

PCL WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 : (11) International Publication Number: WO 94/10644

GO6F 15/62 Al (43) international Publication Date: 11 May 1994 (11.05.94)

(21) International Application Number: PCT/US92/09462 (81) Designated States: AT, AU, BB, BG, BR, CA, CH, CS,
DE, DK, ES, FI, GB, HU, JP, KP, KR, LK, LU, MG,

(22) International Filing Date: 2 November 1992 (02.11.92) MN, MW,NL, NO, PL, RO, RU, SD, SE, European pa-
tent (AT, BE, CH, DE, DK, ES, FR, GB, GR,IE,IT,
LU, MC, NL, SE), OAPI patent (BF, BJ, CF, CG, CI,

(71) Applicant: THE 3DO COMPANY[US/US]; 1820 Gate- CM, GA, GN, ML, MR, SN, TD, TG).
way Drive, San Mateo, CA 94404 (US).

(72) Inventors: NEEDLE, David, Lewis ; 2981 Northwood Published
Drive, Alameda, CA 94501 (US). MICAL, Robert, Jo- With international search report.
seph ; 25 Geri Place, Redwood City, CA 94303 (US). ,
LANDRUM,Stephen, Harland ; 179 Haas Avenue,
Apartment #7, San Leandro, CA 94577 (US). GRAY,
Donald, Milton, III ; 178 Church Street, Apartment #2,
San Francisco, CA 94114 (US).

(74) Agents: WOLFELD, Warren, S. et al.; Fliesler, Dubb,
Meyer and Lovejoy, Four Embarcadero Center - Suite
400, San Francisco, CA 94111-4156 (US).

(54) Title: SPRYTE RENDERING SYSTEM WITH IMPROVED CORNER CALCULATING ENGINE AND IMPROVED

POLYGON-PAINT ENGINE |

(57) Abstract | NNERONT

|
The invention provides a method and | XPOS.YPOS

apparatus for mapping a source image (401) latse2 px Dx CORNER
to a destination grid (402). A general philos- jl LDX— “L ENGINES)
ophyis followed in implementing the appar- | \ ppx—-| a0++ |\ 4298
atus, namely, wherever possible or practical, | 4260. eas] adcans
leave undone at the start that which ulti- = Peril 425a
mately needs not to have been done in the to}__TRUNCATER 4 [TRUNCATER!

. : . SLOW” B “FAST”
end. One application of the philosophy pro- || _etoycon © BORDER
duces a two stage delta summing unit in —L | porntocarer| 7 «Horr:
which a moresignificant portion of a result FMP SCOB |} FoeMaTin oa MATH)
signal is left unaltered when addition of a ul 415 : a
small delta value to a less significant por- a 41541 430 428 aa
tion does not produce a carry. Another ap- , ‘ DESTINATIONLINEFILLER NooH.
plication of the philosophy provides a fast- DEVELOPED 4 4
condition recognizing unit (Munkee unit) COLOR = — 40 ENCOUNT) 2 ol
(425) in combination with a slower region- aig. pBus | appress dD]405
paintcalculating unit (Regis unit) (426). The 2290 ae GENERATOR nm MEMORY
Munkee unit (425) tests the input data set i i 51 410s

given to the Regis unit (426) and recognizes Lov ‘onan ae Fe Hy410d
input conditions for which the Regis unit STACK REQUESTORS DISPLAY TTLvram
(426) will ultimately decide that only a an 460 “6 410
single destination-pixel needs to be painted, DESTINATION
or that no destination-pixel needs to be rtrd

painted. In such cases, Munkee (425) termi-
nates time-consuming calculations within
Regis (426) and either issues the one pixel paint commanditself or does nothing. Regis (426) is freed to begin working on new
region-fill calculations.

applications under the PCT.

AT
AU
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
cl
cM
CN
cs
CZ
DE
DK
ES
FI
FR
GA

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Austria
Australia
Barbados

Belgium
Burkina Faso

Bulgaria
Benin
Brazil
Belarus
Canada
Central African Republic
Congo
Switzerland
Céte d’lvoire
Cameroon
China
Czechos!ovakia
Czech Republic
Germany
Denmark

Spain
Finland
France

Gabon

GB
GE
GN
GR
HU
IE
IT
JP
KE
KG
KP

KR
KZ
Li
LK
LU
LV
MC
MD
MG
ML
MN

United Kingdom
Georgia
Guinea
Greece
Hungary
Ireland
Italy
Japan
Kenya
Kyrgystan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein
Sri Lanka
Luxembourg
Latvia
Monaco
Republic of Moldova
Madagascar
Mali
Mongolia

MR
MW
NE
NL
NO
NZ
PL
PT
RO
RU
sD
SE
sl
SK
SN
TD
TG
TJ

UA
us
UZ
VN

Mauritania
Malawi
Niger
Netherlands
Norway

New Zealand
Poland
Portugal

Romania
Russian Federation
Sudan
Sweden
Slovenia
Slovakia
Scnegal
Chad
Togo

Tajikistan
Trinidad and Tobago
Ukraine
United States of America
Uzbekistan
Vict Nam

w)

o
O

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

-l1-

SPRYTE RENDERING SYSTEM WITH IMPROVED
CORNER CALCULATING ENGINE AND IMPROVED

POLYGON~-PAINT ENGINE

BACKGROUND

1. Field of the Invention

The invention relates generally to machine-

controlled image processing and display. The invention

is more specifically directed to an apparatus and process

for rendering a destination image on a background given

a source image and a predefined mapping of the source

image onto a destination grid.

2a. Copyright claims to disclosed Code-conversion and

Engine operating Tables

A portion of the disclosure of this patent document

contains material which is subject to copyright

protection. The copyright owner has no objection to the

facsimile reproduction by anyone of the patent document

or the patent disclosure as it appears in the U.S. Patent

and Trademark Office patent file or records, but

otherwise reserves all copyright rights whatsoever.

In particular, this application includes listings of

code conversion tables (Table-II named, REDMUNK) and

signal-name tables (e.g. Table-1.0, SCoB contents) and

state transition states (e.g. Rgis-Fillbin). These

various listings can be implemented in a number of ways,

including but not limited to: a computer program,

microcode, in a ROM, and so forth. The same code-

conversion or other tables can also be implemented by way

of combinatorial logic and/or sequential state machines.

WO 94/10644

10

15

20

25

30

PCT/US92/09462

-2-

Since implementations of the listings which are deemed to

be "computer programs" are protectable under copyright

law, copyrights not otherwise waived above in said

listings are hereby reserved. This reservation includes

the right to reproduce the listings in the form of

machine-executable computer programs.

2b. Cross Reference to Related Applications

This application is related to:

PCT Patent Application Serial No. '

entitled AUDIO/VIDEO COMPUTER ARCHITECTURE, by inventors

Mical et al., filed concurrently herewith, Attorney

Docket No. MDIO04222, and also to U.S. Patent Application

Serial No. , bearing the same title, same

inventors and also filed concurrently herewith;

PCT Patent Application Serial No. '

entitled RESOLUTION ENHANCEMENT FOR VIDEO DISPLAY USING

MULTI-LINE INTERPOLATION, by inventors Mical et al.,

filed concurrently herewith, Attorney Docket No.

MDIO3050, and also to U.S. Patent Application Serial No.

, bearing the same title, same inventors and

also filed concurrently herewith;

PCT Patent Application Serial No. ’

entitled METHOD FOR GENERATING THREE DIMENSIONAL SOUND,

by inventor David C. Platt, filed concurrently herewith,

Attorney Docket No. MDIO4220, and also to U.S. Patent

Application Serial No. , bearing the same

title, same inventor and also filed concurrently

herewith;

PCT Patent Application Serial No. ,

entitled METHOD FOR CONTROLLING A SPRYTE RENDERING

PROCESSOR, by inventors Mical et al., filed concurrently

herewith, Attorney Docket No. MDIO3040, and also to U.S.

Patent Application Serial No. , bearing the same

WO 94/10644

5

10

15

20

25

30

PCT/US92/09462

-3-

title, same inventors and also filed concurrently

herewith;

PCT Patent Application Serial No. __sid

entitled METHOD AND APPARATUS FOR UPDATING A CLUT DURING

HORIZONTAL BLANKING, by inventors Mical et al., filed

concurrently herewith, Attorney Docket No. MDI04250, and

also to U.S. Patent Application Serial No. '

bearing the same title, same inventors and also filed

concurrently herewith; .

PCT Patent Application Serial No. r

entitled IMPROVED METHOD AND APPARATUS FOR PROCESSING

IMAGE DATA, by inventors Mical et al., filed concurrently

herewith, Attorney Docket No. MDI04230, and also to U.S.

, Patent Application Serial No. , bearing the same

“title, same inventors and also filed concurrently

herewith; and

PCT Patent Application Serial No. '

entitled PLAYER BUS APPARATUS AND METHOD, by inventors

Needle et al., filed concurrently herewith, Attorney

Docket No. MD104270, and also to U.S. Patent Application

Serial No. , bearing the same title, same

inventors and also filed concurrently herewith.

The related patent applications are all commonly

assigned with the present application and are all

incorporated herein by reference in their entirety.

3. Description of the Related Art

Digital graphic processing relies on the physical

transformation of digital signals representing image data

from one organizational format to another. Part or all

of the transformed image data is then displayed as a

graphic image on an appropriate display means (e.g., a

cathode ray tube or a liquid crystal display) for

enjoyment by a viewer.

PCT/US92/09462WO 94/10644

10

15

20

25

30

35

-~4-

In many instances, it is desirable to transform

digital image data from one format to another at

relatively high speed. This is done to create a sense

of animation in displayed images and to create a sense

of real-time responsiveness to user inputs in the case

of interactive systems. Such high-speed transformation

is referred to as real-time digital graphic processing.

Real-time digital graphic processing is particularly

useful in flight or other simulation systems, interactive

game systems and the like.

One function that is often called for in real-time

digital graphic processing is the mapping of a source

image onto a destination surface. Typically, the source

image comprises one or more pixels each of which is

filled with a particular color or shade. The mapping

function can be a one-to-one copying of pixels from a

source area to a destination area. Or alternatively, the

mapping function can include a transformation of size,

and/or a change of shape (e.g., skew) and/or a rotation

cof some angle plus a change of colors or image

brightness.

By way of example, consider a simulated scene in a

real-time military game. An airplane is to be pictured

on a display panel such that it appears to be flying by,

towards or away from a viewer in real time. The viewer

controls at least part of the action on the display by

way of real-time controls (e.g., a joystick). If the

airplane is to be seen flying by the viewer, in a left-

to-right direction, its image moves across the screen in

the left to right direction at a desired speed. If the

airplane is to be seen flying towards the viewer, its

displayed image becomes larger as its apparent distance

from the viewer decreases. Conversely, if the airplane

is to be seen flying away from the viewer, its image

becomes smaller as its distance from the viewer

e
a

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

-5-

increases. Moreover, if the airplane performs a roll

during its flight, its image rotates.

If an explosive device ignites near the airplane as

the airplane flies by, the displayed brightness of the

aircraft body increases momentarily to simulate

reflection of light from the explosion off the fuselage

of the airplane.

The airplane may have transparent components, such

as a large bubble-shaped cockpit window or a hole through

part of its body. The hole or other transparent

component may be present from the start or suddenly

created by a striking projectile. In such cases, it is

desirable to show background scenery passing

transparently through the cockpit window and/or body hole

as the airplane flies in front of a background scene.

An animated real-time scene of this type can be

produced on a display means in a number of ways.

A brute force approach would separately generate

each frame of the animated scene data in its entirety,

store the generated frame data in high speed memory

(e.g., video RAM) and transfer each complete frame

(background plus airplane) to the display means at an

appropriate frame rate. This brute-force approach wastes

memory space and demands high-speed performance from the

processing circuitry that generates the sequential frames

of image data.

A better approach relies on the concept of sprite

painting. One area of memory stores nonchanging,

background image data and a second area of memory stores

the image data of the airplane and other moving or

otherwise changing objects. With each displayed frame,

the image of the airplane is mapped from the second

memory area onto the background image of the first memory

area. The mapping function changes with time to provide

size enlargement or reduction and rotation over time.

WO 94/10644

10

15

20

PCT/US92/09462

-6-

The mapping function also provides changes of color

and/or brightness to simulate various illuminations such

as that from a nearby explosion.

Ideally, it should be possible to take any source

image and produce a mapping of it which includes

arbitrary amounts of enlargement or reduction in size.

It should be possible to project the mapped copy onto a

destination grid with or without rotation and/or shape

distortion (skew). It should also be possible to project

the mapped copy onto a destination grid with or without

changes of color.

High-performance electronic computer systems are

available for transforming image data in such a manner.

The Silicon Graphics Iris™ system is an example. Such

systems rely on ‘complex software-controlled data

transformations and bulk transfers of image data from one

memory region to another. A general purpose computing

unit is burdened with the task of performing all

calculations that define transformations of image data.

These high-performance computer systems suffer from

drawbacks such as excessive cost, large circuit size,

complexity and/or slow image rendition speed.

25

30

A need exists within the industry for a compact

image-rendering system that can be implemented at low

cost on one or a few integrated circuit (IC) chips and

can nonetheless perform high-speed complex image

transformations.

SUMMARYOFTHEINVENTION

It is an object of the invention to provide a highly

efficient and compact image rendering system which is

capable of bidirectional image mapping with rotation

and/or skew and/or color change in a real-time

environment.

WO 94/10644

10

15

20

25

_ 30

35

PCT/US92/09462

-7-

The term "bidirectional" is used here to mean that

mapping can be carried out to convert a large scale

source image to a small scale destination image, or

conversely and just as easily, to convert a small scale

source image to a large scale copy. Rotation and/or skew

functions are made available simultaneously and

independently of size enlargement or reduction. The

image rendering system allows one to enlarge the

destination image along one direction of the destination

surface (e.g., along the X-axis of a destination grid)

while reducing the destination image along another

direction (e.g., along the Y-axis of the destination

grid).

Color changes and creation of transparent regions

within a mapped image are also supported.

The objectives of the invention are realized by

selectively following a set of primary and secondary

design-rules (listed below in Design Paradigm section)

and applying the rules at the macro-architectural level

(see below Summarized Example 1) and/or at the micro-

architectural level (see below Summarized Example 4).

TABLE OF DETAILED CONTENTS

The following, more detailed portions of this

disclosure are subdivided and organized in accordance

with the below listed sections and subsections:

(§1)........ DEFINITION OF GLOBAL TERMS
(§1.0)...... OVERVIEW OF DESIGN PARADIGM
(§1.1)...... SUMMARIZED EXAMPLE 1: ARCHITECTURE OF THE

SPRYTE RENDERING SYSTEM
(§1.2)...... SUMMARIZED EXAMPLE 2: MULTIPLE CORNER

ENGINES
(§1.3)...... SUMMARIZED EXAMPLE 3: SOME FUNCTIONS OF

"SLOW" DESTINATION-PAINT DECISION-MAKING

UNIT (SlowDPDMu, e.g. Regis) ARE

WO 94/10644

10

15

20

25

30

35

(S1.4)......

(§1.51).....
(§1.52).....
(§1.53).....

(§1.54).....
(S2).ceeeeee

(S3).eeceeee

(S4)e.ceeeee
(S5.1)......

(S5.2)eeeee.

(S6)...2005-

(S6.1)...0..

(S6.5).e.00

(S6.6.1)....

($6.6.2)....

(S7.0)......

PCT/US92/09462

- 8-

SUPPLEMENTED BY FastDPDMu COPROCESSOR (e.g.

Munkee)

SUMMARIZED EXAMPLE 4: NONPERFORMANCE OF

MATH FUNCTION ON MORE SIGNIFICANT END OF

RESULT

SUMMARIZED IMPLEMENTATION OF EXAMPLE 1

SUMMARIZED IMPLEMENTATION OF EXAMPLE 2

SUMMARIZED IMPLEMENTATION OF EXAMPLE 3

SUMMARIZED IMPLEMENTATION OF EXAMPLE 4

BRIEF DESCRIPTION OF THE DRAWINGS

GLOBAL DESCRIPTION OF SPRYTE MAPPING METHOD

(Figures 1A through 3B)

SPRYTE RENDERING ENGINE OVERVIEW (Figure 4)

GENERAL EXPLANATION OF REGION FILL METHOD

(Figure 5A)

GENERAL EXPLANATION OF FastDPDMu (e.g.

Munkee) SHORT-CUT METHOD (Figure 5B)

OVERVIEW OF PLURAL CORNER-ENGINES EMBODIMENT

(Figure 6)

DETAILED DESCRIPTION OF COLOR-MAPPING PATHS

(Figure 6, portion 601)

DETAILED DESCRIPTION OF DESTINATION-POINT

MAPPING PATHS (Figure 6, portion 602)

DETAILED DESCRIPTION OF CORNER ENGINE AND

MATH PLATFORM RESOURCES (Figure 7)

PSEUDO-INDEPENDENT OPERATION OF MULTIPLE

CORNER ENGINES AND FastDPDMu (e.g. Munkee)

AND Slow-DPDMu (e.g. Regis) (Figure 8)

DELTA SUMMING MECHANISM (Figures 9A, 9B)

DETAILED DESCRIPTION OF MUNKEE SHORTCUT

ALGORITHMS

DETAILED DESCRIPTION OF REGIS_FILLBIN STATE

MACHINES

DETAILED DESCRIPTION OF SCoB AND OTHER

REGISTERS : |

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

(§1) DEFINITION OF GLOBAL TERMS

It is to be understood that the below descriptions

are directed to physical structures (e.g., digital

hardware) and to the transformation of physical signals
(e.g., electrical or like signals) in real time from one

form to another.

In many instances, it is convenient to speak about
physical signals in terms of things they represent. By
way of example, the below description will repeatedly use

a phrase such as “computing the coordinates of _".

This is to be read as defining not only the underlying

mathematical steps but also the physical steps of
receiving signals representing input parameters, passing

the received signals through a digital Signal processing

(DSP) unit and generating physical output signals
representing the indicated result. Such a phrase is
further to be read as implying that it takes finite time

to propagate signals through the DSP unit and that the
DSP unit consumes a finite amount of physical space
within a physical system containing. that DSP unit.
Emphasis is to be placed on the latter reading,

particularly in view of the stated objectives of the
invention, which are to provide a highly efficient and

compact image rendering system which is capable of

bidirectional image mapping with rotation and/or skew

and/or color change in a real-time environment.

In similar fashion, phrases such as “saving a value"
or “transferring a value" are respectively understood to

refer to storing a physical signal representing that

value in a physical storage means and transmitting a

physical signal representing the indicated value from one

physical location to another.

The below description will also repeatedly use the

term "destination pixels" and it will speak about the

WO 94/10644

10

15

20

25

30

PCT/US92/09462

-10-

"painting" of one or more destination pixels with a

particular "color" or "shade". This is to be read as

defining not only the underlying conceptual steps for

creating a bit-mapped image but also the physical steps

of providing physical signals which either immediately

or at a later time change the color, brightness or other

physical attributes of pixels in a projected light image

containing such pixels.

The term "painting" is also to be read as meaning

that a physical storage medium (e.g., a Video-~speed

Random Access Memory unit) is provided for storing image

data signals representing attributes (e.g., colors) of

individual pixels. The process of "painting" is

understood to include the step of replacing pre-stored

image-data signals with newly-stored image-data signals.

The bit-mapped image that is represented by the stored

image-data signals can be either converted directly into

a light image having such pixels or it can be further

processed (e.g., by means of a color look-up table [CLUT]

and/or interpolator) to ultimately produce a light image

which is a function of the image represented by the

stored image-data. (In one embodiment, the ultimately

produced light image can be selectively interpolated to

produce a resolution-enhanced version of the image

represented by the stored image data, where the apparent

resolution of the displayed image is better than that of

the stored image.)

In view of the above, it is understood that this

disclosure deals with physical entities such as physical

signals that represent various values; and signal

processing hardware that inputs, processes and outputs

such physical signals; and image data signals which

ultimately cause the a physical light image to be

rendered on a display means.

WO 94/10644

10

15

20

25

30

PCT/US92/09462

-ll-

(§1.0) OVERVIEW OF DESIGN PARADIGM

The image rendering system disclosed here is compact

but nonetheless capable of mapping complex image data at

high speed and of efficiently transferring image data

from one or more source memory locations to a

corresponding one or more destination memory locations.

The inventors have realized small size and efficient

resource utilization by choosing and selectively applying

the following system-design rules. ,

Stated generally, a first and primary design rule

says:

(1) Identify and avoid unnecessary work.

A first corollary of the primary design rule says:

(la) Wherever possible or practical, one should leave

undone at the start of an image data transforming

process that which ultimately needs not to have

been done in the end.

A second corollary of the primary design rule says:

(1b) Wherever possible or practical, one should use

compressed data formats (e.g., a minimal number

of bits for representing required information)

and leave the data in compressed format for as

long as possible while working on it and

decompress the data only when finally necessary.

This avoids unnecessary work on the extra bits

and helps to improve system performance.

Further and secondary system-design rules suggest the

following additional guidelines:

(2) Share results among parallel resources.

WO 94/10644

5

10

15

20

25

30

35

(2a)

(2b)

(2c)

(3a)

(3b)

(3c)

PCT/US92/09462

-~12-

When a particular signal processing step is time-

consuming, parallel processing resources should

be provided in the signal processing machine to

speed performance; and moreover,

When a result produced by a first of the parallel

processing resources is useable by a second of

the parallel processing resources, and there is

no performance penalty for doing so, the second

parallel processing resource should take

advantage of the situation and use the result

produced by the first parallel processing

resource rather than reproducing the same result

on its own; and additionally,

Shared result signals should be left in the

registers where they are stored rather than being

shuttled back and forth between various

locations. Back and forth transfers waste time.

Minimize circuit size. When a signal processing

step is not time-consuming, serial (time-

multiplexed) processing resources should be used

to carry the steps out in the signal processing

machine. Serial circuits are generally smaller

in size than parallel circuits and thus conserve

circuit space.

Mix back and forth between parallel and serial

processing modalities in order to obtain the

performance benefits of parallel processing where

necessary and to obtain the circuit size

reduction benefits of serial processing where

possible.

When parallel produced datawords are to be

serialized and fed to various locations of memory

as a serial string of datawords, try to compress

the data so that you can transfer it in minimal

time and/or try to arrange the data within the

WO 94/10644

10

15

20

25

30

35

(4)

(5)

(6)

(7)

(8)

PCT/US92/09462

-13-

transfer string so that the order will minimize

the number of memory page crossings or other

delay-causing conditions that develop at the

destination.

‘Signal processing resources should have pipelined

architectures to increase system throughput

rates.

As many parts as possible of the pipelined

architecture should be doing useful work at all

times.

A useful singular-output of one pipeline part

should be saved and repeatedly used by other

parts rather than being discarded each time and

thereafter reproduced by passing its parenting

input data repeatedly through the front end of

the pipeline.

When none-useful operations are anticipated or

detected to be occurring within one or more of

the pipelined parts, they should be left

unstarted, or terminated as soon as possible.

This frees the pipeline parts to begin work on

new and probably more useful data that is queued

at the front (upstream end) of the pipeline. The

definition of none-useful operations includes

everything which ultimately produces no change in

displayed or displayable image data.

More commonly evoked mapping functions or math

functions should be supported by more parallel

resources to speed overall performance while less

commonly evoked functions should be supported by

serial resources or fewer parallel resources to

reduce circuit size.

More specifically, the above design rules and/or

guidelines are selectively applied to one or more

WO 94/10644

10

15

20

25

30

PCT/US92/09462

- 14 -

operations of an image rendering system according to the

following summarized examples.

($1.1) SUMMARIZED EXAMPLE 1: ARCHITECTURE OF THE SPRYTE

RENDERING SYSTEM HAS SEPARATE SOURCE-TO-

DESTINATION COLOR MAPPING AND SOURCE-TO-

DESTINATION POINT MAPPING PATHS WHICH OPERATE IN

PARALLEL PSEUDO-INDEPENDENTLY BUT SHARE

PERFORMANCE-ENHANCING INFORMATION (USES DESIGN

RULES 1-8)

Source-to-destination mappings are subdivided into

two kinds, color-mapping and destination-point mapping.

Color-mapping concerns itself with the question of what

color should be assigned to a destination pixel, given a

particular color or set of colors in one or a plurality

of source pixels.

Destination-point mapping, on the other hand,

concerns itself with the question of what destination

coordinates should be assigned to each point of a

destination image, given a corresponding point in the

source image. Destination-point mapping is also referred

to below as point-to-point mapping. The latter name

indicates that, among other things, destination-point

mapping is concerned with the transformation of source

coordinates into destination coordinates.

Image rendition speed is increased by performing the

two kinds of mappings (color and destination-point) in

parallel and pseudo-independently of one another. The

term "“pseudo-independently" means here: independently in

general, but cooperatively when a result developed in the

course of one mapping process helps to minimize time

consumed by a second, parallel mapping process.

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

~15 -

In one specific embodiment of the invention,

parallel, pseudo-independent circuits are provided for

performing color mappings and destination-point mappings.

Image rendition speed is primarily increased by

leaving undone within either a color mapping process or

a corresponding destination-point mapping process that

which ultimately needs not to have been done in the end.

The color mapping and destination-point mapping

circuits each include a "useless-operation detecting and

indicating" means for detecting conditions where, and

producing an indication that, no change will occur in the.

ultimately displayed (or displayable) image data as a

result of activities just started or about to be

performed either in the color mapping process or in the

corresponding destination-point mapping process.

The just-started, but ultimately-useless activities

are then terminated (or more preferably, the about-to-

be performed, useless activities are not begun in the

first place) in order to avoid time-wasting consumption

of system resources.

Aside from avoidance of unnecessary work, enhanced

performance is also obtained by saving and re-using the

results of a given color mapping or destination-point

calculation many times rather than re-doing the same

color mapping or calculation over and over again.

Here are a few specific examples which take

advantage of both the "useless-operation detecting and

indicating" means and the "result save and re-use"

method. .

When image-size reduction occurs in a source-to-

destination point-to-point mapping, some finer details

of the source image, including some colors and singular

pixels of the source image, may fail to appear in the

destination image. This happens when the finite

resolution of the destination grid (a gridwork of

WO 94/10644

10

15

20

PCT/US92/09462

- 16 -

destination pixels) is too crude to support display of

the finer source details. The finer details are

therefore ultimately not rendered in the destination

grid. The point-to-point mapping circuits of the

invention provide an indication that such an ultimate

non-rendition will occur. The color mapping circuits

respond to this indication by, in essence, discarding a

color code signal that had been developed for painting

the corresponding destination area.

Conversely, when image enlargement occurs, singular

pixels in the source image may be reproduced in the

destination grid as plural pixels, each with the same

mapped-over color. This happens when single pixels of

the source image each become multiple pixels in the

destination image as a result of the selected point-to-

point mapping. The point-to-point mapping circuits of

the invention provide an indication that such multiple

painting with a same mapped color will occur. The color-

mapping circuits retain the corresponding color-code

signal in a color-code register and they wait for

completion of painting with the one color before

. proceeding to store an overwriting, next mapped-color

25

30

35

into the register.

Yet another example of efficient resource

utilization comes from a special case where color-mapping

converts a source color code into a_ée so-called

"transparency" code. The transparency code indicates

that the corresponding destination pixel or pixels are

not to be painted over with a new color code but rather

that they should retain their original color code or

codes. In such a case, the color mapping circuits send

an indication to the point-to-point mapping circuits,

telling them to avoid unnecessary mapping work. There

is no value in calculating the exact destination

- coordinates where a color will not be painted.

PCT/US92/09462WO 94/10644

10

15

20

25

30

-~17-

A preferred embodiment of the invention uses a

multi-path, pipelined, parallel-processing approach for

transforming source color codes into destination color

codes and for pseudo-independently transforming source

size, shape and angular orientation into destination

size, shape and angular orientation.

Two or more time-parallel, pipelined processing

circuits or "paths" are provided. One or more of the

processing paths develops code signals representing

mapped destination colors. Each such path is referred

to here as a "color-mapping path."

At the same time, one or more other processing paths

develop code signals representing destination location

values and destination paint/don't-paint decisions. They

are referred to as "destination-point mapping paths."

A color signal develops in the color-mapping path

at the same time that corresponding destination location

signals and paint/don't-paint decision signals

simultaneously develop in the destination-point mapping

paths.

The destination decision signals indicate whether

each correspondingly developed color signal is to be: (a)

discarded immediately, or (b) discarded after being used

only once to paint a single destination pixel whose

location is defined by a position-representing signal

simultaneously developed in one of the destination-point

mapping paths, or (c) saved and used plural times to

paint a plurality of destination pixels whose lccations

are defined by a plurality of position-representing

signals simultaneously developed in the destination-

point mapping paths.

The developed color-code of the color-mapping path

can simultaneously indicate that it is not to be used in

overwriting the color code of a destination pixel. This

PCT/US92/09462WO 94/10644

10

15

20

25

30

- 18 -

occurs when the developed color code includes an active

transparency bit (T-bit).

This multi-path parallel-processing architecture

leads to faster image rendering and more efficient use of

system resources and more efficient use of signals

developed by the color-mapping and point-to-point mapping

paths.

The architecture of the invention additionally

provides performance advantages in time-multiplexed

memory-access systems. The latter systems are ones where

plural requestors vie for time on shared system data and

address buses.

In such cases, the color-mapping and destination-

point mapping paths compete with one another and with

other requestors for access to shared system-memory

resources. (The color-mapping path needs access to

system memory to do source image fetches. The

destination-point path needs memory access to do

destination image writes.)

According to the invention, each parallel path

shares its computational results and ultimate

paint/don't-paint indications with the other so as to

eliminate inefficient competition for memory or other

system resources. (And also to eliminate inefficient

discard and subsequent reproduction of a same piece of

data over and over again.)

When one of the multiple paths decides that a

particular, upcoming memory request will not ultimately

produce a useable result, that path issues a uselessness

indicating signal that blocks the particular memory

request from being made, either by itself (by the

deciding path) and/or by another path. The blockage of

ultimately-useless memory requests works to speed system

response.

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

- 19 -

One example of pseudo-independent cooperation

between paths is the case where a color code developed

by the color mapping path ends up being simply discarded

rather than being used to overwrite preexisting image

data. This will happen if the developed color code turns

out to be a transparency code or if there is no pixel in

the destination grid which can absorb the developed

color. The destination-point mapping path recognizes the

ultimate discard of the color code as early as possible

(by, for example, responding to T-bits that are produced

at a midstream portion of the color mapping path). The

destination-point mapping path halts corresponding

activities within itself as soon as it recognizes the

futility of proceeding further. By so doing, the

destination-point mapping path assures that it will not

waste any extra time calculating exactly where in a

destination grid the discarded color is to be NoT

painted. At the same time, the destination-point mapping

path also instructs the color-mapping path to permit a

discard of the developed color code then residing in the

color-code register. This creates a free slot within the

pipelined architecture of the color-mapping path, and in

essence, increases the color code production rate of the

color-mapping path.

As a consequence, the color mapping path accesses

system memory more often and produces new codes more

rapidly when mapped color codes are being consumed on a

one-to-one or many-to-one basis for each destination

pixel. On the other hand, the color mapping path

accesses system memory less often and produces new codes

less rapidly when mapped color codes are being consumed

on a one-to-many basis for each destination pixel.

(§1.2) SUMMARIZED EXAMPLE 2: MULTIPLE CORNER ENGINES

(USES DESIGN RULES 1, 2, 3a, 3b, 4, 7, 8)

WO 94/10644

10

15.

20

25

30

35

PCT/US92/09462

- 20 -

One step in mapping a source pixel onto a

destination grid is the calculation of destination

coordinates for a hypothetical polygon {or other

geometric shape) that represents an ideal mapping of that

source pixel onto the destination surface. This is a

time consuming process.

Two or more corner engines (e.g., engines A and B)

are preferably provided in accordance with the invention,

each for calculating, in parallel, the destination

coordinates for corner points of source pixels.

It is recognized that the bottom left corner point

of a first source pixel in a first source row becomes the

top left corner point of an adjacent underlying source

pixel in an adjacent and underlying second source row.

The mapping of the bottom left corner point of the first

source pixel onto the destination grid is the same as the

mapping of the top left corner point of the second source

pixel onto the destination grid.

One corner engine (engine-A) begins to calculate the

destination coordinates for the top and bottom corner

points of a first source row, while a second corner

engine (engine-B) waits. Definition of the destination

coordinates for the first pair of top and bottom corners

of the first pixel in the first spryte row is referred

to as a row-initialization process.

As soon as the bottom left corner coordinates of the

first pixel in the first row have been calculated by the

first corner engine (A), they are passed by way of a

shared register stack to the second corner engine (B).

The first corner engine (A) exits its row-initialization

procedure and proceeds on its own to caiculate the

destination coordinates for subsequent top and bottom

corner points of the first source row.

In the mean time, the second corner engine (B)

enters a row-initialization process wherein it (engine-

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

~ 21 -

B) begins to calculate the destination coordinates for

the top and bottom corner points of a successive second

source row. As soon as the bottom left corner

coordinates of the first pixel in the second source row

have been calculated by the second corner engine (B),

they are passed back to the shared register stack. The

second corner engine (B) exits its row-initialization

procedure and proceeds on its own to calculate the

destination coordinates for subsequent top and bottom

corner points of the second source row.

Whichever engine stops mapping the corners of its

current spryte row first (because the engine has finished

the task or terminated the task for some other reason)

picks up the task of mapping the next, not~yet processed,

source row. If the first corner engine (A) completes or

terminates its calculations of all corners in the first

source row before the second corner engine (B) completes

or terminates calculations of all corners in the second

source row, then the first corner engine (A) picks up the

results left behind in the shared register stack and uses

them to begin calculations of destination coordinates for

the corners of pixels in third source row. On the other

hand, if the second corner engine (B) ends its

calculations first, it picks up the results left behind

in the shared register stack and uses them to begin

calculations of destination coordinates for the corners

of pixels in third source row.

The first and second corner engines operate

independently of one another after the point where they

pick up row-starting results from the shared register

stack. Each corner engine proceeds from that point

forward, at its own maximum speed, using whatever

shortcuts (e.g., a small delta summation method described

below) may be available, to complete its assigned

calculation tasks in minimum time; even if the other

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

- 22 -

corner engine can not take advantage of such shortcuts.

This pseudo-independent operation is particularly useful

in one embodiment of the invention where source images

are defined as "spryte" constructs (described below)

and/or where the area into which sprytes can be rendered

is cropped by variable amounts (e.g., by XCLIP and YCLIP

described below). : Pseudo-independent corner-engine

operation is also useful in embodiments of the invention

where the source image data produces the above-mentioned

"transparency bits" (T-bits).

The above noted "spryte" constructs permit

successive first and second rows of a source image to

have different numbers of pixels. A source row can even

have no pixels. This means that one corner engine can

finish its spryte row much faster than the other engine

simply because there are fewer source pixels to map in

that spryte row.

The above noted "cropping" function (which can

optionally include a so-called "super-clipping" function

described later) lets programmers halt spryte rendition

for sprytes or portions of sprytes that the programmers

know will never be displayed on the display means.

Spryte rendering time is reduced by not wasting time

generating image data that will never be displayed.

The above noted "transparency" bits are used to

create a hole or window through a spryte. Mapped color

codes having active transparency bits (T-bits) are not

used to over write whatever exists in a corresponding

memory destination area, and as a result, the pre-

existing image continues shows through the "transparency"

hole even though adjacent areas are painted over with new

colors. In one embodiment, each corner engine bypasses

the performance of comprehensive, destination-fill

calculations for each mapped color code that is found to

have its transparency bit activated. The corner engine

WO 94/10644

10

15

20

25

30

PCT/US92/09462

- 23 -

thus saves time by not performing certain point-to-point

mapping calculations for a mapped color that, ultimately,

will not result in the painting of a destination pixel.

(§1.3) SUMMARIZED EXAMPLE 3: SOME FUNCTIONS OF "SLOW"

DESTINATION-PAINT DECTSTON-MAKING UNIT

(SlowDPDMu, e.g. Regis) ARE SUPPLEMENTED BY

FastDPDMu_COPROCESSOR (e.g. Munkee) (USES DESIGN

RULES 1, 2a, 3a, 5, 7, 8)

As an extension of the above-described use of

multiple result-developing paths, a Fast Destination-

Paint Decision-Making unit (or "Fast-DPDMu" for short, a

specific example of which is later referred to as the

"Munkee" border estimating unit) is provided to operate

in parallel with a Slower Destination-Paint Decision-

Making unit (or "Slow-DPDMu" for short, a specific

example of which is later referred to as the "Regis"

border locating unit).

Both of the Fast-DPDMu and Slow-DPDMu units receive

the corner calculation results of the corner engines.

The slower decision-making unit ("Slow-DPDMu, e.g.

Regis) ") is assigned a time-consuming task of calculating

relatively precise coordinates for points along left and

right borders of each ideally (hypothetically) mapped

source pixel, regardless of the size and/or shape of that

mapped source pixel.

A so-called, ideally-mapped source-pixel is also

referred to herein as a projected polygon. Each

projected polygon is deemed to lie on the surface of the

destination grid. The calculation of coordinates for

points along left and right borders of each projected

polygon is referred to below as boundary walk. Machine-

implemented boundary walks tend to be difficult and time-

consuming.

PCT/US92/09462WO 94/10644

- 24 -

The slower decision-making unit (Slow-DPDMu, e.g.

"Regis)") uses the results of its boundary walk to decide

10

15

20

25

30

35

how many destination pixels, if any, are to be painted

over with a newly-mapped color. In some embodiments this

decision is made by determining how many destination

pixels, if any, are fully or "effectively" bounded

between left and right edges of each projected polygon.

Destination pixels which are deemed to be fully or

effectively bounded within the projected polygon arethe

ones that are later painted on a raster-scan basis with

a fill-in color developed by the color-mapping path.

Unfortunately, the slower decision-making unit

(Slow-DPDMu e.g., "Regis)") consumes multiple ticks of

the system clock to complete its task because it is

charged with the task of processing all kinds of

projected polygons: big and small, rotated or unrotated,

skewed or unskewed. The boundary walk algorithm that it

performs is therefore relatively elaborate and time-

consuming.

For certain types of projected polygons (e.g., those

with zero or relatively small areas), it is possible to

accurately determine, in relatively little time, without

using an elaborate time-consuming algorithm, if the

destination fill-in region will be zero pixels wide or

one pixel wide or some other small number of pixels wide.

The fast decision-making unit (Fast-DPDMu e.g.

"Munkee)") looks for projected polygons that meet a

certain, easy-to-predict criteria (e.g., projected

polygon with areas close to zero) and, in cases where it

is sure of the result, the Fast-DPDMu makes’ the

destination-paint or do-not-paint decision in place of

the Slow-DPDMu. One embodiment of the Fast-DPDMu (e.g.,

the later described "Munkee" unit) completes this task

within one tick of the system clock. ("Munkee" is

phonetically similar to the French word "manquer," which

WO 94/10644

10

15

20

25

30

PCT/US92/09462

~ 25 -

loosely translated means, a thing that is to be left

partially undone. The Munkee unit does not handle all

types of projected polygons. It leaves the task of

processing the more difficult types of projected polygons

to the Fast-DPDMu.)

When a projected polygon is encountered which meets

the criteria of the Fast-DPDMu (where the Fast-DPDMu can

accurately determine that zero, or only one or a small

other number of destination pixels are to be ultimately

painted), the Fast-DPDMu (e.g. Munkee) tells the

Slow-DPDMu (e.g. Regis) to not perform its more elaborate

boundary-walk operations.

In the case where the Fast-DPDMu determines that

only one destination pixel is to be ultimately painted,

the Fast-DPDMu (e.g. Munkee) sends out a request to a

line filler unit to fill that single destination pixel

immediately with the color developed by the color-

mapping path. The developed color code is tagged as

being no longer needed (discardable). The so tagged

color code can then be discarded as early as the next

clock tick. This saves clock ticks and frees the limited

resources of the spryte rendering system to perform

other, still-queued and/or not-yet completed tasks.

In cases where the Fast-DPDMu determines that no

destination pixels are to be ultimately painted with a

particular, developed color code, the Fast-DPDMu (e.g.

Munkee) similarly tells the Slow-DPDMu (e.g. Regis) to

not perform its boundary-walk operations. The developed

color of the color path is tagged as being discardable.

and the Fast-DPDMu (e.g. Munkee) does nothing further for

the corresponding source pixel. No line-fill command is

sent to the line-filler and even more clock ticks are

Saved. (When a line-fill command is received, the line

filler performs its function by sending memory-write

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

- 26 -

requests to a system memory manager. System performance

improves when useless access requests are blocked.)

In cases where the Fast-DPDMu (e.g. Munkee) can not

determine for sure how many destination pixels are to be

ultimately painted (even if it is zero or one), the

Fast-DPDMu (e.g. Munkee) lets Slow-DPDMu (e.g. Regis)

perform its more comprehensive boundary-walk operations.

The Slow-DPDMu (e.g. Regis) then decides how many, if

any, destination pixels are to be painted and the

Slow-DPDMu issues the corresponding line-fill requests.

Significant performance improvements are seen in

cases of one-to-one or one-to less-than-one image size

transformations because the time-consuming and

computation resource-consuming operations of the

Slow-DPDMu (e.g. Regis) are circumvented. Particularly

in cases where no destination pixel is ultimately

painted, the Slow-DPDMu (e.g. Regis) does not waste time

doing what ultimately needs not to have been done in the

first place.

(It is noted here as an aside that this disclosure

repeatedly refers to the term "spryte." Conventional

imaging systems are built around the concept of a

"sprite". The different spelling for the earlier

mentioned "spryte" is intentional. A conventional

"sprite" consists of a rectangularly-shaped area of image

data. All scan lines of a conventional sprite have the

same length. It has been found through experience that

internal change of data contents within a sprite

predominantly take place within non-rectangular

subportions of the rectangular sprite areas. Time and

memory is wasted in conventional systems by repeatedly

rendering the nonchanging subportion. To avoid such

waste, systems in accordance with the present invention

preferably utilize an image construct that is referred

to as a "spryte". (Note the pronunciation is the same

PCT/US92/09462WO 94/10644

10

15

20

25

30

35

-27 -

as "sprite" but the spelling is different.) A "spryte"

is defined as a compilation of horizontal scan-lines

extending from, and to the right of, a vertical

(hypothetical) spryte edge line where each scan line

includes a number of successive source pixels. The

length of each spryte scan-line is independently

controlled by an EOL (end-of-line) terminating code or

other appropriate means. The top point on the spryte

edge line is defined by a spryte corner position. The

total number of horizontal lines which collectively

define a spryte is given by a spryte line count. A

spryte can include scan-lines with no pixels in them.)

(§1.4) SUMMARIZED EXAMPLE 4: NONPERFORMANCE OF MATH

FUNCTION ON MORE SIGNIFICANT END OF RESULT (USES

DESIGN RULES 1, 4, 7 and 8)

When a small delta value (Ax) is being added to, or

subtracted from, a large running total (x = x + Ax), it

is often found that a more significant part of the

running total does not change between successive

additions or subtractions of the deltavalue (Ax). The

invention splits sum generation into at least two parts

and provides carry detection at an intermediate point of

sum generation. Sum generation begins at respective less

Significant portions of the delta value (Ax) and the

running total (x), and halts at the intermediate point if

the subsequent operation will produce no change to the

more significant part of the running total. One example

of this condition is where no carry or borrow is

generated at the intermediate stop point and the more

Significant part of the delta value (Ax) is equal to

zero. Another example of this condition is where a

borrow is generated at the intermediate stop point and

the more significant part of the delta value (Ax) is

PCT/US92/09462WO 94/10644

10

15

20

25

30

35

- 28 -

equal to positive one. Yet another example of this

condition is where a carry is generated at the

intermediate stop point and the more significant part of

the delta value (Ax) is equal to minus one. In each

case, the more significant part of the running total is

left unchanged rather than wasting time adding zero to

it. (The term "sum generation" is understood to include

addition and/or subtraction of signed or unsigned

quantities.) ,

More specifically, the system uses an adding unit

(e.g., an arithmetic logic unit or ALU) having a bit-

width less than that of the final sum and a long register

means for storing the sum. A sum portion stored in a

more significant part of the long register means is

updated only if a carry is detected during generation of

an immediately preceding, less significant part of the

sum. The circuitry which implements this approach uses

less area on an integrated circuit than conventional

circuitry for carrying out long-precision summation. The

approach reduces the number of clock cycles required for

generating each high-precision sum in cases where the

delta is small.

This delta summing mechanism is used by the corner

engines, the Slow-DPDMu, and other units (e.g. Row-

Initializer) to respectively calculate polygon corner

coordinates, border point coordinates, or other vlues

requiring a relatively high degree of precision (e.g.,

better than 16 bits of precision).

($1.51) SUMMARIZED IMPLEMENTATION OF EXAMPLE 1

A spryte rendering system in accordance with a first

aspect of the invention comprises: (a) one or more

color-mapping circuits for developing color signals

representing potential destination color values from

supplied source color signals; and (b) one or more

WO 94/10644

10

~15

20

25

30

35

PCT/US92/09462

~ 29 -

destination-point mapping circuits for simultaneously

developing code signals representing destination location

values and destination paint/don't-paint decisions.

More specifically, the color-mapping circuit

includes: (1) a source data decompressor (unpacker and

IPS) and (2) a source color data manipulator (PPMP).

The destination-point mapping circuits include: (1)

one or more corner engines for defining corner

coordinates of hypothetical geometric shapes (e.g.,

polygons) which are projected onto the destination grid

in accordance with a selected mapping function; (2) one

or more border-point locators (Slow-DPDMu (e.g. Regis)

circuits) for identifying opposing points on left and

right borders of each projected polygon and determining

which, if any, destination pixels are sufficiently

bounded by the opposing points to warrant painting by a

correspondingly developed color; (3) one or more fast-

decision circuits (Fast-DPDMu (e.g. Munkee) circuits) for

identifying corner mapping conditions in which only one

or none of the destination pixels will be painted and for

instructing the border-point locators (Slow-DPDMu (e.g.

Regis) circuits) to abort their operations and for

further providing a one-pixel paint command in the case

where only one destination pixel is to be painted; and

(4) destination line fill means, responsive to the

border-point locators (Slow-DPDMu (e.g. Regis) circuits)

and the fast-decision circuits (Fast-DPDMu (e.g. Munkee)

circuits), for generating write requests that ultimately

overwrite the data of, and thereby paint a line of one or

more destination pixels, in response to line fill

commands supplied by the border-point locators

(Slow-DPDMu (e.g. Regis) circuits) and the fast-decision

circuits (Fast-DPDMu (e.g. Munkee) circuits).

The spryte rendering engine additionally includes:

(Cc) One or more math resource engines whose computational

WO 94/10644

10

15

20

25

30

PCT/US92/09462

- 30 -

and data-storage resources are shared by the corner

engines, Fast-DPDMu (e.g. Munkee) units and Slow-DPDMu

(e.g. Regis) units, (d) memory means for storing source

pixel data representing source pixels and for storing

destination pixel data representing destination pixels

that are to be painted in accordance with write requests

sent by the line fill means; and (e) display means for

displaying the pixels represented by the destination

pixel data.

(§1.52) SUMMARIZED IMPLEMENTATION OF EXAMPLE 2

A spryte rendering system in accordance with a

second aspect of the invention comprises a plurality of

corner engines each for calculating polygon corner

coordinates from an input data set, where the input data

set includes position data (XPOS, YPOS) defining the

coordinates of a top-left corner (a0) of a first pixel,

line delta data (LDX, LDY) defining the coordinates of a

bottom left corner (a3) of the first pixel, and row delta

data (DX, DY, DDX, DDY) defining the coordinates of

corners points (al, a2) which succeed from the defined

top-left corner (a0) of the first pixel and from the

defined bottom-left corner (a3) of the first pixel. The

spryte rendering system further comprises a shared

storage unit (register stack) whose locations are

accessible by the plurality of corner engines. The

corner engines exchange results for shared destination

points by way of the shared storage unit (register

stack). The shared results include: (1) calculated

coordinates for the bottom left corner (a3) of the first

pixel in each successive source row, and (2)

progressively increased or decreased delta values

(DX++ = DX + DDX) calculated by a first of the corner

engines and useable by a second of the corner engines.

WO 94/10644

10

15

20

25

30

PCT/US92/09462

- 31 -

($1.53) SUMMARIZED IMPLEMENTATION OF EXAMPLE 3

A spryte rendering system in accordance with a third

aspect of the invention comprises one or more border-

point locators (Slow-DPDMu (e.g. Regis) circuits) for

identifying opposing points on opposed left and right

borders of each projected polygon and for determining

which, if any, destination pixels are sufficiently

bounded by the opposing points to warrant painting by a

correspondingly developed color. For each border-point

locator (Slow-DPDMu = (e.g. Regis) circuit), a

corresponding fast-decision circuit (Fast-DPDMu (e.g.

Munkee) circuit) is provided for identifying corner

conditions in which only one or none of the destination

pixels will be painted and for instructing the

corresponding border-point locator (Slow-DPDMu (e.g.

Regis) circuit) to abort its operations and for further

providing a one-pixel paint command in the case where

only one destination pixel is to be painted.

(§1.54) SUMMARIZED IMPLEMENTATION OF EXAMPLE 4

A precision calculating apparatus in accordance with

a fourth aspect of the invention comprises: (a) two or

more part registers for storing respective more-

significant and less-significant parts of a long result;

(b) a math unit; (c) selective updating means for

selectively coupling the math unit to one or another of

the part registers and updating the result part stored

in the selected part register; (d) detection means for

detecting conditions where the updating of one result

part necessitates the updating of another result part;

and (e) control means for instructing the selective

updating means to select and update the other part of the

long result only if the detection means indicates a

necessity of so doing.

WO 94/10644

10

15

20

25

30

PCT/US92/09462

- 32 -

(§2) BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be described in detail with

reference to the following drawings, in which:

FIGURE 1A shows an example of a first source-to-

destination image mapping, where the mapping function

includes image enlargement.

FIGURE 1B shows an example of a second source-to-

destination image mapping, where the mapping function

includes image reduction. .

FIGURE 2 shows other mapping possibilities.

FIGURE 3A illustrates one method for defining a

source-to-destination point-to-point mapping.

FIGURE 3B illustrates another result using the same

mapping method described for Fig. 3A.

FIGURE 4 is a block diagram of a first image

rendering system in accordance with the invention.

FIGURE 5A briefly explains the operations of the

Slow-DPDMu (e.g. Regis) boundary-walking unit and the

region-fill math unit.

FIGURE 5B briefly explains the operations of the

Fast-DPDMu (e.g. Munkee) border estimating unit.

FIGURE 5C shows how the Slow-DPDMu (e.g. Regis) and

the Fast-DPDMu (e.g. Munkee) view a projected polygon

after the coordinate values of its corners have been

truncated.

FIGURE 6 (composed of subfigures 6A-6F) is a block

diagram of a second image rendering system in accordance

with the invention which includes two color-code

unpacking units and a corresponding set of two corner-

calculating engines.

FIGURE 7 (composed of subfigures 7A-7H) is a

schematic diagram of a math platform in accordance with

the invention that is used by the corner-calculating and

boundary-walking engines of the invention.

WO 94/10644

10

15

20

25

30

PCT/US92/09462

- 33 -

FIGURE 8 is a diagram used to explain how parallel

processing of information from adjacent source rows

speeds performance and how the bypassing of ultimately

unnecessary polygon calculations speeds performance.

FIGURE 9A shows how precision sum generation with

intermediate carry detection works.

FIGURE 9B shows how double delta precision extends

20 bits to the right of the decimal point while the

precision of delta addition extends a lesser 16 bits to

the right of the decimal point.

(§3) GLOBAL DESCRIPTION OF SPRYTE MAPPING METHOD

The invention is now explained in more detail by

sequencing through an evolutionary series of concepts.

The mapping of a source image onto a destination

grid is divided into the following steps (la)

through (7):

(la) A point-to-point mapping function is defined.

(1b) A source-to-destination color mapping function is

defined concurrently.

(2) For each source pixel, a corresponding and

hypothetical geometric shape (e.g., a quadrilateral

or other polygon) is projected onto a destination

grid in accordance with the defined point-to-point

mapping function.

(3) The destination grid coordinates of top, bottom,

left, right and central corners (if any) of the

projected polygon are identified.

(4) Opposed left and right borders of the projected
polygon are identified.

(5) Opposing points on the opposed left and right

borders of the projected polygon are identified and

their coordinates are calculated (not necessarily

to full precision).

WO 94/10644

10

15

20

25

30

PCT/US92/09462

- 34 -

(6) For each pair of opposed border points, a

determination is made as to how many, if any,

destination pixels are to be painted because they

are fully or effectively contained between the

opposed border points or because they meet some

other paint-decision criteria.

(7) Destination pixels that meet the paint-decision

criteria are painted with a color derived from the

corresponding source pixel (or derived from a

plurality of corresponding source pixels) in

accordance with the source-to-destination color

Mapping function.

Figure 1A illustrates a first, relatively elementary,

mapping 100 of a source image 110 onto a destination grid

120. The illustrated mapping 100 copies the source image

110 onto the destination grid 120 in a manner which

greatly enlarges the size of the destination image 121

relative to the size of pixels in the destination grid

120 and which further rotates the destination image 121

clockwise relative to a horizontal axis (Xp) and a

vertical axis (Y)) of the destination grid 120.

The source image 110 is defined as a rectangular

array of source pixels: a, b, c, d, ..., Q, x, S, t,

. - ,» Z; where each underlined lower case letter (a,

b, c, etc.) refers to a specific pixel of the source

image 110. The source grid and source image pixels

correspond on a one-to-one basis. Each individual

rectangular or square area of the source grid is filled

with a single like-oriented and like-sized pixel of the

source image 110.

In a preferred embodiment of the invention, the

source image 110 is composed of square pixels, the

destination image 120 is composed of square pixels, and

the ultimately displayed light image is composed of

WO 94/10644

10

PCT/US92/09462

- 35 -

square pixels which are the same as those of the

destination image 120 or derived therefrom.

For the sake of illustrative convenience, source

pixel a is considered to be the first pixel in a first

row, "A", of the source image 110. Source pixel q is

considered to be the first pixel in a second row, "B",

of the source image 110. Source pixel w is considered

to be the first pixel in a third row, "C", of the source

image 110.

Each source pixel (a, b, c, etc.) is painted with a

specific, single shade or color (e.g. COLOR(a), COLOR(b),

COLOR(c)). It is to be understood that the source pixels

‘do not contain letters, a, b, c, etc. These are merely

15

20

25

. 30

35

identifiers. Instead, the source pixels are each

completely filled with a respective one of COLOR (a),

COLOR(b), COLOR(c), etc. Likewise, the pixels of the

destination image do not contain capital letters, P,P,P,

etc., nor do they contain portions of enlarged letters a,

b, c, etc. These are merely identifiers. The mapped

projections of sourceidentifiers a, b, c, etc. are shown

enlarged and rotated (but without underlines) over the

destination grid 120 to illustrate the effects of mapping

function 100.

When mapping and image rendition ultimately complete,

it is expected that some of the destination pixels

(P,P,P, etc.) will be painted with respective colors,

COLOR*(a), COLOR*(b), COLOR*(c), etc. Thusly painted

destination pixels represent the mapping and ultimate

rendition of the source image onto the destination grid

120. The destination colors are derived from those of

the source pixels. The asterisk in the destination

notation COLOR*(i) indicates that COLOR*(i) can be, but

is not necessarily the same as a corresponding source

color, COLOR(i). Rather the COLOR*(i) of a specific

destination pixel, P;, should be thought of as one that

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

-~ 36 -

is derived from (mapped from) the source color, COLOR(i),

of a given source pixel, i. (And to make matters more

complex, in one embodiment of the invention, the color of

each destination pixel can be a function of colors found

in plural source pixels, and even colors found in

different sprytes, due to the the action of a so-called

PPMP unit.)

Each source pixel (a, b, c¢, etc.) is defined as

having four corner points associated with it. The four

corner points of source pixel a are respectively

referenced, moving clockwise from the top left corner,

as aQ, al, a2 and a3. The four corner points of source

pixel b are similarly referenced as b0, bl, b2 and b3.

And the same referencing system is used for all other

pixels of the source image 110. (The underline under the

numeral portion of aQ, al, a2, a3, bO, etc. indicates

that it is a corner of a source pixel. Similar symbols

without underlines (a0, al, a2, etc.) will be used below

to represent corner points of projections of the source

pixels onto the destination grid.)

For purposes of explanation, source coordinate system

is additionally defined as having an xX, axis extending

left to right in the horizontal direction and a Y, axis

extending top to bottom in the vertical direction. The

corner points of source pixels lie at integer values of

x, and Y,- By way of example, corner c0 has coordinates

X,=2.0 and y.=0.0 in the source grid. (The zeroes to the

right of the decimal points in these expressions can be

truncated.) ‘Similarly corner c2 has coordinates X,=3.0

and y,=1.0. (The fractional portions to the right of the
decimal points can be truncated in these designations as

well. They are included here to help explain a concept

that is developed later below.)

Corner points of pixels in adjacent rows or columns

are shared. By way of example, Fig. 1 shows pixels a,

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

-~ 37 -

b, ¢c, and d as belonging to a first row, A, and pixels

q and r as belonging to a second row, B, of the source

image. Corner point a3 is the same as corner point q0Q.
(Both have coordinates x70, Y,=1.) Corner point a2 is

the same as corner point ql. Corner point a2 is also the

same as corner point b3 and corner point ro. (All four

share coordinates x_=1, Yg=1.-)
s

Destination grid 120 is shown to be comprised of

another array of pixels: P, P, P, ... , P. The

destination pixels (P,P,P) are arranged in rows and
columns. A destination coordinate system is defined to

have an Xp axis extending left to right in the horizontal
direction and a Yp axis extending top to bottom in the
vertical direction. The corner points of destination

pixels (P, P, ..., P) lie at integer values of Xp and Yp.
Mapping function 100 can be divided into two

subfunctions, namely, point-to-point mapping and source-
color to destination-color mapping. Point-to-point |

mapping defines a one-to-one translation between each

pair of Xg and Yg coordinates in the source image and a
corresponding pair of Xp and Yp coordinates in the
destination grid 120. Color mapping, on the other hand,
defines a relation between the colors of pixels in the

source image and the colors that will be assigned to

pixels of the destination grid 120.

Referring to Figure 1B, a

_

second mapping 102 of

source image 110 onto destination grid 120 is

illustrated. This time, the source image 110 is mapped
onto destination grid 120 in a manner which greatly

reduces the size of destination image 122 relative to the

pixels of destination grid 120. Mapping 102 further
rotates destination image 122 clockwise relative to the

horizontal axis (X,)) and vertical axis (Yp) of
destination grid 120. Note that destination pixels PO,
Pl, P2, P3, etc., are now shown to be larger than the

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

- 38 -

mapped-over pixel "a". (Note also that no underline is

used for the symbol "a" which represents the mapped-over

projection of source pixel a.)

As previously mentioned, the steps taken in mapping

a source image 110 onto a destination grid 120 include:

(la) defining the point-to-point mapping function (100

or 102), and (2) for each source pixel (a, b, c, etc.),

projecting a corresponding and hypothetical polygon (or

other geometric shape) onto the destination grid in

accordance with the defined mapping function.

Quadrilaterals 125 and 126 represent two such projected

polygons in the case of reduced image 122 (Fig. 1B).

Quadrilaterals 127 and 128 represent two further examples

of projected polygons in the case of enlarged image 121

(Fig. 1A).

The projected polygons 125, 126, 127, etc. represent

the "ideal" mapping of each source pixel onto destination

grid 120. The ideal mapping becomes the actual rendition

only when the projected polygons (a, b, c, etc.) align

perfectly with and cover integral numbers of destination

pixels (P, P, P, etc.).

In all other cases, where all the borders of the

projected polygons do not align perfectly on integral

values of Xp and Yp- the actual rendition at the

destination 120 is an imperfect version of the ideal

point-to-point mapping. Yes/No decisions have to be made

whether or not to paint each destination pixel (P,P,P)

with a specific color COLOR*(i), the specific color being

the one that corresponds to the projected polygon "i"

that covers that destination pixel. Since a destination

pixel (P) can not be partly filled with different colors

from two projected polygons, e.g., a and q, one of plural

destination color candidates has to be chosen for cases

where multiple projected polygons cover a given

destination pixel. (Each destination pixel (P,;) is a

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

- 39 -

quantum construct which must be filled with one and only

one color value, COLOR*(i).)

This concept is best understood by referring to

Fig. 1B. Although destination pixel P3 is partly covered

by a first quadrilateral 125 which represents the ideal

mapping of source pixel a and by a second quadrilateral

126 which represents the ideal mapping of source pixel q,

destination pixel P3 will only be painted with one color

value; either that of mapped pixel "a" or that of mapped

pixel "q".

In the illustrated case, it would make sense to a

human being to choose the color of mapped pixel "a" as

the one to fill destination pixel P3 because most of

polygon 125 resides over P3. Similarly, it would make

sense to choose the color of mapped pixel "q" for

destination pixel P2 because a substantial part of

polygon 126 resides over P2. This is an easy thing for

a human being to see. It's a more difficult process when

a machine has to make the choice automatically.

On the other hand, it should be appreciated that

most destination images are formed of a large number

(e.g., hundreds) of destination pixels, and when the

human eye views the destination image on a grand scale,

from far away, a single improperly painted pixel here or

there usually makes little difference. A machine-

implemented paint/don't-paint decision-making process and

paint with-which-color decision making process, which

operates on this grander scale, will be explained in more

detail later below.

A similar decision-making problem applies to the

size-enlarging map function 100 of Fig. 1A. Although

most destination pixels (P,P,P,..) are completely covered

by quadrilaterals such as 127 or 128, thereby making the

decision easy for these, there will be a few destination

pixels (P,P,P) that lie partly inside and partlyoutside

PCT/US92/09462WO 94/10644

10

15

20

25

30

35

- 40 -

the borders of large quadrilaterals 127, 128. For each

such partially-covered destination pixel, a decision has

to be made to use either the color of mapped pixel "a" or

that of mapped pixel "q" or that of another source. It

is observed here again, that when the entire destination

image is viewed from far away, local variances in the

picking of one destination pixel over another will

usually not make any differences to the perceived image

as a whole.

A relatively simple first algorithm may be used in

one particular embodiment of the invention: fThe color

of the projected polygon that encloses the top left

corner of each destination pixel is used as the fill

color for that destination pixel. This simple algorithm

is referred to here as the "top-left paint algorithm".

(Other, more complex, paint-choice algorithms will be

described later.) If the corners of two or more

projected polygons align perfectly with that of the top

left corner of a destination pixel such that neither

encloses the destination pixel corner, a choice has to

be made as to which source pixel is most suitable for

having its color mapped into the destination pixel.

The simple top-left paint algorithm can be

illustrated by way of example. In Fig. 1B, projected

polygon 125 (the mapped "a" pixel) encloses the top left

corner point (Xp)=m.0, Yp=n.0) of destination pixel P3

(where m and n represent integers). Accordingly,

destination pixel P3 is painted with a "mapped" color

that corresponds to mapped pixel "a". (The term "mapped

color" means that it is either the same as that of the

source pixel or related to it in some way, through a

color-mapping function.)

The top left corner point (Xp=m.0, Y¥p=n.0+1) of

destination pixel P5 is covered by mapped pixel "q". If

the simple top-left paint algorithm is applied,

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

- 41 -

destination pixel P5 will be painted with a "mapped"

color that corresponds to mapped pixel "q". Obviously

this choice is not good when viewed at the local

(microscopic) level illustrated in Fig. 1B. Only a very

small portion of projected polygon 126 ("q") overlaps

with the area of destination pixel P5. On the grand-

scale, however, this may not make much of difference to

the perception of the overall destination image.

According to a more complex, second paint/don't-.

paint decision algorithm, the image rendering machine

looks at both the top-left and bottom-left corners of a

destination pixel and the machine determines how many and

which projected polygons touch or cover each of the two

corners. This is referred to here as the left top/bottom

algorithm.

In Fig. 1B for example, the top-left corner of

destination pixel P3 is covered by projected polygon 125

("a") and the bottom-left corner of destination pixel P3

is covered by projected polygon 126 ("q"). One or the

other of the top-left and bottom-left corners of the

destination pixel has to be selected as having the most

desirable one polygon covering it (or the most desirable

set of plural candidates touching it). This is referred

to as a "corner-select" process. If more than one

polygon touches the selected corner, a second selection

is made to pick the one polygon whose color will be used.

Yet a third paint-choice algorithm could be used in

which the image rendering machine looks at all four

corners of a destination pixel and selects one of the

four corners as the one with the best candidate polygons.

It is to be understood that other paint/don't-paint

algorithms can be used in conjunction with the invention.

A relatively complex algorithm, named REGIS_FILLBIN which

relies on preferential corner selection will be explained

later. For now it is sufficient to explain it as

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

-~ 42 -

including a pre-processing step in which the fractional

portions of signals representing mapped corner points a0

through a3 are truncated away. This has the effect of

distorting the projected polygons at the microscopic

level but it generally makes little difference at the

macroscopic level. Each of the truncated coordinate

values is thereafter considered to be a command to paint

the destination pixel for which it (the truncated

coordinate value) serves as a top-left corner point.

Despite its apparent simplicity, the top-left paint

algorithm poses a series of further problems. (The same

problems apply to the left bottom/top algorithm and to

other similar paint-choice algorithms.)

A first problem is how to efficiently and

economically decide whether a projected polygon (e.g.,

125) encloses or does not enclose a top left corner point

of a given destination pixel (e.g., P3), or any other

corner point for that matter. A second problem is how to

generate the corresponding series of paint decisions in

minimal time. Yet another problem is how to perform

these functions using circuitry of minimal size.

(Ideally, one would like to incorporate all the circuitry

within one or a few integrated circuit chips in order to

minimize manufacturing cost, minimize circuit size and

also minimize wire-length delays.)

Related but additional problems arise in the

realization of the above-mentioned other mapping steps

of: (3) Identifying the destination grid coordinates of

top, bottom, left, right and middle (if any) corners of

the projected polygon; (4) Identifying the opposed left

and right borders of the projected polygon;

(5) Identifying opposing points on opposed left and right

borders of the projected polygon and calculating the

coordinates of these points; and (6) For each pair of

opposed border points, and a preceding pair of opposed

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

- 43 -

border points, determining how many, if any, destination

pixel corners are fully or effectively contained between

the set of four border points.

While these problems are in mind it is to be noted

that there are many different kinds of size, angle and

shape transformations in the field of digital graphic

processing. Fig.s 1A and 1B merely show two examples.

See Fig. 2 for examples of other mappings. (Fig. 2 will

. be described shortly.)

The size/angle transformation 100 illustrated in

Fig. 1A places corner point a0 of the projected polygon

127 at a top point GT of destination grid 120. It leaves

corner point al at a right side point, GR, of the

destination grid 120, where point GR is a few rows below

the top grid point GT and a few columns to the right of

GT.

Mapping 100 further puts corner point a3 at grid

location GL, which is below and to the left of GT. GL

and GR are not necessarily on a same Y¥p coordinate of the

destination grid 120.

Mapping 100 further positions corner point a2 at a

bottom grid point, GB, below grid points GL and GR. It

is noted that although Fig. 1A places the top, bottom,

left and right corners (GT,GB,GL,GR) of the projected

polygon 127 at integer Xp and/or Yp coordinates of the

destination grid 120, this is not always the case. The

a0 through a3 corners of the projected polygon 127 might

have been just as easily placed at non-integer

coordinates of the destination grid 120, and moreover,

each projected corner could have been mapped to any

arbitrary point of the destination grid 120, including

all to the same point.

The left-side boundary of the projected polygon 127

shown in Fig. 1A is defined by lines which sequentially

connect destination grid points GT, GL and GB. The

WO 94/10644

10

15

20

25

30

PCT/US92/09462

- 44 -

right-side boundary is defined by lines which

sequentially connect grid points GT, GR and GB. A

destination grid point (e.g., Xp=m.0, Yp=n.0) which is

positioned between the left and right boundaries of

projected polygon 127 is deemed to be inside that

polygon, otherwise it is outside the polygon.

Once a top point (e.g., GT) is identified for opposed

left and right polygon boundaries, two lock-step walks

are taken along those boundaries, starting at opposed

tops of the boundaries and ending at opposed bottom

points. The opposed top points or bottom points can be

one and the same as in the case of GT and GB in Fig. 1A.

For each lock step along the left boundary and right

boundary, a determination is made as to how many and

which destination pixel corners are bound between the

opposed walk points. This aspect will be more fully

explained later, in conjunction with Fig. 5A.

Before moving onwards in this discussion, it is

worthwhile to consider some other geometry mapping

possibilities. Referring to Figure 2, it is seen that a

variety of other polygon mappings (e.g., 210, 220, 230)

are possible and each one produces different left and

right side boundary definitions.

Mapping 210, for example, transforms a square-shaped

source pixel, a, into a bow-tied configuration 211 at the

destination. Corners a0 and al define the respective top

left and top right corners of the resulting bow-tie image

211. Corners a2 and a3 define the respective bottom left

and bottom right corners of the bow tie image 211. The

left-side boundary of bow-tie 211 is defined by the upper

part of line a0-a3 and the bottom part of line al-a2.

The right-side boundary of image 211 is defined by the

upper part of line al-a2 and the bottom part of line a0-

a3.

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

- 45 -

Another possible mapping, 220, puts corner a0 at the

bottom of destination image 221. Corners al and a3 are

squeezed very close to one another. It is possible for

destination image 221 to be so thin that it fails to

effectively cover any pixel (P) of the destination grid

120 (Fig. 1A). In such a case, image 221 may not even

appear within the destination image.

Yet another mapping, 230, reverses the ordering of

corners a0-a3 at the destination image 231. Whilethe

sequence a0, al, a2, a3 defines a clockwise rotation in

the source image, it defines a counter-clockwise rotation

at the destination image 231. If source pixel a is

considered to be part of a frontward-facing surface of a

three-dimensional cube, destination image 231 might be

considered as part of a backward-facing surface of a

rotated (and skewed) reproduction of the three-

dimensional cube. It is sometimes useful to indicate

whether the a0-a3 sequence runs clockwise (CW) or

counterclockwise (CCW). In a wire-frame rendition, CW

and CCW oriented images are both shown. In a solid-

surface rendition, it may be desirable to "hide" (not

render) one or the other of CW and CCW oriented images.

There are many other possible mappings. Mapped image

241, for example, has three corners arranged in a line at

its top, thereby forming a triangle. Mapped image 251,

has two corners at its top, a third corner at a bottom-

most position and a fourth corner positioned between the

first three corners, thereby forming a two-horned ox-

face shape. (Note: for the embodiment later described in

conjunction with Fig.s 6 and 7, generation of a two-

horned ox-face shape is not allowed. This simplifies

circuit design because there will always be one corner

for the other mappings 210-241 that can serve as a top

corner from which an always-downward boundary walk can be

performed.)

WO 94/10644

10

15

20

25

30

PCT/US92/09462

- 46 -

The mappings shown in Fig. 1A, Fig. 1B and Fig. 2

are merely examples of a relatively large number of

possibilities. Any one or more such mappings (e.g. 100,

102, 210, etc.) may be used singularly, multiple times

in-parallel or recursively in-series to generate a

destination image.

After corners a0 through a3 are mapped onto the

destination grid 120, the relative positions of corners

a0-a3 of a projected polygon are identified. The

relative position information defines each corner as

being a top, bottom, left, right, or center corner in

relation to the other corners.

A machine-implemented algorithm produces’ such

relative position information by deciding which and how

many of the projected corners have the minimum Yp

coordinates (top-most position), the maximum Yp

coordinates (bottom-most position), the minimum Xp

coordinates (left-most position), and the maximum Xp

coordinates (right-most position). This identifies the

basic shape of the projected polygon (e.g., simple

quadrilateral, bow-tie, triangle, ox-face, line, point)

and also the CW or CCW orientation of the projected

polygon.

Some form of precise or less-than precise top-to-

bottom boundary walk is then conducted along every pair

of opposed left and right linear edges of the polygon to

decide which destination points lie (precisely, or in

some embodiments of the invention, approximately) inside

the projected polygon and which lie outside. One or more

top (not necessarily "top-most") corner points on the

projected polygon serve as starting points. The boundary

walking operation moves two pointers (left and right side

pointers) down in lock step along opposed sides of the

projected polygon, from the one or more starting points

PCT/US92/09462WO 94/10644

10

15

20

25

30

- 47 -

to an opposed one or more bottom points of opposed left

and right edges of the projected polygon.

With each step in the boundary walk, a determination

is made as to what coordinates the left and right edge

pointers point to and, in some embodiments of the

invention, whether one or more destination grid points,

each having integral coordinate values (e.g., Xp=m.0,

Yp=n.0), lie between the opposed left and right

boundaries of the projected polygon. If such interior,

integer-coordinate points exist, a fill-command is

generated to fill their corresponding destination pixels

with a mapped color assigned to the projected polygon.

(A "precise" version of the boundary walk is explained

in more detail later, in conjunction with Fig. 5A.)

Just as there are many final shapes for a mapped-over

pixel (as seen in Fig. 2), there are a variety of ways in

which to define a source-to-destination point-to-point

Mapping. Figure 3A shows one such method 300 that is

used in conjunction with the present invention. The

illustrated method 300 is referred to here as the

"“double-delta method".

In Fig. 3A, the upper left corner point, aQ, of the

source image 110 is first mapped to coordinates Xo and

Yao Of the destination grid 120. Coordinates Xo and Yao

serve as a starting point for the destination-point

mapping.

Coordinates, Xa0 and Yao, are respectively also

referred to as the XPOS and YPOS coordinates in this

disclosure.

Source image 110 is also referred to as a source

"spryte" 110 in this disclosure. (The spelling of spryte

with a "y" instead of the industry recognized spelling

"sprite" is intentional and has already been explained

above.)

WO 94/10644 PCT/US92/09462

- 48 -

Coordinates X,9 and Yio are each expressed as a 32-

bit-wide dataword. The first 16 bits of the 32-bit

expression define an integer value and the second 16 bits

define a fraction value. (This data structure is

5 abbreviated here by the shorthand notation, "16.16".)

The double-delta mapping method 300 can therefore

position the mapped starting point, a0, at non-integer

coordinates of destination grid 120.

Two line-to-line delta values, LDX and LDY, are given

10 in conjunction with starting coordinates, X,) and Yq.

Values LDX and LDY define the respective distances along

the X axis and Y axis of the destination grid 120 which

separate destination starting point a0 from destination

corner point q0 (the top left corner of the second row in

15 source image 110). Corner point q0 is the same as corner

point a3. lLine-to-line delta values, LDX and LDY, are

each expressed in 16.16 format.

The destination grid coordinates of destination

corner point a3 are then calculated as follows:

20 Xa3 = Xag + LDX (Eq. la)

Ya3 = Yao + LDY (Eq. 1b)
In more general terms, points along line a0-a3-q3-

w3-etc. are calculated as follows:

X_ X_-1 + LDX (Eq. 1'a)

25 Ye Y~-1 + LDY (Eq. 1'b)

where the index "k" represents a current. member of the

series: a3, q3, w3, etc. and the index "k-1" represents

a preceding member of the series: a0, a3, q3, w3, etc.

Once the destination coordinates (Xap, Yao) and

30 (Xa3, Ya3) of respective points along first linear path

a0-a3-q3-etc. are known, a second linear path from point

a0 to point al, to point bl, etc., is defined along the

destination grid by providing another set of delta

values, DX and DY. Delta values DX and DY are each

35 expressed in 12.20 format.

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

- 49 -

The destination coordinates (Xai, Ya1) of corner

point al and subsequent points bl, cl, dl, etc. are then

calculated according to the following equations:

Xi = Xj-, + DX (Eq. 2a)
Y; = Yy-1 + DY (Eq. 2b)

where the index "i" represents a current member of the

series: al, bl, cl, dl, etc. and the index "i-1"

represents a preceding member of the series: a0, al, bl,

cl, dl, etc. ,

Note that X,; and X;_ 1 are each represented as digital

signals having 16.16 (integer.fraction) format while Dx

and DY are each represented as digital signals having

12.20 (integer.fraction) format. The addition result of

Eq.s 2a and 2b automatically truncates the least

significant four bits of DX and DY and pads their fronts

with an appropriate number of sign-extension bits.

If truncation error is undesirable, the destination

coordinates (Xnj, Yni) of successive corner points al,

bi, cl, ..., nl can be alternatively calculated according

to the following equations, Eq. 2'a and Eq. 2'b:

X; = X;_, + INTEGER(DX) + INTEGER(AccXerr) (Eq.2'a)
Y; = Y¥z_, + INTEGER(DY) + INTEGER(AccYerr) (Eq.2'b)

The INTEGER(x) function produces a result in which

any fractional portion of argument "x" is stripped away,

thus leaving only the integer portion of "x" as the

result.

The terms, AccXerr andAccYerr, represent accumulated

plotting errors. Quite often, a round-off correcting

algorithm such as that of Bresenham is used to

approximate a straight line in a bit-mapped image. Such

a line is drawn in the destination grid 120 for

connecting points a0, al, bl, cl, etc., one to the next.

The line-approximating algorithm has an accumulating

fractional-error part which occasionally exceeds a

threshold level (e.g. 0.5) and causes a corresponding

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

- 50 -

integer-error part to increment or decrement by the ©

integer, one. A more detailed description of the

Bresenham and other line approximating algorithms may be

found in "Computer Graphics, Principles and Practice" by

J. Foley, A. Van Dam, S. Feiner and J. Hughes; Addison-

Wesley Publishing Company, New York, Second Edition 1990.

After the second linear path through points a0, b0,

c0O, etc., is plotted onto the destination grid 120, a

similar procedure is used for plotting the points q0, r0,

s0, etc., which define the top of the second row (B) of

the source spryte 110 onto the destination grid 120.

Since point a3 is the same as point q0 and point a2 is

the same as point r0 and b3, Fig. 3A shows both

designations.

Double delta values DX+DDX and DY+DDY are used for

defining successive points a3, b3, c3, etc. as follows:

Xj = Xj-1 + DX + DDX (Eq. 3a)

Yj = Yj-1 + DY + DDY (Eq. 3b)

where the index "j" represents a current member of the

series: b3, c3, d3, etc. and the index "j-1" represents

a previous member of the series: a3, b3, c3, d3, etc.

A Bresenham or other line approximating algorithm can be

used to generate these values digitally. Second delta

values DDX and DDY are each represented as digital

signals having 12.20 (integer.fraction) format.

Next, a linear path extending from point q3 is

defined by:

Xj = Xj-1 + DX + 2eDDx (Eq. 4a)

Y3 = Yj-1 + DY + 2eppy (Eq. 4b)

where the index "j" this time represents a current member

of the series: r3, s3, t3, etc. and the index "j-1"

represents a previous member of the series: q3, r3, s3,

t3, etc. As before, a Bresenham or other line

approximating algorithm can be used to generate these

values digitally. Note that the second delta values are

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

-~ 51 -

now two times DDX and two times DDY. This sequence

continues in the next line by using three times DDX and

DDY, then four times the same values, and so forth.

Each of delta values LDX, LDY, DX, DY, DDX and DDY

can be positive or negative. Figure 3B shows what

happens when LDX=0, DDX=0 and DY is a small positive

value and DDY is a slightly smaller negative value. The

lines extending to the right from edge points a0, a3, q3,

w3, etc. converge. If they extend sufficiently far to

the right, a bow-tie configuration is produced.

It is to be understood that DX and DY can start as

negative values (and DDX and DDY can be zero or negative

at the same time), in which case a double delta mapping

starts at point (Xa0, Ya0) and draws the remainder of the

destination image heading towards decreasing values of Xp

and Yp.-

Starting coordinates, XPOS and YPOS, can also be

negative, as seen in Fig. 3B. Note that in Fig. 3B the

Xp axis and Y,) axis intesect at a point other than 0,0.

The 0,0 origin point is shifted for purposes of the

immediately following discussion to the middle of mapped

pixel "a". (As will be seen later, one embodiment of the

invention has an address translater which lets the user

move the origin point within a "displayable universe" by

changing a so-called Base-address variable. This lets

the user move the renderable area to any desired portion

of the displayable universe.)

To avoid complications, regions of the destination

grid 120 where Xp)<0 or Y¥p<0 are defined as "“non-

renderable". Additional regions of the destination grid,

defined by X)>X,;7p>0 or Yp?Yoprp?9 are also designated

as also being non-renderable. Xcuqp and Yo,rp are user

definable signals. Images or parts of images that map

into a non-renderable region are never rendered (painted)

into the memory means that stores the data of the

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

-~ 52 -

ultimately to-be-displayed light image. This form of

rendition cropping is referred to as “simple clipping"

and it occurs in one embodiment of the invention due to

a decision of a so-called line-fill unit (430, Fig. 4) to

not send a write request to a so-called D-Bus access

arbitration unit (433).

There is another, more-intelligent cropping process

within one embodiment which is called "super-clipping"

and which is optionally engaged or disengaged by the

user. This process will be described later but is

mentioned here to distinguish it from "simple-clipping".

As seen in Fig. 3B, the corner points of a projected

polygon (e.g., "a") can be mapped into a non-renderable

region. Projecting one or more corner points of a

projected polygon into a non-renderable region is a valid

operation. The main consequence of such mapping is that

portions of a projected polygon that lie in a non-

renderable region will never be rendered.

An already-mentioned, key feature of the invention

is the avoidance of unnecessary work. This feature

manifests itself in many ways. One manifestation occurs

when part or all of a projected polygon is found to lie

in a non-renderable region. Boundary walk and/or line-

fill operations are preferably not-performed for parts of

projected polygons that fall into a non-renderable

region. This avoids useless work because resulting image

data within the non-renderable region is, by definition,

never rendered and thus never displayed. Work expended to

produce such never-displayed data unproductively wastes

time and system resources.

Even though a polygon lands in a nonrenderable

region, the process of calculating succeeding destination

coordinates for polygon corners can still be useful if

there is a possibility that succeeding polygons will come

to lie inside a renderable region. In Fig. 3B, for

WO 94/10644

10

15

20

25

30

PCT/US92/09462

~ 53 -

example, the left sides of projected polygons "a", "q"

and “w" lie in a non-renderable region (X)<0) but
succeeding pixels such as b, c, d and part of e lie ina

renderable region. It is therefore useful, and

necessary, to calculate the coordinates of points a0, a3,

q3, etc. even though they are in a non-renderable region.

Note that projected polygon "f" and all its

successors, if any, on the first row of the mapped spryte

lie in non-renderable region. Corner calculating

operations are preferably terminated and thereby left

undone for polygon "f" and all its successors (g, h, i,

etc., not shown) in order to avoid useless work. This a

first form of the above mentioned "super-clipping"

process. If super-clip mode is active, a test is

performed to see if a row then being rendered is heading

forever deeper into a non-renderable region. If it is,

corner calculating and other rendition operations for

that row are terminated.

A second test of the super-clip mode looks for
conditions that indicate the last of a succession of

renderable rows has been encountered. When such a

condition is detected, termination is ordered for a row-

initializing process which calculates where the next
successive (but non-renderable) row of the mapped spryte

starts.

A third test of the super-clip mode looks for

conditions that indicate the last renderable part of the

current spryte has been encountered. When such a
condition is detected, termination is ordered for

remaining rnedering operations associate with that

spryte, and the spryte rendering engine looks to see if

there is any next spryte to be rendered.

The concepts of super-clipping, corner calculations,

line-fill and so forth are better understood by next

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

- 54 -

considering the structure of a first spryte rendering

system in accordance with the invention.

(§4) SPRYTE RENDERING ENGINE OVERVIEW

Figure 4 shows a first image rendering system 400 in

accordance with the invention that uses the above

concepts.

A video random-access memory subunit (VRAM) 410 is

provided within a system memory unit 405. (Memory unit

405 can include other memory devices such as DRAM and

RAM-BUS™.) VRAM subunit 410 includes a first region 410s

that stores compressed or non-compressed codes

representing the colors of respective source pixels a,

b, c, etc., in one or more source sprytes, e.g., 411 and

412. The memory contents of this first VRAM region 410s

correspond to the pixels of the source image 110

(Fig. 1A). This memory region 410s is also referred to

as the source memory region 410s.

A second region 410d of VRAM subunit 410 stores codes

representing the colors of pixels (P,P,P) in the

destination grid 120 (Fig. 1A). This memory region 410d

is also referred to as the destination memory region

410d. (Memory regions 410s and 410d can overlap or even

be one and the same.)

Signals representing source color codes (COLOR(a),

COLOR(b), COLOR(c), etc.) move out in pipelined sequence

from the source memory region 410s, over a system data

bus 403, into a color-mapping portion 401 of system 400.

As they do so, a register 415, which is referred to as

the Source-Control Block register (or SCoB register 415

for short) outputs color-map control signals 415.1 to an

IPS unit 414 and a PPMP unit 416 within the color-

mapping portion 401. The color-map control signals 415.1

control various color-mapping functions of the color-

mapping portion 401.

PCT/US92/09462WO 94/10644

10

15

20

25

30

35

- 55 -

At the same time, the SCoB register 415 outputs

point-map control signals 415.2 to a corner calculating

unit 422 of the destination-point mapping portion 402.

The point-map control signals 415.2 control various

point-mapping functions of the destination-point mapping

portion 402.

The SCoB register 415 is loaded with data originally

placed into system memory unit 405 by a system CPU or

another memory loading source. New color-map control

Signals 415.1 and point-map control signals 415.2 load

into the SCoB register 415 in conjunction with receipt

of a corresponding spryte-render command signal (not

shown) that commands the system 400 to begin mapping a

new source spryte (411 or 412 or a combination of both)

to an image destination region 410d.

The SCoB point-map control signals 415.2 include

digital signals representing the previously mentioned map

control values: XPOS, YPOS, LDX, LDY, DX, DY, DDX and

DDY.

The color-map control signals 415.1 output from the

SCoB register 415 include digital signals for controlling

a so-called Indexed PIN Substituting unit 414 (IPS 414

for short) and a so-called Pen and Palette Manipulating

Processor 416 (PPMP 416 for short). The IPS 413 and PPMP

416 receive color codes extracted from source sprytes 411

and 412 and develop a final color code signal 418 (PEN

signal) therefrom. The final color code signal 418 is

stored in a color-code register 417.

The operational details of the IPS 414 and PPMP 416

are not important for understanding the invention at this

point in the discussion. A more detailed description may

be found in the above-cited copending application of R.

J. Mical et al., entitled, IMPROVED METHOD AND APPARATUS

FOR PROCESSING IMAGE DATA [Attorney Ref. No. MDIO4230].

It is sufficient to understand that the development of

WO 94/10644

10

15

20

25

. 30

35

PCT/US92/09462

- 56 -

the final color code signal 418 is a synchronous

pipelined process and it takes a substantial amount of

time (e.g., 3 or more ticks of the system clock) to move

the data of source spryte 411 from the system memory unit

405 out over the system data bus 403 to and through color

Mapping path 401.

Color mapping path 401 has a pipelined architecture.

Data signals move sequentially in path 401 through a data

decompressor which includes one or more unpacking units

413, then through the Indexed PIN Substituting unit (IPS)
414 and then through PPMP unit 416. Data received from

the IPS 414 is optionally combined within the PPMP 416

with other data received from a second source spryte 412.

(The data of source spryte 412 is pulled from the system

memory unit 405 out over the system data bus 403 into

path 401 in a manner similar to that used for extracting

source spryte 411.) PPMP unit 416 generates the final

color code signal 418 (also referred to as a PEN signal

418) as either: (1) an exclusive function of the data

received from IPS 414; or (2) an exclusive function of

the second spryte data 412 received from memory source

region 410s; or (3) a combined function of the the data

received from IPS 414 and the second spryte data 412.

The PEN signal 418 that is stored in color-code

register 417 therefore represents the result of a

pipelined operation that takes considerable time and

makes use of a number of significant system resources.

The system memory unit 405 and system data bus 403 are

chief among the utilized resources because system

performance is most affected by bottlenecking on the

system data bus 403 and in the system memory 405.

It is worthy to note here that, in many instances,

one word (32 or 16 bits) of source image data 411

represents a large number of ultimately produced PEN

codes 418. The compressed spryte information 411

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

-57 -

constitutes a compressed version of unpacked information

that comes out of the unpacking unit(s) 413, IPS 414 and

PPMP 416. This is a manifestation of the second

corollary to the primary design rule, which says:

Wherever possible or practical, one should use compressed

data formats and leave the data in compressed format for

as long as possible while working on it and decompress

the data only when finally necessary. The advantage is

that source-image data fetches take little bus time on

system data bus 403 thereby freeing time on the bus for

more destination-image write operations (for more

destination pixel paints per second).

Although significant work is expended in creating

PEN signal 418, this does not mean that PEN signal 418

is always used to paint over a destination pixel. In

some cases it is simply discarded (429b) without ever

being so used. In cases where PEN signal 418 is indeed

used to paint over a destination pixel, PEN signal 418

defines either directly or inderectly, the color and/or

brightness and/or texture and/or other physical attribute

of an ultimately diplayed pixel. within an ultimately

displayed light image.

One particular signal of interest, which develops

during the PEN signal 418 developing process, is a so-

called T-bit (transparency bit). The T-bit is output by

the IPS unit 414. An active T-bit indicates that the

downstream-produced PEN signal 418 is not to be painted

(written) over a corresponding one or more destination

pixels.

A soon-described destination-point mapping portion

402 of system 400 responds to active T-bits by leaving

undone any activities within the destination-point

mapping portion 402 that are directed to calculating

which corresponding destination pixels are to be NOT

painted by a final color code signal 418 that has its

PCT/US92/09462WO 94/10644

10

15

20

25

30

35

- 58 -

T-bit activated. This is a manifestation of the prime

design rule corollary which says: Where possible, leave

undone that which ultimately needs not to have been done.

(Activation and deactivation of the T-bit provides a

quick way to respectively create and uncreate a

transparent region within a rendered spryte.)

While a final color code signal 418 develops within

the color-mapping portion 401 of system 400, the

destination-point mapping portion 402 is set to work

converting the point-map control signals 415.2 (XPOS,

YPOS, LDX, LDY, DX, DY, DDX and DDY) into a series of

polygon corner coordinate signals 424 (e.g., aQ-a3). The

earlier-mentioned corner calculating unit 422 performs

this function.

The destination-point mapping portion 402 of image

rendering system 400 then uses the corner coordinate

signals 424 produced by the corner calculating unit 422

to decide which, if any, destination pixels are to be

painted with the final color code signal 418. In one

particular embodiment, the destination-point mapping

portion 402 determines first, how many, if any,

destination pixels are effectively bound within the

borders of the projected polygon that has its corners

(a0-a3) defined by corner coordinate signals 424, and

second, if such destination pixels (P,P,P) exist, what

their addresses are within the system memory unit 405.

In a more preferred second embodiment, fractional

portions of the signals representing corner points a0-a3

are truncated and the results are used as crude

indicators of which, if any, destination pixels are to

be painted with the final color code signal 418.

One or both of a Slow-DPDMu (e.g. "Regis") border

locating unit 426 and a Fast-DPDMu (e.g. "Munkee") border

estimating unit 425 are assigned the task of converting

corner coordinate signals 424 into paint/don't-paint

WO 94/10644

10

15

20

25

30

PCT/US92/09462

- 59 -

decision signals. The paint/don't-paint decision Signals

are used internally within the Slow-DPDMu (e.g. Regis)

and Fast-DPDMu (e.g. Munkee) units, 426 and 425, and

hence they are not seen in the block diagram of Fig. 4.

If the internal paint/don't-paint decision signals

(mot shown) that are generated within the Slow-DPDMu

(e.g. Regis) or Fast-DPDMu (e.g. Munkee) represent an

affirmative conclusion, namely, that a decision has been

made to paint one or more destination pixels, the

deciding one of the Slow-DPDMu (e.g. Regis) 426 and the

Fast-DPDMu (e.g. Munkee) 425 outputs a set of destination

paint-request signals 428 to a destination line-filling

unit 430.

Destination line-fillingunit 430 converts the paint-

request signals 428 into a series of memory write

requests which, when grnated, place the final color code

signal 418 into appropriate locations of destination

region 410d of the system memory unit 405 on a raster

scan basis. (This function is sometimes referred to as

"rasterizing".)

If the Fast-DPDMu (e.g. Munkee) 425 or the Slow-DPDMu

(e.g. Regis) 426 decides that more than one destination

pixel (P,P,P) will be painted, the PEN signal 418 in

color code register 417 is tagged as being “not-

discardable." (Register 417 is tagged as being "not

empty.") This prevents loading of a new color code into

register 417 until all paintings of destination pixels

with the current PEN code are complete.
If only one destination pixel (P) is to be painted,

the PEN signal 418 in register 417 is tagged as being

"discardable." (Register 417 is tagged as being “empty.")

PEN signal 418 is used one time and then, in essence,

discarded. More accurately, once register 417 is tagged

as empty, new data moves down the pipeline to overwrite

PCT/US92/09462WO 94/10644

10

15

20

25

30

35

- 60 -

the old contents of register 417 thereby deleting the old

contents.

When the internal paint/don't-paint decision signals

of Slow-DPDMu and Fast-DPDMu units 426 and 425 represent

a negative conclusion; namely that a decision has been

made by one of these units to not paint any destination

pixels (P,P,P), no paint request signals are sent out to

line-fill unit 430.

The don't-paint decision signals (not shown) often

form first within the Fast-DPDMu 425 but they can also

form later within the Slow-DPDMu 426. If a don't-paint

decision is made, the Fast-DPDMu 425 and Slow-DPDMu 426

do nothing further with the a0Q-a3 corner coordinate

Signals 424 they received from the corner calculating

unit 422. Accordingly, no corresponding paint-request

signals 428 flow to the destination line-filling unit 430

and no corresponding memory write requests are sent

downstream to a soon-described D-Bus access arbitration

unit 433. This non-action is indicated symbolically in

Fig. 4 by the do-nothing result symbol, 429a (DO NOTH).

If the conclusion of activities within Fast-DPDMu

(e.g. Munkee) 425 and/or Slow-DPDMu (e.g. Regis) 426 is
to do-nothing 429a, the correspondingly developed PEN

code 418 of register 417 is tagged as being immediately

"discardable". It is discarded in a subsequent pipeline

cycle as indicated symbolically by 429b in Fig. 4.

At any given time where it can be determined that

the end result of activities then being performed either

in the color-mapping portion 401 or the point-mapping

portion 402 of the image rendering system 400 will simply

be a do-nothing result 429a, it is advantageous to make

such an anticipatory determination as soon as possible

and to avoid or abort any related current or future

operations of the image rendering system 400 that will

ultimately lead to the do-nothing result 429a. Resources

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

-~61-

of the image rendering system 400 such as color-code

register 417 and Slow-DPDMu 426 are then made available

to process new data coming down the pipeline. This is a

manifestation of the prime design rule corollary which

says: Where possible, leave undone that which ultimately

needs not to have been done.

There are several places along the color-mappingpath

(401) and point-to-point mapping path (402) where the

ultimate do-nothing result 429a can be anticipated. ~

If the T-bit output by the IPS unit 414 is active

(true), the Fast-DPDMu (e.g. Munkee) and Slow-DPDMu (e.g.

Regis) respond immediately by aborting (or not beginning

in the first place) their operations for the

corresponding source pixel. Paint-request signals 428

are not sent out for PEN codes that have an active T-

bit. At the same time, an “empty” signal (discardable

tag, not shown) is developed for the color-code register

417 in response to the do-nothing result 429a produced

by one or the other of the Slow-DPDMu 426 and Fast-DPDMu

425. The empty signal enables an ultimate "discard" 429b

of the stored PEN signal 418. The latter discard 429b

effectively occurs when a new PEN code overwrites the PEN

code previously stored in the color-code register 417.

Another situation where the ultimate do-nothing

result 429a is anticipated is the case where the a0-a3

corner coordinate signals 424 define a series of

projected polygons that are forever heading deeper into

a non-renderable region. (This occurs when the earlier-

mentioned super-clipping mode is active.) One or more

of the corner calculating unit 422, the Slow-DPDMu 426

and the Fast-DPDMu 425 recognize this case as a do-

nothing condition 429a and they abort their corresponding

activities.

A "terminate" signal 427b (also referred to as a

super-clip abort signal 427b) is shown in Fig. 4 to

PCT/US92/09462WO 94/10644

10

15

20

25

30

35

~ 62 -

indicate recognition of a super-clip condtion. If the

condition is an encounter of the end of a renderable row

(see Fig. 3B), the corner calculating unit 422 responds

by aborting its current sequence of corner calculations

for that row and makes itself available for calculating

projected corners for a new source spryte row. If. the

super-clip condition is an encounter of a last renderable

row in a mapped spryte (see Fig. 3B), the Slow-DPDMu 426

repeatedly compares the placement of its edge walkers

(border pointers) against the coordinates of the non-

displayable region boundary. when they match, it stops

sending subsequent line-fill requests to the destination

line-filling unit 430. If the super-clip condition is an

encounter of the end of the renderable part of the mapped

spryte (see Fig. 3B), the corner calculating unit 422,

the Slow-DPDMu 426 and the Fast-DPDMu 425 all terminate

their activities for the present spryte and make

themselves available for rendering a next spryte.

Yet a third situation where the ultimate do-nothing

result 429a, 429b is anticipated is the case where, given

certain values of a0-a3 corner coordinate signals 424,

the Fast-DPDMu 425 determines in one clock tick that the

calculations about to be performed in later clock ticks

by the Slow-DPDMu 426 will ultimately fail to produce any

paint-request signals 428. The Fast-DPDMu 425 then sends

an abort signal 427a to the Slow-DPDMu 426. (Abort

signal 427a is also referred to as the Slow-DPDMu abort

signal 427a.)

The cooperation between specifc embodiments of the

the Slow-DPDMu (e.g. Regis) and of the Fast-DPDMu (e.g.

Munkee) is explained in more detail later. For now it

is sufficient to appreciate that this third situation is

another case where the do-nothing result 429a is

anticipated and, as a result, the Slow-DPDMu 426 (e.g.

Regis) and the Fast-DPDMu 425 (e.g. Munkee) abort further

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

- 63 -

operations for the related PEN color code signal 418 and

the PEN code 418 is discarded 429b.

If one or the other of the Slow-DPDMu 426 and

Fast-DPDMu 425 decides to paint one or more destination

pixels, paint-request signals 428 are sent to the

destination line-filling unit 430. The destination line-’

filling unit 430 converts the paint-request signals 428

into memory-absolute requests which, when granted, write

the PEN code 418 then present in color code register 417

to the system memory unit 405 ona time shared basis.

Unit 430 sends a request (REQ) for memory access to a D-

Bus access arbitration unit 433. If there is no higher

priority requestor, the D-Bus access arbitration unit 433

returns an access acknowledge signal (ACK) to the

destination line-filling unit 430 to grant access for the

next available time slot. The destination line-filling

unit 430 then sends a relative memory address signal (AO)

and a read/write indicator to a system memory address

generator 444. The system memory address generator 444

converts each such signal into a single system-absolute

address signal which is placed onto a system address bus

404 that connects to the system memory unit 405.

Destination line-filling unit 430 keeps track of the

number (LEN COUNT) of memory writes needed to complete

each line-paint request 428 sent from one of Slow-DPDMu

426 and Fast-DPDMu 425. |

When the D-Bus access arbitration unit 433 returns

an access acknowledge signal (ACK) to the destination

line-filling unit 430, the destination line-filling unit

430 begins to place a sequence of destination pixel codes

on a tri-stateable data-output port (DO) provided in it.

At the same time, a corresponding sequence of system

memory address signals are output onto the system address

bus 404 by the system memory address generator 444. The

data-output port (DO) of unit 430 connects to the system

WO 94/10644

10

15

20

25

30

PCT/US92/09462

- 64 -

data bus (D-bus) 403. Data transfers occur as transfers

of 32-bit wide datawords.

A priority scheme defines when and for how long the

destination line-filling unit 430 will retain access to

the system D-bus 403. Other access requesting units 431

connect to the D-Bus access arbitration unit 433 and make

requests for access to system memory unit 405. These

other access requesting units 431 are divided into two

classes, CPU and DMA REGISTER-STACK (labeled "STACK" in

Fig. 4). When access contention occurs, STACK gets

highest priority (STACK includes a DMA function of

fetching source spryte data, particularly “packed" source

data 411, and keeping count of spryte row length). The

destination line-filling unit 430 gets second priority

and the CPU gets lowest priority. However, in the case

where the destination line-filling unit 430 has already

obtained access for an immediately preceding D-bus

transfer burst, it gets higher priority than the STACK

and CPU as long as it continues to request more D-bus

time.

Line-fill data is stored as destination image data

in the destination region 410d of the VRAM subunit 410 of

system memory unit 405. Although VRAM subunit 410 is

preferred as the destination for spryte rendition, it is

to be understood that other parts of system memory unit

405 (e.g. DRAM, RAMBUS™, etc.) can also be the targets

of spryte rendition. Similarly, although VRAM subunit

410 is a preferred supplier of source sprytes 411 and

412, it is to be understood that other parts of system

memory unit 405 (e.g. DRAM, RAMBUS™, etc.) can also serve

as suppliers of source sprytes 411 and 412. Also, there

is no system constraints which prevents a spryte-

rendition destination area of system memory unit 405 from

also serving as the supplier of one or both of source

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

- 65 -

sprytes 411 and 412. Thus image rendition can operate on

a recursive basis.

Coordinate-value truncaters 426a and 425a are

preferably (but not necessarily) provided at the upstream

end of each of the Slow-DPDMu 426 and Fast-DPDMu 425 for

truncating away fractional portions of results produced

by corner calculating unit 422. The Slow-DPDMu 426 and

Fast-DPDMu 425 of such an embodiment then work

exclusively with integer values. This aspect of the

invention will be described further in conjunction with

Fig.s 5C and 6D. As a general introduction, it is noted

that the human eye tends to overlook small, localized

irregularities in a bit mapped image composed of hundreds

or thousands of pixels. Thus, if the border of a

rendered polygon is missing one pixel here or has an

extra pixel there, it is usually of no matter. On the

other hand, the eye does catch global irregularities such

as when two lines that are expected to meet or to be

orhtogonal to one another or to be parallel to one

another, fail to do so by a substantial amount. High

precision is maintained in the calculations of the corner

calculating unit 422 to avoid the kinds of graphic errors

that the eye catches more often. But, the same precision

is preferably sacrificed in the operations of the

Slow-DPDMu 426 and Fast-DPDMu 425 for the sake of

minimizing circuit size and speeding performance. This

is really another manifestation of the prime directive.

The human eye is insensitive to errors at the single

pixel level (when viewing an image of many pixels), so

any work invested in eliminating such error is

unnecessary, and thus avoided.

The prime directive manifests itself in yet another

feature of the operations of image rendering system 400.

Although the displayable image can be quite large in

terms of number of pixels on its horizontal and vertical

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

- 66 -

sides, image rendering is preferably restricted to a

small subportion of the displayable image so that the

computational resources of the image rendering system 400

work with relatively small numbers (fewer bits). Circuit

size and/or task-completion time can then be

Significantly reduced. It will be seen in the embodiment

of Fig. 6, that a "Base" value is added to the

destination-paint results produced by the Slow-DPDMu

(e.g. Regis) 626 and/or the Fast-DPDMu (e.g. Munkee) 625

thereby shifting the results to a designated render

window within the overall renderable universe. Units 626

and 625 work with relatively small numbers (ones that

require less bits to represent), and only at the last

necessary moment are those values converted from small

relative values to potentially-large absolute values.

The VRAM subunit 410 includes a sequence output bus

referred to as the S-bus 406. The S-bus 406 transfers

video scan-line data to an image display unit 460 on an

as-needed basis. Sprytes which are mapped and painted

into the destination region 410d of system memory unit

405 then appear within the light image displayed by the

image display unit 460 or define in some way portions of

the displayed light image.

With regard to the light image displayed on the image

display unit 460, it is to be understood that the pixels

of this light image are ultimately transmitted to the

eyes of a human being (not shown) and appreciated by that

human being for their opto-physiological and/or psycho-

visual, graphic content. As such, destination data

signals that are stored in (written to) memory region

410d ultimately manifest themselves as significant parts

of a physically real entity; the displayed image.

In one particular embodiment of the invention, the

psycho-visual or "apparent" resolution of the image

represented by the destination image data stored in

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

- 67 -

region 410d of system memory unit 405 is first improved

before being converted into a light image. This is done

by means of inter-line interpolation (interpolation

between horizontal display lines) and/or inter-column

interpolation (interpolation between vertical display

lines) and/or inter-field interpolation (interpolation

between sequentially displayed fields of a display frame)

and/or inter-frame interpolation (interpolation between

sequentially displayed frames of an animated display).

While not shown, it is to be further understood that

the light image generated by the image display unit 460

typically includes a real-time animated scene. The

viewer controls at least part of the action in the

displayed scene by operating real-time controls (e.g., a

joystick, a mouse, push-buttons). The controls are

operatively coupled to the image rendering system 400

such that they can be downloaded over the system data bus

403 and used to modulate the contents of SCoB register

415 over time in response to real-time commands supplied

by the viewer.

Consider now the introductory discussion in which an

airplane was to be pictured on a display panel such that

it appears to be flying by, towards or away from a viewer

in real time. One of source sprytes 411 and 412 would be

created ahead of time as a size-normalized image of parts

or all of the airplane. Up/down and left/right motion

across the screen is controlled by varying the XPOS and

YPOS signals within the point-map control signals 415.2.

On screen size is controlled by varying the LDY and Dx

signals within the point-map control signals 415.2. On

screen rotation and skew are controlled by varying the

LDX, DY, DDX and DDY signals within the point-map control

Signals 415.2.

Consider further that part of the introductory

discussion in which parts of the airplane were to be

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

- 68 -

pictured as being suddenly brightened by light flashing

off of them (or conversely, suddenly made darker to

simulate a shadow passing across them), and/or suddenly

made transparent because a hole is created through them

(or conversely, suddenly made non-transparent to simulate

mud or paint thrown on a window). In such cases, the

color-map control signals 415.1 of the SCoB register 415

are changed to generated various effects including

generation of an active or inactive transparency bit (T-

bit) and changes in the apparent brightness of the final

color code signal 418.

Since variations in the color-map control signals

415.1 and point-map control signals 415.2 are used to

produce what appear to be real-time changes in the image

generated on the image display unit 460, it follows that

the color-mapping portion 401 and destination-point

mapping portion 402 of the image rendering system 400

need to perform their respective color~-mapping and point-

to-point mapping functions in relatively short time.

One objective of the invention is to perform the

point-to-point mapping function quickly while using

circuitry which consumes relatively little space within

the image rendering system 400. This is done by sharing

circuit resources which perform computational functions,

by sharing results produced by different circuits and by

identifying and avoiding all computational activities

which, if done, will ultimately be found to not have been

needed for painting destination pixels. Preferably, all

the circuitry shown in Fig. 4 is incorporated into a

single integrated circuit chip (referred to as a System

and/or Memory Address Manipulator Chip, S/MAMC) except

for system memory unit 405, image display unit 460 and

the system CPU unit.

Looking more closely at the corner calculating unit

422 of Fig. 4, note that the high precision a0-a3 results

PCT/US92/09462WO 94/10644

10

15

20

25

30

35

-~ 69 -

are fed back into the corner calculating unit 422 for

recursive use.

Note further that corner calculating unit 422 can

contain one or more corner-calculating engines. When two

or more corner engines are provided, they share row-

initialization results. (More will be said about this

in conjunction with the dual-corner engine embodiment of

Fig. 6 and an explanation provided for Fig. 8.) Corner

calculating unit 422 includes a result-saving register

stack 422a which stores running subtotals such as DX++,

DY++ and a0++.

At the start of spryte rendition, stored value a0++

is set equal to the XPOS and YPOS coordinates of mapped

corner point a0. It is thereafter increased by signed

values LDX and LDY to successively point to image points

a3, q3, w3, etc. (see Fig.s 3A and 3B). In similar

fashion, stored values DX++ and DY++ are set equal to the

DX and DY values at the start of spryte rendition.

Thereafter they are successively increased by respective

values DDX and DDY as spryte rendition steps from

a0++ = a0 to a0t++ = a3, q3, w3, etc.

The Slow-DPDMu (e.g. Regis) 426 and Fast-DPDMu (e.g.

Munkee) 425 cooperate with one another to produce paint-

request signals 428 in minimal time. For certain values

of corner coordinate signals 424, the Fast-DPDMu (e.g.

Munkee) 425 can accurately determine in one clock tick

that, if the decision were left to the Slow-DPDMu 426,

the Slow-DPDMu 426 will ultimately decide that no paint-

request signals 428 are to be sent to the destination

line-filling unit 430, or that a request for painting

only one destination pixel will be sent, or that a

request for painting some other small number (e.g., 2 or

3) destination pixels will be sent. In such cases, the

Fast-DPDMu (e.g. Munkee) steps in and sends the paint-

request 428 on its own. The more-time consuming

PCT/US92/09462WO 94/10644

- 70 -

operations of the Slow-DPDMu (e.g. Regis) are

circumvented in this case. If the Fast-DPDMu (e.g.

10

15

20

25

30

35

Munkee) is not sure what the Slow-DPDMu 426 would have

done, it leaves it to the Slow-DPDMu (e.g. Regis) to

perform the paint/don't-paint decision-making task.

The basic operating principles behind the Slow-DPDMu

(e.g. Regis) 426 and the Fast-DPDMu (e.g. Munkee) 425 are

now explained in more detail below.

($5.1) GENERAL EXPLANATION OF REGION FILL METHOD

Referring to Fig. 5A, consider a projected polygon

480 having corner points with Xp, Yp coordinates of

a0=(3.125, 1.5), al=(6.875, 1.5), a2=(2.0, 8.0) and

a3=(8.0, 8.0). The line 482 between corner points al-

a2 satisfies the equation: 3Y, = -4X, + 32. The line 483

between corner points a0-a3 satisfies the equation:

3Yp = 4X) - 8.

It will be assumed here that the paint/don't-paint

decision-making algorithm operates by first determining

what, if any, destination pixels have their top-left

corner inside projected polygon 480. Those that do not

are not painted with the corresponding color/shade.

Those that do, may be painted, provided they meet certain

other criteria, e.g., they are not part of the bottom

most row of the polygon or cover the right most points of

polygon. (It is to be understood that this not the only

way make the paint/don't paint decision. Another

algorithm. REGIS_FILLBIN, will be described later.)

To determine what destination pixels have their top-

left corners within the bounds of projected polygon 480,

a boundary walk is conducted along the left and right

sides from the top corner points of projected polygon 480

(in the illustrated case there are two topmost corner

points, a0 and al) to the bottom corner points of

projected polygon 480 (in the illustrated case there are

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

-71-

two bottom-most corner points, a2 and a3). The

Slow-DPDMu 426 is assigned the task of carrying out the

boundary walks.

Boundary-walking proceeds by moving a set of

hypothetical edge-pointers, EPL and EPR, from one point

to a next along respective left and right edges of the

polygon 480, with each next edge point being one that has

a next higher integer value for its Yp coordinate.

Boundary-walking step 490, for example, moves left edge

pointer EPL along line 483 from starting corner point

a0=(3.125, 1.5) to a point having coordinates Xp=3-5, and

Yp= INTEGER(Y, of a0) + 1 = 2.0. At the same time,

boundary-walking step 491 moves right edge pointer EPR

along line 482 from corner point al=(6.875, 1.5) to a

point having coordinates Xp=6.5, and Yp= INTEGER(Y, of

a0) + 1 = 2.0. In both cases, the Yp coordinate of the

next point in the boundary walk is calculated first. The

INTEGER function simply truncates the fractional part of

the preceding Yp coordinate and returns the remaining

integer portion. The Xp) coordinate is then calculated

using a Bresenham or other line approximating algorithm

for points along respective lines 483 (a0 to a3) and 482

(al to a2).

Next, the two Xp results are truncated. The lower

Xp value (left border point) is incremented by one. For

the illustrated boundary-walking steps 490 and 491, the

results are: INTEGER(3.5)+1=(3.0)+1=4.0 and

INTEGER(6.5)=6.0.

Next, paint-request Signals 428 are generated to

paint destination pixels having top left coordinates of

Yp=2-0 and the calculated left and right Xp values, 4.0

and 6.0, plus any in between integer values, e.g., 5.0.

The three top-left corners whose destination pixels

are to be painted are shown as bold dots in Fig. 5A,

located inside the boundaries of projected polygon 480.

WO 94/10644

10

15

20

25

30

PCT/US92/09462

- 72 -

The destination pixels are not drawn but understood to

have top-left corners on Yp)= 2.0 points X)= 4.0, 5.0 and

6.0. The same destination pixels have bottom-right

corners on Yp= 3.0 points X,= 5.0, 6.0 and 7.0. In one

embodiment of the invention, the destination line-

filling unit 430 ignores the last (right most) in any

series of corner point it receives. In such a case, the

destination pixels having top-left corner points

(4.0, 2.0) and (5.0, 2.0) are painted with a mapped color

belonging to projected polygon 480 but the destination

pixel having top-left corner point (6.0, 2.0) is not

painted.

Boundary walking steps 492 and 493 follow steps 490,

491 and similarly produce a paint request for the

destination pixel having a top left corner at Xp=5-0 and

Y¥p=3.0.

Boundary walking steps 494 and 495 will discover a

Single point 496 (Xp/=5.0, Yp=4-0) lying directly on

boundary lines 482 and 483. The simple top-left corner

algorithm will conclude that this point 496 is not inside

the polygon and it will not send a paint request signal

for this point to the destination line-filling unit 430.

After point 496, the left-edge pointer EPL continues

to track the left boundary of projected polygon 480 (from

point 496 to corner point a2) and the right-edge pointer

EPR continues to track the right boundary of projected

polygon 480 (from point 496 to corner point a3). When

left-edge pointer EPL reaches its bottom corner point,

a2, and right-edge pointer EPR reaches its bottom corner

point, a3, the boundary walking process stops without

sending a line fill request 428 to destination line-

filling unit 430. The destination pixels which have

their tops abutted to the bottom of projected polygon

480, are therfore not painted.

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

- 73-

(§5.2) GENERAL EXPLANATION OF Fast-DPDMu (e.g. Munkee)

SHORT-CUTMETHOD

Referring to Fig. 5B it is seen that in some cases

a projected polygon 497 will enclose one and only one

point with integer values for Xp and Yj. It is seen that

in some other cases, 498 or 499, a projected polygon will

enclose no point with integer values for Xp and Yp- In

such cases, the result of a complex (and time-consuming)

boundary-walk will simply result in a decision: to not

paint any destination pixel or to paint only one

destination pixel.

The Fast-DPDMu (e.g. Munkee) 425 obtains the corner

coordinates a0-a3 (corner coordinate signals 424),

estimates the distances separating the corner points, and

decides from these differences whether it can accurately

determine on its own if only one or no destination grid

points with integer values for Xp and Y,) are contained

between corner points a0, al, a2, a3.

If the Fast-DPDMu 425 decides that it can perform the

determination accurately, and it concludes that no more

than one destination pixel (P) will. be painted, the

Fast-DPDMu 425 sends an abort signal 427a to the

Slow-DPDMu 426. The Slow-DPDMu 426 aborts any

calculations it may have begun for the current projected

polygon and indicates that it is ready to begin a new set

of calculations. The Fast-DPDMu 425 at. the same time,

either does nothing (for the case where the Fast-DPDMu

425 decides no destination pixel is to be painted) or

issues paint-request signals 428 to the destination line-

filling unit 430 for initiating the painting of a single

destination pixel (for the case where Fast-DPDMu decides

only one destination pixel is to be painted.

If the Fast-DPDMu border estimating unit 425 decides

that it cannot accurately determine the ultimate outcome

of the calculations that are being started within the

WO 94/10644

10

15

20

25

_ 30

PCT/US92/09462

-~ 74 -

Slow-DPDMu 426 for a current polygon, the Fast-DPDMu 425

does nothing and thereby allows Slow-DPDMu 426 to

complete its more comprehensive calculations. The

Slow-DPDMu 426 then issues or does not issue appropriate

paint-request line-fill request signals 428 to the

destination line-filling unit 430 in accordance with the

results of its own calculations.

In an alternate embodiment, the Slow-DPDMu (e.g.

Regis) does not begin any substantive calculations until

it receives a go-ahead signal ‘(which replaces abort

signal 427a) from the Fast-DPDMu (e.g. Munkee). The

Fast-DPDMu (e.g. Munkee) therefore looks over the data

initially, and in cases where it cannot produce the

paint-only-one pixel command on its own or the don't-

paint decision on its own, it will pass the decision-

making task over to Slow-DPDMu (e.g. Regis).

Fig. 5C illustrates another method for making

paint/don't-paint decisions. This method will be

referenced here as the truncated-corners method. It

explains in relatively basic and simple terms how a below

described Regis unit 626a and Regis-Fillbin algorithm

works.

Instead of using the precise coordinates for corner

points a0-a3, as generated by the corner calculating unit

422, truncater portion 426a of the Slow-DPDMu 426

truncates the fractional portions of those signals to

produce corresponding signals representing "truncated"

corner points Ta0, Tal, Ta2, and Ta3 in the illustrated

case. Truncated point Ta0 is produced by finding the

point with the next lowest or equal integer values of Xp

and Yp) relative to the coordinates of point a0.

Truncated point Tal is similarly produced, by performing

the truncating operation on the coordinates of point al.

Truncated points Ta2 and Ta3 are similarly produced by

PCT/US92/09462WO 94/10644

10

15

20

25

30

- 75 -

performing the truncating operation on the coordinates

of respective corner points a2 and a3.

Truncated point Ta0 is interperted as an initial

request to paint the destination pixel Pl for which it

serves as the top left corner. Hence, destination pixel

Pl is shown shaded in Fig. 5C. MTruncated point Ta3 is

interperted as an initial request to paint the

destination pixel P2 for which it serves as the top left

corner. Hence, destination pixel P2 is also shown

shaded. And similarly, truncated points Tal and Ta2 are

interperted as an initial request to paint respective

destination pixels P3 and P% for which they serve as the

top left corners. Hence, destination pixels P3 and P5

are also shown shaded.

Truncated points Ta0, Tal, Ta3, and Ta2 in the

recited order represent the respective top, right-

middle, left-middle and bottom corners of a triangle.

The triangle is the resultant shape that polygon "a"

takes on after the values of its corner coordinates are

truncated.

A boundary walk is performed with the left and right

edge-pointers both starting at top point Ta0. They both

send the coordinates (Xp=m, Yp=n-1) of their starting

point Ta0 to the line~filler as a paint request. Left-

edge pointer EPL (not shown, see Fig. 5A) moves down

along the left side of triangle Ta0-Tal-Ta2-Ta3 using a

Breshenham-like algorithm to middle-left point Ta3.

Right-edge pointer EPR (not shown) moves down along the

right side of triangle Ta0-Tal-Ta2-Ta3 by also using a

Breshenham-like algorithm to get to middle-right point

Tal. When the edge pointer, EPL and EPR, are both caught

up with each other on a same integer Yp coordinate

(Yp=n-0), they send their respective left and right Xp

values (Xp=m-1 and Xp=m) to the line-filler.

PCT/US92/09462WO 94/10644

10

15

20

25

30

35

~ 76 -

Both edg~pointers then continue to trace their

respective left and right borders of truncation~formed

polygon Ta0-Tal-Ta2-Ta3. EPL uses a Breshenham-like

algorithm to get from middle-left point Ta3 to bottom

point Ta2. EPR uses a similar Breshenham-like algorithm

to get from middle-right point Tal to bottom point Ta2.

The process stops when they reach the bottom of

truncation~formed polygon Ta0-Tal-Ta2-Ta3. The

coordinates of point Ta2 are not sent to the line filler

430 because it is the bottom most point of the

truncation-formed polygon Ta0-Tal-Ta2-Ta3.

The line-filler in the truncating embodiment of the

invention decides on its own to not paint the right most

destination pixel on any request it receives from the

truncated version of the Slow-DPDMu 426 (e.g. Regis 626)

to paint a horizontal having a constant Yp coordinate

value, and left and right Xp) coordinates. Thus, when the

first set of Yp: Xp-left, Xp-right are received by the

line-filler 430 for top point Ta0, the line filler

notices that destination pixel Pl is the right most pixel

of its destination grid row and the linefiller decides

not to over-paint destination pixel Pl with the color of

projected polygon "a". When the next set of Yp, Xp-left,

Xp-right are received by the line-filler 430 for middle

points Ta3 and Tal, the line filler over paints

destination pixel P2 with the color of projected polygon

"a" but the line-fiiler detects that destination pixel P3

is the right most pixel of its destination grid row and

the line-filler hterefore decides not to over-paint

destination pixel P3 with the color of projected polygon

"a". The line-filler does not receive the coordinates of

point Ta2 because the edge walkers stop their walks when

they get to the bottom of the truncation-formed polygon

Ta0-Tal-Ta2-Ta3 but before they send the coordinates to

the paint filler.

PCT/US92/09462WO 94/10644

10

15

20

25

30

35

-77 -

The end result of the above steps is that only

destination pixel P2 gets painted with the color of

projected polygon "a".

Note that projected polygon "a" of Fig. 5C is different

from mapped polygon "a" of earlier described Fig. 1B. In

Fig. 1B corner a2 resides over destination pixel P3 as

does corner al. If Fig. 1B had been used as the basis

for the above example, no destination pixel would have

been painted in the end. This is because the truncations

of corner points al and a2 in Fig. 1B woulb both fold to

the top-left corner of P3. Regis considers such multiple

folding simply as a single point, call it Tala2 (not

shown). Ta3 and Tala2 would then form the bottom-most

left and right points of the truncation-formed polygon

Ta0-Tala2-Ta3 (not shown) while Ta0 would still be the

top point. Regis would not send Ta3 and Tala2 to the

line-filler because they are the bottom-most points. The

line-filler would ignore Ta0 because it is the rightmost

on its horizontal line, and hence no destination pixel

would be painted for the "a" polygon of Fig. 1B.

($6) OVERVIEW OF PLURAL CORNER-ENGINES EMBODIMENT

Figure 6 (composed of subfigures 6A-6F) is a block

diagram of a more complex, spryte rendering system 600

in accordance with the invention. Except where otherwise

stated, all circuit components are CMOS (complementary

metal-oxide-semiconductor technology) and all are

implemented on a single integrated circuit chip (using

0.9 micron or smaller line widths).

The illustrated spryte rendering system 600 includes

plural row initializers (70la, 701b, shown in Fig. 6D),

plural corner-calculating engines (702a, 702b), plural

Regis and Munkee units (625a, 226a, 625b, 226b), plural

math platforms (700a, 700b, which are used on a time-

shared basis by the row-initializers, corner engines,

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

- 78 -

Munkee units and Regis units), plural color code

unpackers (613a, 613b, shown in Fig. 6A) and plural

system memory banks (left bank 605a and right bank 605b,

shown in Fig. 6C). .
In many instances, like reference numbers in the

"600" series are utilized in Fig. 6 for elements which

have like-numbered counterparts numbered in the 400

series in Fig. 4.

(§6.1) DETAILED DESCRIPTION OF COLOR-MAPPING PATHS

System 600 is divided into a color-mapping section

(or “path") 601 (see Fig.s 6A-6C) and a destination-

point mapping section (or "path") 602 (see Fig.s 6D-6F).

A 32-bit wide system data bus (D-bus) 603 couples the

data input/output ports of two 16-bit wide system memory

banks 605a and 605b (left and right memory banks) to data

input portions of the color-mapping section 601 and

destination-point mapping section 602.

A color-codes FIFO 609 (First-in First-out buffer

unit shown in Fig. 6A) provided within the color-mapping

section 601 connects to the 32-bit wide D-bus 603 for

receiving compressed or noncompressed color codes

representing source pixels in first and second source

image rows (current and previous spryte rows). The

compressed or noncompressed color codes are delivered as

two, side-by-side, 16-bit wide datawords, one

representing pixels of a "previous" spryte row and the

other representing pixels of a "current" spryte row. As

they flow out of FIFO 609, the two datawords move along

generally separate and parallel, color-mapping subpaths.

One subpath performs color-mapping for the pixels of the

"previous" source spryte row and the other subpath

performs color-mapping for the pixels of the "current"

source spryte row. The "previous" and "current" source

spryte datawords are originally prestored in respective

WO 94/10644

10

15

20

PCT/US92/09462

- 79 -

left and right banks (605a, 605b) of the system memory

unit (605).

(Note: the "previous" and "current" designations

refer to a graphics image interpolation process which

occurs downstream, after destination pixels are painted.

The interpolation process is not germane to the present

discussion, but for purpose of completeness, "previous"

refers to an upper row in the interpolation processand

"current" refers to an underlying, next row of the

interpolation process.)

A run-length compression algorithm is preferably

used to minimize the amount of time required for

transferring the “previous" and "current" color code

datawords over the system D-bus 603 into FIFO 609. There

are 2 basic formats of spryte image data which can be

received by the FIFO 609: Totally Literal Format (TLF)

and Non-totally Literal Format NLF). There are sub-

groups within each basic format. The following

discussion explains the formats in more detail.

In non-totally literal sprytes, control data is

intermingled with color-defining data. NLF image data

‘consists of groups of words that represent source scan

25

30

35

lines of variable lengths and variable bits-per pixel

assignments for representing color data. In totally

literal sprytes (TLF), the image data is pure image data

(there are no intermingled control codes).

Non-totally literal (NLF) sprytes can be compacted

to save both memory space and rendering time. Each

source scan line of data has its horizontal word size

specified as part of the spryte data that is passed to

FIFO 609.

. Totally literal (TLF) sprytes have rectangular

formats similar to that of conventional sprites. (Each

row is of a same number of pixels.) The rectangle

dimensions are specified in one or more preamble words

WO 94/10644

10

15

20

25

30

35

40

PCT/US92/09462

- 80 -

that are stored in system memory 605 and associated with

the data of each spryte. There is no control data passed

to FIFO 609 for this kind of image data.

preamble

A first preamble word is provided in system memory 605

for ALL sprytes. This is the data-structure definition

preamble. It contains the following 32 data specific

control bits for the source data:

B31-~->B28 = Reserved for future use.
B27->B21 = Reserved, set to 0.
B20 = PACKED This is identical to a PACKED

bit found in the SCoB
B19->B16 = Reserved, set to 0.
B15->B6 = VCNT Vertical number of source

data lines in this image data
-1. (10 bits)

B5 = Reserved, set to 0.
B4 = LINEAR O=use PIP for output of IPN, l1=use

PIN for output of IPN
B3 = REP8 l=replicate the bits in the linear

8 SPRYTE, O=fill with 0
B2->BO0 = BPP bits per pixel,=pixel type

First Preamble Notes:

VCNT is loaded into a hardware counter in a so-

called SPRYTE requestor of a system DMA engine. The

counter is decremented at the end of the fetching of each

source scan line of data. When the count is at -1, there

are no more source lines of data in the object (in the

Spryte). Note that SPRYTE processing does not end here,

this is merely one of the events that is required to end

a SPRYTE. (A linked-list defines what "next" Spryte

should be rendered. VCNT = line count -1. An initial

value of -1 for VCNT is the maximum value. It will cause

a REAL BIG SPRYTE to be fetched. There is no ‘zero line

count' value allowed for a spryte.

The LINEAR bit only applies when the BPP (bits per

pixel setting, which is used by a below described IPS

unit 614) is 8 bits or 16 bits. In those cases, there

PCT/US92/09462WO 94/10644

10

15

20

25

30

35

40

- 81 -

are enough PIN bits (output from multiplexer 524) to

provide a 15 bit portion of the 29-bit wide IPN signal

output from IPS 614 without using the PIP (a look-up RAM

inside the IPS 614) to fill the rest. Since the PIN bits

are spread linearly across the IPN, and it will result in

a linear translation from PIN to IPN, the mode is called

'LINEAR'. The only 2 valid uses are for LINEAR 8 and

LINEAR 16 (as opposed to 'normal' 8 or 16). .

The REP8 bit only has an effect in the 8 bit source

data size.

The three BPP bits B2:B0 decode as follows:

BPP DataSize PIPDMASize IPNTransBits D-bit R-Mul G-Mul B-Mu]
0 = reserved 4 PIP words Reserved?) (?) 0 0 0
1= 1 bit 4 PIP words PIN(0} PIP{i5} 0 0 0
2= 2 bit 4 PIP words PIN{1..0} PIP[i5] 0 0 0
3 = 4bit 8 PIP words PIN{3..0] PIP[15} 0 0 0
4= 6 bit 16 PIP words _—PINJ5..0} PIN[5}] 0 0 0
5 = 8 bit 16 PIP words _PIN[7..0] PIP[15}_ PIN{7..5] PIN[7..5] PIN[7..5]
6 = 16 bit 16 PIP words PIN[/4..0] PIN(15] PIN{13..11] PIN[10..8] PIN[7..5}
7 = reserved 16 PIP words Reserved(?) (7) 0 0 0

Second preamble word:

If the PACKED bit (in the SCoB) is '0', then the

source data is totally literal (TLF). For totally

literal sprytes, there is a second preamble word. It

contains the horizontal pixel count for each line of the

source data and the word offset from one line of source

data to the next. It also contains the other special

bits needed for totally literal sprytes. Note that these

bits are only valid while the totally literal spryte is

being rendered. These bits are not used ...they are

GATED AWAY... when the current spryte is not totally

literal.

B31->B24 = WOFFSET(8) Word offset from one line of data to the next (-2) (8 bits). Bits 23-
> 16 are set to 0.

B25->B16 = |§WOFFSET(10) Word offset from one line of data to the next (-2) (10 bits). Bits 31-
>26 are set to 0.

B15 = Reserved, set to 0. /
Bl4 = NOSWAP 1=disable the SWAPHYVbit from the general

SPRYTE control word.
B13->B12 = TLLSB IPN PPMPblue LSB source. 0=0, 1=IPN[0], 2=IPN[4], 3=IPN{5].
Bll = LRFORM Left/right format.
Bi0->BO = #$TLHPCNT Horizontal pixel count (-1) (11 bits).

PCT/US92/09462WO 94/10644

10

15

20

25

30

35

- g2 -

NOTESFORPREAMBLEWORDTWO

The TLLSB bits perform the same function that the

IPNLSB bits perform in normal sprytes.

If LRFORM=1, the source data has the frame buffer

format of the screen as a source format. Vertically

adjacent pixels in the rectangular display space are

horizontally adjacent in the 2 halves of a memory word.

Only useful for 16 BPP totally literal. The unpacker

will disable the 'B' FIFO data requests and alternately

place pixels from the source into both FIFOs. Left 16

bits go to 'A' FIFO, right 16 bits go to 'B' FIFO. The

data requests for ‘'A' FIFO will be made in a request

‘'pair' to insure the reduction of page breaks and '6 tick

latencies'. The hardware will lock the corner engines

(regardless of the LCE bit).

TLHPCNT is the number of pixels in the horizontal

dimension (-1). This is the number of pixels that will

be attempted to be rendered for each horizontal line of

the spryte. This value is used by the data unpacker. A

‘'0' in the value will attempt 1 pixel. A '-1' in the

value will attempt many pixels. There is no ‘zero pixel

count' value.

WOFFSET is the offset in words of memory from the

start of one line of data to the start of the next line

(-2). If the BPP for this spryte is 8 or 16, use

WOFFSET(10), else use WOFFSET(8). This number is a zero

for the minimum sized spryte (2 words).

By arranging WOFFSET and TLHPCNT correctly, you can

extract a rectangular area of data out of a larger sized

rectangular area of data.

The DMA engine will also use WOFFSET as the length

value in the normal data fetch process. If WOFFSET and

TLHPCNT are set badly, WOFFSET may expire first and the

DMA engine will behave abnormally.

PCT/US92/09462WO 94/10644

10

15

20

25

30

35

-~ 83 -

SPRYTE Packed Data Formats

Offset

The first one or two bytes of a packed spryte block

define the words-offset from the start of this block of

source data to the start of the next block of data (-2).

In sprytes with BPP of 6 or less, only 1 byte (bits

31->16) of offset information is used. However, the

actual offset value has a maximum size of 10 bits. The

rest of the bits in the 2 bytes are set to 0. 10 bits

of word offset is equivalent to 2048 pixels at 16BPP. 8

bits of word offset at 6 BPP is equivalent to 1365

pixels. The requirement for four lines of 320 pixels

each is 1280 pixels.

This offset is used by the DMA controller to both

calculate the start of the next block of data (by adding

it to the start of the current block), and to set the

maximum length (by subtracting 1 and placing it in the

DMA length register) of the current DMA transfer.

The word offset value (1 or 2 bytes) is not used by

the data unpacker. It will arrive at the data unpacker

at the start of each received block of a packed spryte

and must be discarded.

Control byte and PIN data:

The next data in a packed spryte block, after the

word offset byte or bytes, is comprised of 1 control byte

and 0 or more bits of PIN data. The number of bits used

for each PIN is specified by BPP.

The control byte consists of a 2 bit code and a 6

bit count arranged as follows. "Count" represents the run

length count that is to be used by the unpacker (the

number of times that the same code is to be repeated).

00 ’xxxxxx’ = End of block, xxxxxx need not be present

01 ’count’= Generate literal PINs for ’count +1’

10 ’count’= Define as ’transparent’ for ’count +1’

11 ’count’= Generate packed ’PIN’for ’count+1’

WO 94/10644

10

15

20

25

30

PCT/US92/09462

- 84 -

The 'transparent' definition will actually output an

active '‘transparent' bit within the 29-bit wide IPN

signal output from the IPS 614. This will cause the

remainder of the pixel processing pipe to ignore this

pixel. For safety purposes, we set the data value output

by the unpacker (613a or 613b) at this time to be zero

for possible use by the IPS for the D-Mode selector. The

IPS outputs a corresponding transparent bit (T-bit) as

part of its output. |

Unpackers 613a and 613b pop compressed spryte data

signals 6lla and 611b serially and respectively from the

output of the color-codes FIFO 609 and begin to

decompress them in accordance with the above-described

control signals. The control signals are generated by a

control section (not shown) of the system 600. The 16-

bit wide datawords held in color-codes FIFO 609 can be

coded as 1 bit per pixel, or 2 bits per pixel (BsPP), or

4 BsPP, or 6 BSPP, or 8 BSPP or 16 BsPP.

Unpacked color code signals (Pen Index Numbers or

PIN's for short) flow from unpacker 613a through a

pseudo-FIFO comprised of an R(OUT) register 514, an

R(HOLD) register 516, multiplexer 520, and an R(IPS)
register 522. IPS-input multiplexer 524 represents an

example of a data consuming circuit which accepts or

refuses to accept data from the pseudo-FIFO, 514, 516,

520, 522.

The pseudo-FIFO is named as such because it is not

a full-fledged FIFO buffer but performs essentially the

same function while using less circuit space. A pseudo-

FIFO (or p-FIFO for short) functions as a variable delay

means. It is used to resynchronize sequential dataword

streams that are supplied out of phase relative to one

another by as much as three ticks of the system clock.

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

- 85 -

A p-FIFO control circuit 510 is provided to sequence

through a set of states wherein second and third

registers, 516 and 522, of the p-FIFO are designated as

"empty" or "full." "Full" means that the register holds

data that is valid and has not yet been "popped out" of

the p-FIFO.

Initially, both registers, 516 and 522, are

designated as empty. In each tick of the system clock,

if both of p-FIFO registers, 516 and 522, are empty, they

are both simultaneously loaded with the same dataword

(e.g., dataword #1) held in source register (R(OUT)) 514

and the status of third register R(IPS) 522 is set to

full. In all cases, if the third register R(IPS) 522 is

set to full, the status of the second register R(HOLD) is

also set to full.

In the next clock cycle, if the data consuming

circuit 524 accepts the output (e.g., dataword #1) of

register R(IPS) 522, both of p-FIFO registers, 516 and

522, are designated as empty. At the same time, register

R(OUT) 514 loads with the next dataword (e.g., dataword

#2) of the sequence. .

On the other hand, if the data consuming circuit 524

refuses the output (dataword #1) of register R(IPS) 522,

that output is simply discarded, and the two duplicate

copies (of dataword #1) in registers 514 and 516 shift

down respectively for continued storage in respective

registers 516 and 522. Registers 516 and 522 continue

to be designated as full.

In the next clock tick, if the data consuming

circuit 524 still refuses the output (dataword #1) of

register R(IPS) 522, that output is simply discarded, and

the duplicate copy (of dataword #1) in register 516

shifts down for continued storage in register 522. The

next dataword (#2) of register 514 shifts into register

516 and register 514 thereafter loads with yet another

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

- 86 -

data word (dataword #3) of the sequence. Registers 516

and 522 continue to be designated as full.

A similar, second pseudo-FIFO (p-FIFO), formed of

elements 515, 517, 521, 523, carries the decompressed

PIN's output by unpacker 613b. Corner-selecting

multiplexer 524 accepts the output of one of the p-

FIFO's and supplies the accepted output of one or the

other of R(IPS) register 522 and R(IPS) register 523 to

the Indexed PIN Substituting unit (IPS) 614. .

IPS unit 614 includes a PIN-Indexed Palette

substitution table (a PIP RAM) 526 which may be

programmably inserted into the signal path to convert PIN

signals (which are initially coded as 1l-to-16 bits per

pixel) into 29-bit wide IPN signals (Indexed Pen

Numbers). The PIP-RAM downloads the conversion data held

within it from system memory 605 over the bus 603. The

IPS includes other means (not shown) for converting a PIN

signal into a longer IPN signal in addition to or as an

alternative to the PIP look-up SRAM 526.

One bit within each 29-bit wide IPN signal the so-

called T-bit (transparency bit) which has already been

mentioned. It is shown being stripped away and

transferred to the point-map section (into Fig. 6D) by

line 527. When active, the T-bit 527 indicates that a

downstream-produced PEN signal 618 will not be used to

paint a corresponding destination pixel.

Note that the corner-selecting multiplexer 524

functions to funnel the parallel result signals of

unpackers 613a and 613b serially into a single IPS unit

614. This saves area on system integrated circuits. The

IPS is relatively fast, but consumes circuit area because

it includes the PIP-RAM 526. The unpackers 613a and 613b

and their respective p-FIFO's require more time to

process their signals but require less circuit area.

Thus a trade off is made in the design. Slow functioning

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

- 87 -

circuits (e.g., the unpackers) are provided redundantly

to speed performance while fast functioning circuits

(e.g., the IPS) are provided as single, serial processing

units to reduce consumption of circuit area.

IPS unit 614 sends its output data (IPN's) into an

IPS-OUT FIFO 528 (shown in Fig. 6B). The IPS-OUT FIFO

528 is only 28-bits wide because the T-bit does not

continue to move downstream through the color-map section

601. At the output of the IPS-OUT FIFO 528, another bit,
a so-called R-mode bit 531 is stripped away and sent into

the point-map section 602 (to Fig. 6E), thus leaving 27

bits of the originally 29-bit wide IPN signal still

flowing downstream through the color-map section 601.

At roughly the same time that 28-bit IPN code signals

flow into IPS-OUT FIFO 528, corresponding second spryte

code signals 612a and 612b ("previous" and "“current")

move froma "current frame buffer" (CFB) of system memory

605, through multiplexer 529 into a CFBD FIFO 530. (CFBD

stands for "current frame buffer data.") Multiplexer 529

selects the order and timing of insertion of the CFBD

data signals into FIFO 530. Signals 612c and 612d

represent respective signals 612a and 612b delayed by one

clock tick.

Color code signals output from IPS-OUT FIFO 528 (27-

bits wide) and CFBD FIFO 530 (16-bits wide) load together

synchronously into a 43-bit wide pipeline register 532.

They synchronize according to their respective insertion

orders into FIFOS 528 and 530. The output of pipeline

register 532 feeds a PPMP unit 616. The output of

pipeline register 532 also wraps back to feed a "Dolo IPN

Recycle" signal back to IPS unit 614 (Fig. 6A). When the

R-mode is active, application of the IPN signal to the

PPMP 616 (Fig. 6B) is delayed so that a corresponding

current-frame buffer PEN code can be fetched out of

memory and loaded into CFBD FIFO 530 at roughly the same

PCT/US92/09462WO 94/10644

10

15

20

25

30

- 88 -

time that the wrapped-back IPN signal re-enters IPS-OUT

FPIFO 528. A corresponding address wrap-back path 565

(Fig. 6£) is provided within the circuitry of the point-

mapping section 602.

PPMP unit 616 merges the signals received from the

IPS-OUT FIFO 528 and the CFBD FIFO 530 to form a "Pump-

pin-ulated" 16-bit wide signal which is simply referred

to as the PEN signal 618.

"Previous" and "current" PEN signals 618 are

alternatingly generated by the PPMP unit 616 and

alternatingly stored in registers 576 and 577. Left-

side register 576 feeds one input of multiplexer 580.

The PEN signal line (618) feeds a second input of

multiplexer 580. Multiplexer 580 feeds the input of a

16-bit wide, tri-state left-bus driver 582. A similar

arrangement is found for right-side register 577,

multiplexer 581 and tri-state right-bus driver 583. The

outputs of 16-bit wide drivers 582 and 583 merge

(represented by circled "M" in Fig. 6C) into the 32-bit

wide D-bus 603.
The outputs of 16-bit wide drivers 582 and 583 also

feed the inputs of respective 16-bit wide data-output

registers 594 and 595 (see Fig. 6C). Register 594 drives

the data-input port of left memory bank 605a (bits 31

through 16). Register 595 drives the data-input port of

right memory bank 605b (bits 15 through 00). Left and

right memory banks 605a and 605b or located off-chip as

indicated by the off-chip designating region.

The data-output ports of respective left and right

memory banks 605a and 605b supply corresponding 16-bit

wide, on-chip input latches 596 and 597. Input latch 596

drives a left-side tri-state bus driver 598. Input latch

597 drives a right-side tri-state bus driver 599. The

outputs of 16-bit wide drivers 598 and 599 merge

WO 94/10644

10

15

20

25

30

PCT/US92/09462

- 89 -

(represented by circled "M") into the 32-bit wide, chip-
internal D-bus 603. .

Note that register 576 (Fig. 6B), multiplexer 580,
register 594 (Fig. 6C) and an internal register (not

shown) of memory bank 605a are arranged to define a left-
side, memory feeding, pseudo-FIFO. Register 577,

multiplexer 581, register 595 and an internal register
(not shown) of memory bank 605b are similarly arranged

to define a right-side, memory feeding, pseudo-FIFO.

($6.2) DETAILED DESCRIPTION OF DESTINATION-POINT MAPPING

PATHS

While one or more PEN signals 618 develop in the
color-mapping section 601 (Fig.s 6A-C), a Spryte-Row
Initialization register stack 615 (which comprises an
addressable set of 16-bit registers and which is provided

within the destination-point mapping section 602, see

Fig. 6D) receives a corresponding set of point-to-point
mapping control datawords over the D-bus 603 (on a time-

multiplexed, DMA basis). The point-to-point mapping
control datawords are prestored in the system memory unit

(605a, 605b) within a pre-designated SCoB area.

Referring to Fig. 6D, the Spryte-Row Initialization

(SRI) register stack 615 supplies point-mapping control

signals 615.2 to a point-mapping subsytem 622 of section

602. The point-mapping subsytem 622 is subdivided into
an "A-side" and a "B-side" and it includes respective "A-

side" and "B-side" math execution platforms 700a and

700b, respective "A-side" and "B-side" row-inititializers

701a and 701b, corner engines 702a and 702b, Munkee units

625a and 625b, and Regis units 626a and 626b. The

resources of math execution platform 700a are used on a

time-shared basis by the "A-side" Initializer 701a,

Corner-engine 702a, "A-side" Munkee unit 625a, and

"A-side" Regis unit 626a. Similarly, the resources of

- WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

- 90 -

math execution platform 700b are used on a time-shared

basis by the "B-side" Initializer 701b, Corner-engine

702b, "B-side" Munkee unit 625b, and "B-side" Regis unit

626b.

Math-platform A (700a) includes four math sections

which may be identified briefly here as MathXala0,

MathXa2a3, MathYala0, and MathYa2a3. (See Fig. 7 which

will detailed shortly.) These resources are used first

by row-initializer 70la to initialize various registers

both in math-platform A (700a) and in the SRI register

stack 615. Corner-engine A (702a) then takes over

control of the same four math sections (MathXala0,

MathXa2a3, MathYala0, and MathYa2a3) to store and/or

calculate the Xp and Y¥p coordinates of corner points a0,

al, a2 and a3 of a first projected polygon "a". Munkee

unit 625a shares use of math-platform A (700a)

concurrently with the Corner-engine A (702a). If Munkee

unit 625a decides that Regis unit 626a needs to perform

a boundary walk, Corner-engine A (702a) and Munkee unit

625a temporarily reliquinsh control over the math-

platform A (700a) and Regis unit 626a takes over. When

Regis unit 626a completes its boundary-walk, it returns

control of the math-platform A (700a) to Corner-engine A

(702a) and Munkee unit 625a. When Corner-engine A (702a)

terminates calcuclations for corner points in a mapped

spryte row, it reliquinshes its control over math-

platform A (700a) and row-initializer 70la takes over to

initialize data for a next row if needed.

Utilization of the calculation resources in math-

platform A (700a) can be expressed as follows:

CCa|] CCb} CCc CCd
Initial ---- |---- ---- Regis~b|----j....
-ize MKa| MKb MKc

<n-ticks > 1< 2 > 1 < m-ticks> <

WO 94/10644

10

15

20

25

.30

35

PCT/US92/09462

- 91 -

Int he above expression, CCa represents corner

calculations for mapped pixel "a", CCb represents corner

calculations for mapped pixel "b", and so on. MKa

represents Munkee operations for mapped pixel "a", MKb

represents Munkee operations for mapped pixel "b", and

so on. Note that MKa takes place co-temporaneously with

CCb. There is no Munkee operation at the time of CCa.

Munkee operations always consume one clock tick. Corner

calculations consume one or two ticks depending on

whether a below-described delta-sum shortcut is

available. If the MKb operations indicate that a Regis

boundary walk is necessary, that follows starting in the

next clock tick and can consumes a relatively large

number, m, of clock ticks. When Regis-b operations

complete, the corner calculations and Munkee operations

regain control over the math platform. The process

continues until terminated by an end-of-line (EOL) or

some other condition. Each processing of a source spryte

row begins with an initailization which can take a

relatively large number, n, of clock ticks.

Math-platform B (700b) is identically structured to

include four math sections which Corner-engine B (702b)

uses to store and/or calculate the Xp and Yp,) coordinates

of corner points q0, ql, q2 and q3 of a second projected

polygon "q". (Note the just-mentioned first and second

projected polygons are typically but not necessarily

arranged one on the next as shown in Fig. 1B.)

The results of the boundary walks (or Munkee shortcut

decisions) are pipelined out as sets of three, integer-

only coordinates: Yp, Xp-left and Xp_eright (the

fractional parts are truncated off.): The output Yp value

is 1l-bits wide. The output Xp-left and Xp-right values

are each 12-bits wide. These coordinates (YXX for short)

are given in terms of a relative display space having an

origin at 0,0 and an Xp axis extending rightwardly from

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

- 92 -

the origin and a Yj) axis extending down from the origin.

The relative display space is movably positioned within

an absolute displayable space. This aspect of system 600

will be explained below when relative-to-absolute

translater 570 (Fig. 6E) is described.

The Regis/Munkee YXX results of math platforms 700a

and 700b are each accompanied by respective paint/don't-

paint strobe signals 555a and 555b. If a paint strobe

signal 555a/b is false, the corresponding YXx results are

ignored further downstream in the pipeline flow. If the

paint strobe signal 555a/b is true, the corresponding YXX

results are accepted by a downstream pixel-by-pixel fill

request generator 560 and converted further downstream

into one-pixel at a time, memory write requests.

An A-side p-FIFO comprised of R(OUT) register 544,

R(HOLD) register 546, multiplexer 550, multiplexer 556

and R(YXX) register 552 carries the YXX results of

Munkee unit 625a, and/or Regis unit 626a to a first input

of line-fill input multiplexer 554. A B-side p-FIFO

comprised of R(OUT) register 545, R(HOLD) register 547,

multiplexer 551, multiplexer 557 and R(YXX) register 553

carries the YXX results of Munkee unit 625b, and Regis

unit 626b to a second input of line-fill input

multiplexer 554.

The output of R(OUT) register 544 feeds back to input

port 548 of math-platform A (700a). In similar fashion,

the output of R(OUT) register 545 feeds back to input

port 549 of math-platform B (700b). The fed back signals

are used for boundary-walk tests during the Regis

process.

The Ys Xietts X%right
registers 552 and 553 (Fig. 6D) represent a set of one

or more horizontally-adjacent destination pixels that are

to be painted with a corresponding PEN color code 618.

Each such YXX set is converted by the next-described

value signals held in each of

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

- 93 -

downstream pix-by-pix fill-request generator (line-

filler) 560 into a series of individual coordinate pairs,

¥Xy, YXo, YX3, etc. where Y represents a horizontal line

in a relative display space and Xi, Xo, X3, etc.

represent individual destination pixels arranged one

after the next along that horizontal line.

The one or more individual coordinate-pairs, YX,

YX5, YX3, etc. that are produced by pixel-by-pixel fill

requests generator 560 then stream out on a requests-

carrying bus 561.

Further downstream, at an address translating unit

570 (Fig. 6E), each individual coordinate pair, YX;, is

translated into an absolute memory address signal. It

turns out that certain orderings of the individual

coordinate pairs, YX, YXo, YX3, etc., as put out onto

the requests-carrying bus 561, produce a stream of

corresponding, absolute, memory address signals that

involve many page boundary crossings while other

orderings produce address sequences that involve fewer

page boundary crossings. An order-rearranging line 562

is optionally provided from generator 560 for changing

the order in which the corresponding stream of absolute

memory address signals present themselves to a

downstream-located, page-based memory unit e.g., 605.

Preferably, the ordering of the individual coordinate

pairs, ¥X,, YXo, YX3, etc. is rearranged to minimize the

number of downstream page crossings. This works to

minimize the amount of memory access time needed to

complete a line-paint operation. An individual

coordinate pair, YX;, which is found to be positioned out

of a desired order is routed by way of order-rearranging

line 562 back to one of YXX registers 552 and 553 by way

of respective multiplexers 556 and 557. (Xjof_ and

Xright are one and the same when a single destination

pixel is represented in YXX format.)

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

- 94 .

A line-fill sequencing multiplexer 554 (Fig. 6D)

picks the output of one of YXX registers 552 and 553 as

the one to be next processed by the pixel-by-pixel fill

requests generator 560. Information 558 representing the

current memory page boundary is supplied to the line-

fill sequencing multiplexer 554 to help the latter in its

efforts at minimizing the number of downstream page

crossings.

Referring to Fig. 6E, the pixel-fill request signals

of bus 561 are interleaved with so-called "Dolores-

fetch" address signals (565) when they reach a next in-

stream multiplexer 564. The "Dolores-fetch" address

signals enter multiplexer 564 on line 565. A dolo-fetch

address signal is routed back from translater 570 when

the R-mode bit goes high to indicate that corresponding

color data is being wrapped-back in the color-map section

601.
The purpose of the "Dolores-fetch" address signals

(565) is briefly explained as follows: Destination pixel

paint requests 561 share access to system memory with a

concurrent "Doloresizing" fetch function. The

Doloresizing fetch function is used by the PPMP unit 616

to fetch desired CFB datawords into the CFBD FIFO 530 in

synchronism with the wrapped-back IPN signal.

Doloresizing fetches do not directly affect the

concurrent line-fill operations except for the fact that

they both share an access time-slot for system memory.

Address signals generated by both the line-fill (LF

generator 560) and the Dolo-fetch operation flow through

multiplexer 564 on a time-shared basis (one for one).

Register 566 synchronizes the output of multiplexer 564

to the system clock.

The output of synchronizing register 566 supplies a

stream of individual XY coordinate signals to an XY-FIFO

568. The output of XY-FIFO 568 is synchronized to the

WO 94/10644

10

15

20

25

30

PCT/US92/09462

- 95 -

system clock and to the outputs of IPS-OUT FIFO 528 and

CFBD-FIFO 530.

A relative-to-absolute address translator 570

converts the XY output signals of XY-FIFO 568 from a

relative format of 16 bits for each X value and 16 bits

for each Y value to an absolute memory address format of

24 bits by adding together a base address, the Y value

multiplied by a "modulo" value and the X value. The

result is a 24-bit wide memory address signal which is

formed according to the following Eq. 5.

Ayepy = Base + (Modulo * Y) + X (Eq. 5)

The Doloresizing fetch function has its own Base and

Modulo values which are independent from that of line-

fill. The base and modulo values for the Dolo and LF

functions are represented by signals stored in a MOD/BASE

register 573. These values download over the D-bus 603.

A select signal (SEL) supplied from a Dolores control

unit 533 indicates when the base/mod values of the

Doloresizing address translation are to be used (also

referred to as the CFBD read translation) and when the

base/mod values of the line-fill translation are to be

used (also referred to as the spryte write translation).

Each translated address signal is output onto a 24-bit

wide Regis/Dolo address bus 571. (The Dolores control

unit 533 also determines the order in which xy pairs

belonging to the Dolo-fetch operation will interleave

with LF XY signals as both stream out of multiplexer

564.)

In one embodiment of translater 570, the

multiplication, (Modulo * Y), is performed as a sum of

two binary-shifted signals. This minimizes the circuit

space required for the multiply function and also

minimizes the time required for completion of the

multiply function. The selectable signals which enter

PCT/US92/09462WO 94/10644

10

15

20

25

30

35

~ 96 -

opposed inputs of an adder by way of respective seletion

multiplexers are given in the below Table I.

TABLE I

SELECTABLE OUPUT SELECTABLE OUPUT
OF MULTIPLEXER A OF MULTIPLEXER B

0 0
32*Y 64*Y
256*Y 128*Y
1024*Y 256*Y

A four-bit wide modulo-seleting signal controls

multiplexers A and B of translater 570 to pick a desired

multiplying factor. By way of example, if the 32*yY

output of multiplexer A is selected and the 64*Y output

of multiplexer B is selected, these selected signals are

next fed into an adder to produce a corresponding (Modulo

* Y) value of 96*Y.

In the case of the Line-fill function, the Base term

in Eq. 5 functions to position the relative (X,Y) = (0,0)

point of the relative spryte-rendering space (see

Fig. 3B) within a larger, absolute displayable space (not

shown). The selected Modulo term functions to define the

address space spread between the stored data of

successive destination scan lines. The absolute region

into which a spryte is to be rendered can be changed by

changing the LF Base value. The address space spread

between the stored data of successive destination scan

lines can change from region to region.

Given the above relative-to-absolute translation,

line-fill sequencing multiplexer 554 and Dolores control

unit 533 are preferably (but not necessarily) operated

such that the XY values queued up in XY-FIFO 568 are

ordered to minimize the number of downstream page

crossings which will occur in a downstream page-mode

memory system that receives the translated address

signals according to the order they are output on bus

571.

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

-97 -

Referring to Fig. 6F, each Regis/Dolo address signal

571 is accompanied by a Regis D-bus request signal 572

that is applied to a D-bus arbitration unit 633. The

D-bus arbitration unit 633 controls a D-bus arbitration

multiplexer 644. The D-bus arbitration multiplexer 644

receives competing address signals from an ARM CPU and a

so-called DMA REGISTER STACK unit. Contentions are

resolved as indicted previously.

The DMA REGISTER STACK unit includes a first auto-

incrementing register which holds an address word named

"Engine-A Fetch Address." This address word points to

the color code 411 or 412 of a source spryte row that is

then being processed by Corner-engine A (702a). The DMA

REGISTER STACK unit also includes an auto-decrementing

register which holds a DMA count word named "Engine-A

Length." This count word defines the number of words

still remaining in memory, which need to be fetched for

the source spryte row then being processed by Corner-

engine A (702a). Similarly, the DMA REGISTER STACK unit

further includes a second auto-incrementing register

which holds an address word named "Engine-B Fetch

Address." This address word points to a color code of a

source pixel in a source spryte row then being processed

by Corner-engine B (702b). The DMA REGISTER STACK unit

also includes an auto-decrementing register which holds

a DMA count word named "Engine-B Length." MThis count

word defines the number of words still remaining in

memory and representing pixels of the source spryte row

then being processed by Corner-engine B (702b).

An access protection unit 645 unit checks the output

of D-bus arbitration multiplexer 644 for out-of-range

violations. An address splitting unit 646 designates

address signals received from the D-bus arbitration

multiplexer 644 as belonging either to the left memory

bank 605a (Fig. 6C) or the right memory bank 605b of

PCT/US92/09462WO 94/10644

10

15

20

25

30

35

- 98 -

system memory. Register 586, multiplexer 590 and

register 592 are connected in series to define a p-FIFO

which drives left-bank memory address pads 604a.

Register 587, multiplexer 591 and register 593 are

connected in series to define a p-FIFO which drives

right-bank memory address pads 604.

Referring back to Fig. 6C, 24-bit wide left and

right address signals from respective registers 593 and

592 enter system memory units 605a and 605b in

synchronism with corresponding PEN code signals 618

developed by PPMP unit 616. Register 576, multiplexer

580, D-bus driver 582 and D-input register 594 define a

p-FIFO which delivers PEN codes to left system memory

bank 605a. Register 577, multiplexer 581, D-bus driver

583 and D-input register 595 define a p-FIFO which

delivers PEN codes to right system memory bank 605b.

($6.3) DETAILED DESCRIPTION OF CORNER ENGINE AND MATH

PLATFORM RESOURCES

Figure 7 shows details of a first math platform 700a

in accordance with the invention and also details of a

SRI register stack 615 in accordance with the invention.

Corner-engine A (702a) uses the resources of this first

math platform 700a, in combination with the Spryte-Row

Initialization register stack 615, to calculate the

destination coordinates (e.g., cl and c2) for successive

pairs of top and bottom corners (e.g., cl and c2) of

successive source pixels (e.g., a, b, ¢, etc.) found in

a given spryte row (e.g., row A of Fig. 1A.

Math-platform A (700a) is shown divided into a left

portion which constitutes an X-coordinates processing

section and a fright portion which constitutes a

Y-coordinates processing section. Each of the

X-coordinates and Y-coordinates processing sections is

further subdivided to have at its top, an al-producing

WO 94/10644

10

15

20

25

30

PCT/US92/09462

- 99 -

section and to have at its bottom, an a2-producing

section. The upper area of each of the X-coordinates and

Y-coordinates processing sections further includes an

a0-storing section and a respective DX or DY-updating

section. An a2-al difference calculating section is

provided in each of the X-coordinates and Y-coordinates

processing sections between the respective upper and

lower areas.

Corner-engine A (702a) uses the resources of math-

platform A (700a), as will be explained in more detail

when Fig. 8 is disscussed, to store and/or generate

Signals representing the coordinate values for mapped

corners a0, a3, al, a2 and corner-to-corner distance

values (a3 - a0), (al - a0), (a2 - a3), and (a2 - al).

After Corner-engine A (702a) completes its computations,

it leaves its result signals stored in registers of the

math-platform A (700a) and goes to sleep.

Signals representing the destination coordinates for

two successive pairs of top and bottom source corners

(e.g., cQ and c3, cl and c2), are left behind in a

respective set of four X-registers (1740, 1743, 1741,

1742) and four Y-registers (1780, 1783, 1781, 1782) of

first math platform 700a. Signals representing the

corner-to-corner distance values (e.g. [c3 - cO],

[cl - cOJ, [c2 - c3], and [{c2 - cl] are left behind in

another respective set of three X-registers) and three

Y-registers of first math platform 700a or output by

subtractors . |

Referring still to Fig. 7, it is seen that the SRI

register stack 615 has sixteen registers each of which

is 16-bits wide. The registers are divided into two

groups of eight addressable registers each. One group

(the left group) stores X values and the other (the right

group) stores Y values.

PCT/US92/09462WO 94/10644

10

15

20

25

30

35

- 100 -

The X group of SRI registers has a DDXL\ register

(address=000) for storing the less significant sixteen

bits of a 32-bit wide binary-coded signal that represents

delta value DDX in binary-inverted format. The last "L"

in the notation "DDXL\" indicates it is the lower half of

the 32 bits and the "\" indicates that the data is

inverted.

The X group of registers includes the following

similarly named, additional registers: DXL\

(address=001), DDXH\ (address=010), DXH\ (address=011),

LDXL\ (address=100), CXL\ (address=101), and LDxH\

(address=110), CXH\ (address=111). The DXL\ register

stores the less significant sixteen bits of a 32-bit wide

binary-coded signal that represents double delta value

DX+neDDX in binary-inverted format, where n=0,1,2,3, etc.

for successive rows of a source spryte. The DXH\ register

stores the more significant sixteen bits of a 32-bit wide

binary-coded signal that represents double delta value

DX+neDDX in binary-inverted format.

The CXL\ register stores the less significant

sixteen bits of a 32-bit wide binary-coded signal that

‘represents line-delta incremented value XPOS+neLDX in

binary-inverted format, where n=0,1,2,3, etc. for

successive rows of a source spryte. The CXH\ register

stores the more significant sixteen bits.

The Y group of registers includes the following

Similarly named and similarly functioning registers:

DDYL\ register (address=000), DYL\ (address=001), DDYH\

(address=010), DYH\ (address=011), LDYL\ (address=100),

CYL\ (address=101), and LDYH\ (address=110), CYH\

(address=111).

A stack control unit 710 supplies the SRI register

stack 615 with a 3-bit write address signal, WA, a 3-bit

read address signal, WR, and a 1-bit write-enable signal,

WE. The data-input side of SRI register stack 615 is fed

PCT/US92/09462WO 94/10644

10

i5

20

25

30

35

- 101 -

by an X-input multiplexer 706 (which has an inverting

output) and a Y-input multiplexer 707 (which has an

inverting output). Stack control unit 710 supplies

selection control signals to multiplexers 706 and 707.

A first of the selection control signals, LOAD-D,

instructs multiplexers 706 and 707 to transfer data from

D-bus 603 into the SRI register stack 615. A lower 16

bits (15:0) of D-bus 603 load into register 703. An

upper 16 bits (31:16) of D-bus 603 pass_ through

multiplexer 704 (has an inverting output) and load into

register 705 (also has an inverting output). The output

of register 705 connects to a D input of multiplexers 706

and 707. With each D-bus input transfer, the upper 16 D-

bus bits load into register 705 first and then the lower

bits of register 703 pass through multiplexer 704 and

load into register 705 afterwards. Note that the

respective outputs of multiplexer 704, register 705 and

multiplexers 706 and 707 are inverting. SRI register

Stack 615 therefore stores an inverted version of the

D-bus data. The 16-bit wide outputs of the X and Y

register groups of SRI register stack 615 feed respective

output registers 708 and 709. Registers 708 and 709 each

has both an inverting and noninverting output.

A second selection control signal, LOAD-xyYO,

instructs multiplexers 706 and 707 to transfer respective

data signals, XSO and YSO, from inverting outputs (Q-bar

outputs) of registers 708 and 709 to the inputs of the x

and Y register groups. Respective data signals, XSO and

YSO, also feed to respective D-bus tri-state drivers 798

and 799. Note that data signals XSO and YSO are in true

rather than inverted form.

A third selection control signal, INIT, instructs

multiplexers 706 and 707 to transfer respective data

Signals, XIN and YIN, to the inputs of the xX and yY

register groups. These signals, XIN and YIN, develop on

WO 94/10644

10

15

20

25

30

PCT/US92/09462

- 102 -

tri-state buses which are shared by math-platform A

(700a) and math-platform B (700b). Stack control unit

710 supplies tri-state bus control signals, W-A and W-B,

to respective platforms A and B (700a and 700b) for

enabling each to exclusively drive the tri-state XIN and

YIN buses.

Math-platform A (700a) includes a pair of tri-state

bus-drivers, 744 and 784, which are enabled by the W-A

signal to output respective engine-A signals, XA and YA,

onto the XIN and YIN buses. Math-platform B (700b) is

similarly structured (not shown) to place engine-B

signals, XB and YB, onto the XIN and YIN buses. Bus-

drivers 744 and 784 have inverting inputs. The signals

at the inputs of drivers 744 and 784 are accordingly

referenced as XA\ and YA\.

A 16-bit wide engine bus 743, which carries an Xa3\h

signal, connects to the input of bus-driver 744. Another

engine bus 783, which carries a Ya3\h signal, connects to

the input of bus-driver 784. The "h" suffix in notations

Xa3\h and Ya3\h indicates that these 16 bit signals

represent "half" of a 32-bit wide signal. The

represented "half" can be either the left-hand 16 bits

(integer part) of a 32-bit wide value formatted as 16.16

or the right-hand 16 bits (fractional part) of the 16.16

formatted signal. Thirty-two bit wide signals are

trnasferred over.

During a so-called spryte row initialization (SRI)

operation, Xa3\h engine bus 743 and Ya3\h engine bus 783

each transfer the left and right halves of respective

values Xa3 (the Xp coordinate of mapped point a3) and Ya3

(the Yp coordinate of mapped point a3) to SRI register

stack 615 for storage in respective locations CXH\, CXL\,

CYH\, CYL. (The upper halves transfer first, then the

lower halves.)

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

- 103 -

In addition to Xa3\h engine bus 743 and Ya3\h engine

bus 783, math-platform A (700a) includes a 16-bit wide

Xa0\h engine bus 740 for carrying respective upper and

lower halves of an Xa0 signal which represents the Xp

coordinates of mapped corner a0 and a 16-bit wide Ya0\h

engine bus 740 for carrying respective upper and lower

halves of an Ya0 signal which represents’ the Yp

coordinates of mapped corner a0. Math-platform A (700a)

further includes, a similarly named and similarly

functioning: Xai\h engine bus 741, Yal\h engine bus 781,

Xa2\h engine bus 742 and Ya2\h engine bus 782. |

Engine buses 740-743 and 780-783 receive their

respective signals from a corresponding set of 16-bit

wide engine-bus registers, 1740-1743 and 1780-1783, by

way of inverting bus-drivers 3740-3743 and 3780-3783.

Two bit data-save registers 2740-2743 and 2780-2783 are

provided for storing 1 tick-delayed data.

Referring to the Xal-producing section of math-

platform A (700a), two signal-routing multiplexers, 711

and 712, are provided for routing signals representing

addends to respective A and B input ports of a 16-bit

wide adding unit 715. Exclusive OR units 713 and 714 are

respectively interposed between the outputs of signal-

routing multiplexers 711 and 712 and the A and B input

ports of adding unit 715 for selectively inverting or

not-inverting the 16-bit wide signals passing from

multiplexers 711 and 712 to the A and B input ports of

adding unit 715.

A 16-bit wide result bus 716 carries the result

Signal produced by adding unit 715 for loading into

either a corner-low holding register (CL) 717, or a lower

16-bits of an 18-bit wide, corner-high holding register

(CH) 1741, or an Xl-holding register 765 or a DX1-holding

register 765, or by way of a multiplexer 719 into an

upper 2-bit portion of the 18-bit wide, corner-high

WO 94/10644

10

15

20

25

30

PCT/US92/09462

- 104 -

holding register (CH) 1741. A programmable control means

(not shown) determines which of these destination

registers will load the result signal produced by adding

unit 715.

($6.4) PSEUDO-INDEPENDENT OPERATION OF MULTIPLE CORNER

ENGINES AND MUNKEE AND REGIS UNITS

Figure 8 diagrams a math resource sharing and result

sharing process 800 of the invention.

At starting step 801, the coordinates for

destination point a0 (XPOS, YPOS) are downloaded into SRI

register stack 615 from a SCoB region of system memory.

The other point-map control signals 415.2 (e.g., LDX,

LDY, DX, DY, DDX, DDY) are also downloaded into stack

615. Corner-engine A (702a) and Corner-engine B (702b)

are both dormant at this time.

At step 802, row-initializer 70la uses the resources

of math platform-A (700a) to compute the destination

coordinates for point a3 (by adding LDX and LDY to XPOS

and YPOS respectively). Row-initializer 70la also

computes the DX++ and DY++ values for source spryte row-

A (by adding DDX and DDY to DX and DY respectively).

Row-initializer 70la then returns the calculated

coordinates for point a3 and the updated DX++ and DY++

values to the SRI register stack 615. This is indicated

by step 803.

The a3 coordinate values returned to SRI register

stack 615 are then used as the coordinates for

destination point qQ. When step 803 completes, row-

initializer 701lb awakens from its dormant state and

begins its row initialization procedure for source spryte

row-B. At step 804, row-initializer 701b uses math

platform-B (700b) to calculate the coordinate values for

destination point q3 (by adding LDX and LDY respectively

to the X, and Y, coordinates of point q0). It also

WO 94/10644

10

15

20

25

30

PCT/US92/09462

- 105 -

computes the DX++ and DY++ values for source spryte row-

B (by adding DDX and DDY respectively to the DX++ and

DY++ values received from row-initializer 70la. Row-

initializer 701b then returns the q3 coordinate values

and the updated DX++ and DY++ values back to the SRI

register stack 615 in step 805. The values returned in

step 805 then become the coordinate values for next

corner point w0 and the point-map control signals for

next source row C.

In a more preferred embodiment, rather’ than

initializing points a0 and al, a hypothertical pixel

having corner points a-l and a-2 is created and the

values for a0 and a3 are initialized instead as values

for hypothetical corner points a-1l and a-2. When the

corner engine next takes over control of the math

platform, the first thing done is to transfer the values

from a-1 and a-2 respectively to a0 and al.

@ As soon as row-initializer 701la completes its row

initialization steps, 802 and 803, corner engine-A (702a)

takes over control of math-platform A (700a) and it

(702a) enters a row-servicing mode in which it dedicates

itself to calculating destination coordinates for

successive top and bottom corner points of spryte row A.

Row-initializer 701b is entering its row-B initialization

mode at this time.

At step 810 (after having transferred the a-1 and

a-2 values respectively to a0 and a3), corner engine-A

(702a) calculates the coordinate values for destination

point al (by adding DX and DY to the respective Xp and Yp

coordinates of starting point a0). At step 812, corner

engine-A (702a) calculates the coordinates for

destination point a2 (by adding the row-A version of DX++

and DY++ to the respective X, and Y) coordinates of point

a3). The Xp and Yp coordinates for destination points

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

- 106 -

a0, a3, al and a2 are saved within registers of the first

math platform 700a.

Munkee performs its functions contemporaneously but

one tick out of phase with the corner engine. If a Regis

boundary walk is required, Corner engine-A (702a) goes to

sleep and the Regis unit (626a) takes over control of the

first math platform 700a. The functions of the Regis

unit is represented by boundary-walking (BW) function

module 825. ("BW ppa" is to be read as "Boundary Walk

for projected polygon ‘a' ".) Steps 820, 821, 822 and

823 represent the respective handing-over of the

coordinate values for points a0, al, a2 and a3 to

boundary-walking function module 825. Steps 853 and 854

(which for purposes of illustrative clarity are shown

only in the b0-b3 projected polygon but are understood

to have counterparts in projected polygon ‘a') represent

the respective handing-over of the coordinate difference

values: (al-a0) and (a2-a3) to boundary-walking function

module 825. (Note that these difference values are

inherently represented by the DX, DY, DX++ and DY++

signals of row "A" and, accordingly, they are handed over

rather than being calculates anew.) Preferably, the

“handing-over" functions 820-822 and 853, 854 do not

include a physical movement ofsignals from one register

to another. Instead, the signals are left in the

registers where they are originally stored, and the BW

function module 825 accesses the contents of those same

registers to decide whether destination pixels will be

painted, and if so, to produce the corresponding line-

fill command signals (e.g., YXX, YXX, etc.).

While difference values such as (bl - b0) and

(b2 - b3) are handed over by steps 853 and 854 to the

boundary-walking function module 855 (or 825), it is to

be noted that the Y direction difference values,

(b3 - b0) and (b2 - bl) are, in general, not available

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

- 107 -

for handing over to the boundary-walking function module.

The boundary-walking function module 855 (or 825)

therefore pre-calculates difference values (b3 - b0) and

(b2 - bl) on its own one tick before it takes over

control of the first math platform 700a (using an

available set of subtractors in the math platform). On

the other hand, it is to be noted that difference value

(c3 - c0) is the same as difference value (b2 - bl).

After difference value (b2 - bl) is calculated once, its

representative signal is handed over as difference value

(c3 - c0) rather than being regenerated anew when BW-ppc

module 885 later needs that value.

The four difference values (bl - b0), (b2 - b3),

(b3 - b0) and (b2 - bl) are used by Regis unit 626a to

determine whether one, none, or many destination pixels

are to be painted as a result of the geometry of polygon

"Db" (or "a").

Munkee determines ahead of time, for each difference

value whether it is zero or not-zero, and if not, whether

it is positive or negative. The equals-zero and

positive/negative indicating signals are used to reach

some simple conclusions about the projected polygon. By

way of example, if all four difference values, (bl - b0)

through (b3 - b0), equal zero, Munkee unit 425a can

quickly decide that no destination pixels are to be

ultimately painted. In such a case, Munkee 425a blocks

Regis 426a from taking control and performing its more

precise border-point computations. No time is wasted by

the more comprehensive and more precise calculations that

would have been carried out by the Regis unit 426a had

there been many destination pixels to be painted.

Once the boundary-walking functions of the BW-ppa

module 825 terminate (for whatever reason), corner

engine-A (702a) reawakens and begins to calculate the

destination coordinates of subsequent points bl and b2.

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

~ 108 -

The coordinate values for points b0 and b3 do not have

to be calculated because they are the same as al and a2.

The difference value (b3 - b0) does not have to be

recalculated because it is the same as (a2 - al).

Accordingly, at steps 831 and 832, the signals

representing the coordinates for points al and a2 and

representing the difference value (a2 - al) are

transferred such that they now serve as the signals

representing destination points b0O and b3. Then, at

steps 840 and 842, corner engine-A (702a) computes the

coordinates for bl and b2.

If another Regis boundary walkis needed, Corner

engine-A (702a) goes to sleep once again, and in the

process, hands over values for coordinates b0, bl, b2,

and b3 to a BW-ppb function module 855. Difference

values bl - bO and b2 - b3 are also handed over as

indicated at 853 and 854 respectively. The BW-ppb

function module 855 then takes over control of the math

platform 700a. lLine-fill commands 856 (YXX, YXX, etc.)

are generated in the case where the BW-ppb function

module 855 decides that destination pixels need to be

painted for projected polygon "b”".

Upon termination of the functions by the BW-ppb

module 855, corner engine-A (702a) reawakens to repeat

the process for projected polygon "cc". Coordinate values

bl and b2 become respective new values c0O and c3 as

indicated at 861 and 862. Corner-engine A (702a)

calculates coordinates cl and c2 respectively from cO and

c3. A BW-ppc function module 875 thereafter takes over

control of math platform 700a to produce yet more line-

fill commands 876 (YXX, YXX, etc.) if needed.

This map-and-paint process for source spryte row-A

continues until terminated by the encounter of an end-

of-line (EOL) code in the source spryte row (A) or until

terminated by some other cause such as a decision by an

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

- 109 -

out-of-bounds detecting unit (not shown) that

calculations are proceeding ever deeper into a

nondisplayable region (e.g., a super-clipped region).

While this is occurring in the first math platform

700a, a similar process is preferably occurring in

parallel in second math platform 700b. Corner engine-B

(702b) uses the q0 and q3 coordinate values produced

during the row-B initialization mode to calculate

successive destination points ql and q2. BW-ppq function

module 885 then takes over control of second math

platform 700b to produce line-fill command signals 886

(YXX, YXX, YXX, etc.), if needed.

Note that the BW-ppq function module 885 is

illustrated in Fig. 8 as being much longer than the

BW-ppa function module 825. This is intentionally done

to convey the idea that, for each source pixel a, b, c,

wees, q XL, S, «++, etc., a substantially different

amounts of time may be consumed by the respective first

and second math platforms, 700a and 700b, to complete

their respective | corner calculations and Regis

operations. There are many reasons why this can happen.

Corner engine-A (702a) might be able to take advantage of

certain calculation shortcuts (see explanation of Fig.

9A) which are not available to corner engine-B (702b).

Boundary-walking function module 825 may be skipped

because of a fast decision by Munkee to paint one or no

destination pixels, whereas no such fast decison is

provided in engine B to circumvent the time consumed by

BW-ppq function module 885.

The operations of first and second math platforms,

700a and 700b, can therefore quickly become

nonsynchronized with respect to one another. Each math

platform, 700a and 700b, is preferably operated pseudo-

independently of the other, rather than in lock step, so

that each can take advantage of all time-saving methods

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

- 110 -

that become available to that math engine even if the

same shortcuts do not become available to the other math

engine.

Either one of math platforms 700a and 700b can

complete or end the processing of its assigned source

spryte row (A or B) before the other for any number of

reasons. Math platform-B (700b) for example, may end its

processing of source spryte row-B well ahead of the time

that math platform-A (700a) ends its processing of source

spryte row-A simply because source spryte row-B has fewer

pixels than source spryte row-A. The first math

platform, 700a or 700b, which completes or otherwise

terminates processing of its assigned source row (A or B)

then picks up the next-queued task in the SRI register

stack 615. That task is to initialize row C (by

calculating w3 and updating DX++ and DYY), and thereafter

proceeding to map the remaining pixels if any of source

row C.

This map-and-paint process 800 continues until

either all the rows of a given source spryte are

processed or termination occurs due to encounter of a

cropping border or some other terminating cause. The

SCoB of a next-to-be rendered spryte is then downloaded

into SRI register stack 615 and process 800 begins all

over again.

($6.5) SUMMING
The above discussion mentions the idea that certain

calculation short-cuts may be available to one math

engine but not the other. One important short-cut is

found in calculating the sum of a relatively large first

value and a relatively smaller second value (delta

value).

Figure 9A shows a first summing unit 900 in

accordance with the invention that takes advantage of

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

- 111 -

such a short-cut. Similar, more complex summing units

are found within math platforms 700a and 700b of Fig. 7.

The more complex structures will be explained later in

conjunction with Fig. 9B.

Referring first to Fig. 9A, respective first and

second result-part registers, 910 and 920, each of which

is 16-bits wide, are provided for respectively storing a

less significant part, XL, and a more significant part,

XH, of a 32-bit wide result signal, XHL. The result

signal XHL is iteratively updated over successive clock

cycles according to the delta summing equation:

XHLj4, = XHL; + AX; (Eq. 5)

In equation Eq. 5, XHL; is a 32-bit wide value

represented by a signal XHL that is stored in registers

910 and 920 at clock cycle, i. AX; is a 32-bit wide

value represented by a signal DXHL that is stored in

another set of registers, 915 and 925, at clock cycle, i.

XHL;,, is a value of the XHL signal stored in registers

910 and 920 at a later clock cycle, itn, where n is an

integer greater than 0 (n= 1, 2, etc.).

It will be assumed here that the more significant 16

bits (XH) of the 32-bit long result signal represent an

integer portion of XHL;,,- A hypothetical decimal point

is placed between parts XH and XL as indicated by the

notation: XH.XL. The less significant 16 bits (XL) of

the 32-bit long result signal XHL therefore represent the

fractional portion of XH.XL.

It will be further assumed here that the delta

value, AX;, changes slowly over time and it is typically,

but not always, in the range:

+2.0 > AX; > -~2.0. (Eq. 6.1)

and it is more often, but not always, in the range:

+0.5 > AX; > ~0.5. (Eq. 6.2)

A 16-bit wide adding unit 930 is provided for

selectively updating the contents of one or both of the

WO 94/10644

10

15

20

25

30

PCT/US92/09462

- 112 -

first part register 910 and the second part register 920.

Adding unit 930 has two input ports, 931 and 932 (input-

A and input-B), each 16-bits wide, and a corresponding

16-bit wide output port 933 for producing a sum signal

representing the sum of values applied to its A and B

input ports, 931 and 932. All 16 bits of the adder

output port 933 connect to the 16-bit wide data inputs of

both the first part register 910 and the second part

register 920.

Adding unit 930 has a carry and/or borrow (CY/BW)

output port 934 for outputting a carry or borrow

indicating signal (CY/BW indicating signal) in the event

that a carry or borrow is generated by a respective

addition or subtraction operation performed within the

adding unit 930. Adding unit 930 also has a carry and/or

borrow (CY/BW) input port 936 for inputting a carry or

borrow indicating signal in the event that a carry or

borrow is to be applied to a respective addition or

subtraction operation being performed within the adding

unit 930. A carry/borrow storing register 935 is

provided for receiving and storing a CY/BW indicating

signal output by the C/W output port 934 of the adding

unit 930 during a first tick of the system clock (CLK)

and for supplying the stored CY/BW indicating signal to

the C/W input port 936 of the adding unit 930 during a

later, second tick of the system clock. For purposes of

explanation, CY/BW = +1 will represent an active carry,

cY/BW = -1 will represent an active borrow, and CY/BW = 0

will represent the condition of no carry and no borrow.

As already mentioned, a supplied 32-bit wide signal,

DXHL, represents the delta value, AX;, of above Eq. 5.

Like the XHL signal, the DXHL signal is divided into

integer and fractional subportions, DXH and DXL, each 16-

bits wide. A hypothetical decimal point is placed

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

- 113 -

between parts DXH and DXL as indicated by the notation:

DXH.DXL.

Respective first and second delta-part registers,

915 and 925, are each 16-bits wide, and they are provided

for respectively storing the less significant part, DXL,

and a more significant part, DXH, of the supplied 32-bit

wide delta signal, DXHL. The delta signal DXHL generally

remains constant over many ticks of the system clock but

it can be changed over successive ticks of the system

clock.

First and second multiplexers, 940 and 950, are

provided respectively for selecting and supplying

corresponding first and second addend signals to the

A-input 931 and B-input 932 of adding unit 930.

The output of the first result-part register 910

connects to a first input (input-A) 941 of the first

addend-selecting multiplexer 940. The output of the

first delta-part register 915 connects to a first input

(input-A) 951 of the second addend-selecting multiplexer

950. The output of the second result-part register 920

connects to a second input (input-B) 952 of the second

addend-selecting multiplexer 950. The output of the

second delta-part register 925 connects to a second input

(input-B) 942 of the first addend-selecting multiplexer

940. .

A math sequence control unit 960 is provided with a

first state input 961 coupled to detect the state of the

C/W output port 934 (whether it is equal to 0, +1 or -1)

and a second state input 962 coupled to detect the state

of the output of the second delta-part register 925

(whether it is equal to 0, +1 or -1). The math sequence

control unit 960 outputs first and second selection

signals, 964 and 965, for respectively controlling

selections made by the first and second addend-selecting

multiplexers, 940 and 950. The math sequence control

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

- 114 -

unit 960 also outputs first and second load-control

signals, 967 (LDL) and 968 (LDH), for respectively

controlling the input loading operations of the

corresponding first and second result-part registers, 910

(XL) and 920 (XH).

The process of sum generation is subdivided into at

least two successive parts. Carry/borrow detection and

analysis is performed at an intermediate point of the sum

generation process to see if a next-to-be performed part

of the sum generation process can be bypassed. This is

another manifestation of the prime design rule: identify

and avoid unnecessary work.

In the case of math unit 900, the sum generation

process begins by summing together the corresponding less

significant portions, DXL and XL, of the delta value

(DXH.DXL) and the running total (XH.XL). The math

sequence control unit 960 accordingly outputs first and

second selection-control signals, 964 and 965, for

respectively causing the first addend-selecting

multiplexer 940 to select its input-A 941 (XL) as its

output and for causing second addend-selecting

multiplexer 950 to select its input-A 951 (DXL) as its

output. When the corresponding result, XL = XL + DXL,

appears at the adder output port 933, the math sequence

control unit 960 outputs an active LDL signal 967 and

thereby loads the result into the first result-part

register 910.

While the adder output signal (933) loads into the

first result-part register 910, the math sequence control

unit 960 tests the conditions present at its first and

second state inputs, 961 and 962, to determine if the

next-planned step of summing together the corresponding

more significant portions, DXH and XH, of the delta value

(DXH.DXL) and the running total (XH.XL), plus the carry

or borrow of the just completed summation, will

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

- 115 -

ultimately fail to produce any change in the more

significant part (XH) of the running total XHL. One

example of this condition is where no carry or borrow is

generated at the intermediate point and the more

significant, DXH part of the delta value is equal to

zero. Another example of this condition is where a

borrow is generated at the intermediate point and the

more significant DXH part of the delta value is equal to

positive one. Yet another example of this condition is

where a carry (CY/BW=+1) is generated at the intermediate

point and the more significant, DXH part of the delta

value is equal to minus one.

In each such case, performance of above equation

Eq. 5 is deemed complete after summing only the less

significant parts, XL and DXL. The more significant, XH

part of the running total (XHL) is left unchanged in the

second result-part register 920. Time is saved by

avoiding the unnecessary step of adding zero to the value

already stored in second result-part register 920.

Moreover, it is to be appreciated that circuit space is

saved by using the 16-bit wide adding unit 930 rather

than a larger 32-bit wide adder.

When the earlier made assumption about the delta

value holds true (that it often satisfies the condition:

+0.5 > AX; > -0.5), summations will often complete in one

tick of the system clock although the result is 32 bits

and the adding unit 930 is only 16-bits wide. By way of

example, consider the case where XH.XL = 0.0 at clock

tick number zero and DXH.DXL = 0.1 over a period of 100

clock ticks. Addition will complete in one clock tick

90% of the time.

If the math sequence control unit 960 determines at

the intermediate result point that the next-~planned step

of summing together the corresponding more significant

portions, DXH and XH, of the delta value (DXH.DXL) and

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

- 116 -

the running total (XH.XL), plus the carry or borrow of

the just completed summation, will produce a change in

the more significant part (XH) of the running total XHL,

then summation completes in a conventional manner. The

math sequence control unit 960 switches its first and

second selection-control signals, 964 and 965, for

respectively causing the first addend-selecting

multiplexer 940 to select its input-B 942 (DXH) as its

output and for causing second addend-selecting

multiplexer 950 to select its input-B 952 (XH) as its

output. The carry or borrow from the less significant ©

portion of the sum generation process is saved in the

carry/borrow storing register 935 and applied in the next

clock tick to the C/W input port 936 of the adding unit

930 in conjunction with the DXH and XH signals (942 and

952). When the corresponding result,

XH = XH + DXH + CY/BW, appears at the adder output port

933, the math sequence control unit 960 outputs an active

LDH signal 968 and thereby loads the result into the

second result-part register 920.

Figure 9B shows another adding unit 1000 in

accordance with the invention. Sum generation proceeds

here in basically the same manner as described for Fig.

9A. Reference symbols in the "1000" number series are

used to represent elements having like counterparts in

the "900" number series in Fig. 9A. For the sake of

illustrative simplicity, the various registers which

store the running sub-total values and the applied delta

values are not shown. The math sequence control unit

(1060) which loads result values into the sub-total

result registers and which controls the adding selecting

function of multiplexers 1040 and 1050 is also not shown.

Referring to the top of Fig. 9B, it is seen that

three input signals, X, DX, and DDX, are replied to sum

generating unit 1000. Each of these signals is 32-bits

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

- 117 -

wide. Part of the 32 bits represents a binary-~coded

integer portion and the other part represents a binary-

coded fractional portion. The notation (i.f) is used to

represent the partitioning of each signal relative to the

decimal point. The symbol "i" is an integer defining the

number of bits to the left of the decimal point and the

symbol "f" is an integer representing the number of bits

to the right of the decimal point.

Input signal X(16.16) is partitioned into an 18-bit

wide, less significant part signal, XLP(2.16) and a 14-

bit wide, more significant part signal, XMP(149)§.). The
notation "149J J." indicates the most significant 14 bits
of a value that has 16 bits to the left of the decimal

point.

Note that input signal X(16.16) is arranged to have

an equal number of bits to the left and right of the

decimal point while input’ signals DX(12.20) and

DDX(12.20) are arranged to have 12 bits to the left of

the decimal point and 20 bits to the right of the decimal

point. The delta input signal, DX(12.20) is used for two

summing operations of different precisions. In a first

of the summing operations, precision is limited to 16

bits to the right of the decimal point and delta value Dx

is added iteratively to the running subtotal value xX.

Four sign-extension bits are hypothetically padded to the

left and a value DX(12.20) and the four right most bits

are truncated away.

The second operation is carried out to a precision

of twenty bits to the right of the decimal point. In

this second operation, delta value DX(12.20) serves as

the running subtotal and the double hyphen delta value

DDX(12.20) is iteratively added to running subtotal

DX(12.20).

The delta value signal DxX(12.20) is accordingly

partitioned into a plurality of different component

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

- 118 -

signals depending on the operation to be performed. For

its addition to running-total value X(16.16), the delta

signal DX(12.20) is subdivided to form a 10-bit wide

first more significant signal part, DXMP(109 §.), a 14-

bit wide first less significant signal part DXLP}(2.16)

and a 4-bit wide, not used portion DXNP,(.—H-H 4). The

notation "[J-[f " is used to represent a large plurality

of empty bit positions. In the case of not-used signal

part DXNP,, the ".f[-—J " symbol represents sixteen empty

bit positions preceding the last four, filled bit

positions.

As seen in Fig. 9B, a 2-bit wide adder 1130 is

provided in addition to 16-bit wide adder 1030. In order

to add the delta value px(B B @ 12.168 9 B) to running

total value X(16.16) the lower sixteen bits of signal

DXLP1(2.16) is applied to a first input of multiplexer

1050 while the lower sixteen bits of signal XLP(2.16) is

applied to a corresponding input of multiplexer 1040.

The upper two bits of DXLP](2.16) are applied to one

input of 2-bit adder 1130 while the upper two bits of

XLP(2.16) are applied to the opposed input of 2-bit adder

1130. In a first clock tick, the 16-bit adder 1030

produces the result signal XLP(.16)++ on its output port

1033 together with any corresponding carry-indicating bit

(CYO1g) on carry output port 1034. In the same tick of

the system clock, the 2-bit adder 1130 produces the 2-

bit wide result signal XP(2.)++ on its output port 1133

together with any corresponding carry-indicating signal

(CYO2) on its carry output port 1134. Result signals

XP(2.)++ and XP(.16)++ combine to form the 18-bit result

signal XLP(2.16)++. If the CY0,jg indicating signal

indicates that no carry or borrow has been generated by

the operation just performed in 16-bit adder 1030, the

XLP(2.16)++ signal is saved as is. Otherwise, the 2-bit

addition of 2-bit adder 1130 is reperformed in the next

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

- 119 -

clock tick with the appropriate carry or borrow signal

applied to its CYIg input. If the condition of the CY09

signal and DXMP,(10fJ 9.) signal indicate that no change

is required for the more significant portion XMP(14J

@.)++ of the running total, that subsequent operation is

foregone and time is saved. Otherwise, DXMP,(fj Mf 109 @.)

is passed through a second input of multiplexer 1050

while corresponding signal xmP(M 9149] —.) passes through

an opposed second input of multiplexer 1040 for addition

within 16-bit adder 1030.

Similarly, when double hyphen delta value DDX is

added to single hyphen delta value Dx, their

corresponding less-significant parts, DXLP2(.§/-H 16) and

DDXLP(.—-H 16) are first added together. If an upper
part adjustment is found to be necessary, corresponding

Signals DXMP2(12.4) and DDXMP(12.4) are subsequently

summed through 16-bit adder 1030.
As such, it is seen that the invention may be

applied advantageously to add numbers of different

precisions and thata 16-bit adder may be advantageously

operated to produce 32-bit wide results. It is worthy

to note that the DXLP, signal has a format of (2.16)

rather than simply (§f 9.16). This partitioning is

specifically adapted for optimizing performance in the

spryte rendering engine of ‘the invention. It was

observed that most spryte mapping functions use a delta

value in the range +4.0 > DX > -4.0.

Referring momentarily back to Fig. 3A, it is noted

that value DX represents magnification in the Xp

direction. The map control signal LDY defines

magnification in the Yp direction. Most zoom and unzoom

operations use a magnification factor of less than four.

The sum generating unit 1000 of Fig. 9B is structured to

Minimize the number of clock ticks consumed by

magnifications of less than four while minimizing the

WO 94/10644

10

15

20

25

30

PCT/US92/09462

- 120 -

amount of circuit space consumed by unit 1000. Other

arrangement may, of course, be used to suit the

statistical performance requirements of other

applications.

(§6.6.1) DETAILED DESCRIPTION OF MUNKEE SHORTCUT

ALGORITHMS

In the below code conversion Table II, input data

bits are presented in a left-hand column in the same left

to right order as recited next to the introduction

"INPUTS: ...". The corresponding output data bits are

indicated on the same line in a right-hand column in the

same left to right order as recited next to the

introduction "OUTPUTS: ...". For purposes of speed and

circuit compactness, the code-conversion functions are

preferably implemented in the form of combinatorial logic

circuitry which is designed using conventional Karnough-

mapping techniques or the like. The code-conversion

functions can be alternatively implemented in the form of

a ROM (read only memory) circuit or a computer program or

the like. (Copyright Notice: In so far that the subject

matter of the code-conversion tables is coverable by

copyrights, the copyright owner reserves all such rights

except those expressly waived above.)

The below Munkee code-conversion table was created

by first running Regis with all possible input

combinations. Then the results produced by Regis were

reviewed and all cases where the end result was to paint

no pixels were extracted. Then a first code conversion

table was developed based on inputs defining whether the

deltas were equal to zero or the deltas were negative.

The idea was to cover as many cases as practical without

requiring an excessively large ROM or logically

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

- 121 -

equivalent (but faster) combinatorial circuit.

Suprisingly, the table turned out to be relatively small

because it included a simple rule: if any two [ACCURATE

22?) of distances: (al-a0) OR (a2-a3) OR (a3-a0) between

the corners of the projected polygon are zero, the

projected polygon collapses to have an area of zero and

no destination pixel will be painted.

As a further improvement, all combinations of

results produced by Regis were again reviewed and all

cases where the end result was to (1) paint no pixels OR

to (2) paint one pixel were extracted. Then a second

code conversion table was developed based on inputs

defining whether the deltas were equal to zero or the

deltas were negative. The idea again, was to cover as

Many cases as practical without requiring an excessively

large ROM or Ilogically equivalent (but faster)

combianatorial circuit. The resultant table was larger

than the first but, when certain cases were converted to

an "I'm not sure" output rather than a definitive

assertion that zero or one pixel will be painted, it was

possible to reduce the second table to a sufficiently

small size where it could be economically and practically

contained within the integrated circuit housing the math

platfrom, corner engine and Regis. The result of this

approach is given by below TABLE II (REDMUN.FDS).

It is to be understood that if desired, one could

repeat the same procedure to develop a table that tries

to cover all or most of the cases where Regis ultimately

decides to paint 0, 1 or 2 pixels. In such a case the

input parameter list will be larger, and the

corresponding fast-decision unit will be larger in size

and/or slower in speed. A trade-off should be made

between performance gain in the image rendering system

and the costs involved in trying to cover more and more

of the Regis outcomes with a fast-deciding circuit.

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

- 122 -

There will be a point of diminishing returns at which the

time consumed by the line-filler to paint more than, say

4 or 5 pixels, dominates over the time saved by

circumventing the Regis operations with a fast decision.

There will be a further point of diminishing returns at

which the size of the fast-deciding circuit no longer

makes economic sense (e.g., it is impractically large).

For a 0.9 micron line-width technology used in one

embodiment of the invention, the inventors here decided

that it was prudent to use a fast-deciding circuit which

covers most or all zero paint results and a majority of

the paint-one pixel results. For all other cases, Munkee

esentially says "I don't know" and leaves it to Regis to

perform the operations.

In the below Table II, the inputs are defined by

multi-character mnemonics. An initial D means "delta",

the letter after the D defines the direction of the delta

as X or Y. The next to digits identify the from and to

corners. 01, for example means the distance going from a0

to al. (DX01= al-a0). The next letter identifies the

input parameter as representing whether the delta is

Equal to zero or whther the delta is negative.

The outputs are: NP=1 means that no destination pixels

are to be painted. MF=1 (Munkee function) means that

only one pixel will be painted. An "I don't know"

condition is defined by the logic NOR of MF and NP (both

are false). CW means that the to-be-painted pixel is

clockwise. MX identifies which of corners a0-a3 should

be used as the X for the output YX value. MY identifies

which of corners a0-a3 should be used as the Y of the

output YX value. Each input/output "1" represents a

logic true electrical or other signal, each input/output

"0" represents a logic false electrical or other signal,

each input/output "x" bit represents a logic don't-care

electrical or other signal.

WO 94/10644

10

15

20

25

30

35

40

45

50

PCT/US92/09462

- 123 -

TABLE II (REDMUN.FDS)

COPYRIGHT © 1992 The 3D0 Company
CKTNAME : REDMUNK;

TYPE : COMB;

INPUTS : DXOIN, DXO1E, DX23N, DX23E, DXO2N, DX02E,

DYO1N, DYO1E, DY23N, DY23E, DYO2N, DYO2E;

OUTPUTS : MF, NP, MX1, MX0O, MY1, MYO, CW;
/* trymunk.eqn */
<TT>

000000000000 Olxxxxx
000000000001 1000x00
000000000010 OOxxxxx
000001000000 10x0011
000001000001 Olxxxxx
000001000010 10x0000
000010000000 OOxxxxx
000010000001 1010x01
000010000010 Olxxxxx
000000000100 Olxxxxx
000000000101 OOxxxxx

000000000110 OOxxxxx
000001000100 Olxxxxx
000001000101 10x0x00
000001000110 OOxxxxx
000010000100 Olxxxxx
000010000101 Olxxxxx
000010000110 10101x1
000000001000 XXXXXXX
000000001001 OOxxxxx
000000001010 OOxxxxx
000001001000 XXXXXXX
000001001001 10x0x00
000001001010 0O0Oxxxxx
000010001000 XXXXXXX
000010001001 Olxxxxx
000010001010 1010101
000100000000 Olxxxxx
000100000001 1000x00
000100000010 1000000
000101000000 10x0011
000101000001 Oixxxxx
000101000010 Olxxxxx
000110000000 OOxxxxx
000110000001 101xx01
000110000010 101x001
000100000100 Olxxxxx
000100000101 1000x00
000100000110 1000000
000101000100 Olxxxxx

WO 94/10644

10

15

20

25

30

35

40

45

50

000101000101
000101000110
000110000100
000110000101
000110000110
000100001000
000100001001
000100001010
000101001000
000101001001
000101001010
000110001000
000110001001
000110001010
001000000000
001000000001
001000000010
001001000000
001001000001
001001000010
001010000000
001010000001
001010000010
001000000100
001000000101
001000000110
001001000100
001001000101
001001000110
001010000100
001010000101
001010000110
001000001000
001000001001
001000001010
001001001000
001001001001
001001001010
001010001000
001010001001
001010001010
000000010000
000000010001
000000010010
000001010000
000001010001
000001010010
000010010000
000010010001
000010010010
000000010100
000000010101

- 124 -

Olxxxxx
Olxxxxx

Olxxxxx
101xx01
O1lxxxxx
XXXXXXX
1000x000
1000000
XXXXXXX
Olxxxxx

Olxxxxx
XXXXXXX
Olxxxxx

Olxxxxx

Olxxxxx
1000x000
Olxxxxx

10x0011
O1lxxxxx

10110012
OOxxxxx

1010x01
OOxxxxx
Olxxxxx

Olxxxxx

10001x1
Olxxxxx

1011x001
10111x1
Olxxxxx

OOxxxxx

OOxxxxx
XEXXXXX
O1lxxxxx
1000101
XXXXXXX
Olxxxxx
1011101
XXXXXXX
1010x001
Olxxxxx

10000x1
O1lxxxxx

Olxxxxx

OOxxxxx
10x00x1
Olxxxxx

OOxxxxx
OOxxxxx

Olxxxxx

10000x1
Olxxxxx

PCT/US92/09462

WO 94/10644

10

15

20

25

30

35

40

45

50

000000010110
000001010100
000001010101
000001010110
000010010100
000010010101
000010010110
000000011000
000000011001
000000011010
000001011000
000001011001
000001011010
000010011000
000010011001
000010011010
000100010000
000100010001
000100010010
000101010000
000101010001
000101010010
000110010000
000110010001
000110010010
000100010100
000100010101
000100010110
000101010100
000101010101
000101010110
000110010100
000110010101
000110010110
000100011000
000100011001
000100011010
000101011000
000101011001
000101011010
000110011000
000110011001
000110011010
001000010000
001000010001
001000010010
001001010000
001001010001
001001010010
001010010000
001010010001
001010010010

~- 125 -

10011x0
10x00x1

O1lxxxxx

10x01x0

10000x1
Olxxxxx

10101x0
OOxxxxx
Olxxxxx
1001100
10x00x1
Olxxxxx

10x0100
Olxxxxx
Olxxxxx
1010100
10000x1
Olxxxxx
Olxxxxx
OOxxxxx
10x00x1
Olxxxxx

OOxxxxx
OOxxxxx

O1lxxxxx

10000x1
Olxxxxx

Olxxxxx
10x00x1
Olxxxxx
Olxxxxx
10000x1
Olxxxxx

Olxxxxx
10000x1
Olxxxxx
Olxxxxx
Olxxxxx

Olxxxxx

Olxxxxx
101x0x0

O1lxxxxx
101x100
10000x1
Olxxxxx
Olxxxxx .-

10x00x1
10x00x1
Olxxxxx

OOxxxxx
OOxxxxx
Olxxxxx

PCT/US92/09462 _

WO 94/10644

10

15

20

25

30

35

40

45

50

001000010100
001000010101
001000010110
001001010100
001001010101
001001010110
001010010100
001010010101
001010010110
001000011000
001000011001
001000011010
001001011000
001001011001
001001011010
001010011000
001010011001
001010011010
000000100000
000000100001
000000100010
000001100000
000001100001
000001100010
000010100000
000010100001
000010100010
000000100100
000000100101
000000100110
000001100100
000001100101
000001100110
000010100100
000010100101
000010100110
000000101000
000000101001
000000101010
000001101000
000001101001
000001101010
000010101000
000010101001
000010101010
000100100000
000100100001
000100100010
000101100000
000101100001
000101100010
000110100000

- 126 -

10000x1i
O1xxxxx
10001x1
10x00x1
Olxxxxx
10111x1
10000x1
Olxxxxx
10111x1
O1lxxxxx

Olxxxxx

1000101
10110x0
Olxxxxx
Olxxxxx
OOxxxxx
Olxxxxx
Olxxxxx
1000001
Olxxxxx

XXXXXXX
OOxxxxx
10x0x01
XXXXXXX
OOxxxxx

OOxxxxx
XXXXXXX
1000001
O1lxxxxx

Olxxxxx

10x0001
Olxxxxx

10x0x10
1000001
Olxxxxx

OOxxxxx
OOxxxxx
1001x11
O1xxxxx
10x0001
Olxxxxx

10x0010
Olxxxxx

1000x10
OOxxxxx
1000001
Olxxxxx

XXXXXXX
OOxxxxx
10x0x01
XXXXXXX
OOxxxxx

PCT/US92/09462

WO 94/10644

10

15

20

25

30

35

40

45

50

000110100001
000110100010
000100100100
000100100101
000100100110
000101100100
000101100101
000101100110
000110100100
000110100101
000110100110
000100101000
000100101001
000100101010
000101101000
000101101001
000101101010
000110101000
000110101001
000110101010
001000100000
001000100001
001000100010
001001100000
001001100001
001001100010
001010100000
001010100001
001010100010
001000100100
001000100101
001000100110
001001100100
001001100101
001001100110
001010100100
001010100101
001010100110
001000101000
001000101001
001000101010
001001101000
001001101001
001001101010
001010101000
001010101001
001010101010
010000000000
010000000001
010000000010
010001000000
010001000001

- 127 -

101xx01

XXXXXKXX
1000001
Olxxxxx

Olxxxxx
10x0001
O1lxxxxx

10x0x10
Olxxxxx
Oilxxxxx

OOxxxxx
1000001
Olxxxxx

O1lxxxxx
Olxxxxx
10x0x10
10x0010
101x000
OOxxxxx
OOxxxxx
1000001
Olxxxxx

XXXXXXX
10x0001
Olxxxxx
XXXXXXX
O1lxxxxx
1010x001
XXXXXXX
1000001
Olxxxxx

Olxxxxx

Olxxxxx
Olxxxxx

10x0x10
Olxxxxx

Olxxxxx

OOxxxxx
Olxxxxx
1000x10
O1lxxxxx

1011000
OOxxxxx
10x0010
OOxxxxx
O0Oxxxxx
OOxxxxx
100x010
100xx00
OOxxxxx
Olxxxxx
Olxxxxx

PCT/US92/09462

WO 94/10644

10

15

20

25

30

35

40

45

50

010001000010
010010000000
010010000001
010010000010
010000000100
010000000101
010000000110
010001000100
010001000101
010001000110
010010000100
010010000101
010010000110
010000001000
010000001001
010000001010
010001001000
010001001001
010001001010
010010001000
010010001001
010010001010
010100000000
010100000001
010100000010
010101000000
010101000001
010101000010
010110000000
010110000001
010110000010
010100000100
010100000101
010100000110
010101000100
010101000101
010101000110
010110000100
010110000101
010110000110
010100001000
010100001001
010100001010
010101001000
010101001001
010101001010
010110001000
010110001001
010110001010
011000000000
011000000001
011000000010

- 128 -

100x000
1010011
1010x001
01xxxxx
Olxxxxx
0Oxxxxx
OOxxxxx
Olxxxxx

100xx00
OOxxxxx
Olxxxxx

Olxxxxx

10101ix1
XXXXXXX
100xx00
OOxxxxx
XXXXXXX
100xx00
OOxxxxx

XEXXXXX
Olxxxxx

1010101
100x010
100xx00

100x000
Olxxxxx

Oixxxxx

Olxxxxx

101x011

101xx01

101x001

O1lxxxxx

100xx00

100x000
Olxxxxx

Olxxxxx

Olxxxxx

Olxxxxx

101xx01

101x001
XXXXXXX
100xx00
100x000
O1xxxxx

Olxxxxx
Olxxxxx
XXXXXXX
101xx01
101x001
100x010
100xx00
Olxxxxx

PCT/US92/09462

WO 94/10644

10

15

20

25

30

35

40

45

50

011001000000
011001000001
011001000010
011010000000
011010000001
011010000010
011000000100
011000000101
011000000110
011001000100
011001000101
011001000110
011010000100
011010000101
011010000110
011000001000
011000001001
011000001010
011001001000
011001001001
011001001010
011010001000
011010001001
011010001010
010000010000
010000010001
010000010010
010001010000
010001010001
010001010010
010010010000
010010010001
010010010010
010000010100
010000010101
010000010110
010001010100
010001010101
010001010110
010010010100
010010010101
010010010110
010000011000
010000011001
010000011010
010001011000
010001011001
010001011010
010010011000
010010011001
010010011010
010100010000

- 129 -

Olxxxxx

O1lxxxxx
1011001
1010011
1010x001
OOxxxxx

Olxxxxx

Olxxxxx
100x1lx1
Oilxxxxx
1011x01
OOxxxxx

Olxxxxx
OOxxxxx
OOxxxxx

XXXXXXX
Olxxxxx
100x101
XXXXXXX
1011x001
OOxxxxx
XXXXXXX
1010x001
OOxxxxx
Olxxxxx
100x0x0
Olxxxxx
Olxxxxx
Olxxxxx

Olxxxxx
1010101
10100x1
Olxxxxx
Olxxxxx

Olxxxxx
10101x0
Olxxxxx
Olxxxxx

100x1x0
Olxxxxx
Olxxxxx

10101x0
O0Oxxxxx
Olxxxxx

Olxxxxx
100x0x1

O1lxxxxx

100xi00
Olxxxxx

Olxxxxx
1010100
100x100

PCT/US92/09462

WO 94/10644

10

15

20

25

30

35

40

45

50

010100010001
010100010010
010101010000
010101010001
010101010010
010110010000
010110010001
010110010010
010100010100
010100010101
010100010110
010101010100
010101010101
010101010110
010110010100
010110010101
010110010110
010100011000
010100011001
010100011010
010101011000
010101011001
010101011010
010110011000
010110011001
010110011010
011000010000
011000010001
011000010010
011001010000
011001010001
011001010010
011010010000
011010010001
011010010010
011000010100
011000010101
011000010110
011001010100
011001010101
011001010110
011010010100
011010010101
011010010110
011000011000
011000011001
011000011010
011001011000
011001011001
011001011010
011010011000
011010011001

- 130 -

100x0x0

O1xxxxx

Olxxxxx

O1lxxxxx
O1lxxxxx
101x101
101x0x1
Olxxxxx
Olxxxxx

Olxxxxx
Olxxxxx

Olxxxxx

O1lxxxxx

Olxxxxx

Olxxxxx

Olxxxxx

Olxxxxx
100x0x1
Olxxxxx
Olxxxxx
O1lxxxxx
Olxxxxx
Olxxxxx

101x0x0
Olxxxxx

Olxxxxx
100x100
100x0x0
Olxxxxx

O1lxxxxx
Olxxxxx

Olxxxxx

Olxxxxx

10100x1
Olxxxxx

Olxxxxx

Olxxxxx

100x1x1
Olxxxxx
Olxxxxx

10111x1
Olxxxxx

Olxxxxx

10111ix1
Olxxxxx
Olxxxxx

100x101
10110x0
O1lxxxxx

1011101
OOxxxxx
Olxxxxx

PCT/US92/09462

WO 94/10644

10

15

20

25

30

35

40

45

50

011010011010
010000100000
010000100001
010000100010
010001100000
010001100001
010001100010
010010100000
010010100001
010010100010
010000100100
010000100101
010000100110
010001100100
010001100101
010001100110
010010100100
010010100101
010010100110
010000101000
010000101001
010000101010
010001101000
010001101001
010001101010
010010101000
010010101001
010010101010
010100100000
010100100001
010100100010
010101100000
010101100001
010101100010
010110100000
010110100001
010110100010
010100100100
010100100101
010100100110
010101100100
010101100101
010101100110
010110100100
010110100101
010110100110
010100101000
010100101001
010100101010
010101101000
010101101001
010101101010

- 131 -

Olxxxxx

Oilxxxxx

Olxxxxx

XXXXXXX
Olxxxxx
Olxxxxx
XXXXXXX
1010101
1010x001
XXXXXXX
100x001
Olxxxxx

100xx11
Olxxxxx
Olxxxxx
Olxxxxx
Olxxxxx
Olxxxxx
1010x10
OOxxxxx
OOxxxxx
100x011
100x001
100xx11
Olxxxxx
OLxxxxx

Olxxxxx
1010010
100x100
100xx00
XXXXXXX
Olxxxxx

Olxxxxx
Olxxxxx

101x101
101xx01

XXXXXKX
Olxxxxx

O1lxxxxx

100xx1l
Olxxxxx
Olxxxxx
Olxxxxx
O1lxxxxx

Olxxxxx

101xx10
100x001
100xx11
100x011
Olxxxxx
Olxxxxx
Olxxxxx

PCT/US92/09462

WO 94/10644

10

15

20

25

30

35

40

45

50

010110101000
010110101001
010110101010
011000100000
011000100001
011000100010
011001100000
011001100001
011001100010
011010100000
011010100001
011010100010
011000100100
011000100101
011000100110
011001100100
011001100101
011001100110
011010100100
011010100101
011010100110
011000101000
011000101001
011000101010
011001101000
011001101001
011001101010
011010101000
011010101001
011010101010
100000000000
100000000001
100000000010
100001000000
100001000001
100001000010
100010000000
100010000001
100010000010
100000000100
100000000101
100000000110
100001000100
100001000101
100001000110
100010000100

. 100010000101
100010000110
100000001000
100000001001
100000001010
100001001000

- 132 -

101x000
101xx1i0
101x010
100x100
100xx00
XXXXXXX
Olxxxxx

O1lxxxxx

XXXXXXX
Oixxxxx

Olxxxxx

XXXXXXX
Olxxxxx
O1lxxxxx

100xx11
Olxxxxx
Olxxxxx
Olxxxxx

1010000
O1xxxxx
1010x10
Olxxxxx

Olxxxxx

100x011
1011000
1011x10
Olxxxxx

OOxxxxx
OOxxxxx
1010010
OOxxxxx

1000x00
OOxxxxx
1001010
Olxxxxx

10x0000
Olxxxxx

1001x01
Olxxxxx

Olxxxxx

OOxxxxx

OOxxxxx

Olxxxxx
10x0x00
10x01x1

Olxxxxx

Olxxxxx

10011x1
XXXXXXX
1000x00
Olxxxxx

XXXXXXX

PCT/US92/09462

WO 94/10644

10

15

20

25

30

35

40

45

50

100001001001
100001001010
100010001000
100010001001
100010001010
100100000000
100100000001
100100000010
100101000000
100101000001
100101000010
100110000000
100110000001
100110000010
100100000100
100100000101
100100000110
100101000100
100101000101
100101000110
100110000100
100110000101
100110000110
100100001000
100100001001
100100001010
100101001000
100101001001
100101001010
100110001000
100110001001
100110001010
101000000000
101000000001
101000000010
101001000000
101001000001
101001000010
101010000000
101010000001
101010000010
101000000100
101000000101
101000000110
101001000100
101001000101
101001000110
101010000100
101010000101
101010000110
101000001000
101000001001

- 133 -

Olxxxxx

10x0101
XXXXXXX
Olxxxxx

1001101
OOxxxxx
1000x00
1000000
1001010
Olxxxxx

Olxxxxx

Olxxxxx
10x1x01
10x1001
Olxxxxx

1000x00
Olxxxxx
O1lxxxxx
Olxxxxx
Olxxxxx

Olxxxxx
10x1x01
10x1001
XXXXXXX
Olxxxxx
Olxxxxx
XXXXXXX
Olxxxxx
Olxxxxx

XXXXXXX
10x1x01
10x1001
OOxxxxx
1000x000
Olxxxxx
10x1010
Olxxxxx

10x1001
Olxxxxx

1001x01
OOxxxxx

Olxxxxx

Olxxxxx

10001x1
Olxxxxx
10x1x01
OOxxxxx
Olxxxxx
OOxxxxx
OOxxxxx
XXXXXXX
O1lxxxxx

PCT/US92/09462

WO 94/10644

10

15

20

25

30

35

40

45

50

101000001010
101001001000
101001001001
101001001010
101010001000
101010001001
101010001010
100000010000
100000010001
100000010010
100001010000
100001010001
100001010010
100010010000
100010010001
100010010010
100000010100
100000010101
100000010110
100001010100
100001010101
100001010110
100010010100
100010010101
100010010110
100000011000
100000011001
100000011010
100001011000
100001011001
100001011010
100010011000
100010011001
100010011010 ©
100100010000
100100010001
100100010010
100101010000
100101010001
100101010010
100110010000
100110010001
100110010010
100100010100
100100010101
100100010110
100101010100
100101010101
100101010110
100110010100
100110010101
100110010110

- 134 -

1000101
XXXXXXX
10x1x01
OOxxxxx
XXXXXXX
OOxxxxx
OOxxxxx
OOxxxxx
OOxxxxx
Olxxxxx

10010xi

10010x0
Olxxxxx

10010x1
Olxxxxx
Olxxxxx
10010x0
Olxxxxx

10101x0

10010x0
O1xxxxx
10x01x0
10010x0
Olxxxxx

10011x0
OOxxxxx
Olxxxxx
Olxxxxx
10x00x1
Olxxxxx
Olxxxxx

Olxxxxx

Olxxxxx

1001100
OOxxxxx
OOxxxxx

Olxxxxx

OOxxxxx
10010x0
Olxxxxx
10x10x1
Olxxxxx

Oixxxxx

10010x0
Olxxxxx

Olxxxxx

10010x0
Olxxxxx

Olxxxxx
10x10x0
Olxxxxx
Olxxxxx

PCT/US92/09462

WO 94/10644

10

15

20

25

30

35

40

45

50

100100011000
100100011001
100100011010
100101011000
100101011001
100101011010
100110011000
100110011001
100110011010
101000010000
101000010001
101000010010
101001010000
101001010001
101001010010
101010010000
101010010001
101010010010
101000010100
101000010101
101000010110
101001010100
101001010101
101001010110
101010010100
101010010101
101010010110
101000011000
101000011001
101000011010
101001011000
101001011001
101001011010
101010011000
101010011001
101010011010
100000100000
100000100001
100000100010
100001100000
100001100001
100001100010
100010100000
100010100001
100010100010
100000100100
100000100101
100000100110
100001100100
100001100101
100001100110
100010100100

- 135 -

10000x1
Olxxxxx
1000101
Olxxxxx

Olxxxxx

Olxxxxx
10x10x0
Olxxxxx
Olxxxxx

OOxxxxx
OOxxxxx
Olxxxxx
OOxxxxx
10x10x0
Olxxxxx
10010x1
O1lxxxxx
Olxxxxx
10010x0
Olxxxxx
10001x1
10x10x0
Olxxxxx
10xlixl

10010x0
Olxxxxx
10111x1
O1lxxxxx

Olxxxxx

1000101
10x10x0
O1lxxxxx

10x1101
OOxxxxx
Olxxxxx
1011101
Olxxxxx

1000x00
XXXXXXX
1001001
Olxxxxx

XXXXXXX
1001001
Olxxxxx

XXXXXXX
Olxxxxx
Olxxxxx

OOxxxxx
Olxxxxx

Olxxxxx
1001x111
1001000

PCT/US92/09462

WO 94/10644

10

15

20

25

30

35

40

45

50

100010100101
100010100110
100000101000
100000101001
100000101010
100001101000
100001101001
100001101010
100010101000
100010101001
100010101010
100100100000
100100100001
100100100010
100101100000
100101100001
100101100010
100110100000
100110100001
100110100010
100100100100
100100100101
100100100110
100101100100
100101100101
100101100110
100110100100
100110100101
100110100110
100100101000
100100101001
100100101010
100101101000
100101101001
100101101010
100110101000
100110101001
100110101010
101000100000
101000100001
101000100010
101001100000
101001100001
101001100010
101010100000
101010100001
101010100010
101000100100
101000100101
101000100110
101001100100
101001100101

- 136 -

Olxxxxx
Olxxxxx
OOxxxxx
OOxxxxx
OOxxxxx

10x0001
OOxxxxx
1001011

Olxxxxx
1001x11
Olxxxxx
OOxxxxx
1000x000
XXXXKXXX
OOxxxxx
100100
XXXXXXX
10x1001
O1xxxxx

XXXXXXX
Olxxxxx
Olxxxxx

OOxxxxx
1001000
Olxxxxx

1001x11
10x1000
Olxxxxx

O1lxxxxx

1000001
OOxxxxx
O0Oxxxxx
Olxxxxx

1001x11
1001011
10x1000
Olxxxxx

Olxxxxx

OOxxxxx

OOxxxxx

XEXXXXX
OOxxxxx

10x1x00
XXXXXXX
1001001
Olxxxxx

XXXXXXX
1001000
O1lxxxxx
OOxxxxx
10x1000
Olxxxxx

PCT/US92/09462

WO 94/10644

10

15

20

25

30

35

40

PCT/US92/09462

- 137 -

101001100110 10x1lx11
101010100100 1001000
101010100101 Olxxxxx
101010100110 Olxxxxx
101000101000 Olxxxxx
101000101001 1001x11
101000101010 OOxxxxx
101001101000 10x1000
101001101001 Olxxxxx
101001101010 10x1011
101010101000 OOxxxxx
101010101001 1011x10
101010101010 Olxxxxx

11lxxxxxxxxxx XXXXXXX

XX11xxxxxxXxXx XXXXXXX
xxxx11xxxxxx XXXXXXX

XXXXxxX11xxxx XXXXXXX
XXXXXXxx11xx XXXXXXX

XXXXXXXXXX11 XXXXXXX

<END>

The above input signals of form:

D[X,Y][(01,32,03][N,E] are derived from the corner

engine stored and/or calculated signals representing

difference values al-a0 (same as DX, DY), a2-a3 (same

as DX++, DY¥++) and a3-a0 (which calculated by the

corner engines in successive steps). The N (negative)

indicating signals are simply a saved most-significant

bit from each of difference signals al-a0 , a2-a3 and

a3-a0. The E (equal to zero) indicating signals are

Simply formed by performing a logical NOR operation on

all bits of difference signals al-a0 , a2-a3 and

a3-a0.

DETAILED DESCRIPTION OF REGIS FILLBIN

STATEMACHINES

The Regis boundary-walking unit preferably

comprises two boundary-walking state machines: BW1l and

BW2. (These have respective re-entrant state points:

Rl, and R2 in the below state-transition definitions.)

State machine BW1l is typically assigned the task of

(§6.6.2)

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

-~ 138 -

walking down a left-side line of a geometric shape,

from a specified FROM point (F1) toward a specified

Termination point (Tl). At the same time, state

machine BW2 is typically assigned the task of walking

down an opposed right-side line of the geometric shape,

from a specified FROM point (F2) toward a specified

Termination point (T2). The two state machines (BW1 and

BW2) step in unison from each Y, coordinate to a next,

Yp= Yptl coordinate.

While state machines BW1 and BW2 are operating, the

basic corner-calculating logic is disabled.

The following hardware resources are used in the

math engines: |

(a) Five 2-bit storage/counter elements for

respectively identifying which of coordinates

a0 through a3 constitutes: a top point (Ytop),

the Tl target point, the T2 target point; and

for further keeping count of the number of

polygon corner points which the first state

machine BW1 has already walked past, CCl

(corner count for edge walker BW1); and for

also keeping count of the number of polygon

corner points which the second state machine

BW2 has already walked past, CC2 (corner count

for edge walker BW2). The FROM point

identifiers, Fl and F2, are not stored but

rather calculated as next indicated.

(b) Three 2-bit combinatorial logic circuits for

generating signals according to the following

functions: F1il=T1+1, F2=T2-1, CS=CC1+CC2. Note

that the left walker adds one to define its

FROM point while the right walker subtracts one

define its FROM point. CS represents a corner

stop value. When the sum of corners walked —

past by the left and right walkers is greater

WO 94/10644

10

15

20

25

30

PCT/US92/09462

- 139 -

than 3 (CS > 3), the polygon walk is deemed to

be complete.

(c) Three 1-bit flag storing latches: ACW is set

true to allow rendering of clockwise-oriented

(CW) projected polygons, ACCW is set true to

allow rendering of counterclockwise-oriented

(CCW) projected polygons, TWD is set true to

cause termination of the rendition if a

nonallowed direction (CW or CCW) is encountered

at the first pixel of the spryte then being

rendered.

(da) One 1-bit input line: Indicates whether the

first pixel of a spryte is now being rendered.

ASSUMPTIONS:

(1.) Corners are identified in CW order with corner

aQ being the top left of the source pixel and a3 being

the bottom left.

(2.) Projected polygons with vertically crossed

corners (bad, sideways turned bowtie) will not be

rendered.

OTHER NOTES:

When below wait states Wl and W2 exist, AND

(CE_hold OR CE_YX) is available, the Regis can move on

to perform the next line walk step. The LF (Line-

filling unit) can take the just-produced X1, X2, and Y

values into its own registers and generate the memory

write requests in parallel.

Exit from the Wl and W2 states will be

‘simultaneous. Only one of the controllers needs to

initiate the 'Y=Y+1' event. Both walkers (BW1 and BW2)

step to the next Y position together.

Each machine, BWl and BW2, waits at its respective

W1/W2 state until the other catches up.

WO 94/10644

10

15

20

25

30

35

PCT/US92/09462

- 140 -

The CCl and CC2 counters permit simultaneous bumps

of Tl and T2.

If, at entry to Regis, Ytop = Tl (or T2), we

actually set Tl to T1-1 (or T2 to T2+1), and we set CCl

(CC2) to 1 vice 0. Use the top detector logic to

determine this condition. Use pre-top, pre-tl, pre-t2.

ADDITIONAL NOTE:

We reverse the subtraction order in the DYn

calculation. This results in -DYn as the answer which

can then be directly deposited into XnFRAC and the -DYn

holder.

Xnslope is used to determine polarity of XnADD and

+/- of DXn. If Xnslope is negative, then XnADD=-1 and

DXn is subtracted in the below R1/R2 states. The -DYn

and the Xnslope operations make it unnecessary to check

for the DYn=1 shortcut.

(§6.6.2.1) REGIS-FILLBIN STATES

Initial entry into the Regis operation is at left

and right start states, Sl and S2. Thereafter, re-

entry states R1 and R2 are used.

The below state transition tables are to be read

as left to right as a series of embedded IF clauses

with the THEN operation at the right followed by a

comments column. CMP indicates a comparison of two

arguments. EQ defines the case where the argument

variables are equal. NE defines the case where the

argument variables are not equal. "X" indicates a

don't care condition or a do-nothing action.

Thus, when machine BW1l is in the below Rl state,

and a comparison of the current Y coordinate against

the Y of the specified TO point shows an equality

condition, and if corner sum CS= 0 OR 1, then the next

state is S1 and the value of the new X1l(fraction) is

irrelevant. @

WO 94/10644 PCT/US92/09462

- 141 -

STATE: R1 (Re-entry point for the BW state machine)

IF: ANDIF: ALWAYSDO: (COMMENTS)
CMPof X1FRAC=X1FRAC+/-DX1

Y_Y(T1) CS= THEN CHECK FOR: AND DO ON COND:

EQ 2or3 x TERMINATE(R) (last corner)

EQ Oor 1 x GOTO S1 (Get Next Corner)

(T1=T1-1],

[(CC1=CC1+1}

NE x new X1FRAC<0 GOTO Wi (Still on same edge, end of scan line)

NE x new XIFRAC> =0 GOTO E1 (Still on same edge, walk the edge)

STATE: S1 (Start)

(Get Breshenham deltas, do simultaneous with the CMPs)

Y_¥(T1); Check

CS:

also do X1FRAC = Y(F1) - Y(T1); and do X1=X(F1);

EQ 2or3 TERMINATE(R) (New Corner,last corner)

EQ Oor4 GOTO Si (New Corner, tryagain) DO[T1=T1-1], CCi1=CC1+1

NE x GOTO W1 (New Corner, use deltas)

STATE: Wi (Wait)

Wait here until W2 exists AND LFis available.

Then provide Y and X1 and X2 to LF (Line-filler).

If ¥ is neg, Don’t initiate LF.

THE BELOW ACTIONS ARE PERFORMED BY THE LINE-FILLER MATH SECTION

| SUB X1-X2: ACW= ACCW=

|
| X= X2 x x XL==xDon’tinitiate LF:
| X1_> X2 x Q XL==X2Don'tinitiate LF; if NE, set ‘wrong direction’ flag
| X1 > X2 x i XL= =initiate LE
| X1< x2 0 x XL==XiDon't initiate LF, set ‘wrong direction’flag
| X1 < X2 4 x XL==Xtinitiate LF
|

Upon exit from Line-filler:
Y=¥+1; DX1 = X(T‘) - X(F1); Save Sign of DX1 as X1 slope;
GOTO R1.

STATE: E14 (Edge walk)

XIFRAC = XiFRAC -DY1; X1=X1+/-X1ADD (Walk the edge)
XiFRAC < 0 GOTO W1__(End of Sean Line}
 XAFRAC > =0 GOTO.E1 (Walk more)

WO 94/10644 PCT/US92/09462

- 142 -

Super-clipping:

At any state, if Y>CLIP, TERMINATE(R) (do notinitiate LF). {Skip is performed by LF}
At any state, if (WDF and not-crossed), TERMINATE(R) (do notinitiate LF).

At any state, if (TWD and WDFand 1st pixel), TERMINATE(S) (do notinitiate LF).

STATE: R2 (Re-entry)

CMP Y.Y(T2); Check CS: X2FRAC=X2FRAC+ /-DX2

EQ 2073 x TERMINATE(R) (last corner) :
EQ Qor1 x GOTO $2 (Get Next Corner) DO[T2=T2+1},

[CC2=CC2+1]
NE x new X2FRAC<0 GOTO We (Still on same edge, end of scan line)
NE x new X2FRAC> =0 GOTO E2 (Still on same edge, walk the edae)

STATE: S2 (Start)
(get bresh deltas, do simultaneous with the CMPs)

CMP_Y.Y(T2); Check CS: also do X2FRAC = Y(F2) - Y(T2); and do X2=X(F2);
E

Q 2or3 TERMINATE(R) (New Corner, tast corner)
EQ OQor1 GOTO $2 (New Corner, try again) DOJT2=T2+1}, CC2=CG2+1
NE x GOTO We (New Corner, use deltas)

STATE: W2 (Wait)

Wait here until W1 exists AND LF is available.
Then provide Y and X1 and X2 to LF.
If Y is neg, Don’t initiate LF.

SUB X1-X2; ACW: ACCW:
Xi_= X2 x XL==x Don't initiate LF:

x
Xt > X2 x Q XL== Don't initiate LF: if NE, set wrong direction’ flag
X1_ > X2 x i Xi== initiate LE
Xi_< X2 Q x XL==X1___Don't initiate LF, set "wrong direction’ flag
X1_< X2 i x XL==Xi__ initiate LF

Upon exit,
‘Goro 1 copy X2FRAC TO -DY2 register; DX2 = X(T2) - X(F2); Save Sign of DX2 as X2slope;

TO R2.

STATE: (Edge walk)

X2ERAC = X2FRAC -DY2; X2_= X2 +\- X2ADD (Walk the edge)
X2FRAC < 0 GOTO W2__(End of Scan Line)
X2FRAC > =0 GOTO E2___ (Walk more)

***END OF REGISFILL-BIN STATE TRANSITION TABLE

WO 94/10644

10

15

20

25

30

35

40

45

50

PCT/US92/09462

- 143 -

§7.0 SCoB contents and other Miscellaneous Tables

TABLE 1.0

SCoB Data Structure
Number

Bits Name escriptio

32 FLAGS Assorted flags. This is the
first word read by the spryte-rendering
hardware!! (Theflag bits are detailed in below
TABLE1.1)

24 NEXTPTR Address of next SCoB to process. (Formatis
absolute orrelative.) Spryte rendition takes
place by stepping through linked list having
one or more SCoB’s. After a first source spryte
is mappedto, and painted onto a destination
grid area defined by its SCoB, the spryte-
rendering engine processes the next SCoB,if
any, and renders its source spryte ontoits
designated destination surface. The linkedlist
can becircularif desired so that the processis
repeatediteratively.

24 SOURCEPTR Address of image data that is to be rendered as
a spryte.

24 PIPPTR Address of Pen Index Palette (PIP) that is to be
loaded into the IPS unit (103 in Fig. 1A).

32 XPOS Horizontal position (in 640-max pixels format)
in the destination grid of the upperleft corner
of the to-be rendered SPRYTE,including 16
bits which represent a fraction (noninteger)
position-defining portion.

32 YPOS Vertical position (in 480-max pixels format) in
the destination grid of the upperleft corner of
the to-be rendered SPRYTE,including 16-bit
fraction part.

32 DX Horizontal position increment from mapped
first corner of a source pixel to mapped second
corner of a source pixel when scanning andre-
mapping the first spryte row onto the
destination grid (format is two 16-bit half-words
which are expressed in integer.fraction form as:
12.20).

32 DY Vertical position increment from mappedfirst
corner of a source pixel to mapped third corner
of a source pixel when scanning and re-mapping
the first spryte row (12.20).

32 LINEDX Horizontal position incrementin destination
grid from top left corner of 1st mapped spryte
row to top left corner of 2nd mapped spryte row
(16.16).

WO 94/10644

10

15

20

25

30

35

40

45

50

32

32

32

32
32
32

LINEDY

DDX

DDY

PPMPC
PREO
PRE1

PCT/US92/09462

- 144 -

Vertical position increment from 1st line to 2nd
(16.16).
Increment to DX for each successive row after
the 1st row of the spryte being rendered (12.20).
Increment to DY for each successiveline
processed (12.20) after 1st line.
PPMP control word (two halfwords: 16, 16).
Possible ist preamble word.
Possible 2nd preamble word.

a<END OF TABLE 1.0 >---------c-nsessonsene=

FLAGS:

Bits
B31
B30
B29 =

B28 =
B27
B26

B25 =

B24

B23
B22

B21

B20:B19 =
B18 =

B17 =

B16 =

B15 =

B14 =

B13 =

TABLE1.1

FLAGSData Structure

(Theseflag bits control specific fetching and rendering operations of
the spryte-rendering engine. The data specific control bits are found
in the preamble word of the source data.)

Name

SKIP
LAST
NPABS

SPABS
PPABS
LDSIZE

LDPRS

LDPPMP

LDPIP
SCoBPRE

YOXY

Xxx
ACW

ACCW

LCE

ACE

ASC

Description
If set, skip this SCoB.
If set, this is the last SCoB to process.
1=Absolute, 0= Relative address for
NEXTPTR.
1=Absolute, 0= Relative for SOURCEPTR.
1=Absolute, 0= Relative for PIPPTR.
Load 4 wordsofsize and slope data. (DX, DY,
LINEDX, LINEDY).
Load 2 wordsof perspective (skew control)
data. (DDX, DDY).
Load new PPMPcontrol word (PPMPC)into
PPMP controlregisters.
Load new PIP data into PIP.
Preamble location. 1=At end of SCoB, 0=At
start of source data.
Translate the XY values to a system memory
address value and write the corresponding data
to the hardware.
Reserved.
Allow rendering of a CW (clock-wise) oriented
destination pixel.
Allow rendering of a CCW oriented destination
pixel.
Terminate rendition of this Spryte if wrong
direction is encountered (CW-CCW).
Lock the operations of the 2 corner-calculating
engines together. (at H change).
Allow the second corner-calculating engine to
function.
Allow Super-Clipping (the local switch is
ANDedwith ASCALL).

WO 94/10644

10

15

20

25

30

35

40

45

B12 = MARIA

Bll = PXOR

B10 = USEAV

B9 = PACKED

B8:B7 = DOVER

B6 = PIPPOS

BS = BGND
B4 = NOBLK
B3:B0 = PIPA

nevenee <END OF TABLE1.1>

PCT/US92/09462

~ 145 -

1=disable full-math region-fill action and use
only the faster Munkeedecisionsas instructions
to the destination line-filler.
1=set PPMP XOR mode. (XORthe A and B
sources while disabling adder.)
1=use the "AV" bits in PPMPCto control
PPMPmathfunctions.
Primary source spryte type, 1=packed, 0=totally
literal. (Secondary source spryte is always
totally literal.)
D-Modeoverride. 00=use the D-bit generated
by the IPS unit to select the output of CMUX ,
01=reserved, 10=select the A input of the
CMUX, 11=select the B input of the CMUX.
Use PIP generated bits as the subpositionbits
(BO & B15 of the Output-PENsignal) instead of
the SCoBselection made below by B1i5POS and
BOPOS.
1=background SPRYTE type.
1=no black SPRYTE type.
PIP addressbits, these are used to pad the 5-
bit wide PIP address input signal when BPP
(Bits Per Pixel) output of unpackeris less than
5 bits wide.

TABLE1.2

PPMC Data Structure

The PPMPcontrol word has two 16-bit wide halves. One half is used when the
CMUxXselect control bit=0, the other half is used when the CMUXselect control
bit=1. Only the upper half is described here. The lower half hasidentical
structure.

Bits Name
B31= Si

B30:B29= MS

B28:B26= MxF

B25:B24= Dv1l

B23:B22= S2

Description
Select 1st multiplier input signal. 0=use IPN
(Source A), 1=use cFB data (Source B).
Select 2nd multiplier input signal. 0=MxF
(source is SCoB), 1=MUL (sourceis IPS),
2=IPNM(sourceis IPS), 3=xx (multiply by
default value, 1 or 0).
Multiply Factor. 0->7 means multiply by 1->8.
(only used if MS=0).
First divide-by Scaling-factor. 1=divide by 2,
2=divide by 4, 3=+8, 0=divide by 16.
Selector of secondary inputsignal. 0="apply 0
value to Adder port B", 1=use AV word (from
SCoB), 2=use cFBD (Source B), 3=use IPS
output (Source A).

WO 94/10644

10

15

20

25

30

35

40

45

50

PCT/US92/09462

- 146 -

B21:B17= AV Adder Value. 5 bit value to be added if S2=1.
This 5-bit signal is also used as a math control
word if USEAV=1.

B16= Dv2 Post addition, 2nd divider. 0=divide by 1,
1=divide by 2.

nacone- <END OF TABLE 1.2>

TABLE 1.3

conda V_Bit Functions

Aside from providing an "add value", the AV bits serve a secondary function as
follows when USEAV1.

Bits Function
AVO = Invert the output of the second divider in the

PMPPandset the carry-in of the adder.
AV1 = Enable the sign-extend function for the signals

flowing down the second math side of the
PMPP(Post possible XOR).

AV2 = Disable the wrap-limiter function. (Use the 5
LSB’s of the 8-bit adder output and ignore
possibility that it wrapped above decimal 31 or
below decimal zero.)
Select second side divider value as: 00=divide
by 1, 01=divide by 2, 10=divide by 4, 11=divide
by __ (reserved).

AV3:AV4

eneeeee <END OF TABLE 1.3>

TABLE 1.4

Engine Control Data Structure

There is also a general SPRYTE-rendering engine control word. It is loaded only .
by the CPU.Its bits are:

Bits Name escription
B31:B30= B15POS B15 oPENselector for output of PMPP. (This

bit can function as a subposition defining bit
that is used by the pre-display interpolater.) .
0=0, 1=1, 2=xx, 3=sameas Source data

B29:B28= BOPOS BO oPENselector for output of PMPP.(This bit
can also function as a subposition defining bit
that is used by the pre-display interpolater.)

WO 94/10644

10

15

20

25

30

35

40

45

50

PCT/US92/09462

- 147 -

0=0, 1=1, 2=PPMP math, 3=sameas Source
data

B27= SWAPHV 1=Swap the H and V subpositionsprior to their —
entry into the PPMP

B26= ASCALL 1=Allow super clipping function (master enable
switch)

B25= XX Reserved
B24= CFBDSUB 1=use the H and V subposition bits of the cFB

data in place of (vice) the SPRYTE source
values when the cFB data is selected as a PPMP
source. (Note: CFBDsel=(S1=1) OR (S2=2).)

B23:B22= CFBDLSB cFBD PPMP Blue LSB source. 0=0, .
1=cFBD[B0], 2=cFBD[B4], 3=x

B21:B20= IPNLSB IPN PPMP Blue LSB source. 0=0, 1=IPN[B0},
2=IPN[B4], 3=x

NOTE#1: When ’relative’ has been specified in the flags for NEXTPTR,
SOURCEPTR,or PIPPTR,the value that should (must) be placed in the SCoB is
the word distance from the address in RAM thathastherelative value in it to the
address in RAM thatis desired to be the new address MINUS FOUR.

REL= Target - PC - 4
NOTE#2: The BOPOSvalue of ‘2’ is the only setting that uses PPMP math to
control the BO bit in the actually output oPENsignal. Whenthis setting is chosen,
the Blue LSB will also be included in the input parameters of the black detector.

NOTE#3: SCoB Loading Process.
Thefirst 6 words of a SCoB (FLAGS, NEXTPTR, SOURCEPTR, |

PIPPTR, XPOS, YPOS) are always read out of VRAM by the DMA engine
(inside the memory address manipulator chip (MAMC)andgenerally placed into
corresponding hardware registers. The last 2 words (XPOS, YPOS)are always
read as part of the general 6-word SCoBread, but they are not written to the
hardware registers if this Spryte is to be skipped (SKIP=1) or YOXY is setto 0.

The remainder of the SCoB wordsare optionally downloadedinto the
hardware. The hardwareregisters are left in their pre-existing states if the
corresponding SCoB words are not downloaded.

The optionally downloaded 7 SCoB wordsare be divided into the
folowing successive groups: (a) Size and slope data (4 words), (b) Prespective or
skew-control data (2 words: DDX & DDY),andfinally (c) the PPMP control
word (1 word). These 7 SCoB words are read out of VRAM asoneburst
regardless of which specific ones have been requested.

After the nonoptional and/or optional SCoB wordsare read out of
VRAM,the preamble word or wordsare read. This is not optional.

Thelast group of words read (optionally) out of VRAM is the PIP
data (max 16 words). Note that, if read, the PIP is tha LAST element of the
SCoB that is read. The length of the PIP read wil vary depending on the BPP
setting of the current Spryte. If LINEAR=1, the PIP canstill be loaded even
though it is not used.@
aacenee<END OF TABLE 1.4>

TABLE 1.5 Sprvte Image Data Formats

WO 94/10644

10

15

20

25

30

35

40

45

50

PCT/US92/09462

- 148 -

There are 2 basic formats of Spryte image data, Totally literal format and non-
totally literal format. There are sub-groups within each basic format. In non-
totally literal Sprytes, the image data consists of groups of words that represent
source scan lines of data. In totally literal Sprytes, the image data consists of
purely image data (no intermingled control functions).

Non-totally literal Sprytes require 1 word preamble. Totally literal
Sprytes require 2 words of preamble. These preamble words maybelocated at
the end of the SCoB words(but before the PIP) orat the start of the image data.
The normallocation for these wordsis at the start of the image data, but totally
literal Sprytes that are in frame buffer format will want to not damage their
rectangular space with 2 extra words. Weare using a stand alonebit for the
selection just to keepis all simple.

Non-totally literal Sprytes can be compacted to save both memory
space and rendering time. Each source scan line of data hasits horizontal word
size specified as part of the data.

Totally literal Sprytes have a rectangular format that is specified in the
preamble of the data.
-------<END OF TABLE 1.5>

TABLE 1.6 Sprvte Data Preamble Words

First preamble word:
Thefirst preamble word for ALL SPRYTESis the data structure preamble. It
contains the data specific control bits for the source data.

B31->B28 = PRESERVEDforfuture use.
The current hardware will ignore writes to these bits and
return zero on

read.
B27->B21 = Reserved, set to 0.
B20 = PACKED This is identical to the PACKEDbit in

the SCoB
B19->B16 = Reserved, set to 0.
B15->B6 = VCNT Vertical numberof source data lines in this

image data -1. (10 bits)
BS = Reserved set to 0.
B4 = LINEAR 0=use PIP for generating IPN output of IPS

unit, 1=use PIN for outputting IPN
B3 = REP8 1=replicate the bits in the linear 8 Spryte,

0=fill with 0
B2->BO0 = BPP bits/pixel, pixel type

PRESERVEDbitsare currently ignored but someday may be used. It
is required that the software correctly create these bits. The current hardwarewill
not check that you didit right.

VCNT is loaded into a hardware counter in the Spryte requestor that
is decrementedat the endof the fetching of each source scan line of data. When

WO 94/10644

10

15

20

25

30

35

40

45

50

PCT/US92/09462

- 149 -

the countis at -1, there are no more sourcelines of data in the object. Note that
Spryte processing does not end here, this is merely one of the eventsthatis
required to end a Spryte. VCNT = line count-1.

An initial value of -1 for VCNT will cause a REAL BIG Spryte to be
fetched. Sorry, there is no ’zero line count’ value.

The LINEARbit only applies when the BPP typeis 8 bits per pixel or
16 bits per pixel. In those cases, there are enough PINbits to provide a 15 bit
IPN without using the PIP. Since the PIN bits are spread linearly across the IPN,
and it will result in a linear translation from PIN to IPN, the modeis called
"LINEAR’. The only 2 valid uses are for LINEAR 8 and LINEAR16 (as opposed
to ‘normal’ 8 or 16).

The REP8bit only has an effect in the 8 bit source datasize.

The BPPcontrol bits decode as follows:
BPP Data Size DMA IPN Trans Bits D-bit R-Mul G-Mul B-Mul
0 = reserved 4 PIP words Reserved,(?) ? 0 0 0
1 = bit 4 PIP words PIN(0} PIP[15] 0 0 0
2= 2bit 4 PIP words PIN{1..0] PIP{15] 0 0 0
3= 4 bit 8 PIP words PIN{3..0] PIP[15] 0 0 0
4= 6 bit 16 PIP words _—PIN{S..0] PIN{[5} 0 0 0
5 = 8bit 16 PIP words _—_—PIN[7..0] PIP{15] PIN[7..5] PIN[7..5} PIN[7..5]
6 = 16bit 16 PIP words —_—PIN[14..0] PIN[15] PIN[13..11]PIN10..8]PIN[7..5]
7 = reserved 16 PIP words Reserved,(?) (?) 0 0 0

Second preamble word:
If the PACKEDbit (in the SCoB) is ’0’, then the source datais totally literal. For
totally literal Sprytes, there is a second preamble word. It contains the horizontal
pixel count for each line of the source data and the word offset from oneline of
source data to the next. It also contains the other special bits needed fortotally
literal Sprytes. Note that these bits are only valid while the totally literal Spryte is
being rendered. Thesebits are not used ..GATED AWAY... whenthe current
Spryte is not totally literal.

B31->B24 = WOFFSET(8). Word offset from one line of data to the
next (-2) (8 bits).

bits 23->16 of offset are set to 0.
B25->B16 = WOFFSET(10). Wordoffset from one line of data to the

next (-2) (10 bits).
bits 31->26 of offset are set to 0.

B15 = Reserved, set to 0.
B14 = NOSWAP 1=disable the SWAPHVbit from the general

Spryte control word.
B13->B12 = TLLSBIPN PPMP blue LSB source. 0=0, 1=IPN[O],

2=IPN[4], 3=IPN[5].
Bil = LRFORM Left/right format.
B10->B0 = TLHPCNT Horizontal pixel count (-1) (11 bits).

The TLLSB bits perform the same function that the IPNLSBbits
perform in normal Sprytes.

If LRFORM=1, the source data has the frame buffer format of the
screen as a source format. Vertically adjacent pixels in the rectangular display

WO 94/10644

10

15

20

25

30

35

40

45

50

PCT/US92/09462

- 150 -

space are horizontally adjacent in the 2 halves of a memory word. This is useful
for 16 BPPtotally literal. The unpacker will disable the ’B’ FIFO data requests
and alternately place pixels from the source into both FIFOs. Left 16 bits go to
’A’ FIFO,right 16 bits go to B’ FIFO. The data requests for ’A’ FIFO will be
madein a request ’pair’ to insure the reduction of page breaks and ’6tick
latencies’. The hardwarewill lock the corner engines (regardless of the LCE bit).

TLHPCNT is the numberof pixels in the horizontal dimension (-1).
This is the numberof pixels that will be attempted to be rendered for each
horizontal line of the Spryte. This value is used by the data unpacker. A ’0’ in
the value will attempt 1 pixel. A ’-1’ in the value will attempt manypixels. There
is no ’zero pixel count’ value.

WOFFSETis the offset in words of memory from thestart of one line
of data to the start of the next line (-2). If the BPP for this Spryte is 8 or 16, use
WOFFSET(10), else use WOFFSET(8). This numberis a zero for the minimum
sized Spryte (2 words).

By arranging WOFFSET and TLHPCNT correctly, you can extract a
rectangular area of data our ofa larger sized rectangular area of data.

The DMA enginewill also use WOFFSETas the length value in the
normal data fetch process. If WOFFSET and TLHPCNT areset badly,
WOFFSETmayexpire first and the DMA engine will not cope properly.
wenenne <END OF TABLE1.6>

TABLE 1.7 Spryte Packed Data Formats

Offset
The first one or two bytes are the word offset from the start of this line of source
data to the start of the next line of data (-2). In Sprytes with BPP of6 orless,
only1 byte (bits 31-> 16) of offset are used. However, the actual offset has a
maximum size of 10 bits. The rest of the bits in the 2 bytes are set to 0. 10 bits
of word offset is 2048 pixels at 16BPP. 8 bits of word offset at 6 BPP is 1365
pixels. The requirementis 1280 pixels.

This offset is used by the DMA controller to both calculate the start
of the next line of data (by addingit to the start of the currentline), and to set
the maximum length (by subtracting 1 and placingit in the DMA length register)
of the current DMA transfer.

This offset value (1 or 2 bytes) is not used by the data unpacker. It
will arrive at the data unpackerat the start of each line of a packed Spryte and
must be discarded.

Control byte and PIN data:

The next data after the offset is comprised of 1 control byte and 0 or morebits of
PIN data. The numberof bits used for each PIN is specified by BPP.

The control byte consists of a 2 bit code and a 6 bit count:
00 ’xxxxxx’= _—_end ofline, xxxxxx need not be present
01 ’count’= _literal PINs for ’count+1’
10 ’count’= Defined ’transparent’ for ’count+ 1’
11 ’count’= packed ’PIN’for ’count+ 1’

WO 94/10644

10

15

20

25

30

35

40

45

50

PCT/US92/09462

- 151 -

The ’transparent’definition will actually output a ‘transparent’ bit from the
unpacker. This will cause the remainderof the pixel processing pipe to ignore this
pixel. For safety purposes, we will set the data value at this time to be zero for
possible use by the IPS for the D-Modeselector. It probably will not be seen by
the IPS, but we are notsure.
anonan= <END OF TABLE 1.7>

TABLE 1.8 Spryte Render Stopping and Starting

The Spryte rendering process is started from the CPU by writing a meaningless
value to the SPRSTRT”address in the memory address manipulator chip
(MAMC). This sets the ’Spryte-ON’flipflop. Writing to SPRSTART while the
’Spryte-ON’flipflop is already on will have no effect at all) BUT DON’T DO IT.
The race condition of Spryte just now ending andyou just now writing is not
preventable.

A start is always a ’cold’ start. Previously running Spryte things have
been canceled. It is required that the software has setup the data in memory and
the first SCoB address in the DMA stack correctly. The SYSTEM WILL CRASH
if the Spryte data or the first SCoB address arefaulty.

The Spryte process is stopped cold when the CPU writes to
’"SPRSTOP’. All intermediate states of the engines have been RESET. The data
pointers are now WRONG.Spryte processing is dead. Except, of course, for the
SPRPAUSflipflop.

When the Spryte engine is completely finished with all of its functions
including sending the last of the rendered data to memory,it will reset its Spryte-
ON flipflop.

Spryte processing is not overlapped in the hardware. One Spryte is
allowed to totally complete prior to starting the next Spryte in the list. This total
completion includes the processingoftrailing transparent pixels and the outputting
of the last data values to memory.

The CPU can request that the Spryte rendering engine stop operating
at the endof the current Spryte but not reset itself by writing to "SPRPAUS’.
This will set a SPRPAUS’flipflop that will cause the Spryte rendering engine to
set itsPAUSE’flipflop at the endof the current Spryte. When the PAUSE
flipflop is set by this mechanism (not by other means), the SPRPAUS flipflop will
be cleared. The SPRPAUSeventis only a one shot thing. Obviously this can
only be doneif the CPU already has access to the system bus. SPRPAUScan be
set by the CPU evenif the Spryte engineis off.

Whenaninterruptis present, the PAUSEflipflop is held in a ’set’
condition. This will allow the Spryte rendering engine to pause cleanly and allow
the CPU to notice the interrupt.

The CPU can reset the PAUSEflipflop by writing to’SPRCNTU’. If
the Spryte engine was on but pausedit will now continue. If not, it won’t. This is
also when the CPU mightavail itself of the SPRPAUSfunction.

Once a renderprocess hasstarted, the CPU is effectively asleep.
Nothinghasactually been done to the CPU,it just can’t get any cycles on the
system bus. When the CPUfinally does get some cycles, it needs to decide why
and service the situation. The reasonsit got a cycle are that an interruptis

WO 94/10644

10

15

20

25

PCT/US92/09462

- 152 -

present, or that the Spryte engine is paused or done, or somehow,the bus has
temporarily become available. After servicing the interrupt or CPU requested
Spryte pause, it will be up to the CPU to then decide whether or not to continue
the render process. The CPU can determinethe status of the render process by
reading the appropriate status bit(s).

If the Spryte rendering engine is on but not paused, the CPU should
just sit in its status bit check loop. This is a temporary situation and will soon
change.

If the engine is on and paused, the CPU could just issue the
SPRCNTU. If there are no Sprytes left, the Spryte engine will turn itself off and
no harm done.

If on and paused and at end of current Spryte, then the CPU can use
the Spryte rendering engine for its purpose without fear of damaging a Spryte in
process.
aoneene <END OF TABLE 1.8>

The above disclosure is to be taken as illustrative

of the invention, not as limiting its scope or spirit.

Numerous modifications and variations will become

apparent to those skilled in the art after studying the

above disclosure.

Given the above disclosure of general concepts and

specific embodiments, the scope of protection sought is

to be defined by the claims appended hereto.

WO 94/10644

10

15

20

25

PCT/US92/09462

- 153 -

CLAIMS

What is claimed is:

[Note: Bracketed bold text is provided in the
below claims as an aid for readability and for
finding corresponding support in the
specification. The bracketed text is not
intended to add any limitation whatsoever to the
claims and should be deleted in any legal
interpretation of the claims.]

1. An image rendering system [400] for producing

displayable image data [410d] representing a mapping of

source pixels [110] onto a destination grid [120], said

system [400] comprising:

color/shade-mapping means [401] for receiving one or

more source color/shade defining signals [411,412] that

define colors and/or shades of a respective one or more

source pixels [110] and for converting said source

color/shade defining signals [411,412] into a

corresponding one or more destination color/shade

defining signals [418] that define colors and/or shades

which are potentially assignable to a respective one or

more destination pixels [PPP] in the destination grid

[120]; and

destination-point mapping means [402] for receiving

point-map control signals [415.2] defining a source-to-

destination point-to-point mapping function [300] and for

producing corner coordinate signals [424] representing

destination coordinates of corner points {a0-a3] of

projections [211-251] of the source pixels [110] onto the

destination grid [120] and for further producing paint-

request signals [428] in accordance with the number of

destination pixels [PPP], if any, that are effectively

covered by said projections [211-251] of the source

pixels;

WO 94/10644

30

35

40

10

15

PCT/US92/09462

- 154 -

where, in a general case, the destination-point

mapping means [402] requires a relatively long, general

time period to determine the number of destination pixels

[PPP], if any, that are effectively covered by said

projections [211-251] of the source pixels; and

where the destination-point mapping means [402]

includes:

early-termination means [427a,427b] for recognizing

ahead of time conditions [429a] where the destination-

point mapping means [402] will ultimately not produce

paint~request signals [428] if allowed to follow its

general course of making such a determinations over the

general time period and for terminating operations within

the destination-point mapping means [402] that relate to

the paint-request signals [428] that will not be produced

in a time period substantially shorter than the general

time period. [LINE NUMBERS OFF]

2. An image rendering system [400] according to

Claim 1

wherein the color/shade-mapping means [401] includes:

transparency-code generating means [414] for

selectively converting one or more of said source

color/shade defining signals [411,412] into a

corresponding one or more transparency defining signals

(T-bit] that, when active, prevent assignment of new

colors and/or shades to a respective one or more

destination pixels [PPP] in the destination grid [120];

and

wherein said early-termination means [427a,427b]

responds to active transparency defining signals [T-bit]

by recognizing there active state as being a condition

[429a] where the destination-point mapping means [402]

WO 94/10644

10

15

20

PCT/US92/09462

- 155 -

will ultimately not produce paint-request signals [428].

3. An image rendering system [400] according to

Claim 1 further comprising:

light image producing means [460] for converting said

displayable image data [410d] into a displayed light

image.

4. A point-to-point source-to-destination mapping

system [402] comprising:

one or more corner engines [422,702a,702b] each for

receiving point-map control signals [415.2], where the

point-map control signals [415.2] define a mapping [300]

of one or more source pixels [110] onto a destination

grid [120] composed of plural destination pixels [P,P,P],

the one or more corner engines [422] generating corner

Signals [424] representing the coordinates [a0-a3] of

source pixel points mapped onto the destination grid

[120] in accordance with the defined mapping [300];

one or more boundary locating units [426,626] for

receiving the corner signals [424] generated by the one

or more corner engines [422] and for generating therefrom

boundary signals [YXX] representing opposed points on

opposed boundaries of the mappings [125,127] of the

source pixels; and

one or more border estimating units [425,625] for

receiving the corner signals [424] generated by the one

or more corner engines [422] and for generating therefrom

paint-decision signals [427a,429a,b] indicative of

whether one, none or plural destination pixels [P,P,P]

are effectively bound within the borders of each mapping

[125,127] of the source pixels. |

WO 94/10644

10

15

20

10

PCT/US92/09462

- 156 -

5. A point-to-point source-to-destination mapping

system [602] according to Claim 4

wherein said corner engines include a first corner

engine [702a] and a second corner engine [702b];

wherein said source pixels [110] include a first

source pixel ["a"] having respective corners aQ, al, a2,

a3 and a second source pixel ["g"] having respective

corners qQ, ql, q2, q3, said corner q0 being coincident

with corner a3;

wherein the first corner engine [702a] receives an

initializing signal [801] defining the destination

coordinates of mapped corner a0 and the first corner

engine [702a] responsively generates therefrom [802] a

corner-a3 defining signal representing the destination

coordinates of mapped corner a3; and

wherein the second corner engine [702b] receives [803]

the corner-a3 defining signal from the first corner

engine [702a] and the second corner engine [702b]

responsively generates therefrom [804] a corner-q3

defining signal representing the destination coordinates

of mapped corner q3.

6. A point-to-point source-to-destination mapping

system [602] according to Claim 5

wherein after the first corner engine [702a] generates

[802] said corner-a3 defining signal, the first corner

engine [702a] proceeds to independently generate [810] a

corner~al defining signal representing the destination

coordinates of mapped corner al and to independently

generate [812] a corner-a2 defining signal representing

the destination coordinates of mapped corner a2; and

wherein after the second corner engine [702b]

generates [804] said corner-q3 defining signal, the

second corner engine [702b] proceeds to independently

WO 94/10644

15

10

15

PCT/US92/09462

- 157 -

generate a corner-ql defining signal representing the

destination coordinates of mapped corner qi and to

independently generate a corner-q2 defining signal

representing the destination coordinates of mapped corner

q2.

7. A point-to-point source-to-destination mapping

system [602] according to Claim 6

wherein said source pixels [110] include a third

source pixel ["w"] having respective corners w0, wl, w2,

w3 and said corner q3 is coincident with corner w0;

wherein after the first corner engine [702a] generates

[802] said corner-a3 defining signal, and after the

second corner engine [702b] generates [804] said corner-

q3 defining signal, the first and second corner engines

[702a,702b}] proceed to independently map corner points of

respective first and second source rows [A and B], and

wherein whichever of the first and second corner

engines [702a,702b] ends its task first, that first-

finished corner engine receives [805] the corner-q3

defining signal produced by the second corner engine

[702b] and that first-finished corner engine responsively

generates therefrom [806] a corner-w3 defining signal

representing the destination coordinates of mapped corner

w3.

8. A spryte rendering system [400] comrising:

a plurality of corner engines [422] each for

generating corner signals [424] representing polygon

corner coordinates [a0-a3] whose values are calculated

from an input data set [415.2], where the input data set

includes position data (XPOS, YPOS) defining the

destination coordinates [Xa0,Ya0] of a top-left corner

WO 94/10644

10

15

20

25

10

PCT/US92/09462

-~ 158 -

(a0) of a first source pixel [a], line delta data (LDx,

LDY) defining the destination coordinates [Xa3,Ya3] of a

bottom left corner (a3) of the first source pixel, and

row delta data (DX, DY, DDX, DDY) defining the

destination coordinates [Xal,Yal,Xa2,Ya2] of corners

points (al, a2) which respectively succeed from the

defined top-left corner (a0) of the first pixel and from

the defined bottom-left corner (a3) of the first pixel;

and .

a shared storage unit [422a,615] having locations that

are accessible by the plurality of corner engines

[422,702a,702b];

where the corner engines exchange results for shared

destination points [a3,q3] by way of the shared storage

unit [422a]; and

where the shared results include one or more of the

following items: (1) calculated coordinates for the

bottom left corner (a3) of the first pixel in each

successive source row, and (2) progressively increased

or decreased delta values (DX++ = DX + DDX) calculated

by a first of the corner engines and useable by a second

of the corner engines.

9. A spryte rendering system [400,600] comprising:

corner engine means [422,702a,702b] for generating

corner point signals [424] representing destination

coordinates of polygons [125-128] projected onto a

destination grid [120], where the destination grid [120]

includes an array of destination pixels [P,P,P];

one or more border-point locators (Regis circuits)

[626a,626b] for identifying opposing points on opposed

left and right borders of each projected polygon and for

determining which, if any, destination pixels are

effectivey bounded by the opposing points to warrant

WO 94/10644

15

20

10

15

20

PCT/US92/09462

- 159 -

painting cf those destination pixels by a color code

correspondingly developed for the associated, projected

polygon; and

one or more fast-decision circuits (Munkee circuits)

[425,625a,625b], each associated with one of the border-

point locator (Regis circuits), for identifying corner

mapping conditions in which only one or none of the

destination pixels will be painted by a corresponding

color code [418,618] and for instructing the

corresponding border-point locator (Regis circuit) to

abort its operations and for further providing a one-

pixel paint command in the case where only one

destination pixel is to be painted.

10. A method [800] for mapping and rendering adjacent

rows of a source image [110] onto a destination grid

[120], where the source image [110] includes in a first

row [A] thereof, a first source pixel [a] having zeroth

through third corner points, aQ, al, a2, a3, where the

source image [110] includes in a second row [B] thereof,

a second source pixel [q] having zeroth through third

corner points, q0Q, ql, q2, q3, and where corner point qQ

is coincident with corner point a3, said method

comprising the steps of:

defining [801] corner-a0 coordinates [XPOS,YPOS] which

map the first corner aQ of the first source pixel onto

the destination grid [120];

from the defined corner-a0 coordinates, generating

[802] corner-a3 signals representing a mapping of the

third corner a3 of the first source pixel onto the

destination grid [120]; and

from the generated corner-a3 signals, generating [804]

corner-q3 signals representing a mapping of the third

corner q3 of the second source pixel onto the destination

grid [120].

WO 94/10644

10

15

20

10

PCT/US92/09462

- 160 -

11. A mapping and rendering method [800] according

to Claim 10 further comprising the steps of:

after the corner-a3 signals are generated:

from the defined corner-a0 coordinates, generating

[810] corner-al signals representing a mapping of the

first corner al of the first source pixel onto the

destination grid [120]; and

from the generated corner-a3 signals, generating [812]

corner-a2 signals representing a mapping of the third

corner a2 of the second source pixel onto the destination

grid [120];

defining [803] corner-q0 coordinates to be the same

as those of the generated corner-a3 signals,

after the corner-q3 signals are generated:

from the defined corner-q0 coordinates, generating

corner-ql signals representing a mapping of the first

corner ql of the second source pixel onto the destination

grid [120]; and

from the generated corner-q3 signals, generating

corner-q2 signals representing a mapping of the third

corner q2 of the second source pixel onto the destination

grid [120].

12. A mapping and rendering method [800] according

to Claim 11 further comprising the steps of:

after the corner-a0 through corner-a3 signals are

generated, using [820-823] the corner-a0 through

corner-a3 signals to determine [825] what destination

pixels, if any, will be painted with a color code [418]

associated with the first source pixel [a]; and

independently thereof,

after the corner-g0 through corner-q3 signals are

generated, using the corner-q0 through corner-q3 signals

to determine [885] what destination pixels, if any, will

WO 94/10644

10

15

PCT/US92/09462

- 161 -

be painted with a color code [418] associated with the

second source pixel [gq].

13. A precision calculating apparatus comprising:

(a) two or more part registers for storing respective

more and less significant parts of a long result;

(b) a math unit;

(c) selective updating means for selectively coupling

the math unit to one or another of the part registers and

updating the result part stored in the selected part

register;

(d) detection means for detecting conditions where

the updating of one result part necessitates the updating

of another result part; and

(e) control means for instructing the selective

updating means to select and update the other part of the

long result if the detection means indicates a necessity

of so doing.

WO 94/10644 PCT/US92/09462

1/25

0.0 1.0 2.0 3.0
| | | ! >~XS

+ 0.0

A 110

+ 1.0

B)
SOURCE Ys
IMAGE

MAPPING 100

DESTINATION
GRID

FIGURE 1A

SUBSTITUTE SHEET

SUBSTITUTE SHEET

1
0
2

1
2
2

e
r
e
e
e
e

e
e

F
I
G
U
R
E
1
B

2/25

WO 94/10644 PCT/US92/09462

WO 94/10644

S
O
U
R
C
E

—|

 Ol

Nl

en]

22
0

PCT/US92/09462

3/25

23
0

21
0

25
1

23
1

24
1

Zz.

6
a
<

| Zz
cn mn

>_>WV :2
| _ q

A
Oo

N

guasTiTUTE SHEET

FI
GU
RE
2

SUBSTITUTE SHEET

<x ON TT

<Q. 7T_

1
2
0 ~
~

Y
b
2
—

(1
6.
16
)

Kx ON TT

x Or —T_

>
X(
16
.1
6)

DX

+
DD
X,

B
o
o
r
i
n
e
r
a
n
m
e
n
e
n
e
n
e
n
e
n
s
e
n
n
a

nk
g
y t

b
2

c3

DX
+
2D
DX
~

D
Y
+
D
D
Y

_

“|
D
Y
+
2
D
D
Y

\

D
X
+
2
D
D
X

~
DY

+

2D
DY

pe
r

+e
2p
b

DX
+
2D
DX

a

F
I
G
U
R
E
3
A

4/25

WO 94/10644 PCT/US92/09462

gypsTiTuTe SHEET

x(
16
.1
6)

C
L
I
P

a

1

a
d

| | | I

E
N
D
O
F

o
y

|
.

R
E
N
D
E
R
A
B
L
E

0.
0
+

/
R
O
W

Yq
od

—
-

E
N
D
O
F

Y
w
o
O
-
-

RE
ND
ER
AB
LE

PA
RT

OF
/

S
P
R
Y
T
E

Y
w
3
-
-

Y
CL
IP

F
I
G
U
R
E
3
B

LA
ST

RE
ND
ER
AB
LE

R
O
W

WO 94/10644

5/25

PCT/US92/09462

PCT/US92/09462

WO 94/10644

6/25

400
401 SPRTYE RENDERING ENGINE 402

COLOR MAPPING | DESTINATION POINT
PATH v7 403 MAPPING PATH

SOURCE XCLIP |
; SPRYTES y_ YCLIP | XPOS,YPOS————_

| | Dyn DX++ CORNER
41542 I

4 3) px] DY++1 ENGINE(S)
411 412 | LDY— ae

| DDX—+ a0++ 422a
413~7 UNPACKER(S) DDY—|

+ || 426 a0-a3—4 | W~427b424
+ _T-BIT, | ba j 1 425a

414-V PIP IPS me TRUNCATER {[- A [TRUNCATER

| "SLOW" B "FAST"
L PLOYGON O BORDER

) yi 4 | LEFT/RIGHT R ESTIMATER
ia BORDER LOCATER}| T (SHORT-

PPMP ke— Seno — | (FULL MATH) c MATH)
~416~ — ~426~ 427a ~425~

! R «1 430 ~a7 41561 5 428 429a

; DESTINATIONLINE FILLER NOTHpL

DEVELOPED] REQ ACK AO (LENCOUNT) DO 403~COLOR t + |
CODE i
418 D-BUS ,| ADDRESS 405

DISCARD ARBITOR | GENERATOR [LA,| SYSTEM
429b Ai ~444~ MEMORY 410

CoH TS
CPU > REQ ACK ne CFB 114104

OTHER DISPLAY F
STACK [+ REQUESTORS ; PITT HUvraM

C 5 410
431 460 406 ¢

DESTINATION
IMAGE
DATA

FIGURE 4

SUBSTITUTE SHEET

PCT/US92/09462

WO 94/10644

7/25

10 20 30 40 50 60 7.0 8.0 9.0
| | | | | | { | | > X
i | | i | i J | | D

10 - + ao + + + at
EPL —»> «<-—EPR

2.0 + + 490 eo 8 ® 491

492 496
304 + + , “88

49440-- +4 _ » 495

50+ + e

6.0 -- +

70 + 483
8.0 - +

a3
90- +

Y

YD

10 2.0 3.0 4.0 5.0 6.0 7.0 80 9.0

| ~XD
4io 4+ 4 30 ee 98

c3 cl
20- + a3 al eve +

c2

30+ ee +<Re
4.0-+ + 499

FIGURE 5B
Y

YD

SUBSTITUTE SHEET

SUBSTITUTE SHEET

D
i
v
e
lv
er
ee
er

r
e
y
e
h

f
p
X
D
=
n
0
+
1

F
I
G
U
R
E
5
C

8/25

WO 94/10644 PCT/US92/09462

SUBSTITUTE SHEET

C
O
L
O
R

MA
PP
IN
G
PA
TH

,
60
1

D-
B
u
s

32
60
3

FI
G.

6
A

©
oO
ce)

|

Lu
O
=
Lu
LL

j

6
l
i
a

A
-
N
E
W
L

\
.

|
[
7
4
g

"
4
6

4
|

—
—
—
—
+
C
E
U
N
P
A
C
K
E
R

—
—
—
—
+
C
E
U
N
P
A
C
K
E
R

i
t

61
3a

—
61
3b

q
L
y

T
V

¥
L
e
,

T
,
V

CE
R(

OU
T)

—
—
—
=
+
1
C
E

R(
OU
T)

!
c
o
p

5
1
4

r
o
m
p

5
1
5

FI
FO

¢
C
O
N
T
R
O
L

A
H
O
L
D
.|
CE

R
(
H
O
L
D
)

c
p

5
1
6

51
8

BH
OL
D

IC
E
R(
HO
LD
)|
g_
.|
._
__
_
S
Y
N
C
}

r
p

5
1
7

|_
|
AO
-F
UL
LY

50
0

BO
-F
UL
L»

A
I
P
S

C
E

RU
IP
S)

BI
PS

IC
E

RP
S)

SY
NC
_

|
—
p
>

52
2

—
p

52
3

|
_

A
IP
S

-
IN
PU
T
M
U
X

B
/

RN
SE
L
—
—
\
_

52
4

K
E
Y
t
o

°
°

q

FI
GU
RE

6
t-

—
|

|
DO
LO
_

'
6A

16
D

MO
DE
~|
—
7
1

CO
NT
RO
L

PI
N

IP
S

61
4

DI
P

I
TR
AN
SP
AR
EN
T
|

6B
[6
E

2
7

IF
N

L
50
g

52
7

6C
[6
F

32
{
/
DO
LO
RE
CY
CL
E
7
9

ye
—

r

-
—

_
-

_
4

WO 94/10644

9/25

PCT/US92/09462

SUBSTITUTE SHEET

e
e
e
e

D
-
B
U
S

6
0
3

e
e
 4

DO
LO
IP
N

I
P
N

Pp
_D
FF

->
DF
F

R
E
C
Y
C
L
E

P
I
P
E
L
I
N
E
R
E
G
I
S
T
E
R

 F
U
L
L

4
2
7

1
6
/
7

_
_
§

C
O
N
T
R
O
L

IP
N

C
F
B
D

r
p

PE
N 16

P
P
M
P

6
1
6

+

C
E

D
E
F

5
7
7

6
1
8

4
1
6

>

“S

5
8
2

.
7

K
5
8
3

 A
16

X1
6

 10/25
WO 94/10644 PCT/US92/09462

PCT/US92/09462WO 94/10644

11/25

!
ssayqayv

(
1551

4
%

I
.

“
ce

Y
7

609
QI.

QI
|

sng-a
TWNHALNI

!
dIHO

p
r

Z
S

Z
S

66S
~
~

y
o
y

V
o
u

8
6
S

7
k

H
O
L
T

d
—

HOLV1
d
y
-

16S
LNdNI

INdNI
N
e

dIHQ
"
f
F

,
96S

|
440

\
savd

-
sdvd

i
s
t

ssayqaayv
V
L
V
G
LNdNI

VIVG
INdNI

|
|

LHOIW
ve

|
Y
N
V
E

Y
N
V
E

!
I

7
—
—
|

L
H
I

osia
1437

S
k
e
a
e
e

a
s
o
A
e
o
n

AHOWSIN
=

e
c
0
9

S
a
V
d
V
L
V
G
L
N
O

Savd
VLVG

L
N
O

|
W
A
I
W

--
-

-
-

-
-

-
-

-
-

-
|

W
A
W

A
O
k
—

4
0
k
~

G6S
<
—

6
S

J
£09

44
I
N
d
L
N
O
3
d
be

44
I
N
d
L
N
O

39
LH

-
s
n
a
-
a

$
—
_
_
]
L

'
9
9
‘
D
I

SUBSTITUTE SHEET ©

PCT/US92/09462

12/25

r
f
T
o
T

!D
T

p
o
l
e
g
=
F

{
0
9
S

NAD
SISSNOSY

Tid
Xid-AG-Xd

e
t

|

|
|

29S
2

-
—

!
d
o
d

|
[
2
9
5

Z___¥SS
XNW

SONSNOAS
TId-aNrn

<
WwaW

f
S
L
N
n
]
a

s
a
a

|
E
N
S

iL
30f—

|
||

WO 94/10644

 |

Odld-d
|

|
A
d
I
S
-
d

L
b
S
-

O
P
S

t
y

L
O
N
I
G
I
O
H

S
N
I
G
I
O
H
S
a
a
r

;
|

_

q9¢9
;

ogg
|;
ONAS

|
a
-SIDsy

"|
W
-
S
I
D
S
y

|
G
P
S

y
—

4
v
r
s

q
u
a

7

4NO
asco

1NO
eszo

||
!

o
r
s

f
|

(2
S2INOW

_
8
5
_

se F
|

fv - SINAN
|

s
t

1D
V

~
t

Mi
I

LNOG/LNIVd
“
H
L
V

y
4
A
N
Y
O
O

|qioz
-HLVIN

e10/|
Y
a
N
H
O
O
i
e

S
I
N
O
d

T
T
T
e
T
S
T

—
a

o
o

‘
—
b
e

f
=
=
=

{
-
—
—
—
=

L
e

{
-
—
-
t
-
-
-
—

LSanosaHy
M
O
V
L
S
D
A
Y

NOILVZIMVILNI
S
L
A
U
d
S

+
—
A
l
d
W3-NO-E

v
V
W
a
~
L
,

SLId
G
O
O
S

—
A
L
d
W
A
-
N
N
-
V

Ss19
I

£
0
9
SN@

VLV S
A
S

H
L
V
d
D
N
i
d
d
V
W
N
O
D
A
I
O
d

209
qg9

‘
S
i
s

SUBSTITUTE SHEET

SUBSTITUTE SHEET

FI
G.

6
E

D
O
L
O
R
E
S
C
O
N
T
R
O
L

r
m

e
e
e

e
e
e
e
l

<
4

L
I
N
E
FI
LL

>
_
{

D
F
F

X
Y
P
A
I
N
T

56
6

C
O
N
T
R
O
L

56
3

R
E
Q
U
E
S
T
S
J

X
Y

e
a

e
e
e

e
e
e

e
e
e
s
e
s
a
8
n
y
S

X
Y
F
I
F
O

5
6
8

y

(2
SE
TS

OF
XY

LI
NE
-F
IL
L

SY
NC

VA
LU
ES

AN
D
2

i
SE
TS

OF
DO
LO
)

C
O
L
O
R
/

D
E
S
T
I
N
A
T
I
O
N

2
ma
s

D
O
L
O

FE
TC
H

|
AD
DR
'S

y S
E
L

>

r
—
p

5
7
0

_

XY
TO

AB
SO
LU
TE

r
p

TR
AN
SL
AT
ER

X
Y
F
D
F
F

|
]

—
C
E

M
O
D
.
B
A
S
E

r
—
P

57
3

24
|

R
E
G
I
S
/
D
O
L
O

A
D
D
R
B
U
S
~
~

57
1

t
M
O
D
U
L
O

B
A
S
E
A
D
D
R

 13/25

WO 94/10644 PCT/US92/09462

. SUBSTITUTE SHEET

EN
GI
NE
-A

FE
TC
H
A
D
D
R
»
!

OM
A

EN
GI
NE
-A

LE
NG
TH
—
—
—
+

RE
GI
S

RE
GI
S
RE
Q

EN
GI
NE
-B

FE
TC
H
A
D
D
R
—
—
—
4
_
_
R
E
G

A
R
M

57
1

57
2

AC
K

EN
GI
NE
-B

L
E
N
G
T
H
—
—
>
|
_

ST
AC
K

CP
U

|
D
M
A

|
D-
BU
S

FI
G.

6F
\
_
D
-
B
U
S
AR
BI
TR
AT
IO
N
MU
X

64
4

(
>

—
—
—

AR
BI
TO
R

63
3

Z
24

“2
4

RI
GH
T
A
D
D
R

PR
OT
EC
TI
ON

WO 94/10644

v

'
L
E
F
T
/
R
I
G
H
T
M
E
M
O
R
Y

A
D
D
R
E
S
S
S
P
L
I
T
T
E
R

(
6
4
6

D
-
B
U
S

6
0
3

I

14/25

I
—

{C
E

DF
F

—
I
C
E

DF
F

!
—
P

58
6

—
p

58
7

|

5
9
0

59
1

—
—+
{C
E
OU
TP
UT

—
C
E

OU
TP
UT

2
4

—P_
__

MU
X

_}.
59
2

r—p

_
MU
X

_R
.5
93

PL
60
3

:
i

AD
DR

LE
FT

AD
DR

RI
GH
T
AD
DR

OU
TP
AD
S

O
U
T
PA
DS

1
60
4a

60
4b y

PCT/US92/09462

PCT/US92/09462WO 94/10644
15/25

W
A
G

L
I

W
M

)\Wx
I
LL
+
o
b
l
o
y

v8Z
—
—
—
_
_

O
S
A

V
Z

‘Sid

|
+4

|
244q

d—
.

f
y

604
a

4
X-LINT

(Wiva
LINI

o.+
9L+

802
O
t
+
A
-
L
I
N
T

GaLYSANI)
\
H
A
O

\
H
X
)

|e
s
O
—
|
—
f

d
v
a
u

q
M
e
o
i
w
i
d

eon
HY

cioH
T
F
r
P
S
E
H
a
i

TV
AX9

V
LINI

W
H
O
S
L
W
1d

M
O
V
L
S

Nl
e|
V
O
}
|

H
I
V

O
3
4

T
A
C

:
X
d

V
M

€&
a
v
o

"1
H
X
G

_
_

7
|

OTZ
OSA

a
o

LINA
a
s
x
Y
M

JOHLNOD
W
O
V
I
S

W
X

qg-davol
||

TINT
|

OAX
G
V
O

-
a

>
(
V
L
V
G
S
N
Y
L
)

—
o
d

ah
—
o

a
W
A

K
q

Aaa
|[xaa=—~"

G
M

WHOALWId
W
O
H

SN5isaxag)~=—sC
4

|
1
ayNDdIS

6
6
2
“

}
\

Gur
+862

—
_
.
O
L
A
A

de
4.

DN
HZ9I4

qzdl4

wyicls
|
q
o

]
o
.
+

 €0L+
H
d
d

+—
oL+

ovol4|
azdld|

o
l
d

GLa
2

7eT-4
w
s
a
a
n

A
L
O
N

aldld
Slid

NOILISOd
a
n
s

x
a

z
e

O
L

L
E

V
L
5
D
l
d

“¢09
S
n
a
-
a
q

- SUBSTITUTE SHEET

FI
G.

7
B

X
a
i
/
h

1
4
2

7
4
3
—
™

1
3
6

74
1

XS
O0
\

 a‘
1

N
a
e

_
)
7

M
U
X

wah

 IS
X
O
R
7
1
3

|
|S

X
O
R

71
4]

A

B
7
1
5

7
1
6

—
?
P
p
_
C
H

17
41

+
2

r
p

C
L

7
1
7

16/25

WO 94/10644 PCT/US92/09462

SUBSTITUTE SHEET

é

X
a
0
/
h
—

7
4
0

r
—
p
C
H

1
7
4
0

2
7
4
0
™
_
D
F
F

D
O
+
1

3
7
4
0

M
U
N
K
E
E

S
E
L

FI
G.

7
C

V
Y

y

L
A

su
be

r
8
/
(2

2:
at
)

L
_
_
3
.
.

@
Bi

ts
)

(
B
e

[S
s

xX
OR

_]

17/25

WO 94/10644 PCT/US92/09462

SUBSTITUTE SHEET

 N
A

AD
DE
R
B
Y

v

\
.

M
U
X
7

Xa
2/

h
>

—P
cH

i7
42

3
7
4
2

7
4
2

a
2

[
D
E
F
Y
2
7
4
2

Xa
3/
h
>

—
P
c
n
a

r
p

E
D
H

27
43
~_

D
F
F

c
P

E
D
L

D
3
+
2

7
4
3

a
3

|

'
M
E
R
G
E

3
7
4
3

Oo
A

a
M
U
X

18/25

WO 94/10644 PCT/US92/09462

PCT/US92/09462WO 94/10644

19/25

/-AHOIHx

SlIg
ct

41
fux<

A
|

$~]|
O
1
l
a
y
-

,
SLIG

et
X
A

“SLIG
Zh

!
¢
-

A
-
—
S
T
a

-
G
1
0
H

<
1
0
H

!
q
l

I
n
o

o
p
s
-
f
q
o
H

<
H
A
S
N
A
G
N
O
O

!
|

j
\

W
O
N
NOIDAY

S
i
G

LL

|
4

a
|

t
~

q
7

s
r
s

7
a

X
A

c
L

b
d

L
+

[
_
_

d
W
O
O

d
W
O
O

1
r
t

Q10OH
4
—

.
v
s

t

X
N
W

X
n

\o
5

Y
A
S
N
S
G
N
O
O

t
u
r
y

o
t

|
|

1451
x

LoL
4

S
LW

\€
}

!
;

é
=

i
\b

\e
_
'
t
x
a
g

[|
iX<

)
{

>
t

GOL
|

994
Foh

91+

912?
t

-
|
—
H

I

4
2

‘Sid

SUBSTITUTE SHEET

SUBSTITUTE SHEET

78
3
—
~
W

M
U
X

M
U
X

7
8
2

WO 94/10644

20/25

Y
a
t
/
h

—
}
t
C
H

17
81

T
P

Cl
r
p

X1
F

Le

'
y

y

M
E
R
G
E

al
[D
FF

27
81

78
1

y
e
h

—
T

TS
37
81

O
A

14
,
7
2

FI
G.

7
F

PCT/US92/09462

’
!

SUBSTITUTE SHEET

|
Y
a
0
/
h
—

r
—
p

C
H

1
7
8
0

r
—
P

E
D
H

c
P

E
D
L

2
7
8
0
-
4
D
F
F

7
8
2
“

{

ad
|

|
.

|
|

78
0
~

M
E
R
G
E

M
E
R
G
E

3
7
8
0

A
A

A

 ~
«
~
—
—
I
N
V
E
R
T
E
D

D
A
T
A

 L
A

S
U
B
2-
1
=
a
)

*t
\

M
U
X

7

D
O
-
>
1

 FIG. 7G

21/25

WO 94/10644 PCT/US92/09462

SUBSTITUTE SHEET

 Ya
2
/
h
>

Y
a
3
/
n
—

—
p

C
H

17
82

14
4
2

4
,

¥

M
E
R
G
E

3
7
8
2

 QW
X
N

 o
y

ID
FF
F-

27
82

v
 >

X
2
F

2
/
8
3
4

D
F
F

[
P
C
H

17
83

—

«
#
5

|

3
7
8
3

r
—
P

D
Y
2

D
3
+
2

 22/25

WO 94/10644 PCT/US92/09462

SUBSTITUTE SHEET

 S
T
A
R
T
A

c|
YX
X

PRC
T

v
x

F
I
G
U
R
E
8

8
0
0

23/25
WO 94/10644 PCT/US92/09462

S|

©
Oo)

D
X
H
L

3
2

9
1
5
}

9
6
2

-
—
C
L
K9
6
4

92
0-
7

9
3
4

--
9
1
0

94
1
~

9
6
1

0,
+1
,-
1

D
E
T
E
C
T

~
9
6
0
~

M
A
T
H

S
E
Q
U
E
N
C
E

C
O
N
T
R
O
L

U
N
I
T

0,
+1
,-
1

D
E
T
E
C
T

1
|

L
D
H

L
D
L

9
6
8

9
6
7

*
X
H
L

F
I
G
U
R
E
9
A

WO 94/10644
24/25

PCT/US92/09462

SUBSTITUTE SHEET

X(
16
.
16
)

3
2

3
2

14
+

1
8

1
6

1
6

XM
P(
14

Il
.) XL

P(
2.

16
)

DX
MP

,
(1

0M
M,

)

DX
LP

,
(2

.1
6)
DX

NP
,
(
M
4
)

DX
MP

3
(1

26
4)

DD
XM

P(
12

,4
)

DD
XL

P(
.M

—
M1
6)

3
XL
P(
20
16
)

=

XM
P(

14
M
I
)

1
0
0
0

4

DX
LP

,(
MM

NN
16

)

r

}

DD
X(
12
.2
0)

3
2

1
6

1
6

DD
XM
P(
12
.4
)

DD
XL
P(
.
MM
MM

16
)

~
—
—

—
p
»

D
X
M
P
z(
1
2
,

4)

D
X
L
P
,

(M
l
—
@

16
)

.
D
X
M
P
,
(
1
0
M
H
.
)

l
d

“
1
8

|
|

DX
LP
,,

(2
.1
6)

C
Y
!
5

1
0
4
0

1
1
3
0

C
Y
O
,

MU
X

10
50

16
10
34

M
v

1
0
3
0

X
L
P
(
2
.
)
+
+

1
6
-
B
I
T

A
D
D
E
R

M
P

=
M
O
R
E
S
I
G
N
I
F
I
C
A
N
T
P
A
R
T

L
P

=
L
E
S
S
S
I
G
N
I
F
I
C
A
N
T
P
A
R
T

F
I
G
U
R
E
9
B

1
0
3
3

~
~

XL
P(

2
01
6)
4+

>
X
L
P
(
e
1
6
)
+
+

XM
P(
14
0
)
+4

DX
LP
,,

(l
l
—H
16
)+
+

DM
MP
,
(1
24
4)
++

25/25
WO 94/10644 PCT/US92/09462

INTERNATIONAL SEARCH REPORT

PCT/US92/09462

A. CLASSIFICATION OF SUBJECT MATTER

IPC(5) :GO06F 15/62
US CL :395/152,131; 340/725

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 395/152,131; 340/725 395/154,162,164,165,166 340/750,724

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name ofdata base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US,A, 4,580,134 (Campbell et al.) 01 April 1986 See Figure 6} 1-13

and Col. 16-18.

A US,A, 4,864,289 (Nishi et al.) 05 September 1989 See Figures; 1-13

10-11 and Col. 9-10.

Y US,A, 4,951,229 (DiNicola et al.) 21 August 1990 See the entire} 1-13

document.

Y US,A, 5,131,080 (Fredrickson et al.) 14 July 1992 See Col. 9-} 1-13

12.

Y,E US,A, 5,175,815 (Wada) 29 December 1992 See the entire} 1-13

document.
fC] Further documents are listed in the continuation of Box C. C] See patent family annex.

. Special categories of cited documents: "Ty later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the

"A’ documentdefining the general state ofthe art which is not considered inci is invention
to be part of i" , principle or theory underlying the inv

ere *x" d of particul 1 ; the claimed inventi t be

E earlier document published on or after the international filing date considered novel or cannot be considered to involvean inventive step

°L" document which may throw doubts on priority claim(s) or which is when the documentis taken alone

cited to establish the publication date of another citation or other...

special reason (as specified) Y' document of perticular relevance; the claimed invention cannot be
considered to involve an inventive step when the documentis

“0° document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination

means being obvious to a person skilled in the art

"Pp documentpublished priorto the international filing date but later than «g-* be: i
the priority date claimed & document member of the same petent family

Date of the actual completion of the international search Date ofRL Ofift international search report 24 JANUARY1993 46

Nameand mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. NOT APPLICABLE
Authorized officer MyNuare

HEATHER HERNDON

Form PCT/ISA/210 (second sheet)(July 1992)

Telephone No. __(703) 305-9793

