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• Background and Aims Species of the genus Buddleja in Asia are mainly distributed in the Sino-Himalayan re-
gion and form a challenging taxonomic group, with extensive hybridization and polyploidization. A phylogenetic 
approach to unravelling the history of reticulation in this lineage will deepen our understanding of the speciation 
in biodiversity hotspots.
• Methods For this study, we obtained 80 accessions representing all the species in the Asian Buddleja clade, 
and the ploidy level of each taxon was determined by flow cytometry analyses. Whole plastid genomes, nuclear 
ribosomal DNA, single nucleotide polymorphisms and a large number of low-copy nuclear genes assembled from 
genome skimming data were used to investigate the reticulate evolutionary history of Asian Buddleja. Complex 
cytonuclear conflicts were detected through a comparison of plastid and species trees. Gene tree incongruence was 
also analysed to detect any reticulate events in the history of this lineage.
• Key Results Six hybridization events were detected, which are able to explain the cytonuclear conflict in Asian 
Buddleja. Furthermore, PhyloNet analysis combining species ploidy data indicated several allopolyploid speci-
ation events. A strongly supported species tree inferred from a large number of low-copy nuclear genes not only 
corrected some earlier misinterpretations, but also indicated that there are many Asian Buddleja species that have 
been lumped mistakenly. Divergent time estimation shows two periods of rapid diversification (8–10 and 0–3 
Mya) in the Asian Buddleja clade, which might coincide with the final uplift of the Hengduan Mountains and 
Quaternary climate fluctuations, respectively.
• Conclusions This study presents a well-supported phylogenetic backbone for the Asian Buddleja species, elu-
cidates their complex and reticulate evolutionary history and suggests that tectonic activity, climate fluctuations, 
polyploidization and hybridization together promoted the diversification of this lineage.

Key words: Buddleja, phylogenomics, reticulate evolution, polyploidy, plastid genome, low-copy nuclear gene.

INTRODUCTION

Reticulation in evolution can occur as a result of hybridiza-
tion, introgression or lateral gene transfer (Mallet et al., 2016; 
Suvorov et al., 2022) and is believed to be one of the main 
driving forces in the diversification of angiosperms (Mallet 
et al., 2016; Debray et al., 2022; Suvorov et al., 2022). 
Hybridization often occurs in lineages that have undergone re-
cent radiations when their habitats undergo dramatic change, 
such as during climatic fluctuations and anthropogenic disturb-
ance (Rieseberg and Willis, 2007; Abbott et al., 2013; Estep et 
al., 2014). Allopolyploids arise from the integration of distinct 
parental chromosome sets (Van de Peer et al., 2017), which will 
lead to a highly dynamic genome (Pontes et al., 2004; Zhou 
et al., 2011) and might help plants to survive and thrive in 

precarious environmental conditions (Estep et al., 2014; Soltis 
et al., 2014; Edgeloe et al., 2022). Hybridization can also result 
in adaptive introgression, allowing species to adapt to new en-
vironments (Owens et al., 2016; Ma et al., 2019; Oziolor et al., 
2019). Given that 25 % of all plant species are thought to have 
been involved in interspecific hybridization (Mallet, 2005), the 
construction of phylogenetic networks is particularly important 
for understanding the evolutionary history of plant species, 
especially that of recently radiated taxa (Mallet et al., 2016; 
Goulet et al., 2017).

Polyploidy (either allopolyploidy or autopolyploidy) is 
prevalent in angiosperms (Van de Peer et al., 2017). Polyploids, 
or plants that have undergone whole-genome duplications 
(WGDs), were once considered to be ‘evolutionary dead ends’ 
or ‘evolutionary noise’, because WGDs were thought to have 
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only limited long-term evolutionary potential (Stebbins, 1950). 
Indeed, one study based on phylogenetic approaches has shown 
that polyploids have higher extinction rates and lower speci-
ation rates than their diploid relatives (Mayrose et al., 2011). 
However, many recent studies have demonstrated that poly-
ploidy is positively correlated with species adaptation and di-
versification (Levin and Soltis, 2018; Ren et al., 2018; Han et 
al., 2020), and WGD is now recognized as a major evolutionary 
force in plants (Soltis et al., 2014; Van de Peer et al., 2017; Wu 
et al., 2020).

Phylogenetic study of neopolyploids has proved to be chal-
lenging (Rothfels, 2021), because many polyploids arise 
from hybridization (allopolyploids; Funk and Omland, 2003; 
Rieseberg and Willis, 2007; Barker et al., 2016). An allopoly-
ploid typically exhibits reproductive isolation from its parents, 
and allopolyploidy is generally considered to be a common 
mode of speciation (Ramsey and Schemske, 2002; Rieseberg 
and Willis, 2007; Abbott et al., 2013). Despite advances in the 
use of genomic data to resolve reticulate evolution in allopoly-
ploid species (Guo et al., 2019; Jia et al., 2022), building a 
comprehensive evolutionary history for large taxonomic groups 
remains difficult (Diaz-Perez et al., 2018; Rothfels, 2021; 
Debray et al., 2022; Suissa et al., 2022).

Buddleja L. (Scrophulariaceae) are typically shrubs or 
small trees (Norman, 2000). Plants in this genus are known 
as butterfly bushes owing to their attractiveness to butterflies 
(Stuart, 2006) and are widely cultivated and important compo-
nents in horticulture and human culture (Fig. 1; Tallent-Halsell 
and Watt, 2009). Some species (e.g. Buddleja davidii; Tallent-
Halsell and Watt, 2009) have escaped cultivation and have be-
come problematic and invasive in natural areas. In China, the 
genus is known as ‘Zui Yu Cao’, and the leaves of certain spe-
cies (e.g. B. lindleyana and B. curviflora; Houghton, 1984) are 
used in fishing owing to their toxicity to fish. Some species 
have culinary applications and are used as medicines (e.g. B. 
officinalis, B. asiatica, B. davidii and B. lindleyana; Houghton, 
1984; Li et al., 2020; Yan XX et al., 2021).

The genus Buddleja comprises ~90 species in the tropical, 
subtropical and warm-temperate areas of Africa, Asia and North 
and South America (Norman, 2000; Chau et al., 2017). The 
Asian Buddleja clade is well supported as being monophyletic 
(Chau et al., 2017). In descriptive taxonomy, this is a notori-
ously difficult group of species, which is reflected in the fre-
quent changes to species delimitation in the group (Marquand, 
1930; Leeuwenberg, 1979; Li, 1982, 1988; Bao, 1983; Zhang 
et al., 2014; Ge et al., 2018) and controversial taxonomic sys-
tems (Bentham, 1846; Marquand, 1930; Leeuwenberg, 1979; 
Li, 1982; Li and Leeuwenberg, 1996; Norman, 2000; Oxelman, 
2004; Chau et al., 2017). The Flora of China, in addition to sev-
eral other studies, currently list 27 species in the Asian Buddleja 
clade (Li and Leeuwenberg, 1996; Norman, 2000; Liu and 
Peng, 2004, 2006; Zhang et al., 2014; Zhu et al., 2014; Ge et 
al., 2018). The Sino-Himalayan region of Southeast Asia is the 
centre of diversity for Asian Buddleja, harbouring 25 of the 27 
Asian Buddleja species (all except for B. curviflora and B. ja-
ponica; Wu et al., 2010). The tectonic activity and climate fluc-
tuations that took place in the Sino-Himalayan region during 
the Miocene are believed to have played a crucial role in the 
diversification of plant species in this region (Ding et al., 2020). 
However, whether the diversification of the Asian Buddleja is 

related to those palaeoclimatic and geological events has not 
yet been investigated.

Asian Buddleja species show a high proportion of polyploid 
species, and different ploidy levels are observed, including 
diploids, tetraploids, hexaploids, dodecaploids, 16-ploids and 
24-ploids (2n = 38, 76, 114, 228, 300 and 456; Chen et al., 
2007). Polyploidy might facilitate the adaptation of Buddleja 
to an alpine environment and promote niche diversification and 
speciation in the genus in the Sino-Himalayan region (Chen et 
al., 2007).

Interspecies hybridization is common in Buddleja, owing to 
overlaps in distribution, flowering period and pollinators be-
tween species (Liao et al., 2021). Twenty-five natural hybrids 
of Buddleja have been inferred based on morphological char-
acteristics, 19 from the Neotropics and six from the Old World 
taxa (Norman, 2000). Two natural Asian Buddleja hybrids have 
been confirmed with both morphological and molecular evi-
dence (Liao et al., 2015, 2021). It is thought that hybridiza-
tion might promote speciation via allopolyploid speciation or 
via ‘adaptive introgression’ allowing the plants to adapt to new 
ecological niches (Abbott et al., 2013). Given that polyploidy, 
hybridization and cytonuclear conflicts are common in Asian 
Buddleja (Chen et al., 2007; Chau et al., 2017), events leading 
to reticulation might play an important role in the diversification 
of this lineage. Morphological continuity, low sequence differ-
entiation and hybridization or polyploidization between the 
newly diverged lineages can exacerbate the difficulties facing 
taxonomic and polygenetic research (Stoughton et al., 2018). 
Previous studies, although revealing the phylogenetic relation-
ships between Buddleja species worldwide, failed to cover all 
Asian species and did not explain the observed cytonuclear 
conflicts (Chau et al., 2017, 2018). More informative molecular 
sequences and extensive sampling are urgently needed to illus-
trate the phylogenetic structure and complex reticulate evolu-
tionary history in this lineage.

We used a large number of low-copy nuclear (LCN) genes, 
single nucleotide polymorphisms (SNPs), nuclear ribosomal 
DNA (nrDNA) sequences and whole plastid genomes assem-
bled from data generated by genome skimming technology to 
illustrate the phylogenetic relationships and evolutionary his-
tory of Asian Buddleja species. The reticulate relationships in 
this lineage were highlighted initially because of cytonuclear 
conflicts and were confirmed with gene tree incongruence and 
Bayesian clustering. The aims of the present study were as fol-
lows: (1) to reconstruct a robust phylogenetic backbone for the 
Asian Buddleja clade and lay the foundations for future species 
delimitation in this lineage; (2) to explore the reticulate evolu-
tionary history of Asian Buddleja; and (3) to infer the evolu-
tionary history of the Asian Buddleja lineage and its potential 
associations with tectonic activity and climatic fluctuations.

MATERIALS AND METHODS

Taxon sampling, DNA extraction and sequencing

A total of 80 accessions (Supplementary data Table S1), 
including data from 64 newly sequenced accessions and 16 
sequences already available from GenBank, were included 
in this study. Our samples represented 32 taxa, including 27 
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species, three hybrids and two undescribed species. All voucher 
specimens are listed in the Supplementary data (Table S1).

Total DNA was extracted from silica gel-dried leaf tissues 
using a cetyltrimethylammonium bromide (CTAB) method. 
Purified DNA was fragmented, and short insert (500  bp) 

libraries were constructed according to the manufacturer’s in-
structions on an Illumina HiSeq X Ten platform, and were then 
sequenced on an Illumina HiSeq platform with a read length 
of 300–500  bp, by a commercial service (Beijing Ori-Gene 
Science and Technology).
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Fig. 1. Photographs of Asian Buddleja taxa: (1) B. colvilei; (2) B. sessilifolia; (3) B. forrestii; (4) B. macrostachya; (5) B. nivea; (6) B. myriantha; (7) B. candida; 
(8) B. albiflora; (9) B. fallowiana; (10) B. davidii; (11) B. alternifolia; (12) B. tsetangensis; (13) B. jinsixiaensis; (14) B. caryopteridifolia; (15) B. crispa; (16) B. 
curviflora; (17) B. japonica; (18) B. lindleyana; (19) B. lindleyana (GJ68); (20) B. yunnanensis; (21) B. subcapitata; (22) B. officinalis; (23) B. paniculate; (24) B. 

delavayi; (25) B. microstachya; (26) B. sp. 1; (27) B. brachystachya; (28) B. asiatica; (29) B. asiatica = B. subserrata; and (30) B. bhutanica.
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Flow cytometry

Flow cytometry analyses were carried out at the Laboratory 
of Molecular Biology of Germplasm Bank of Wild Species 
in Southwest China following the protocol described by 
Doležel et al. (2007). Thirty-three leaf samples of 29 
Buddleja taxa were collected (one or two samples of each of 
the 26 species and one sample of each of the three hybrids; 
Supplementary data Table S2). About 0.5 cm2 of fresh young 
leaf tissue was chopped with a razor blade in a Petri dish 
containing 0.8 mL ice-cold MGb buffer. The resulting solu-
tions were subsequently filtered through 40 µm nylon mesh 
to obtain the cell nuclei; 50 µL of propidium iodide solution 
(1 mg/mL) and 5.0 µL of RNAse (100 µg/mL) were added 
to each sample, and the samples were then stored in the dark 
for 0.5–1  h. The nuclear DNA content was measured on a 
flow cytometer using the DNA 2C-values of Zea mays L. 
and Solanum lycopersicum L. as the internal standards. The 
number of nuclei was normalized to 10 000 per sample using 
the fluorescently labelled propidium iodide in each experi-
ment, the cross-validation (CV) % was controlled to within 
5 %, and the nuclei were surveyed by BD FACSCalibur. The 
relative nuclear DNA content of each plant sample was then 
determined by comparison with the peak positions of the nu-
clei from the internal standards. The ploidy level was deter-
mined based on the ratio of G1 peak positions of the diploid 
B. asiatica and tetraploid B. davidii nuclei.

Sequence assembly, annotation and alignment

The paired-end reads were filtered using fastp v.0.20.1 
(Chen et al., 2018) with the default parameters. The plastid 
genomes were assembled using the GetOrganelle pipeline 
v.1.7.1 (Jin et al., 2020) with the recommended parameters for 
embryophyte plant plastome assembly (https://github.com/
Kinggerm/GetOrganelle). Annotation of plastids was per-
formed using the plastid genome annotator (PGA; Qu et al., 
2019), and the recommended Amborella trichopoda plastome 
genome was selected as a reference. The results were aligned 
with five published plastid genomes from Asian Buddleja 
species (Ge et al., 2018) using MAFFT v.7.3.08 (Katoh and 
Standley, 2013), and the annotations were checked manually 
in Geneious v.9.0.2 (Biomatters, Auckland, New Zealand). 
The coding sequences (CDS) regions were extracted from 
each plastid using Geneious and aligned using MAFFT. The 
nrDNA sequences were assembled using GetOrganelle with 
the recommended parameters for plant nuclear ribosomal 
RNA assembly (https://github.com/Kinggerm/GetOrganelle). 
The assembled nrDNA sequences were aligned and checked 
manually in Geneious. Aligned whole plastid sequences and 
CDS regions were trimmed using Gblocks (Talavera and 
Castresana, 2007) in PhyloSuite (Zhang et al., 2020) with 
the default parameters. However, owing to the uneven quality 
of the nrDNA assembly, aligned nrDNA sequences were 
trimmed using Gblocks with half gape position allowed (-b5 
= h).

Phylogenetic analyses were implemented using whole plastid 
sequences and nrDNA sequences using RAxML v.8.2.12 with 
1000 bootstraps, and with the ‘GAMMAI’ substitution model, 
as indicated by Abadi et al. (2019).

LCN gene construction and discovery of nuclear variation

Given that there is only one complete published genome 
within the genus Buddleja to date, the LCN genes were identi-
fied following the methods described by Ma et al. (2021). The 
protein-coding genes of Buddleja alternifolia (Ma et al., 2021) 
and Tectona grandis (a woody member of the Lamiaceae; Zhao 
et al., 2019) were analysed with Orthofinder (Emms and Kelly, 
2015) to identify the orthologous gene clusters. The HybPiper 
pipeline v.1.3.1 (Johnson et al., 2016) was used with the de-
fault settings for targeting genes. Gene sequences were aligned 
using MAFFT and converted to codon alignments using pal2nal 
(Suyama et al., 2006). Aligned codons were trimmed using 
trimAl (Capella-Gutiérrez et al., 2009). The gene trees were 
constructed using IQtree v.1.6.12 (Nguyen et al., 2014) with 
1000 bootstrap replicates. Species trees were inferred using 
ASTRAL-III v.5.7.1 (Zhang et al., 2018) based on multiple 
gene trees. Conflicts between plastid, nrDNA and species trees 
were examined using phytools (Revell, 2012) in R.

We used BWA v.07.17 (Li and Durbin, 2009) to make an index 
for the genome of B.  alternifolia and used BWA-MEM with 
the default parameters to map the filtered reads to the reference 
genome. Variant detection was carried out using the genome 
analysis toolkit GATK4 (McKenna et al., 2010) following the 
best practices workflow for variant discovery (DePristo et al., 
2011). Hard filters were implemented on the raw SNP dataset 
with the following filter parameters; (1) SNPs with read depth 
>200 or <5; (2) SNPs with missing rate of >80 %; (3) MAF 
>0.05; and (4) non-biallelic SNPs.

Hybrid analysis

To reduce the computational burden and to increase the ac-
curacy of speculation, 32 samples with relatively high sequencing 
quality and low missing sequence rate (Supplementary 
data Table S2) were chosen to form a sub-dataset. Buddleja 
caryopteridifolia, B. myriantha and B. jinsixiaensis were ex-
cluded, owing to the very high rate of missing sequences in 
the gene matrix. Finally, 23 species and a hybrid plant were 
selected to simulate the reticulate evolutionary history of Asian 
Buddleja. PhyloNet (Than et al., 2008) was used to infer pos-
sible hybrid events with the InferNetwork_MPL geneTreeList 
function and the parameters ‘-x 6 -b 50’. The optimal number 
of hybridization events was estimated by searching the global 
optimum of the likelihood (Cao et al., 2019). The optimum 
phylogenetic networks were visualized in Dendroscope (Huson 
et al., 2007). A Bayesian clustering analysis was also per-
formed using Admixture (Alexander et al., 2009) with the same 
samples as those used in the PhyloNet analysis. We tested num-
bers of clusters from two to seven, with the optimal number of 
clusters estimated via the lowest cross-validation error rate. We 
used the package ‘Pophelper’ (Francis, 2017) in R v.3.6.3 (R 
Core Team, 2018) to visualize the Admixture results.

Molecular dating

Given that the homogeneity of chloroplast sequences is 
much higher than that of LCN genes and that multiple pub-
lished chloroplast genomes could provide more options for a 
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calibration point, the concatenated plastid CDS regions from 
the non-redundant dataset were used to estimate the divergence 
time of Asian Buddleja. Divergence time was estimated in 
BEAST v.1.10 (Drummond and Rambaut, 2007). Two calibra-
tion points were chosen from TimeTree (http://timetree.org/). 
The root of the time tree was constrained to 71 Mya, with a 
normal distribution and s.d. of 10 Mya. The ancestral node of 
the Scrophulariaceae samples selected in this study was con-
strained to 44 Mya, with a normal distribution and s.d. of 10 
Mya. The BEAST analyses were performed using an uncorrel-
ated log normal relaxed clock with a Yule tree prior, a random 
starting tree and ‘Gamma + Invariant Sites’ as the model of 
sequence evolution. The Markov chain Monte Carlo (MCMC) 
analysis was run for 200 million generations, sampling every 
1000 generations, and the first 20 million samples were dis-
carded as burn-in. Convergence of the MCMC runs was 
checked using Tracer v.1.6. Tree Annotator v.1.8.0 (Drummond 
et al., 2012) was used to summarize the set of post-burn-in trees 
and their parameters to produce a maximum clade credibility 
chronogram showing the mean divergence time estimates with 
95 % highest posterior density (HPD) intervals. Figtree v.1.4.4 
(http://tree.bio.ed.ac.uk/software/figtree/) was used for image 
drawing of the time tree. Lineage-through-time (LTT) plots 
were drawn using the APE package (Paradis et al., 2004) in R.

RESULTS

Determination of ploidy diversity using flow cytometry

The levels of ploidy of the 33 samples were determined. Fifteen 
samples representing B. alternifolia, B. asiatica (GJ1 & GJ34), 
B. caryopteridifolia, B. crispa, B. curviflora, B. jinsixiaensis, 
B. lindleyana (GJ5 & GJ68), B. officinalis, B. paniculata, B. 
tsetangensis, B. yunnanensis, B. crispa × B. paniculata and B. × 
wardii were considered to be diploids. The rest were presumed 
to be polyploids, including seven tetraploids (B. brachystachya, 
B. candida, B. davidii, B. fallowiana, B. macrostachya, B. 
myriantha and B. sessilifolia), five hexaploids (B. albiflora, 
B. delavayi, B. forrestii, B. sp. 1 and B. sp. 1 × delavayi), 
one 12-ploid (B. nivea) and one 24-ploid (B. colvilei); the B. 
microstachya samples were found to consist of both tetraploid 
and hexaploid samples, and the B. macrostachya samples were 
found to consist of both hexaploid and 12-ploid samples. The 
ploidy levels of eight Asian Buddleja species and hybrids were 
determined using flow cytometry and are reported here for the 
first time. Tetraploid is a new ploidy level for B. brachystachya, 
and the ploidy levels determined for the remaining species are 
consistent with those published previously. The available cyto-
logical data are shown in the Supplementary data (Table S2).

Nuclear and plastid gene assembly and SNP calling

The number of clean reads for genome skimming data 
ranged from 6.6 million (B. myriantha GJ37) to 38.7 mil-
lion (B. yunnanensis GJ75) with an average of 18.6 million 
(Supplementary data Table S3). In order to prevent the bias 
caused by the uneven sample depth in LCN gene assembly, ten 
resequenced samples downloaded from GenBank were reduced 
to 20.0 million reads.

A total of 10  791 LCN genes were discovered using 
OrthoFinder. The number of genes recovered for each sample 
varied from 9240 (B. jinsixiaensis) to 10 763 (B. davidii). After 
trimming away those with a maximum missing rate >30  %, 
10 429 LCN genes were used to construct the ASTAL species 
tree. The nrDNA sequence of B. bhutanica GJ42 was discarded 
owing to its short and fragmented sequences. The trimmed 
nrDNA data matrix comprised 8724 characters, of which 1666 
were parsimony-informative sites. Consistent with previous 
research (Ge et al., 2018), the plastomes of Buddleja showed 
typical quadripartite architecture (Supplementary data Fig. S1). 
The trimmed whole plastome data matrix comprised 158 290 
characters, of which 1605 were parsimony-informative sites. 
After filtering, a total of 87 039 SNPs were obtained from the 
32 high-quality samples.

Phylogenetic reconstruction

The phylogenetic structure of the ASTRAL species tree is 
generally in accordance with that of the nrDNA tree (Fig. 2B). 
There are, however, complex conflicts between the plastid and 
species trees (Fig. 2A).

Phylogenetic reconstruction based on the plastid dataset 
indicated that Buddleja asiatica, B. bhutanica and five poly-
ploid species (B. sessilifolia, B. colvilei, B. macrostachya, 
B. myriantha and B. candida) composed plastid clade 1, and 
the remaining species composed plastid clade 2 [bootstrap 
support (BS) = 100 %; Fig. 2A]. The plastid phylogeny sug-
gested that B. alternifolia is polyphyletic, because the three 
B. alternifolia samples (RE121, RE123 and RE126) sam-
pled in Sichuan clustered together with B. subcapitata and B. 
caryopteridifolia, while the remaining samples formed a clade 
with B. jinsixiaensis (Fig. 2A). In addition, the B. crispa com-
plex (B. crispa and B. caryopteridifolia; Leeuwenberg, 1979) 
was also revealed to be polyphyletic in the plastid phylogeny, 
with GJ31 and GJ57 being far apart from the other two samples 
of B. crispa (GJ35 and GJ56).

The species tree inferred from the LCN genes strongly 
(bootstrap support BS =  100  %) supported three clades in 
Asian Buddleja: ASTRAL clade 1 included B. asiatica and 
B. bhutanica; ASTRAL clade 2 included ten polyploid spe-
cies with mainly Himalayan–Hengduan Mountains distribu-
tion (Chen et al., 2007; Wu et al., 2010); and ASTRAL clade 
3 included the remaining species (Fig. 3). A notable conflict 
between the plastid tree and the species tree is visible in the 
cases of the five polyploid species (B. forrestii, B. nivea, B. 
albiflora, B. fallowiana and B. davidii), which formed a clade 
together with another five polyploid species in the species tree, 
but nested within plastid clade 2 (Fig. 2A). The species tree also 
supported the monophyly of both the B. alternifolia complex 
and B. crispa complex, which did not appear as clades in the 
plastid tree (Fig. 2A). Although the nrDNA tree shared a similar 
topography to the species tree, the position of B. nivea was in 
dramatic conflict (Fig. 2B).

Network and gene flow analysis

A sub-dataset of 32 samples, including 23 species and one 
hybrid, was used to process the PhyloNet analysis and the 
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Bayesian clustering (Supplementary data Table S3). Up to 
six hybridization events among the clades of Buddleja were 
examined in PhyloNet. Six reticulate evolutionary events 
proved to be the best scenario, based on the global optimum 
of the likelihood. The best two values of K (the number of 
ancestral populations) in the Bayesian clustering analysis, as 
indicated by CV error values, were two and three. A reticu-
lation event and the mixture of two genetic backgrounds are 
clearly visible in B. paniculata × B. crispa GJ20, confirming 
its hybrid origin. PhyloNet analysis also suggested three 
hybridization events (Fig. 4) in five polyploid species (B. 
forrestii, B. nivea, B. albiflora, B. fallowiana and B. davidii), 
in which there were clear conflicts between the plastid and 
nrDNA trees (Fig. 2A). Buddleja forrestii might have origin-
ated as a hybrid between B. sessilifolia and the ancestor of 
another four species. In addition, four polyploids (Buddleja 

delavayi, B. microstachya, B. brachystachya, and B. sp. 
1) in clade 3 of the species tree contained two reticulation 
events, and the Bayesian clustering results also supported 
admixture. The B. crispa complex is likely to have received 
gene flow from the B. alternifolia cluster, in addition to a 
‘ghost introgression’ (donors of gene flow might be extinct 
or unsampled).

Molecular dating

Divergence time estimates based on the CDS region of the 
plastid indicated that the divergence time of the two clusters in 
the plastid tree was 14.2 Mya (95 % HPD: 8.44–21.57 Mya). 
The LTT plots suggested that the Asian Buddleja clade experi-
enced two rapid diversifications, at 8–10 and 0–3 Mya (Fig. 5). 
The topography of the plastid tree cannot reflect that of the real 
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Fig. 2. Tanglegram of the ASTRAL-III species tree and (A) plastid tree or (B) nuclear ribosomal DNA (nrDNA) tree. The two ASTRAL species trees are identical 
topologically, but rotated at some nodes to match up with the plastid or nrDNA trees. Different colour blocks represent clades with obvious cytonuclear conflict.
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Fig. 3. ASTRAL-III species tree. The ploidy of each species is indicated by the coloured circles.
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species tree, owing to the reticulation; however, this does not 
affect the estimated dating of diversification in Buddleja.

DISCUSSION

The performance of the different phylogenetic trees

In this study, we reconstructed the phylogenetic relationships 
within Asian Buddleja using biparental (nrDNA sequences 
and LCN genes) and maternal (whole plastid) sequences. 
Phylogenetic structures inferred using these different sets 
of sequences have unique advantages and potential biases 

(Álvarez and Wendel, 2003; Nieto Feliner and Rosselló, 2007; 
Gitzendanner et al., 2018). A comprehensive assessment of all 
phylogenetic trees should allow us to have a relatively accurate 
understanding of the evolutionary history of Asian Buddleja.

The phylogenetic structure resulting from analysis of the 
nrDNA data showed the same three-cluster structure as the 
ASTRAL species tree (Fig. 2B). However, conspicuous differ-
ences in the length of the nrDNA sequence assembly, owing 
to uneven sequencing quality, caused bias in the phylogen-
etic relationships at the species level, such as in the cases of 
B. fallowiana and B. microstachya. In addition, the unexpected 
position of B. nivea might be caused by the short length of the 
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Fig. 4. Best-supported species networks inferred with PhyloNet for the 32 samples, and best two scenarios from Bayesian clustering analysis inferred from 
Admixture with the same samples.
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Fig. 5. BEAST analysis of divergence times based on plastid data, with trends in global climate change over 30 Mya depicted (red line) and lineage-through-time 
plot for this taxon (purple line).

D
ow

nloaded from
 https://academ

ic.oup.com
/aob/article/132/1/15/7019694 by guest on 25 April 2024



Yang et al. — Phylogeny of Asian Buddleja24

nrDNA assembly of the two samples (GJ26 and GJ64), given 
that B. nivea grouped with many polyploids in both the plastid 
and species trees (Fig. 2A).

Owing to the lack of genomic resources in the genus 
Buddleja, methods designed to identify orthologous genes 
were not able to avoid paralogous genes in this lineage (Xiong 
et al., 2022). The presence of paralogous genes can lead to 
problems in inference of a species tree (Fitch, 1970; Cheon 
et al., 2020; Kapli et al., 2020). Recent studies (Smith and 
Hahn, 2021a; Yan Z et al., 2021) have suggested that, in cer-
tain circumstances, species tree inference in the presence 
of paralogues is as accurate as phylogenetic analyses using 
orthologues. Many approaches can also reduce the adverse ef-
fects of paralogous genes on the construction of a species tree, 
such as using quartet-based gene tree methods (e.g. ASTRAL; 
Yan Z et al., 2021) and increasing the number of loci used 
in phylogenetic inference (Smith and Hahn, 2021b). In the 
present study, we used a large number of LCN genes and the 
coalescence method (ASTRAL-III) to infer the best possible 
species tree of Asian Buddleja.

Implications for species delimitation of Asian Buddleja

Species delimitation of Buddleja in Asia is notoriously diffi-
cult (Li, 1982) owing to the transitional traits between species 
(e.g. the B. crispa complex) and huge variation within species 
(e.g. B. davidii). Moreover, hybridization creates many individ-
uals with transitional morphology (Liao et al., 2015), which 
results in conflict among the different classification systems 
(Leeuwenberg, 1979; Li, 1982). Through extensive sampling 
and multiple sequence construction, the present study yielded 
a strong phylogenetic backbone for this lineage, allowing us to 
provide evidence for the delimitation of certain species.

Three samples of B. asiatica (GJ34, GJ40 and GJ41) col-
lected in Nepal and Tibet formed a sister group to the remaining 
samples of B. bhutanica and B. asiatica, implying that these 
specimens exhibit high genetic differentiation from the other 
Buddleja specimens in this clade (Fig. 3). Through morpho-
logical comparison (Supplementary data Table S4; Fig. S2) 
and examination of the original descriptions and type spe-
cimens (997787 BM! and 521826 BM!), these samples with 
Himalayan distribution might refer to Buddleja subserrata 
(Hamilton, 1825), a synonym of B. asiatica, and suggests that 
B. subserrata might be recognized as a distinct species.

Based on our phylogenetic reconstructions, the B. crispa com-
plex includes at least three species: species 1 includes GJ35 and 
GJ56 (B. crispa); species 2 includes GJ31 (B. caryopteridifolia); 
and species 3 includes GJ57, which is morphologically dif-
ferent from B. caryopteridifolia (Supplementary data Table 
S5; Fig. S3), which suggests that it might be a distinct species. 
Buddleja crispa is widely distributed and is prone to hybridiza-
tion with other species (Liao et al., 2015, 2021), resulting in 
morphological continuity. Thus, 15 species and many varieties 
were reduced to synonyms (Leeuwenberg, 1979). Our study not 
only confirmed the species position of B. caryopteridifolia but 
also implied that there are synonyms that might have been mis-
takenly incorporated into B. crispa.

Buddleja officinalis and B. paniculata are considered mor-
phologically similar to each other and are easily confused. 

Buddleja paniculata typically has a white corolla, with the 
corolla tube being both shorter and thinner than that typical of 
the lilac B. officinalis (specimen numbers 263011 A!, 276688 
GZU!, 6968182 BR! and 1096401 K!; Fig. 1; Leeuwenberg, 
1979; Li, 1992). Both species are known locally as ‘Mi Meng 
Hua’ in Chinese (Yang Fengmao, personal observation). The 
Chinese name ‘mun-chua’ (another common name of ‘Mi 
Meng Hua’) is mentioned in the original description of B. 
officinalis (Maximowicz, 1880), whereas B. paniculata was 
first introduced as having the Chinese name ‘Hou Yao Zui Yu 
Cao’ in 1982 (Li, 1982). Flora Yunnanica (Bao, 1983) lists 
only B. officinalis, and most ‘Mi Meng Hua’ plants sampled in 
Yunnan have been identified as B. officinalis (e.g. Liao et al., 
2015; Yan XX et al., 2021; Yang et al., 2023). However, mo-
lecular and morphological comparisons (Supplementary data 
Table S6; Fig. S4) suggest to us that the ‘Mi Meng Hua’, widely 
distributed throughout Yunnan, is in fact B. paniculata (‘Hou 
Yao Zui Yu Cai’ in Chinese).

The B. lindleyana sample GJ68 exhibits large morphological 
and molecular differences from other samples (GJ5 and GJ6) of 
B. lindleyana: it has distinctly serrated leaves [Fig. 1 (19)] and 
was once treated as a variety B. lindleyana var. sinuatodentata 
(Marquand, 1930). Our study reveals that it might be a distinct 
taxonomic unit that needs further study.

The specimen (0022547 KUN!) of GJ18 was identified as 
a new species, Buddleja adenocarpa B. S. Sun, in 1960, and 
Leeuwenberg reidentified it as B. brachystachya. Our study 
showed that GJ18 did not cluster with the B. brachystachya 
samples collected around the type locality, and therefore sup-
ported it as a distinct species. Careful comparison and further 
verification should be carried out in the future.

Reticulate evolutionary history of Asian Buddleja

Hybridization in extant species of Asian Buddleja has been 
documented and studied extensively (Leeuwenberg, 1979; 
Liao et al., 2015, 2021). The complex and deep cytonuclear 
conflicts revealed in the present study indicated that 
allopolyploidy, hybridization and introgression might have 
been present throughout the evolutionary history of Asian 
Buddleja.

Five polyploid species (B. forrestii, B. nivea, B. albiflora, B. 
fallowiana and B. davidii) formed a monophyletic group with 
another five polyploid species in the ASTRAL species tree and 
the nrDNA tree (with the exception of B. nivea; Fig. 2B) but 
were nested with the diploid species in the plastid tree (Fig. 
2A). Cytonuclear conflicts in these polyploid species might in-
dicate allopolyploid speciation, which is common in the forma-
tion of polyploidy (Morales-Briones et al., 2018). The B. crispa 
complex and B. alternifolia each clustered as monophyletic 
groups in the ASTRAL species tree but were separated as poly-
phyletic groups in the plastid tree. Buddleja crispa is known to 
be involved in hybridization events with B. alternifolia (Liao et 
al., 2021) and with B. paniculata (Liao et al., 2015). Although 
most of the modern hybrids examined were F1s, the extensive 
contact and hybridization throughout the history of these spe-
cies might have contributed to plastid capture in those lineages.

PhyloNet analysis verified the hybrid of B. paniculata and 
B. crispa, which was previously regarded mistakenly as a 
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hybrid of B. officinalis and B. crispa (Liao et al., 2015) owing 
to the misidentification of B. paniculata. The present study re-
vealed ancestral introgression in the B. crispa complex, which 
might explain the cytonuclear discordance in this complex. 
Although gene flow from B. alternifolia to B. crispa was de-
tected, we are unable to explain the polyphyletic nature of 
B. alternifolia in the plastid tree, particularly the unexpected 
position of three samples (RE120, RE121 and RE126) in 
Sichuan. This might be attributable to the fact that the spe-
cies that originally caused the chloroplast capture has become 
extinct or remains unsampled (Li et al., 2022) or it may have 
occurred long ago, with an ancestor of the B. crispa complex 
or B. subcapitata being involved in the hybridization that led 
to plastic transfer. Six polyploid species (B. forrestii, B. nivea, 
B. albiflora, B. fallowiana, B. davidii and B. candida) were 
shown to have undergone complex hybridization and genetic 
introgression (Fig. 4), which could explain the cytonuclear 
discordance in five of the species, although not that in B. can-
dida (Fig. 2).

The origin of the hexaploid species B. forrestii might be a 
result of allopolyploidy, because one of its putative progen-
itors is tetraploid (B. sessilifolia). An allopolyploid origin of 
B. forrestii would explain why it grouped together with B. 
sessilifolia in the species tree (and is morphologically similar 
to B. sessilifolia; Fig. 1) but is widely separated from it in the 
plastid tree. Reticulate phylogenetic analysis indicated that hy-
bridization and allopolyploidy might have played an important 
role in the diversification of the Asian Buddleja.

History of diversification in Buddleja

Our results indicated that there were two stages of rapid di-
versification in the Asian Buddleja lineage (Fig. 5). The first 
stage occurred ~8–10 Mya, which might correspond to the 
last uplift in Hengduan Mountains and the intensification of 
the Asian monsoon (Favre et al., 2015; Yang et al., 2021). The 
second stage of rapid diversification might have occurred as a 
result of the Quaternary climate fluctuations (2.6 Mya; Clark 
et al., 2009), which caused the radiation of many species in 
the Himalayas–Hengduan Mountains (Muellner-Riehl, 2019; 
Zhang et al., 2021).

Extensive plateau uplift in the Miocene (5–15 Mya) inten-
sified the summer monsoons, increasing the precipitation and 
erosion through river incision, leading to greater topographic 
relief (Herman et al., 2013). Moreover, a remarkable increase 
in the intensity of silicate weathering at ~7–9 Mya, induced 
by the enhanced monsoons, caused massive CO2 consump-
tion and fast global cooling (Yang et al., 2021). This series 
of processes has not only accelerated the evolution of the 
biodiversity in the Himalayas–Hengduan Mountains (Ding 
et al., 2020; Xu et al., 2020), but also that of the monsoonal 
forests in South China (Kong et al., 2022). The effect of cli-
mate modifications during the Quaternary ice age (0.1–2.6 
Mya; Clark et al., 2009) caused steep ecological gradients in 
mountainous areas (Wu et al., 2022). At this time, rapid spe-
cies radiation occurred in many mountainous areas, including 
the Himalayas, the Hengduan mountains, the Andes and the 
mountains of New Zealand (Hughes and Atchison, 2015). 
Buddleja Ser. Curviflorae Marq. comprises three species and 

has a disjunct distribution: B. lindleyana is found mainly on 
the Chinese mainland, whereas B. curviflora and B. japonica 
are found in Taiwan and Japan. The inferred time of divergence 
of B. lindleyana and the ancestor of B. curviflora and B. ja-
ponica was ~7.35 Mya (95 % HPD: 4.17–11.59 Mya). If this 
is correct, a Late Miocene landbridge across the East China 
Sea (~5.0–7.0 Mya; Kimura, 2003) would have allowed the 
common ancestor of B. curviflora and B. japonica to migrate 
from the Chinese mainland to Japan. Similar divergence times 
between other species with disjunct distributions in China and 
Japan have been found in Euptelea (Eupteleaceae; 6.39 Mya; 
Cao et al., 2020) and Deinanthe (Hydrangeaceae; 7.1 Mya; 
Sakaguchi et al., 2021). The inferred divergence time of B. 
curviflora from B. japonica was ~5.70 Mya (95 % HPD: 2.97–
9.46 Mya), shortly after the formation of Taiwan Island (~6.5 
Mya; Huang, 2017).

Our study suggests that a combination of tectonic activity, 
climate change, extensive hybridization and polyploidization 
might have contributed to the diversification of the Asian 
Buddleja.

SUPPLEMENTARY DATA

Supplementary data are available online at https://academic.
oup.com/aob and consist of the following. Table S1: sample 
and sequence information. Table S2: ploidy levels of Asian 
Buddleja species determined by flow cytometry and according 
to previous studies. Table S3: number of sample sequences and 
selection of subset samples in the PhyloNet analysis. Table 
S4: differences in morphological characters between Buddleja 
asiatica and Buddleja subserrata. Table S5: differences in mor-
phological characters between Buddleja caryopteridifolia and 
sample GJ57. Table S6: differences in morphological charac-
ters between Buddleja officinalis and Buddleja paniculata. Fig. 
S1: the structure of the Buddleja chloroplast. Fig. S2: morpho-
logical comparison between Buddleja asiatica and Buddleja 
subserrata. Fig. S3: morphological comparison between the 
specimen GJ57 and Buddleja caryopteridifolia GJ31. Fig. S4: 
morphological comparison between Buddleja officinalis and 
Buddleja paniculata.
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