WO2019112034A1 - アスタチンの製造方法 - Google Patents

アスタチンの製造方法 Download PDF

Info

Publication number
WO2019112034A1
WO2019112034A1 PCT/JP2018/045068 JP2018045068W WO2019112034A1 WO 2019112034 A1 WO2019112034 A1 WO 2019112034A1 JP 2018045068 W JP2018045068 W JP 2018045068W WO 2019112034 A1 WO2019112034 A1 WO 2019112034A1
Authority
WO
WIPO (PCT)
Prior art keywords
astatine
bismuth
carrier gas
solution
target
Prior art date
Application number
PCT/JP2018/045068
Other languages
English (en)
French (fr)
Inventor
厚 篠原
厚史 豊嶋
崇 吉村
晃充 神田
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to EP18885442.6A priority Critical patent/EP3722258B1/en
Priority to CN201880078835.5A priority patent/CN111465577B/zh
Priority to US16/770,403 priority patent/US11795056B2/en
Priority to JP2019558293A priority patent/JP7205911B2/ja
Priority to AU2018381436A priority patent/AU2018381436B9/en
Publication of WO2019112034A1 publication Critical patent/WO2019112034A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/04Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators
    • G21G1/10Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators by bombardment with electrically charged particles
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/001Recovery of specific isotopes from irradiated targets
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0001Separation or purification processing
    • C01B2210/0009Physical processing
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/001Recovery of specific isotopes from irradiated targets
    • G21G2001/0094Other isotopes not provided for in the groups listed above

Definitions

  • the present invention relates to a method of producing astatine.
  • Astatine-211 an alpha-ray emitting radionuclide
  • an alpha beam is irradiated to a metal bismuth target to generate an astatine using an accelerator, and then the astatine is separated and purified from the metal bismuth and for the subsequent labeled drug synthesis
  • an astatine solution of As the astatine separation and purification method a dry method and a wet method are used.
  • An object of the present invention is to provide a method by which astatine-211 can be prepared in high yield as a solution for labeled drug synthesis.
  • the present inventors have studied astatine by distilling a metal bismuth target irradiated with ⁇ beam with a carrier gas containing an inert gas, O 2 and H 2 O. It has been found that -211 can be separated and purified in high yield, and can be easily dissolved in a solution, and the present invention has been completed. That is, the present invention is as follows.
  • a method for producing astatine-211 comprising the steps of: distillation using a carrier gas; separation and purification of astatine-211; and dissolution in a solution.
  • the inert gas is He or N 2 .
  • [3] [1] or [2], wherein the volume ratio of inert gas: O 2 in the carrier gas is 99: 1 to 51:49, and the content of H 2 O is 1 to 15 ⁇ g / cm 3 ] Method.
  • a method capable of separating and purifying astatine-211 in high yield and dissolving it in a solution capable of separating and purifying astatine-211 in high yield and dissolving it in a solution.
  • the method for producing astatine-211 of the present invention is The step of irradiating the metal bismuth target with an alpha beam to generate astatine-211 in the bismuth target (hereinafter referred to as step 1), and the bismuth target irradiated with the alpha ray as an inert gas, O 2 and H
  • Step 1 The irradiation of the alpha beam to the metal bismuth target is performed using an accelerator.
  • an accelerator any accelerator capable of accelerating an alpha beam to 30 MeV can be used.
  • the metal bismuth target is irradiated with a high energy ⁇ beam ( 4 He 2+ , 28.2 MeV) obtained by an accelerator, and nuclear reaction 209 Bi ( 4 He, 2 n) 211 At generates astatine- 211 in the bismuth target .
  • Step 2 A schematic diagram of an example of an apparatus for carrying out step 2 is shown in FIG.
  • step 2 will be described with reference to FIG.
  • a dry distillation method is applied to separate and purify astatine-211 from metal bismuth targets irradiated with alpha beam. This utilizes the high volatility of astatine-211, and the metal bismuth target is heated and melted at high temperature to selectively evaporate the astatine-211 and separate it from the bismuth target by cooling collection. .
  • the carrier gas in the carrier gas (inert gas / O 2 / H 2 O mixed gas) composition, paying particular attention to the fact that the volatility and reactivity differ depending on the chemical species of astatine in particular.
  • Astatine oxide is formed, and simple, high yield distillation separation and dissolution recovery are performed.
  • the separation operation is performed, for example, by the following method.
  • a metal bismuth target (astatine-211 is generated inside) irradiated with an alpha beam in step 1 is placed in a quartz tube in a tube furnace.
  • the temperature of the tube furnace is raised to volatilize astatine-211 from the bismuth target.
  • the volatilized astatine-211 is transported out of the quartz tube by a carrier gas (inert gas / O 2 / H 2 O mixed gas).
  • the carrier gas oxidizes bismuth and astatine-211 to form the desired astatine oxide.
  • the transported astatine-211 then passes through the teflon connectors, valves and tubes.
  • Astatine-211 is adsorbed on the wall of the tube by cooling the Teflon tube with ice water, liquid nitrogen or the like outside the tubular furnace. After all astatine-211 is volatilized from bismuth (the activity of astatine-211 in a cooled Teflon tube is saturated), a constant amount of solution (distilled water, alcohol such as methanol, physiological saline, etc.) is passed by a syringe pump. , Astatine-211 is dissolved in a solution (distilled water, alcohol such as methanol, physiological saline, etc.).
  • a solution distilled water, alcohol such as methanol, physiological saline, etc.
  • a target astatine solution aqueous solution, alcoholic solution such as methanol, physiological saline solution, etc.
  • inert gas examples include He, Ne, Ar, Kr, Xe, N 2 and the like, and preferably He or N 2 .
  • the volume ratio of inert gas: O 2 in the carrier gas is preferably 99: 1 to 51:49, more preferably 90:10 to 60:40, still more preferably 80:20 to 70:30. It is. If the volume ratio of inert gas: O 2 in the carrier gas is out of the above range, astatine oxide is not formed, and problems such as a decrease in the yield of astatine-211 occur.
  • the content of H 2 O in the carrier gas is preferably 1 to 15 ⁇ g / cm 3 , more preferably 2 to 10 ⁇ g / cm 3 , and still more preferably 5 to 8 ⁇ g / cm 3 . If the content of H 2 O in the carrier gas is out of the above range, problems such as a decrease in the yield of astatine-211 may occur.
  • the volume ratio of inert gas: O 2 in the carrier gas is 99: 1 to 51:49, and the content of H 2 O is 1 to 15 ⁇ g / cm 3 .
  • the volume ratio of inert gas: O 2 in the carrier gas is 90:10 to 60:40, and the content of H 2 O is 2 to 10 ⁇ g / cm 3 .
  • the volume ratio of inert gas: O 2 in the carrier gas is 80:20 to 70:30, and the content of H 2 O is 5 to 8 ⁇ g / cm 3 .
  • the flow rate of the carrier gas is preferably 5 to 40 mL / min, more preferably 10 to 30 mL / min, and still more preferably 15 to 25 mL / min. If the flow rate of the carrier gas is out of the above range, problems such as a decrease in the yield of astatine-211 occur.
  • the temperature of the tubular furnace (ie, the distillation temperature) is preferably 500 to 850 ° C., more preferably 650 to 850 ° C., and still more preferably 800 to 850 ° C. If the temperature of the tubular furnace is outside the above range, problems such as a decrease in the yield of astatine-211 may occur.
  • astatine-211 can be obtained as an aqueous solution easy to use for labeled drug synthesis in high yield and high concentration, and the possibility of drug synthesis is greatly expanded. Moreover, when trapping astatine-211, astatine-211 can be obtained as a solution other than an aqueous solution by using a solvent other than water (for example, an alcohol such as methanol, physiological saline), and it can be used for medical and chemical applications. Spread will be greater. Furthermore, the mechanism of the apparatus for carrying out step 2 of the method of the present invention is simple, and development of an apparatus capable of purifying Astatine-211 automatically for medical use based on the present invention can also be expected.
  • a solvent other than water for example, an alcohol such as methanol, physiological saline
  • the metal boat was heated by applying an electric current to volatilize Bi metal and deposit it on Al foil.
  • the deposited Bi metal was obtained with a thickness of 5 to 30 mg / cm 2 .
  • Irradiation of Bi Targets The prepared Bi targets were attached to a holder and covered with an aluminum foil (10 ⁇ m thick) to prevent shattering. Thereafter, the holder was set at the irradiation position in the irradiation tank.
  • the Bi target was placed at an angle of 45 degrees with respect to the beam axis direction in order to widen the area of the Bi target hit by the beam as much as possible to increase the cooling efficiency.
  • irradiation was performed with an ⁇ beam of 1 to 2 ⁇ A.
  • the 30 MeV alpha beam incident from the AVF cyclotron passed through the vacuum window (Harbor foil) as well as the aluminum cover and was incident on the Bi target at 28.2 MeV.
  • helium gas was blown to the Bi target at a flow rate of 10 L / min or more to air-cool, and distilled water was flowed into the target holder on the beam rear side to perform water-cooling.
  • Step 2 separation and purification of astatine-211
  • the ⁇ target irradiated Bi target was placed in a quartz tube and set in a tubular furnace so that the Bi target was centered.
  • the downstream side was connected to a quartz tube and a cooling Teflon trap (inner diameter 2 mm, length 20 cm) using a Teflon connector, a switching valve and a tube, and a mixed gas introduction tube was connected upstream.
  • the valve at the top of the trap was closed to reduce the pressure in the quartz tube, and a mixed gas of He / O 2 / H 2 O (carrier gas) was introduced until the pressure in the system became 1 atm.
  • He / O 2 / H 2 O carrier gas
  • the valve was opened and the mixed gas was allowed to flow into the cooling trap, trap, and exhaust system.
  • the area from the tubular furnace outlet to the top of the trap was heated to 130 ° C. by a ribbon heater.
  • the cooling trap was cooled with ice water while flowing a mixed gas, and the tubular furnace was further heated to 850 ° C.
  • a CdZnTe semiconductor detector was placed on the top of the cooling trap, and radiation (X-rays) emitted from the astatine-211 was monitored, and heating was performed while confirming collection in the cooling trap. Heating was continued for another 30 minutes after the tube temperature reached 850 ° C.
  • Astatine-211 was obtained in the same manner as in Examples 1 to 6 except that a mixed gas of N 2 / O 2 / H 2 O was used as a carrier gas.
  • the composition of carrier gas (N 2 : O 2 volume ratio and H 2 O content in carrier gas) and chemical yield were as follows.
  • an inert gas / O 2 / H 2 O mixed gas was used as the carrier gas (in particular, the composition of the carrier gas (in the carrier gas using He or N 2 as the inert gas) Inventive gases: O 2 volume ratio and H 2 O content) were set in a specific range) (Examples 1 to 8) were able to separate and purify astatine-211 in high yield.
  • a method capable of separating and purifying astatine-211 in high yield and dissolving it in a solution capable of separating and purifying astatine-211 in high yield and dissolving it in a solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

アスタチン-211を高収率で分離精製し、溶液に溶解することができる方法を提供すること。ビスマスにα線を照射し、該ビスマス中にアスタチン-211を生成する工程、および該α線を照射したビスマスを、不活性ガス、O2およびH2Oを含有するキャリアガスを用いて蒸留し、アスタチン-211を分離精製して、溶液に溶解する工程を包含する、アスタチン-211の製造方法。

Description

アスタチンの製造方法
 本発明は、アスタチンの製造方法に関する。
 α線放出核種であるアスタチン-211(At-211)は、1950年代からα線内用療法への利用が期待され、近年になって臨床応用に向けた研究が盛んに行われ始めている。アスタチンを臨床研究に応用するためには、まず加速器を用いて金属ビスマス標的にαビームを照射してアスタチンを生成した後、金属ビスマスからアスタチンを分離精製するとともに、次に行う標識薬剤合成のためのアスタチン溶液を調製する必要がある。アスタチン分離精製法としては、乾式法および湿式法が用いられている。湿式法では、アスタチンを含む金属ビスマスを溶解後、溶媒抽出を行うため、試薬由来の不純物が混入する欠点がある。一方、乾式法では、アスタチンを含む金属ビスマスを加熱してアスタチンを蒸留分離し、気流搬送して冷却トラップした後、それを溶液で溶解するため、不純物の混入が極めて少ない。しかしながら、従来の乾式法では、アスタチンの回収率を上げるために溶液に酸化剤(非特許文献1)や水酸化ナトリウム(非特許文献2)を添加する必要があり、次の工程であるアスタチン標識薬剤の合成条件には化学的な制約が課せられている。そのため、液性が自由に選択でき、かつ高濃度のアスタチン溶液を安定して高収率で得る新しい手法が求められている。
E. Aneheim et al., Scientific Reports, 5, 12025 (2015). K. Nagatsu et al., Applied Radiation and Isotopes, 94, 363-371 (2014).
 本発明の目的は、アスタチン-211を標識薬剤合成のための溶液として高収率で調製することができる方法を提供することである。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、αビームを照射した金属ビスマス標的を不活性ガス、OおよびHOを含有するキャリアガスを用いて蒸留することにより、アスタチン-211を高収率で分離精製し、溶液に簡便に溶解することができることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の通りである。
[1]金属ビスマス標的にα線を照射し、該ビスマス標的中にアスタチン-211を生成する工程、および
 該α線を照射したビスマス標的を、不活性ガス、OおよびHOを含有するキャリアガスを用いて蒸留し、アスタチン-211を分離精製して、溶液に溶解する工程
を包含する、アスタチン-211の製造方法。
[2]不活性ガスがHeまたはNである、[1]記載の方法。
[3]キャリアガス中の不活性ガス:Oの体積比が99:1~51:49であり、かつHOの含有量が1~15μg/cmである、[1]または[2]記載の方法。
[4]キャリアガスの流量が、5~40mL/分である、[1]~[3]のいずれか1項記載の方法。
[5]蒸留温度が、500~850℃である、[1]~[4]のいずれか1項記載の方法。
 本発明によれば、アスタチン-211を高収率で分離精製し、溶液に溶解することができる方法が提供される。
本発明の方法の工程2を実施するための装置の一例を示す模式図である。
 以下、本発明を詳細に説明する。
 本発明のアスタチン-211の製造方法は、
 金属ビスマス標的にαビームを照射し、該ビスマス標的中にアスタチン-211を生成する工程(以下、工程1と称する)、および
 該α線を照射したビスマス標的を、不活性ガス、OおよびHOを含有するキャリアガスを用いて蒸留し、アスタチン-211を分離精製して、溶液に溶解する工程(以下、工程2と称する)
を包含する。
 (工程1)
 金属ビスマス標的へのαビームの照射は、加速器を用いて行う。加速器としては、αビームを30MeVに加速可能な任意の加速器を用いることができる。加速器で得られる高エネルギーのαビーム(He2+、28.2MeV)を金属ビスマス標的に照射し、核反応209Bi(He,2n)211Atによって該ビスマス標的中にアスタチン-211を生成する。
 (工程2)
 工程2を実施するための装置の一例の模式図を図1に示す。以下、図1を参照して工程2を説明する。
 αビームを照射した金属ビスマス標的からアスタチン-211を分離精製するために乾式蒸留法を適用する。これはアスタチン-211の揮発性が高いことを利用し、金属ビスマス標的を高温で加熱溶融して選択的にアスタチン-211を蒸発させ、冷却捕集することでビスマス標的から分離精製するものである。本発明では、特にアスタチンの化学種によって揮発性や反応性が異なる事に着目し、キャリアガス(不活性ガス/O/HO混合ガス)組成を工夫することによって揮発しやすく溶解しやすいアスタチン酸化物を形成し、簡便で高収率の蒸留分離および溶解回収を行う。分離操作は、例えば、以下の方法で行う。
 工程1でαビームを照射した金属ビスマス標的(内部にアスタチン-211が生成)を、管状炉中の石英管に入れる。管状炉の温度を上昇させ、ビスマス標的からアスタチン-211を揮発させる。揮発したアスタチン-211は、キャリアガス(不活性ガス/O/HO混合ガス)によって石英管外に輸送される。このキャリアガスによってビスマスおよびアスタチン-211が酸化され、目的のアスタチン酸化物が生成する。輸送されたアスタチン-211はその後、テフロン製のコネクター、バルブおよびチューブ内を通ってゆく。このテフロンチューブを管状炉外で氷水、液体窒素等で冷却することにより、アスタチン-211をチューブ壁面に吸着させる。ビスマスからアスタチン-211が全て揮発(冷却したテフロンチューブ内のアスタチン-211の放射能が飽和)した後、シリンジポンプによって一定量の溶液(蒸留水、メタノール等のアルコール、生理食塩水等)を通し、アスタチン-211を溶液(蒸留水、メタノール等のアルコール、生理食塩水等)中に溶解させる。その後、アスタチン-211が溶解した溶液(蒸留水、メタノール等のアルコール、生理食塩水等)を押し出し、目的のアスタチン溶液(水溶液、メタノール等のアルコール溶液、生理食塩水溶液等)を得る。
 不活性ガスとしては、例えば、He、Ne、Ar、Kr、Xe、Nなどが挙げられ、好ましくは、HeまたはNである。
 キャリアガス中の不活性ガス:Oの体積比は、好ましくは99:1~51:49であり、より好ましくは90:10~60:40であり、さらに好ましくは80:20~70:30である。キャリアガス中の不活性ガス:Oの体積比が上記範囲外であると、アスタチン酸化物が生成されず、アスタチン-211の収率が低下する等の問題が生じる。
 キャリアガス中のHOの含有量は、好ましくは1~15μg/cmであり、より好ましくは2~10μg/cmであり、さらに好ましくは5~8μg/cmである。キャリアガス中のHOの含有量が上記範囲外であると、アスタチン-211の収率が低下する等の問題が生じる。
 本発明の好ましい実施態様では、キャリアガス中の不活性ガス:Oの体積比が99:1~51:49であり、かつHOの含有量が1~15μg/cmである。本発明のより好ましい実施態様では、キャリアガス中の不活性ガス:Oの体積比が90:10~60:40であり、かつHOの含有量が2~10μg/cmである。本発明のさらに好ましい実施態様では、キャリアガス中の不活性ガス:Oの体積比が80:20~70:30であり、かつHOの含有量が5~8μg/cmである。
 キャリアガスの流量は、好ましくは5~40mL/分であり、より好ましくは10~30mL/分であり、さらに好ましくは15~25mL/分である。キャリアガスの流量が上記範囲外であると、アスタチン-211の収率が低下する等の問題が生じる。
 管状炉の温度(すなわち、蒸留温度)は、好ましくは500~850℃であり、より好ましくは650~850℃であり、さらに好ましくは800~850℃である。管状炉の温度が上記範囲外であると、アスタチン-211の収率が低下する等の問題が生じる。
 上記方法により、アスタチン-211を、高収率かつ高濃度で標識薬剤合成に使用し易い水溶液として得ることができ、薬剤合成の可能性が格段に広がる。また、アスタチン-211をトラップする際、水以外の溶媒(例えば、メタノール等のアルコール、生理食塩水)を用いることにより、アスタチン-211を水溶液以外の溶液として得ることができ、医学・化学利用の広がりが大きくなる。さらに、本発明の方法の工程2を実施するための装置の機構が単純であり、本発明をもとに医学利用を見据えた自動でアスタチン-211を精製可能な装置の開発も期待できる。
 本発明は、更に以下の実施例によって詳しく説明されるが、これらは本発明を限定するものではなく、また本発明の範囲を逸脱しない範囲で変化させてもよい。
(実施例1~6および比較例1~2)
(工程1:アスタチン-211の製造)
 加速器で得られた高エネルギーαビーム(He2+、28.2MeV)をビスマスに照射し、核反応209Bi(He,2n)211Atによって該ビスマス中にアスタチン-211を生成した。
ビスマス(Bi)標的の調製
 Bi標的は真空蒸着法によって調製した。市販のBi金属(粒状)をタンタル製の金属ボートに乗せ、蒸着装置内部にセットした。金属ボートの上部に標的のバッキングとなるアルミニウム(Al)箔(厚さ10μm)を取り付けた。ベルジャー内を減圧後、金属ボートに電流を流して加熱し、Bi金属を揮発させてAl箔に蒸着した。蒸着したBi金属を5~30mg/cmの厚みで得た。
Bi標的の照射
 調製したBi標的をホルダーに取り付け、飛散防止のためアルミニウム箔(厚さ10μm)で表面を覆った。その後、ホルダーごと照射槽内の照射位置にセットした。ビームが当たるBi標的の面積を出来るだけ広げて冷却効率を上げるため、Bi標的はビーム軸方向に対して45度の角度で置いた。照射槽内部をヘリウムガスに置換した後、1~2μAのαビームを照射した。AVFサイクロトロンから入射した30MeVのαビームは、真空窓(ハーバーフォイル)ならびにアルミニウムカバーを通過し、28.2MeVでBi標的に入射した。照射中は、流速10L/分以上でヘリウムガスをBi標的に吹き付けて空冷するとともに、ビーム後方側の標的ホルダー中に蒸留水を流して水冷を行った。
(工程2:アスタチン-211の分離精製)
 αビームを照射したBi標的を石英管に入れ、Bi標的が中心になるように管状炉にセットした。下流側はテフロン製コネクター、切り替えバルブ、チューブを用いて石英管と冷却用テフロントラップ(内径2mm、長さ20cm)に接続し、上流側には混合ガス導入用チューブを接続した。接続後、トラップ上部のバルブを閉にして石英管内を減圧し、系内が1気圧になるまでHe/O/HO混合ガス(キャリアガス)を導入した。1気圧に達した後、バルブを開き、混合ガスを冷却トラップ、トラップ、排気系へと流した。揮発性アスタチン酸化物の沈着を防ぐため、管状炉出口からトラップ上部までをリボンヒーターで130℃に加熱した。混合ガスを流しながら冷却トラップを氷水で冷却し、さらに管状炉を850℃まで加熱した。また、CdZnTe半導体検出器を冷却トラップ上部に配置し、アスタチン-211から発せられる放射線(X線)をモニターして、冷却トラップでの捕集を確認しながら加熱した。管状炉温度が850℃に到達した後もさらに30分加熱を続けた。その後、冷却トラップ上部のバルブ二つを操作して経路を切り替え、冷却トラップを氷水から外した。シリンジポンプを用いて蒸留水を冷却トラップ方向に100μL導入したのち、別のシリンジポンプを用いて空気を送り、この100μL蒸留水を冷却トラップに流速250μL/分で流して捕集したアスタチン-211を溶解した。最終的に、小型容器にアスタチン-211を溶解した水溶液を収集した。
 蒸留前のBi標的に含まれるアスタチン-211の放射線と最終の小型容器に含まれるアスタチン-211の放射線をゲルマニウム半導体検出器で測定し、それぞれに含まれるアスタチン-211を定量した。放射性壊変に対する補正を行い、各条件での化学収率を算出した。キャリアガスの組成(キャリアガス中のHe:O体積比およびHO含有量)および化学収率は以下の通りであった。
Figure JPOXMLDOC01-appb-T000001
(実施例7および8)
 キャリアガスとしてN/O/HO混合ガスを用いたこと以外は実施例1~6と同様にしてアスタチン-211を得た。キャリアガスの組成(キャリアガス中のN:O体積比およびHO含有量)および化学収率は以下の通りであった。
Figure JPOXMLDOC01-appb-T000002
 表1および2から明らかなように、キャリアガスとして不活性ガス/O/HO混合ガスを用いた(とりわけ、不活性ガスとしてHeまたはNを用い、キャリアガスの組成(キャリアガス中の不活性ガス:O体積比およびHO含有量)を特定の範囲に設定した)実施例1~8は、アスタチン-211を高収率で分離精製することができた。
 本発明によれば、アスタチン-211を高収率で分離精製し、溶液に溶解することができる方法が提供される。
 本出願は、日本で出願された特願2017-235141を基礎としており、その内容は本明細書にすべて包含されるものである。

Claims (5)

  1.  ビスマスにα線を照射し、該ビスマス中にアスタチン-211を生成する工程、および
     該α線を照射したビスマスを、不活性ガス、OおよびHOを含有するキャリアガスを用いて蒸留し、アスタチン-211を分離精製して、溶液に溶解する工程
    を包含する、アスタチン-211の製造方法。
  2.  不活性ガスがHeまたはNである、請求項1記載の方法。
  3.  キャリアガス中の不活性ガス:Oの体積比が99:1~51:49であり、かつHOの含有量が1~15μg/cmである、請求項1または2記載の方法。
  4.  キャリアガスの流量が、5~40mL/分である、請求項1~3のいずれか1項記載の方法。
  5.  蒸留温度が、500~850℃である、請求項1~4のいずれか1項記載の方法。
PCT/JP2018/045068 2017-12-07 2018-12-07 アスタチンの製造方法 WO2019112034A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18885442.6A EP3722258B1 (en) 2017-12-07 2018-12-07 Method for producing astatine
CN201880078835.5A CN111465577B (zh) 2017-12-07 2018-12-07 砹的制造方法
US16/770,403 US11795056B2 (en) 2017-12-07 2018-12-07 Method for producing astatine
JP2019558293A JP7205911B2 (ja) 2017-12-07 2018-12-07 アスタチンの製造方法
AU2018381436A AU2018381436B9 (en) 2017-12-07 2018-12-07 Method for producing astatine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-235141 2017-12-07
JP2017235141 2017-12-07

Publications (1)

Publication Number Publication Date
WO2019112034A1 true WO2019112034A1 (ja) 2019-06-13

Family

ID=66750219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045068 WO2019112034A1 (ja) 2017-12-07 2018-12-07 アスタチンの製造方法

Country Status (6)

Country Link
US (1) US11795056B2 (ja)
EP (1) EP3722258B1 (ja)
JP (1) JP7205911B2 (ja)
CN (1) CN111465577B (ja)
AU (1) AU2018381436B9 (ja)
WO (1) WO2019112034A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021092483A (ja) * 2019-12-11 2021-06-17 株式会社東芝 アスタチン同位元素の製造方法および装置、アスタチン同位元素の分離・回収方法および装置
JP2021096147A (ja) * 2019-12-17 2021-06-24 株式会社東芝 放射性同位体製造方法および放射性同位体製造装置
WO2021225147A1 (ja) * 2020-05-07 2021-11-11 国立大学法人東京工業大学 アスタチンの簡便な濃縮法
WO2023095818A1 (ja) * 2021-11-24 2023-06-01 金属技研株式会社 放射性核種の製造方法、ならびに量子線照射のための標的保持装置、システム、および標的
CN116216644A (zh) * 2023-03-20 2023-06-06 四川大学 一种低真空度高纯At-211干馏生产系统及其生产方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114249301B (zh) * 2021-11-10 2023-06-16 砹尔法纽克莱(宁波)医疗科技有限公司 一种洗脱溶液及用于靶向核素药的放射性核素砹-211的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU947025A1 (ru) 1980-10-24 1982-07-30 Объединенный Институт Ядерных Исследований Способ получени растворов астата
US4681727A (en) * 1984-04-10 1987-07-21 The United States Of America As Represented By The United States Department Of Energy Process for producing astatine-211 for radiopharmaceutical use
DK3157577T3 (da) 2014-06-18 2021-01-18 Alpha Therapy Solutions Ab Automatisk procesplatform til fremstilling af astatin-211 [at-211]-radiofarmaka
US20160053345A1 (en) 2014-08-21 2016-02-25 University Of Washington Process for isolation and purification of astatine-211

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
E. ANEHEIM ET AL., SCIENTIFIC REPORTS, vol. 5, 2015, pages 12025
IKEDA. T, TOYOSHIMA. A, KANDA. A, ICHIMURA. S, KONDO. N, KASAMATSU. Y, ZHANG. Z, YOSHIMURA. T, SHINIHARA. A: "Extraction and Thin-lLayer Chromatography Behavir of 211AT Obtain by Dry Distillation", 2017 ANNUAL MEETING OF THE JAPANESE SOCIETY OF RADIOCHEMISTRY AND 61ST ANNUAL MEETING OF THE RADIOCHEMISTRY FORUM, 1 September 2017 (2017-09-01), pages 84, XP009521531 *
K. NAGATSU ET AL., APPLIED RADIATION AND ISOTOPES, vol. 94, 2014, pages 363 - 371
SATO ET AL: "At-211 is manufactured in RIKEN", ABSTRACTS OF THE 53RD ANNUAL MEETING ON RADIOISOTOPE AND RADIATION RESEARCH, vol. 2016 *
SATO, N., YANO, S., HABA, H., KOMORI, Y, SHIBATA S., WATANABE, K., KAJI, D., TOYOSHIMA, A., TAKAHASHI, K, MATSUMOTO, M.: "Production of At-211 at RIKEN", 60TH ANNUAL MEETING OF THE JAPAN SOCIETY OF NUCLEAR AND RADIOCHEMICAL SCIENCES, 1 September 2016 (2016-09-01), JP, pages 50, XP009521532 *
TOYOSHIMA, ATSUSHI; KANDA, AKIMITSU; IKEDA, TAKUMI; YOSHIMURA, TAKASHI; SHINOHARA, ATSUSHI; YANO, SHINYA; KOMORI, YUKIKO; HABA, HI: "Redox and solvent extraction behavior of astatine", 60TH ANNUAL MEETING OF THE JAPAN SOCIETY OF NUCLEAR AND RADIOCHEMICAL SCIENCES,, vol. 60, 1 September 2016 (2016-09-01), JP, pages 112, XP009521530 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021092483A (ja) * 2019-12-11 2021-06-17 株式会社東芝 アスタチン同位元素の製造方法および装置、アスタチン同位元素の分離・回収方法および装置
JP7286525B2 (ja) 2019-12-11 2023-06-05 株式会社東芝 アスタチン同位元素の製造方法および装置、アスタチン同位元素の分離・回収方法および装置
JP2021096147A (ja) * 2019-12-17 2021-06-24 株式会社東芝 放射性同位体製造方法および放射性同位体製造装置
JP7258736B2 (ja) 2019-12-17 2023-04-17 株式会社東芝 放射性同位体製造方法および放射性同位体製造装置
WO2021225147A1 (ja) * 2020-05-07 2021-11-11 国立大学法人東京工業大学 アスタチンの簡便な濃縮法
WO2023095818A1 (ja) * 2021-11-24 2023-06-01 金属技研株式会社 放射性核種の製造方法、ならびに量子線照射のための標的保持装置、システム、および標的
CN116216644A (zh) * 2023-03-20 2023-06-06 四川大学 一种低真空度高纯At-211干馏生产系统及其生产方法
CN116216644B (zh) * 2023-03-20 2023-09-22 四川大学 一种低真空度高纯At-211干馏生产系统及其生产方法

Also Published As

Publication number Publication date
AU2018381436B2 (en) 2024-02-15
EP3722258A1 (en) 2020-10-14
AU2018381436A1 (en) 2020-07-23
EP3722258B1 (en) 2021-09-01
CN111465577B (zh) 2023-07-28
AU2018381436B9 (en) 2024-03-14
CN111465577A (zh) 2020-07-28
JP7205911B2 (ja) 2023-01-17
US11795056B2 (en) 2023-10-24
EP3722258A4 (en) 2021-03-03
JPWO2019112034A1 (ja) 2021-01-14
US20200290872A1 (en) 2020-09-17

Similar Documents

Publication Publication Date Title
WO2019112034A1 (ja) アスタチンの製造方法
JP3996396B2 (ja) 18fフッ化物の生産のためのシステムと方法
Zhuikov et al. Production of 225 Ac and 223 Ra by irradiation of Th with accelerated protons
US4664869A (en) Method for the simultaneous preparation of Radon-211, Xenon-125, Xenon-123, Astatine-211, Iodine-125 and Iodine-123
US11851383B2 (en) Automatic process platform for the production of astatine-211 [At-211]-radiopharmaceuticals
Van den Bosch et al. A new approach to target chemistry for the iodine-123 production via the 124Te (p, 2n) reaction
Tang et al. A simple and convenient method for production of 89Zr with high purity
US20230002855A1 (en) Separation of rare earth elements
WO2016023112A1 (en) System and method for metallic isotope separation by a combined thermal-vacuum distillation process
JP3989897B2 (ja) イオンビームによる18f−フッ化物の製造のための装置と方法
RU2313838C1 (ru) Способ получения радиоолова в состоянии без носителя и мишень для его осуществления (варианты)
JPH10509449A (ja) ▲上11▼c−沃化メチルの製造
DK156341B (da) Fremgangsmaade til indirekte fremstilling af hoejrent,radioaktivt jod-123 ved hjaelp af henfald af dets 123-kaedeprecursorer
US4894208A (en) System for separating radioactive NA from Al
CN114249301B (zh) 一种洗脱溶液及用于靶向核素药的放射性核素砹-211的制备方法
JP3699044B2 (ja) 放射性リン核種製造のための硫黄の蒸留方法
KR101590941B1 (ko) 핵분열 몰리브덴 생산공정에서 발생하는 기체 상의 요오드 흡착 및 회수방법
RU2476942C1 (ru) Способ получения радионуклида рений-188 без носителя и устройство для его осуществления
CN110444312B (zh) 利用干馏法从铀裂变产物中分离医用同位素131i的方法
RU2361303C2 (ru) Способ получения радиоизотопов золота без носителя
US11894156B1 (en) Separation of rare earth elements by means of physical chemistry for use in medical applications
Bodys et al. Radioactive-kryptonation of metals by film evaporation
RU2641126C2 (ru) Способ получения изотопных разновидностей элементарного германия с высокой изотопной и химической чистотой
Jiang et al. A study of separation methods of 178m2 Hf from irradiated ytterbium targets
CN115240893A (zh) 一种有载体177Lu的分离纯化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18885442

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019558293

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018885442

Country of ref document: EP

Effective date: 20200707

ENP Entry into the national phase

Ref document number: 2018381436

Country of ref document: AU

Date of ref document: 20181207

Kind code of ref document: A