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•  Background and Aims  The Araceae are one of the most diverse monocot families with numerous morpho-
logical and ecological novelties. Plastid and mitochondrial genes have been used to investigate the phylogeny 
and to interpret shifts in the pollination biology and biogeography of the Araceae. In contrast, the role of whole-
genome duplication (WGD) in the evolution of eight subfamilies remains unclear.
•  Methods  New transcriptomes or low-depth whole-genome sequences of 65 species were generated through 
Illumina sequencing. We reconstructed the phylogenetic relationships of Araceae using concatenated and spe-
cies tree methods, and then estimated the age of major clades using TreePL. We inferred the WGD events by Ks 
and gene tree methods. We investigated the diversification patterns applying time-dependent and trait-dependent 
models. The expansions of gene families and functional enrichments were analysed using CAFE and InterProScan.
•  Key Results  Gymnostachydoideae was the earliest diverging lineage followed successively by Orontioideae, 
Lemnoideae and Lasioideae. In turn, they were followed by the clade of ‘bisexual climbers’ comprised of Pothoideae 
and Monsteroideae, which was resolved as the sister to the unisexual flowers clade of Zamioculcadoideae and 
Aroideae. A special WGD event ψ (psi) shared by the True-Araceae clade occurred in the Early Cretaceous. Net 
diversification rates first declined and then increased through time in the Araceae. The best diversification rate shift 
along the stem lineage of the True-Araceae clade was detected, and net diversification rates were enhanced fol-
lowing the ψ-WGD. Functional enrichment analyses revealed that some genes, such as those encoding heat shock 
proteins, glycosyl hydrolase and cytochrome P450, expanded within the True-Araceae clade.
•  Conclusions  Our results improve our understanding of aroid phylogeny using the large number of single-/
low-copy nuclear genes. In contrast to the Proto-Araceae group and the lemnoid clade adaption to aquatic envir-
onments, our analyses of WGD, diversification and functional enrichment indicated that WGD may play a more 
important role in the evolution of adaptations to tropical, terrestrial environments in the True-Araceae clade. These 
insights provide us with new resources to interpret the evolution of the Araceae.
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INTRODUCTION

Molecular phylogenetic relationships are inferred, most fre-
quently, by plastid and mitochondrial genome datasets. However, 
the exclusive use of uniparental organellar genes may result in 
biases and errors in some phylogenetic reconstructions (Davis et 
al., 2014). Nuclear genes with biparental inheritance often pro-
vide alternative evidence (Zeng et al., 2014; Kapli et al., 2020). In 
particular, recent advances in high-throughput sequencing tech-
nology have greatly facilitated the use of nuclear genes based 
on genome and transcriptome datasets. In ongoing research pro-
grammes on seed plants, they have been employed successfully 
to investigate phylogenetic relationships, whole-genome duplica-
tion (WGD) events, the history of diversification within lineages 

and the evolution of adaptations to extreme environments. Some 
recent studies (Ren et al., 2018; Leebens-Mack et al., 2019) on 
the Caryophyllales (N. Wang et al., 2019), Asteraceae (Huang et 
al., 2016; Mandel et al., 2019), Cucurbitaceae (Guo et al., 2020), 
Fabaceae (Koenen et al., 2021; Zhao et al., 2021) and Theaceae 
(Q. Zhang et al., 2022) have deepened our understanding of evo-
lutionary pathways in angiosperm phylogeny.

Whole-genome duplication is a common but extreme mech-
anism of gene duplication (GD) in angiosperms, resulting in 
additional copies of the entire genome in the same cell (Panchy 
et al., 2016; Van De Peer et al., 2017). To date, at least three 
waves of WGD events have occurred in angiosperms, and been 
named tau (τ), sigma (σ) and rho (ρ), and gamma (γ), beta (β) 
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and alpha (α) for monocots and eudicots, respectively (Jiao et 
al., 2011, 2012, 2014; Alix et al., 2017). WGDs have long been 
regarded as a major evolutionary force in plants providing raw 
genetic variation for natural selection, allowing generations to 
enhance adaptation and possibly drive speciation (Soltis et al., 
2015; Mandakova and Lysak, 2018; Levin, 2019; Van de Peer 
et al., 2021). Wu et al. (2020) argued that ancient WGD events 
during the Cretaceous–Paleocene boundary [K–Pg, approx. 
66 million years ago (Ma)] were associated with adaptations 
of angiosperms to cool and dark environments (Vanneste et 
al., 2014). Cai et al. (2019) suggested that past WGDs in the 
Malphigiales correlate with the enhancement of plant survival 
during climatic changes in the course of the Paleocene–Eocene 
transition (approx. 56–54 Ma) and the late Miocene (approx. 7 
Ma) (Sessa, 2019). Additionally, GDs (including WGDs) in the 
Pooideae were associated with adaptation to lower temperat-
ures and species diversification during the mid-Eocene (approx. 
46 Ma) to late Oligocene (approx. 27 Ma) transition (L. Zhang 
et al., 2022).

Whole-genome duplications have been regarded as evolu-
tionary dead-ends due to the negative effects they may produce. 
This includes severely abnormal meiosis and instable genomes 
(Stebbins, 1950; Arrigo and Barker, 2012). Some plant groups 
with comparatively recent trends in polyploidy have lower net 
diversification rates than their diploid relatives (Mayrose et 
al., 2011). Some recent studies failed to show a positive cor-
relation between rates of WGDs and rates of diversification 
within lineages (Estep et al., 2014; Smith et al., 2018; N. Wang 
et al., 2019; Huang et al., 2020; Stull et al., 2021). In contrast, 
other studies suggested that WGDs are essential for speciation 
(Scarpino et al., 2014; Edger et al., 2015; Godden et al., 2019; 
Han et al., 2020; L. Zhang et al., 2022). Tank et al. (2015) 
showed that while increased diversification rates are rarely as-
sociated directly with WGD events, they usually follow them 
after a lag period, as explained by the WGD Radiation Lag-
Time Model (Schranz et al., 2012). Younger WGDs are more 
likely to be followed by upshifts in diversification rates than 
older WGDs (Landis et al., 2018). However, the WGD events 
in these studies usually occurred after the K–Pg boundary. 
Although L. Zhang et al. (2020) reviewed ancient WGD events 
that occurred 100–120 Ma, the role of WGD events during two 
Ocean Anoxic Events (OAEs 1b and 1d) in the Early Cretaceous 
(approx. 100–110 Ma) has not received much investigation 
(Clark and Donoghue, 2018; Benton et al., 2022).

The Araceae family is defined currently as consisting of 
approx. 144 genera and 3645 species. Therefore, it is one of 
the largest monocot families (Croat, 2019). Previous studies 
have indicated that the ancestral habitats of ancestral aroids 
were aquatic and/or associated with wetlands. The com-
plex programme of evolution within this family involved 
diversification of more aquatic life forms but also a greater 
trend towards colonization of terrestrial habits including 
geophytic, epiphytic and climbing plants (Cabrera et al., 
2008; Cusimano et al., 2011a). Additionally, biogeographical 
analyses have also suggested that early lineages, including 
the Gymnostachydoideae and Orontioideae, were Laurasian 
and temperate in origin, making only a recent entry, but 
spectacular radiation into tropical biomes in Africa, South 
America, South-East Asia and Australasia (Nauheimer et 
al., 2012). Today, this family includes only a few temperate 

genera while 90 % of genera and 95 % of species are restricted 
to the tropics and sub-tropics (Mayo et al., 1997). To date, 
three groups representing eight subfamilies are recognized in 
the Araceae. Their current segregation into the Proto-Araceae 
group (Gymnostachydoideae and Orontioideae), lemnoids 
(Lemnoideae) and the True-Araceae clade (Lasioideae, 
Pothoideae, Monsteroideae, Zamioculcadoideae and Aroideae) 
are based on previous studies combining morphological traits 
and organellar genes (Mayo et al., 1997; Cusimano et al., 
2011a; Henriquez et al., 2014). In Araceae, the Proto-Araceae 
group and lemnoids account for only 6 % of all genera and 
1.3 % of all species. Almost all of their species are restricted 
to swampy-aquatic habitats (Cusimano et al., 2011a; Lee et 
al., 2019). In contrast, the True-Araceae clade accounts for 94 
% of all genera and 98.7 % of all species. The majority take 
terrestrial-epiphytic habits with centres of diversity in trop-
ical rain forests (Nauheimer et al., 2012). Currently, based on 
the genome and transcriptome sequences, some studies have 
detected WGD events from Colocasia esculenta (L.) Schott, 
Pistia stratiotes L., Typhonium blumei Nicolson & Sivad., 
Spirodela polyrhiza (L.) Schleid. and Lemna minuta Kunth 
in the True-Araceae clade, the Proto-Araceae group and the 
lemnoid clade (Cusimano et al., 2011b; Wang et al., 2014; 
Li and Barker, 2020; Yin et al., 2021). However, few studies 
have investigated the phylogeny, the roles of WGDs and the 
diversification history of the Araceae using large-scale nu-
clear gene datasets.

In this study, we generated 64 new transcriptome datasets 
and one new genome survey in the Araceae, and retrieved 22 
transcriptome and three genome sequences from public data-
bases to better understand evolution in this large family. Our 
goals are to (1) reconstruct phylogenetic relationships among 
eight subfamilies using large-scale nuclear genes; (2) identify 
additional WGDs; (3) infer the diversification history within the 
family; and (4) evaluate the potential roles of WGDs in the evo-
lution of key traits and novelties.

MATERIALS AND METHODS

Taxon sampling and transcriptome sequencing

We sampled 81 species representing 57 genera in the eight 
subfamilies of the Araceae, and nine additional species to rep-
resent outgroups (see Supplementary data Table S1). At least 
one representative from 43 of 44 clades identified by Cusimano 
et al. (2011a) were included. Three genome and 22 transcrip-
tome datasets were downloaded from three public databases: 
Phytozome (http://phytozome.jgi.doe.gov), CoGe (https://
genomevolution.org) and NCBI (http://www.ncbi.nlm.nih.
gov/). In turn, we generated 64 new transcriptome datasets 
and one new genome survey. Following the collection of 
young leaves, we extracted total RNA using the SIGMA plant 
total RNA kit (Tiangen, Beijing, China). For Gymnostachys 
anceps R.Br., in the absence of fresh leaves, we used herb-
arium specimens (the Missouri Botanical Garden, Collection 
Number: 57203), extracting the total DNA using the CTAB 
(cetyltrimethylammonium bromide) method. For the library 
construction, Illumina HiSeq4000 sequencing and quality con-
trol was performed at Novogene Corporation, Beijing, China. 
We obtained published species numbers from the International 
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Aroid Society (Croat, 2019). All clean reads in the study 
were deposited on the NCBI Short Reads Archive under the 
BioProject Accession Number PRJNA813353.

Orthologue identification, phylogeny inference and dating

We sequenced 6 Gb transcriptome sequences for each spe-
cies except G. anceps. These transcriptome sequences were de 
novo assembled using Trinity-v2.0.6 (Haas et al., 2013). From 
each of the transcriptomes, CD-HIT v4.6 with the parameter: 
-c 0.99 -n 10 was carried out to obtain the non-redundant tran-
scripts (Li and Godzik, 2006). TransDecoder-v5.1.0 was em-
ployed subsequently to predict amino acid sequences (Haas et 
al., 2013), but sequences <150 bp in length were discarded. 
For G. anceps, we sequenced 70 Gb genome survey datasets. 
De novo assembly was performed using platanus v1.2.4 with 
default parameters (Kajitani et al., 2014). RepeatMasker 
v4.1.0 was used to identify tandem repeats and transposable 
elements. Gene annotations were obtained using Augustus 
v3.3.3 and Exonerate v2.2.0, and then the gene set was in-
tegrated using EVidenceModeller v1.1.1 (Haas et al., 2008). 
The completeness of transcripts was assessed by comparison 
against the Benchmarking Universal Single-Copy Orthologs 
(BUSCO) datasets (Simao et al., 2015). Orthologous clusters 
were identified as described in Zhao et al. (2016) using 4180 
core orthologues from ‘primer taxa’ [Arabidopsis thaliana 
(L.) Heynh., Glycine max (L.) Merr., Medicago truncatula 
Gaertn., Populus trichocarpa Torr. & A.Gray, Oryza sativa 
L., Sorghum bicolor (L.) Moench, Solanum lycopersicum L., 
Vitis vinifera L. and Zea mays L.] as seeds in HaMStR-v13 
with strict parameters (-representative, -strict, -eval_limit 
= 0.00001 and -rbh) (Ebersberger et al., 2009). To reduce 
missing data, we retained only those clusters that included at 
least 60 % of the species, and then obtained 1081 clusters 
from 90 species.

Each cluster was aligned using MAFFT-v7.4 with default 
parameters (Katoh et al., 2005). Poorly aligned regions were 
trimmed by trimAlv1.4 with the parameter: -automated1 
(Capella-Gutierrez et al., 2009). Final alignments were checked 
manually in MEGA-X (Kumar et al., 2018). Concatenation and 
coalescence methods were employed to infer phylogenetic re-
lationships. For the concatenation method, all trimmed align-
ments were concatenated into a supermatrix using SCaFoS 
(Roure et al., 2007). Phylogenetic reconstructions were built 
using RAxML-8.2 with a PROTCATJTT model as suggested 
by ProtTestv3.4 (Stamatakis, 2014). For the coalescence 
method, each gene tree was inferred using RAxML8.2 with the 
PROTCATJTT model, 200 bootstrap replicates (-b) and a rapid 
bootstrapping algorithm (-r). Phylogenetic relationships were 
then constructed from the best-scoring maximum likelihood 
(ML) gene trees using ASTRALv5.5 (Mirarab and Warnow, 
2015). Based on 922 rooted gene trees, we used PhyParts soft-
ware (Smith et al., 2015) to evaluate the conflicts of gene trees.

Molecular clock analysis was performed to estimate di-
vergence times by the penalized likelihood (PL) method 
implemented in TreePL, which can handle large-scale phylo-
genetic datasets (Smith and O’Meara, 2012). To determine 
the optimal smoothing value, the cross-validation tested 
13 smoothing values separated by one order of magnitude, 

starting at 1  ×  10–6. To estimate the confidence intervals of 
dating, we generated 1000 ML bootstrap trees with branch 
lengths using RAxML8.2. A maximum clade credibility 
(MCC) tree was calculated in TreeAnnotator in BEASTv2.5 
(Bouckaert et al., 2019). We employed five fossil constraints 
in our dating estimation (Supplementary data Table S2) ac-
cording to Nauheimer et al. (2012), Magallon et al. (2015), 
Iles et al. (2015) and H.T. Li et al. (2019). The maximum and 
minimum ages of the roots were assigned as 125 and 113 Ma, 
respectively.

Ks-based method for WGD inference from single species

To identify WGD events in 81 species in the Araceae, we first 
employed the Ks method (the number of synonymous substitu-
tions per synonymous site). We performed wgd packages for the 
estimation of the Ks distribution from each species. The pipe-
line was a simple command-line tool for the analysis and visu-
alization of WGD events (Zwaenepoel and Van de Peer, 2019). 
With the pipeline of wgd packages, we implemented all-to-all 
BLASTP with an e-value cut-off of 1e-5 and then carried out 
Markov cluster (MCL) algorithm to construct gene families 
using ‘wgd mcl’. We then plotted Ks distributions by Ks values 
of gene families using ‘wgd ksd’ as fitted by Gaussian mixture 
models (GMMs) using ‘wgd mix’ in the wgd packages. We ex-
cluded Ks values of <0.05 to avoid the effects of isoforms from 
transcriptomes (H.F. Wang et al., 2019; Zwaenepoel et al., 2019).

The gene tree-based method of WGD inference from multiple 
species

To locate the placement of WGDs in our datasets, we 
employed a gene tree sorting and counting algorithm, the 
multi-taxon paleopolyploidy search (MAPS) tool (Li et al., 
2015). For each MAPS analysis, we followed the steps of 
Leebens-Mack et al. (2019). To minimize topology errors in 
gene trees, we collected eight species to infer shared WGD 
events, including two species representing the Proto-Araceae 
group (G. anceps and Lysichiton americanus Hulten & H.St.
John), one species representing the lemnoid clade (Lemna 
minor L.), four species representing the True-Araceae clade 
[Dracontium dressleri Croat., Spathiphyllum floribundum 
(Linden & Andre ́) N.E.Br., Zamioculcas zamiifolia (Lodd.) 
Engl. and Arisaema franchetianum Engl.] and one outgroup 
species Acorus calamus L. Gene families were clustered from 
these OrthoFinder-2.3.3 results under the parameters: -S dia-
mond and -M msa (Emms and Kelly, 2019). Using Perl script, 
we obtained the gene families that contained at least one 
copy from each taxon and discarded the remaining clusters. 
PASTA-1.8.5 was run until it reached three iterations without 
improving the likelihood score for the automatic alignments 
and the phylogenetic reconstruction of gene families (Mirarab 
et al., 2015). For each iteration, we constructed the alignments 
using MAFFT, merged these alignments using Muscle and in-
ferred the gene tree using RAxML. The parameters of each 
software were defaulted in PASTA. All the best scoring gene 
trees were inputted into MAPS software to locate the shared 
WGD events.
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Time-dependent diversifications

Based on the time-calibrated phylogeny, we inferred the di-
versification rates and the diversification shifts across eight 
subfamilies using BAMM v.2.5 (Title and Rabosky, 2019). 
BAMM employed a reversible jump Markov chain Monte 
Carlo (rjMCMC) to automatically detect a vast universe of 
models for lineage diversification. BAMM can automatically 
explore the clade’s rate shifts and diversification dynamics 
(Rabosky et al., 2017). We pruned the outgroups and estimated 
the priors. We set default values = 1.0 for poissonRatePrior 
because of small trees (<500 tips). Incomplete taxon sampling 
of eight subfamilies was considered by applying clade-specific 
sampling fractions. We ran BAMM with four rjMCMC chains, 
each for 50 000 000 generations, sampling every 10 000 gen-
erations. The first 10 % of sampled data were discarded as 
burn-in. The convergence was assessed by plotting the log-
likelihood trace of the MCMC output and computing the ef-
fective sample size values (>200). The configuration of the 
diversification rate shifts was estimated by the posterior dis-
tribution, and Bayes factors were used to compare with alter-
native diversification models. We analysed the output file of 
BAMM and plotted the mean phylorate and the specific clade 
rate-through-time (RTT) curve by the R package BAMMtools 
v2.16 (Rabosky, 2014).

State-dependent diversifications

We applied two state-dependent methods: BiSSE (Binary 
State Speciation and Extinction) (Maddison et al., 2007) and 
HiSSE (Hidden State Speciation and Extinction) to analyse 
diversification rates (Beaulieu and O’Meara, 2016). BiSSE al-
lowed us to investigate the effect of the binary trait on diversifi-
cation rates in the incompletely resolved phylogeny (FitzJohn et 
al., 2009). We conducted the BiSSE analyses in the R package 
Diversitree v0.9-11 based on the MCC tree (FitzJohn, 2012). 
Incomplete sampling was considered by clade-specific sam-
pling fractions. For each trait, we used ML searches to compare 
four models: (1) full model allowed all variables to change in-
dependently; (2) λ0 ~ λ1 constrained speciation rates making 
them equal across states; (3) μ0 ~ μ1 allowed extinction rates 
to be equal across states; and (4) q01 ~ q10 constrained tran-
sition rates to be equal across states. To select the best-fitting 
model, we employed the lowest Akaike information criterion 
(AIC) values. We ran MCMC for 10 000 generations and sam-
pled every 100 generations with an exponential prior at a rate of 
1/(2r), where r was the diversification rate of the trait.

The HiSSE model extended the BiSSE models to account for 
unmeasured factors (i.e. hidden states) that could affect diver-
sification rate estimations with the observed traits. Therefore, 
we also conducted an analysis of the diversification rate using 
HiSSE v1.9.5 (Herrera-Alsina et al., 2019). For HiSSE ana-
lyses, we implemented 25 models, comprising four BiSSE 
models, four trait-independent models and 17 HiSSE models 
following Beaulieu and O’Meara (2016). The best model was 
chosen according to the lowest ΔAIC values. We estimated the 
likeliest ancestral states for both internal nodes and tips of the 
phylogeny, and inferred the confidence interval of each param-
eter by sampling parameter values to ensure the difference of 

log-likelihood <2 in the ‘MarginRecon’ and ‘SupportRegion’ 
functions, respectively.

Gene family expansions and functional analyses

We employed CAFE v4.2.1 (Han et al., 2013) to infer the 
expansions from gene families that were clustered in eight spe-
cies representing the Proto-Araceae group, the lemnoid clade 
and the True-Araceae clade using OrthoFinder-2.3.3 (Emms 
and Kelly, 2019). We performed InterProScan v5.41 to obtain 
functional annotation of the InterPro signatures and the Gene 
Ontology (GO) terms (Jones et al., 2014). The functional en-
richment of GO terms was analysed by comparing the fore-
ground sample (expanded gene families) with all annotated 
gene families based on Fisher’s exact test and Bonferroni cor-
rection (Ashburner et al., 2000).

RESULTS

Phylogenetic backbone of the Araceae

A total of 81 Araceae species were included in this study to 
represent all eight subfamilies, 57 out of 144 genera and 43 
out of 44 clades. Among the 81 Araceae datasets, 65 were 
newly generated for this study. In addition, nine species from 
other monocot families were used as outgroup taxa for phylo-
genetic reconstruction. The non-redundant unigenes ranged 
in size from 10  407  bp to 72  972 bp. BUSCO recovery in 
assembled unigenes averaged 70 ± 11 % for the combination 
of the complete and fragmented orthologues (Supplementary 
data Table S1).

A total of 1081 orthologous groups were identified from 
90 species for phylogenetic tree reconstructions. Sequence 
alignments of orthologous groups were concatenated, and 
were composed of 490  218 amino acid sites. The concat-
enated ML tree was estimated, and gained a highly sup-
ported phylogeny with bootstrap values of 100 for all nodes, 
excluding the Orontioideae node with a 58 % bootstrap value 
(Supplementary data Fig. S1). The maximum quartet sup-
port species tree was also inferred by using ASTRAL-II, and 
gained a similar phylogeny with high support, except for two 
nodes of the Orontioideae and Lasioideae with 31 % and 26 % 
bootstrap values, respectively (Supplementary data Fig. S2). It 
was worth noting that the concatenated ML tree and the max-
imum quartet support species tree were congruent with respect 
to the phylogenetic relationships of eight subfamilies (Fig. 
1). In our results, the Gymnostachydoideae was the earliest 
diverging lineage within the family, successively followed by 
the Orontioideae, Lemnoideae and Lasioideae. In turn, they 
were followed by the ‘bisexual climbers’ clade comprised of 
the Pothoideae and Monsteroideae. These last two subfamilies 
were resolved as sisters to the clade with unisexual flowers, 
as comprised of the Zamioculcadoideae and Aroideae. The 
Lasioideae was the sister of a clade formed by the clades of 
the ‘bisexual climbers’ and the ‘unisexual flowers’ (Fig. 1). 
In addition, our results offered strong support for adding the 
genus Stylochaeton Lep. to the Zamioculcadoideae (Henriquez 
et al., 2014).
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Gymnostachys anceps

Orontium aquaticum

Lysichiton americanum

Spirodela polyrhiza

Landoltia punctata

Lemna minor

Dracontium dressleri

Cyrtosperma cuspidispathum

Lasia spina

Pothos scandens

Anthurium rimbachii

Anthurium amnicola

Spathiphyllum floribundum

Spathiphyllum phryniifolium

Rhodospatha guanchensis

Stenospermation zeacarpium

Stenospermation mathewsii
Epipremnum falcifolium

Scindapsus siamensis

Rhaphidophora cryptantha

Amydrium zippelianum

Anadendrum sp

Monstera tuberculata

Stylochaeton puberulus

Gonatopus boivinii

Zamioculcas zamiifolia

Anubias congensis
Culcasia striolata

Philodendron wendlandii

Homalomena picturata

Zantedeschia rehmannii
Anchomanes welwitschii

Aglaonema modestum

Dieffenbachia oerstedii

Spathicarpa sagittifolia

Synandrospadix vermitoxicus

Taccarum caudatum

Lagenandra ovata

Schismatoglottis neoguineensis

Pseudodracontium harmandi

Amorphophallus bulbifer

Ulearum donburnsii

Caladium Hortulanum

Syngonium podophyllum

Typhonodorum sp

Carlephyton glaucophyllum

Peltandra virginica

Pistia stratiotes

Xanthosoma brasiliense

Alocasia cucullata

Hapaline benthamiana

Steudnera colocasiifolia

Colocasia esculenta

Remusatia vivipara

Pinellia ternata

Arisaema erubescens

Typhonium blumei

Sauromatum venosum

Arum concinnatum

Dracunculus vulgaris

100/-

100/-

100/26

58/31

Unisexual flowers clade

Bisexual climbers clade

Aroideae

Lemnoideae

Lasioideae

Pothoideae
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Fig. 1.  Phylogenetic tree of the Araceae using RAxML and ASTRAL methods based on 1081 orthologous groups from 60 representative species. Nodes with 
no values have 100 % bootstrap support. ‘-’ indicates that the two placements reconstructed by ASTRAL are inconsistent with the results inferred by RAxML.
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Estimation of divergence time

The ages of the stem and crown groups for the Araceae in 
our estimation were approx. 131.6 and 128.8 Ma, with a 95 
% highest probability density (HPD): 129.1–132.7 and 125.2–
130.6 Ma, respectively. Our calculation was older than pre-
vious analyses based on chloroplast genes (Janssen and Bremer 
2004; Nauheimer et al., 2012) (Supplementary data Figs S3 
and S4). The Proto-Araceae group, the lemnoid clade and the 
True-Araceae clade diverged at 100.7–110.5 Ma from the early 
Cretaceous (Fig. 2). The stem age of the Gymnostachydoideae 
was estimated at 128.8 Ma (95 % HPD 125.2–130.6 Ma). The 
Orontioideae was estimated at 128.3 Ma (95 % HPD 123.9–
129.8 Ma), the Lemnoideae at 110.5 Ma (95 % HPD 68.9.3–
81.1 Ma), the Lasioideae at 110.5 Ma (95 % HPD 97.7–107.5 
Ma), the Pothoideae at 89.2 Ma (95 % HPD 86.4–97.0 Ma), 
the Monsteroideae at 89.2 Ma (95 % HPD 86.4–97.0 Ma), 
the Zamioculcadoideae at 89.1 Ma (95 % HPD 86.5–97.0 
Ma) and the Aroideae at 89.1Ma (95 % HPD 86.5–97.0 Ma; 
Supplementary data Figs S3 and S4). Our results suggested that 
the Araceae originated in the early Cretaceous (Hauterivian), 
and all eight subfamilies diverged before the K–Pg boundary.

Inferences of WGDs

Ks frequency plots suggested the presence of multiple WGD 
events for many aroids, in which peaks of Ks ranged from 0.60 
to 2.05. From Ks frequency plots, we found that Araceae shared 
one round of ancient WGD events (τ) with other monocot fam-
ilies, consistent with results in previous studies (Jiao et al., 
2014; Abramson et al., 2022). Interestingly, the True-Araceae 
clade may have shared the special WGD event (namely ψ), with 
Ks ranging between 0.60 and 0.95. However, the ψ-WGD event 
was not shared with the Proto-Araceae group and the lemnoid 
clade (Fig. 2), which have their own WGD events with peak 
Ks values of 0.60 for O. aquaticum and 1.23 for S. polyrhiza 
(Supplementary data Table S3 and Fig. S5).

We also used a gene tree mapping approach, MAPS, to test 
whether the True-Araceae clade shared the ψ-WGD event ac-
cording to the methods of Leebens-Mack et al. (2019). Gene 
family clustering across eight species obtained 2309 clusters 
with at least one copy from each sampled species. At the node 
of the True-Araceae clade, >52 % of gene sub-trees were con-
sistent with the species tree, supporting the ψ-WGD event 
in the True-Araceae clade across the phylogeny. The shared 
ψ-WGD event at this node was consistent with the observed 
result from single species Ks plots in the True-Araceae clade 
(Supplementary data Figs S5 and S6).

Diversification rates through time

We estimated that the mean speciation rate, extinction rate and 
net diversification rate for the Araceae was 0.2991, 0.2527 and 
0.0464 lineages per million years, respectively. Rate-through-
time analysis suggested that the diversification of the Araceae 
began in the early Cretaceous, followed by three stages (Fig. 
3A and see Supplementary data Fig. S7). The net diversification 
rate declined from the Barremian to the Cenomanian. However, 

the net diversification rate rose slowly from the Cenomanian to 
the Maastrichtian. Finally, the net diversification rate increased 
rapidly after the K–Pg boundary. The post burn-in posterior 
distribution indicated that the best shift occurred with a pos-
terior probability (PP) of 0.42 (Supplementary data Table S4 
and Fig. S8). The 95 % credible set of shift configurations and 
marginal shift probabilities favoured the model that included 
the best shift along branches with the True-Araceae clade 
(Supplementary data Figs S9 and S10), consistent with the pre-
vious study by Givnish et al. (2018).

Diversification rates in the Proto-Araceae, lemnoids and 
True-Araceae

We compared net diversification rates between the Proto-
Araceae group, the lemnoid clade and the True-Araceae clade. 
Using BAMM, we calculated the mean speciation rate, extinc-
tion rate and net diversification rate for the Proto-Araceae group 
and the lemnoid clade to be 0.1043, 0.0895 and 0.0148 lineages 
per million years, respectively (Supplementary data Fig. S11). 
The mean speciation rate, extinction rate and net diversifica-
tion rate for the True-Araceae clade were 0.3481, 0.2937 and 
0.0544 lineages per million years, respectively (Supplementary 
data Fig. S12). The BAMM analyses indicated that the net 
diversification rate was enhanced 3.67 times from the Proto-
Araceae group and the lemnoid clade to the True-Araceae clade 
(Fig. 4A). We further corroborated the results by using BiSSE 
and HiSSE packages, respectively. In BiSSE analyses, the best-
fitting BiSSE model was the full model with different speci-
ation, extinction and transition rates (Table 1). In the best-fit 
model, both speciation and extinction rates were high for the 
True-Araceae clade (Supplementary data Figs S13 and S14), 
and the net diversification rate was approx. 2-fold higher than 
in the Proto-Araceae group and the lemnoid clade (Fig. 4B). In 
HiSSE analyses, the full HiSSE model with ‘τ0A = τ1A = τ0B, 
ε0A = ε1A = ε0B, q0B1B = q1B0B = 0 and all other equals’ 
was the best-fit model (Table 2). The circle-plot clearly showed 
a 2-fold higher mean net diversification rate in the True-Araceae 
clade compared with the Proto-Araceae group and the lemnoid 
clade (Fig. 4C).

Enrichment of gene functions in the True-Araceae clade

We identified >500 expanded gene families by CAFE in the 
True-Araceae clade (Supplementary data Table S5). With the 
annotation of InterPro, the functions of expanded gene fam-
ilies were mostly related to development, stress responses, 
metabolic pathways and signal transduction, including genes 
encoding cytochrome P450, glycosyl hydrolase, RING fin-
gers, heat shock proteins, pectin acetylesterase, cellulose syn-
thase and ABC transporters. For example, cytochrome P450 
represented one of the largest enzyme families consisting of 
multiple subfamilies, which are involved in various processes 
related to plant development and metabolism. This includes 
root hair development (Pan et al., 2018), lignification (Lui et 
al., 2020), defence against herbivores (Liu et al., 2019) and 
drought stress response (J. Zhang et al., 2020). In particular, 
Renault et al. (2017) found that the membrane topology of 
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cytochrome P450, which was associated with the metabolism 
of the plant phenolic pathway, was altered by gene duplica-
tions in plants (J. Zhang et al., 2020). Other gene families 
have also expanded in the True-Araceae including glycosyl 
hydrolases and RING fingers. The glycosyl hydrolase super-
family forms complex and diverse families that combine with 
glycosyltransferases for the formation and hydrolysis of glyco-
sidic bonds. We detected the expansions of glycosyl hydrolase 
families, such as 1, 3, 14, 38 and 63, which played important 
roles in response to biotic and abiotic stresses (Okrent and 
Wildermuth, 2011; Cao et al., 2017) and cell wall formation 
(Wang et al., 2020) in plants.

We performed functional GO term enrichment ana-
lysis and identified 49 GO terms for molecular functions, 
biological processes and cellular components that were 
significantly (P-value ≥0.05) over-represented in the True-
Araceae clade (Table 3). Over-represented functions were 
mostly related to binding, receptor and channel activity in 
the molecular functions terms, including heat shock protein 
binding, ion binding, transmembrane signalling receptor ac-
tivity, ionotropic glutamate receptor activity and extracel-
lular ligand-gated ion channel activity, among others. At the 
level of biological processes, many metabolic functions, such 
as DNA repair and cellular stress response, were involved, 
suggesting that some types of reception were more devel-
oped and possessed a wide range of metabolic pathways in 
the True-Araceae clade. Overall, these results indicated that 
these expansions may contribute to adaptations encouraging 
radiations of ancestors of the True-Araceae into tropical and 
terrestrial biomes.

DISCUSSION

Phylogenetic relationships of eight subfamilies in Araceae

In previous studies, the phylogeny of the Araceae was in-
ferred by chloroplast gene sequences (Cusimano et al., 2011a; 
Henriquez et al., 2014). However, in plants, these genes are 
generally inherited from only one parent and they are much 
affected by rampant horizontal gene transfer (HGT). This 
may lead to biases when inferring phylogenetic relationships. 
In our study, our phylogenetic analyses yielded the same re-
lationships for eight subfamilies using concatenation and co-
alescence methods based on 1081 orthologous nuclear genes. 
Nevertheless, for the Gymnostachydoideae and Lasioideae, 
the phylogenetic relationships of eight subfamilies based on 
nuclear genes did not agree with conclusions inferred from 
earlier chloroplast sequences (Supplementary data Fig. S15). 
In our phylogenetic analysis, the Gymnostachydoideae was 
recovered as a sister group to all other Araceae, with 58 % 
and 31 % bootstrap values based on the concatenation and 
coalescence estimations, respectively (Supplementary data 
Figs S1 and S2). The Lasioideae was the sister of the ‘bi-
sexual climbers’ clade and the unisexual flowers clade, with 
only 26 % bootstrap values based on coalescence estimation 
(Supplementary data Figs S1 and S2). To assess the reasons 
for low support and conflicts at the nodes, we used PhyParts 
software to map 922 rooted single-gene trees to species trees. 
Only 37.5 % of single gene trees (346) supported the place-
ment of the Gymnostachydoideae, and 78.1 % of single gene 
trees (720) supported the sister relationship of the ‘bisexual 
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climbers’ clade and the ‘unisexual flowers’ clade. For the 
two inconsistent placements reconstructed by ASTRAL and 
RAxML (Fig. 1), 94.1 % of single gene trees (868) and 85.7 
% of single gene trees (790) supported the phylogenetic re-
lationships reconstructed by RAxML. The results indicated 
that the incongruent phylogenies of the genes may be one of 
the main factors for the low support and the conflicts of some 
nodes.

In addition to a robust phylogeny based on nuclear genes, 
we employed five fossil constraints to determine divergence 
times of Araceae by PL analysis. However, the age of the 
crown group was approx. 10 Ma older than that of Janssen and 
Bremer (2004) based exclusively on chloroplast sequences. 
Overall, this study provided the first well-supported phylogeny 
based on nuclear genes for elucidating the evolutionary history 
of Araceae.
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WGD contributed to Araceae adaptation to different environments

In this study, we identified a new WGD event (ψ, approx. 
100.7–110.5 Ma) that occurred possibly during the OAEs 1b 
and 1d (Fig. 2) when the occurrence of extensive submarine 
volcanic activity resulted in the release of excess greenhouse 

gases which led to a warming climate (Heimhofer et al., 2005; 
Jenkyns, 2010; Rodriguez-Cuicas et al., 2019). It is interesting 
that this WGD event was shared by the True-Araceae clade, but 
not by the Proto-Araceae group and the lemnoid clade, des-
pite O. aquaticum with a separate WGD event in the Proto-
Araceae group, and S. polyrhiza with one special WGD event 
in the lemnoid clade (Wang et al., 2014). It seems that WGD 
could be derived from allopolyploidization, as introgression 
was detected in the early history of the Araceae (Chen et al., 
2022). In fact, the ψ-WGD event was followed by upshifts in 
the rate of diversification in the True-Araceae clade, the op-
posite of the Pro-Araceae group and the lemnoid clade. Some 
studies have shown that anthocyanin biosynthesis is related 
to R2R3-MYB and bHLH gene families mediated by WGD/
GD, resulting in the colour changes of spathes (C. Li et al., 
2019; Wu et al., 2022). Spathes of the True-Araceae clade are 
generally showy, attractive and probably adaptive. In contrast, 
spathes are simple or absent in the Proto-Araceae group and 
the lemnoid clade (Cusimano et al., 2011a). It was suggested 
that upshifts in the rate of diversification in the True-Araceae 
clade may be association with the development of spathes as 

Table 1.  Comparative fit of different BiSSE models for the Proto-
Araceae group, the lemnoid clade and the True-Araceae clade 

using Diversitree packages*

Model LogL AIC ΔAIC 

Full –20.220 52.441 0

Equal λ –24.081 58.160 5.719

Equal 
μ

–23.819 57.639 5.198

Equal q –23.681 57.362 4.921

*Bold represents the best model. LogL, the loglikelihood of the model; AIC, 
the Akaike information criterion.

Table 2.  Comparative fit of alternative models for the Proto-Araceae group, lemnoids and the True-Araceae clade using HiSSE 
packages*

Model LogL AIC ΔAIC 

BiSSE model: all free –370.707 753.413 29.862

BiSSE model: ε0 = ε1 –357.702 725.404 1.853

BiSSE model: qs equal –371.311 752.623 29.072

BiSSE model: ε0 = ε1, qs equal –361.871 731.741 8.19

CID-2: qs equal –360.573 731.145 7.594

CID-2: εs, qs equal –364.393 736.786 13.235

CID-4: εs equal, qs equal –361.436 741.874 18.323

CID-4: qs equal –361.735 734.470 10.919

HiSSE full model –355.575 743.150 19.599

HiSSE: τ0A = τ1A, εs equal, qs equal –360.583 733.165 9.614

HiSSE: τ0A=τ1A, ε0A = ε1A, q0B1B = 0, q1B0B=0, all other qs equal –367.084 744.168 20.617

HiSSE: εs equal, q0B1B = 0, q1B0B  =  0, all other qs equal –369.235 746.471 22.92

HiSSE: q0B1B = 0, q1B0B = 0, all other qs equal –360.669 735.339 11.788

HiSSE: τ0A = τ1A, εs equal, q0B1B = 0, q1B0B = 0, all other qs equal –361.742 733.485 9.934

HiSSE: τ0A = τ0B, ε0A = ε0B, q0B1B = 0, q1B0B = 0, all other q’s equal –356.678 727.356 3.805

HiSSE: τ0A = τ0B, εs equal, q0B1B = 0, q1B0B = 0, all other qs equal –362.644 735.288 11.737

HiSSE: εs equal, qs equal –356.567 731.134 7.583

HiSSE: qs equal –358.793 729.586 6.035

HiSSE: τ0A = τ0B, ε0A = ε0B, qs equal –358.641 725.284 1.733

HiSSE: τ0A = τ1A, ε0A = ε1A, qs equal –356.621 727.242 3.691

HiSSE: τ0A = τ1A = τ0B, εs equal, qs equal –357.263 724.526 0.975

HiSSE: τ0A = τ0B, εs equal, qs equal –356.798 727.597 4.046

HiSSE: τ0A = τ1A = τ0B, ε0A = ε1A= ε1B, qs equal –358.835 727.671 4.12

HiSSE: τ0A = τ1A = τ0B, ε0A = ε1A = ε0B, q0B1B = q1B0B = 0, all other qs equal –356.775 723.551 0

HiSSE: τ0A = τ1A = τ0B, εs equal, q0B1B = 0, q1B0B =0, all other qs equal –356.691 731.382 7.831

*Bold represents the best model. LogL, the loglikelihood of the model; AIC, the Akaike information criterion.
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Table 3.  List of GO terms enriched in the expanded families of the clade representing the True-Araceae.

GO term GO category Description P-value 

GO:0005488 Molecular function Binding 6.40E-05

GO:0031072 Molecular function Heat shock protein binding 6.86E-05

GO:0043167 Molecular function Ion binding 0.0001

GO:0097159 Molecular function Organic cyclic compound binding 0.0006

GO:1901363 Molecular function Heterocyclic compound binding 0.0005

GO:0043168 Molecular function Anion binding 0.0006

GO:0032559 Molecular function Adenyl ribonucleotide binding 0.0018

GO:0032553 Molecular function Ribonucleotide binding 0.0019

GO:0004888 Molecular function Transmembrane signalling receptor activity 0.0019

GO:0004970 Molecular function Ionotropic glutamate receptor activity 0.0019

GO:0005230 Molecular function Extracellular ligand-gated ion channel activity 0.0019

GO:0005524 Molecular function ATP binding 0.0021

GO:0030554 Molecular function Adenyl nucleotide binding 0.0022

GO:0097367 Molecular function Carbohydrate derivative binding 0.0023

GO:0001883 Molecular function Purine nucleoside binding 0.0025

GO:0032549 Molecular function Ribonucleoside binding 0.0025

GO:0005216 Molecular function Ion channel activity 0.0029

GO:0017076 Molecular function Purine nucleotide binding 0.0031

GO:0036094 Molecular function Small molecule binding 0.0042

GO:0000166 Molecular function Nucleotide binding 0.0055

GO:1901265 Molecular function Nucleoside phosphate binding 0.0049

GO:0003993 Molecular function Acid phosphatase activity 0.0091

GO:0015267 Molecular function Channel activity 0.0103

GO:0022803 Molecular function Passive transmembrane transporter activity 0.0103

GO:0015276 Molecular function Ligand-gated ion channel activity 0.0171

GO:0030151 Molecular function Molybdenum ion binding 0.0171

GO:0099600 Molecular function Transmembrane receptor activity 0.0171

GO:0016160 Molecular function Amylase activity 0.0215

GO:0003972 Molecular function RNA ligase (ATP) activity 0.0261

GO:0004097 Molecular function Catechol oxidase activity 0.0261

GO:0004556 Molecular function α-Amylase activity 0.0261

GO:0008452 Molecular function RNA ligase activity 0.0261

GO:0000287 Molecular function Magnesium ion binding 0.0301

GO:0006259 Biological process DNA metabolic process 0.0021

GO:0008033 Biological process tRNA processing 0.0068

GO:0006281 Biological process DNA repair 0.0087

GO:0006974 Biological process Cellular response to DNA damage stimulus 0.0121

GO:0033554 Biological process Cellular response to stress 0.0121

GO:0090304 Biological process Nucleic acid metabolic process 0.0132

GO:0043170 Biological process Macromolecule metabolic process 0.0172

GO:0006468 Biological process Protein phosphorylation 0.0221

GO:0046653 Biological process Tetrahydrofolate metabolic process 0.0241

GO:0046654 Biological process Tetrahydrofolate biosynthetic process 0.0241

GO:0044260 Biological process Cellular macromolecule metabolic process 0.0252

GO:0034470 Biological process ncRNA processing 0.0281

GO:0016310 Biological process Phosphorylation 0.0301
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key innovations (Soltis and Soltis, 2016; Clark and Donoghue, 
2018). The best shift along the stem lineage of the True-
Araceae clade in diversification rates was identified. This sug-
gested that the shift may have been associated with the change 
in habit from aquatic to terrestrial environments. These findings 
indicated that WGD may play other roles, such as a macroevo-
lutionary increase in adaptive and key traits to niches in new 
environments, rather than a direct increase in speciation rates 
in the Araceae. In previous studies, comparative genomics be-
tween S. polyrhiza and other terrestrial monocots found that 
some gene families in S. polyrhiza were lost, and this meant a 
loss of functions in certain biosynthetic and secondary meta-
bolic processes including water transport by aquaporins, lignin 
biosynthesis, cell wall organization and terpenoid production 
(Wang et al., 2014; An et al., 2019). Furthermore, the genome 
of Wolffia australiana (Benth.) Hartog & Plas lost several 
hundred genes, including those associated with the cell wall, 
flavonoid biosynthesis, protein phosphorylation, immune re-
sponse and terpene biosynthesis (Michael et al., 2021). These 
results suggested that for Spirodela and Wolffia, once adapted 
to aquatic environments, complex metabolites were no longer 
needed to cope with variable temperature, light and drought 
regimes indicative of terrestrial environments. In contrast, our 
analyses showed expansions of gene families and functional 
enrichments. The functions of these expanded families were 
related to heat shock protein, ABC transporter, glycosyl hydro-
lase, RING finger, pectin acetylesterase, cytochrome P450 and 
oxidative stress-responsive kinase. Such results indicated that 
the True-Araceae clade, in particular, showed a successful and 
long-term trend expanding into tropical regions (Van de Peer et 
al., 2021). Specifically, the past WGDs in this clade facilitated 
the macroevolution of adaptations to exploit terrestrial niches, 
leading to what we now see if the successful colonization and 
diversification of the Araceae into novel niches.
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