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e Background Apomixisis an alternative route of plant reproduction that produces individuals genetically identical to
the mother plant through seeds. Apomixis is desirable in agriculture, because it guarantees the perpetuation of super-
ior genotypes (i.e. heterotic hybrid seeds) by self-seeding without loss of hybrid vigour. The Paspalum genus, an
archetypal model system for mining apomixis gene(s), is composed of about 370 species that have extremely
diverse reproductive systems, including self-incompatibility, self-fertility, full sexual reproduction, and facultative
orobligate apomixis. Barriers to interspecific hybridization are relaxed in this genus, allowing the production of new
hybrids from many different parental combinations. Paspalum is also tolerant to various parental genome contribu-
tions to the endosperm, allowing analyses of how sexually reproducing crop species might escape from dosage effects

in the endosperm.

e Scope In this article, the available literature characterizing apomixis in Paspalum spp. and its use in breeding is
critically reviewed. In particular, a comparison is made across species of the structure and function of the
genomic region controlling apomixis in order to identify a common core region shared by all apomictic Paspalum
species and where apomixis genes are likely to be localized. Candidate genes are discussed, either as possible
genetic determinants (including homologs to signal transduction and RNA methylation genes) or as downstream
factors (such as cell-to-cell signalling and auxin response genes) depending, respectively, on their co-segregation
with apomixis or less. Strategies to validate the role of candidate genes in apomictic process are also discussed,
with special emphasis on plant transformation in natural apomictic species.
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INTRODUCTION

Modern agriculture is continuously creating new and highly pro-
ductive cultivars. Traditional plant breeding methods and, more
recently, genetic engineering have succeeded in steadily increas-
ing crop production over the years. Despite these achievements,
and with a global community calculated to stabilize at 8-1-11-9
billion people in the middle of the 2 1st century (Lutz et al., 1997),
the challenges for agriculture remain overwhelming. Among
promising approaches for significantly increasing crop product-
ivity, the transfer of clonal reproduction through seeds or apo-
mixis would represent an enormous benefit for agriculture
(Vielle-Calzada et al., 1996). The genus Paspalum is an attract-
ive biological system for studying apomixis, because it is both a
model system for mining candidate gene(s) and an important
target crop. Over the past five decades, a wealth of information
has been produced regarding the biology, genetic and reproduct-
ive modes of many Paspalum species including: (1) cytoembryo-
logical aspects of apomixis; (2) detailed molecular maps of
apomixis loci; (3) isolation of the first candidate genes; and (4)
development of transformation systems for gene delivery.
Moreover, P. notatum represents an unprecedented occurrence:

the existence of freely crossable apomictic and sexually reprodu-
cing races of an agronomically important species.

In sexual reproduction, a single cell within the ovule typically
becomes the megaspore mother cell (MMC). The MMC under-
goes meiosis to form four reduced megaspores, one of which
develops into an embryo sac (ES). In most plants, the ES includes
the egg cell and two synergids at one pole, a large binucleated
central cell, and three antipodals at the opposite pole. This is
known as Polygonum-type ES. Double fertilization by two
sperm released from the pollen tube results in a diploid zygote
(n egg + n sperm) and a triploid central cell (2n central cell +
n sperm) that develops into endosperm (Grossniklaus, 2001).
Conversely, gametophytic apomixis in angiosperms relies on
the formation of an ES from an unreduced ES initial (Nogler,
1984). Whether unreduced ESs arise from an MMC or from a
somatic, usually nucellar cell, distinguishes diplospory from
apospory, respectively. Fertilization of polar nuclei is usually
required for apomictic seed formation. Both pathways have
been broadly referred to as ‘apomeiosis’ or ‘apomeiotic path-
ways’ and encompass a variety of developmental schemes
(Nogler, 1984; Asker and Jerling, 1992; Crane, 2001; Pupilli
and Barcaccia, 2012). Apomeiosis was originally defined as
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the ‘loss of meiotic reduction’ (Renner, 1916). In our opinion, the
term is not exactly applicable to apospory, because it is derived
from the word ‘meiosis’ and the Greek prefix amo (apo),
meaning away from, without or lacking. The term apomeiosis
applies to diplospory, which involves a loss of meiosis.
However, in apospory, somatic cells acquire a novel ability to
develop ESs, a function normally reserved for the megaspores,
whereas meiosis usually occurs in the MMC. The functional
megaspore aborts or develops into a meiotic ES that usually
loses functionality in competition with the aposporous sacs
developing in the same ovule. Nowadays, these pathways are
viewed as heterochronic traits resulting from the ectopic expres-
sion of sexual reproduction sub-programmes either temporally or
spatially (Grimanelli et al., 2003; Bradley et al., 2007; Sharbel
etal.,2010).

PASPALUM AGAMIC COMPLEXES
Botany, phylogeny and evolution

Paspalum (Linnaeus, 1759)is one of the ten largest genera within
Poaceae. Recent systematic works have expanded the genus, in-
cluding species of the genus Thrasya (Denham, 2005), and new
taxa have been described (Oliveira and Rua, 2005; Rua et al.,
2008; Oliveira and Valls, 2009; Sanchez-Ken, 2010; Ramos
et al., 2011). In addition, several species have been transferred
to Paspalum from the polyphyletic genus Panicum (Morrone
et al., 2007, 2008; Zuloaga et al., 2007, 2010, 2011; Sede
etal., 2008, 2009). With a wide range of morphological and eco-
logical adaptations, the approx. 370 species of Paspalum have
been classified into four subgenera.

(1) Anachyris (Nees) Chase, a well-delimited monophyletic
group of six closely related species sharing specific morpho-
logical and embryological features (Morrone et al., 2000;
Urbani et al., 2002; Hojsgaard et al., 2008; Rua et al., 2010).

(2) Ceresia (Pers.) Rchb., 25 species mainly characterized by
bearing a winged rachis (Denham et al., 2002).

(3) Harpostachis (Trin.) S. Denham (formerly genus Thrasya),
40 species distributed in Central America and northern
South America (Denham, 2005; Sanchez-Ken, 2010).

(4) Paspalum sensu stricto, which contains most of the species
(approx. 300), and shows the greatest diversity (Zuloaga
and Morrone, 2005).

The two most comprehensive taxonomic reviews recognized 40
infrageneric groups among these subgenera (Chase, 1939;
Zuloaga and Morrone, 2005). Considerable taxonomic efforts
have been devoted to the genus Paspalum, especially regarding
infrageneric classification (Rua ez al., 2010). Current phylogen-
etic analyses using morphological and/or genetic data have better
clarified relationships within the genus (Denham et al., 2002;
Souza-Chies et al., 2006; Denham and Zuloaga, 2007; Essi
and Souza-Chies, 2007). However, the molecular relationships
did not reflect morphological data as only the subgenus
Anachyris formed a well-supported clade (Denham and
Zuloaga, 2007; Rua et al., 2010). Moreover the informal
groups in Paspalum subgenus Paspalum have not yet been
delimited by molecular tools, and most of them cannot be
diagnosed exclusively by morphological synapomorphies

(Souza-Chies et al., 2006). Recent phylogenetic analyses using
molecular data have confronted their composition, and no
uniform criteria of classification have been achieved to date
(Giussani et al., 2009; Rua et al., 2010). Further studies based
on extensive taxon sampling and an adequate number of inform-
ative molecular markers are therefore needed to resolve relation-
ships among both subgenera and informal groups.

Paspalum species occupy diverse habitats in North and South
America, while a few species are native to Africa, Asia and
Oceania, and only three or four are cosmopolitan. The centre
of origin for the genus is tropical South America (Chase, 1939;
Nicora and Rugolo de Agrasar, 1987; Judziewicz, 1990), but sec-
ondary centres of diversity have been recognized in the Brazilian
cerrados and the campos of Argentina, Uruguay and Southern
Brazil (Zuloaga and Morrone, 2005). The wide range of eco-
logical adaptations found in the genus (Chase, 1939; Parodi,
1969; Zuloaga and Morrone, 2005; L. R. Parodi and
E. G. Nicora, unpubl. res.) is probably related to the various re-
productive strategies (i.e. sexual reproduction, auto- and allog-
amy, clonal reproduction through apomixis and vegetative
propagation) and ploidy levels found within and across the
species (Quarin, 1992). This has undoubtedly affected the evolu-
tionary success of the genus (Bashaw er al., 1970). The observa-
tion that the three most diverse subfamilies of Poaceae have the
highest proportions of genera that combine apomictic and
sexual reproductive modes (i.e. 13-03 % in Panicoideae,
8:27 % in Chloridoideae and 5-29 % in Pooideae; Fig. 1) sug-
gests that apomixis in Paspalum species was probably a key
factor in their diversification through the formation of both
intra- and interspecific agamic complexes with special evolu-
tionary properties. Contrary to the classical view of the agamic
complexes being closed systems (Stebbins, 1950), Carman
(1997) pointed out that apomixis is a transitional evolutionary
state of polyploid complexes (transition theory). In Paspalum,
these complexes usually form spatially restricted diploid popula-
tions that represent the main source of variability and that
co-habit and hybridize with polyploids (Urbani et al., 2002;
Daurelio et al., 2004; Speranza, 2009). Polyploids exploit the
advantages of apomixis, i.e. uniparental reproduction and
clonality, to expand their geographical and ecological ranges
(Kearney, 2005; Horandl, 2006). Recently, Horandl and
Hojsgaard (2012) extended the transition theory to include the
possibility of reversals from facultative apomixis to obligate
sexuality. In Paspalum, a few species exhibit the features of a
typical genetic system, but with higher ploidy levels (i.e.
P. durifolium and P. ionanthum; see Table 1) and may represent
cases of reversals forming new agamic complexes after second
rounds of polyploidization. Under these assumptions, the mor-
phologically diverse and species-rich genus Paspalum can be
considered — according to Horandl and Hojsgaard (2012) — as
a typical evolutionary outcome of sexual—apomictic multiploid
complexes within the main clades of Poaceae.

The two main Paspalum species used as models for apomixis
research, P. notatum and P. simplex, form agamic complexes
made up of diploid sexual and autopolyploid apomictic indivi-
duals. Interestingly for molecular approaches toward gene isola-
tion, DNA content values for these two species are among the
smallest within the Poaceae tribe: 1C = 0-58 pg for diploid
P. notatum (Jarret et al., 1995) and 1C = 0-75 pg for diploid
P. simplex (Caceres et al., 1999).
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Apomictic genera/total ~ Basic chr. Species of economic
number of genera number importance
Panicoideae 31/238 5-10,12  Maize; sorghum; pearl,
foxtail, and proso millet;
sugar cane
Micrairoideae —/9 10
Arundinoideae 3/17 6,9, 12
Danthonioideae 117 6,7,9
— —————— Centropodia clade -1 12
< Chloridoideae 11/133 6-10 Finger millet
— b——————s| Aristidoideae -3 11,13
Ehrhartoideae -/18 10-12, 15 Rice
Bambusoideae 1112 7,9-12
Pooideae 11/208 2,4-10,13,19 Oats; rye; barley;
wheat; turfgrasses
Puelioideae —/2 12
Pharoideae —/3 12
Anomochloideae —/2 9, 11

Fi1G. 1. Phylogenetic tree of Poaceae subfamilies (modified after Grass Phylogeny Working Group I, 2012); the sizes of subfamilial clades are relative to the species

richness of each clade. The number of apomictic genera is after Carman (1997) and Horandl and Hojsgaard (2012). The total number of genera is according the

World-Wide Phylogenetic Classification of Poaceae database (Stevens, 2001 onwards). Chromosome (chr.) numbers were collected from the Grass Genera of the
World database (http:/www.biologie.uni-hamburg.de/b-online/delta/grass/index.htm). Economically important species inside each subfamily are indicated.

Cytology and reproduction

As highlighted above, the grass genus Paspalum is character-
ized by an extremely versatile genetic system due to extensive
variation in chromosome number, meiotic chromosome behav-
iour and reproductive mode. Based on taxonomical reviews,
the main components of the genetic system have been examined
for approx. 20 % of all Paspalum species (e.g. Chase, 1939;
Zuloaga and Morrone, 2005; Williams et al., 2011). From the
compilation data presented in Table 1, most species are poly-
ploids (75 %), out of which some form multiploid complexes.

Sexuality in Paspalum species is typical for that of most
angiosperms and is characterized by the double fertilization of
a reduced ES of the Polygonum type, typically composed of
the egg apparatus (egg cell and two synergids), a large two-
nucleated central cell and a mass of proliferated antipodals at
the chalazal end (Quarin, 1992). Apomictic reproduction is
mainly of the aposporous type, according to which unreduced
ESs differentiate from particular nucellar cells, so-called apos-
porous initials (Als). Typically, three or the four spores of the le-
gitimate MMC degenerate and several nucellar cells change their
fate and differentiate into Als (Fig. 2A, B). Aposporous ES de-
velopment is achieved through an unstable pattern of cell div-
ision and cell differentiation. A first mitosis of the Al nucleus
produces a binucleate ES whose further development varies
according to the number of both divisions and nuclei involved.
Consequently, mature ESs always contains an egg cell and a bi-
nucleate central cell, though one or two synergids may often be
observed beside the egg cell; antipodal cells are always absent
in this so-called Paspalum type of aposporous ES (Fig. 2C, D;

Burson and Bennett, 1970a, 1971; Quarin et al., 1996;
Espinoza et al., 2001; Ma et al., 2004).

Apart from the aposporous Paspalum type, the Taraxacum
type of diplospory was reported for two Asian species,
P. commersonii Lam. (=P. scrobiculatum L.; 2n = 6x) and
P. longifolium Roxb. (2n = 4x), and for the pantropical species
P.  conjugatum Berg. (2n=4x) (Chao, 1974, 1980).
Hieracium-type ES development has been described in only
two species of Paspalum, P. secans Hitchc. & Chase (Snyder,
1957) and P. simplex Morong (Caponio and Quarin, 1987;
Caceres et al., 2001), while both aposporous and diplosporous
types were detected in P. minus E. Fourn. (Bonilla and Quarin,
1997) and P. scrobiculatum L. (Chao, 1974).

Microsporogenesis consists of the meiotic division of the male
archespore that gives rise to an array of four cells (tetrad) each
containing a nucleus with a reduced chromosome number.
Then the nucleus of each microspore moves to the side wall
before mitosis I starts, giving rise to the microgametogenesis
process. This mitosis involves an unequal cell division, produ-
cing a large vegetative cell and a small generative cell having a
nucleus with condensed chromatin structure. The generative
cell divides into two sperm cells via mitosis II. The mature
male gametophyte consists of a tricellular pollen with two
sperm cells, plus a vegetative cell. It is now widely accepted
that apomixis in Paspalum is always associated with irregular
male meiosis in the forms of multivalent chromosome associa-
tions (mainly the presence of quadrivalents), asynapsis or desy-
napsis, the whole genome lasting unpaired, or appearance of
chromosome bridges and micronuclei (Quarin, 1992; Table 1).
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TaBLE 1. Cytology and reproductive modes in Paspalum spp.

Ploidy Reproductive
Specie level Meiosis* mode’ References Referred to as
P. almum Chase 2x R Sss Quarin and Hanna (1980b) P. hexastachyum Parodi
4x mca Ap Burson (1975)
P. arundinellum Mez 4x mca Ap Bashaw et al. (1970)
P. atratum Swallen 4x mca Ap Quarin et al. (1997)
P. bertonii Hack. 2x R Sss Quarin and Burson (1991)
P. buckleyanum Vasey 2x R S sf Burson (1997) P. alcalinum Mez
4x mca Ap Burson (1997)
S5x mca Ap Burson (1997); Sartor et al. (2011) P. alcalinum Mez
6x Ap Sartor et al. (2011)
P. chaseanum Parodi 2x R Sss Espinoza and Quarin (1997)
P. chacoense Parodi 2x R S Burson (1985)
P. compressifolium Swallen 2x R Sss Quarin et al. (1996)
4x mca Ap Quarin et al. (1996)
6x mca Ap Quarin et al. (1996)
P. conjugatum P.J. Bergius 4x asy Dp Chao (1980); Ma et al. (2009)
P. conspersum Schrad. 4x mca S Burson and Bennett (1976) P. platyphyllum Schult.
6x R S Bashaw et al. (1970)
- R S Quarin and Hanna (1980a)
P. coryphaeum Trin. 2x R S Quarin and Urbani (1990)
4x mca Ap Burson (1975); Quarin and Urbani (1990)
P. cromyorrhizon Trin. 2x R S ss + App Quarin et al. (1982) P. guaraniticum Parodi
4x mca Ap Bashaw et al. (1970); Burson and Bennett (1971);
Quarin et al. (1982); Martinez et al. (1999)
P. dasypleurum Kunze 4x R S sf Quarin and Caponio (1995)
ex Desv.
P. dedeccae Quarin 4x mca Ap Quarin and Burson (1991)
P. densum Poir. 2x R S ss + App Caponio and Quarin (1993)
P.denticulatum Trin. 2x - S Sartor et al. (2011)
3x - Ap Sartor et al. (2011)
4x mca Ap Sartor et al. (2011); Quarin and Burson (1991)
P. dilatatum Poir 4x R S Bashaw and Holt (1958)
S5x 1 Ap Bashaw and Holt (1958)
6x R Ap Burson et al. (1991)
6x 1 Ap Burson er al. (1991)
6x asy Ap Burson er al. (1991)
- - Ap Brown and Emery (1958)
P. distichum L. 4x R Ap Quarin and Burson (1991); Ma et al. (2009)
6x mca Ap Bashaw et al. (1970); Quarin and Burson (1991)
P. durifolium Mez 4x R S ss + App Quarin (1994)
6x R Ap Burson (1985)
P. equitans Mez 2x R S ss + App Quarin and Norrmann (1987)
P. exaltatum J Presl. 4x R Ap Burson and Bennett (1971) P. arechavaletae Hack.
ex Arechav.
P. falcatum Ness ex Steud. 4x mca Ap Burson (1997)
P. fasciculatum Willd. 2x R Sss Urbani (1996)
ex Fliiggé
P. glaucescens Hack. 2x R Sss Pritchard (1962) P. yaguaronense Henrard
P. guenoarum Arechav. 4x mca Ap Bashaw et al. (1970); Pritchard (1970); Espinoza  P. rojasii Hack.
etal. (2001)
Burson and Bennett (1971)
P. hartwegianum E. Fourn. - - Ap Brown and Emery (1958)
P. haumanii Parodi 2x R S ss 4+ App Norrmann et al. (1989)
4x mca Ap Burson (1975); Norrmann et al. (1989)
P. inaequivalve Raddi 6x R S sf Quarin and Burson (1991)
P. indecorum Mez 2x R S Quarin and Burson (1983)
P. intermedium 2x R S ss 4+ App Burson and Bennett (1970); Norrmann e al.
(1989)
Munro ex Morong & 4x mca Ap Norrmann et al. (1989)
Britton
P. ionanthum Chase 4x R S + App Burson and Bennett (1970) P. guaraniticum Parodi
- R SorS + App Martinez et al. (1999) P. guaraniticum Parodi
8x mca Ap Burson and Bennett (1970)
P. jurgensii Hack. 2x S Bashaw et al. (1970); Burson and Bennett (1971)
P. langei (E. Fourn.) Nash - - S Brown and Emery (1958)
P. laxum Lam. 6x R S sf Quarin et al. (1982)
P. lenticolare Kunth 2x R Sss Espinoza et al. (2001) P. limbatum Henrard
4x mca Ap Espinoza et al. (2001)

Continued
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TaBLE 1. Continued
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Ploidy Reproductive
Specie level Meiosis* mode’ References Referred to as
P. lividum Trin. 4x mca Ap Burson and Bennett (1971); Sartor et al. (2011)
P. longifolium Roxb. 4x desy Dp Chao (1974)
P. maculosum Trin. 2x R S ss Norrmann et al. (1989)
4x mca Ap Norrmann et al. (1989)
P. malacophyllum Trin. 2x R S ss + App Hojsgaard et al. (2008)
4x mca S Bennett and Bashaw (1966)
- mca Ap Burson and Hussey (1998);
Hojsgaard et al. (2008)
- - Ap Brown and Emery (1958)
P. mandiocanum Trin. 6x R Ap Burson and Bennett (1971)
P. minus E. Fourn. 5x asy Dp + Ap Bonilla and Quarin (1997)
P. modestum Mez 2x R S'ss Burson (1997); Quarin and Hanna (1980a)
P. monostachyum Vasey 2x R S ss Burson (1997)
- - S Brown and Emery (1958)
P. nicorae Parodi 4x mca Ap Bashaw et al. (1970); Burson and Bennett (1970);
Sartor er al. (2011)
P. notatum Fliiggé 2x R S ss Burton (1948); Burton (1955); Pensacola bahiagrass
Bashaw et al. (1970)
- - S + App Quarin et al. (2001)
3x - Ap Quarin et al. (1989)
4x mca Ap Burton (1948); Bashaw et al. (1970)
P. palustre Mez 2x R Sss Quarin and Burson (1991)
P. paniculatum L. 2x R S Burson and Bennett (1971)
P. pauciciliatum (Parodi) 4x 1 Ap Bennett and Bashaw (1966); Bashaw ef al. (1970)  P. dilatatum var.
Herter pauciciliatum Parodi
P. paucifolium Swallen 4x mca Ap Burson (1997)
P. plicatulum Michx. 2x R Sss Espinoza and Quarin (1997)
4x mca Ap Bashaw et al. (1970); Burson and Bennett (1971);
Norrmann et al. (1989)
P. polyphyllum Nees ex 4x mca Ap Burson (1997)
Trin.
P. procurrens Quarin 2x R S ss Quarin (1993)
4x mca Ap Hojsgaard et al. (2008)
P. proliferum Arechav. 4x mca Ap Quarin et al. (1982)
6x 1 Ap Burson (1975)
P. pubiflorum Rupr.ex 6x R S Bashaw et al. (1970); Actkinson and Burson P. pubiflorum var. Glabrum
E. Fourn. (1999) Vasey ex Scribn.
- - S Brown and Emery (1958)
P. pumilum Nees 2x R S sf Burson and Bennett (1971)
P. quadrifarium Lam. 2x R S ss + App Norrmann et al. (1989)
3x mcaor [ Ap Bashaw et al. (1970); Norrmann et al. (1989)
4x mca Ap Quarin and Burson (1983);
Norrmann et al. (1989)
P. quarinii Morrone & 2x R Sss + App Norrmann et al. (1989) P. brunneum Mez
Zuloaga 4x mca Ap Burson (1975); Norrmann et al. (1989) P. brunneum Mez
P. ramboi Barreto 6x R Ap Quarin and Burson (1991)
P. regnelli Mez 4x R S sf Norrmann (1981)
P. repens P.J. Bergius 2x R S sf (Burson, 1997)
P. rufum Nees 2x R S ss + App Norrmann et al. (1989); Siena et al. (2008)
4x mca Ap Burson (1975); Norrmann et al. (1989)
P. scrobiculatum L. 4x R S Bashaw et al. (1970); Pritchard (1970) P. commersonii Lam.
- R S sf Quarin and Hanna (1980a) P. boscianum Fliiggé
6x asy Dp + App Chao (1974) P. commersonii Lam.
10x - Dp Ma et al. (2009) P. commersonii Lam.
12x R S + App Chao (1974) P. commersonii Lam.
P. secans Itchc. & Chase 4x asy Ap Snyder (1957)
1 Ap Bashaw et al. (1970)
P. setaceum Michx. 2x R S sf Banks (1964, 1966) P. debile Michx.
P. ciliatifolium Michx.
P. longepedunculatum LeConte
P. propinquum Nash
P. psammophilum Nash
P. pubescens Muhl.
- - S Brown and Emery (1958) P. rigidifolium Nash

Continued
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TaBLE 1. Continued

Ploidy Reproductive
Specie level Meiosis* mode’ References Referred to as
P. simplex Morong 2x R Sss Espinoza and Quarin (1997)
ex Britton 3x - S Urbani et al. (2002)
3x - Ap Urbani et al. (2002)
4x mca Ap Caponio and Quarin (1987)
6x - - Urbani et al. (2002)
P. thunbergii Kunth 4x I Ap Ma et al. (2004)
ex Steud.
P. umbrosum Trin. 2x R S Bashaw et al. (1970)
P. unispicatum (Scribn. 4x mca Ap Burson (1997)
& Merr.) Nash
P. urvillei Steud. 4x R S Brown and Emery (1958); Bashaw et al. (1970)
P.vaginatum Sw. 2x R S Bashaw et al. (1970)
P. virgatum L. 4x R S Burson and Quarin (1982)
P. wrightii Hitchc. & Chase 2x R Sss Martinez et al. (1999) P. hydrophilum Henrard
4x mca Ap Norrmann (1981) P. hydrophilum Henrard

For practical reasons, the species of the newly recognized subgenus Harpostachys (formerly genus Thrasya) are not included in this review.

*R, regular (mainly bivalent pairing); I, irregular (bivalents plus one or two unpaired genomes), mca, multivalent chromosome associations (mainly presence of
quadrivalents), asy or desy, asynapsis or desynapsis (majority of chromosomes unpaired).

°S, sexual; Dp, diplosporous apomictic; Ap, aposporous apomictic; App, aposporous potential (occasional ovules with an aposporous sac beside the sexual sac);

ss, self-sterile; sf, self-fertile.

Comparative cytogenetic examinations during microsporogen-
esis revealed meiotic abnormalities at anaphase I in P. notatum
apomicts, which were attributed to genetic rearrangements,
such as an inversion or a translocation in one chromosome
(Stein ef al., 2004). Conversely, male meiosis in natural sexual
cytotypes is always regular (formation of bivalent chromosome
associations and balanced gametes), with some rare cases of
quadrivalent formation in sexual P. malacophyllum and
P. conspersum (Tablel). Colchicine-induced sexual tetraploids
of P. notatum and their derivatives showed high rates of
meiotic abnormalitites, though their proportions were signifi-
cantly lower when compared with those detected in natural con-
specific apomictic genotypes (Podio et al., 2012b). Frequent
formation of 2n pollen as a consequence of abnormal cytokinesis
followed by nuclear fusion of multinucleate microspores has
been reported in polyploid Brazilian accessions of Paspalum
by Pagliarini et al. (1999). Although there is no evidence of cor-
relation between abnormal cytokinesis and apomixis, the occur-
rence of restitution nuclei as a consequence of irregular or
arrested meiosis has been reported in connection with apomixis
in P. secans (Snyder, 1961), P. conjugatum (Chao, 1980) and
P. minus (Bonilla and Quarin, 1997). To sum up, experimental
evidence supports a correlation between the occurrence of
meiotic abnormalities and apomixis in Paspalum. These abnor-
malities might be related to the rearranged nature of the chromo-
some bearing the apomixis locus.

Endosperm development in angiosperms requires an exact
maternal-to-paternal (2m:1p) genomic balance, and any devi-
ation from it usually results in seed abortion, although this is
not inevitable and depends on the genetic context (Schatlowski
and Kohler, 2012, and references therein). All Paspalum apo-
micts are pseudogamous, meaning that the endosperm develops
after fertilization of the polar nuclei by areduced male gamete. In
P. notatum, seed development in apomicts is insensitive to
dosage effects in the endosperm in spite of the strong, maternal

genomic excess, whereas in the sexual biotypes the 2m:lp
balance is strictly required for normal endosperm development
and seed production (Quarin, 1999).

The number and fertilization of the polar nuclei in aposporous
ESsis also of practical importance in apomixis research, particu-
larly when the method of reproduction must be determined for a
large number of individuals. The development of the flow cyto-
metric seed screen (FCSS) method (Matzk et al.,2000) has facili-
tated identification of the reproductive mode for large sample
numbers because in Paspalum the relative ratio of embryo:en-
dosperm DNA content distinguishes seeds of apomictic origin
from those formed sexually. A sexually produced seed is
formed by an embryo (n + n) which has arisen from fertilization
of the reduced egg cell (n) by a reduced sperm nucleus (n), and
endosperm derived from fertilization of two reduced polar
nuclei by a reduced sperm nucleus [(n + n) + n]. Therefore,
this seed has a 2:3 embryo:endosperm ratio of DNA content.
On the other hand, a seed formed through apospory, partheno-
genesis (embryo from 2n + 0) and pseudogamy [endosperm
from (2n 4 2n) 4 n] has a 2:5 embryo:endosperm DNA ratio.
The FCSS technique applied to individual or bulked seeds has
greatly facilitated the analyses of the reproductive mode in
Paspalum species in the last decade (Caceres et al., 2001;
Siena et al., 2008; Sartor et al., 2009, 2011; Aguilera et al.,
2011; Rebozzio et al., 2011; Hojsgaard et al., 2013).

The genetic systems observed in Paspalum have been categor-
ized into eight different groups (Table 2). Most species (approx.
70 %) belong to groups 2, 3 and 4. Group 2 comprises sexual self-
sterile (outbreeder) diploids. Group 3 consists of multiploids,
whose chromosome races include both diploid outbreeders and
apomictic polyploids. Group 4 is formed by aposporous apomic-
tic polyploids with usually multivalent chromosome associa-
tions at meiosis, pseudogamy and self-fertility. Because most
studies have considered only one or a few individuals for each
species, the published data suggest that most species in groups
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FiG. 2. Photomicrographs of sectioned ovaries of sexual and apomictic
Paspalum species. (A, B) Apomictic tetraploid cytotype of P. notatum. Two con-
secutive sections of a young ovary showing the megaspore mother cell (MMC)
and one nucellar aposporous initial cell (Al). (C, D) Sexual diploid cytotype of
P. cromyorrhizon. Two consecutive sections of a mature ovary showing a well
developed sexual embryo sac bearing the egg cell (e), two synergids (s), a large
central cell with two polar nuclei (p) and a mass of proliferated antipodal cells
(a) at the chalazal end of the embryo sac. (E) Apomictic tetraploid cytotype of
P. cromyorrhizon. Section of a mature ovule showing two aposporous embryo
sacs, each containing an egg cell (e) and two polar nuclei (p). Scale bars:
(A, B) =20 um, (C-E) = 50 pum.
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2 and 4 might actually be members of group 3. Once the genetic
system is screened for more individuals per natural population,
diploid cytotypes might be discovered among apomictic poly-
ploids (group 4), and apomictic polyploids might be found
among sexual self-sterile diploids (group 2).

Variability in natural populations

Apomixis was first considered as a blind alley for evolution
(Darlington, 1939), suggesting that clonal seed production
would result in genetically uniform populations. However,
studies in natural populations of apomictic Paspalum spp.
revealed a high level of variation in ploidy and genetic structure
(Urbani et al., 2002; Daurelio et al., 2004; Sartor et al., 2011).
Chromosome counts and ploidy level estimates by flow cytome-
try from 32 populations of P. simplex showed that most indivi-
duals were tetraploid and that diploid populations were
confined to a small area (Urbani et al., 2002). On the other
hand, Sartor ez al. (2011) analysed the ploidy levels and repro-
ductive mode of 19 populations from five species and found
that diploid populations reproduced sexually, while polyploids
(2n = 3x, 4x, 5x and 6x) reproduced by apomixis. Interestingly,
apomixis in 4x individuals was facultative (i.e. they produced
some of their progeny by sexual means), while other polyploid
individuals were obligate apomicts. Finally, analysis of faculta-
tive apomicts revealed variations in the degree of facultativeness
(2—30 %) as well as in the origin of non-maternal progeny (via
sexual reproduction or fertilization of unreduced egg cells)
(Caceres et al., 2001; Urbani et al., 2002). Daurelio et al.
(2004) showed that variability in tetraploid P. notatum was sig-
nificantly higher in sympatric diploid—tetraploid populations
than in those tetraploid populations isolated from diploids.
Similarly, Sartor e al. (2011) observed higher levels of genetic
variability in mixed ploidy populations of P. rufum,
P. denticulatum and P. unispicatum than in pure populations.
These results support the hypothesis of recurrent polyploidiza-
tion for the majority of Paspalum species proposed by Quarin
(1992) (see ‘Apomixis, hybridity and polyploidy’ below for
details) according to which new apomictic tetraploid genotypes
would be continuously generated, thereby increasing the genetic
variability of apomictic populations.

Agronomy and genetic improvement

From a plant breeding perspective, apomixis provides a
unique mechanism for developing superior cultivars and pre-
serving those genotypes indefinitely. Generally speaking, the
three fundamental prerequisites of any successful plant breeding
programme are: (1) availability of a diverse germplasm collec-
tion; (2) adequate knowledge of the biology, cytology and repro-
ductive system of the available material; and (3) explicit and
achievable objectives. In other sections of this review, we
clearly demonstrate that Paspalum meets the first two prerequi-
sites; here we discuss objectives and breeding strategies related
to apomictic reproduction.

Among the species of Paspalum, P. notatum and P. dilatatum
are the most widely cultivated forage grasses. Specific objectives
for Paspalum breeding consist of the enhancement of: (1) cold
tolerance and cool-season growth; (2) seed yield; (3) grazing re-
sistance; (4) nutritive value; and (5) resistance to biotic stresses.
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TABLE 2. Summarized genetic system for 72 species of Paspalum

Group No. of

no. Genetic system* species

1 Diploid, regular meiosis, sexual and self-fertile. 6

2 Diploid, regular meiosis, sexual and self-sterile. Apospory potential observed in two species. 12

3 Multiploid (diploid and polyploid cytotypes): diploids with regular meiosis, sexual and self-sterile, though apospory potential was 19
observed in eight diploid cytotypes; polyploids (mainly 4x) with usually multivalent chromosome associations at meiosis, aposporous
apomictic, pseudogamous and self-fertile.

4 Polyploid (mainly 4x) usually with multivalent chromosome associations at meiosis suggesting autoploidy, exceptionally with 19
unpaired chromosomes (alloploidy), aposporous apomictic, pseudogamous and self-fertile.

5 Polyploid (mainly 4x and some 6x), bivalent chromosome associations at meiosis indicating alloploidy, sexual reproduction, 9
self-fertile.

6 Multiploid of alloploid origin (sexual 4x plus higher polyploid aposporous cytotypes: Sx, 6x or 8x), tetraploids with regular 3
chromosome pairing, higher polyploids with regular or irregular meiosis. P. dilatatum, P. durifolium, P. ionanthum.

7 Polyploid, asynaptic or desynaptic chromosome behaviour at meiosis, restitution nucleus, diplosporous apomictic. P. conjugatum, 3
P. longifolium, P. minus (diplospory + apospory).

8 Sexual tetraploid and higher polyploid cytotypes with diplosporous apomixis and some potential for apospory. P. scrobiculatum. 1
Total 72

*Genetic systems are reported as described in the available literature. When information on breeding system (self-fertility or self-sterility) was missing in the

references, personal data (C. L. Quarin, unpubl.) were added.

Because most Paspalum species reproduce asexually by apo-
mixis, specific breeding techniques must be used to enhance
their genetics. These techniques are all based on fixing superior
genotypes via apomixis. Ecotype selection is the oldest and the
most productive breeding approach. This technique involves
germplasm collection evaluation, selection, multiplication of
the best ecotypes, and release of superior genotypes as new apo-
mictic cultivars, i.e. seed-propagated clones. The success of
ecotype selection depends on the number of polymorphic eco-
types within a species (Vogel and Burson, 2004). As an
example, the tetraploid ‘Argentine’ (PI 148996) cultivar, released
in the mid-20th century as the result of evaluating approx. 80
accessions of P. notatum, is still sown for pasture and utility turf
(Blount and Acuna, 2009). Cultivars of P. dilatatum, which is
better adapted to temperate areas than P. notatum, have been
selected as natural variants from the apomictic pentaploid and
hexaploid cytotypes (Evers and Burson, 2004; Burson et al.,
2008). Of particular interest is the Plicatula group, a diverse as-
semblage that includes many forage types. Several cultivars
have been released from this group belonging to P. atratum,
P. guenoarum and P. plicatulum (Evers and Burson, 2004).
Hybridization has been used more recently to enrich cultivars
for specific traits of interest. The success of hybridization in
Paspalum breeding depends on the availability of sexual poly-
ploid cytotypes. Improving apomictic Paspalum via hybridiza-
tion began with the pioneering work of Dr G. W. Burton
(USDA-ARS, Tifton, GA, USA) and his colleagues who gener-
ated colchicine-induced sexual tetraploid plants (Burton and
Forbes, 1960) and hybridized these induced autotetraploids
with naturally occurring tetraploid ecotypes to obtain many apo-
mictic hybrids that were never released as cultivars (Burton,
1992). Twenty out of several hundreds induced hybrids created
by tissue culture were selected for a breeding programme for re-
silience to clipping (Quesenberry et al., 2010), and a few others,
characterized as highly sexual and self-incompatible, were
crossed with highly productive apomictic genotypes (Acufia
et al., 2007). After two cycles of hybridization, a high degree
of variability and heterosis was observed (Acufa et al., 2007,
2009, 2011). Superior apomictic hybrids are currently being

evaluated in different environments and are expected to result
in new apomictic forage cultivars. One of the original sexual
tetraploid hybrids was hybridized with an Argentinean local
ecotype to yield several hybrids, from which the cultivar
named ‘Boyero UNNE’ was selected and released in 2012 as
the first apomictic cultivar of Paspalum developed by hybridiza-
tion. In addition, two sexual clones (i.e. they generate their
progeny exclusively sexually) have been released and are cur-
rently available (Quarin et al., 2003). Completely sexual tetra-
ploid genotypes of P. simplex (Caceres et al., 1999) and
P. plicatulum Michx. (Sartor et al., 2009) have also been gener-
ated. These plants are used as female parents to enhance variabil-
ity through both intra- and interspecific hybridization. Indeed,
fertile hybrids can be generated by crossing the induced sexual
tetraploid of P. simplex with natural tetraploid ecotypes of the
same species, as well as with P. malacophyllum and
P. procurrens (Pupilli et al., 2004; Hojsgaard et al., 2011, re-
spectively). Hybrid genotypes characterized by high forage pro-
duction have been obtained using this approach. Fertile hybrids
have also been obtained by crossing a sexual tetraploid genotype
of P. plicatulum with conspecific apomicts or with apomicts of
P. guenoarum Arechav. (Aguilera et al., 2011). Increasing the
low number of apomictic hybrids produced in crosses, predicting
the occurrence of heterosis and selecting for highly self-
incompatible hybrids would dramatically enhance the efficiency
and usefulness of this breeding approach. In particular, the loss of
self-incompatibility in hybrids could induce inbreeding depres-
sion and limit the yield of hybrids in crosses. Although most
diploid and induced tetraploid plants of P. notatum are self-
incompatible (Burton, 1955; Acuiia et al., 2007), this character-
istic is absent in apomictic plants (Acuifia et al., 2007). Thus,
modulation of self-incompatibility in breeding programmes
should be further investigated.

Ionizing radiation was used to breed early introductions of
P. dilatatum in the USA when breeders failed to generate vari-
ability through hybridization (Evers and Burson, 2004). Most
of the resulting plants were aberrant; only a few exhibited good
agronomic characteristics and none was ever released. Genetic
transformation has also been used to improve Paspalum
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species as forage or turf. The biolistic method was used to obtain
transgenic plants of diploid and tetraploid P. notatum (Altpeter
and James, 2005; Gondo et al., 2005). Glufosinate-resistant
plants of P. notatum were obtained by transforming plants of
the cultivar ‘Argentine’ with the bar gene (Sandhu er al.,
2007). These genetically modified plants proved to be highly re-
sistant to this herbicide under field conditions, enhancing their
competitive ability against weeds during pasture establishment.
The transcription factor gene Hs-DREBIA from xeric Hordeum
spontaneum was also introduced into ‘Argentine bahiagrass’ to
enhance water stress tolerance (James et al., 2008). In addition,
to increase turf quality, the endogenous gibberellin-catabolizing
gene At-GA2o0x] was inserted into the genome of ‘Argentine
bahiagrass’ (Agharkar et al., 2007). Transformed plants exhib-
ited higher turf density, shorter tillers and delayed flowering.
However, none of these new genetically modified plants has
been released. Although Sandhu ef al. (2010) showed that both
apomixis and polyploidy are major barriers to pollen-mediated
transgene flow from transformed bahiagrass to wild types, the
public remains concerned about the safety of transgenic plants.

In summary, the coexistence of apomixis and sexuality in
Paspalum species is a great advantage for breeding. A wide
variety of traits of interest occur in existing germplasm collec-
tions or can be induced by traditional or biotechnological
tools. These traits can be rapidly fixed in superior hybrid
strains by apomixis.

INHERITANCE OF APOMIXIS IN
PASPALUM SPECIES

Genetic analysis

Apomixis is a heritable reproductive system thought to have
evolved through a rearrangement of the developmental pro-
grammes that constitute the normal sexual pathway (Grimanelli
etal.,2001). Nogler (1984) suggested that the basic determinants
of apomixis could have originated by mutation and that most of the
genes involved in the process would probably be similar to those
implicated in sexual reproduction. Genetic studies on the inherit-
ance of apomixis in Paspalum spp. were performed mainly on
P. notatum Fliggé and P. simplex Morong, two genetically
distant species comprising sexual self-incompatible diploids and
nearly obligate tetraploid apomicts. Genetic analysis of apomixis
in these species is impossible unless sexual tetraploid germplasm
is available. The production of artificial sexual tetraploid indivi-
duals (Quarin et al., 1984, 2001, 2003; Caceres et al., 1999;
Quesenberry et al., 2010) allowed the generation of populations
segregating for the mode of reproduction, without the need for
interspecific or interploid crosses.

A pioneering study on the genetic control of apomixis in
Paspalum was carried out by Burton and Forbes (1960). Using
progeny testing for morphological traits in P. notatum segregat-
ing populations derived from an experimentally obtained sexual
female progenitor and a natural apomictic pollen donor, they pro-
posed that apomixis was controlled by a few recessive genes.
Several subsequent studies have concentrated on the inheritance
of apospory i.e. the capacity to develop non-reduced ESs.
Segregation analysis of apospory in F'; progeny from an interspe-
cific cross P. ionanthum (tetraploid sexual) x P. cromyorrhizon
(facultative tetraploid apomict) revealed a 3:1 aposporous:
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non-aposporous ratio (Martinez et al., 1999). Two models for
the genetic control of the trait were proposed, but these could
not be corroborated because most hybrids were male sterile.
The use of intraspecific crosses between a completely sexual
tetraploid female genotype and natural apomictic progenitors
in P. notatum allowed investigation of the reproductive modes
across several generations (Martinez et al., 2001). Segregation
ratios of 1:2-8 to 1:3 aposporous vs. sexual progeny led the
authors to propose that a single tetrasomically inherited domin-
ant allele with a pleiotropic lethal effect and incomplete pene-
trance controls apospory development. An excess of sexual
progeny, which deviated from the expected Mendelian ratios
of 1:1 or 13:15 (assuming random assortment of chromosomes
or chromatids, respectively), was repeatedly observed in segre-
gating populations of P. notatum (Stein et al., 2004; Acufia
et al., 2009, 2011), P. simplex (Pupilli et al., 2001),
P. malacophyllum (Pupilli et al., 2004), P. procurrens
(Hojsgaard et al., 2011) and P. plicatulum (Aguilera et al.,
2011). Similar distortions in favour of sexual individuals have
been observed in segregating populations of several apomictic
grasses (Ozias-Akins and van Dijk, 2007). The most common
hypothesis to explain the low transmission rate of apomixis in
segregating populations is the presence of a lethal allele linked
to the apomixis locus acting at either the gametophytic or sporo-
phytic level. Nogler (1982) postulated the existence of a domin-
ant apospory factor that acts as a recessive lethal allele. This
apospory factor could not be transmitted through monoploid
gametes, explaining the absence of natural diploid apomictic
plants. This hypothesis was partially confirmed in P. notatum
and P. simplex where, in intraspecific crosses involving sexual
diploids and tetraploids as pistillate parents and apomict triploids
as pollen donors, apospory could only be transmitted by pollen
through diploid or hypodiploid gametes (Martinez et al.,
2007). Several pieces of experimental evidence confirmed that
genetic rearrangements and meiotic abnormalities were asso-
ciated with apospory in P. notatum (Pupilli et al., 2004; Stein
et al., 2004; Podio et al., 2012b). The presence of an inversion
or translocation at the apomixis locus could explain both the dis-
torted segregation ratio of apospory, via differential survival of
meiocytes carrying the rearranged locus, and the observed sup-
pression of recombination near that locus (see below). In add-
ition, meiotic drive, a mechanism that allows one of the allelic
alternatives to be transmitted in excess to the progeny (Lyttle,
1991), was proposed as a cause of apomixis segregation distor-
tion in maize—Tripsacum dactyloides hybrids (Grimanelli
et al., 1998) and pearl millet—Pennisetum squamulatum
hybrids (Roche et al., 2001). An explanation for the preferential
transmission of sexuality in segregating populations of
Hieracium invoked the presence of post-meiotic factors favour-
ing the development of sexual embryos (Bicknell et al., 2000).
Polegri et al. (2010) reported that, of nearly 200 genes differen-
tially expressed between apomictic and sexual lines of
P. simplex, only 10 % were genetically associated with apomixis
(discussed below). Consequently, transferring the apomixis
locus from an apomictic ‘donor’ to a sexual ‘receiver’ genotype
(the parental lines of a segregating population) would repro-
gramme the expression of a group of genes that presumably act
downstream of apomixis-linked factors. This reprogramming
could affect a delicate network of gene—gene communication
probably based on homology. If even a few of these interactions
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do not work properly, the apomictic zygotes could be lethal or
disadvantaged relative to sexual zygotes. These interactions
would fail more frequently as genetic distance between the
parents increased, because the sexual ‘receiver’ genotype
might be unable to adapt to a new apomictic condition.
Therefore, zygotic lethality (or its coexistence with male gam-
etophytic lethality) could explain the low transmission rate of
apomixis in Paspalum and the striking differences in its segrega-
tion distortion between interspecific and intraspecific crosses in
P. simplex.

Apomixis, hybridity and polyploidy

Hybridization and polyploidization represent two important
processes in the evolution of angiosperms. Both mechanisms
were investigated with regard to their role in the emergence of
apomixis from sexuality (Carman, 1997; Ozias-Akins and van
Dijk 2007; Pupilli and Barcaccia, 2012). In Paspalum, as in
many other agamic complexes, the sexual —diploid/apomictic—
polyploid conditions seem to constitute a common genetic
system for a large number of species (Quarin, 1992). However,
the relative contributions of these processes as yet remain
unclear. Ernst (1918) maintained that all apomicts are of
hybrid origin, and Stebbins (1941) added that the great majority
of apomicts are probably allopolyploids of hybrid origin. Nogler
(1984) in his comprehensive review of apomixis in plants also
considered alloploidy and hybridity essential for the occurrence
of apomixis. More recently, these concepts have been reformu-
lated by Carman (1997) as the ‘hybridization theory’. This
theory suggests that hybridization of species with dissimilar eco-
logical affinities and reproductive developmental programme
timing contributes to the induction of apomixis. Thus, asyn-
chronous expression of the two parental gene sets could lead to
the aberrant initiation of embryological processes during ovule
development, causing a shift from sexual to apomictic reproduc-
tion. Cytogenetic studies and breeding behaviour analyses of
several species and of interspecific hybrids, as well as the segre-
gation analysis in apomictic tetraploid species and induction of
artificial apomictic tetraploids from sexual diploids, partially
support these views. On one hand, polyploidy seems to be a pre-
requisite for the expression of apomixis (Quarin and Hanna,
1980a; Quarin et al., 1998,2001). On the other hand, cytogenetic
studies in apomictic polyploids have suggested an autoploid
rather than an alloploid origin of most Paspalum apomicts
(Bennett and Bashaw, 1966; Norrmann et al., 1989; Pupilli
et al., 1997, Stein et al., 2004; Hojsgaard et al., 2008). In add-
ition, artificial autopolyploidization of sexual diploids in
several Paspalum species triggered and maintained apomictic re-
production (Quarin and Hanna, 1980a; Quarin et al., 1998,
2001). Nevertheless, there are a few examples of apomictic allo-
polyploid species: (1) 5x and 6x dallisgrass, P. dilatatum Poir.,
derived from hybridization between 4x dallisgrass apomicts
and 2x P. urvillei (Bashaw and Forbes, 1958; Bashaw and
Holt, 1958; Burson et al., 1991); and (2) the tetraploid
P. dasypleurum Kunze & Desv. (the Paspalum species with the
southernmost distribution in South America), another
P. dilatatum sexual relative (Quarin and Caponio, 1995). These
apomictic Sx and 6x cytotypes of P. dilatatum and their tetraploid
relatives constitute the Dilatata group of Paspalum. They share
two basic genomes: the genome I of sexual self-sterile diploid

P. intermedium Munro ex Morong & Britton and the genome J,
which belongs to P. jurgensii Hack, a sexual self-fertile diploid
species (Burson, 1991, 1992). An allopolyploid origin of the
apomictic pentaploid dallisgrass (the common biotype) was pro-
posed by both Burson (1992) and Speranza (2009), but their
interpretations of the evolutionary patterns are different.
Burson (1991, 1992) proposed that the common biotype
(IIJJX) originated by natural hybridization between a sexual
tetraploid cytotype (genome formula I1JJ) and an apomictic
hexaploid form (genome formula I1JJXX). Speranza (2009) con-
sidered that the pentaploid cytotype was probably the first apo-
mictic form of the group that can produce new IIJJX
pentaploids through the formation of euploid IJX male
gametes and their fusion with egg cells derived from sexual
I1JJ tetraploids. Regardless of how the common apomictic penta-
ploid cytotype of P. dilatatum evolved, it clearly had an allopo-
lyploid origin, and the control of apomixis is in the
non-recombining X genome. The apomictic common type of
dallisgrass is one of the first and most widely investigated
species of the genus and could be regarded erroneously as a para-
digm for apomixis research in Paspalum. The fact is that most
apomictic Paspalum entities belong to multiploid species of
autoploid origin. Each multiploid contains a sexual self-sterile
diploid cytotype and a series of aposporous apomictic autopoly-
ploid cytotypes, usually from 3x to 6x, with tetraploids as the
most common cytotype (Table 2). Autopolyploidy may evolve
stepwise through fertilization of occasional aposporous ESs
which have arisen in diploids beside the normal meiotic sac
(Quarin et al., 1982, 2001; Norrmann et al., 1989). In this way,
diploids could give rise to triploids by 2n + n fertilization
(2x + x = 3x). New tetraploids could be established in the
same way from rare apomictic triploids and sympatric diploids
2n+n; 3x+x=4x) or via fertilization of unreduced
gametes from diploids by reduced gametes of naturally occurring
tetraploids (n = 2x), i.e. 2x + 2x = 4x (Quarin, 1992; Siena
et al., 2008). Whether the tetraploid cytotype or the entire
series of polyploid cytotypes in multiploid species have autop-
loid origins may be questionable. Segmental allopolyploidy
has been proposed for several species (groups 3 and 4 in
Table 2), but the classification as autopolyploids or segmental
allopolyploids is uncertain for several species (e.g. Burson and
Bennett, 19705, 1971; Quarin and Burson, 1991).

Although there is a strong link between apomixis and poly-
ploidy, a few cases of gametophytic apomixis have been
described at the diploid level. Ovules bearing both an aposporous
and a meiotic ES were sporadically observed in several diploid
species of Paspalum (Quarin and Norrmann, 1987; Norrmann
et al., 1989; Quarin et al., 2001; Hojsgaard et al., 2008). These
observations suggested the potential for apomictic reproduction
at the diploid level, although evidence of parthenogenesis from
those rare aposporous sacs was lacking. Recently, Siena et al.
(2008) showed that a diploid plant of P. rufum, when exposed
simultaneously to its own reduced haploid pollen (n = x) and
mentor reduced pollen (n = 2x) from a P. urvillei tetraploid
strain, produced some diploids and polyploid descendants by
apomixis. These data indicate that the factor(s) responsible for
apomixis are effectively expressed in diploid plants, but at very
low rates. In addition, polyploidization might also lead to the
normal expression of apomixis, as occurred when new tetra-
ploids were induced by colchicine from sexual diploid plants
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in P. hexastachyum (= P. almum), P. rufum and P. notatum
(Quarin and Hanna, 1980b; Quarin et al., 1998, 2001). Why
apomixis is poorly expressed or silent in diploids is still
unclear. This is a critical issue regarding the use of apomixis in
diploid crops.

MOLECULAR DISSECTION OF THE
APOMIXIS-CONTROLLING REGION

Molecular markers linked to apomixis and comparative
mapping analyses

Apomictic reproduction in Paspalum is controlled by a single
dominant locus that, when present, confers nearly 100 % aposp-
ory, a variable degree of parthenogenesis and full capacity to
form endosperm with 4:1 maternal:paternal genome ratios
(Caceres et al., 2001; Martinez et al., 2001, 2003; Pupilli et al.,
2004; Stein et al., 2004). These three apomixis components are
probably inherited as a linkage block, because no recombination
event has been documented to date. Molecular mapping of apo-
mixis in Paspalum led to three main findings: (1) validation of
segregation distortion and lack of genetic recombination
around the apomixis locus; (2) establishment of syntenic rela-
tionships between apomixis-related markers and the rice map;
and (3) narrowing of the chromosome region containing the apo-
mixis locus by interspecific comparative mapping.

Using heterologous probes, Pupilli ez al. (2001) identified a set
of markers that, although they spanned 15 cM apart in a distal
region of the long arm of rice chromosome 12, strictly
co-segregated with apomixis in P. simplex. Similar results were
obtained in P. notatum, but synteny was detected for rice chromo-
somes 12 and 2 as well as for maize chromosomes 3 and 5
(Martinez et al., 2003; Pupilli et al., 2004; Podio et al., 2012a;
Fig. 3). Moreover, various random molecular markers [randomly
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58cM ) em180 em180
b1 b11
C1069 C1069 C1069
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amplified polymorphic DNA (RAPD), amplified fragment length
polymorphism (AFLP) and restriction fragment length poly-
morphism (RFLP)] completely linked to the apospory locus
were detected in P. simplex (Labombarda et al., 2002) and
P. notatum (Martinez et al., 2003; Pupilli et al., 2004; Stein
et al., 2004, 2007). Overall, comparative molecular analyses and
cytological studies revealed that the apomixis-controlling region
(ACR) in both P. simplex and P. notatum species appears to be
located in a chromosome region where genetic recombination is
suppressed. This structure seems to be highly conserved across
apomictic races of P. notatum (Rebozzio et al., 2012).

Lack of recombination at the apomixis locus has been
observed in several apomictically reproducing plants (Ozias-
Akins and van Dijk, 2007), and this fact was attributed to its
hypothetical location in a heterochromatic pericentromeric pos-
ition (Ozias-Akins et al., 1998). However, syntenic relationships
with rice (Pupilli ez al., 2001) and fluorescence in situ hybridiza-
tion (FISH) analysis in P. simplex (Calderini et al., 2006) sug-
gested that the ACR is located in a non-pericentromeric and
heterochromatin-poor region where genes are transcriptionally
active (Polegri et al., 2010). An alternative hypothesis which
posits that recombination suppression at the ACR is caused by
a DNA rearrangement immediately after (or as a consequence
of) polyploidization was supported by evidence obtained from
P. simplex and P. notatum (Pupilli et al., 2001; Urbani et al.,
2002; Stein et al., 2004; Podio et al., 2012b). Moreover, loss of
pairing after local chromosome rearrangement was also reported
in other apomictic species such as Pennisetum squamulatum
(Ozias-Akins et al., 1998) and Cenchrus ciliaris (Goel et al.,
2003). However, the non-recombining ACR of Paspalum
appears relatively modest in size if compared with other models
(Roche et al., 2002) as single apomixis-linked bacterial artificial
chromosome (BAC) clones were identified by multiple markers
that were independently developed (Calderini ef al., 2011).

I:I = Conserved region

C1759
C996 C996 C996
em180 ’\ em180
b1 b11
C1069 C1069
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Conserved markers

F1G. 3. Conservation of apomixis-linked markers in four Paspalum species in relation to their position on the homoeologous rice chromosome counterpart. The
markers included in the highlighted area are conservatively linked to apomixis in the four Paspalum species considered.
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Fine structure of the ACR inferred from sequencing of an
apomixis-related BAC and of molecular markers completely
linked to the trait

The apomixis-linked BAC clone 346H10, isolated from a
genomic BAC library of apomictic P. simplex, was shotgun-
sequenced at 10x coverage (Calderini et al., 2006, 2011).
Annotation of the 129 046 bp revealed approx. 10 % non-coding
sequences, 13 sequences related to transposons (i.e. ping/pong/
SNOOPY, En/Spm and mariner sub-classes) and retrotranspo-
sons (i.e. ty3-gypsy and ty 1-copia sub-classes) and four putative
genes matching at high similarity (e-values < >*) with known
genes. Of these genes, two that co-segregated with apomixis in
several Paspalum species were considered as good candidates
for apomixis (Calderini er al., 2006). Functional annotation
showed that they encode a protein with significant homology
with a protein kinase domain (Ps-PKD) and a protein of the
ERDI1/XPR1/SYGI1 family (Ps-EXS). Detailed comparative
analysis of Ps-PKD and its rice homologue is shown in Fig. 4.
Both large- and small-scale rearrangements occurred in the
structures of Ps-PKD compared with its rice homologue,
which was assumed to represent the sexual counterpart of the
apomixis-linked alleles of Paspalum. Large-scale rearrange-
ments mainly due to insertions of transposable elements (TEs),
probably resulting in aberrant transcription patterns (i.e. multiple
independent transcriptional units or long chimeric mRNAs),
were observed. Small-scale rearrangements included a 110 bp
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duplication, frequent small deletions, and occasional point muta-
tions creating premature stop codons (Fig. 4). The mRNA result-
ing from transcription of this gene is probably unable to be
translated into a protein. A similar gene structure including dele-
tion of some exons compared with the homologous rice sequence
and loss of coding capacity was detected in the second candidate
sequence Ps-EXS (Calderini et al., 2006).

In P. notatum, characterization of the ACR by sequencing of a
group of molecular markers completely linked to apospory
revealed the presence of both low and high copy number
sequences including Tyl-copia retroelements (Podio er al.,
2012a). Interestingly, one sequence (Pn-GSA3) obtained by
chromosome walking from one marker mapped in the ACR
showed high similarity with maize and rice loci encoding
MT-A70-like (nNRNA N°®-adenosine-methyltransferase) family
proteins. Functional roles of these candidates in apomictic repro-
duction are discussed in the section ‘Candidate and downstream
genes identified by large-scale sequencing analysis’.

COMPARATIVE TRANSCRIPTOMICS
Transcriptomic landscapes: towards the identification of candidates

The characterization of the Paspalum ACR in P. notatum and
P. simplex revealed a strong repression of recombination and,
probably as a consequence, accumulation of repetitive elements
and non-coding DNA disrupting map collinearity with the

Ty1-copia retrotr.

<«

Hypothetical protein

Ping/pong/SNOOPYtr.

F1G. 4. Microcollinearity of the Ps-PKD gene of P. simplex withits rice homologue Os-PKD. (A-D) Four non-overlapping contigs. Homologous areas are connected

by vertical lines, arrows indicate the gene orientation and position of the first exon, black and white boxes indicate homologous coding and non-homologous coding

regions, respectively, while dashed boxes indicate homologous non-coding regions. Open and filled rhombuses indicate putative initiations of transcription and poly-
adenylation sites, respectively. The curved arrow in (B) indicates a 110 bp duplication (the figure is reproduced from Calderini et al., 2006, with permission).
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homologous region on rice chromosome 12 (Calderini et al.,
2006). Although several candidates were identified, the difficul-
ties in the assembly of a considerable amount of sequences com-
posed mainly of repetitive elements prompted groups
researching apomixis in Paspalum to adopt a two-step approach
to enhance the probabilities of identifying the genetic determi-
nants of the trait. This is based on: (1) the identification of differ-
entially expressed transcripts in reproductive organs of
apomictic and sexual plants; and (2) mapping the differentially
expressed transcripts, to restrict the number of candidates to
the ACR-linked genes. Comparative transcriptomic analysis of
apomixis in Paspalum faced several major drawbacks common
in apomictic systems: (a) the lack of genuine near-isogenic apo-
mictic and sexual lines; (b) the fact that apomictic species are
highly heterozygous, thus complicating data interpretation; and
(c) the lack of microarray reference systems allowing high-
throughput analyses of gene expression. However, mRNA profil-
ing assays based on differential display and cDNA-AFLP were
carried out to overcome these difficulties and generate new
data for describing transcriptomic landscapes in reproductive
tissues of sexual and apomictic Paspalum spp.

In P. notatum, differential display was first carried out to
explore differences between mRNA bulks obtained from imma-
ture inflorescences of sexual and apomictic plants. This approach
led to the identification of a transcript annotated as containing a
KPS multiphosphorylation domain previously detected in
several cdc2-regulated cytoskeletal proteins and highly
expressed during early megagametophyte development in apo-
mictic plants (Pessino ef al., 2001). This approach was further
completed by a more comprehensive analysis taking advantage
of the reproductive calendar proposed by Laspina et al. (2008)
according to which mRNA was extracted from spikelets at
stage I, i.e. immediately prior to Al development. Differential
display experiments allowed the identification of 65 DETs (dif-
ferentially expressed tags) selected as expressed in only one of
the plants (apomictic or sexual; Laspina ef al., 2008). Further
characterization showed that 45 DETs were protein-coding frag-
ments, while the remainder were homologous to retroelements
and putative microRNA precursors (Laspina et al., 2008;
Ochogavia et al., 2011). Quantitative and/or spatial differential
expression was confirmed for ten selected DETSs using real-time
PCR and/or in situ hybridization. In order to select candidates of
interest for the molecular characterization of apomixis, the DETs
were mapped in silico on the rice chromosomes (Laspina et al.,
2008). Distribution was strongly biased toward chromosome 2
but not chromosome 12 (12 and four transcripts, respectively,
compared with 6-8 transcripts per chromosome on average).
Moreover, some of the DETs mapping in silico onto rice chromo-
somes 2 and/or 12 were experimentally mapped in P. notatum,
but none of them co-segregated strictly with apomixis, suggest-
ing that these could be downstream-acting genes rather than the
genetic determinants of the trait (Laspina er al., 2008; Felitti
et al., 2011; Ochogavia et al., 2011). Interestingly, some DETs
were classified as TEs carrying transduplicated segments of
genes previously associated with apomictic development
(SERK, CYT, P450), suggesting that they might regulate the ex-
pression of these genes through mechanisms involving transcrip-
tional and/or post-transcriptional gene silencing (Ochogavia
etal.,2011). A total of 202 DETs were identified in P. simplex
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by cDNA-AFLP profiling using mRNA samples collected at
several stages of development in P. simplex (Polegri et al.,
2010). The majority of them were expressed exclusively at spe-
cific stages of the apomictic development or were misregulated,
as temporal ectopic expression could be observed in apomictic
genotypes. In contrast to DETSs obtained in P. notatum, in silico
mapping onto the rice genome showed no bias towards chromo-
somes 12 or 2. Interestingly, despite the high density of TEs in
the ACR (Calderini et al., 2006), only a few DETs showed hom-
ology with these elements, suggesting that many of the apomixis-
linked TEs are transcriptionally silent.

Identifying common features in transcriptomic analysis of
related apomictic species is extremely useful to identify key con-
served steps in apomictic development. The most evident simi-
larity is the ontology classes to which the candidates
correspond. In both species, the main classes were ‘signal trans-
duction’, ‘nucleic acid binding’, ‘protein metabolism’, ‘tran-
scription’ and ‘transport’ (Fig. 5). Interestingly, several DETs
belong to the same annotation classes including extensins
(P. simplex E1/124-6 and P. notatum N31), yoda-like MAP3Ks
(P. simplex A/148-3 and P. notatum N46), LRR-like proteins
(P. simplex A/124-3, P. notatum N78 and P. notatum N79) trans-
ferase proteins (P. simplex C1/121-7 and P. notatum NO9I)
and retrotransposon proteins (P. simplex A/121-1, P. simplex
E/120-1 and P. notatum N92) (Laspina et al., 2008; Polegri
et al., 2010). All of these belong to P. simplex DET sub-classes
that were differentially expressed between apomictic and
sexual flowers at early developmental stages, because this was
the only developmental stage analysed in P. notatum.

Finally, a remarkable correlation was observed between the
identity of genes modulated during reproductive development
in P. simplex/P. notatum (Laspina et al., 2008; Polegri et al.,
2010) and those regulated during autopolyploidization in
P. notatum (Martelotto et al., 2005). Several common annota-
tions were detected between the P. simplex apomixis-associated
candidates and the P. notatum ploidy-regulated ones: P. simplex
B4/120-3 and P. notatum DDT13522x2 corresponded to glucose
6P-P translocators; P. simplex B4/122-1 and P. notatum
DDT13682x to F-box proteins; P. simplex D4/153-8 and
P. notatum DDT32844x1 to ubiquitin-conjugating enzymes;
P. simplex B4/137-2 and P. notatum DDT43722x2 to chitinases;
and P. simplex A/148-4 and P. notatum DDT43964x1 to DNAJ
domain-containing proteins. Moreover, P. notatum apomixis-
associated sequences N7 (unknown), N14 (ribosomal protein
S12), N16 (acetolactate synthase) and N 108 (transposon protein)
corresponded to ploidy-regulated sequences DDT32852x1,
DDT32834x2, DDT32774x2 and DDT32884x, respectively, in
BLAST?2seq searches (Laspina et al., 2008).

These observations imply that a considerable number of
sequences involved in apomictic development are transcription-
ally modulated by a change in ploidy. These sequences may rep-
resent the molecular link between apomixis and polyploidy. The
presence of at least one of these sequences mapping onto the
P. simplex ACR (P. simplex A/148-4 DNAJ domain-containing
protein) was previously confirmed by RFLP mapping (Polegri
et al., 2010). This sequence belonged to class A, whose
members are constitutively expressed at low levels in apomictic
individuals, indicating that gene de-regulation, polyploidization
and apomixis are closely inter-related phenomena.
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Fi1G. 5. Characterization of apomixis-associated DETs identified by transcriptomic analysis in Paspalum genotypes. Top left: a representative example of DET

(apo417/N114) identified in P. notatum flowers at late pre-meiotic/meiotic stage by differential display experiments. Differential display amplicons originating

from three apomictic and three sexual F plants (in duplicate) were transferred to nylon membranes and hybridized with an N114 probe labelled with digoxigenin

(Pessino et al., 2001). Top right: a representative example of a Class A DET identified in P. simplex flowers by cDNA-AFLP analysis at pre-anthesis, anthesis and

post-anthesis stages (Polegri et al., 2010). Bottom: histogram representing the relative occurrence of DETs belonging to particular ontology classes in P. notatum,

as identified from DD experiments and in P. simplex, as identified from cDNA-AFLP experiments. Ontology classes (from left to right): transposon/retrotransposon,
signal transduction, protein metabolism, miRNA precursors, general metabolism, transcription, cell cycle, transport, cytoskeleton, other, unknown.

Possible causes of expression deregulation at the ACR

The transcription deregulation observed in the ACR could be
due to its highly rearranged nature. In P. notatum, a major re-
arrangement, possibly an inversion or a translocation, was
reported in some apomictic genotypes (Stein et al., 2004;
Podio et al., 2012b). In P. simplex, an apomixis-linked BAC
was characterized by the presence of large and small indels,
translocations and TE insertions (Calderini et al., 2006). All of
these rearrangements can deregulate transcriptional activity.
Genetic rearrangements following gene migration or the inver-
sion/translocation of large chromosomal areas can relocate
genes near cis-regulatory elements that can deregulate their tran-
scription or they can move away boundary elements, allowing
heterochromatin to invade new areas.

The Paspalum ACR is plagued with abundant TEs (Calderini
et al., 2006; Podio et al., 2012a). Expression deregulation at the
ACR could be mediated by these repetitive elements by several
mechanisms. TEs may contain sequences that bind a regulator
protein or, once inserted, they may create new binding sites
that act as transcriptional regulators (Lerat and Sémon, 2007).

Alternately, TE insertion may induce gene inactivation and
affect gene transcription via a mechanism similar to the
random inactivation model for the neo-Y genes proposed in
Drosophila miranda (Bachtrog, 2006). According to this
model, genes located in a recombinationally repressed area are
inactivated by random insertion of TEs, and these mutations
induce downregulation of the Y-linked genes. In the Paspalum
system, a general downregulation of apomixis-linked genes com-
pared with their sexual homologues was noticed (Polegri et al.,
2010). Recently, a central role for silencing involving retrotran-
sposons in determining gametic fate was reported in Arabidopsis
thaliana (Olmedo-Monfil et al., 2010). Inactivation of the
A. thaliana gene At-AGO9 decreased the generation of
retrotransposon-related small interfering RNAs (siRNAs) and
induced the formation of multiple non-reduced ESs within the
nucellus. This phenotype strongly resembled apospory
(Olmedo-Monlfil et al., 2010). At-AGO9 predominant TE
targets were located in the pericentromeric regions of all five ara-
bidopsis chromosomes, suggesting a link between the
At-AGO9-dependent siRNA pathway and heterochromatin for-
mation (Duran-Figueroa and Vielle-Calzada, 2010). A similar
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apospory-like phenotype was induced in maize by inactivating
the DNA methyltransferases Zm-DMT102 and Zm-DMT103
(Garcia-Aguilar et al., 2010). Taken together, the mutant pheno-
types ago9 in arabidopsis and dmt/03 in maize suggest that
retrotransposon-mediated siRNA generation and DNA methyla-
tion pathways control the switch between apomictic and sexual
reproduction. Considering the possible role of retrotransposon-
mediated silencing in the regulation of sexual reproduction
revealed for the model species, the functional analysis of
ACR-linked candidates in natural apomictic plants should be
redirected. Future work in the genus Paspalum should be
oriented not only to phenotypic analysis of null and
gain-of-function mutants of protein-coding candidates, but
also to determine how altered retroelement activity within the
ACR could influence gene expression and condition the fate of
the female gametes in natural apomictic species.

Studies of synthetic allopolyploids have revealed that the
genomic response to allopolyploidy usually involves (retro)-
transposon mobility, sequence rearrangements and losses,
DNA methylation changes and chromatin remodelling. All of
these features have a significant effect on gene silencing and
up- or downregulation of the duplicated genes (Adams and
Wendel, 2005).

Martelotto et al. (2007) showed that polymorphisms between
diploids and their polyploid counterparts were mainly related to
band loss and retrotransposon mobilization, and that sequence
modifications associated with polyploidization occurred at
cytosine-methylated regions, although the genetically modified
regions remained identically methylated after polyploidization.
Similarly, Rodriguez et al. (2012) reported no differences in
the average proportions of methylated CCGG sites between
diploid and tetraploid cytotypes of P. notatum, but methylation
patterns were significantly more variable in the tetraploids, and
sequence analysis of new epialleles which emerged after poly-
ploidization revealed homology with TEs.

To determine which genes were regulated by ploidy, a com-
parative transcriptome analysis was conducted in flowers of
sexual diploid and tetraploid P. notatum genotypes (Martelotto
et al., 2005). The 64 validated clones showing differential ex-
pression between diploid and tetraploid sexual cytotypes
belonged to the following ontology classes: (1) chromatin re-
modelling; (2) protein trafficking, folding and degradation; (3)
carbohydrate and lipid metabolism; (4) cell cycle regulation;
(5) transcription; and (6) signal transduction. Interestingly,
several of the genes regulated by ploidy had identical annotations
regarding other differentially modulated genes during apomictic
development (see the previous section ‘Transcriptomic land-
scape: towards the identification of candidates’ for details).

To sum up, the genome of Paspalum is genetically modified at
regions encoding retrotransposons probably as a consequence of
polyploidization; this modification in turn modulates the repre-
sentation of protein-coding transcripts through an unknown
mechanism (Martelotto er al., 2005, 2007; Rodriguez et al.,
2012). Interestingly, several families of retroelements carrying
transduplicated segments of genes, some of which are associated
with apomixis, were described in P. notatum, suggesting that
the molecular pathways involved in reproduction can be
affected by polyploidization at specific levels (Ochogavia
etal.,2011).
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FURTHER STRATEGIES FOR MINING APOMIXIS
GENES IN PASPALUM SPP.

Candidates genes identified by large-scale sequence analyses

Comparative molecular genetic analysis of the ACR in Paspalum
has shown that a restricted region homologous to a specific
chromosome area of rice was conservatively linked to apomixis
in several Paspalum spp. (Pupilli et al., 2004; Hojsgaard et al.,
2011; Fig. 3). Large-scale sequencing of this conserved region
and of DETs mapped in the same area should disclose genes
that on the basis of their homology with other genes of known
function are worth considering as candidate genetic determi-
nants of apomictic reproduction in Paspalum. Here we report
and discuss some of these genes.

As a first example, consider the case of Ps-EXS (Calderini
et al., 2006). Proteins containing the EXS motif include: (1)
SYGI, a signal transduction protein that in Saccharomyces cer-
evisiae was associated with the G-protein; (2) sequences thought
to be murine leukaemia virus receptors (XPR1) (Battini et al.,
1999); and (3) ERDI1 proteins, involved in the localization of en-
dogenous endoplasmic reticulum proteins in S. cerevisiae
(Hardwick et al., 1990). Deletion mutants of SYG1 protein can
suppress cell cycle arrest and differentiation in yeast, and the sup-
pression capacity is related to the loss of specific portions of the
gene (Spain et al., 1995). The same authors hypothesized that
one of these deletion mutants (Syg1A340p) can promote cell div-
ision in otherwise arrested (differentiated) cells. Compared with
the Os-EXS gene structure, Ps-EXS lacks some rice exons entire-
ly and coding capacity in others, suggesting a possible mechan-
ism in which deleted (or rearranged) supernumerary copies of
genes involved in sexual development can reprogramme differ-
entiated cells into the apomictic developmental process.

The alignment of the apomixis-linked clone Pn-MAI3 of
P. notatum, extended by chromosome walking, showed signifi-
cant homology with a maize cDNA related to an N°-adenosine-
methyltransferase (MT-A70; Podio et al., 2012a). This enzyme
catalyses the N°®-adenosine methylation in nascent mRNA and
was shown to play key roles in cell fate decision in multiple eu-
karyote systems (Jia et al., 2012). MTA-70 expression in
A. thaliana is associated with dividing tissues, as inactivation
of this enzyme leads to failure of the developing embryo to pro-
gress past the globular stage (Zhong et al., 2008). MT-A70 in
Paspalum might play a role in one or more aspects of apomictic
development, i.e. the parthenogenenetic development of the
unreduced egg cell.

To date, transcriptional surveys have identified several candi-
dates which can play a role either as genetic determinants of or
as downstream players in (depending on their co-segregation or
less with apomixis, respectively) apomictic reproduction in
Paspalum. An interesting candidate is represented by the
Pn-N46 clone which showed homology to a gene belonging to
the mitogen-activated protein 3kinase (MAP3K) gene family
and was identified as differentially expressed in apomictic and
sexual flowers of P. notatum. The arabidopsis predicted orthologue
ton46, At1g53570, belong to a gene family formed by 12 members
(Ichimura et al., 2002). Of these, YDA, which was reported to be
more closely related to At1g53570, promotes the zygote elong-
ation and suspensor development in arabidopsis (Lukowitz
et al., 2004). In flowers of P. simplex, an apomixis-specific allele
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homologous to Pn-n46, constitutively expressed across all the de-
velopmental stages taken into account, was also identified (Polegri
et al.,2010). It could be that n46 may have a role in the partheno-
genetic development of the embryo in both species.

Another remarkable candidate as a downstream acting gene is
the P. notatum clone N20, homologous to a LORELEI-family
member, which was overexpressed in apomictic plants relative
to sexual plants at pre-meiosis, post-meiosis and anthesis
(maximal expression) but downregulated at meiosis (Laspina
et al., 2008; Felitti et al., 2011). Curiously, arabidopsis null
mutants for the A#r-LORELEI (At4g26466) gene showed
impaired sperm cell release into the egg cell (Capron et al.,
2008). The fact that egg cell fertilization is generally absent in
P. notatum apomictic plants (embryos are formed through par-
thenogenesis) but the central cell is fertilized to produce the
endosperm, suggests an active mechanism involving LORELEI-
family members, which might operate to prevent fertilization in
apomictic plants (Felitti et al., 2011).

Another likely downstream-acting gene, showing homology
to the member 1 of the AUXIN-RESPONSE FACTOR family
proteins (ARF-1), was identified in P. simplex by Polegri et al.
(2010). These proteins are transcription factors that regulate
the expression of auxin-responsive genes in both activation and
repression modes (Guilfoyle and Hagen, 2007). The develop-
mental fate of non-reproductive cells has been switched in
female gametophytes of arabidopsis by manipulating auxin re-
sponse genes (Pagnussat e al., 2009). A homologue of arabidop-
sis At-ARF1 was expressed early in P. simplex apomictic ovule
formation, suggesting that the auxin response may affect the dif-
ferentiation of Als from nucellar cells. Ps-ARF1 may repress a
class of auxin-responsive genes that maintain the undifferenti-
ated state of nucellar cells once the MMC is formed.

An example of a structural gene whose expression might be
influenced by the upstream genetic determinants of apomixis are
a-zeins, which are seed-storage proteins whose accumulation in
the endosperm is developmentally regulated at the transcriptional
level (Sabelli and Larkins, 2009). Apomictic flowers of P. simplex
began to accumulate zein-homologue transcripts about 5 d after
pollination, while those transcripts were absent in sexual flowers
(Polegri et al.,2010). In particular, the transcription of zein homo-
logues in P. simplex may begin earlier in apomictic endosperm
than in sexual endosperm. Because parthenogenetic embryos do
not need fertilization, embryo development in apomictic plants
could be accelerated compared with their sexual counterparts,
and fast-developing embryos could send positive signals to the
central cell of the ES, which is then ‘primed’ for faster cell cycle
activity. These signals might include those committing to earlier
storage protein accumulation.

Gene transfer as a definitive tool to validate candidate
apomixis genes

Functional analysis of the selected candidate genes would
require the establishment of an efficient transformation system
in Paspalum. In the last few years, several biolistic transform-
ation protocols were reported for P. notatum (Grando et al.,
2002; Smith et al., 2002; Gondo et al., 2005). More recently
P. notatum has also been used as a model system to assess the
risk of pollen-mediated transgene flow in the field (Sandhu
et al., 2009, 2010). Our research group adapted these protocols

for use on sexual and apomictic tetraploid genotypes (unpub-
lished results). In the next few years, we expect to produce a
number of transformants with modified expression of several
candidate genes related to apospory. The introduction of apo-
mixis by de novo engineering will require the identification of
candidate genes, the isolation of promoters that control gene ex-
pression spatially and temporally, and the development of tech-
nologies to introduce the transgenes (Grossniklaus, 2001).
Although some species have evolved complex mechanisms to
control apomixis, this trait could be engineered through a syn-
thetic approach targeting the key regulatory steps: non-reduction,
parthenogenesis and seed development. Genes controlling each
step should be identified and regulated to produce a synthetic
apomict. Endosperm development is a crucial challenge
(Savidan, 2001). A balanced maternal:paternal genome ratio
(2m:1p) is an absolute requirement for endosperm development
in cereals, due to specific imprinting of gametic nuclei. Deviation
from this ratio leads to embryo abortion or seeds with diminished
fertility. Therefore, detailed knowledge on the behaviour of
genes controlling autonomous endosperm development might
be necessary to introduce apomixis into sexual crops.
Promising results have already been obtained in arabidopsis; a
combination of maternal hypomethylation with loss of fie func-
tion led to the development of endosperm without fertilization
(Vinkenoog et al., 2000). To date, several promoters have been
described that are active in the ovule or the gametophyte
(Yu et al., 2005; Nain et al., 2008; Dwivedi et al., 2010).
However, the choice of the promoter for transformation strat-
egies to produce an artificial apomict would depend on the tem-
poral and spatial expression patterns of the particular candidate
gene targeted, and therefore should be selected on an individual
basis. All these aspects should be taken into account when
attempting to develop an apomixis system for crops without
closely related apomictic relatives. Wild apomictic systems
with sexual and asexual cytotypes could serve as models to
understand the complex functional network of gene—gene com-
munications that could transform a sexual plant into an asexual
one after it has received an apomixis-controlling locus.

CONCLUDING REMARKS

Transferring apomixis to economically important crops could
have enormous benefits for agriculture, making understanding
the molecular mechanisms of this trait of outstanding importance
in agricultural biotechnology. The manipulation of the trait is cur-
rently having a direct impact on the breeding of natural apomictic
forage grasses, allowing a potential increase in cattle production in
tropical, sub-tropical and temperate areas. Moreover, the possibil-
ity to clone superior genotypes and hybrids of crops such as maize,
rice, wheat and soybean could greatly benefit farmers, allowing
them to sustain high yields over many years by planting a
sub-set of their harvested seed, without losses due to recombin-
ation and/or segregation. New interspecific and intergeneric
hybrids could be obtained and propagated, allowing the develop-
ment of genotypes better adapted to the different environments.
Apomixis would also facilitate the use of transformants, consider-
ing that an apomictic transgenic plant would immediately fix the
new trait and become a cultivar after multiplication. Thus far,
introgression of apomixis into crops from wild relatives has
failed. Introducing the trait through genetic engineering is not
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yet viable, mainly because the apomixis determinants remain
unknown. Loci controlling apomixis in natural apomicts are
often large, complex and, in some cases, recalcitrant to
recombination-based mapping approaches, all of which hinder
candidate identification and, therefore, transgenesis-based breed-
ing programmes. Impressive progress has been made in identify-
ing genes mimicking some elements of apomixis in arabidopsis
(Ravi et al., 2008; Olmedo-Monfil er al., 2010) and maize
(Garcia-Aguilar et al., 2010; Singh et al., 2010). Arabidopsis arti-
ficial plants producing partial clonal progeny have been obtained
(Marimuthu et al., 2011). Although these plants cannot be defined
as genuine apomictic genotypes because they still rely on crossing
to express full maternal inheritance, these constitute the first proof
of principle of the possibility to develop a synthetic apomictic
system in a diploid sexual species. In our view, unravelling the apo-
mixis enigma will require the implementation of three inter-
related approaches that should be combined to develop an apo-
mixis system suitable for each target crop. First, forward genetics
should be carried out in the closest-relative apomictic model to
target the crop to look for promising mutations. Secondly,
related genes should be validated in natural apomicts and model
sexual species by reverse engineering; and, thirdly, the new infor-
mation and tools should be combined to introgress validated genes
into target crops. Genetic affinity between target and model is
crucial, as gene networks controlling complex traits are not
always conserved.

The genetic variability of the genus Paspalum is currently
being exploited via sexual hybridization followed by apomictic
fixation of successful polyploid genotypes. If this potential
could be harnessed in full, considerable advances could be
made not only in Paspalum breeding but also in other species
with both sexual and asexual modes of reproduction. However,
in our view, the major impact of research on Paspalum is and
will be related to its role as a model system to mine apomixis
genes and to develop an apomixis system for major crops.
Paspalum provides aunique opportunity to identify the apomixis
determinants, because its ACR is smaller than that of other apo-
mictic systems. Moreover, its relatively small genome avoids the
problems related to gene redundancy when performing function-
al analysis of candidate genes. In addition, the availability of
multiple apomixis-segregating populations derived from differ-
ent parent combinations narrows the portion of the ACR that
carries the genetic determinant(s) for apomixis, enabling the
genes that have been screened out by speciation to be discarded
as apomixis candidates. The functional constraint of the 2:1
female:male parental genome contribution to the endosperm
and the need to introgress apomixis in diploid backgrounds are
major drawbacks to introducing apomixis in crop species. In
both cases, Paspalum species show promising features (i.e. aten-
dency to yield viable hybrid seeds from parental lines of various
ploidy levels and the presence of some elements of apomixis in
diploids) that should be further studied. Further research is
needed to define the relationships between structure, position
and function of the known apomixis-linked genes. Many of
these genes are pseudogenes characterized by a deregulated con-
stitutive expression, but questions remain. (1) Are all of the genes
in the ACR pseudogenes? (2) Is their constitutive expression
related to their pseudogene nature? Although pseudogene ex-
pression might be related to silencing of their sex-related homo-
logues, the presence of some genes that act as positive activators
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of apomixis cannot be ruled out. Other relevant issues are the epi-
genetic landscape and the proliferation of retrotransposon
sequences in the ACR: (3) are these repetitive sequences
simply accumulating in a heterochromatic chromosomal sector
with impaired coding and functional capacity without any select-
ive constraints, or (4) could these sequences be controlling tran-
scription of neighbouring genes/pseudogenes and therefore
influencing expression of sequence-related functional gene
members? There is mounting evidence in model species that at
least some elements of apomixis are under epigenetic control.
Analysis of TE activity, DNA methylation and chromatin remod-
elling in the ACR will enhance knowledge on epigenetic regula-
tion of apomixis. Whole-genome epigenetic analyses of DNA
methylation and chromatin remodelling will clarify the
complex network of gene interactions, perhaps mediated by
TEs that silence sex-related genes and trigger the positive effec-
tors of apomixis.

Major constrains for the identification of genes involved in
apomixis in Paspalum as well as in other natural apomictic
systems are due to the small size, rare abundance and inaccess-
ibility of the cells within the ovule and the substantial amount
of sequencing efforts needed at both the genomic and transcrip-
tomic levels. We believe that modern tools of molecular and cell
biology should be used to restrict the number of cells to be ana-
lysed to eliminate unspecific background on the one hand and
to give a comprehensive global view of the gene action across
all stages of apomictic development on the other. In this perspec-
tive, the newly developed laser-assisted microdissection proce-
dures coupled with linear amplification of mRNA can provide
useful information on genes acting on decision fate at the level
of a single or a few cells. High-throughput sequencing proce-
dures of linearly amplified mRNA adapted to organisms for
which a reference genome is not yet available should then be
used to obtain a global transcriptomic platform of developing
tissues.

Apomixis is a fascinating research field. Many of its features
are simultaneously intriguing and complex to elucidate. The ben-
efits to be derived from controlling apomixis are promising and
the trait has been described as ‘the holy grail of agriculture’,
‘the plant breeders’ dream’ and ‘the second green revolution’.
The evidence summarized here indicates that Paspalum constitu-
tes a very interesting system to study the physiological, genetic,
evolutionary, ecological and agronomical aspects of apomixis
and that research on this model has and will contribute signifi-
cantly to understanding and harnessing this important trait.
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