected by the diverse

literature mentioned in the previous paragraph. Hopefully, these methods will serve as a catalyst for

developing new waveform design methods to address the requirement of spectral efficiency imposed by

a rapidly dwindling EM spectrum.
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The method of Section IV deals with CAZAC sequences. There have been quadratic phase CAZACs

going back to Norbert Wiener [Wie30], and some say to Gauss. We construct new quadratic sequences as

well as non–chirp–like sequences, and provide a discrete periodic ambiguity function analysis of them.

Section V develops the analogue of Section IV, but for the aperiodic case. Section VI is the Epilogue.

In Section II and the Appendix, we provide some motivation for waveform design and an elementary

background on radar, respectively. Section III records the definition and basic properties of the ambiguity

function.

II. M OTIVATION

The area of waveform design enjoys continued attention due to advances in radar hardware, compu-

tational algorithms, and coding schemes. These advances have had a creative, synergistic impact on the

design of radar waveforms, providing improved ambiguity function and target detection properties.

Two basic desiderata that must be satisfied in the design of radar waveforms are the following [Woo53b],

[Woo53a], [Coo67], [Lev04]:

• Short duration (in the time domain perforce large extent in the frequency domain) pulses, which are

required for good range resolution;

• On the other hand target detection calls for sufficient energy on target.

These two guiding principles impose conflicting requirements on the radar waveform design problem.

The idea, and associated methods, of pulse compression are employed to satisfy these conflicting require-

ments. In turn, this calls for waveforms with large compression ratios (time-bandwidth product) [Lev04].

Extension of this approach to multi–static radars is considered in [Blu06].

Early work on the problem of radar waveform design was devoted to the use of a fixed transmit signal.

This was largely due to a hardware limitation, which precluded waveform agile operation. Consequently,

radar resolution in delay and Doppler was inhibited by the Heisenberg uncertainty principle. Thus,

increased resolution in range comes about at the expense of resolution in Doppler and vice–versa [Bel02],

[Bel88], [Bel93]. Information theoretic criteria for radar waveform design are outlined in [Bel02], [Bel88],

[Bel93], [Bel98]. The work of [Bel02] sheds light on ameliorating the intrinsic limitations dictated

by the Heisenberg uncertainty principle. Specifically, it draws an analogy of the problem of delay –

Doppler imaging to an equivalent problem in high resolution optical image formation. More precisely,

high resolution optical images are formed by coherently combining several low resolution images each

having a specified point spread function. In this process, it is important to minimize the cross point spread

functions between the combined images. In the radar context, the ambiguity function plays the role of
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the point spread function. The work of [Bel02] exploits this concept for designing radar waveforms to

produce high resolution delay – Doppler images. In that respect, it highlights the importance of designing

libraries of waveforms with diverse characteristics in terms of their ambiguity functions. We address this

issue in Section V.

The work of [VT68] shows that the ambiguity function results from both a detection and an estimation

problem for mono–static radars. Extension of this approach to bi-static radars is not straightforward due

to the large number of free parameters arising from the geometry of the bi-static radar set up. The work

of [Tsa97] formulates the ambiguity function for bi–static radars taking into account the geometry of a

given setting. Furthermore, this work makes significant strides in terms of the discrete time ambiguity

function with key considerations of sampling, reconstruction, and aliasing. The corresponding exercise

for multi–static radar ambiguity function analysis is very much an open problem. Recent results point to

the advantages of studying this problem in the context of frames and filter banks, see Sections IV and

VI.

Another important issue in this context is the design of discrete time radar waveforms with a given

ambiguity function design specification. For a given waveform, the ambiguity function can be calculated.

However, several waveforms can give rise to the same ambiguity function. Consequently, the problem of

radar waveform design for a given ambiguity function design specification becomes an ill posed problem

calling for suitable regularization techniques involving constraints on the time-bandwidth product. The

design of constant modulus waveforms can shed valuable insight in tackling this important problem, see

Sections III and IV.

III. A MBIGUITY FUNCTIONS

A. Narrow band radar ambiguity function

Let R, resp.,C, be the set of real, resp., complex, numbers. A functionu : R → C is a finite energy

signal if

‖u‖2 =
(∫

R
|u(s)|2ds

) 1
2

< ∞.

In this case, we writeu ∈ L2(R). (For this article it is not necessary to be concerned with the definition

of the Lebesgue integral.) TheFourier transform, û : R → C, of u can be well–defined by the formal

expression,

û(γ) =
∫

R
u(t)e−2πitγdt, γ ∈ R,
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wherei denotes the imaginary unit inC. For an explanation of this definition of the Fourier transform

and the subtleties which can surround it, see, e.g., [Ben97].

Let R2 be the direct productR× R. The narrow band radar ambiguity functionA(u) of u ∈ L2(R)

is defined by

A(u)(t, γ) =
∫

R
u(s + t)u(s)e−2πisγds (1)

= eπitγ
∫

R
u(s +

t

2
)u(s− t

2
)e−2πisγds,

for (t, γ) ∈ R2. For simplicity, we refer toA(u) as theambiguity functionof the signalu.

An elementary form of the uncertainty principle mentioned in the Introduction and Section II, apropos

the ambiguity function, is the formula,∫∫
R2
|A(u)(t, γ)|2dtdγ = ‖u‖42, (2)

whereu ∈ L2(R). Equation 2 asserts thatA(u) can not be concentrated arbitrarily closely to the origin

(0, 0) ∈ R2. A more refined form of Equation 2, which is called theradar uncertainty principle, is the

following assertion.If ‖u‖2 = 1, and if X ⊆ R2 and ε > 0 have the property that∫∫
X
|A(u)(t, γ)|2dtdγ ≥ 1− ε,

then |X| ≥ 1− ε, where|X| is the area (Lebesgue measure)of X.

It is not difficult to prove thatA(u) is uniformly continuous onR2 if u ∈ L2(R).

Typically, in radar, the modulus|A(u)(t, γ)| is the only quantity that is, or can be, measured. In 1968,

Vakman [Vak68] posed thenarrow band radar ambiguity problem: For a givenu ∈ L2(R), find all

signalsv ∈ L2(R) with the property that

|A(v)(t, γ)| = |A(u)(t, γ)| (3)

for all (t, γ) ∈ R2. The signalv(s) = ceiωsu(s + x), for fixed (x, ω) ∈ R2 and constantc ∈ C for which

|c| = 1, is a solution of Equation 3. However, the problem is not completely resolved, see [Jam99] for

recent results.

Remark 1:There are applications in seismology and sonar, as well as other disciplines, where narrow

band approximations, which give rise to Equation 1, are not valid. This leads to thewide band ambiguity

functionWA(u) of u ∈ L2(R), which is defined by

WA(u)(a, t) =
√

a

∫
R

u (a(s− t))u(s)ds, (4)
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for a > 0 and t ∈ R, see [Aus90] for its formulation.WA(u) is a continuous wavelet transformof

u ∈ L2(R). In particular, in the wide band case,WA(u) is a time–scale operator, whereas the narrow

band ambiguity function,A(u), is a time–frequency operator. There is a correspondingwide band radar

ambiguity problemwhich is at least as intractable as the narrow band case.

Remark 2:The Wigner distributionW (u) of u ∈ L2(R) was introduced by E. Wigner in 1932 in the

context of quantum mechanics. It is defined by

W (u)(t, γ) =
∫

R
u(t +

s

2
)u(t− s

2
)e−2πisγds,

for (t, γ) ∈ R2. It is a remarkable fact that, up to a rotation,W (u) is the two dimensional Fourier

transform ofA(u), e.g., see [Gro01].

Remark 3: If u, v ∈ L2(R), the narrow band cross–ambiguity functionA(u, v) of u andv is defined

by

A(u, v)(t, γ) =
∫

R
u(s + t)v(s)e−2πisγds

= e2πitγ
∫

R
u(s)v(s− t)e−2πisγds.

Thus,A(u, v) is the short–time Fourier transform(STFT) of u ∈ L2(R) with window v. STFTs are a

staple in spectral analysis where one analyzesspectrograms|A(u, v)| recorded from various experiments,

e.g., in speech analysis. They are also the basis for time–frequency or Gabor or Weyl–Heisenberg analysis.

It is not difficult to verify thetime–frequency analysis equation,

A(u, v)(t, γ) = e2πitγA(û, v̂)(γ,−t),

for u, v ∈ L2(R) and (t, γ) ∈ R2.

B. Discrete ambiguity functions

Let Z be the set of integers, letN ≥ 1 be an integer, and denote the additive group of integers modulo

N by ZN . For example, ifN = 6, then2 + 3 ≡ 5 (mod6) and4 + 5 ≡ 3 (mod6).

Let u = {u[m] : m = 0, 1, . . . , N − 1} be a sequence of complex numbers of lengthN . We shall

denote byup the periodic extension ofu to a bi–infinite sequence on all ofZ, i.e., for eachm ∈

Z, up[m] = u[k], where0 ≤ k ≤ N − 1 and k ≡ m (modN). We shall denote byua the following

aperiodic extension ofu to Z:

ua[m] =

 u[m], m = 0, 1, . . . , N − 1,

0, otherwise.
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• The discrete periodic ambiguity functionAp(u) : ZN × ZN → C of u is defined by

Ap(u)(m,n) =
1
N

N−1∑
k=0

up[m + k]up[k]e−2πikn/N .

• The discrete aperiodic ambiguity functionAa(u) : Z× Z → C of u is defined by

Aa(u)(m,n) =
1
N

N−1∑
k=0

ua[m + k]ua[k]e−2πikn/N .

Note that if0 ≤ m ≤ N − 1 andn ∈ Z, then

Aa(u)(m,n) =
1
N

N−1−m∑
k=0

u[m + k]u[k]e−2πikn/N

Example 1 (Shapiro – Rudin polynomials and Golay pairs):TheShapiro–Rudin polynomials, Pn, Qn,

n = 0, 1, . . . , are defined recursively as follows fort ∈ R/Z:

P0(t) = Q0(t) = 1

Pn+1(t) = Pn(t) + e2πi2ntQn(t),

Qn+1(t) = Pn(t)− e2πi2ntQn(t).

Two finite sequences,p andq, of lengthN , are aGolay complementary pairif

Aa(p)(0, 0) + Aa(q)(0, 0) 6= 0, and

Aa(p)(m, 0) + Aa(q)(m, 0) = 0

for 1 ≤ m ≤ N − 1. It is interesting and not difficult to prove that, for eachn ≥ 1, the N = 2n

coefficients for each ofPn andQn combine to form a Golay complementary pair, see [Ben] for a survey

of this subject as well as [Cla] in this issue for radar applications.

QMF (CMF)

|Pn(t)|2 + |Qn(t)|2 = 2n+1

IV. CAZAC SEQUENCES

A. Historical background from engineering

A function u : ZN → C is a Constant Amplitude Zero Autocorrelation (CAZAC)sequence if

(CA) |u[m]| = 1, 0 ≤ m ≤ N − 1,

and

(ZAC) Ap(u)(m, 0) = 0, 1 ≤ m ≤ N − 1.
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There is an extensive literature on CAZACs because of the importance of such sequences in com-

munications, coding theory, cryptology, and radar, e.g., [Kla60a], [Kla60b], [Hei61], [Fra62], [Tur68],

[Sch70], [Chu72], [Fra73], [Mil83], [Roh92], [Lee98], [Hel98], [Lev04], [Pro04], [Gol05]

CAZAC waveforms (and some of their close relatives) are also called by the following names among

others: polyphase sequences with good periodic or optimum correlation properties, e.g., [Hei61], [Fra62],

[Chu72], [Sch78], [She79], [Kum85]; constant amplitude optimal sequences, e.g. [Ng98]; perfect auto-

correlation or root-of-unity sequences, e.g., [Mow96], [Gab91], [Gol92]; generalized chirp-like polyphase

sequences, e.g., [Pop92]; bi-unimodular sequences, e.g., [Bjo90], [Bjo95], [Haa96]; bent functions, e.g.,

[Dil74], [Chu89]; constant amplitude all pass sequences. As mentioned in the Introduction, the literature

in this area is extensive, one might say overwhelming, see [Hel98].

Example 2 (Quadratic phase CAZAC sequences):A quadratic phaseCAZAC sequenceu : ZN → C

is defined by

u[k] = eπiP (k)/N , 0 ≤ k ≤ N − 1,

whereP (k) is a quadratic polynomial ink. The following are specific examples from the aforementioned

literature.

• Chu sequences:P (k) = k(k − 1), N odd,

• P4 sequences:P (k) = k(k −N),

The set of quadratic phase sequences is actually much richer than the classical nickname, chirps,

implies. We shall quantify this assertion in Section IV-C, but set the stage with the following definition.

Definition 1: Given N > 1, and letM = N if N is odd, M = 2N if N is even. Assume thatω

is a primitive M–th root of unity, i.e.,ω = e2πik/M , wherek and M are relatively prime, denoted by

(k,M) = 1. The functionu : ZN → C defined by

u[m] = ωm2
, 0 ≤ m ≤ N − 1,

is a Wiener sequence, see [Ben07].

It is not difficult to prove thatWiener sequences are CAZAC sequences.

The discrete Fourier transform(DFT) of a functionu : ZN → C is defined by

û[n] =
1√
N

N−1∑
m=0

u[m]e−2πimn/N .

The following facts are elementary to verify:

• u CA ⇐⇒ DFT of u is ZAC.

• u CAZAC ⇐⇒ DFT of u is CAZAC.
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• If u is CA, thenû can have zeros.

B. Mathematical problems

We have defined CAZAC sequences in terms of functionsu : ZN → C. Of course, such a function

can be identified with a point(u[0], . . . , u[N − 1]) ∈ CN . Thus, the set of all CAZAC sequences defines

a subset ofCN . The periodicity inherent inZN and the fact thatCN consists ofN–tuples leads us

to considercirculant matrices, i.e., N × N matricesAu whose first row isu[0], . . . , u[N − 1], whose

second row isu[N − 1], u[0], . . . , u[N − 2], etc., where eachu[m] ∈ C. A circulant matrixHu is called

a Hadamard matrixif HuH?
u = N Id, whereH?

u is the Hermitian conjugate ofHu andId is theN ×N

identity matrix.

We begin this section with the following well known fact.

Proposition 1: A function u : ZN → C is a CAZAC sequence if and only ifAu is a Hadamard matrix.

We shall say that two CAZAC sequencesu andv : ZN → C areequivalentif v = cu for somec ∈ C

for which |c| = 1. There are other equivalence relations one can impose on the category of CAZAC

sequences from which one can pose problems related to natural non–abelian groups which arise, see

[Ben07];

• Shifts: ∀n = 0, . . . , N − 1 andm ∈ Z,

u[n] = (τmv)[n] = v[m + n].

• Cyclic permutations: fork with gcd(k, N) = 1,

u[n] = (σkv)[n] = v[kn].

• Multiplication by powers ofN–th roots of unity: forζ with ζN = 1,

u[n] = v[n]ζn.

In all these cases,u is a CAZAC sequence ifv is also CAZAC.

There is the following compelling problem. For a givenN , compute or estimate the number of

non–equivalent CAZAC sequences. The problem has been investigated by Gabidulin [Gab91], [Gab94].

Björck and Saffari [Bjo95] proved thatif N = MK2, then there are infinitely many non–equivalent

CAZAC sequences, e.g.,N = 4, 8, 9, or 12. On the other hand, Haagerup [Haa96] has given a complete

mathematical proof thatif N is prime, then there are only finitely many non–equivalentCAZAC sequences.

Remark 4:Haagerup’s theorem, as well as Gabidulin’s work, uses a refinement of Chebotorev’s

theorem (1924) thatif p is prime, then all square submatrices of thep× p DFT matrix are non–singular.
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Such refinements, with intermediate contributions by Dieudonné , as well as Donoho and Stark, and a

recent formulation by Tao, are critical in compressive sampling and especially the theory of Candès,

Romberg, and Tao, see [SPM08].

Example 3: a.Let N be odd. Binary CAZAC waveformsu : ZN → {±1} can not exist.

b. Let N be arbitrary. It is well known that ifu : ZN → {±1}, thenA(u)(m, 0) ≡ N (mod4). Thus,

if A(u)(m, 0) has zeros, and, in particular, ifu is a CAZAC sequence, then4 dividesN .

c. Let N be arbitrary. The only known binary CAZAC sequenceu : ZN → {±1}, up to any translation

and multiplication by−1, is {1, 1, 1,−1}. However, there do exist periodic complex binary sequences,

not ±1, which are CAZAC sequences, e.g., Björck [Bjo90] and Golomb (1992) [Gol92], cf., [Haa96]

and see Section IV-D. In fact, Saffari [Saf01] was able to determine all such complex binary sequences.

C. The discrete periodic ambiguity function of Wiener CAZAC sequences

We begin this section with the following computation.

Theorem 1:Let j ∈ Z. Defineuj : ZN → C by uj(k) = e2πijk2/M , whereM = 2N if N is even and

M = N if N is odd. If N is even, then

A(uj)(m,n) =

 e2πijm2/(2N), jm + n ≡ 0 (modN),

0, otherwise.

If N is odd, then

A(uj)(m,n) =

 e2πijm2/N , 2jm + n ≡ 0 (modN),

0, otherwise.

The discrete periodic ambiguity function,A(u), of a Wiener CAZAC sequenceu : ZN → C has a

simple behavior since, for any fixed value ofn, A(u)(m,n) is zero for all except one value ofm. That

is, for each fixedn, the graph ofA(u)(·, n) as a function ofm consists of a single peak. In fact, we

have the following consequence of Theorem 1.

Corollary 1: Let u be a Wiener CAZAC sequence. (In particular,ω is a primitiveM -th root of unity.)

If N is even, then

A(u)(m,n) =

 ωm2
, m ≡ −n (modN),

0, otherwise.

If N is odd, then

A(u)(m,n) =

 ωm2
, m ≡ −n(N + 1)/2 (modN),

0, otherwise.
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Figure 1. Discrete periodic ambiguity plot for Wiener sequences of lengthN = 101 andj = 49, 4, resp.

Example 4: a.Let N be odd and letω = e2πi/N . Then,u(k) = ωk2
, 0 ≤ k ≤ N − 1, is a CAZAC

sequence. By Corollary 1,|A(u)(m,n)| = |ωm2 | = 1 if 2m + n = `m,nN for some`m,n ∈ Z and

|A(u)(m, n)| = 0 otherwise, i.e.,A(u)(m,n) = 0 on ZN × ZN unless2m + n ≡ 0 (modN). In the

case2m + n = `m,nN for some`m,n ∈ Z, we have the following phenomenon. If0 ≤ m ≤ N−1
2 and

2m+n = `m,nN for some`m,n ∈ Z, thenn is odd; and ifN+1
2 ≤ m ≤ N −1 and2m+n = `m,nN for

some`m,n ∈ Z, thenn is even. Thus,the values(m,n) in the domain of the discrete periodic ambiguity

functionA(u), for which A(u)(m,n) = 0, appear as two parallel discrete lines. The line whose domain

is 0 ≤ m ≤ N−1
2 has odd function valuesn; and the line whose domain isN+1

2 ≤ m ≤ N − 1 has even

function valuesn.

b. The behavior observed in parta has extensions for primitive and nonprimitive roots of unity.

Let u : ZN → C be a Wiener sequence. Thus,u[k] = ωk2
, 0 ≤ k ≤ N − 1, and ω = e2πij/M ,

(j,M) = 1, whereM is defined in terms ofN in Definition 1. By Corollary 1, for each fixedn ∈ ZN ,

the function A(u)(·, n) of m vanishes everywhere except for aunique value mn ∈ ZN for which

|A(u)(mn, n)| = 1. See Figure 1, whereN = 101 and j = 49, 4, resp.

c. The hypotheses of Theorem 1 do not assume thate2πij/M is a primitiveM–th root of unity. In fact,

in the case thate2πij/M is not primitive, then, for certain values ofn, A(u)(·, n) will be identically 0

and, for certain values ofn, |A(u)(·, n)| = 1 will have several solutions. For example, ifN = 100 and

j = 2, then, for each oddn, A(u)(·, n) = 0 as a function ofm. If N = 100 andj = 3, then(100, 3) = 1

so thate2πi3/100 is a primitive100th root of unity; and, in this case, for eachn ∈ ZN there is aunique

mn ∈ ZN such that|A(u)(mn, n)| = 1 andA(u)(m,n) = 0 for eachm 6= mn.
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D. Björck sequences

We shall now define a class of CAZAC sequences which are not equivalent to Wiener CAZAC

sequences, where equivalence was defined in Section 1. This result came as a surprise in several fields,

and proves false the conjectures of Popa and Enflo, see [Haa96]. This subsection presents a breif summary

of Bjorck’s results.

Let N = p be prime. TheLegendre symbol
(

k
p

)
is defined by

(
k

p

)
=


0, if k ≡ 0 (modp),

1, if k ≡ n2 (modp) for somen ∈ Z, n 6= 0 (modp)

−1, if k 6= n2 (modp) for all n ∈ Z,

Example 5:Let p = 7, noting that7 ≡ −1 (mod4). Then
(

k
7

)
= −1 for k = 3, 5, 6. Björck made the

remarkable discovery thatu : Z7 → C, defined by

u[0] = u[1] = u[2] = u[4] = 1,

u[3] = u[5] = u[6] = eiθ,

whereθ = arccos(−3/4), is a CAZAC sequence!

Definition 2: Given N = p, a prime. The functionu : Zp → C defined by

u[m] = eiθp[m], 0 ≤ m ≤ p− 1,

is a Björck sequenceif,

• for p ≡ 1 (mod4), we have

θp[m] =
(

m

p

)
arccos

(
1

1 +
√

p

)
• for p ≡ −1 (mod4), we have

θp[m] =

 arccos
(

1−p
1+p

)
, if

(
m
p

)
= −1,

0, else,

Björck (1985) went on to prove the following theorem, see [Bjo90], [Bjo95], [Saf01].

Theorem 2:Björck sequences are CAZAC sequences.

Two–valued CAZACs have been classified by Saffari [Saf01] in terms of Hadamard–Paley and Hadamard–

Menon difference sets. The result of Saffari states that two–valued CAZACs exist for lengthsN ≥ 3 if and

only if N ≡ 3 (mod4) and there exists a Hadamard–Paley difference set of lengthN or N ≡ 0 (mod4) and

there exists a Hadamard–Menon difference set of lengthN . In either case, explicit formulas are provided
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Figure 2. Discrete periodic ambiguity plot (in dB) for a Björck sequence of lengthN = 101.

for the construction of the CAZAC sequence. A similar classification exists for two–level autocorrelation

Legendre sequences [Gol05], with several results relating to the existence of Hadamard–Paley difference

sets. Existence of Hadamard–Menon sets is rather more difficult to prove, as it relates to the Hadamard

circulant conjecture. It follows that two–valued CAZACs cannot exist for lengthsK ≡ 1 (mod4).

However, note that in this case Björck CAZAC sequences arealmosttwo-valued.

V. PHASE CODED WAVEFORMS

CAZAC sequences are important in waveform design because of their defining properties: CA ensures

optimal transmission efficiency while ZAC provides tight time localization at zero Doppler. In Section

IV we focused on their characterization in terms of the discreteperiodic ambiguity functionAp. By

definition, all CAZAC sequences have the sameperiodic autocorrelationAp(u)(·, 0), but we have shown

that they exhibit significant diversity of behavior once the full time–frequency landscape is considered, see

Figure 2. Periodic autocorrelation is also referred to as cyclic autocorrelation, which permits computation

by loading finite sequences into a circular register and rotating the register.

In the aperiodic case, of course, ZAC is unattainable, and sidelobes appear. In order to quantify this

behavior, we utilize two measures of sidelobe magnitude, that capture various aspects of theaperiodic

autocorrelationAa(u)(·, 0)

Definition 3: The Peak Sidelobe Level(PSL) of a sequenceu is defined by

PSL(u) =
1

|Aa(u)(0, 0)|
sup

1≤m≤N−1
|Aa(u)(m, 0)|
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Figure 3. Effect of cyclic shiftsτm on the discrete aperiodic autocorrelationAa(u)(·, 0) of different equivalence classes of

CAZAC sequences; PSL(u) (in dB) vs. shift lengthm. Red x: Bj̈orck (N=101), Blue triangles: Milewski (N = 100), Green

squares: Wiener (N=101).

The Integrated Sidelobe Level(ISL) of a sequenceu is defined by

ISL(u) =
1

|Aa(u)(0, 0)|2
N−1∑
m=1

|Aa(u)(m, 0)|2

Both the PSL and the ISL differ within the equivalence classes of CAZAC sequences, and across

classes. This is analogous to results obtained for Legendre sequences [B9̈3], [Bor01]. Figure 3 illustrates

this effect on PSL with respect to shiftsτm. Note that Wiener CAZACs are not affected at all, whereas

Björck sequences exhibit the most variability. Similar results arise when one considers other measures,

such as ISL.

The variability in sidelobe behavior for Björck CAZACs is not limited to their energy levels. As Figure

4 shows, shifting also affects sidelobe location.

Example 6:By averaging the autocorrelationAa(τku)(·, 0) of several different shiftsm of the same

basis sequenceu, we can obtain an overall lowering of the energy levels off of the main lobe. In this

example, we present the noncoherent average over two selected shifts, i.e.

|Aa(τ40u)(·, 0)|+ |Aa(τ41u)(·, 0)| ,

which have complementary sidelobes near the origin. Note that we can improve over the shift that achieves

the lowest PSL globally (shift by 28).

Example 7:The same averaging technique can be used with the discrete aperiodic ambiguity functions

of shifted sequencesAa(τku). Figures 6(a–c) plot the discrete aperiodic ambiguity functions of shifts of

the Björck CAZAC of length 29 (by zero, 7, and 12, respectively), with a threshold of -10dB. The area



14

Figure 4. Discrete aperiodic autocorrelation for Björck sequences of lengthN = 19. Three shiftsτm, with m = 0, 4, and9,

respectively.

Figure 5. Effect of cyclic shifts on the aperiodic autocorrelation function of Björck CAZAC sequences; Plot of absolute value

(dB) in the area of the main lobe for two different shifts ( by 40 and 41), and their average. Also plotted for reference is the

shift that achieves the lowest PSL globally.

plotted is centered at the origin. We observe that the peak locations vary, and by averaging all three we

obtain Figure 6(d).

• Waveforms associated to Chu-Zadoff and P4 CAZACs are known for their low sidelobes at zero

Doppler shift, but their ambiguity functions exhibit strong coupling in the time-frequency plane.

• Waveforms associated to Björck CAZACs can more effectively decouple the effect of time and

frequency shifts. However, at zero Doppler shift, their sidelobe behavior is less desirable than

quadratic phase CAZACs.

• These differences led to our concatenation idea.
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a b

c d

Figure 6. Plot of the discrete aperiodic ambiguity function of shifts of the Björck CAZAC of length 29, thresholded at -10dB;

darker color denotes higher value. a) zero shift, b) shift by 7, c) shift by 12, and d) their average.

Chu-Zadoff 101 Bj̈orck 101
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• A concatenation of partialCAZACs u andv is w = Mix(r%, u, v) defined as

w[m] = u[m], if m = 0, . . . ,M

and

w[m] = v[m], if m = M + 1, . . . , N − 1,

whereM is the nearest integer tor ×N/100.

• We show how the ambiguity function can be improved by concatenation of partial CAZACs belong-

ing to two different families. The best choice is obtained withr = 50.

VI. EPILOGUE

The purpose of this paper was to observe the complexity of CAZAC sequences, resulting in diverse

periodic and aperiodic ambiguity behavior. Although we restricted ourselves to two special cases, viz.,

Wiener and Bj̈orck sequences, we ultimately want to fathom the depth of all non–equivalent CAZAC

sequences. The supporting mathematical theory must be developed significantly to achieve this goal,

and the engineering criteria, particularly in communications, coding, and radar, must interleave with the

mathematics to ensure relevance and focus.

Even with these mathematical and engineering challenges to understanding and quantifying the ambigu-

ity function diversity rooted in the mysteries surrounding non–equivalent CAZAC sequencesu : ZN → C,

there is also the next level of generalization which must be addressed. In fact, one can envision a theory

of ambiguity vector fieldsto deal with multidimensional and vector–valued problems, e.g., in light of

vector sensor and MIMO settings and capabilities. Some contemporary work [Ben07], [Ben08], [Mat03]

illustrate the role of the theory of frames for ambiguity or Wigner ditribution analysis, fitting in with its

use in a host of recent applications, e.g., [Kov07], [Ben03]

FUN-TFs are surprisingly applicable. They have arisen in dealing with the robust transmission of data

over erasure channels such as the internet [Cas03], [Goy01], [Hol04], and in both multiple antenna code

design for wireless communications [Hoc00] as well as multiple description coding [Str03], [Goy98],

[Goy99]. There are also recent applications of FUN-TFs in quantum detection,Σ − ∆ quantization,

and Grassmanian “min-max” waveforms, e.g., [Ben04]. Frames give redundant signal representation to

compensate for machine imperfections, to ensure numerical stability, and to minimize the effects of noise.
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