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Geckos are the only major lizard group consisting mostly of nocturnal species. Nocturnality is presumed to have
evolved early in gecko evolution and geckos possess numerous adaptations to functioning in low light and at low
temperatures. However, not all gecko species are nocturnal and most diurnal geckos have their own distinct
adaptations to living in warmer, sunlit environments. We reconstructed the evolution of gecko activity patterns
using a newly generated time-calibrated phylogeny. Our results provide the first phylogenetic analysis of temporal
activity patterns in geckos and confirm an ancient origin of nocturnality at the root of the gecko tree. We identify
multiple transitions to diurnality at a variety of evolutionary time scales and transitions back to nocturnality occur
in several predominantly diurnal clades. The scenario presented here will be useful in reinterpreting existing
hypotheses of how geckos have adapted to varying thermal and light environments. These results can also inform
future research of gecko ecology, physiology, morphology and vision as it relates to changes in temporal activity
patterns. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 115, 896–910.
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INTRODUCTION

Temporal niche partitioning early in a clade’s evolu-
tionary history has profound effects on behaviour,
ecology, reproduction, physiology and morphology
(Duellman & Pianka, 1990; Webb et al., 2002; Vitt
et al., 2003; Vitt & Pianka, 2005). Reconstructing the
history of temporal activity patterns can provide
insight into the evolution of associated traits and the
structuring of ecological communities. Geckos, for
example, are the only primarily nocturnal lizard
clade; 72% of the 1552 described species are active at
night (Table S1). Geckos possess numerous adapta-
tions to low light and low temperatures, suggesting
nocturnality evolved early in their evolution. These
adaptations include the evolution of vocalization and
acoustic communication, olfactory specialization,

enhanced capability for sustained locomotion at low
temperatures, shifts in diet and foraging mode, and
the absence of the parietal foramen and pineal eye
(Ralph, 1975; Gundy & Wurst, 1976; Marcellini,
1977; Pianka & Huey, 1978; Schwenk, 1993; Autumn
et al., 1999; Vitt & Pianka, 2005; Bauer, 2007; Daza,
Bauer & Snively, 2013). Geckos also have acute vision
and have many adaptations for seeing in low light
including large eyes, pupils capable of an extreme
degree of constriction and dilation, retinas without
foveae, short visual focal length, multifocal colour
vision, and rod-like photoreceptor cells in the retina
that lack oil droplets (Underwood, 1951a, 1970;
Kr€oger et al., 1999; R€oll, 2000b, 2001a; Roth & Kel-
ber, 2004). However, not all gecko species are noctur-
nal; there are over 430 diurnal species (Table S1).
Many of these diurnal lineages have their own adap-
tations to living in warmer, photopic environments
including round pupils, UV-filtering crystallin lens
proteins, smaller eyes, partial to complete foveae,*Corresponding author. E-mail: gambl007@umn.edu
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cone-like photoreceptor cells in the retina and a
return to higher energetic costs of locomotion (Walls,
1942; Pianka & Huey, 1978; Autumn, 1999; R€oll,
2001a, b; Werner & Seifan, 2006). Geckos are thought
to be ancestrally nocturnal and diurnality evolved
multiple times (Walls, 1942; Autumn, 1999; R€oll,
2001b). However, this hypothesis has never been
tested in a phylogenetic framework. We performed
comparative analyses using a newly generated gecko
phylogeny and examined the evolution of temporal
activity patterns to: (1) test the hypothesis of an early
origin of nocturnality in geckos; (2) verify repeated
subsequent transitions to diurnality; and (3) deter-
mine whether the evolution of temporal activity pat-
terns has influenced diversification rates.

MATERIALS AND METHODS

We estimated phylogenetic relationships among 264
gecko species and 16 outgroups including exemplars
from 119 of 120 recognized gecko genera (Table S2).
We sequenced fragments of five nuclear protein-
coding genes: RAG1 (1074 bp), RAG2 (366 bp),
C-MOS (384 bp), ACM4 (477 bp) and PDC (397 bp);
and one mitochondrial fragment: the protein-coding
ND2 gene and associated tRNAs (1414 bp). Details
concerning primers, PCR, Sanger sequencing and
alignment are discussed elsewhere (Gamble et al.,
2008; Jackman et al., 2008). Newly generated se-
quences have been deposited in GenBank (Table S2).

We estimated phylogenetic relationships and diver-
gence times simultaneously in a Bayesian framework
using BEAST 1.7.4 (Drummond et al., 2012). Parti-
tioned data were analysed with an uncorrelated
relaxed clock and Yule prior on speciation rates
(Drummond et al., 2006). The optimal partitioning
scheme, determined using Bayesian information cri-
terion (BIC) in PartitionFinder v1.0.1 (Lanfear et al.,
2012), had three partitions: one partition consisting of
all nuclear gene data; another partition comprising
first and second codon positions of the mtDNA dataset
plus tRNAs; and a third partition with the third
codon position of the mtDNA dataset. The optimal
models of sequence evolution, also calculated by
PartitionFinder, were GTR + G for all partitions. We
ran two replicate Markov Chain Monte Carlo
(MCMC) analyses each with 20 million generations
retaining every 5000th sample. We used seven cali-
brations to constrain the minimum ages of nodes in
the time tree analyses. The most recent common
ancestor (MRCA) of Gekkota, minimum age – (fossil
calibration) Hoburogekko suchanovi, Aptian–Albian,
112 Mya (Daza, Alifanov & Bauer, 2012; Daza, Bauer
& Snively, 2014). MRCA of Teratoscincus scin-
cus + Teratoscincus roborowskii – (biogeographical
calibration) Tien Shan-Pamir uplift in western China,

10 Mya (Tapponnier et al., 1981; Abdrakhmatov
et al., 1996; Macey et al., 1999). MRCA of extant Sph-
aerodactylus species – (fossil calibration) Sphaero-
dactylus dommeli and S. ciguapa, 15–20 Mya (Kluge,
1995; Iturralde-Vinent & MacPhee, 1996; Daza &
Bauer, 2012). MRCA of Paradelma orientalis + Pyg-
opus nigriceps – (fossil calibration) Pygopus hortul-
anus, 20 Mya (Hutchinson, 1997; Jennings, Pianka &
Donnellan, 2003; Lee, Oliver & Hutchinson, 2009).
MRCA of Helodermatidae + Anguidae, minimum age
– (fossil calibration) Primaderma nessovi, 99 Mya
(Nydam, 2000). MRCA of Lepidosauria (Squa-
mata + Sphenodon), minimum age – (fossil cal-
ibration) Polysphenodon and Brachyrhinodon, 225
Mya (Evans, 2003). Root (Lepidosauria + Archosauri-
a), normal distribution – (secondary calibration) 252–
257 Mya (Reisz & M€uller, 2004). Output files were
checked for convergence using Tracer (Rambaut &
Drummond, 2007), and both runs, minus burn-in,
were combined to estimate topology and divergence
times.

We initially categorized temporal activity as three
character states, diurnal, nocturnal or crepuscular/
cathemeral with data from the literature (Table S1),
hereafter called the three-character dataset. Defini-
tions follow Schmitz & Motani (2010). Some analyti-
cal methods, such as the binary-state speciation and
extinction (BiSSE) model with a terminally unre-
solved phylogeny, require binary characters and spe-
cies categorized as crepuscular/cathemeral were
recoded as diurnal or nocturnal based on the time
when the preponderance of foraging activity occurs.
We called this the binary dataset. Both datasets
were used to infer the evolution of temporal activity
patterns in geckos.

We analysed both datasets using two methods:
Bayesian ancestral state reconstruction and stochas-
tic mapping. A third method, the BiSSE model, was
also used to analyse the binary dataset alone. Bayes-
ian ancestral state reconstruction was performed
using BayesTraits v2.0 (Pagel, Meade & Barker,
2004). We incorporated phylogenetic uncertainty by
analysing a set of 5000 trees drawn from the poster-
ior distribution of trees inferred by the BEAST
analyses. Deviations in rates were estimated using
the AutoTune function and a hyper prior on all
parameters was set to a value between 0 and 1.
Analyses were run for 11 million generations, sam-
pled every 1000 generations, and the first 1 million
generations discarded as burn-in. We investigated
whether a single-rate model (Lewis, 2001) fit either
of the datasets better than an asymmetric multi-rate
model (Schluter et al., 1997; Pagel, 1999). We also
compared alternative root states in both datasets
using the ‘fossil node’ command. Alternative hypoth-
eses were compared using log Bayes Factors (logBF)

© 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 115, 896–910

DIURNALITY EVOLVED MULTIPLE TIMES IN GECKOS 897

D
ow

nloaded from
 https://academ

ic.oup.com
/biolinnean/article/115/4/896/2440166 by guest on 24 April 2024



with marginal likelihoods calculated via stepping
stone sampling and the optimal transition rate
model. Each stepping stone analysis used 100 sam-
ples with 10 000 iterations per sample.

We counted the number of transitions among
states via stochastic mapping with the simmap func-
tion in Phytools 0.4-31 (Huelsenbeck, Nielsen & Boll-
back, 2003; Revell, 2012). We mapped characters
onto the maximum clade credibility tree from the
BEAST analysis. We used the transition model that
best fit the data as estimated by maximum-likelihood
(ML) with the ace function in the R package APE
3.1-4 (Paradis, Claude & Strimmer, 2004). Transi-
tions were summarized using the describe.simmap
function in Phytools.

We concurrently estimated character transition
rates and state-specific extinction and speciation
rates using the BiSSE model (Maddison, Midford &
Otto, 2007). We converted our phylogeny into a termi-
nally unresolved generic-level tree to accommodate
unsampled taxa (FitzJohn, Maddison & Otto, 2009).
The phylogeny was pruned to 102 taxa, roughly
equivalent to genera, to which we could assign all
1552 described gecko species. There were several
instances where multiple genera, whose collective
monophyly was strongly supported, were grouped
together, as well as several instances where genera
were split due to generic paraphyly. We calculated
BiSSE model parameters and compared alternative
models from the terminally unresolved generic-level
tree with both ML and Bayesian methods with Diver-
sitree 0.9-7 (FitzJohn et al., 2009; FitzJohn, 2012).
Priors for each parameter used an exponential distri-
bution and estimated ML model parameters were
used as a starting point for the Bayesian analyses.
Posterior distributions for each model parameter
were estimated from a single MCMC chain run for
10 000 generations, with the first 10% discarded as
burn-in. Three initial MCMC chains, run for 1000
generations each, converged almost immediately and

were consistent with each other and the single 10 000
generation run. Finally, ancestral states were esti-
mated for the terminally unresolved generic-level tree
under a BiSSE model using the ‘asr-bisse’ command
in Diversitree.

RESULTS

Phylogenetic relationships and divergence times
among gecko families and genera (Fig. 1) were con-
sistent with previous estimates at well-supported
nodes (Gamble et al., 2011, 2012; Heinicke et al.,
2012). Activity patterns were conserved within most
genera and only seven of 120 genera had both diur-
nal and nocturnal species (Table S1). All ancestral
state reconstructions recovered an ancient origin of
nocturnality at the root of the gecko tree (Figs ).
Bayesian hypothesis testing confirmed the robust-
ness of these results and favoured a nocturnal root
state in all comparisons (Fig. 2, binary data: noctur-
nal root = �83.330741, diurnal root = �89.726172,
logBF = 12.79; three-character dataset nocturnal
root = �128.909312, diurnal root = �135.344277, cre-
puscular/cathemeral root = �135.909323, logBF noc-
turnal root vs. diurnal root = 12.87, logBF nocturnal
root vs. crepuscular/cathemeral root = 14.00).

Transitions between activity patterns occurred
across the phylogeny at a variety of timescales.
Comparisons of a 1- to 2-rate model using the binary
dataset in a Bayesian framework preferred the 1-rate
model (1 rate = �83.305361; 2 rates = �87.187184;
logBF = 7.76). A model comparison with ML found no
difference between the two models (Table 1). A com-
parison of the three-character dataset in a Bayesian
framework showed a preference for the simpler 1-rate
model (1 rate = �128.911706; multiple rates =
�142.306639; logBF = 26.79). This contrasts with the
ML comparison that found no difference between a
single-rate model and a model with all rates different
(ARD model, Table 1).

Table 1. Comparison among transition rates models used in the maximum-likelihood ancestral state reconstruction

Model

Binary dataset Three-character dataset

d.f. ln likelihood AIC d.f. ln likelihood AIC

ARD 2 �76.193 156.386 6 �117.31 246.6107

SYM n/a n/a n/a 3 �122.32 250.6396

ER 1 �76.983 155.9665 1 �122.49 246.9797

The number of parameters (d.f.) for each model is listed. The likelihood scores were produced using two datasets: the

binary dataset, with species categorized as diurnal or nocturnal; or the three-character dataset, with species categorized

as diurnal, nocturnal or crepuscular/cathemeral. Models were compared using the Akaike Information Criterion (AIC)

and AIC scores of the best fitting model for each dataset are in bold type. The following models were compared: all rates

different model (ARD); symmetrical rates model (SYM); and equal rates model (ER).
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Aeluroscalabotes felinus
Amalosia rhombifer

Amphisbaena

Anolis carolinensis

Aprasia inaurita
Aprasia parapulchella

Aristelliger georgeensis
Aristelliger lar
Aristelliger praesignis

Asaccus platyrhynchus
Asaccus sp

Aspidoscelis tigris

Bavayia cyclura
Bavayia geitaina

Carphodactylus laevis

Chatogekko amazonicus Rio Ituxi
Chatogekko amazonicus Santarem
Chatogekko amazonicus Manaus

Coleodactylus brachystoma
Coleodactylus cf brachystoma
Coleodactylus septentrionalis

Coleonyx brevis
Coleonyx mitratus
Coleonyx variegatus

Correlophus ciliatus

Crenadactylus ocellatus

Dactylocnemis pacificus

Delma butleri
Delma tincta

Dibamus bouretti

Dierogekko insularis

Diplodactylus conspicillatus
Diplodactylus tesselatus

Elagaria kingii

Eublepharis macularius

Euleptes europaea

Eumeces inexpectatus

Eurydactylodes agricolae

Gallus gallus

Garthia gaudichaudii

Gonatodes albogularis
Gonatodes alexandermendesi
Gonatodes annularis

Gonatodes antillensis

Gonatodes caudiscutatus

Gonatodes ceciliae

Gonatodes concinnatus

Gonatodes daudini

Gonatodes humeralis
Gonatodes ocellatus

Gonatodes vittatus

Goniurosaurus araneus
Goniurosaurus luii

Gymnodactylus amarali

Haemodracon riebeckii

Heloderma suspectum

Hemitheconyx caudicinctus
Hemitheconyx taylori

Hesperoedura reticulata

Holodactylus africanus

Homonota darwinii
Homonota fasciata

Hoplodactylus duvaucelii

Lepidoblepharis festae
Lepidoblepharis sp.
Lepidoblepharis xanthostigma

Lialis burtonis

Lucasium damaeum
Lucasium stenodactylum

Mniarogekko jalu

Mokopirirakau granulatus

Naultinus elegans
Naultinus gemmeus

Naultinus rudis

Nebulifera robusta

Nephrurus levis

Oedodera marmorata

Oedura marmorata

Ophidiocephalus taeniatus

Orraya occultus

Paniegekko madjo

Paradelma orientalis

Phyllodactylus reissii
Phyllodactylus tuberculosus
Phyllodactylus unctus

Phyllodactylus wirshingi
Phyllodactylus xanti

Phyllopezus lutzae
Phyllopezus maranjonensis
Phyllopezus periosus

Phyllopezus pollicaris Sao Domingos
Phyllopezus p. przewalskii
Phyllopezus pollicaris Paiui

Phyllurus platurus

Pletholax gracilis

Podarcis sicula

Pristurus carteri
Pristurus sp.

Pseudogonatodes guianensis Guyana
Pseudogonatodes guianensis Peru
Pseudogonatodes guianensis Acre

Pseudothecadactylus lindneri

Ptyodactylus guttatus

Pygopus lepidopodus
Pygopus nigriceps

Python molurus

Quedenfeldtia moerens
Quedenfeldtia trachyblepharus

Ramphotyphlops braminus

Rhacodactylus leachianus

Rhineura floridana

Rhynchoedura ornata

Saltuarius swaini

Saurodactylus brosseti

Saurodactylus fasciatus

Saurodactylus mauritainicus

Sphaerodactylus argus

Sphaerodactylus elegans

Sphaerodactylus glaucus

Sphaerodactylus grandisquamis

Sphaerodactylus leucaster

Sphaerodactylus nicholsi

Sphaerodactylus nigropunctatus

Sphaerodactylus notatus

Sphaerodactylus roosevelti

Sphaerodactylus torrei

Sphaerodactylus townsendi

Sphenodon punctatus

Strophurus aberrans
Strophurus elderi
Strophurus strophurus

Tarentola americana
Tarentola chazaliae
Tarentola delalandii

Tarentola deserti
Tarentola fascicularus
Tarentola mauritanica

Teratoscincus keyserlingii

Teratoscincus microlepis
Teratoscincus przewalskii
Teratoscincus roborowskii
Teratoscincus scincus

Thecadactylus rapicauda
Thecadactylus rapicauda
Thecadactylus solimoensis

Toropuku stephensi

Tiliqua rugosa

Trioceros jacksonii

Tukutuku rakiurae

Underwoodisaurus milii
Uvidicolus sphyrurus

Woodworthia maculata

Xantusia vigilis
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Calodactylodes illingworthorum
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Figure 1. Time-calibrated phylogeny of geckos estimated from a Bayesian analysis of the concatenated nuclear and

mitochondrial gene dataset. Nodes with posterior probabilities > 0.50 are labelled. Time scale, in millions of years, is

shown at the bottom of the tree. Node bars represent 95% highest posterior density (HPD) interval of divergence times.

Gecko families and outgroups are labelled to the right of species names.
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Figure 2. The evolution of temporal niche in geckos. Bayesian ancestral state reconstructions of temporal niche

mapped onto a time-calibrated phylogeny of geckos using the one-rate model. Circles at the tips of branches indicate the

temporal niche for each included species. Pie charts on internal nodes indicate the posterior probability of that ancestor

having a particular temporal niche. A, results using the binary dataset; species are categorized as diurnal (white) or

nocturnal (black). B, results with the three-character dataset; species are categorized as diurnal (white), nocturnal

(black) or crepuscular/cathemeral (grey).
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Figure 2. Continued.
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Figure 3. The evolution of temporal activity mapped onto a time-calibrated phylogeny of geckos. Circles at the tips of

branches indicate the temporal niche for each included species. Circles at internal nodes indicate reconstructions from

1000 stochastic mapping simulations. Gecko families are labelled. A, results with the binary dataset and equal rates (ER)

model; species are categorized as diurnal (white) or nocturnal (black). B, results with the three-character dataset and all

rates different (ARD) model; species are categorized as diurnal (white), nocturnal (black) or crepuscular/cathemeral (grey).
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Figure 4. A, ancestral activity patterns inferred using the six-parameter BiSSE model mapped onto a time-calibrated

phylogeny of gecko genera. Some genera have been combined for convenience. Circles at the tips of branches indicate

temporal activity patterns of species in each genus. Rectangles at internal nodes represent probabilities of ancestral

activity patterns inferred using the six-parameter BiSSE model. Time scale, in millions of years, is below the tree. Hori-

zontal lines to the right indicate the number of species in each clade. B–I, representative gecko species showing varia-

tion in eye size and pupil shape as it relates to temporal activity. B, Stenodactylus sthenodactylus – nocturnal; C,

Phelsuma grandis – diurnal; D, Sphaerodactylus macrolepis – diurnal; E, Teratoscincus roborowskii – nocturnal; F, Pris-

turus carteri – diurnal; G, Eublepharis macularius – nocturnal; H, Correlophus ciliatus – nocturnal; I, Lialis burtonis –

crepuscular/cathemeral.
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Stochastic mapping of binary data with a single-rate
model counted 20 transitions between nocturnal and
diurnal activity patterns (median = 20, min. = 18,
max. = 28). More transitions from nocturnality to
diurnality were counted (median = 12, min. = 10,
max. = 19) than the reverse, that is from diurnality to
nocturnality (median = 7, min = 4, max = 13). Sto-
chastic mapping with the three-character dataset with
the ARD model counted 40 transitions among activity
patterns (median = 10, min. = 31, max. = 53). Most
transitions were from nocturnal to crepuscular/cathe-
meral (median = 13, min. = 9, max. = 22) or from cre-
puscular/cathemeral to diurnal (median = 12,
min. = 6, max. = 18). There were fewer transitions
from nocturnal to diurnal (median = 3, min. = 0,
max. = 7), from diurnal to nocturnal (median = 5,
min. = 4, max. = 12), and from crepuscular/cathemer-
al to nocturnal (median = 6, min. = 1, max. = 15).
There were no transitions counted from diurnal to
crepuscular/cathemeral. These estimates should be

considered a minimum count, as only 17% of described
gecko species were included in our stochastic mapping
analysis and some recent transitions, particularly
within Cnemaspis and Sphaerodactylus, were not
included.

BiSSE analysis indicated no influence of temporal
activity patterns on speciation or extinction rates
(Fig. 5). We found the model constraining equal spe-
ciation and extinction rates to have the best Akaike
information criterion score, whereas the full, six-
parameter model had the poorest model fit (Table 2),
a result also supported by the broad overlap in pos-
terior distributions of speciation and extinction
parameters (Fig. 5).

DISCUSSION

We confirmed the long-held hypothesis that noctur-
nality evolved early in gecko evolutionary history
(Walls, 1942). Furthermore, we identified multiple
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Figure 5. Bayesian parameter estimates inferred using the six-parameter BiSSE model. Zero (0) indicates nocturnality

and one (1) indicates diurnality. Estimates of: A, trait-specific speciation rates (lambda); B, trait-specific extinction rates

(mu); C, transition rate parameters (q01 = nocturnal to diurnal, q10 = diurnal to nocturnal); D, net diversification rates

calculated as the difference between speciation (lambda) and extinction (mu) rates for nocturnal and diurnal genera.

The 95% credibility intervals are shaded and indicated by horizontal bars along the x-axis.

Table 2. Comparison of full and constrained maximum-likelihood binary-state speciation and extinction (BiSSE) models

Model lambda0 lambda1 mu0 mu1 q01 q10 d.f. ln Likelihood AIC DAIC

Full model 0.07095 0.07984 0.02537 0.03588 0.00074 0.00160 6 –818.60 1649.2 4.0

Equal lambda 0.06690 – 0.01963 0.02040 0.00068 0.00163 5 –818.62 1647.2 2.0

Equal mu 0.06918 0.06870 0.02270 – 0.00068 0.00165 5 –818.61 1647.2 2.0

Equal q 0.06514 0.08886 0.01763 0.04681 0.00098 – 5 –819.49 1649.0 3.8

Equal lambda & mu 0.06919 – 0.02286 – 0.00068 0.00168 4 –818.62 1645.2 0.0

Equal lambda & q 0.07384 – 0.02827 0.03081 0.00090 – 4 –820.09 1648.2 3.0

Equal mu & q 0.06816 0.06633 0.02088 – 0.00087 – 4 –820.15 1648.3 3.1

Equal lambda, mu, & q 0.06971 – 0.02355 – 0.00088 – 3 –820.36 1646.7 1.5

Trait 0 is nocturnal and trait 1 is diurnal. Lambda, trait-specific speciation rates; mu, trait-specific extinction rates; q,

transition rate. Constrained models are compared using the Akaike Information Criterion (AIC).
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transitions to diurnality at a variety of evolutionary
time scales. Several transitions occurred deep in the
phylogeny, including ancestors to the Pygopodidae,
the New World sphaerodactyl geckos and the Phelsu-
ma plus Lygodactylus clade. More recent transitions
occurred in Rhoptropus, within New Zealand and
New Caledonian diplodactylids (Naultinus and Eury-
dactylodes), and within Gymnodactylus, Ptyodactylus
and Mediodactylus. Both Asian Cnemaspis clades
seem to include multiple transitions, although addi-
tional taxonomic sampling is needed to confirm this.
We also identified several well-supported reversions
to nocturnality within otherwise diurnal clades,
including Sphaerodactylus, Gonatodes, Phelsuma
and the Pygopodidae.

Results of the ancestral state reconstructions were
mostly concordant across datasets and methodolo-
gies. However, phylogenetic uncertainty and differ-
ences among datasets contributed to ambiguity in
the reconstructions at some nodes. The MRCA of
the Sphaerodactylidae, for example, was either: noc-
turnal, as estimated from BiSSE and stochastic
mapping using the binary dataset; diurnal or cre-
puscular/cathemeral, as estimated by Bayestraits
and stochastic mapping analyses of the three-char-
acter dataset; or equivocal as estimated by the Ba-
yestraits analysis of the binary dataset. How this
node is reconstructed determines whether Queden-
feldtia, Pristurus and New World sphaerodactylini
are independently derived diurnal lineages or the
nocturnal sphaerodactyl geckos such as Teratoscin-
cus, Aristelliger and Euleptes are reversals to noc-
turnality from a diurnal ancestor. Further work
that better resolves the phylogeny plus examination
of independent evidence for activity pattern evolu-
tion and visual morphology will be necessary to
resolve reconstructions at these ambiguous parts of
the tree.

The comparative phylogenetic hypothesis presented
here will be useful for interpreting or reinterpreting
adaptations to different thermal and light environ-
ments in geckos. For example, rod-like visual cells
that lack oil droplets are characteristic of nocturnal
geckos, whereas most diurnal lizards, including many
diurnal geckos, have cone-like visual cells with oil
droplets (Walls, 1942; Underwood, 1951b; R€oll,
2000b; Bowmaker, 2008). The small oil droplets found
in visual cells are thought to filter light and aid in
spectral tuning (Bowmaker & Knowles, 1977). Cone-
like visual cells with oil droplets have evolved inde-
pendently in diurnal geckos across the phylogeny and
are present in Gonatodes, Phelsuma, Quedenfeldtia
and Pristurus (Underwood, 1951b; R€oll, 2000a).
There are several exceptions to this trend, and the
diurnal Pygopodidae, Sphaerodactylus, Rhoptropus,
Naultinus and Lygodactylus all lack oil droplets and

have visual cells more typical of nocturnal geckos
(Underwood, 1951b, 1957; R€oll, 2000b). Further
insight into visual adaptations to diurnality comes
from examining the composition and amount of cer-
tain lens proteins called lens crystallins (R€oll,
2001b). Sphaerodactylus and Narudasia have lens
crystallin composition similar to nocturnal geckos
(R€oll, 2001b). However, many other diurnal genera
have recruited the CRBPI protein to bind with 3,4-
didehydroretinol (vitamin A2) to filter harmful ultra-
violet light (Werten, Roll, van Aalten & de Jong,
2000). The presence of CRBPI in the lens is unique
to Lygodactylus, Phelsuma, Pristurus, Gonatodes,
Quedenfeldtia and African Cnemaspis, and is not
found in the lenses of any other vertebrates (R€oll,
Amons & deJong, 1996; R€oll & Schwemer, 1999;
R€oll, 2001b). The presence and amount of other lens
crystallins also varies among different diurnal gecko
lineages (R€oll, 2001b). Understanding the curious
phylogenetic distribution of oil droplets and lens
crystallins will require detailed examination of a
gecko species’ visual environment, including inten-
sity and wavelengths of light. However, it is clear
that visual adaptations to diurnality are repeatedly
gained across the phylogeny. Furthermore, it does
not seem that the age of a diurnal lineage corre-
sponds to the acquisition of vision-related adapta-
tions. Some older diurnal lineages exhibit apparently
plesiomorphic traits, whereas some young diurnal
lineages exhibit a large number of derived visual
adaptations to diurnality. Reinterpreting these and
other traits, in light of the comparative phylogenetic
hypothesis presented here, will provide a better
understanding of the evolution and function of visual
adaptations in geckos.

Our results indicate frequent shifts in temporal
activity patterns in geckos at a variety of evolution-
ary timescales. Determining what factors initiate
shifts in individual clades is beyond the scope of the
current paper, but there are, very broadly, three
possible causes: climate, predators and competition.
Some shifts in activity pattern may be related to
thermoregulation and evading extreme temperatures
and desiccation. For example, geckos in the genus
Sphaerodactylus appear to overheat easily (Allen &
Powell, 2014) and several species that inhabit hot,
xeric habitats are nocturnal, including: S. leucaster,
S. thompsoni and S. ladae in southern Hispaniola;
S. roosevelti in south-west Puerto Rico; and S. ina-
guae from the Bahamas (Schwartz & Henderson,
1991; Rivero, 1998; Scantlebury et al., 2011). Simi-
larly, some gecko species living at high altitudes,
such as Mediodactylus amictopholis, are thought to
have shifted to diurnal activity to facilitate thermo-
regulation in colder climates (Szczerbak & Golubev,
1996). However, there are numerous counter examples
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of both nocturnal and diurnal gecko species inhabit-
ing extreme environments. Pristurus and Rhoptr-
opus, for instance, are diurnal genera that can be
active at extremely high temperatures in arid envi-
ronments (Arnold, 1993; Nagy, Seely & Buffenstein,
1993; Autumn, 1999) whereas Homonota darwnii
and Alsophylax pipiens live in cold climates at
extreme latitudes and remain nocturnal (Szczerbak
& Golubev, 1996; Aguilar & Cruz, 2010; Weeks &
Espinoza, 2013). Furthermore, nocturnal geckos
seem quite capable of regulating body temperature
while hidden in retreats during the day (Huey et al.,
1989; Downes & Shine, 1998; Kearney & Predavec,
2000; Aguilar & Cruz, 2010) or through occasional
daytime basking (Werner, 1969; Pianka & Huey,
1978; Werner & Whitaker, 1978; Gibson et al., 2015)
and thus switching to diurnality solely for thermo-
regulatory purposes may be uncommon overall.

Predation could also instigate changes in temporal
activity patterns in geckos and such shifts are well
documented in other vertebrate species (Halle, 1993;
Rydell & Speakman, 1995; Fraser et al., 2004;
McCauley et al., 2012). Most predator-induced niche
shifts in geckos involve the alteration of the spatial
niche (Hoare et al., 2007; Pike et al., 2010). However,
Bauer (2013) hypothesized that geckos may transi-
tion to a more conspicuous, diurnal lifestyle in envi-
ronments where predators are less abundant or
absent, such as on islands. Lack of predators is
thought to be responsible for dramatic changes in
phenotype and behaviour in many island species,
such as the evolution of flightlessness in birds (Dar-
win, 1859; Whittaker & Fern�andez-Palacios, 2007).
Thus, it is reasonable that similar selective pressures
could alter temporal activity in geckos.

Shifts in temporal activity patterns may also be
related to competition avoidance and the exploitation
of underutilized resources. Temporal resource parti-
tioning helps competitors coexist by avoiding direct
confrontation or reducing resource overlap (MacAr-
thur & Levins, 1967; Schoener, 1974). For example,
the early shift to nocturnality in ancient geckos has
been attributed to avoiding competition with diurnal
lizards and exploiting the relatively open nocturnal
niche (Vitt et al., 2003; Vitt & Pianka, 2005). The
lack of competition with other diurnal lizards, mostly
iguanians, is frequently cited as promoting transi-
tions back to diurnality in geckos (Vitt et al., 2003;
Vitt & Pianka, 2005; Garcia-Porta & Ord, 2013).
Indeed, many diurnal geckos occur in regions with a
paucity of iguanian species. The success of Phelsuma
and Lygodactylus in Madagascar has been attributed
to the lack of arboreal iguanians, with the exception
of the extremely specialized chameleons (Vitt et al.,
2003). Similarly, diurnality in the diplodactylid
genera Naultinus and Eurydactylodes may have been

a shift into empty niche space in the absence of diur-
nal, arboreal agamids in New Zealand and New Cal-
edonia (Garcia-Porta & Ord, 2013). On the other
hand, many diurnal geckos co-occur with iguanians,
which requires some explanation. One possibility is
that diurnal competitors recently dispersed into the
area. For example, the southern African Rhoptropus
are sympatric with several agamid species (Branch,
1998). However, diurnality evolved in Rhoptropus
sometime prior to 25–30 Mya (Fig. 3), which pre-
dates diversification of agamids in the region 15–
20 Mya (Leach�e et al., 2014). It is also possible that
diurnal gecko lineages evolved in an area lacking ig-
uanians and subsequently dispersed into habitats
occupied by diurnal, non-gekkotan lizards. Two Lygo-
dactylus species co-occur with numerous diurnal,
arboreal iguanians in the arid Chaco and Cerrado
regions of South America (Peters, Donoso-Barros &
Orejas-Miranda, 1986). South America was already
teaming with iguanians by the time Lygodactylus
dispersed to South America from Africa in the early
Miocene (B�aez & de Gasparini, 1979; Gamble et al.,
2011; Townsend et al., 2011; Albino & Brizuela,
2014). However, it should be noted that direct com-
petition is probably minimal between the miniature
South American Lygodactylus and co-distributed igu-
anians due to extreme differences in size (Vitt,
1995). Furthermore, competition does not have to be
with other lizards. Competitive exclusion from the
species-rich, Neotropical treefrogs has been proposed
as a possible explanation for the paucity of noctur-
nal, arboreal geckos in the Western Hemisphere (Du-
ellman & Pianka, 1990); three-fifths of New World
gecko species are primarily terrestrial and diurnal
members of the Sphaerodactylidae (Gamble et al.,
2011).

Determining the relative importance of climate,
predators and competition to individual transitions
in gekkotan temporal activity will require further
research. Historical approaches that utilize phyloge-
netic data and incorporate the evolution of ecologi-
cally relevant traits to investigate the organization
of ecological communities will be particularly useful
in this regard (Webb et al., 2002; Cavender-Bares
et al., 2009). Because temporal niche shifts between
diurnality and nocturnality are relatively rare
among animals (Schoener, 1974) the large number of
transitions observed in geckos will prove quite useful
for testing hypotheses of temporal niche partitioning
and ecological community assembly over a variety of
evolutionary timescales.

It is reasonable to assume that changes in temporal
activity in geckos could be associated with increased
diversification rates in diurnal lineages. The occupa-
tion of a new adaptive zone can lead to ecologi-
cal release promoting diversification and adaptive
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radiation (Simpson, 1944; Schluter, 2000; Harmon
et al., 2008). However, we found no association
between changes in temporal niche and speciation and
extinction rates with our BiSSE analysis. This lack of
a relationship could be due to several factors. First, the
invasion of a new adaptive zone need not automatically
lead to adaptive radiation (Losos, 2010; Yoder et al.,
2010). For example, genetic constraints could limit the
evolution of ancillary phenotypic traits necessary for
subsequent diversification (Schluter, 1996). This could
include the evolution of eye lens crystallins to filter
harmful UV light or physiological adaptations to
increased daytime temperatures (Autumn, 1999; R€oll,
2001b). Second, geckos as a whole may be ‘prone to
radiating’, sensu Losos (2010). There are numerous
species-rich gecko clades, some of which are diurnal
and others that are nocturnal (Fig. 4). Any increase in
diversification rate experienced by a diurnal lineage
due to ecological opportunity may not be significantly
greater than the high diversification rates exhibited by
many nocturnal gecko lineages. Investigating the fac-
tors that promote diversification in geckos will require
additional data, as many traits may be linked to
increased diversification in geckos (Harmon et al.,
2008; Gamble et al., 2012; Garcia-Porta & Ord, 2013),
as well as the development of robust methods that can
more accurately identify the correlates of diversifica-
tion (Maddison & FitzJohn, 2015).

CONCLUSIONS

Temporal niche partitioning among species can have a
strong phylogenetic basis and geckos overall exhibit
significant phylogenetic conservation of physiological
and behavioural traits related to temporal activity
patterns (Autumn et al., 1999; Vitt et al., 2003; Vitt &
Pianka, 2005). However, multiple shifts in temporal
activity have occurred across the gekkotan phylogeny
and parsing out the causes and consequences of such
transitions will provide important insights into many
aspects of gecko biology (Dial & Grismer, 1992;
Autumn, 1999; Autumn et al., 1999). The comparative
phylogenetic framework presented here will be useful
for interpreting, or reinterpreting, adaptations to
varying thermal and light environments in geckos
(Autumn, 1999; R€oll, 2001b; Werner & Seifan, 2006).
Furthermore, replicate transitions to diurnality in
geckos provide an exceptional opportunity to further
study the evolution of suites of complex traits and
determine whether convergent traits associated with
diurnality follow predictable evolutionary patterns.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article at the publisher’s web-
site:

Table S1. Activity patterns of 120 gecko genera representing 1552 species. Cnemaspis is separated into
three clades. Definitions: Nocturnal – most activity and foraging occurs at night; Diurnal – most activity and
foraging occurs during the day; Cathemeral/Crepuscular – most activity and foraging occurs at twilight and/or
during both day and night.

Table S2. Details of material examined.

SHARED DATA

GenBank numbers are listed in the supplementary material. Trees, diurnality data and sequence alignments
deposited in the Dryad repository (Gamble et al., 2015).
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