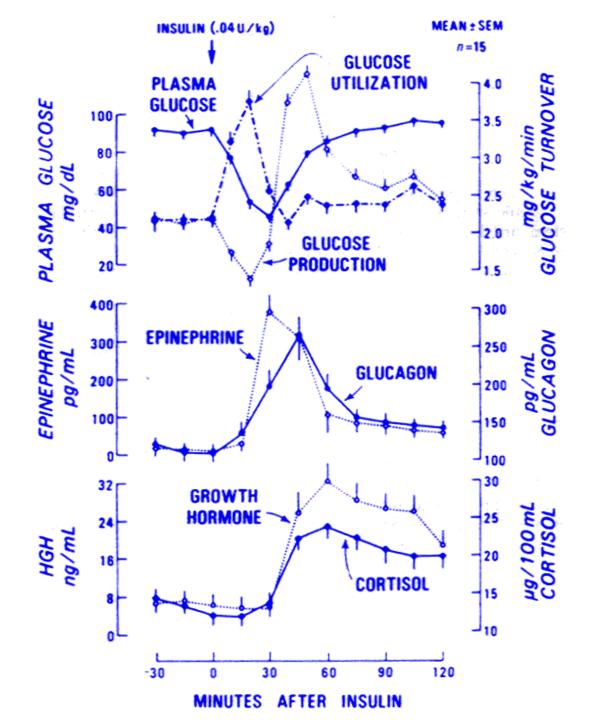
Hypoglycemia

Definition ??


- Because of possible neurologic, intellectual, psychological squeal later on life, many investigators recently, have suggested that hypoglycaemia :
 - In neonates when plasma glucose concentration falls below 40 mg/dl = 2.2 mmol/l
 - In infants or children when plasma glucose concentration falls below 50 mg/dl = 2.7 mmol/l
 - whole blood glucose value is 10- 15% less than plasma glucose

Counter-regulatory hormones

- Rapid acting hormones, are critical for counter regulation of the early phase of hypoglycemia
 - Glucagon
 - Adrenaline
- The absence of the two hormones are not compensated by an even larger response of the other, and more severe hypoglycemia will follow

Counter-regulatory hormones

- Slow Acting hormones
 - Growth hormone
 - Cortisol
- Their release will be starting 30 minutes post hypoglycemia and their counter –regulatory role is not appreciated until after 3 hours from the onset of hypoglycemia

Signs & symptoms

- In neonates (not specific)
 - Lethargy
 - Hypotonia
 - Irritability
 - Feeding difficulties
 - Cyanosis
 - Tachypnea /Apnea
 - Hypothermia
 - Seizure
 - Coma

Signs & symptoms

- In older infants, child and adult
 - Neurogenic (Adrenergic symptoms) are common (first stage symptoms):
 - Sweating
 - Anxiety
 - Tachycardia
 - Weakness
 - Neuroglycopaenic symptoms (become prominent when first stage is not corrected)
 - Headache
 - Irritability
 - Confusion
 - Fatigue
 - Abnormal behavior, amnesia
 - Seizure
 - Coma

How much glucose is needed ?

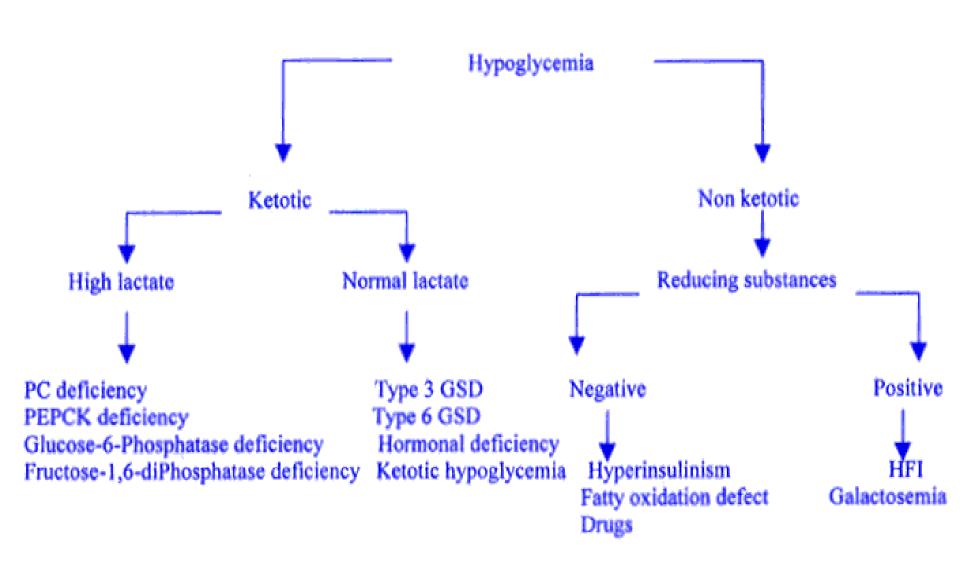
- The brain of a full term neonate, weighing 3.5kg would require a glucose at rate of 5-7 mg/kg/min.
- Measurement of the endogenous glucose production in infants & young children demonstrate a value of 5-8 mg/kg/min.
- Most of endogenous glucose production in infant & young children can be accounted for brain metabolism
- In adult, brain needs 80% of total glucose production

Hypoglycemia ----- Causes

Transient neonatal hypoglycemia

- Prematurity
- IUGR
- infant of diabetic mother
- birth asphyxia
- polycythaemia
- Sepsis
- Infant with erythroblastosis fetalis

Hypoglycemia ----- Causes


Persistent hypoglycemia – infantile /childhood

- PHHI
- Hormone deficiency
 - Panhypopitutarism
 - Isolated GHD
 - ACTH / Cortisol deficiency
- Substrate limited
 - Ketotic hypoglycemia
- Inborn error of metabolism
 - Carbohydrate / amino acids/ organic acids / fatty acids
- Miscellaneous
 - Drugs, sepsis, liver failure,etc.

Diagnostic Approach

- A careful medical history and examination:
 - History of prematurity, IUGR, infant of diabetic mother, birth asphyxia, polycythaemia or sepsis
 - Large baby might suggest Hyperinsulinism
 - Hypoglycemia that is triggered by certain component of diet may be indicative of inborn error of metabolism such as galactosaemia. MSUD,.....etc.
 - Cholestatsis and micropenis occur in setting of Panhypopitutarism
 - Hepatomegaly in glycogen storage disease
 - Myopathy in fatty oxidation defects and in glycogen storage disease

Diagnostic Approach

Diagnostic Approach

- Investigations during hypoglycemic episode:
 - Insulin and C- peptide assay
 - Cortisol
 - GH
 - ketone (β- hydroxybutyrate)
 - Lactate
 - pyruvate
 - Ammonia
 - FFA
 - Urine specimen for:
 - organic acid
 - Ketone
 - Reducing substance

PHHI Persistent Hyperinsulinemic Hypoglycemia of Infancy

 Heterogeneous disorders of glucose metabolism characterized by a combination of hypoglycemia and unregulated high secretions of insulin

- Incidence is 1:50,000
- 95% of cases are sporadic
- Rare familial forms are caused by recessive or dominant defects in 4 different genes on 11p15.1
 - Sulphonylurea SUR1 gene
 - Glutamate dehydrogenase (GLUD-1) gene
 - Glucokinase (GK) gene
 - KIR 6.2 : potassium channel inward gene

Chromosome 11p15 containing genes for:

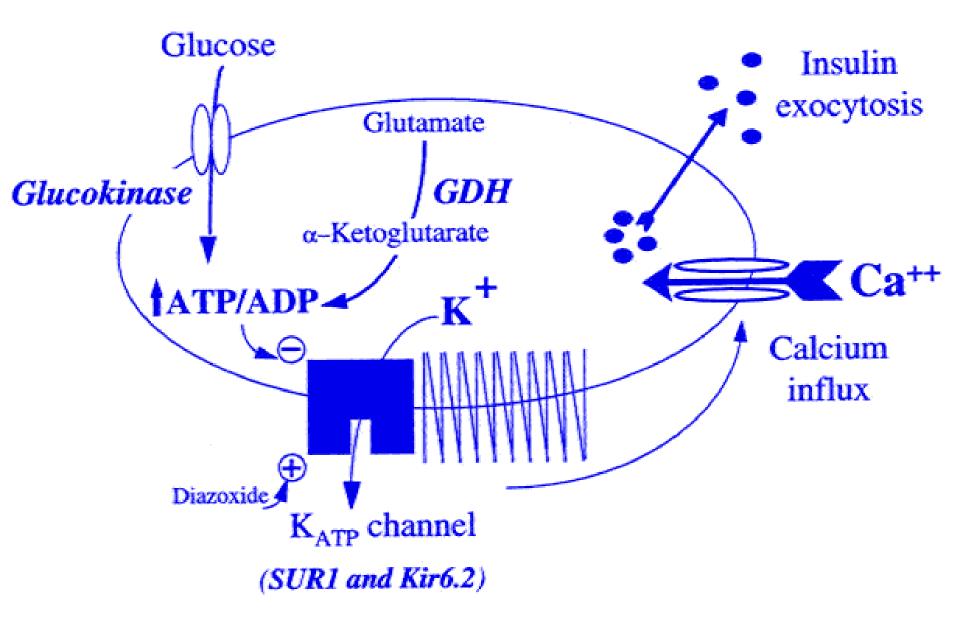
- » Insulin gene
- » IGF-2 gene
- » BWS
- » Tumor suppressor gene
 - H19
 - P57 KIP 2
- » SUR1 gene
- » KIR 6.2 gene
- Some association between Hyperinsulinemia and tumor genesis

Causes of Hyperinsulinism

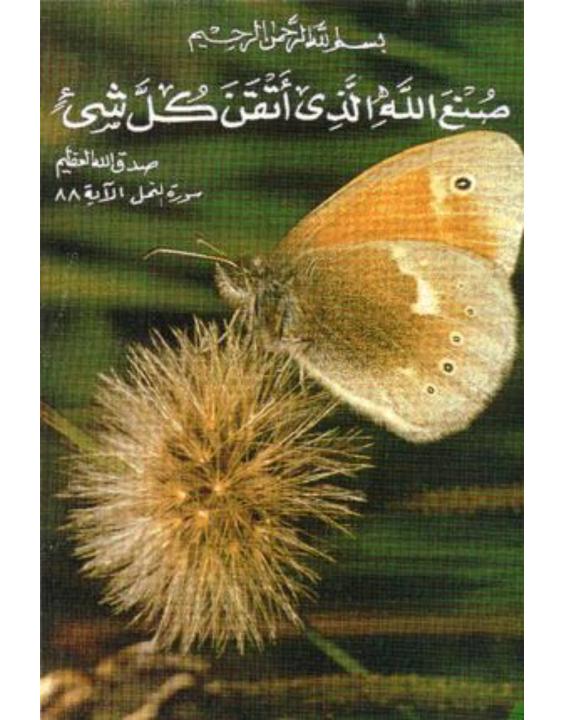
Transient

- IUGR
- Birth asphyxia
- Erythroblastosis fetalis
- Beck-Wiedemann syndrome
- Persistent
 - Sporadic
 - Genetic defects of β cell regulation
 - Recessive SUR / Kir 6.2 mutations
 - Dominant Glucokinase enzyme mutation
 - Hyperinsulinism / hyper ammonia syndrome
 - β cell adenoma
 - Drug –induced
 - Insulin / oral hypoglycemic administration

- The most common cause of intractable hypoglycemia in neonatal period and infancy
- In 1934, Graham performed the first successful subtotal pancretectomy for "idiopathic" hypoglycemia in a 14 month old child
- Subsequently, persistent hypoglycemia was referred to the following terms:
 - Nesidioblastosis
 - Islet dysregulation syndrome
 - Persistent Hyperinsulinemic Hypoglycemia of Infancy
 - Lucien sensitive Hyperinsulinism


PHHI ----- Diagnosis

- Large baby
- Exclusion of other causes of transient Hyperinsulinism
- High glucose requirement of > 10 mg/kg/minute
- At the time of hypoglycemia:
 - measurable insulin, pro-insulin and C-peptide levels
 - Low levels of FFA, ketones and IGF-1
 - No metabolic acidosis
 - No reducing substances in the urine
- Rise of blood glucose level of 25 mg/dl or more following Parenteral glucagon administration



β- Cell regulation of insulin secretion

- Glucose enters the cell via glucose transporter 2 (GLUTR 2) which is not rate limiting for glucose metabolism
- Once inside the cell, glucose is converted to (G₆P) by enzyme Glucokinase (GKS)
- β cell then metabolizes G_6P to energy
- Increase energy production increases the ratio of ATP to ADP +Pi
- The increased ratio, normally closes the K _{ATP} channel which leads to depolarization of the β - cell plasma membrane, then Ca -channel open
- Increased intracellular Ca, leads to fusion of the insulin containing vesicles and then releasing of insulin

β- Cell regulation of insulin secretion

Glucokinase enzyme (GCK)

- Gain of function mutations in GCK leads to Hyperinsulinism (AD) form
- Loss of function mutation leads to β-cell insensitivity to extra cellular glucose, with subsequent development of MODY type of diabetes

Genetic form of diffuse Hyperinsulinism

At least 3 forms of congenital Hyperinsulinism have been described

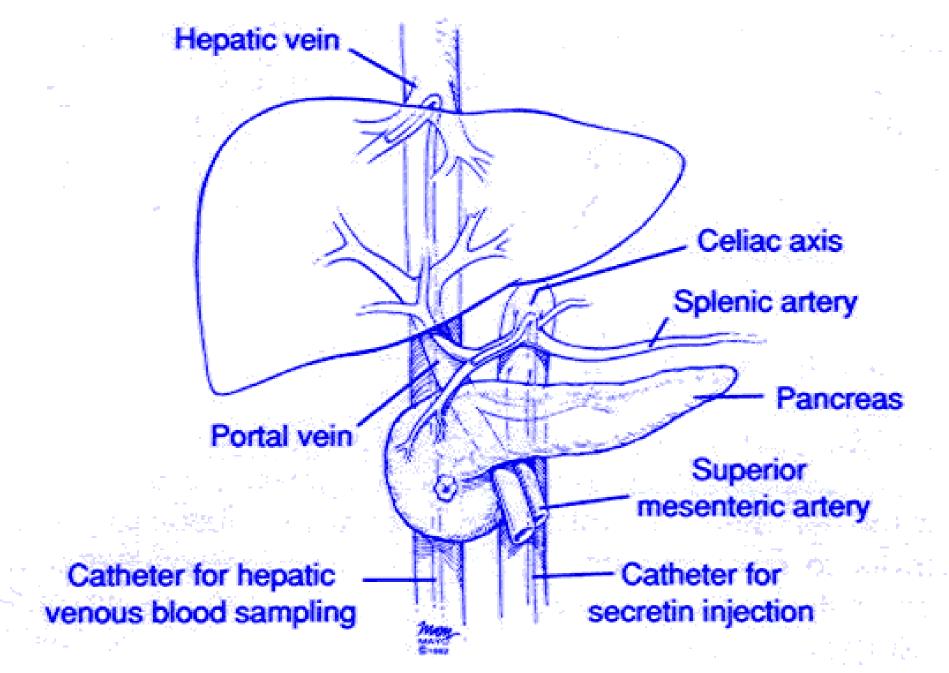
Genetic form of diffuse Hyperinsulinism

- AR Hyperinsulinism
 - This is the most common type
 - Gene defect on chromosome 11 (11 p14-15)
 - representing the most severe type ,usually in the neonatal period with large for date birth size
 - Two component of the pancreatic β Cell K _{ATP} channel , SUR & Kir 6.2
 - Gain -of- function mutation of these 2 subunits leads to continuous closure of K ATP channel and Hyperinsulinism
 - Because genetic defect in the SUR, diazoxide is usually not effective
 - Infants usually need 95% pancretectomy
 - Because diabetes development in most children who had 95% pancretectomy, some investigators recommend 75% as initial procedure without risk of development of diabetes later
 - Hypoglycemia resolved in 50% of cases with limited resection

SUR & Kir 6.2 mutations

Gene	Mutation*	Location	Predicted Effect	Altered Site	Reference
SUR1	221G→A	Exon 2	R74Q	PstI	29
	375C→G	Exon 3	H125Q	DdeI	29
	560T→A	Exon 4	V187D	Tth1111	33
	563A→G	Exon 4	N188S	TspRI	29
	949delC	Exon 6	317fs/ter	Bsp12861	29
	1216A→G	Exon 8	N406D	XcmI	29
	1630+1g→t	Intron 10	Aberrant splicing	BsrI	29
	1672 - 20a→g	Intron 11	Aberrant splicing	SpeI	38
	1773C→G	Exon 12	F591L	BsoF1	29
	1893delT	Exon 13	631fs/ter	BstN1	29
	2117−1g→a	Intron 15	Aberrant splicing	PstI	29
	2147G→T	Exon 16	G716V	BbvI	38
	2292−1g→a	Intron 18	Aberrant splicing	BstN1	38
	2860C→T	Exon 24	Q954X	BstN1	29
	3416C→T	Exon 28	T1139M	NlaIII	29
	- 3644G→A	Exon 29	R1215Q	Ncil	29
	3992-9g→a	Intron 32	Aberrant splicing	Ncil	29, 31, 39
	3992-3c→g	Intron 32	Aberrant splicing	Aval	29
	4135G→C	Exon 34	G1379R	EagI	29
	4162delTTC	Exon 34	delF1388	BscRI	29, 31
	4181G→A	Exon 34	R1394H	DraIII	29
	4310G→A	Exon 35	G1400D(23)X†	MspI	8, 29, 39
	4525insCGGCTT	Exon 37	Insertion of AS	Pvull	29
101	and the second	Exon 37	G1479R	1 TA - 18 - 1	32
Kir6.2	39C→A	1 - A <u>11</u> - M	Y12X	BsaAI	30
	652G→T		L147P	PvuI	37

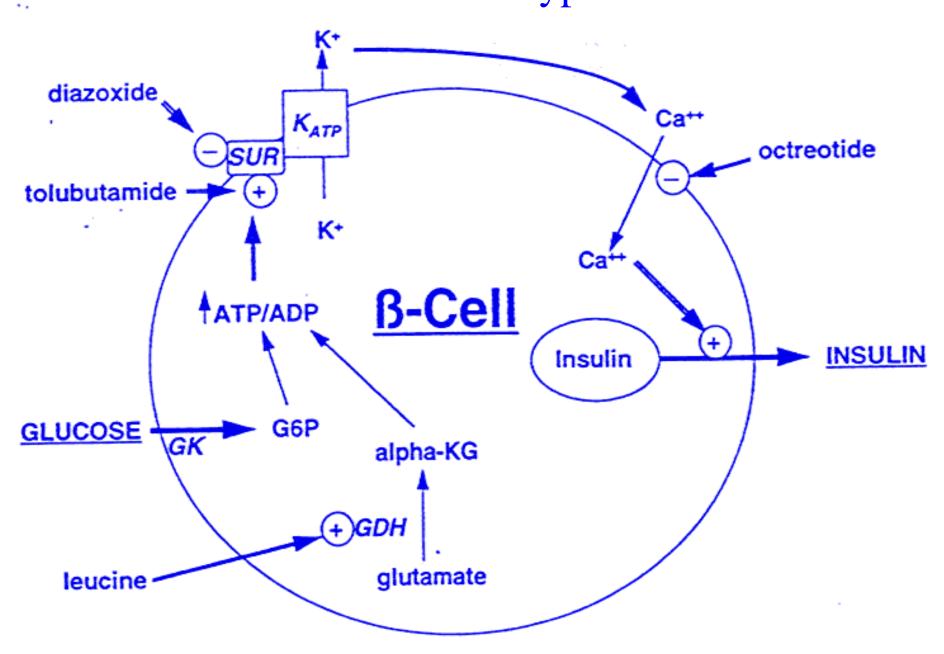
Genetic form of diffuse Hyperinsulinism


- AD Hyperinsulinism
 - The genetic loci remains unknown
 - Mild form of Hyperinsulinism
 - Due to gain of -function mutations in GCK (Glucokinase enzyme)
 - different from SUR /Kir 6.2 mutations:
 - very responsive to diazoxide
 - Late sometimes presents as late as adulthood
 - mild presentation
 - Neonates are not usually affected and if so, the are not LGA

Genetic form of diffuse Hyperinsulinism

Hyperinsulinism - hyperammonemia syndrome

- Dominant expressed mutation of mitochondrial glutamate dehydrogenase
- Encoded by GLUD1 gene on chromosome 10
- Excessive activity of glutamate dehydrogenase increases rate of glutamate oxidation, then increasing ATP/ADP ratio which leads to hyperinsulinism
- Persistent mild elevation of blood ammonia to 100 to 200 umol/l (3 - 6 times normal)
- The hyperammonemia seems to be a symptomatic and is not associated with any other abnormalities of amino acid or organic acids found in urea cycle enzyme defects
- These patients may respond to diazoxide or to diet alone


Pre-operative selective venous sampling

Medical

- Glucagon infusion
- Diazoxide
- Calcium channel blockers
- Somatostatin analogue
- Patients with SUR 1 / KIR 6.2 gene mutation usually doesn't respond to Diazoxide
- Surgical
 - Focal adenoma excision
 - 75 % pancretectomy
 - Near-total (95%) pancretectomy

Medical treatment of hyperinsulinism

- Goal of treatment is to achieve safe fasting glucose level
- Diazoxide
 - Acts by inhibiting insulin secretion at SUR1
 - The starting dose is 10 mg/kg, may be increased to 20 mg/kg/day on 3 divided doses
 - Adverse reaction
 - Hypertrichosis
 - Hyperurecemia
 - Salt and water retentions
 - Hyperglycemia and ketoacidosis during illness

- Calcium channel blockers
 - In Flux of calcium into β-cells is important for insulin exocytosis
 - Nifidipine / verapamil with diazoxide
 - Second line in medical therapy after failing of response to diazoxide
 - High dosed might be needed
 - Hypotension should be avoided
 - Verapamil dose can be up to 3 mg/kg/dose TDS

Octerotide

- Long acting Somatostatin
- Inhibits insulin secretion at the level of calcium channel
- Doses range from 2 40 mcg/kg/day divided into 2-4 doses
- Adverse effects
 - Nausea
 - Steatorrhea
 - Delayed growth
 - gall stone formation

Thank you