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The Indo-Australian Archipelago (IAA) is the richest area of biodiversity in the marine realm, yet the processes
that generate and maintain this diversity are poorly understood and have hardly been studied in the mangrove
biotope. Cerithidea is a genus of marine and brackish-water snails restricted to mangrove habitats in the Indo-West
Pacific, and its species are believed to have a short pelagic larval life. Using molecular and morphological
techniques, we demonstrate the existence of 15 species, reconstruct their phylogeny and plot their geographical
ranges. Sister species show a pattern of narrowly allopatric ranges across the IAA, with overlap only between
clades that show evidence of ecological differentiation. These allopatric mosaic distributions suggest that speciation
may have been driven by isolation during low sea-level stands, during episodes preceding the Plio-Pleistocene
glaciations. The Makassar Strait forms a biogeographical barrier hindering eastward dispersal, corresponding to
part of Wallace’s Line in the terrestrial realm. Areas of maximum diversity of mangrove plants and their associated
molluscs do not coincide closely. © 2013 The Natural History Museum. Biological Journal of the Linnean Society
© 2013 The Linnean Society of London, 2013, 110, 564–580.

ADDITIONAL KEYWORDS: biodiversity hotspot – COI gene – dispersal – Indo-Australian Archipelago –
Makassar Strait – speciation.

INTRODUCTION

The archipelago at the centre of the greatest marine
biogeographical province, the Indo-West Pacific
(IWP), is known by various names, including the
Indo-Australian Archipelago (IAA), the Indo-Malayan
region and the Coral Triangle, and is renowned as the
site of the highest biodiversity in the marine realm
(Carpenter & Springer, 2005; Hoeksema, 2007). The
major component of this diversity is the biota of coral
reefs, characterized in large part by species with very
wide distributional ranges on the scale of ocean

basins, whereas narrow-range endemics are found
mainly on the most remote, peripheral archipelagos
(Hughes, Bellwood & Connolly, 2002; Paulay &
Meyer, 2002). For the well-studied corals and reef
fish, these wide ranges have been described as a
‘stack of pancakes’ that overlap to generate a ‘single
massive global marine hotspot’ within the IAA
(Bellwood, Renema & Rosen, 2012: 216, 221). The
location of the hotspot is correlated most strongly
with reef area, yet a mid-domain effect (the central
overlap of a random distribution of ranges within the
bounded domain of the two ocean basins) is also
significant (Bellwood et al., 2005). It has also been
discovered that the location of the hotspot has shifted
eastwards across the globe, from the western Tethys*Corresponding author. E-mail: d.reid@nhm.ac.uk
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(i.e. western Europe) in the Eocene to its present
position, according to the shifting arrangement of
continents and their shallow seas (Renema et al.,
2008).

Marine species have not simply migrated from his-
toric hotspots to populate the IAA, because many
appear to have arisen since the IAA hotspot was
established in the Miocene (Renema et al., 2008;
Williams & Duda, 2008). To understand the genera-
tion of the IAA hotspot, it is therefore necessary to
infer the historical processes of origination, accumu-
lation and extinction of species that have operated
within the IWP. Diverse evolutionary hypotheses
have been proposed, broadly summarized as: centre of
origin (speciation within the IAA and dispersal to the
periphery of the IWP); centre of overlap (vicariant
speciation between Indian and Pacific Ocean basins
and subsequent overlap across the boundary); centre
of accumulation (peripheral origination of species and
dispersal to the IAA); and centre of survival (the IAA
acts as a refuge) (see reviews by Hoeksema, 2007;
Bellwood et al., 2012; Gaither & Rocha, 2013). These
hypotheses are not mutually exclusive in either
operation or definition, but each makes different pre-
dictions about the location and age of speciation
events and of endemics (and whether these represent
young species or old relicts; Bellwood & Meyer, 2009).
In addition, their relative importance may have
shifted over time (Cowman & Bellwood, 2013).

These hypotheses mostly make the implicit
assumption that large, broadly overlapping ranges
are the norm and (as speciation almost always
involves geographical isolation) all require post-
speciation dispersal to achieve this overlap. Some
genetic studies are consistent with this assumption of
large distributions maintained by long-distance dis-
persal and high gene flow (Paulay & Meyer, 2002;
Lessios, Kane & Robertson, 2003; Crandall et al.,
2008; Horne et al., 2008). Nevertheless, as molecular
investigations reveal more and more cases of cryptic
species (Knowlton, 2000), it is clear that the ‘stack of
pancakes’ model is not appropriate for all groups. At
least among gastropod molluscs, there is a rough
correlation between reproductive mode (i.e. length of
pelagic larval life and inferred dispersal potential)
and range size, which determines the geographical
scale of speciation (Paulay & Meyer, 2002, 2006;
Kohn, 2012). Species with long-lived larvae, wide
dispersal and high gene flow speciate at the scale of
ocean basins, displaying endemics on the most iso-
lated archipelagos at the periphery of their wide
ranges (Frey, 2010). If dispersal is limited by a
shorter pelagic period, speciation occurs on a finer
scale within basins (Williams & Reid, 2004; Meyer,
Geller & Paulay, 2005), or even between islands of an
archipelago in the extreme case of nonplanktotrophic

development (Cunha et al., 2008). There are many
exceptions, sometimes explicable by poor taxonomy,
habitat specificity or remote endemics (Paulay &
Meyer, 2006; Claremont et al., 2011). Nevertheless,
among gastropods with low or moderate potential for
larval dispersal, a frequent pattern is of a mosaic of
narrowly allopatric distributions of sister species and
closely related taxa.

Mosaic distributions are of special importance
for inferences about the location and mechanism of
speciation. Unlike the ambiguous cases of isolated
endemics, narrowly allopatric ranges imply speciation
rather than reliction, especially if located at recog-
nized biogeographical boundaries. They also suggest
that the geography of the original speciation event
has been maintained, without being obscured by sub-
sequent dispersal (unless change has been reciprocal;
Malay & Paulay, 2010). These distributions may be
maintained by a strong physical or ecological barrier,
by competitive exclusion (Quenouille et al., 2011) or (if
reproductive isolation is not complete) by interbreed-
ing and the loss of introgressed genes (Meyer et al.,
2005), and can persist for millions of years (e.g.
10–30 Myr; Williams & Reid, 2004; Meyer et al.,
2005). These mosaics do not contribute to alpha diver-
sity, and have therefore been considered of little rel-
evance in the generation of the IAA hotspot (Bellwood
et al., 2012). They do, however, increase gamma
(regional) diversity (many descriptions of the general
diversity pattern have not distinguished between the
two; Hoeksema, 2007) and provide evidence to test
general hypotheses of the geography of speciation.

Coral reefs have been a worthy focus for research in
this field. Mangrove forests are another iconic tropical
marine biotope, dominating about one-quarter of
tropical coastlines (Spalding, Blasco & Field, 1997),
but are now under global threat from deforestation
(Valiela, Bowen & York, 2001). In contrast with reefs,
however, mangroves are of low diversity. The man-
grove plants consist of only about 70 species world-
wide, belonging to 21 families of trees, shrubs and
ferns (Ellison, Farnsworth & Merkt, 1999; Ricklefs,
Schwarzbach & Renner, 2006). Many have large dis-
tributions, spanning the continental shores of Asia,
Australia and high islands of the western Pacific
(Spalding et al., 1997). These distributions overlap
to produce the highest species diversity within the
IAA, in an area encompassing Malaysia, Borneo,
Indonesia, New Guinea and northern Australia
(Groombridge & Jenkins, 2002). As in marine
animals, ecological and historical explanations have
been advanced for this pattern (Duke et al., 1998;
Ellison et al., 1999; Plaziat et al., 2001; Ellison, 2002;
Ricklefs et al., 2006). However, studies of individual
mangrove genera have not revealed clear geographi-
cal signals of speciation events within the IWP,
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probably because of their wide dispersal by floating
propagules (Duke et al., 1998; Duke, Lo & Sun, 2002).
In addition, mangrove forests have suffered extreme
disruption during the glacial cycles of the Plio-
Pleistocene, when sea levels fluctuated by up to
120 m (Voris, 2000; Miller et al., 2005; Fig. 2E). In
Sundaland, for example, mangrove forests were
severely reduced and limited to the edge of the con-
tinental shelf during low sea-level stands (Woodroffe
& Grindrod, 1991), only to expand and relocate to the
inner margins of the South China Sea in a few thou-
sand years as sea levels rose (Cannon, 2012; Morley,
2012).

The fauna of mangrove forests is also of relatively
low diversity, their distinctive assemblages of
macroinvertebrates being dominated by three fami-
lies of gastropods (Littorinidae, Potamididae and
Ellobiidae) and several of crabs (Jones, 1984;
Plaziat, 1984; Glaubrecht, 1997). In broad terms, the
diversity of the mangrove fauna follows the familiar
pattern and is highest in South-East Asia and at the
centre of the IWP (Vermeij, 1973; Ellison et al.,
1999), but there has been very little of the detailed
phylogenetic, biogeographical and evolutionary
research needed to increase the poor understand-
ing of diversification in this biotope. So far, the
necessary combination of accurate taxonomy, distri-
butional data, near-complete sampling and mole-
cular phylogeny is available only for Littoraria
(Littorinidae), of which the 39 living species mostly
live solely on mangrove trees (Reid, 1986, 2001;
Reid, Dyal & Williams, 2010). Many of the Littoraria
species of IWP mangroves show wide distributions,
some extending from East Africa to the western
Pacific, consistent with their inferred pelagic larval
life of up to 10 weeks. There is only limited geo-
graphical signal in the form of allopatric, parapatric
or narrowly overlapping sister species, which sug-
gests speciation in peripheral areas of mangrove dis-
tribution, such as the Bay of Bengal, Australia and
the north-western Pacific. Within South-East Asia
there are no such examples. Instead, the distribu-
tions overlap broadly in the ‘stack of pancakes’
manner to produce a peak of diversity in the South
China Sea and Malay Peninsula (Reid, 1986). This
poor geographical signal has been explained by prob-
able high dispersal (not only as larvae, but also
through possible rafting on plant debris) and by the

disruption of mangrove distributions during Plio-
Pleistocene glacial cycles (Reid et al., 2010).

To search for speciation patterns on a smaller geo-
graphical scale within the mangroves of South-East
Asia and the IAA, it is necessary to choose a strictly
mangrove-associated, monophyletic group that can
be comprehensively sampled and which, crucially,
has restricted dispersal. The potamidid genus
Cerithidea fulfils these criteria. Of the three major
families of mangrove gastropods, the Potamididae
are the most intimately connected with the habitat.
The majority of potamidids depend on trees for sub-
strate, shelter or food, and the fossil record shows
that the family first radiated in the Tethys Sea
during the middle Eocene, shortly after the appear-
ance of the modern mangrove biotope in the same
region (Glaubrecht, 1996, 1997; Ellison et al., 1999;
Kowalke, 2003; Reid et al., 2008). A recent review of
the family estimated a worldwide total of 29 living
morphospecies, classified into six monophyletic
genera (Reid et al., 2008). Of these, Cerithidea is
restricted to the tropical and subtropical IWP. These
snails live attached to the roots and trunks of man-
grove trees, or occasionally among other halophytes,
and at low tide migrate down to the substrate to
feed on algae or detritus (Ohtaki, Maki & Tomiyama,
2002; Vannini et al., 2006). This tree-climbing behav-
iour is believed to be connected with both escape
from predatory fish and crabs, and avoidance of
physiological stress (McGuiness, 1994; Vannini et al.,
2006). The larval development of Cerithidea species
has not been clearly described, but the pelagic phase
is believed to be moderately short (12–20 days;
Kojima et al., 2006) or even absent (Houbrick, 1984).
About ten species have been distinguished by their
shells (e.g. Brandt, 1974; Houbrick, 1986; Brown,
1994; Hasegawa, 2000; Ma, 2004; Fig. 1), but previ-
ous morphological identifications are unreliable
(Reid et al., 2008), their distributions are largely
unknown and taxonomic revision is required. The
phylogeography of three species has been studied,
two in Japan (Kojima et al., 2006; Kamimura et al.,
2010; these studies included other potamidids now
assigned to different genera) and one in East Africa
(Madeira et al., 2012).

Here, our aims are: (1) to determine the number of
valid species of Cerithidea by sampling as widely as
possible across the IWP and using a combination of

▶
Figure 1. Molecular phylogeny of Cerithidea species produced by MrBayes analysis of cytochrome oxidase I (COI)
sequences, using Cerithideopsilla species as outgroup. Localities are abbreviated and followed by the last four digits of
the registration or reference number (for full details, see Table S1). Support values are MrBayes posterior probabilities;
only values > 0.95 (strong support) are shown. Significant clusters determined by the GMYC function in the SPLITS
package (Ezard et al., 2009) are indicated by thickened stems. Representative shells (from left): Cerithidea obtusa,
C. anticipata, C. balteata and C. weyersi.
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Cerithideopsilla cingulata NT Australia
Cerithideopsilla microptera Philippines
Cerithideopsilla djadjariensis Vietnam
Cerithideopsilla djadjariensis Japan

C. weyersi Bali 521
C. balteata Sulawesi 377

C. balteata Philippines 0384.1

C. balteata Philippines 0384.2

C. balteata Philippines 0381
C. balteata Philippines 0382

C. balteata Philippines 1656

1
0.96

1

0.99
0.99

1 1

1

1

1

1

1

1

0.99

0.99

1

1

1

1

1

0.99

1

0.95

C. sinensis China 0390.3
C. sinensis China 0390.2

C. sinensis China 0390.1

C. charbonnieri E Thailand 0419.1
C. charbonnieri E Thailand 0419.2
C. charbonnieri E Thailand 0419.3
C. charbonnieri E Thailand 0419.4

C. obtusa Vietnam 0377
C. obtusa Thailand 0442.1

C. obtusa Thailand 0442.2
C. obtusa Vietnam VC6

C. obtusa Thailand 0442.1
C. obtusa W Malaysia 0688
C. obtusa Sarawak 764
C. obtusa W Malaysia 0699
C. obtusa E Thailand 0437.1

C. obtusa E Thailand 0437.2

C. obtusa E Malaysia 0663 
C. obtusa W Malaysia 0674 

.99

C. anticipata Qld Australia 8805 
C. anticipata NT Australia 0372 
C. anticipata NT Australia 156

C. reidi WA Australia 0460.1
C. reidi WA Australia 0460.2

C. reidi WA Australia 0460.3
C. dohrni Sulawesi 378a

C. dohrni Philippines P33
1 C. dohrni Philippines 1745

C. dohrni Philippines 2153
C. quoyii E Malaysia 0662.1
C. quoyii E Malaysia 0662.2
C. quoyii E Thailand 0385.1

C. quoyii E Thailand 0385.2
C. quoyii Vietnam 0386
C. quoyii E Thailand 0420.1
C. quoyii E Thailand 0420.2

1
C. decollata Mozambique 0375

C. decollata Mozambique 0374
C. decollata Tanzania 0376

C. tonkiniana Japan 0379

C. tonkiniana Hong Kong 0380.1

C. tonkiniana Hong Kong 0380.2

0.98

C. tonkiniana Japan P31
C. tonkiniana Japan PHK1

C. tonkiniana Japan P32
C. tonkiniana Japan 0378

C. moerchii Hong Kong 0389
C. moerchii Hong Kong 0718

C. moerchii S Japan PAM4

C. moerchii S Japan PAM1
C. moerchii S Japan PAM2
C. moerchii S Japan PAM3
C. moerchii S Japan PAM5

C. moerchii Japan PID3

C. moerchii Japan PID1

C. moerchii Japan PID4

C. moerchii Japan PID2

C. moerchii Hong Kong PSF32

C. moerchii Hong Kong PSF31

C. moerchii Hong Kong PSF35

C. moerchii Hong Kong PSF33
C. moerchii Hong Kong PSF34

C. moerchii Hong Kong PTF39

C. moerchii Hong Kong PTF40
C. moerchii Hong Kong PTF41

C. moerchii Hong Kong PTF42

C. moerchii Japan PKI4

C. moerchii Japan PKI5

C. moerchii Japan PKI1
C. moerchii Japan PKI3

C. moerchii Japan PKI2

C. moerchii Japan PKS5

C. moerchii Japan PKS2

C. moerchii Japan PKS1
C. moerchii Japan PKS3
C. moerchii Japan PKS4

C. moerchii Japan PMU5
C. moerchii Japan PMU6
C. moerchii Japan PMU7

C. moerchii Japan PMU2

C. moerchii Japan PMU4

C. moerchii Japan PMU1
C. moerchii Japan PMU3

C. moerchii S Japan PFU5

C. moerchii S Japan PFU1
C. moerchii S Japan PFU2
C. moerchii S Japan PFU4

C. moerchii Japan PSK7

C. moerchii Japan PSK5
C. moerchii Japan PSK6

C. moerchii Japan PSK4
C. moerchii Japan PSK8

C. moerchii Japan PSK1
C. moerchii Japan PSK9

C. moerchii Japan PSK10
C. moerchii Japan PSK2
C. moerchii Japan PSK3

C. moerchii Japan PID5

C. moerchii Taiwan 0387.1

C. moerchii Taiwan 0387.2

C. moerchii S Japan 0388

C. moerchii S Japan PHJ1
C. moerchii Japan PHK5

C. moerchii Japan PHK2

0.1 substitutions/site
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phylogenetic, statistical and morphological evidence;
(2) to use one nuclear and two mitochondrial genes to
reconstruct their phylogenetic relationships; and (3)
to plot their geographical distributions. The combina-
tion of phylogeny with distributions will be used to
assess whether the diversity pattern of Cerithidea
corresponds to the ‘stack of pancakes’ model (i.e. wide,
overlapping ranges, as suggested by the glacial dis-
ruption of their mangrove habitat and potential for
dispersal by rafting) or the mosaic model (i.e. nar-
rowly allopatric ranges of sister species, as suggested
by their short planktonic larval duration). The results
will add to the limited knowledge of the diversifica-
tion processes of the mangrove fauna and to the
growing understanding of the accumulation of species
within the IAA hotspot.

MATERIAL AND METHODS
TAXONOMY, DISTRIBUTIONS AND SAMPLING OF TAXA

The definition of the genus Cerithidea follows Reid
et al. (2008; cf. broader concept of Houbrick, 1984). No
comprehensive taxonomic study of Cerithidea species
has been performed for more than a century, and so
identifications were based on original research in a
concurrent taxonomic and morphological study (D. G.
Reid, unpubl. data). Illustrations of some species can
be found in works by Brandt (1974), Houbrick (1986),
Brown (1994), Hasegawa (2000), Ma (2004) and
Lozouet & Plaziat (2008), but some of the names used
are incorrect or invalid (in parentheses): C. balteata
and C. tonkiniana (both as C. ‘ornata’); C. quoyii
and C. dohrni (both as C. ‘quadrata’); C. moerchii
(C. ‘rhizophorarum’) (see Supporting Information
Table S1 for taxonomic authorities).

During the taxonomic study, 13 named and two
undescribed species were distinguished. The ingroup

for the molecular phylogenetic analysis comprised
12 of these species, a total of 111 individuals
(Table S1). Most species were represented by 3–12
individuals, with the exception of C. weyersi (one
individual) and C. moerchii (58 individuals). The
four outgroup taxa were three species of
Cerithideopsilla, identified as the sister genus of the
monophyletic Cerithidea in a molecular phylogeny of
the Potamididae (Reid et al., 2008). Voucher mate-
rial has been deposited in museum collections
(Table S1).

Distribution maps were compiled from material in
major museum collections (Natural History
Museum, London; Australian Museum, Sydney;
Muséum National d’Histoire Naturelle, Paris; Neth-
erlands Centre for Biodiversity Naturalis, Leiden;
Museum für Naturkunde, Berlin; National Museum
of Natural History, Smithsonian Institution, Wash-
ington DC) and reliable literature records (see
legend of Fig. 2).

DNA EXTRACTION, AMPLIFICATION AND SEQUENCING

DNA was extracted from mantle or foot tissue
of ethanol-preserved material using a cetyltri-
methylammonium bromide (CTAB) extraction method
(Reid, Dyal & Williams, 2012), because polymerase
chain reaction (PCR) inhibitors co-purify with DNA
using the Qiagen QIAmp kits suitable for other mol-
luscan groups. Portions of three genes were amplified
and sequenced: the nuclear 28S rRNA and the
mitochondrial cytochrome oxidase I (COI) and 16S
rRNA genes. COI was sequenced for all samples, and
16S and 28S for a reduced subset (21 and 42 samples,
respectively, including all outgroup taxa). PCRs were
used to amplify approximately 1474 bp of 28S rRNA
and 658 bp of COI (protocol of Reid et al., 2008) and

Figure 2. A–D, Distribution maps and phylogenetic relationships of Cerithidea species. Filled circles indicate sequenced
samples (Table S1); thick open circles are verified museum records; thin open circles are reliable literature records (Quoy
& Gaimard, 1834; Morlet, 1889; Brandt, 1974; Houbrick, 1986; Subba Rao, 2003; Lee & Chao, 2004; Ma, 2004; Thach,
2005, 2007; Hong et al., 2010). Phylogenetic relationships supported by molecular analyses (Figs 1, S1, S2) are shown as
full lines; relationships inferred from the subjective assessment of shell resemblance are shown as broken lines. The
distribution of C. decollata in East Africa (Kenya to South Africa and Madagascar) is not shown. Approximate ages of
divergence are indicated (see text); 95% highest posterior density intervals are: C. tonkiniana/moerchii 2.5–10.0 Ma;
C. quoyii/dohrni 1.9–8.5 Ma; C. reidi/anticipata 1.4–7.0 Ma (D. G. Reid & M. Claremont, unpubl. data). E, Palaeo-coastline
(120 m below present sea level; Voris, 2000) and main present-day sea surface currents (Wyrtki, 1961; Gordon & Fine,
1996; Loder, Boicourt & Simpson, 1998; Shetye & Gouveia, 1998). Seasonally reversing currents are shown as broken
lines. EAC, East Australian Current; ECC, Equatorial Counter Current; IT, Indonesian Throughflow; KC, Kuroshio
Current; LC, Leeuwin Current; MC, Mindanao Current; NEC, North Equatorial Current; NECC, North Equatorial
Counter Current; NGCC, New Guinea Coastal Current; SEC, South Equatorial Current. F, Distribution of mangrove
forests (after Giri et al., 2011); this small-scale map greatly exaggerates the actual area of mangrove forests, but shows
the major gaps in coastal mangroves and their latitudinal limits. Wallace’s Line is shown as a full red line and its
modification by Huxley as a broken red line (Hall, 2012).

▶
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515 bp of 16S rRNA (protocol of Williams & Ozawa,
2006). All sequences have been deposited in GenBank
(accession numbers listed in Table S1). Of the 179
sequences available for analysis, 38 have already
been published (Reid et al., 2008).

SEQUENCE ANALYSIS AND

PHYLOGENY RECONSTRUCTION

Sequences for ribosomal genes (28S and 16S) were
aligned using the G-INS-i method of MAFFT (Mul-
tiple Alignment using Fast Fourier Transform,
v6.847b; Katoh & Toh, 2008), because sequences
were not expected to be highly divergent. Long gaps
in the alignment were also not expected, and so the
offset value was set to 0.1. The resulting alignments
were adjusted by eye in MacClade (v4.06 OSX;
Maddison & Maddison, 2003). Gblocks (v0.91beta;
Castresana, 2000) was then used to remove poorly
aligned sites (minimum number of sequences for a
conserved position, 70%; minimum number of
sequences for a flanking position, 90%; maximum
number of contiguous nonconserved positions, 3;
minimum length of a block, 5; all gap positions
allowed). COI sequences were aligned by eye in
MacClade. For each gene partition, 24 different
models of nucleotide substitution were tested with
MrModelTest (v2.2; Nylander, 2004). Two concat-
enated alignments were constructed, consisting of
two genes (28S and COI) and three genes (28S, 16S
and COI), each including only those specimens for
which all the respective genes were available.
Before combining gene partitions, posterior prob-
abilities (PPs) of all clades were compared among
individual-gene Bayesian trees. Conflict among
strongly supported clades (PP > 95%) is evidence of
genetic incongruence that suggests divergent
phylogenetic histories of loci, whereas conflict among
weakly supported clades (PP < 95%) may be caused
by stochastic error (Wiens, 1998; Williams & Reid,
2004). Lack of resolution does not indicate conflict.

All alignments were analysed using Bayesian infer-
ence and the Markov chain Monte Carlo (MCMC)
method (MrBayes v3.1; Huelsenbeck & Ronquist,
2001). Model parameters for each gene were set
according to the model selected by MrModelTest and
were free to vary among gene partitions. The MCMC
analysis was run twice for each alignment; conver-
gence between runs was tested by examining traces
in Tracer (v1.5; Drummond & Rambaut, 2007) and
the potential scale reduction factor (PSRF). The
number of generations per analysis varied on the
basis of the preliminary convergence results: 5 million
generations for 16S, 10 million for 28S, 10 million for
COI + 28S and 15 million for COI + 28S + 16S. Based
on the traces in Tracer, a 10% ‘burnin’ was used for all

analyses, except COI (20%). Branches in consensus
trees with PP < 50% were collapsed.

MOLECULAR SPECIES DELIMITATION

A statistical method was used to define species-level
clusters in the molecular tree. BEAST (v1.6.1;
Drummond & Rambaut, 2007) was used to generate
an ultrametric tree from the COI sequences, for use in
a species-delimitation analysis. Site models were
again set on the basis of the models chosen by
MrModelTest. In this analysis, only relative clade
ages were of interest, and so a relaxed-clock model
(uncorrelated log-normal; Drummond et al., 2006)
was used, without time calibration. The starting tree
was random and the coalescent tree prior was set to
a constant population size. Priors were adjusted on
the basis of preliminary analyses in order to improve
the effective sample size (ESS) values. Two analyses
of 50 million generations were sampled every 5000
generations to generate 10 000 trees each. The length
of the ‘burnin’ (10%) was determined by the exami-
nation of traces in Tracer. Tree files were combined
with LogCombiner (v1.6.1, part of the BEAST
package; Drummond & Rambaut, 2007). The final
tree was calculated with maximum clade credibility
and median node heights using TreeAnnotator
(v1.6.1, part of the BEAST package). In order to find
significant clusters within the BEAST tree, the
GMYC function from the SPLITS package (Ezard,
Fujisawa & Barraclough, 2009) in R (R Development
Core Team, 2009) was applied. This function
optimizes the likelihood of genetic clusters, where
branching rates between species follow a Yule model,
but branching rates within species follow a neutral
coalescent model (Pons et al., 2006; Fontaneto et al.,
2007). This method has been shown to help identify
phylogenetic species and cryptic taxa in other gastro-
pods (Claremont et al., 2011). As further evidence for
species delimitation, the uncorrected pairwise dis-
tances over all pairs of COI sequences were estimated
among and within clusters using MEGA5 (Tamura
et al., 2007) and the nuclear 28S gene was examined
for fixed differences.

TIMING OF DIVERSIFICATION

The timing of diversification was not estimated in this
study, because reliable fossils of Cerithidea are
extremely scarce. However, the molecular data have
been incorporated into a larger BEAST analysis of the
entire Potamididae (D. G. Reid & M. Claremont,
unpubl. data), calibrated using the ages of a range
of potamidid fossils. One fossil Cerithidea was
included: the oldest certain member of the genus
C. tokunariensis from the early middle Miocene
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(Masuda, 1956) with an age range of 14–23 million
years ago (Ma). On the basis of shell morphology, this
species was placed in the clade of C. quoyii, C. dohrni,
C. anticipata and C. reidi (D. G. Reid, unpubl. data).
Preliminary results are used in the discussion below.

RESULTS
GENE SEQUENCES

The COI dataset consisted of 115, the 16S dataset of
22 and the 28S dataset of 43 sequences (Table S1).
Cerithidea weyersi was represented by a single COI
sequence; C. charbonnieri, C. balteata and C. sinensis
were represented by COI and 28S sequences; other
species were represented by samples sequenced for all
three genes. After the removal of primer sequences
and ambiguous regions, the 28S alignment (initially
1474 bp) was 1445 bp (98%) and the 16S alignment
(initially 515 bp) was 502 bp (97%). The COI align-
ment was 658 bp. In the alignments, 84 bp of 28S,
75 bp of 16S and 233 bp of COI were informative; the
remaining bases were either constant or parsimony
uninformative. The model chosen by MrModelTest
was GTR + I + G for each gene. Inspection of the
individual gene trees did not reveal any well-
supported clades in conflict (Fig. 1, Supporting Infor-
mation Figs S1, S2).

PHYLOGENY

PSRF values for the MrBayes analyses were less than
1.01 and ESS values were greater than 350, indicat-
ing that all trees had reached stationarity. The
ingroup of Cerithidea species was monophyletic in all
MrBayes analyses (Figs 1, S1, S2). Within Cerithidea,
four clades were recognized. (1) The ‘C. quoyii group’
(C. quoyii, C. dohrni, C. anticipata and C. reidi) was
supported in the COI, 16S, COI + 28S and all-gene
analyses. On the basis of shell resemblance (D. G.
Reid, unpubl. data), an unsampled fifth species (C. n.
sp. B) was added as the likely sister of C. quoyi and
C. dohrni. (2) The ‘C. balteata group’ (C. balteata,
C. charbonnieri and C. sinensis) was supported
in the COI, 28S and COI + 28S analyses. (3)
The ‘C. rhizophorarum group’ (C. moerchii and
C. tonkiniana) was supported in the COI, 28S,
COI + 28S and all-gene analyses. On the basis of
shell resemblance (D. G. Reid, unpubl. data), the
unsampled C. rhizophorarum was added as the likely
sister of C. moerchii. (4) The ‘C. weyersi group’ was
represented by a single COI sequence from C. weyersi
and its relationship with other clades was unresolved.
An additional species, C. n. sp. A, was recognized as
its probable sister on the basis of shell resemblance
(D. G. Reid, unpubl. data). The relationships of
C. decollata and C. obtusa were unresolved.

SPECIES DELIMITATION AND DISTRIBUTION

Almost all the named species (recognized from shell
morphology) for which sequences were available were
monophyletic, with significant support, in the
MrBayes COI analysis (Fig. 1). The only exception
was C. anticipata, the two lineages of which formed a
clade with C. reidi. The ESS values of the BEAST
analysis were all greater than 1000. The GMYC
analysis recovered a further three significant enti-
ties, 15 in total [Fig. 1; maximum likelihood (ML)
clusters = 11; ML entities = 15; likelihood of null
model = 851.0301; likelihood of GMYC model =
865.3725; P < 0.0001]. Variation in 28S sequences was
limited and sample sizes were small, so that few fixed
differences were detected. Within the C. quoyii group,
there were no fixed differences, but there were 25
differences between C. charbonnieri and C. sinensis.
For the named taxa, uncorrected pairwise distances
between species were all greater than 0.076 (the
distance between C. anticipata and C. reidi), whereas
distances within species were less than 0.012, except
for the three species C. balteata (0.018), C. dohrni
(0.025) and C. anticipata (0.072). The GMYC analysis
recovered two entities within each of these three
named species. The support for the species status of
the evolutionarily significant units (ESUs sensu
Moritz, 1994) of Cerithidea is summarized in Table 1.
The distributions of the recognized species are plotted
in Figure 2 (except for C. decollata, from South Africa
to Kenya and Madagascar).

DISCUSSION
DELIMITATION AND TAXONOMY OF

CERITHIDEA SPECIES

Although many recent textbooks and regional taxo-
nomic guides have illustrated shells of Cerithidea
species (see Material and Methods above), the only
monographic accounts date from the 19th century
(Sowerby, 1866; Tryon, 1887; Kobelt, 1888–1898).
Since then, only a single critical taxonomic study has
appeared, describing one new Australian species
(Houbrick, 1986). These taxonomic accounts have so
far been based only on shell characters, but these, if
uncritically applied, can be a poor guide to identifi-
cation. Thus, a recent phylogeographical study of
C. moerchii showed that two morphologically distinct
geographical ‘subspecies’ were conspecific (Kojima
et al., 2006, as ‘C. rhizophorarum’), whereas a
phylogenetic analysis of the Potamididae showed that
the morphospecies ‘C. ornata’ was composed of two
phylogenetic species (Reid et al., 2008). Taxonomic
revision is clearly required.

Noninterbreeding biological species can be
inferred if sister clades remain morphologically and
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genetically distinct where their ranges overlap, but
this criterion cannot be applied in Cerithidea, where
all potential sister species are allopatric (note that
C. tonkiniana and C. moerchii, although partially
sympatric sisters in Figure 1, would probably not be
so if sampling of species was complete, because the
unsampled C. rhizophorarum is the predicted sister
of C. moerchii; Fig. 2B). Therefore, our operational
criteria for the recognition of species (Table 1)
include reciprocal monophyly of at least two inde-
pendent loci (e.g. nuclear as well as mitochondrial
genes), statistical analysis of lineage branching
(BEAST/GMYC analysis), genetic distance (greater
than the minimum between other recognized sister-
species pairs) and diagnostic morphological charac-
ters (Knowlton, 2000; Avise, 2004; Coyne & Orr,
2004; Fujita et al., 2012; Puillandre et al., 2012).
This integrative approach has been successfully
applied in similar studies of other gastropods
(Claremont et al., 2011). The 28S nuclear gene in
fact has low resolving power at the level of sister
species, supporting the monophyly of only two
morphospecies (Fig. S1), with few fixed differences.
However, we assume that diagnostic morphological
(shell) characters have a genetic basis. These will

be reported elsewhere (D. G. Reid, unpubl. data),
showing that each named species is morphologically
distinct. Sampling and resolution were highest for
the COI mitochondrial gene (Fig. 1), which sup-
ported the monophyly of all named species except
C. anticipata, which was unresolved. In addition,
pairwise genetic distances were greater between
than within all named species, although distances
were high within C. anticipata, C. dohrni and
C. balteata. The BEAST/GMYC analysis supported
most of these named species as significant entities,
but recognized two entities within each of
C. anticipata, C. dohrni and C. balteata (Fig. 1).
Sampling is inadequate to resolve the status of
these controversial cases and further study is nec-
essary. For the present, we refer to them as species
with strong genetic structure. In freshwater
members of the same superfamily, Cerithioidea,
many studies have detected complex patterns of
nonmonophyly and taxonomic incongruence in
phylogenies constructed from mitochondrial genes,
with various explanations, including introgres-
sive hybridization, incomplete lineage sorting
and complex patterns of vicariance and dispersal
between river drainage systems (Miura et al., 2013,

Table 1. Summary of support for species status of evolutionarily significant units (ESUs) of Cerithidea. Each named
species is supported by diagnostic characters of shell morphology (D. G. Reid, unpubl. data) and all named species (for
which sequences are available) are monophyletic in the cytochrome oxidase I (COI) MrBayes analysis (except for
C. anticipata). Species ordered as in Figure 1. N, no diagnostic morphology; na, only one sequence available; Y, significant
support (DNA) or diagnostic morphology (shell); query, no significant support (but not contradicted); dash, no data

ESU
GMYC
analysis

COI
monophyly

16S
monophyly

28S
monophyly

Shell
morphology

C. weyersi Y na – – Y
C. n. sp. A – – – – Y
C. balteata

Sulawesi 377
Y na – – N

C. balteata other Y Y – Y N
C. sinensis Y Y – Y Y
C. charbonnieri Y Y – ? Y
C. obtusa Y Y Y ? Y
C. anticipata

Qld Australia 8805
Y na na na N

C. anticipata other Y ? na ? N
C. reidi Y Y na ? Y
C. dohrni

Sulawesi 378a
Y na na ? –

C. dohrni other Y Y na ? N
C. quoyii Y Y ? ? Y
C. n. sp. B – – – – Y
C. decollata Y Y Y ? Y
C. tonkiniana Y Y Y ? Y
C. moerchii Y Y ? ? Y
C. rhizophorarum – – – – Y
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and references cited therein). Such patterns were
not detected in the present study, possibly as a
result of limited intraspecific sampling.

Intraspecific sampling was thorough only in
C. moerchii, and supports the finding of Kojima et al.
(2006; as ‘C. rhizophorarum’) that the distinctive shell
form found in the Ryukyu Islands is conspecific with
populations from the mainland of Japan. (Confus-
ingly, all previous authors have used the name
C. rhizophorarum for the mainland form, whereas
this is correctly applied to a species, not sampled
here, that is endemic to the Philippines; D. G. Reid,
unpubl. data). The geographical range of available
molecular samples was limited in most species, and so
distributions are based on the morphological identifi-
cation of museum material. The validity of this
approach is supported by the degree of congruence
between the genetic and morphological delimitation of
species, but remains to be thoroughly tested by more
intensive sampling. In particular, the range of
C. balteata is especially wide and, from available
samples, disjunct; the few shells that have been seen
from the eastern part (Solomon Islands) are at the
extreme of the morphological range and may prove to
be a distinct species. During the concurrent taxo-
nomic study (D. G. Reid, unpubl. data), three addi-
tional morphospecies were discovered (C. n. sp. A,
C. n. sp. B, C. rhizophorarum), for which no genetic
samples were available; these are included in
Figure 2 for the sake of completeness, with an indi-
cation of their predicted phylogenetic relationships
based on shell resemblance.

DISTRIBUTION AND DISPERSAL OF

CERITHIDEA SPECIES

The distributions of Cerithidea species lie strictly
within the range of mangroves in most cases, extend-
ing beyond these limits only in the north-western
Pacific (Fig. 2), where three species can also be found
in salt marshes, reed beds and even on firm mud
(Ohtaki et al., 2002; Wada & Nishikawa, 2005; Hong,
Choi & Tsutsumi, 2010). Their recorded habitats are
summarized in Supporting Information Table S2.
Details are not known for all species, but there
appears to be a division between those that are
typical of fully marine habitats (C. decollata,
C. obtusa and members of the C. quoyii group) and
the rest, which inhabit estuarine sites and only the
landward fringes of mangrove forests. At least two
species (C. weyersi and C. n. sp. A) are recorded from
almost freshwater habitats alone. There is therefore a
phylogenetic pattern, for the members of each of the
four main clades share a similar range of habitats.

The mode of larval development and the possi-
bility of pelagic dispersal are not well known in

Cerithidea species. Habe (1955) reported that eggs of
C. moerchii (as ‘C. rhizophorarum’) were 0.35 mm in
diameter. In a member of another potamidid genus,
Cerithideopsis scalariformis, eggs of 0.28 mm in
diameter hatch into larvae that metamorphose
almost immediately, with no planktonic stage, and
therefore Houbrick (1984) predicted a similar devel-
opment for C. moerchii. Cerithideopsis pliculosa
hatches with a larval shell of 0.3 mm in diameter and
its swimming–crawling, planktotrophic larvae meta-
morphose after 6–13 days (Miura, Frankel & Torchin,
2011). Kimura et al. (2002) reported planktonic
larvae in C. moerchii (as ‘C. rhizophorarum’) and
Kojima et al. (2006) claimed 12–20 days for a range
of potamidids (including C. moerchii, but with no
details) in Japan. It is a reasonable inference that
planktonic life in Cerithidea species is short to mod-
erate. Consistent with the rough correspondence
between larval life and range size in gastropods
(Paulay & Meyer, 2002, 2006), ranges of Cerithidea
species are at a similar scale to those of other groups
with short to moderate lengths of pelagic develop-
ment (e.g. a few days in Astralium, Meyer et al.,
2005; 24 days in Echinolittorina, Williams & Reid,
2004; 4 days in Lunella, Williams et al., 2011). In
contrast with Littoraria, another genus of mangrove-
associated snails, but with a pelagic life of up to
10 weeks (Reid et al., 2010), there are no species that
range widely across the entire IAA. Other means of
dispersal could include migratory birds in marshes
and mudflats (Miura et al., 2012) and perhaps rafting
on mangrove vegetation.

Three Cerithidea species (C. obtusa, C. quoyii and
C. charbonnieri) are distributed all around the
present coastlines of the Sunda Shelf (Fig. 2). This, in
itself, indicates powers of dispersal in these three
species from marine and estuarine mangroves, for the
shelf was exposed as dry land during the low sea-level
intervals of the Plio-Pleistocene glaciations, most
recently 17 000 years ago (Voris, 2000). The distribu-
tion of C. weyersi is in marked contrast, found mainly
on coastlines at the western and southern margins of
the Sunda Shelf (only two records from the Sunda
Shelf: Madura Island and south-east Borneo) and
Halmahera in the Molucca Sea. With the exception of
a record from Bangladesh, these are coasts of steep
topography, where little migration would have been
necessary with changes in sea level. This contrast has
been pointed out in relation to the mangrove and
rainforest trees of Sundaland, in which areas of sta-
bility can act as refugia for species with limited
dispersal ability (Cannon, 2012). It is unknown
whether C. weyersi is similarly restricted, for example
by short (or absent) pelagic larval development. Its
near-freshwater habitat could also limit its potential
for dispersal.
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One other distribution deserves comment:
C. balteata (if indeed it is a single species, see above)
stands out as the only member of the genus with a
wide range on numerous high islands from the Phil-
ippines, across eastern Indonesia to western New
Guinea and the Solomon Islands (Fig. 2C). Most other
species show a pronounced restriction to presently (or
historically) contiguous coastlines, with only a few
cases of distributions that require dispersal across
significant open-water gaps (see C. weyersi, C. dohrni,
C. quoyii and C. n. sp. B for the few exceptions;
Fig. 2). This range of C. balteata could perhaps indi-
cate a longer pelagic phase for dispersal but, if so, its
absence from southern New Guinea and Australia is
unexpected. Being largely restricted to high-island
archipelagos, C. balteata recalls some Echinolittorina
species, which appear to be restricted to ‘oceanic’
coastlines of relatively low primary productivity (Reid
et al., 2006).

SPECIATION AND ALLOPATRY IN THE CENTRAL IWP

All the sister-species pairs of Cerithidea, and the one
unresolved trichotomy of species, show allopatric
distributions (Fig. 2). [This statement requires
some qualification: it assumes that the unsampled
C. rhizophorarum is correctly placed as sister to
C. moerchii; Houbrick (1986) reported that the ranges
of C. reidi and C. anticipata overlap slightly in north-
western Australia, but examination of the specimens
cited by him has not confirmed this; C. quoyii and
C. n. sp. B are present in a single sample from north-
eastern Sumatra, but shell morphology suggests that
these two are not sister species; D. G. Reid, unpubl.
data.] This strong geographical signal is consistent
with the orthodox view that the prevailing mode of
speciation is allopatric (Coyne & Orr, 2004), even in
the sea (Quenouille et al., 2011; but see Bowen et al.,
2013), as has repeatedly been shown in other genera
of tropical marine gastropods (Williams & Reid, 2004;
Meyer et al., 2005; Frey, 2010; Claremont et al., 2011;
Williams et al., 2011; but see Krug, 2011). More sig-
nificant is the finding that sister species show nar-
rowly allopatric ranges, implying that the geography
of the speciation events has been preserved (or that
any change in distribution of sisters has been recip-
rocal) (Malay & Paulay, 2010) and that concerns
about post-speciation dispersal acting to obscure the
geographical signal are not justified in this case
(Losos & Glor, 2003; Quenouille et al., 2011). In
Cerithidea, the available estimates of the ages of
sister species are 3.7 Ma (1.4–7.0 Ma) and 4.8 Ma
(1.9–8.5 Ma) (for C. anticipata/reidi and C. quoyii/
dohrni, respectively, with 95% highest posterior
density intervals; D. G. Reid & M. Claremont, unpubl.
data), yet dispersal can be rapid, for three species

have recolonized the new coastline of Sundaland in
the past 17 000 years. It seems unlikely that geo-
graphical barriers to dispersal are sufficiently strong
to maintain allopatry over millions of years, and so
competitive exclusion may be operating (Quenouille
et al., 2011). The Cerithidea species that do occur
sympatrically show differences in zonation within the
mangrove forest (in relation to tidal level and salinity
range) and contrasting shell thickness (correlated
with tree-climbing behaviour and predation risk in
mangrove snails, Reid, 1992; Table S2), which could
indicate competitive effects. Alternatively, if reproduc-
tive isolation between incipient species is not com-
plete, limited interbreeding and loss of introgressed
genes could reinforce the allopatric pattern (Meyer
et al., 2005).

Despite the labile distributions of some species
across the periodically emergent continental shelves,
it can be assumed that the allopatry of sister species
of Cerithidea broadly reflects the geography of spe-
ciation events. If so, speciation in this genus has
evidently occurred at various locations across the
IWP, but most frequently within the IAA, consistent
with ‘centre of origin’ models (Bellwood et al., 2012).
There are no cases of narrow-range peripheral
endemics, as frequently seen in taxa with larger
ranges and long-lived pelagic larvae (Paulay & Meyer,
2002, 2006). The IAA has been considered to be a
‘species pump’ driven by sea-level changes of up to
120 m during the Plio-Pleistocene, but many species
are now known to be considerably older than this
(Williams & Duda, 2008; Bellwood et al., 2012), and
the signature of Plio-Pleistocene events is apparent
mainly in the genetic structure within species
(Carpenter et al., 2011). Nevertheless, sea-level
changes of 30–60 m have occurred since the Oligo-
cene, with increasing frequency in the late Miocene
(Miller et al., 2005; Morley, 2012), so that patterns of
speciation predicted by this eustatic model may pre-
date the major glaciations of the past 2.5 Myr. One
predicted outcome of repeated isolation during glacial
intervals is speciation centred in isolated refugia in
the Andaman Sea, the South China Sea and the Sulu
Sea (Fig. 2E), with recolonization of the Sunda Shelf
proceeding each time from the north-east and the
south-east as sea levels rose (see maps of Voris, 2000).
This is close to the observed pattern in C. n. sp. B,
C. quoyii and C. dohrni, respectively (Fig. 2D), where
the estimated age of the first pair is 4.8 Ma
(1.9–8.5 Ma). Similarly, the differentiation of marine
species on the east and west coasts of tropical Aus-
tralia has been linked with the periodic emergence
of the Sahul Shelf, although (as in the case of
C. anticipata and C. reidi) the modern boundary or
overlap between eastern and western sister taxa is
commonly much further to the west than the shal-
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lowest part of the shelf at the Torres Strait. This
discrepancy has been explained in terms of prevailing
westward dispersal through the Arafura Sea (Reid
et al., 2006, 2010).

Another striking feature of the distributions of
Cerithidea species is a boundary at, or close to, the
Makassar Strait. This separates C. charbonnieri and
C. balteata (two members of an unresolved tri-
chotomy; Fig. 2C), C. dohrni and C. quoyii (possible
sister species, but note the single record of C. quoyii
from the eastern side of the strait; Fig. 2D) and forms
the eastern boundary of the range of C. obtusa
(Fig. 2B). This is part of the famous Wallace’s Line at
the eastern edge of the Sunda Shelf (Fig. 2F), a
marine passage that has been in place since the
Eocene, providing a partial barrier to the dispersal of
terrestrial organisms between South-East Asia and
Australasia (Hall, 2012). Quite why the Makassar
Strait represents a strong barrier to a marine group,
even one with apparently limited larval dispersal
such as Cerithidea, is unclear. The Indonesian
Throughflow (Fig. 2E) may contribute to this effect
and the current is stronger during low sea levels
when the strait is narrowed (Hall, 2012). Neverthe-
less, the presence of C. balteata, C. anticipata and
C. reidi in Australasia indicates that this barrier has
been breached at least twice in the past, following
the collision between the Eurasian and Indian–
Australian lithospheric plates at the beginning of the
Miocene, when the deep-water channel was closed
between the Bird’s Head of western new Guinea and
Sulawesi (Hall, 2012). There is little evidence that the
Makassar Strait acts as a barrier in other marine
taxa (although the term ‘marine Wallace’s Line’ has
been used in a different context, to describe a
phylogeographical break across the Java Sea; Barber
et al., 2000). In another mangrove-associated gastro-
pod genus, Littoraria, six species span the Makassar
Strait, whereas five do not, being restricted to areas of
Sundaland to the west of the strait (Reid, 1986, 2001;
Reid et al., 2010). The strait has been claimed as the
location of a phylogeographical break in one coastal
marine fish (Lourie & Vincent, 2004; Lourie, Green &
Vincent, 2005) and even in a pelagic one (Rohfritsch
& Borsa, 2005), but in neither case have populations
been compared on each shore in order to equate the
break with the strait itself. In rock-dwelling, inter-
tidal Echinolittorina species, there is also a potent
barrier (separating sister species and delimiting
ranges of species) in eastern Indonesia, but this lies
in the Banda Sea to the east of Sulawesi and has been
explained in terms of the ‘oceanic’ habitat of the
Banda Sea and ‘continental’ Sunda and Sahul Shelves
(Reid et al., 2006). Extinction may also have shaped
the ranges of molluscs in shallow waters of high
productivity in South-East Asia during the late

Miocene and early Pliocene (Ozawa et al., 2009).
Clearly, these historical and ecological barriers cross-
ing eastern Indonesia within the IAA require more
detailed study.

There are two other repeated patterns of distribu-
tion in this genus. Three Cerithidea species are
endemic to the north-western Pacific, from Vietnam to
China, sometimes including Japan and the Ryukyu
Islands (Fig. 2A–C). This is repeated in some other
gastropods, although without precise correspondence
of their southern range boundaries (Reid, 1986, 2007;
Williams et al., 2011). Restriction by latitude and
temperature regime is a common feature of marine
distributions outside the tropics (Williams, 2007; Frey
& Vermeij, 2008; Malay & Paulay, 2010), and may
have been promoted by episodes of isolation in warm
refugia during periods of climatic cooling. Two
Cerithidea species are endemic to the Philippines, in
one case extending south to the Molucca Sea
(Fig. 2B,D). Diversification within the Philippine
archipelago has been linked to isolation of its marine
basins during low sea-level stands (Carpenter &
Springer, 2005), but phylogeographical patterns
within these islands have yet to be studied in detail.

CONCLUSION: DIVERSITY PATTERNS
WITHIN THE CENTRAL IWP

Sister species within the genus Cerithidea show nar-
rowly allopatric ranges, producing a mosaic across the
central IWP. Secondary sympatry appears to be
achieved slowly and only between clades with ecologi-
cal differences. As a result, five species are found
sympatrically in southern Vietnam, three in the
South China Sea, Andaman Sea, Philippines and
southern China, two in New Guinea and one in Aus-
tralia and East Africa. This is a small sample of only
15 species, but it is nonetheless notable that the
highest species richness is not found in eastern Indo-
nesia at the heart of the ‘Coral Triangle’ or IAA
(Hoeksema, 2007), instead lying further to the west,
as also observed in mangrove-associated littorinids
(Reid, 1986, 2001). This could indicate a correlation
between the diversity of mangrove molluscs and
habitat area (as in reef fish and corals; Bellwood
et al., 2005), as mangrove habitats reach their great-
est areal extent in South-East Asia (Spalding et al.,
1997) and most Cerithidea species are restricted to
continental coasts and high islands. Nevertheless, in
contrast with Cerithidea, the focus of species diversity
of mangrove plants includes not only South-East Asia,
but also eastern Indonesia, New Guinea and northern
Australia (Groombridge & Jenkins, 2002).

Molecular study of supposedly widespread species
of IWP gastropods has revealed other cases of mosaic-
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type differentiation of cryptic species across the
region, at a scale that is smallest in those that, like
Cerithidea, are believed to have limited potential for
larval dispersal (Paulay & Meyer, 2002). The location
of individual species ranges depends not only on his-
torical factors, but also on ecology; for example,
species of reefs and limestone shores differentiate on
oceanic archipelagos (Kirkendale & Meyer, 2004;
Meyer et al., 2005), those of continental coasts (such
as Cerithidea) differentiate on continents and high
islands (Williams et al., 2011) and those of rocky
shores differentiate across the entire IWP (Williams
& Reid, 2004; Frey & Vermeij, 2008). These mosaic
distributions contrast with the prevailing wide and
overlapping distributions of corals and fish, which
contribute largely to the IAA hotspot (Bellwood et al.,
2012). Mosaic distributions do not contribute directly
to alpha diversity, but provide crucial insight into the
causes of allopatric speciation in the marine tropics.
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Additional Supporting Information may be found in the online version of this article at the publisher’s web-site:

Figure S1. Molecular phylogeny of Cerithidea species produced by MrBayes analysis of 16S rRNA (A) and 28S
rRNA (B) sequences, using Cerithideopsilla species as outgroup. Localities are abbreviated and followed by the
last four digits of the registration or reference number (for full details, see Table S1). Support values are
MrBayes posterior probabilities; only values > 0.95 (strong support) are shown.
Figure S2. Molecular phylogeny of Cerithidea species produced by MrBayes analysis of concatenated
COI + 28S rRNA (A) and COI + 16S rRNA + 28S rRNA (B) sequences, using Cerithideopsilla species as
outgroup. Localities are abbreviated and followed by the last four digits of the registration or reference number
(for full details, see Table S1). Support values are MrBayes posterior probabilities; only values > 0.95 (strong
support) are shown.
Table S1. Specimens of Cerithidea (abbreviated C.) used in this study, with GenBank accession numbers for
28S, 16S and COI sequences. Not all genes were sequenced for each specimen; unavailable sequences are
indicated with a dash. Voucher locations: Natural History Museum, London (NHMUK); Berlin Museum of
Natural History (ZMB); Muséum Nationale d’Histoire Naturelle, Paris (MNHN). GenBank accession numbers
beginning with AM were published by Reid et al. (2008). Outgroup taxa are the four species of Cerithideopsilla.
Some of the Cerithidea species listed have appeared in recent literature under incorrect or invalid names:
C. balteata [= C. ornata (G. B. Sowerby II, 1855)]; C. tonkiniana (= C. ornata of authors, not G. B. Sowerby II,
1855); C. quoyii and C. dohrni (together = C. quadrata G. B. Sowerby II, 1866); C. moerchii (= C. rhizophorarum
of authors, not A. Adams, 1855).
Table S2. Recorded habitat range of Cerithidea species. Shell thickness may indicate degree of exposure to
crushing predation by crabs and other predators, as in Littoraria species, in which thickness is greatest in
species that spend most time at lower tidal levels on trees (Reid, 1992). Symbols: ++, typical habitat; +, recorded
habitat.
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