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• Background and Aims Artemisia is a mega-diverse genus consisting of ~400 species. Despite its medicinal 
importance and ecological significance, a well-resolved phylogeny for global Artemisia, a natural generic de-
limitation and infrageneric taxonomy remain missing, owing to the obstructions from limited taxon sampling 
and insufficient information on DNA markers. Its morphological characters, such as capitulum, life form and 
leaf, show marked variations and are widely used in its infrageneric taxonomy. However, their evolution within 
Artemisia is poorly understood. Here, we aimed to reconstruct a well-resolved phylogeny for global Artemisia via 
a phylogenomic approach, to infer the evolutionary patterns of its key morphological characters and to update its 
circumscription and infrageneric taxonomy.
• Methods We sampled 228 species (258 samples) of Artemisia and its allies from both fresh and herbarium col-
lections, covering all the subgenera and its main geographical areas, and conducted a phylogenomic analysis based 
on nuclear single nucleotide polymorphisms (SNPs) obtained from genome skimming data. Based on the phylo-
genetic framework, we inferred the possible evolutionary patterns of six key morphological characters widely used 
in its previous taxonomy.
• Key Results The genus Kaschgaria was revealed to be nested in Artemisia with strong support. A well-resolved 
phylogeny of Artemisia consisting of eight highly supported clades was recovered, two of which were identified 
for the first time. Most of the previously recognized subgenera were not supported as monophyletic. Evolutionary 
inferences based on the six morphological characters showed that different states of these characters originated 
independently more than once.
• Conclusions The circumscription of Artemisia is enlarged to include the genus Kaschgaria. The morpho-
logical characters traditionally used for the infrageneric taxonomy of Artemisia do not match the new phylogen-
etic tree. They experienced a more complex evolutionary history than previously thought. We propose a revised 
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infrageneric taxonomy of the newly circumscribed Artemisia, with eight recognized subgenera to accommodate 
the new results.

Key words: Artemisia, phylogenomics, taxonomy, morphological evolution, generic delimitation, infrageneric 
taxonomy, genome skimming.

INTRODUCTION

Reconstructing a well-resolved phylogeny for a mega-diverse 
genus containing hundreds of species requires two important 
issues to be addressed. First, molecular markers with suffi-
cient information are needed, especially for genera that have 
undergone rapid evolutionary radiation (Bagheri et al., 2017; 
Ma et al., 2018; Heiden et al., 2019). Second, materials (e.g. 
silica-dried leaves or fresh tissues) are not always available, es-
pecially for the genera distributed worldwide (van Welzen et 
al., 2009; Craven and Biffin, 2010; Frenzke et al., 2015). These 
limitations have hindered our understanding of the evolution 
and taxonomy of these mega-diverse genera, which might be 
important in the economy (e.g. Syzygium, Parnell et al., 2007; 
Artemisia, Vallès et al., 2011; Solanum, Gagnon et al., 2022), 
ecology (e.g. Carex, Roalson et al., 2021) or conservation (e.g., 
Dendrobium, Niu et al., 2018; Wang et al., 2018).

An approach based on low-depth genomic data can recon-
struct the phylogeny of a mega-diverse group (McKain et al., 
2018; Xia et al., 2022). Genome skimming (also known as low-
coverage genome shotgun sequencing) (Straub et al., 2012; 
McKain et al., 2018) was first used widely to assemble gen-
omic regions with high copy numbers, such as the chloroplast 
genome (McPherson et al., 2013; Male et al., 2014), the mito-
chondrial genome (Guo et al., 2016; Li et al., 2019) and nuclear 
ribosomal genes (Steele et al., 2012; Zimmer and Wen, 2015). 
Both fresh and herbarium material (McKain et al., 2018) can 
be used in this context. This brings great benefits for exten-
sive taxon sampling. At present, a method for obtaining nuclear 
single nucleotide polymorphisms (SNPs) from genome skim-
ming data based on reference genomes has been developed 
(Olofsson et al., 2019) and used successfully in Oleaceae and 
Poaceae (Olofsson et al., 2019; Bianconi et al., 2020; Dong et 
al., 2022). This economical, convenient method to deal with 
numerous samples is a potentially powerful tool to solve the 
phylogeny of mega-diverse genera with published genomes.

Artemisia (Asteraceae: Anthemideae) is a large genus that 
has recently undergone rapid evolutionary radiation (Malik 
et al., 2017). It comprises ~400 species growing in various 
habitats ranging from desert to wetland, from coasts to rocky 
beaches, and from arctic to tropical climates (Naithani, 1995; 
Shultz, 2006; Oberprieler et al., 2009; Ling et al., 2011). It is 
distributed mainly in the Northern Hemisphere, with a few spe-
cies extending to South America and Africa (Torrell et al., 1999; 
Shultz, 2006; Tkach et al., 2008; Ling et al., 2011; Garcia et al., 
2011b; Malik et al., 2017; Fig. 1). Many Artemisia species are 
economically valuable for their uses in medicine, food, horti-
culture or ecological restoration. Artemisia annua is the most 
famous species, owing to its antimalarial, artemisinin (Bhakuni 
et al., 2002; Tu, 2011). The same species is among the plants 
with evidence suggesting a potential use for the coronavirus 
disease 2019 pandemic (Nair et al., 2021). Artemisia anomala, 
A. argyi, A. capillaris, A. copa and A. herba-alba are traditional 
medicinal plants (Wright, 2002; Ling et al., 2011; Gras et al., 

2020; Mercado et al., 2021). The polysaccharides in the fruits 
of Artemisia sphaerocephala can be used as a food additive 
(Kakar et al., 2021). Artemisia dracunculus, A. vulgaris, A. 
absinthium and A. abrotanum are widely used for seasoning 
purposes (Wright, 2002; Shultz, 2006; Ling et al., 2011). Some 
species, such as Artemisia ludoviciana and A. schmidtiana, are 
popular garden plants (Vallès et al., 2011). Some shrubby spe-
cies, such as Artemisia ordosica, are used to stabilize quick-
sand in deserts (Shultz, 2009; Ling et al., 2011). The enormous 
value of Artemisia species has sparked the deep and continuous 
interest of researchers from many fields, such as phytochem-
istry, pharmacology, ecology, agronomy and ethnobotany. A 
complete and updated taxonomy of Artemisia would undoubt-
edly help us to explore its huge potential value.

The genus Artemisia was first described by Linnaeus 
(1753). It is characterized by having: two types of capitula 
[heterogamous-disciform capitula (disc florets bisexual or 
functionally staminate, ray florets pistillate) or homogamous-
discoid capitula (disc florets bisexual and fertile, ray florets 
absent)] (Fig. 1); pollen with short spines or no spines (the 
so-called Artemisia pollen type, Martín et al., 2003); and 
cypselae without ribs (Linnaeus, 1754, 1767; Bremer and 
Humphries, 1993; Vallès et al., 2011). However, these characters 
are not diagnostic for Artemisia. Thirteen small or monotypic 
genera, namely Artemisiastrum Rydb., Artemisiella Ghafoor, 
Crossostephium Less., Elachanthemum Y.Ling & Y.R.Ling, 
Filifolium Kitam., Hippolytia Poljakov, Kaschgaria Poljakov, 
Mausolea Poljakov, Neopallasia Poljakov, Picrothamnus Nutt., 
Stilpnolepis Krasch., Sphaeromeria Nutt. and Turaniphytum 
Poljakov, were once morphologically related to or merged with 
Artemisia (Poljakov, 1961a, 1961b and references therein; 
Heywood and Humphries, 1977; Ghafoor, 1992, 2002; Bremer 
and Humphries, 1993). To date, the circumscription of the 
genus Artemisia remains controversial and unclear.

Within Artemisia, some large infrageneric groups (as 
sections, subgenera or others) were gradually proposed by 
different taxonomists at different times (i.e. the four groups 
Artemisia, Absinthium, Dracunculus and Seriphidium). They 
were accepted or partly revised by later taxonomists based on 
their research on the Artemisia species from a certain region or 
group (see detailed taxonomy in Table 1, and morphological 
characters of each infrageneric group in Table 2). In addition 
to the four groups above, a fifth group, section Tridentatae 
Rydberg, was separated from Seriphidium and established by 
Rydberg (1916). Later on, McArthur et al. (1981) raised this 
group as a subgenus, considering its special geographical distri-
bution (North America), woody life form and unique karyotypic 
and chemotaxonomic attributes. However, Ling (1982, 1991a, 
1991b) clustered Seriphidium and Tridentatae as an inde-
pendent genus, Seriphidium (Besser ex Less.) Fourr. Thereafter, 
the sixth subgenus, subgenus Pacifica, was proposed by Hobbs 
and Baldwin (2013) based on the phylogeny using four mo-
lecular markers [two nuclear ribosomal (ITS + ETS) and two 
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chloroplast markers (trnL-F + psbA–trnH)]. It shares the same 
capitulum type as subgenus Artemisia but differs in its ribbed 
cypselae (vs. not ribbed in subgenus Artemisia). It contains only 
four species distributed in Southeast Asia and on the Hawaiian 

Islands. In the same publication, Hobbs and Baldwin (2013) 
recognized six subgenera within Artemisia (Tables 1 and 2). 
In summary, although various classification systems have been 
proposed for its infrageneric taxonomy (Table 1), a global 

A1 A2 B1 B2 C1 C2

D1 D2 E1 E2 F1 F2

G1 G2 H1 H2 I1 I2

Fig. 1.  Morphological diversity of nine representative species of Artemisia. (A1) A. gmelinii; (A2) racemose synflorescence of A. gmelinii. (B1) A. viridissima; 
(B2) entire leaf of A. viridissima. (C1) A. chingii; (C2) a marginal female floret and a disc bisexual floret of A. chingii. (D1) A. fukudo; (D2) panicle of A. fukudo. 
(E1) A. lagocephala; (E2) three-lobed leaf of A. lagocephala. (F1) A. capillaris; (F2) a marginal female floret and a functionally staminate disc floret of A. 
capillaris. (G1) A. wellbyi; (G2) racemose synflorescence of A. wellbyi. (H1) A. lactiflora; (H2) pinnatisect leaf of A. lactiflora. (I1) A. transiliensis; (I2) a bisexual 

floret of A. transiliensis. Scale bars: 1 mm.

Table 1.  Comparison of different infrageneric taxonomies of Artemisia based on Vallès and McArthur (2001) and Riggins (2008)

Rank Taxa Reference 

Genus Artemisia Linnaeus (1753)

Genera Artemisia Oligosporus Cassini (1817); Lessing (1832)

Sections Absinthium Abrotanum Seriphidium Dracunculus Besser (1829, 1834, 1835)
Candolle (1838); Ledebour (1844–1846)

Sections Euartemisia Seriphidium Dracunculus Gray (1886)

Subgenera Euartemisia Seriphidium Euartemisia Rouy (1903)

Subgenera
Sections

Absinthium Abrotanum Seriphidium
Seriphidium
Tridentatae

Dracunculus Rydberg (1916)

Subgenera Artemisia Seriphidium Dracunculus Poljakov (1961a)

Subgenera Absinthium Artemisia Seriphidium Dracunculus Persson (1974)

Sections Artemisia Dracunculus Tutin et al. (1976)

Subgenera Artemisia Seriphidium Tridentatae Dracunculus McArthur et al., (1981)

Subgenera Artemisia Seriphidium Dracunculus Podlech (1986)

Genera Subgenera Artemisia
Artemisia

Seriphidium
Seriphidium

Artemisia
Dracunculus

Ling (1991a, b); Ling et al. (2011)

Subgenera Absinthium Artemisia Seriphidium Tridentatae Dracunculus Shultz (2006)

Subgenera Absinthium Artemisia Pacifica Seriphidium Tridentatae Dracunculus Hobbs and Baldwin (2013)

D
ow

nloaded from
 https://academ

ic.oup.com
/aob/article/131/5/867/7091609 by guest on 24 April 2024



Jiao et al. — Phylogeny and morphological evolution of Artemisia870

and generally accepted infrageneric classification system for 
Artemisia based on a robust phylogeny remains missing.

In recent decades, molecular phylogenetic studies of 
Artemisia have made significant progress and improved our 
understanding of the phylogeny and taxonomy of Artemisia. 
Among the 13 closely related genera, eight genera (i.e. 
Sphaeromeria, Artemisiastrum, Crossostephium, Filifolium, 
Mausolea, Neopallasia, Picrothamnus and Turaniphytum) 
were revealed to be nested in Artemisia and proposed to be 
reduced into Artemisia (Watson et al., 2002; Sanz et al., 2008, 
2011; Garcia et al., 2011a, 2011b; Pellicer et al., 2011; Sonboli 
et al., 2012; Hobbs and Baldwin, 2013), whereas three genera 
(i.e. Elachanthemum, Hippolytia and Stilpnolepis) have a dis-
tant relationship with Artemisia (Watson et al., 2002; Sanz 
et al., 2008). However, owing to the limited phylogenetic in-
formation of the DNA markers previously used, the relation-
ship among Artemisia and the other two genera, Artemisiella 
and Kaschgaria, is still controversial; the infrageneric rela-
tionships, especially those in the species-rich groups, such 
as the subgenera Dracunculus and Seriphidium (Pellicer et 
al., 2011; Malik et al., 2017), are not well resolved. A well-
resolved phylogeny for Artemisia with a global sampling re-
mains missing.

Furthermore, molecular systematic studies have revealed 
increasing conflicts between molecular phylogeny and 
infrageneric taxonomy of Artemisia. With the only exception 
of subgenus Pacifica, the other subgenera of Artemisia were 
not supported as monophyletic (Watson et al., 2002; Vallès et 
al., 2003; Sanz et al., 2008, 2011; Tkach et al., 2008; Pellicer 
et al., 2011; Riggins and Seigler, 2012; Hobbs and Baldwin, 
2013; Malik et al., 2017). For example, some species of sub-
genus Artemisia were embedded in the subgenus Absinthium 
(figure 1 of the paper by Malik et al., 2017), and some New 
World species of subgenus Artemisia were nested in subgenus 
Tridentatae (Pellicer et al., 2010; Garcia et al., 2011b). The 
infrageneric taxonomy of Artemisia including the six subgenera 
described above is based mainly on morphological characters 
(Table 2). Traditionally, pollen type and floret functional sex 
spatial arrangement within the capitula are used to circumscribe 
the genus Artemisia (Bremer and Humphries, 1993; Watson et 
al., 2002; Vallès et al., 2011). Capitulum type was the main 
character for its infrageneric taxonomy (Table 2). Other charac-
ters, such as life form and leaf shape, although less commonly 
used than capitulum type, are often used for its subgeneric div-
ision (Poljakov, 1961a; Tutin et al., 1976; Shultz, 2006, 2009; 
Ling et al., 2011). For example, life form can be used to define 

subgenus Tridentatae, all species of which are shrubs (Shultz, 
2006). Leaf shape is often used for its interspecific taxonomy, 
and even section taxonomy of subgenus Artemisia (e.g. Ling 
et al., 2011). The conflicts between molecular phylogeny and 
morphological taxonomy of Artemisia made some authors 
question whether the current infrageneric taxonomy reflected 
the evolutionary relationships among lineages (e.g. Persson, 
1974; Vallès and McArthur, 2001; Shultz, 2006; Garcia et al., 
2011b) and whether the morphological characters used were 
reliable (Riggins and Seigler, 2012). Therefore, it is necessary 
to investigate the evolutionary patterns of these morphological 
characters in a phylogenetic context and to evaluate their taxo-
nomic value for the generic and infrageneric circumscriptions 
of Artemisia.

In this study, we used a genome-skimming sequencing tech-
nique to obtain nuclear SNP data from fresh and herbarium 
materials of Artemisia. Our objectives were as follows: (1) to 
clarify the circumscription of Artemisia; (2) to build a robust 
phylogeny for Artemisia based on a global and representative 
sampling; (3) to infer evolutionary patterns of six key morpho-
logical characters; and (4) to update the infrageneric taxonomy 
for Artemisia. This study will provide a solid foundation for 
further systematic and evolutionary studies on Artemisia and 
help us to explore its tremendous value.

MATERIALS AND METHODS

Taxon sampling

We obtained 205 species of Artemisia, representing all six sub-
genera and covering the distribution area of the genus (Eurasia, 
North America, Africa and South America). Thirteen samples 
from the 12 segregated genera (Artemisiella, Crossostephium, 
Elachanthemum, Filifolium, Hippolytia, Kaschgaria, Mausolea, 
Neopallasia, Picrothamnus, Sphaeromeria, Stilpnolepis and 
Turaniphytum; only Artemisiastrum missing) were sampled to 
clarify the circumscription of Artemisia. We also sampled ten 
species from six genera of the subtribe Artemisiinae, including 
Ajania Poljakov, Allardia Decne., Cancrinia Kar. & Kir., 
Chrysanthemum L., Nipponanthemum Kitam. and Richteria 
Kar. & Kir., as outgroups (Watson et al., 2002). All samples 
were obtained from our field collections or from herbaria (AL, 
ANH, BC, BCN, BORZ, KUN, PE and UTC; Holmgren et al., 
1990). Supplementary data Table S1 provides detailed sam-
pling information.

Table 2. Infrageneric taxonomy of Artemisia, their morphology and distribution based on Shultz (2006) and Hobbs and Baldwin (2013)

Infrageneric taxa Morphological characters Distribution 

Subgenus Artemisia Capitulum with outer florets female, central florets bisexual and fertile, receptacle glabrous Worldwide

Subgenus Absinthium Capitulum with outer florets female, central florets bisexual and fertile, receptacle hairy Northern Hemisphere

Subgenus Dracunculus Capitulum with outer florets female, central florets bisexual but functionally staminate (not 
setting fruits), receptacle glabrous

Northern Hemisphere

Subgenus Seriphidium Capitulum without outer florets, florets bisexual and fertile, receptacle glabrous Eurasia and North Africa

Subgenus Tridentatae Capitulum without outer florets, florets bisexual and fertile, receptacle glabrous North America

Subgenus Pacifica Capitulum with outer florets female, central florets bisexual and fertile, receptacle glabrous, 
cypselae ribbed

East Asian Coast and Hawaiian 
Islands
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Sequencing and nuclear SNP calling

Total genomic DNA was extracted from silica gel-dried 
leaves or herbarium specimens using the TIANGEN plant 
genomic DNA extraction kit (TIAN-GEN Biotech., Beijing, 
China) following the manufacturer’s protocol. Total DNA ex-
tracted from silica gel-dried leaves was sheared into ~350 bp 
fragments to build 350 bp insert libraries, and unsheared DNA 
from herbarium specimens was used to construct 150  bp in-
sert libraries. The DNA libraries were constructed using the 
NexteraXT DNA Library Preparation Kit (Illumina, Shanghai, 
China) and were sequenced on the Illumina HiSeq Xten plat-
form (Illumina, Shanghai, China). We obtained ~3 Gb of data 
for each sample with paired-end libraries. The average length 
of the generated reads from silica gel-dried and herbarium spe-
cimens was 150 and 100 bp, respectively. The raw sequencing 
data were checked using FastQC v.0.10.1 (https://www.bio-
informatics.babraham.ac.uk/projects/fastqc/).

Nuclear SNPs were obtained using a reference-based ap-
proach, following the pipeline of Olofsson et al. (2019). 
Different reference genomes will affect the results of read map-
ping and SNP calling. To reduce the complexity of the refer-
ence genome, we prepared a genome-wide reference data set 
of putative orthologous sequences using the complete coding 
sequence (CDS) data sets of Artemisia annua (Shen et al., 
2018) and Chrysanthemum seticuspe (Hirakawa et al., 2019), 
a species from the closely related genus Chrysanthemum. The 
BLAST reciprocal best hits (RBH) tool (Cock et al., 2015) 
in BLAST v.2.2.28 (Altschul et al., 1990) was used to select 
putative one-to-one orthologues (e-value < 1e-10). A total of 
22 545 putative one-to-one orthologues were retained. Each of 
these genes is expected to descend from a single gene in the 
common ancestor of Artemisia and Chrysanthemum but might 
have been lost or duplicated in some derived groups. Collapsing 
such duplicates allows the extraction of phylogenetically useful 
markers (Bianconi et al., 2020). Compared with C. seticuspe, 
A. annua was more closely related to other Artemisia species. 
We therefore used A. annua to conduct downstream analyses.

The first step was to clean and trim raw reads using the 
NGS QC toolkit v.2.3.3 (Patel and Jain, 2012). Reads with am-
biguous base calls and reads with >20 % of the bases having 
a quality score <20 were removed. Low-quality bases (quality 
score < 20) were trimmed from the 3ʹ end of each read. Second, 
the cleaned reads were mapped onto A. annua CDS references 
using BOWTIE2 v.1.1.1 (Langmead and Salzberg, 2012) with 
the default settings for pair-end reads. The genomic position 
of each high-quality nuclear SNP was determined using the 
mpileup function in SAMtools (Li et al., 2009) and the con-
sensus variant caller algorithm in BCFtools v.1.3.1 (Li, 2011). 
Given that the ploidy levels of the samples were unknown, all 
samples were treated as diploids, and only SNPs with a max-
imum of two alleles in the sample were retained. This might 
lead to the omission of some loci in allopolyploids but does not 
significantly affect the SNP calling efficiency of the autopoly-
ploids. Treating all samples, even polyploids, as diploids might 
also increase the frequency of allelic loss in polyploids owing 
to unequal alignments between different alleles. However, loss 
of alleles owing to low sequencing depth might be more fre-
quent than loss of loci owing to polyploidy (Olofsson et al., 
2016, 2019). Thus, recent studies have shown that treating all 

samples as diploids has no apparent effect on tree topology in 
low-coverage data (Olofsson et al., 2016, 2019; Bianconi et al., 
2020). For each sample, the median coverage of all SNPs with 
taxon occurrences >50  % was calculated using a Perl script 
(supplemental material 2 of the paper by Olofsson et al., 2019). 
Only loci with coverage between 0.5 and 2 times the median 
coverage and a minimum quality score of 20 were retained. By 
controlling the upper threshold of coverage, reads derived from 
repetitive regions of the nuclear genome or organelle genome 
can be excluded. Finally, we merged individual genotypes using 
BCFtools and filtered SNPs that had been shared less than three 
time using VCFtools v.0.1.14 (Danecek et al., 2011) to exclude 
erroneous SNP sites caused by low coverage and sequencing 
errors. Given that phylogenomic analyses can be biased by the 
reference and the amount of missing data (Bertels et al., 2014; 
Xi et al., 2016; Olofsson et al., 2019), we repeated the mapping 
and filtering with different filtering stringencies and an alterna-
tive reference species (C. seticuspe).

Phylogenetic analyses

The phylogenetic reconstructions of the nuclear SNP data 
set were inferred using supermatrix and supertree methods. 
We used IQtree v.1.6.1 (Nguyen et al., 2015) to build a max-
imum likelihood (ML) tree. Substitution models were selected 
based on the corrected Akaike’s information criterion (AICc) 
calculated in ModelFinder (Kalyaanamoorthy et al., 2017) 
in IQ-TREE. The supertree method was implemented using 
ASTRAL III (Mirarab et al., 2014). Only gene alignments 
≥150 bp and containing ≥50 % of the total number of samples 
were used to build single gene trees. We used RAxML v.8.2.4 
(Stamatakis, 2014) with a GTR+CAT substitution model and 
100 bootstrap pseudoreplicates to infer ML trees for each 
selected gene alignment. To remove poorly resolved topolo-
gies in gene trees, branches with bootstrap support (BS) ≤20 % 
were collapsed using the ‘nw_ed’ function in Newick Utilities 
(Junier and Zdobnov, 2010).

Evolutionary inferences of morphological characters

Here, we investigated these six traits characteristic of dif-
ferent taxonomic ranks of Artemisia (Table 3) and reconstructed 
their ancestral states. The character states of each species were 
obtained from our observations on living plants and/or herb-
arium specimens (AL, ANH, BC, BCN, BM, BORZ, BRNU, 
E, HIB, IBSC, IBK, K, KUN, KYO, P, PE, PR, PRC, TI, TNS 
and UTC; Holmgren et al., 1990) and the literature (Poljakov, 
1961a; Tutin et al., 1976; Korobkov, 1987; Krasnoborov, 1997; 
Shultz, 2006; Ling et al., 2011; Malik and Hayat, 2019). Five of 
these six characters are discrete, except leaf size. An approxi-
mation of leaf size can be obtained by measuring the length 
and width of the leaf and multiplying the length × width × 3/4 
(Cain and Castro, 1959). We transformed this quantitative char-
acter into a discrete character according to Webb (1959): a leaf 
area of <225  mm2 was defined as small leaf, ≥225  mm2 and 
<2025 mm2 as a medium leaf, and ≥2025 mm2 as a large leaf 
(Table 3).

The ML method was used to reconstruct ancestral states of 
these six polymorphic characters implemented in RASP v.3.2 
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(Yu et al., 2015) using the ape package (Paradis and Schliep, 
2019) in R (R Core Team, 2019). The character states are pro-
vided in Table 3.

RESULTS

Nuclear SNP data sets

Using the A. annua CDS genome as reference, considering 
SNPs with <80 % of missing data, we obtained an 615 009 bp 
SNP alignment, including 258 samples (for each sample, 
total SNP number range = 79  582–546  927, 95  % range = 
379  464–400  124, average = 389  794), including 585  386 
parsimony-informative sites. The rates of missing data varied 
across samples, ranging from 11.07 to 87.06 % (95 % range = 
34.89–38.26 %, average = 36.57%). To observe the effect of the 
amount of missing data per SNP, nine gradients of missing data 
rates of 10–90 % were set at intervals of ten. No SNPs were re-
tained when a maximum of 10–40 % missing data was allowed. 
Higher levels of missing data (50–90 %) retained more SNPs 
(Supplementary data Table S2). Similar observations were 
made regarding the numbers of SNPs obtained when using the 
simplified CDS gene of C. seticuspe as the reference genome 
(Supplementary data Table S2).

Using the A. annua CDS genome as reference, considering 
SNPs with <80 % of missing data, we obtained 544 single-gene 
matrices with a length >150 bp and a species coverage >50 %. 
In the same conditions and using the C. seticuspe CDS genome 
as reference, 176 single-gene matrices were obtained.

Phylogenetic relationships

The topologies inferred from the SNP alignments obtained 
from different references (A. annua and C. seticuspe CDS), 
with different reconstruction methods and including different 
levels of missing data (50–90 %) were highly similar (Fig. 2; 
Supplementary data Figs S1–S11). We chose the ML tree in-
ferred from the SNP alignments based on the A. annua CDS 
reference, including 80 % of missing data (Fig. 2) for subse-
quent discussion, because it had the smallest difference from 
all other topologies (the smallest Robinson-Foulds distance; 
Supplementary data Figs S1–S11). Except for the presence of a 
few tips with relatively low supports (39 % < BS < 95 %; Fig. 
2), the topology of this tree was almost totally resolved (BS > 
95 %; Fig. 2).

All ML phylogenetic trees showed that the clade con-
sisting of Ajania quercifolia (= Phaeostigma quercifolium) 
and Artemisiella stracheyi was the sister group of Artemisia 
(Fig. 2; Supplementary data Figs S1–S9), and coalescent 
species trees showed that these two species were nested in 
Artemisia (Supplementary data Figs S10 and S11; local pos-
terior probability (LPP) =  0.93, 0.65). All analyses showed 
that Kaschgaria komarovii was nested in Artemisia and sister 
to Artemisia salsoloides (BS = 100 %; Fig. 2; Supplementary 
data Figs S1–S9). Coalescent species trees also supported that 
K. komarovii was nested within the Artemisia clade, but its exact 
position within Artemisia was unresolved (Supplementary data 
Figs S10 and S11). The clade consisting of all sampled species 
of Artemisia, Kaschgaria, Ajania quercifolia and Artemisiella 
stracheyi was the sister to the Ajania–Chrysanthemum–
Elachanthemum clade (BS = 100  %; Fig. 2; Supplementary 
data Figs S1–S4).

All ML analyses revealed that five of the six subgenera 
of Artemisia previously recognized were not supported as 
monophyletic, with the only exception being the subgenus 
Pacifica (Fig. 2). Among these five subgenera, subgenera 
Artemisia and Absinthium are clearly not monophyletic and 
need to be subdivided greatly, and the other three subgenera, 
Dracunculus, Seriphidium and Tridentatae, would be mono-
phyletic provided that a few species are removed or added 
(Fig. 2). In our new analysis, the genus Artemisia was split 
into eight highly supported clades (Fig. 2; BS = 100  %), 
i.e. Clades 1–8. Among them, Clade 1 and Clade 2 formed 
the earliest-diverging clades in the genus. Clades 3, 4 and 5 
formed a monophyletic group, and together were sister to the 
monophyletic group consisting of Clades 6, 7 and 8. Clades 4 
and 5 were grouped together, and together were sister to Clade 
3. Clades 6 and 7 were grouped together, and together were 
sister to Clade 8 (Fig. 2).

Coalescent analyses also revealed the same eight clades, but 
some relationships among clades were different or unresolved. 
The coalescent species trees showed that Clade 1 (LPP =  1, 
0.44), Clade 2 (LPP = 0.72, 0.62) and Clade 7 (LPP = 1, 0.55) 
formed an early-diverging grade in the genus. The monophy-
letic group consisting of Clades 3, 4 and 5 (LPP = 0.5, 0.63) 
was sister to the clade consisting of Clades 6 and 8 (LPP = 0.93, 
0.65; Supplementary data Figs S10 and S11).

Below, we describe these eight clades of Artemisia according 
to the infrageneric taxonomy including six subgenera (Table 2). 
All the relationships mentioned in the following results were 
strongly supported (BS = 100 %); exceptions are highlighted.

Table 3. Morphological characters and character states of Artemisia used in the present study

No. Character Character states 

1 Pollen type (A) Artemisia type; (B) Anthemis type

2 Synflorescence type (A) Panicle; (B) raceme; (C) corymb

3 Capitulum type (A) Type 1, heterogamous-disciform; (B) Type 2, heterogamous-disciform, receptacle pubescent; 
(C) Type 3, heterogamous-disciform with central floret male; (D) Type 4, homogamous-discoid

4 Life form (A) Annual herb; (B) perennial herb; (C) subshrub/shrub

5 Basal leaf morphology (A) Entire or three-lobed; (B) pinnatisect, segments < 6 pairs; (C) pinnatisect, segments ≥ 6 pairs

6 Basal leaf size (A) < 225 mm2; (B) 225 mm2 ≤ basal leaf size < 2025 mm2; (C) basal leaf size ≥ 2025 mm2
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Clade 1 consisted of the entire subgenus Dracunculus and 
some species from subgenus Artemisia, plus K.  komarovii, 
Artemisia sibirica (= Filifolium sibiricum), A. eriocarpa (= 
Mausolea eriocarpa) and A. eranthema (= Turaniphytum 
eranthemum). Artemisia subgenus Dracunculus was shown to 
be monophyletic provided that A. salsoloides was excluded. 
The Dracunculus clade was sister to A. keiskeana, a species of 
subgenus Artemisia.

Clade 2 included four species of subgenus Artemisia (A. 
hedinii, A. tournefortiana, A. biennis and A. baxoiensis) and A. 
pectinata (= Neopallasia pectinata). Artemisia pectinata was 

sister to A. baxoiensis. This two-species clade was sister to the 
other three-species clade.

Clade 3 contained the sampled species of subgenus Pacifica, 
i.e. A. chinensis (= Crossostephium chinense).

Clade 4 All species of Clade 4 belonged to subgenus 
Artemisia.

Clade 5 included nearly all the species of subgenus 
Seriphidium (except Artemisia juncea, placed in Clade 7), four 
species of subgenus Absinthium (A. anethifolia, A. anethoides 
A. zhaodongensis and A. nakaii) and two species of subgenus 
Artemisia (A. annua and A. carvifolia).
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Clade 6 included the entire North American endemic sub-
genus Tridentatae (sensu Garcia et al., 2011a, b; including 
Picrothamnus and Sphaeromeria), three species of subgenus 
Artemisia (A. flava, A. furcata and A. sodiroi) and three spe-
cies of subgenus Absinthium (A. lagocephala, A. rutifolia and 
A. younghusbandii).

Clade 7 consisted mainly of species of subgenus Absinthium. 
The first exception was A. blepharolepis, a species of subgenus 
Artemisia, which formed the earliest-diverging lineage of Clade 
7. The second exception, Artemisia juncea, a species of sub-
genus Seriphidium, was also nested in Clade 7.

Clade 8. The species of Clade 8 all belonged to subgenus 
Artemisia and could be divided into three subclades (Fig. 2 
Clade 8a–c). Clade 8a consisted of some species from East Asia 
(A. viridissima, A. deversa, A. anomala and A. selengensis) and 
of a subclade comprising all the New World species (A. tilesii, 
A. douglasiana, A. suksdorfii, A. ludoviciana and A. carruthii). 
Clades 8b and 8c were sisters, and together they formed the 
sister group of Clade 8a. All species of Clades 8b and 8c were 
distributed in Eurasia.

Evolution patterns of morphological characters in Artemisia

Ancestral state reconstructions were undertaken using the 
ML tree inferred from the SNP alignments based on the A. 
annua CDS reference, with 80 % missing data (Fig. 2).

Pollen type.  Artemisia pollen type was recovered as the ances-
tral state of the genus Artemisia and is a synapomorphy of the 
latter clade (Fig. 3A; Supplementary data Fig. S12). Anthemis 
pollen type was the ancestral state for the set of taxa we ana-
lysed. The Artemisia pollen type originated independently twice 
from the Anthemis pollen type, once in the lineage leading to 
Artemisia and a second time in the ancestor of Elachanthemum 
(Fig. 3A; Supplementary data Fig. S12).

Synflorescence type (capitula arrangement type).  Panicle 
was recovered as the ancestral state of Artemisia and for all 
the eight clades we identified (Fig. 3B; Supplementary data 
Fig. S13). It was the most common synflorescence type in 
Artemisia (85 % of the taxa sampled in the ingroup). Raceme 
was restricted to only a few lineages of Clade 1 (A. norvegica), 
Clade 6 [A. rutifolia, A. furcata, A. capitata (= Sphaeromeria 
capitata)] and [A. macarthuri (= Sphaeromeria argentea)] and 
nearly half of the species of Clade 7. Corymb was restricted 
to a single lineage in each of Clade 1 [A. sibirica (=Filifolium 
sibiricum) and K.  komarovii] and Clade 6 (A. macarthuri). 
The shift from panicle to raceme or corymb occurred several 
times independently, mostly in the nodes near the tips (Fig. 3B; 
Supplementary data Fig. S13). The Chrysanthemum–Ajania–
Elachanthemum clade shared the corymb synflorescence type. 
In the earliest-diverging group of Artemisia, Ajania quercifolia 
had a corymb synflorescence type and Artemisiella stracheyi a 
raceme.

A Pollen type B Synflorescence type D Life form E Basal leaf form F Basal leaf size
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Anthemis type Panicle
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C Capitulum type
1-Heterogamous-disciform
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3-Heterogamous-disciform with central florets male
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Fig. 3. Evolution of six key morphological characters in Artemisia and its allies, showing the most likely ancestral character characters implemented in RASP 
v.3.2 (Yu et al., 2015) using the maximal likelihood method based on the new inferred tree in Fig. 2. (A) Pollen type. (B) Synflorescence type. (C) Capitulum type. 
(D) Life form. (E) Basal leaf form. (F) Basal leaf size. Detailed probabilities of character states for each node are shown in Supplementary data Figs S12–S17. 

Colours of dots on the nodes and branches indicate the states.
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Capitulum type (floret functional sex spatial arrangement in a 
capitulum).  Four types of capitula are reported in Artemisia, 
namely Type 1, heterogamous-disciform (capitula with outer 
florets female, central florets bisexual and fertile), receptacle 
glabrous; Type 2, heterogamous-disciform, receptacle pubes-
cent; Type 3, heterogamous-disciform with central floret male, 
receptacle glabrous; and Type 4, homogamous-discoid (all 
florets bisexual and fertile), receptacle glabrous (Table 3; Fig. 
3C). Type 1 was the ancestral and most common state (52 % of 
the taxa sampled in the ingroup) of Artemisia. The species of 
Clades 2, 3, 4 and 8 and the early-diverging lineages of Clade 
1 all had Type 1 capitula. Type 2 (13 % of the taxa sampled 
in the ingroup) was restricted to Clades 5, 6 and 7 and dom-
inated in Clade 7. Independent shifts from Type 2 to Type 1 
occurred many times in Clade 7, such as in the lineages leading 
to A. blepharolepis, A. shangnanensis and A. austriaca (Fig. 
3C; Supplementary data Fig. S14). Most species with Type 3 
(16 % of the taxa sampled in the ingroup) occurred in Clade 1, 
except for two species (A. porteri and A. filifolia) with Type 3 
in Clade 6. The shift from Type 1 to Type 4 occurred three times 
independently, in Clade 5, Clade 6 and in the lineage leading 
to Artemisia juncea in Clade 7. Interestingly, Clade 6 included 
all four capitulum types, implying that this lineage might suc-
cessively have experienced a loss of receptacle hairs (Type 2 
to Type 1), a loss of the female function in the bisexual florets 
(Type 1 to Type 3) and a loss of outer female florets (Type 3 to 
Type 4; Fig. 3C; Supplementary data Fig. S14).

Life form.  Perennial herb was the ancestral and most common 
state (64 % of the taxa sampled in the ingroup) of Artemisia, 
followed by shrubs or subshrubs (27 %) and annual or biennial 
herbs (9 %). The shrub life form originated independently at 
least ten times from the perennial herb life form. Apart from 
Clade 2 (all annual herbs) and Clade 8 (all perennial herbs), 
all clades included shrub species. Shrub life form predomin-
ated in Clade 4 and Clade 6 (Fig. 3D; Supplementary data Fig. 
S15). The annual life form had originated independently at least 
seven times from the perennial life form. Apart from Clades 6 
and 8, all the other clades had annual or biennial herbs.

Basal leaf shape.  Pinnatisect leaves was the ancestral and 
most common state (79 % of the taxa sampled in the ingroup) 
of Artemisia. Entire or three-lobed leaves had originated at least 
six times. The species with entire or three-lobed leaves were 
clustered in Clades 1, 3, 6 and 8 (Fig. 3E; Supplementary data 
Fig. S16).

Basal leaf size.  Small leaves (basal leaf size <225 mm2) was 
the ancestral leaf size state of Artemisia. In this study, species 
of Artemisia with large, medium and small leaves accounted 
for 27, 42 and 31 % of the sampled taxa, respectively (Fig. 3F; 
Supplementary data Fig. S17). Large leaves were concentrated 
in Clades 2 and 8 and small leaves in Clades 5 and 6. The tran-
sition from small to medium leaves occurred three times (in 
Clades 1, 4 and 7). The shift from small to large leaves oc-
curred four times, respectively, in one early-diverging lineage 
of Clade 1 (including A. laciniata), in the clade including A. 
tournefortiana in Clade 2, in the earliest-diverging lineage 
of Clade 5 (including A. annua) and in Clade 8 (Fig. 3F; 

Supplementary data Fig. S17). Secondary leaf size transition 
from large to medium occurred at least two times in Clades 5 
and 8 (Fig. 3F).

DISCUSSION

Phylogeny of Artemisia

Nuclear genome SNPs were used for the first time to recon-
struct the phylogeny of Artemisia (Fig. 2). It is well known that 
the nuclear genome SNP data obtained from genome skimming 
based on reference genomes has a high rate of missing data 
owing to low depth. Although the alleles in polyploids can be 
lost owing to unequal alignments between different alleles, the 
loss of alleles owing to low sequencing depth might be more 
frequent than the loss of loci owing to polyploidy (Olofsson et 
al., 2019). Moreover, as another attempt to study the taxonomy 
and evolution of Artemisia, we obtained the transcriptome data 
of 100 species of Artemisia to test the robustness of the pre-
sent phylogeny. The backbone of the topology obtained from 
the phylotranscriptomic analysis (unpublished data) was con-
sistent with the present one based on nuclear genome SNPs. 
Therefore, we think that our current phylogeny based on SNPs 
is reliable.

We confirmed that the ‘Dracunculus’ and ‘Seriphidium’ 
lineages belonged to Artemisia. Seriphidium and Tridentatae, 
although both exhibiting a homogamous-discoid capit-
ulum type, were shown to be two independent lineages, as 
suggested by Rydberg (1916) and McArthur et al. (1981). 
Their similarity in the capitulum type was the result of con-
vergent evolution (McArthur et al., 1981; McArthur and 
Sanderson, 1999; Shultz, 2009). Seven small or monotypic 
genera (Crossostephium, Filifolium, Mausolea, Neopallasia, 
Picrothamnus, Turaniphytum and Sphaeromeria) were shown 
to be nested in Artemisia and should be treated as members of 
Artemisia, as previously suggested (Watson et al., 2002; Vallès 
et al., 2003; Sanz et al., 2008, 2011; Tkach et al., 2008; Garcia 
et al., 2011a, b; Pellicer et al., 2011; Riggins and Seigler, 
2012; Hobbs and Baldwin, 2013). We have summarized the 
major phylogenetic hypotheses focused on the whole genus 
Artemisia (Fig. 4B–E) and identified recurrent issues in pre-
vious phylogenies based on nuclear ribosomal DNA (nrDNA) 
or nrDNA and chloroplast DNA (cpDNA), such as the rela-
tionship between Kaschgaria and Artemisia, the relationships 
among the subgroups in Artemisia, and the mismatch between 
the molecular phylogenies published so far and the present 
infrageneric taxonomy system.

Circumscription of Artemisia

Kaschgaria used to be considered as the sister group of 
the genus Artemisia (Fig. 4; Watson et al., 2002; Sanz et 
al., 2008; Hobbs and Baldwin, 2013). Our analyses showed 
that K.  komarovii was nested in Artemisia and was sister 
to A. salsoloides (Fig. 2; Supplementary data Figs S1–S9); 
K.  komarovii exhibited Artemisia pollen type and had the 
same hair type (stellate) on the corolla, life form (shrub) 
and leaf shape (entire or three-lobed) as its sister species A. 
salsoloides (Fig. 3; Pellicer et al., 2011). Our results supported 
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that Kaschgaria was not an independent genus. A similar top-
ology but with low support was also obtained in two previous 
studies (Tkach et al., 2008; Pellicer et al., 2011). Kaschgaria 
was established by removing Kaschgaria brachanthemoides 
from Artemisia and K. komarovii from Tanacetum (Poljakov, 
1957). Although only one species, K. komarovii, was sampled 
in our study, the monophyly of Kaschgaria was supported 
by previous phylogenies (Pellicer et al., 2011). Based on 
our phylogenetic analyses, we propose to merge Kaschgaria 
with Artemisia, hence restoring the previously applied name, 
Artemisia brachanthemoides C. Winkl., and combining 
K. komarovii into Artemisia became necessary. Given that the 
specific epithet ‘komarovii’ was already used in Artemisia, 
here we propose a new name, Artemisia rubiginosa B.H. 
Jiao & T.G. Gao, nom. nov.; basionym Tanacetum komarovii 
Krasch. & N. Rubtz. (1946); synonym Kaschgaria komarovii 
(Krasch. & Rubtzov) Poljakov (1957). The specific epithet 
‘rubiginosa’ refers to the reddish-brown colour of the mar-
gins of phyllaries.

Our results revealed, for the first time, the close relation-
ship between Ajania quercifolia (= Phaeostigma quercifolium) 
and Artemisiella stracheyi. They formed a strongly supported 
clade (BS = 100 %; Fig. 2; Supplementary data Figs S1–S9), 
implying that the circumscription of the relatively recently es-
tablished genus Phaeostigma (Muldashev, 1981; Huang et al., 
2017) needed to be revised. The clade consisting of the two spe-
cies was sister to Artemisia (BS = 100 %; Fig. 2; Supplementary 
data Figs S1–S9). The result of our coalescence analysis, how-
ever, showed that Artemisiella stracheyi and Ajania quercifolia 
were nested in Artemisia, in independent subclades. Thus, 
their positions were unstable and not resolved (LPP = 0.64, 
0.9; Supplementary data Fig. S10). Our results supported the 
close relationship of the Ajania–Chrysanthemum clade with 
Artemisia (Fig. 4; Watson et al., 2002; Sanz et al., 2008; Tkach 
et al., 2008).

Infrageneric taxonomy of Artemisia

The genus Artemisia consisted of eight highly supported 
clades (Figs 2, 4). Within Artemisia, Clade 1 (subgenus 
Dracunculus and some species of subgenus Artemisia) was the 
earliest-diverging lineage (Tkach et al., 2008; Pellicer et al., 
2011; Malik et al., 2017), followed by the newly discovered 
Clade 2. Clade 3 (subgenus Pacifica) was sister to Clade 4 + 
Clade 5, in contrast to the results presented in the latest study 
of the genus Artemisia (Malik et al., 2017; Fig. 4B). Although 
the sister relationship between Clades 6 and 7 was strongly sup-
ported in our phylogeny (Fig. 2; BS = 100 %), it was not found 
in all our analyses. The ML trees based on lower missing data 
levels (Supplementary data Figs S2 and S3) and coalescence 
trees (Supplementary data Figs S10 and S11) showed that 
Clade 6 was sister to Clade 8, which was similar to the previous 
phylogenies (Fig. 4B–E; Watson et al., 2002; Sanz et al., 2008; 
Tkach et al., 2008; Hobbs and Baldwin, 2013; Malik et al., 
2017). Therefore, although the respective monophyly of Clades 
6, 7 and 8 was strongly supported, the relationships among 
them were not fully resolved, and further research is needed.

Artemisia subg. Pacifica (Clade 3) contains four species 
endemic to littoral habitats of Southeast Asia and littoral 
to subalpine habitats of the Hawaiian Islands (Hobbs and 
Baldwin, 2013). Although we sampled only one species, 
we are inclined to treat A. subg. Pacifica as a monophy-
letic group for the following three reasons. First, previous 
phylogenetic studies have showed that all the four species 
of A. subg. Pacifica formed a strongly supported monophy-
letic clade (Hobbs and Baldwin, 2013; Pellicer et al., 2014). 
Second, all four species of this subgenus share many mor-
phological characters, such as small shrubs, leaves clustered 
near tips, and achenes conspicuously five-ribbed and glan-
dular. Third, the other three species not sampled are endemic 
to Hawaiian Islands, geographically far away from other spe-
cies of Artemisia. Hobbs and Baldwin (2013) suggested that 
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names of the simplified trees correspond to the names of the eight clades shown in Fig. 2.
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one long-distance dispersal event from Southeast Asia to the 
Hawaiian Islands could be responsible for the individualiza-
tion of this subgenus. Thus, we think it is appropriate to treat 
this subgenus as monophyletic.

The first discovery of Clades 2 and 4. All species in Clade 2, 
namely A. hedinii, A. tournefortiana, A. biennis, A. baxoiensis 
and A. pectinata (= Neopallasia pectinata), were also sampled 
in previous phylogenies (e.g. Malik et al., 2017), but they usu-
ally had an isolated position in the tree or clustered with other 
species with low support (Fig. 4B, C, E, F; Jiao et al., 2019). 
Our results showed, for the first time, the close relationship 
among these annual herbs. (Fig. 2). And the species belonging 
in Clade 4 formed a polyphyletic group with unresolved posi-
tions in previous studies (Tkach et al., 2008; Malik et al., 2017; 
Fig. 4B, E). Our phylogenomic results discovered a highly sup-
ported Clade 4, which was sister to Clade 5 (Fig. 2).

The close relationship between the subgenus Tridentatae 
and some species of subgenus Absinthium (A. lagocephala, 
A. rutifolia and A. younghusbandii). Species of subgenus 
Tridentatae are endemic to the desert shrublands of western 
North America. Owing to insufficient sampling and markers 
without strong resolution power, the origin of the subgenus 
Tridentatae had remained mysterious for a long time. The sub-
genus Tridentatae used to be considered as closely related to 
subgenus Seriphidium because they both have homogamous 
capitula (Ling, 1991a), whereas other researchers suggested 
that they originated independently and that subgenus Artemisia 
is the ancestral stock for subgenus Tridentatae (McArthur 
et al., 1981; Garcia et al., 2011b). Our results showed that 
A. lagocephala, A. rutifolia and A. younghusbandii formed 
the earliest-diverging lineage of Clade 6, grouping with sub-
genus Tridentatae, in contrast to previous results. Malik et al. 
(2017), based on ITS + ETS, showed that the clade consisting 
of A. lagocephala, A. rutifolia and A. younghusbandii (PP = 
0.94) was sister to some species here included in Clade 8 with 
medium support (PP = 85; Fig. 4 B). Artemisia lagocephala, 
A. rutifolia and A. younghusbandii were distributed mainly 
in the steppes or forest steppes of Northeastern Asia. The 
Beringian species A. flava and A. furcata formed an inde-
pendent lineage sister to all the New World species in Clade 
6 (Fig. 2). Our phylogeny suggested a possible scenario about 
the history of subgenus Tridentatae: the ancestors of subgenus 
Tridentatae dispersed from Eurasia to North America through 
Northeastern Asia (more specifically, through the Bering Land 
Bridge), then diversified in similar new habitats of western 
North America.

Relationships among species and within each clade of 
Artemisia.  In this study, the interspecific relationships in sub-
genera Dracunculus and Seriphidium, which probably under-
went rapid radiation (Garcia et al., 2011b; Pellicer et al., 2011; 
Malik et al., 2017), and in all the other clades were clearly re-
solved (Fig. 2). Some clades also showed distinct internal struc-
tures, and the positions of some taxonomically difficult taxa 
were resolved, e.g. the species of subgenus Artemisia in Clades 
2 and 4; and the group of A. lagocephala, A. rutifolia and A. 
younghusbandii.

The core Dracunculus clade in Clade 1 was split into two 
lineages, one of them being the A. dracunculus lineage (= clade 
2 in fig. 2 of the paper by Pellicer et al., 2011). The phylo-
genetic placement of the two morphologically unique species, 
Artemisia eriocarpa (= Mausolea eriocarpa) and Artemisia 
eranthema (= Turaniphytum eranthemum), was fully resolved, 
for the first time. They were sister to each other, and this two-
species lineage diverged after the A. dracunculus complex lin-
eage (Fig. 2; Clade 1, BS = 100 %).

Clade 5 was composed of three highly supported lineages, 
corresponding to the three subgenera Seriphidium, Absinthium 
and Artemisia, in coherence with previous results (Pellicer et 
al., 2014; Malik et al., 2017). Our results suggested that sub-
genus Artemisia (including A. annua and A. carvifolia) was 
the earliest-diverging lineage, and that subgenus Absinthium 
(including A. anethifolia, A. anethoides, A. zhaodongensis 
and A. nakaii) was sister to subgenus Seriphidium (Fig. 2; 
Supplementary data Fig. S10).

The monophyly of Clade 8 was proposed in the previous 
phylogenies (Hobbs and Baldwin, 2013; Malik et al., 2017; 
Fig. 4). Our new phylogeny strongly supported Clade 8 as 
monophyletic (BS = 84 %; LPP = 1). Furthermore, we newly 
identified three main lineages within the latter clade (Fig. 2, 
Clade 8a–c, BS = 100 %).

Conflicts between phylogenies and the traditional taxonomy of 
Artemisia

Previous studies revealed conflicts between phylogenies and 
the traditional taxonomy of Artemisia to some extent (Watson 
et al., 2002; Hobbs and Baldwin, 2013; Malik et al., 2017). Our 
new analyses revealed that five of the six subgenera of Artemisia 
previously recognized were not supported as monophyletic. The 
only exception is the subgenus Pacifica (Fig. 2). We here com-
pared our eight-clade phylogenetic framework (Fig. 2) with the 
infrageneric taxonomy including six subgenera (Fig. 4; Table 
2). The subgenus Artemisia was shown to be polyphyletic (Fig. 
2). With the exception of Clade 3 (including only subgenus 
Pacifica), all the other seven clades included some species of 
subgenus Artemisia (Fig. 2). Among them, Clade 8 and two 
newly discovered clades, Clades 2 and 4, were all composed of 
the species of subgenus Artemisia. Clade 1 was dominated by 
the species of subgenus Dracunculus, also including some spe-
cies from subgenus Artemisia. Clade 5 was dominated by the 
species of subgenus Seriphidium, also including species from 
subgenera Absinthium and Artemisia. Clade 6 was dominated 
by species of subgenus Tridentatae, also including species from 
subgenera Absinthium and Artemisia. Clade 7 was dominated 
by the species of subgenus Absinthium, including species from 
subgenera Seriphidium and Artemisia. The phylogenetic frame-
work and the evolutionary patterns of morphological characters 
can be used as an important reference for updating the subgen-
eric taxonomy of Artemisia.

Morphological evolution within Artemisia

Pollen type.  The Artemisia pollen type, characterized by 
weakly ornamented pollen grains, was the ancestral state of all 
the sampled species of Artemisia and of Ajania quercifolia (Fig. 
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3; Supplementary data Fig. S12). All the sampled Artemisia 
species and all segregated genera nested in Artemisia shared 
this feature. This state was derived from the state ‘Anthemis 
pollen type’, corresponding to more ornamented, echinate 
pollen grains, which was displayed by most members of the 
tribe Anthemideae. Besides, Elachanthemum also experienced 
a transition from the Anthemis pollen type to the Artemisia 
pollen type (Fig. 3A; Supplementary data Fig. S12). Artemisia 
pollen type was highly consistent among Artemisia species and 
could be used to circumscribe the genus Artemisia (Fig. 3A; 
Sanz et al., 2008), indicating that natural selection might have 
had a strong force on this character, which is associated with 
the anemophilous pollination mode.

Synflorescence type.  Synflorescence type was diagnostic 
for Artemisia, although the consistency of this character was 
slightly lower than for the pollen type. Panicle was the most 
common synflorescence type in Artemisia and was recovered as 
the ancestral state of the genus. The panicle state originated from 
an ancestor with corymbose synflorescence. Synflorescence 
type had been used for taxonomic purposes, particularly to de-
fine generic limits. Many genera were described based mainly 
on synflorescence type (e.g. Crossostephium, Filifolium and 
Picrothamnus). According to recent molecular phylogenetic 
studies, these genera were reduced into Artemisia (Watson et 
al., 2002; Sanz et al., 2008; Hobbs and Baldwin, 2013). In 
our phylogeny, species with a corymbose synflorescence type 
were all nested in Clade 1, whereas species with a racemose 
synflorescence type were all nested in Clades 6 and 7 (Fig. 
3B; Supplementary data Fig. S13). Racemes, like compressed 
corymbs, represent the reduction trend in the evolution of 
Artemisia synflorescences and occurred mostly in the shallow 
nodes of the Artemisia phylogenetic tree, which could be re-
garded as local adaptations. We also noticed that the species 
in question were mostly distributed in high-elevation regions 
(e.g. A. umbelliformis and A. pedemontana) or extremely arid 
regions [A. macarthuri (= Sphaeromeria argentea) and A. 
spinescens (= Picrothamnus desertorum)]. Species displaying 
the panicle synflorescence type, contrary to the species with 
racemose synflorescences, seemingly were not able to adapt to 
habitats with low temperatures or lack of water. Therefore, re-
duction of branching in synflorescences seemed to have been an 
adaptation of Artemisia species to extreme habitats.

Capitulum type.  Many Artemisia species and many allies of 
Artemisia displayed the same capitulum type (Type 1; Table 
3; Fig. 3C), hence this character could not be used to define 
the genus Artemisia. However, capitulum type was the most 
important character for its infrageneric taxonomy (Fig. 3C; 
Poljakov, 1961a; Tutin et al., 1976; Shultz, 2006; Ling et al., 
2011). The four capitulum types used in this study corres-
ponded well to Besser’s taxonomy into four sections (Besser, 
1829, 1832, 1834, 1835; Table 1). The current taxonomy of 
Artemisia including six subgenera was based exclusively 
on two traits, capitulum type and distribution (Table 2). This 
taxonomy, however, did not correspond well to the clades re-
covered in our phylogeny, in which five of the six subgenera 
were shown to be para- or polyphyletic (Fig. 2). Our analysis 
(Fig. 3C; Supplementary data Fig. S14) highlighted the high 
plasticity of capitulum type in Artemisia. For instance, Clade 6 

included all four types of capitula (Fig. 3C; Supplementary data 
Fig. S14). The evolutionary history of capitulum type is much 
more complicated than previously thought (e.g. Ling, 1982), 
and this trait alone could not be used to classify taxa within 
Artemisia.

Life form.  Perennial herb was reconstructed as the ancestral life 
form state of Artemisia and also the ancestral state of its allies 
(Fig. 3D). This state had shifted independently to annual herb 
and shrub seven and ten times, respectively, indicating that the 
life form of Artemisia has been highly labile (Fig. 3D). A similar 
trend was observed in other taxa of Asteraceae (Beaulieu et al., 
2013; Jara-Arancio et al., 2018; Andrés-Sánchez et al., 2019). 
Some studies indicated that there might be only a few genes in-
volved in controlling the transition from herbaceous to woody 
in Asteraceae (Groover, 2005; Lens et al., 2012). Therefore, 
such frequent habit changes in Artemisia could be understood 
as adaptations to special habitats. In general, among the eight 
clades, five were dominated by a single type of life form. For 
example, Clade 2 consisted of annual herbs, whereas Clades 3, 
4 and 6 included mostly shrubs, and Clade 1 consisted mostly of 
perennial herbs. Therefore, the life form could still be considered 
a useful character in the infrageneric taxonomy of Artemisia.

Leaf shape.  The ancestral leaf state of both Artemisia and the 
other Anthemideae genera was reconstructed as pinnatisect 
leaves (Fig. 3E; Supplementary data Fig. S16). Some species 
with entire or three-lobed leaves were reported in Artemisia, 
e.g. A. dracunculus and A. ludoviciana. This leaf shape state 
evolved independently at least six times. Despite multiple ori-
gins, the distribution of this character state was not random and 
was concentrated in some lineages, such as the A. dracunculus 
complex clade in Clade 1, most species in Clade 6 and the 
whole of Clade 8a (Fig. 3E). Therefore, leaf shape could be 
used to assist in the infrageneric taxonomy of Artemisia. 
Increasing the number of leaf lobes could help plants dissipate 
heat in hot environments (Vogel, 1968). Many Artemisia spe-
cies were widely distributed in dry areas with a hot growing 
season. We speculated that species with pinnatisect leaves 
might have higher fitness in these dry and hot areas. In contrast, 
most Artemisia species with a low number of leaf lobes grew in 
relatively closed and humid environments, such as forest mar-
gins and riverbanks (e.g. A. viridissima), where heat dissipation 
was no longer a strong selection factor.

Leaf size.  The ancestral leaf size of Artemisia was recon-
structed as small. The transition from small to medium leaves 
occurred three times, and four transitions to large leaves were 
inferred (Fig. 3F). Leaf size also reflected the adaptation of the 
plant to the environment. Smaller leaves were beneficial to re-
duce leaf temperature instantly and avoid heat damage (Vogel, 
1970), thus Artemisia species with smaller leaves could be 
better adapted to dry and hot environments. Most species with 
large leaves grew in relatively humid environments, such as 
forest margins and riverbanks, such as most species in Clade 8. 
Although leaf size had a relatively high environmental plasti-
city, it still had diagnostic value for the infrageneric taxonomy 
of Artemisia. For example, most species in Clade 6 possessed 
small leaves, and most species in Clade 8 displayed large 
leaves.
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Although the evolutionary history of capitulum types was 
more complex than previously thought (e.g. Ling, 1982), and 
despite the fact that the subgeneric taxonomy based on this 
trait did not agree well with our molecular phylogeny (Fig. 
2) and the other molecular phylogenies (Watson et al., 2002; 
Hobbs and Baldwin, 2013; Malik et al., 2017), it was still 
the most important character in the infrageneric taxonomy of 
Artemisia. Other characters, such as life form, leaf shape and 
leaf size, were consistent in large or small lineages within 
Artemisia. For instance, all the species in Clade 2 were an-
nual herbs, all the species in Clade 6 were shrubs, and most 
species in Clade 8 had large leaves (Fig. 3). Therefore, given 
that the monophyletic subgenera could not be established 
based only on capitulum type and geographical distribution, 
the addition of more characters, such as life type and leaf 
shape, could be beneficial for updating the subgeneric tax-
onomy of Artemisia.

Revised infrageneric taxonomy of Artemisia

The present phylogenetic framework and morphological evo-
lution patterns revealed in this study showed that the existing 
infrageneric taxonomy of Artemisia consisting of six subgenera 
did not reflect the phylogenetic relationships well. The eight-
clade phylogenetic framework could be used as the basis for 
updating the infrageneric taxonomy of Artemisia. Here, we 
propose a new framework for the infrageneric taxonomy of 
Artemisia, with eight recognized subgenera to accommodate 
the new results. Considering that each morphological character 
individually is not enough to circumscribe the eight subgenera, 
we have provided a table to compare the taxonomic relevance 
of the different morphological character combinations (Table 
4). Given that the focus of the present research is the framework 
of the infrageneric taxonomy of Artemisia, not the taxonomic 
details of each of its eight subgenera, we will discuss these in 
other papers and books.

Artemisia L. subgenus Dracunculus (Besser) Rydb. Perennial 
herbs or shrubs, occasionally annual herbs; leaves of various 

shapes and sizes; synflorescence panicle, rarely raceme or 
corymb; capitula heterogamous-disciform with central florets 
male (Type 3) or heterogamous-disciform (Type 1).

It corresponds to Clade 1 revealed in this study (Fig. 2). It 
is used to accommodate the expanded subgenus Dracunculus 
(Besser) Rydb., including the former subgenus Dracunculus 
and some herbaceous species of the former subgenus 
Artemisia.

Artemisia L. subgenus Pectinata B.H. Jiao & T.G. Gao subg.
nov. Annuals or biennials; leaves pinnatisect, large or small; 
synflorescence panicle; capitula heterogamous-disciform 
(Type 1).

It corresponds to Clade 2 revealed in this study (Fig. 2). 
We propose to treat this clade as a new subgenus, Artemisia 
subgenus Pectinatae B.H. Jiao & T.G. Gao subg. nov. TYPE: 
Artemisia pectinata Pall.

Artemisia L. subgenus Pacifica C.R. Hobbs & B.G. 
Baldwin Shrubs; leaves pinnatisect, large; synflorescence pan-
icle; capitula heterogamous-disciform (Type 1).

It corresponds to Clade 3 revealed in this study (Fig. 2).

Artemisia L. subgenus Ponticae B.H. Jiao & T.G. Gao 
subg. nov. Subshrubs or shrubs; leaves pinnatisect, large; 
synflorescence panicle; capitula heterogamous-disciform 
(Type 1).

It corresponds to Clade 4 revealed in this study (Fig. 2).
We propose to treat this clade as a new subgenus, Artemisia 

subgenus Ponticae B.H. Jiao & T.G. Gao subg. nov. TYPE: 
Artemisia pontica L.

Artemisia L. subgenus Seriphidium Besser ex Less. Annuals, 
biennials, perennials or subshrubs; leaves pinnatisect, leaf size 
varies from small to large; synflorescence panicle; capitula 
heterogamous-disciform (Type 1), heterogamous-disciform, re-
ceptacle pubescent (Type 2) or homogamous-discoid (Type 4).

It corresponds to Clade 5 revealed in this study (Fig. 2). It 
is used to accommodate the expanded subgenus Seriphidium 

Table 4. Morphological comparison of the eight subgenera of Artemisia

Subgenus Synflorescence type Receptacle 
hair 

Outer female 
florets 

Central florets Life form Basal leaf morphology Basal leaf size 

Dracunculus Panicle, rarely 
raceme or corymb

Absent Present Hermaphrodite, but 
female sterile

Perennial herb or shrub, 
rarely annual herb

Pinnatisect, rarely 
entire or three-lobed

Medium, rarely 
big or small

Pectinatae Panicle Absent Present Hermaphrodite Annual herb Pinnatisect Big or small

Pacifica Panicle Absent Present Hermaphrodite Shrub Pinnatisect Small

Ponticae Panicle Absent Present Hermaphrodite Perennial herb or shrub Pinnatisect Medium, rarely 
big or small

Seriphidium Panicle Present Absent Hermaphrodite Perennial herb, rarely 
annual herb or shrub

Pinnatisect Small, rarely 
medium

Tridentatae Panicle, rarely 
raceme

Present Absent Hermaphrodite Shrub, rarely perennial 
herb

three-lobed, rarely 
pinnatisect

Small, rarely 
medium

Absinthium Panicle, rarely 
raceme

Present Present Hermaphrodite Perennial herb, rarely 
annual herb or shrub

Pinnatisect Small or medium, 
rarely big

Artemisia Panicle Absent Present Hermaphrodite Perennial herb Pinnatisect, rarely 
entire or three-lobed

Big or medium
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Besser ex Less., including the former subgenus Seriphidium 
(except A. juncea group) and annual herbaceous species of the 
former subgenus Artemisia (A. annua and A. carvifolia) and sub-
genus Absinthium (A. anethifolia, A. anethoides and A. nakaii).

Artemisia L. subgenus Tridentatae (Rydb.) McArthur Shrubs 
or subshrubs; leaves entire or three-lobed, rarely pinnatisect, 
leaves small; synflorescence panicle, raceme or corymb; capitula 
heterogamous-disciform (Type 1), heterogamous-disciform, re-
ceptacle pubescent (Type 2), heterogamous-disciform with cen-
tral florets male (Type 3) or homogamous-discoid (Type 4).

It corresponds to Clade 6 revealed in this study (Fig. 2). It 
is used to accommodate the expanded subgenus Tridentatae 
(Rydb.) McArthur, including all species of the former sub-
genus Tridentatae, the Northeastern Asian species of subgenus 
Absinthium (A. lagocephala, A. rutifolia and A. younghusbandii) 
and some species of subgenus Artemisia from the Beringian 
and the New World.

Artemisia L. subgenus Absinthium (Mill.) Less. Annuals, bi-
ennials, perennials or subshrubs; leaves pinnatisect, medium; 
synflorescence panicle or raceme; capitula heterogamous-
disciform, receptacle pubescent (Type 2) or heterogamous-
disciform (Type 1).

It corresponds to Clade 7 revealed in this study (Fig. 2). 
It is used to accommodate the redefined Artemisia subgenus 
Absinthium (Mill.) Less., including the A. juncea group and 
A. blepharolepis, excluding A. anethifolia, A. anethoides, A. 
nakaii, A. lagocephala, A. rutifolia and A. younghusbandii.

Artemisia L. subgenus Artemisia Perennial herbs; leaves 
pinnatisect, occasionally entire or three-lobed, large, occasion-
ally medium; synflorescence panicle; capitula heterogamous-
disciform (Type 1).

It corresponds to Clade 8 revealed in this study (Fig. 2). 
It is used to accommodate the redefined Artemisia subgenus 
Artemisia, excluding the species now belonging to subgenera 
Dracunculus, Pectinatae, Ponticae, Seriphidium, Tridentatae 
and Absinthium.

The broad sampling and the strong phylogenetic reso-
lution obtained in our study warrant that this new subgeneric 
taxonomy is robust and should last over time. However, it is 
important to be aware that the addition of further species that 
could be analysed within the same phylogenetic framework 
(e.g. using the same nuclear SNPs data set) would allow the 
systematic value of these morphological characters to be con-
firmed and/or refined.

CONCLUSIONS

Overall, we revealed eight highly supported clades in Artemisia 
and suggested that the genus Kaschgaria should be merged into 
Artemisia. The morphological characters traditionally used for 
the infrageneric taxonomy of Artemisia do not match the new 
phylogenetic tree. They originated independently more than 
once and could not be used alone to define the eight clades 
revealed in the new phylogeny. We proposed a revised frame-
work for the subgeneric taxonomy of Artemisia to accommo-
date the new results. These results laid a foundation for further 

systematic and evolutionary studies on Artemisia and extensive 
utilization of its rich biodiversity resources.

SUPPLEMENTARY DATA

Supplementary data are available online at https://academic.
oup.com/aob and consist of the following. Table S1: taxa in-
cluded in this study. Table S2: the number of single nucleotide 
polymorphisms obtained from different missing levels. Figure 
S1: maximum likelihood phylogenetic tree obtained from the 
alignment of nuclear single nucleotide polymorphisms allowing 
for >50 % missing data per marker obtained by mapping low-
depth whole-genome sequencing data reads to the Artemisia 
annua simplified coding sequences. Figure S2: maximum like-
lihood phylogenetic tree obtained from the alignment of nuclear 
single nucleotide polymorphisms allowing for >60 % missing 
data per marker obtained by mapping low-depth whole-genome 
sequencing data reads to the Artemisia annua simplified coding 
sequences. Figure S3: maximum likelihood phylogenetic 
tree obtained from the alignment of nuclear single nucleotide 
polymorphisms allowing for >70 % missing data per marker 
obtained by mapping low-depth whole-genome sequencing 
data reads to the Artemisia annua simplified coding sequences. 
Figure S4: maximum likelihood phylogenetic tree obtained 
from the alignment of nuclear single nucleotide polymorphisms 
allowing for >90 % missing data per marker obtained by map-
ping low-depth whole-genome sequencing data reads to the 
Artemisia annua simplified coding sequences. Figure S5: max-
imum likelihood phylogenetic tree obtained from the align-
ment of nuclear single nucleotide polymorphisms allowing for 
>50 % missing data per marker obtained by mapping low-depth 
whole-genome sequencing data reads to the Chrysanthemum 
seticuspe simplified coding sequences. Figure S6: maximum 
likelihood phylogenetic tree obtained from the alignment of 
nuclear single nucleotide polymorphisms allowing for >60 % 
missing data per marker obtained by mapping low-depth 
whole-genome sequencing data reads to the Chrysanthemum 
seticuspe simplified coding sequences. Figure S7: maximum 
likelihood phylogenetic tree obtained from the alignment of 
nuclear single nucleotide polymorphisms allowing for >70 % 
missing data per marker obtained by mapping low-depth 
whole-genome sequencing data reads to the Chrysanthemum 
seticuspe simplified coding sequences. Figure S8: maximum 
likelihood phylogenetic tree obtained from the alignment of 
nuclear single nucleotide polymorphisms allowing for >80 % 
missing data per marker obtained by mapping low-depth 
whole-genome sequencing data reads to the Chrysanthemum 
seticuspe simplified coding sequences. Figure S9: maximum 
likelihood phylogenetic tree obtained from the alignment of 
nuclear single nucleotide polymorphisms allowing for >90 % 
missing data per marker obtained by mapping low-depth 
whole-genome sequencing data reads to the Chrysanthemum 
seticuspe simplified coding sequences. Figure S10: multigene 
coalescent species tree estimated from 540 nuclear gene trees 
based on single nuclear polymorphism alignments obtained 
with Artemisia annua simplified coding sequences as refer-
ence using ASTRAL v.5.6.3. Figure S11: multigene coales-
cent species tree estimated from 540 nuclear gene trees based 
on single nuclear polymorphism alignments obtained with 
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Chrysanthemum seticuspe simplified coding sequences as ref-
erence using ASTRAL v.5.6.3. Figure S12: evolution of pollen 
type in Artemisia and allies, showing the ancestral character 
traits implemented in RASP v.3.2 using the maximal likelihood 
method based on the new inferred tree in Fig. 2. Figure S13: evo-
lution of synflorescence type in Artemisia and allies, showing 
the ancestral character traits implemented in RASP v.3.2 using 
the maximal likelihood method based on the new inferred tree 
in Fig. 2. Figure S14: evolution of capitulum type in Artemisia 
and allies, showing the ancestral character traits implemented 
in RASP v.3.2 using the maximal likelihood method based on 
the new inferred tree in Fig. 2. Figure S15: evolution of life 
form in Artemisia and allies, showing the ancestral character 
traits implemented in RASP v.3.2 using the maximal likelihood 
method based on the new inferred tree in Fig. 2. Figure S16: 
evolution of basal leaf form in Artemisia and allies, showing 
the ancestral character traits implemented in RASP v.3.2 using 
the maximal likelihood method based on the new inferred tree 
in Fig. 2. Figure S17: evolution of basal leaf size in Artemisia 
and allies, showing the ancestral character traits implemented 
in RASP v.3.2 using the maximal likelihood method based on 
the new inferred tree in Fig. 2.
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