

WS-BPEL Extension for

Sub-processes – BPEL-SPE

A Joint White Paper by IBM and SAP

September 2005

Authors (alphabetically):
Matthias Kloppmann, IBM (matthias-kloppmann@de.ibm.com)
Dieter Koenig, IBM (dieterkoenig@de.ibm.com)
Frank Leymann, IBM (ley1@de.ibm.com)
Gerhard Pfau, IBM (gpfau@de.ibm.com)
Alan Rickayzen, SAP (alan.rickayzen@sap.com)
Claus von Riegen, SAP (claus.von.riegen@sap.com)
Patrick Schmidt, SAP (patrick.schmidt@sap.com)
Ivana Trickovic, SAP (ivana.trickovic@sap.com)

Abstract
Designing complex and large business processes requires a language that supports
modularization and reuse in a portable, interoperable manner. This paper outlines an
extension to WS-BPEL that allows for the definition of sub-processes that can be
reused within the same or across multiple WS-BPEL processes. The paper describes
different invocation scenarios and introduces a coordination protocol to be used for
interoperable invocation of sub-processes across infrastructures from different
vendors.

Copyright Notice
© Copyright SAP AG and International Business Machines Corp 2005. All rights
reserved.
No part of this document may be reproduced or transmitted in any form without
written permission from SAP AG (“SAP”) and International Business Machines
Corporation (“IBM”).
This is a preliminary document and may be changed substantially over time. The
information contained in this document represents the current view of IBM and SAP
on the issues discussed as of the date of publication and should not be interpreted to
be a commitment on the part of IBM and SAP. All data as well as any statements

Page 1 of 17

mailto:matthias-kloppmann@de.ibm.com
mailto:dieterkoenig@de.ibm.com
mailto:ley1@de.ibm.com
mailto:gpfau@de.ibm.com
mailto:alan.rickayzen@sap.com
mailto:claus.von.riegen@sap.com
mailto:patrick.schmidt@sap.com
mailto:ivana.trickovic@sap.com

regarding future direction and intent are subject to change and withdrawal without
notice. This information could include technical inaccuracies or typographical errors.
The presentation, distribution or other dissemination of the information contained in
this document is not a license, either express or implied, to any intellectual property
owned or controlled by IBM or SAP and/or any other third party. IBM, SAP and/or any
other third party may have patents, patent applications, trademarks, copyrights, or
other intellectual property rights covering subject matter in this document. The
furnishing of this document does not give you any license to IBM's or SAP's or any
other third party's patents, trademarks, copyrights, or other intellectual property.
The information provided in this document is distributed “AS IS” AND WITH ALL
FAULTS, without any warranty, express or implied. IBM and SAP EXPRESSLY
DISCLAIM ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, NONINFRINGEMENT, OR TITLE. IBM and SAP shall
have no responsibility to update this information. IN NO EVENT WILL IBM OR SAP
BE LIABLE TO ANY PARTY FOR ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING
TO ANY USE OR DISTRIBUTION OF THIS DOCUMENT, WHETHER OR NOT
SUCH PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH
DAMAGES.
SAP is a registered trademark of SAP AG.
IBM is a registered trademark of International Business Machines Corporation.
Other company, product, or service names may be trademarks or service marks of
others.

Page 2 of 17

Contents
1 Introduction ...4

1.1 Problem Statement...4
1.2 Goals ..4

2 Definition ...5
2.1 Standalone Sub-processes ..6
2.2 Inline Sub-processes..6

3 Invocation..7
3.1 Calling a Local Sub-process...9
3.2 Calling a Remote Sub-process...10
3.3 Fault Handling ..10
3.4 Compensation ..11

4 Coordination Protocol Between Process and Sub-processes11
4.1 Sub-process Coordination Scenarios ...12

4.1.1 Invocation of Sub-process, without Compensation12
4.1.2 Invocation of Sub-process, with Compensation12
4.1.3 Invocation of Sub-process, with Application Fault13
4.1.4 Abnormal Termination of Sub-process Due to Missing Response13
4.1.5 Termination Propagation from Parent to Sub-process14
4.1.6 Propagation of Explicit Termination from Parent to Sub-process...........14
4.1.7 Propagation of Explicit Termination from Sub-process to Parent...........14

4.2 State Diagram of the Call Activity ...15
4.3 State Diagram of the Sub-process ...16

5 Summary...16
6 Glossary..17
7 References..17

Page 3 of 17

1 Introduction
1.1 Problem Statement
The Web Services Business Process Execution Language 2.0 (WS-BPEL 2.0, or
BPEL for short) defines a model for services composition, which is, the aggregation
of existing Web services into new Web services. The language is structured into two
parts. One is the model for executable business processes that is used to specify
automated business processes that orchestrate activities of multiple Web services,
and which may be interpreted and executed by compliant engines. The other part is
the observable behavior of Web services. Both parts require a common core of
process description concepts. The BPEL common core encompasses concepts
needed to describe process control flows, including compensation behavior and error
handling. Those concepts are seen and used in multiple process models and are
needed to build complex processes, which can be executed by underlying software.

The BPEL language currently does not support the explicit definition of business
process “fragments” that can be invoked from within the same business process or
from another business process. Such functionality is well-known in business process
technology and subsumed by the term sub-process (activity). Sub-processes are
used in practice to modularize large business process and to foster reuse of
processes. Consequently, sub-processes are typically tightly coupled in terms of their
lifecycle to the invoking process (called parent process). For example, when a parent
process is terminated, its sub-processes have to be terminated too; when the activity
invoking a sub-process is compensated, compensation is delegated to the sub-
process.

The only way to approximate similar behavior in BPEL is by defining a complete
business process as an independent service and invoking it via an invoke activity.
The fact that this activity is really implemented as another process is completely
hidden from the parent process. There is no mechanism to establish the lifecycle
dependency described above. As a consequence, this approach is really only an
approximation. Although the invoke activity of the parent process will be interrupted
and terminated, BPEL does not provide any means to ensure that termination
propagates to the invoked Web service. Therefore it cannot be ensured that the sub-
process, which is exposed as a Web service, will be terminated if the parent process
terminates.

As a service, a sub-process typically implements a single operation from the point of
view of the parent process. Thus, to be useable as a sub-process, a process must
comply with a few restrictions, which are discussed below. Combined with the ability
to define sub-processes inline within another process, the concept of sub-processes
provides for an easy definition and invocation of reusable process fragments.

1.2 Goals
In the following sections we describe features needed to provide sub-process
capabilities in a more direct way, with the following goals:
• Allow for the invocation of a business process as a sub-process of another

business process, such that its lifecycle is tightly coupled to the lifecycle of the
parent process.

Page 4 of 17

• Allow for the definition of a business process within the context of another
business process, so it can be used (and reused) within that other process.

• Allow a sub-process defined within the context of another business process to
access data from its parent process.

• Allow for the invocation of sub-processes across BPEL engines so that a process
running on one BPEL engine can invoke a sub-process on another BPEL engine.

The BPEL-SPE extension is defined as a layer on top of the BPEL language so that
its features can be composed with the BPEL core features whenever needed. We
envisage that additional BPEL extensions may be introduced which may use BPEL-
SPE.

The paper is organized as follows: Section 2 introduces the notion of sub-process in
general, as well as the notion of a standalone sub-process and an inline sub-process.
Details about different modes of invocations between a parent process and a sub-
process are described in section 3. Interoperability aspects such as a common state
model and the protocol to couple the lifecycle between a parent process and a sub-
process defined and executed in different environments are detailed in section 4.

2 Definition
A sub-process should be understood as a fragment of BPEL code that can be reused
within a process or across multiple processes. It may also be a long-running process,
which includes interactions with other partners. However, the interaction of a sub-
process with its parent process is typically limited to the initiating request message
and the final reply message. A sub-process may be defined either locally within
another BPEL process and reused only within that process or as a BPEL process
and reused across other BPEL processes. Note that the latter kind of process can be
used both as a sub-process as well as a business process on its own. It is as late as
at instantiation time that an instance of such a process becomes a sub-process or
not.

A sub-process is executed in the context in which it is defined. Usual lexical scoping
rules apply. This means that a sub-process can access variables from the scope
where it is defined. For example, a sub-process defined as a separate BPEL process
can access no variables from other processes. An inline sub-process defined directly
under a process element can access only global process variables and not those
defined within other nested scopes. In addition, a mechanism to pass data between a
calling process and a called inline sub-process is provided. This is needed in cases
when an inline sub-process calls another sibling inline sub-process.

The relationship between a parent process and a sub-process extends on the error
handling model and the compensation model introduced in BPEL. That means, if a
fault occurs in a sub-process and it is not caught by any locally defined fault handler,
the sub-process terminates unsuccessfully and a fault is returned to the parent
process. On the other side, if a fault occurred and the parent process terminates, the
sub-processes are canceled. And if the scope encompassing an already completed
sub-process is compensated, compensation is delegated to the sub-process.

Page 5 of 17

2.1 Standalone Sub-processes
Standalone sub-processes are defined as BPEL processes. The structure of a
standalone sub-process is such that it implements exactly one activity, that is, from
the calling process’ perspective the sub-process is like an operation of a service that
consumes a message and that may return a message as response. This implies the
following restrictions:
• A sub-process has a single initiating receive activity, consuming the input

message of the implemented operation.

• The operation is a “logical request-response operation”, which is either
represented as a WSDL request-response operation, or as two one-way
operations. In the case of a request-response operation, the sub-process returns
its result via a corresponding reply activity (see Figure 1 in section 3). In the case
of two one-way operations, the sub-process returns its result via an invoke
operation to the partner from which the initiating input message originated, using
the same BPEL partner link (see Figure 2 in section 3). For the remainder of this
document, we do not always explicitly spell out these two representations for the
logical request-response operation. Even when not explicitly stated, the final
(logical) reply of the sub-process could be realized by a (physical) invoke.

• The reply activity is “the last” action of the sub-process. Different replies are
allowed on conditional branches of the sub-process, but each of them must be
the last action on the respective branch.

• No interaction beyond the initiating request message and the final response
message is allowed between the sub-process and its parent process.
Syntactically, the partner role of the partner link used for the receive/reply
activities of the sub-process must be empty (in the case of a request-response
operation provided via receive-reply), or there is a single one-way message for
both roles (in the case of a “logical request-response operation” provided via
receive-invoke).

2.2 Inline Sub-processes
Sub-processes can be defined as part of the definition of another process. They are
defined within either the process scope1 or a nested scope. Such a sub-process has
the following restrictions:
• It is only visible within the scope it is defined in (or its nested scopes). In

particular, an inline sub-process is never visible outside the BPEL process
enclosing it.

• If data needs to be passed into the sub-process, it has the same restrictions
specified above for standalone sub-processes, that is, it must implement a single
logical request-response operation.

• If no data needs to be passed into the sub-process, it does not need to have any
receive (or reply) activity at all.

• Names of sub-processes need to be unique within the scope of their definition.

Activities of such an inline sub-process have access to all variables, correlation sets
and partner links defined in scopes enclosing the sub-process definition. Lexical
scoping rules as known from structured programming languages apply. Access to
variables is serialized if specified at the scope level.

1 The process scope is the container of all elements, including variables, fault handlers, event
handlers) defined on the process level.

Page 6 of 17

An inline sub-process cannot be a business process on its own. As a consequence, it
cannot be instantiated as a standalone process. An inline sub-process is typically not
defined via a complete BPEL process model, that is, it may omit certain constructs
otherwise being mandatory for a correct standalone process. For example, an inline
sub-process may be defined without its own variables, without its own partner links,
or without an initial receive activity. Since an inline sub-process has access to the
corresponding constructs of its enclosing scope it can manipulate variables defined
there – it can use the corresponding partner links, and without a receive activity it just
reads the data needed from its enclosing scope. In this sense an inline sub-process
can only be a “process fragment”.

Here is an example for an inline sub-process definition within a standard BPEL
scope. Note that the example is only illustrative and does not propose syntax for the
sub-process extension. This is why pseudo-syntax is used to illustrate the extension.

 <scope>

 <variables>
 <variable name="input" messageType="..."/>
 <variable name="output" messageType="..."/>
 </variables>

 [subprocesses]
 [process name="mySubProcess"]
 <!-- Standard process definition here,
 with appropriate limitations and relaxations -->
 [/process]
 [/subprocesses]

 ...
</scope>

3 Invocation
BPEL-SPE supports two different mechanisms by which a sub-process can return a
response. It can do so either via a reply corresponding to the starting receive activity,
or via a one-way invoke that is logically related to the starting receive activity. The
first case is depicted in Figure 1. The parent process uses a WSDL request-response
operation provided by the sub-process. The sub-process consumes the input
message via its starting receive activity and returns the response message via the
corresponding reply activity. The WSDL operation is defined in a port type used by
the partner role within a partner link of the parent process. In this partner link, the
parent process has no need to provide a port type in the corresponding myRole,
because the sub-process does not further interact with the parent process.

Page 7 of 17

—

<call…>

<receive…>

<reply…>

Parent
process

Sub-
process

Figure 1. Invocation of a sub-process implemented via a receive-reply pattern

The second case is depicted in Figure 2. The parent process includes a partner link
where the associated partner role’s port type contains the operation corresponding to
the initial receive of the sub-process. The myRole of the partner link contained within
the parent process references a port type, which contains the operation to be used
by the sub-process to return the response message. The port type and operation of
the partner role that is to be used to send the input message to the sub-process is
specified in the call activity (like in BPEL invoke or reply activities). But in addition we
need to inform the process engine hosting the parent process which operation to use
to receive the response message. Thus, the call activity used to call a sub-process
requires the specification of the corresponding port type and operation in the myRole
of the partner link wiring the parent process and the sub-process. This is new to
BPEL which today only supports a single port type and operation in activities
communicating with the outside.

The port type of the partner link that corresponds to the sub-process can be bound to
the associated service endpoint at deployment time of the parent process. The
analog cannot be done for sub-processes. A sub-process may be called by many
different parent processes each of which may have different endpoints to which the
sub-process must return its response. Thus, the endpoint of the parent process must
be made known to the sub-process at runtime. More precisely, this endpoint must be
known to the process engine hosting the sub-process at the time the response
message must be sent back. There are various means to achieve this; for example
by passing the corresponding endpoint reference “out-of-band”, or by including the
endpoint reference in the header of the input message sent to the sub-process.

Page 8 of 17

Parent
process

<call…>

<receive…>

<invoke…>

Sub-
process

EPR’

pT

pT’

op

op’

call ...
partnerLink="L"
requestOperation="op"
responseOperation="op’"

call ...
partnerLink="L"
requestOperation="op"
responseOperation="op’"

L
Figure 2. Invocation of a sub-process implemented via a receive-invoke pattern

3.1 Calling a Local Sub-process
Sub-processes are called via a new activity type introduced by BPEL-SPE, the “call”
activity, which specifies its implementation by referring to the sub-process to call. For
local sub-processes, that is sub-processes managed by the same infrastructure as
the parent process, including inline sub-processes, the reference can be done via the
qualified name of the sub-process. This representation is preferable to extending the
invoke activity by an additional attribute that would designate the process to be
called, because the referenced process already defines its signature (the operation it
provides and the associated partner link) so this information does not need to be
duplicated in the call activity. In addition, the call activity specifies variables for input,
output and fault(s).

Here is an example in pseudo-syntax, without output and faults:

 [call xmlns:s="http://stuff-is-us.com"
 process="s:myProcess"
 inputVariable="var1"/]

The types of the variables specified for input and output (including faults) must be
assignment compatible. An inline sub-process can access data within its parent
scope(s) in addition to consuming input data and producing result data.

The semantics of the new activity, which will be part of a parent process, has the
following behavior:
• The referenced sub-process is called, with the input data being passed. Control is

passed from the branch of the process containing the activity to the sub-process.
The data is passed by value. This decision is motivated by the fact that sharing
data “by reference” introduces additional complexity, because in that case it must
be assured consistent access to shared (transient) data.

Page 9 of 17

• On completion of the sub-process, its result is passed back and written to the
output variable in the parent process’ context. Control is returned to the parent
process which resumes execution on this branch.

• If a fault is raised by the sub-process, it is thrown to the scope enclosing the call
activity.

If the scope containing the call activity is terminated while the activity is active,
termination is signaled to the sub-process as it would be signaled into a nested
scope, that is, by propagating a regular BPEL termination signal into it. Regular
BPEL termination semantics applies. This means that all activities within the sub-
process which are still active are terminated according to the BPEL activity
termination semantics.

3.2 Calling a Remote Sub-process
To handle the remote case, where the called sub-process is not managed by the
same infrastructure and hence its qualified name cannot be used to locate it, BPEL-
SPE uses a different syntax for the call activity, locating the sub-process through a
partner link like a standard invoked service. The syntax of the activity is based on the
syntax of the invoke activity. BPEL-SPE extends this syntax to allow for the
specification of the operation that is used to receive the response from the sub-
process. Details of error handling and compensation behavior are discussed in
sections 3.3 and 3.4.

Here is the pseudo-syntax:

 [call name="handleOrder"
 partnerLink="myOrderProcess" requestOperation="submitOrdner"
 inputVariable="myOrder" outputVariable="orderingResult"
 receiveOperation="receiveOrder" /]

3.3 Fault Handling
In the case of an inline sub-process, untrapped faults from within the sub-process are
propagated across the sub-process boundary into the scope enclosing the
corresponding call activity. Such a fault is not distinguishable from any other fault
thrown in the parent process.

In the case of a standalone sub-process, untrapped faults are transformed into a new
BPEL standard fault (for example, abnormalSubprocessTermination), which is
thrown into the parent process’ scope enclosing the corresponding call activity. This
fault indicates that an erroneous situation occurred within the sub-process and it
might be handled in a special manner.

Application specific faults can be passed in case of a logical request-response
operation provided as a WSDL request-response operation by returning a fault
through the usual BPEL mechanism of returning a fault on reply. In contrast, in the
case of a logical request-response operation provided as two one-way operations,
returning application faults is not possible. The reason is that the BPEL-SPE
extension proposed in this white paper is based on WSDL 1.1 which is broadly
supported by the industry today. The WSDL 1.1 model does not allow specifying fault
messages on one-way operations or notification operations. In the model proposed in
this paper, one-way operations are used for consuming the response from a sub-

Page 10 of 17

process by the parent process when the sub-process implements the receive-invoke
pattern (see Figure 2). To support the exchange of application specific fault
messages we would have had to invent mechanisms to pass faults on one-way
messages, especially. But WSDL 2.0 provides such means by its in-fault and out-
fault constructs. In proposing the new BPEL standard fault above we avoid legacy
problems.

3.4 Compensation
BPEL-SPE treats a sub-process as a scope. Thus, BPEL-SPE introduces the ability
to compensate a process instance as a whole. To do that it must be possible to
specify a compensation handler at the process level. This compensation handler is
invoked after completion of the process, to undo (in some cases only partially) the
effects of the process execution.

The call activity represents the sub-process within the parent process – it is a proxy
for that sub-process, very much like a scope, though with a separate implementation.
Thus, a call activity can be the target of a compensate activity. In addition, the default
compensation handler of any enclosing scope will propagate compensation not only
to contained scopes, but also to contained call activities. Triggering compensation for
a call activity propagates the compensation request to the associated sub-process,
resulting in deep compensation. As usual, shallow compensation can be achieved by
providing a custom compensation handler on a scope enclosing the call activity.

An example for a standard BPEL scope with a compensation handler containing a
call activity could look as follows:

<scope>

 <compensationHandler>
 <sequence>
 <compensate scope="handleOrder"/>
 </sequence>
 </compensationHandler>

 [call name="handleOrder"
 partnerLink="myOrderProcess" operation="submitOrdner"
 inputVariable="myOrder" outputVariable="orderingResult" /]

</scope>

4 Coordination Protocol Between Process and
Sub-processes
In this section, we describe invocation of remote standalone sub-processes defined
and implemented in different BPEL infrastructures, possibly from different vendors.
To achieve the quality of service for the invocation of sub-processes as discussed in
the previous sections, status information messages in addition to standard service
invocation messages must be exchanged between the two infrastructures. Examples
of status messages are:
• close – upon successful completion of the parent process it sends the close

message to a sub-process

• compensate – the parent process propagates compensation down to a sub-
process

Page 11 of 17

• terminate – termination of the parent process is propagated down to a sub-
process

• exit – explicit termination of the parent process is propagated down to a sub-
process

• subprocessExited – the parent process is notified that a sub-process completed
unsuccessfully

• subprocessTermination – the parent process is notified that a sub-process has
been explicitly terminated

This additional set of messages and the order in which the messages may be
exchanged constitute the sub-process coordination protocol. The following sections
briefly describe the protocol and the corresponding state diagrams.

4.1 Sub-process Coordination Scenarios
In this section, we look at the different scenarios for exchange of coordination
protocol messages between a parent process and a sub-process.

4.1.1 Invocation of Sub-process, without Compensation
When the call activity is reached in the parent process, the associated sub-process is
started by invocation of the specified Web service operation. A coordination context,
which contains appropriate correlation information for subsequent exchange of sub-
process coordination protocol messages, is passed. Upon completion of the sub-
process, the result is sent back to the parent process.

Once the parent process completes, the sub-process is closed, so that it can free
state data kept for compensation.

4.1.2 Invocation of Sub-process, with Compensation
As in the scenario described in section 4.1.1, the sub-process is invoked and returns
a result. Eventually, compensation is triggered in the parent process as described in
section 3.4, and propagated down to the sub-process.

Page 12 of 17

4.1.3 Invocation of Sub-process, with Application Fault
As in the scenario described in section 4.1.1, the sub-process is invoked. In this
scenario, it does not return a result, but responds with an application level fault and
closes without possibility to be compensated later.

4.1.4 Abnormal Termination of Sub-process Due to Missing Response
As in the scenario described in section 4.1.1 the sub-process is invoked. In this
scenario the sub-process completes but does not send a response back to the parent
process (that is, the sub-process end is reached without encountering a reply activity
or an invoke activity). This may happen, for example, for one of the following
reasons:
• Due to a fault not being handled, that is, the fault reaches the process boundary.

• Within normal execution, the process reaches its end without having executed a
response activity (because of a modeling error).

A new BPEL standard fault abnormalSubprocessTermination is thrown in the
context of the call activity.

Note: If a process is invoked as a sub-process and completes normally but without
sending a response back, this is considered a violation of the sub-process contract
so the sub-process ends in state “Failed”. If the same process was invoked as a top-
level process, it would have completed successfully.

Page 13 of 17

4.1.5 Termination Propagation from Parent to Sub-process
The scope enclosing the call activity in the parent process is terminated (for example,
because of a fault caught at its boundary). The termination is propagated to the sub-
process. Once termination has been processed (for example, termination handlers
have been executed), its completion is signaled back to the parent process.

4.1.6 Propagation of Explicit Termination from Parent to Sub-process
The parent process encounters a BPEL exit activity. The exit signal is propagated to
the sub-process, which exits in turn. This is a one-way notification only, as exit
happens immediately and unconditionally.

4.1.7 Propagation of Explicit Termination from Sub-process to Parent
The sub-process encounters a BPEL exit activity. The exited signal is propagated to
the parent process, which throws a new BPEL standard fault subprocessExited in
the context of the call activity.

Page 14 of 17

4.2 State Diagram of the Call Activity
The call activity represents the sub-process within the parent process, which has
properties of a BPEL scope; that is, a sub-process can be compensated, terminated,
completed either successfully or unsuccessfully, etc. Therefore, the behavior of the
call activity is consistent with the behavior of a BPEL scope. However, unlike the
BPEL scope, the sub-process may be explicitly terminated, which causes the call
activity to throw the new BPEL standard fault subprocessExited and exit.

Figure 3 shows the complete state diagram describing the behavior of the call activity
in the parent process with respect to the sub-process coordination protocol.

Figure 3. The behavior of the call activity

Page 15 of 17

4.3 State Diagram of the Sub-process
A sub-process has many similarities to a BPEL scope. Just like a BPEL scope, a sub-
process can be compensated, terminated, completed either successfully or
unsuccessfully, etc. Therefore the behavior of sub-processes is defined in a way that
is consistent with the behavior of BPEL scope. However, unlike a BPEL scope, if a
sub-process completes without sending a response back to the parent process, it
completes unsuccessfully and the new BPEL standard fault abnormalSubprocess-
Termination is thrown in the parent process. Also, explicit termination of a sub-
process is propagated to the parent process throwing the new BPEL standard fault
subprocessExited.

Figure 4 shows the complete state diagram describing the behavior of the sub-
process with respect to the sub-process coordination protocol.

Figure 4. The behavior of the sub-process

5 Summary
The problem of modularization and reuse in the BPEL language has been intensively
discussed in different contexts, including the work on the upcoming WS-BPEL
standard. The outcomes of those discussions show that there is no consensus on
how the problem should be resolved. This paper examines various flavors of sub-
processes and different modes of invocation, and outlines the syntax and semantics
of needed extension. A language specification, which defines the precise syntax and
semantics of this extension, will follow.

Page 16 of 17

6 Glossary
Calling process. Synonym to “parent process”.

Inline sub-process. A process that is defined within another process.

Local sub-process. Standalone sub-processes defined within the same
infrastructure and inline sub-processes are subsumed under the term local sub-
processes. Local sub-processes are accessed by their qualified name.

Parent process. A process that calls another process as a sub-process.

Process scope. The container of all elements, such as variables, fault handlers,
etc., defined on the process level.

Remote sub-process. A standalone sub-process that is managed by another
infrastructure and that is accessed as a service.

Standalone sub-process. A standard BPEL process that adheres to the restrictions
introduced by the model of sub-process, and that can be called from another process
as a sub-process.

Sub-process. A process that is defined either within another process, or as a BPEL
process, which is called by another process (the parent process). The sub-process
behaves as if it would have been defined as a scope within the parent process,
regarding its compensation behavior, error handling, or lifecycle.

7 References
[BPEL4WS 1.1] Business Process Execution Language for Web Services Version
1.1, BEA Systems, IBM, Microsoft, SAP AG and Siebel Systems, May 2003,
available via http://www-128.ibm.com/developerworks/library/specification/ws-bpel/,
http://ifr.sap.com/bpel4ws/

 [WS-BPEL 2.0] Web Service Business Process Execution Language Version 2.0,
Working Draft, July 2005, OASIS Technical Committee, available via
http://www.oasis-open.org/committees/wsbpel

[WSDL 1.1] Web Services Description Language (WSDL) Version 1.1, W3C Note,
available via http://www.w3.org/TR/2001/NOTE-wsdl-20010315

[XML Schema Part 1] XML Schema Part 1: Structures, W3C Recommendation,
October 2004, available via http://www.w3.org/TR/xmlschema-1/

[XML Schema Part 2] XML Schema Part 2: Datatypes, W3C Recommendation,
October 2004, available via http://www.w3.org/TR/xmlschema-2/

[XMLSpec] XML Specification, W3C Recommendation, February 1998, available via
http://www.w3.org/TR/1998/REC-xml-19980210

[XPATH 1.0] XML Path Language (XPath) Version 1.0, W3C Recommendation,
November 1999, available via http://www.w3.org/TR/1999/REC-xpath-19991116

Page 17 of 17

http://www-128.ibm.com/developerworks/library/specification/ws-bpel/
http://ifr.sap.com/bpel4ws/
http://www.oasis-open.org/committees/wsbpel
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/1999/REC-xpath-19991116

	1 Introduction
	1.1 Problem Statement
	1.2 Goals
	2 Definition
	2.1 Standalone Sub-processes
	2.2 Inline Sub-processes

	3 Invocation
	3.1 Calling a Local Sub-process
	3.2 Calling a Remote Sub-process
	3.3 Fault Handling
	3.4 Compensation

	4 Coordination Protocol Between Process and Sub-processes
	4.1 Sub-process Coordination Scenarios
	4.1.1 Invocation of Sub-process, without Compensation
	4.1.2 Invocation of Sub-process, with Compensation
	4.1.3 Invocation of Sub-process, with Application Fault
	4.1.4 Abnormal Termination of Sub-process Due to Missing Response
	4.1.5 Termination Propagation from Parent to Sub-process
	4.1.6 Propagation of Explicit Termination from Parent to Sub-process
	4.1.7 Propagation of Explicit Termination from Sub-process to Parent

	4.2 State Diagram of the Call Activity
	4.3 State Diagram of the Sub-process

	5 Summary
	6 Glossary
	7 References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

