Leaf morphology and anatomy of Camellia section Camellia (Theaceae)

PI ERXU ${ }^{1}$, PENG QIUFA ${ }^{1}$, LU HONGFEI ${ }^{1 *}$, SHEN JINGBO ${ }^{1}$, DU YUEQIANG ${ }^{2}$, HUANG FEILAI ${ }^{2}$ and HU HUI ${ }^{2}$
${ }^{1}$ College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, 321004, China
${ }^{2}$ Jinhua Forestry Bureau of Zhejiang Province, Jinhua, 321004, China

Received 2 January 2008; accepted for publication 16 December 2008

Abstract

The delimitations of species in Camellia section Camellia have been disputed for many years, resulting from uncertain relationships among species. Leaf morphological and anatomical characters for 54 species and three varieties in this section were investigated to reveal the relationships. Principal component analysis and cluster analysis were conducted using the transformed data for quantitative and qualitative characters from leaf morphology and anatomy. Combining the results of statistical analysis with comparative leaf characters of morphology and anatomy, we discussed the taxonomic treatment of section Camellia by Chang compared with that of Ming and we conclude that section Camellia consists of c. 50 species. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 159, 456-476.

ADDITIONAL KEYWORDS: cluster analysis - epidermis - leaf anatomy - principal component analysis taxonomy.

INTRODUCTION

Camellia section Camellia (L.) Dyer (Theaceae) is the largest section in the genus with about 60 species, subspecies and varieties (Chang, 1998), most of which are native to China. Some are cultivated as ornamental trees and are thus spread all over the world (Gao, Parks \& Du, 2005). This section is characterized by large, usually red flowers and basal fusion of stamens (Gao et al., 2005). Frequently, bracts and sepals are indistinguishable. The seeds of all species contain edible oils. There are three well-known taxonomic treatments of Camellia that have discussed the classification of species of this section in detail: Sealy (1958), Chang (1998) and Ming (2000). Sealy (1958) considered that this section contained eight distinct species. Chang (1998) suggested that it included 57 species and Ming (2000) revised it back to 12 species. There are many uncertainties about the relationships

[^0]among species in this section and much disagreement among taxonomic treatments and further taxonomic research on this section is necessary.

Several works based on genetic information (Chen, Wang \& Nelson, 2005; Yang et al., 2006) have been conducted to clarify the interspecific relationships within genus Camellia, but these studies were not able to answer all the taxonomic questions.

On the one hand, leaf morphology and anatomy have always played an important role in plant taxonomy, particularly for identifying taxa in which variation in floral structures is uninformative or in which flowering specimens are infrequent owing to, for example, a limited flowering season (Meade \& Parnell, 2003). On the other hand, leaf features have been largely unexploited in taxonomic studies, resulting from a belief that they respond in a plastic manner to environmental forces. In this study, all materials were taken from the International Camellia Species Garden in Jinhua city, making it possible to compare species growing under the same environmental conditions.

In section Camellia, leaf morphology has been described in several publications (Chang, 1998; Ming, 2000; Gao et al., 2005). However, a simple definition of leaf shape is difficult because of the extreme diversity observed. For example, the leaf shape of Camellia hongkongensis was described as oblong by Chang (1998), whereas Ming (2000) recorded it as oblongelliptic, oblong or oblong-lanceolate and Gao et al. (2005) described it as oblong-elliptic. These differences in descriptions cause confusion and reduce the taxonomic value of leaf morphology. In contrast, a morphometrical analysis of leaf morphology is a useful and rapid method for identification of species. Recently, morphometric studies on Taxus, a taxonomically complex genus, with many sterile specimens like Camellia, showed that leaf characters are powerful in separating and identifying species in this morphologically labile plant group (Möller et al., 2007; Shah et al., 2008).

Epidermal characters have been considered to be of great use in studying relationships between taxa (Kong, 2001; Yang \& Qi, 2005). In section Camellia, there are a few descriptions of leaf epidermal micromorphology (Ao, Chen \& Chang, 2002; Ao, Ye \& Zhang, 2007), but only a limited number of species were included. Thus, a more comprehensive investigation of leaf epidermal micromorphology in this section is necessary. The multiple epidermis (when present) and the presence or absence of stone cells provides useful information for taxonomy (Baranova, 1972). Additionally, the mesophyll usually offers some useful features, including the presence of crystals (Heintzelman \& Howard, 1948). Nevertheless, in section Camellia, data for leaf characters in transverse sections are unavailable.

How to treat and make best use of morphological data in taxonomy is still a problem. A great many methods have been reported (Briggs \& Walters, 1984; Kirchoff et al., 2004; Plotze et al., 2005; Kirchoff, Richter \& Remington, 2007) and there are two main types of numerical techniques to represent taxonomic structure: clustering analysis and principal component analysis (PCA). The two techniques have been shown by Rhodes et al. (1971) to be complementary.

In summary, section Camellia is retained in the taxonomic treatments of genus Camellia by Chang (1998) and Ming (2000), but both the number and the delimitations of species in this section are controversial. This study aims to provide a basis for further investigations of systematic classification using the data of leaf morphology and anatomy.

MATERIAL AND METHODS

Leaf samples from 285 plants representing 54 species and three varieties in this section (according to

Chang's taxonomic treatment) were collected from the International Camellia Species Garden in Jinhua city. Voucher specimens were deposited in Zhejiang Normal University (ZJNU) herbarium (Table 1). Five fully expanded sun-exposed leaves were sampled for each species.

Leaf epidermal scrapings were macerated in 40% sodium hypochlorite (NaClO) solution for 10 min at $35^{\circ} \mathrm{C}$. After removal of mesophyll tissues, pieces of epidermis were obtained and then dehydrated in an alcohol series and stained with safranin and fast green (Lü \& Hu, 2001). Finally, they were mounted in neutral resin (Shanghai Shenhua Holdings Co., China) and examined with an Olympus BX50 light microscope (Olympus Co., Tokyo, Japan).

Shortly after being collected, leaves for transverse sections were cut into pieces and fixed in formaldehyde-acetic acid-alcohol (FAA) solution (Stern \& Judd, 2002). Materials were dehydrated in a graded ethanol series, embedded in paraffin (Shanghai Shenhua Holdings Co.), sectioned with a KD-2508 Rotary Microtome (Zhejiang Jinhua Kedi Instrumental Equipment Co., China), treated with a safranin and fast-green stain procedure and mounted in neutral resin. The thicknesses of palisade tissues and spongy tissues were measured using the Dn-3 MicroImage program (Ningbo Yongxin Optics Co., China). The terminology was based on the classification proposed by Metcalfe \& Chalk (1979).

Ten leaves were sampled for each species and were scanned and estimated using the WinFOLIA system (Regent Instruments Inc., Canada). Measurements of area, perimeter, width, length, aspect ratio (width/ length) and leaf form coefficient were averaged. All the average values for principal component analysis (PCA) were transformed using formula 1:

$$
\begin{equation*}
D_{i}=\frac{n \bar{X}_{i}}{\sum_{i=1}^{n} \bar{X}_{i}} \tag{1}
\end{equation*}
$$

where D_{i} is the transformed value, \bar{X}_{i} is the average value of one character of the i the species and n is the number of species examined. D_{i} is similar with Pearson's coefficient of variation (Briggs \& Walters, 1984), making it possible to compare these data calculated in different units. Then a PCA was made using the PAST procedure (version 1.20) based on the transformed values $\left(D_{i}\right)$. We chose the 'correlation (normalized var-covar)' option because the variables were measured in different units, necessitating normalization of all variables by division by their standard deviations. A scatter plot using the two most important components, component 1 (PC 1) and component 2 (PC2) as the axes, was constructed.

Table 1. Vouchers of studied specimens, following the system of Chang (1998)

Taxa	Names of collectors and reference numbers	Date of collection
Camellia jinshajiangica Chang \& S. L. Lee	Peng Q. F. 200603601	March 2006
Camellia omeiensis Chang	Peng Q. F. 200603611	March 2006
Camellia polyodonta How ex Hu	Peng Q. F. 200603621	March 2006
Camellia lanosituba Chang	Peng Q. F. 200603631	March 2006
Camellia longigyna Chang	Peng Q. F. 200603641	March 2006
Camellia lapidea Wu	Peng Q. F. 200603651	March 2006
Camellia phelloderma Chang, Liu \& Zhang	Peng Q. F. 200603661	March 2006
Camellia mairei (Lévl.) Melch.	Peng Q. F. 200603671	March 2006
Camellia villosa Chang \& S. Y. Liang	Peng Q. F. 200603681	March 2006
Camellia trichosperma Chang	Peng Q. F. \& Lin X. Y. 200604691	April 2006
Camellia semiserrata Chi	Peng Q. F. \& Lin X. Y. 200604701	April 2006
Camellia semiserrata var. albiflora Chang	Peng Q. F. \& Lin X. Y. 200604721	April 2006
Camellia brevipetiolata Chang	Peng Q. F. 200603731	March 2006
Camellia phellocapsa Chang \& B. K. Lee	Peng Q. F. 200603742	March 2006
Camellia compressa Chang \& Wen ex Chang	Peng Q. F. 200603751	March 2006
Camellia magniflora Chang	Peng Q. F. 200603761	March 2006
Camellia lungshenensis Chang	Peng Q. F. \& Jiang B. 200610771	October 2006
Camellia reticulata Lindl.	Peng Q. F. 200603711	March 2006
Camellia brevicolumna Chang, Liu \& Zhang	Peng Q. F. 200603781	March 2006
Camellia pitadii Coh. St.	Peng Q. F. \& Jiang B. 200610801	October 2006
Camellia pitardii var. alba Chang	Peng Q. F. 200603811	March 2006
Camellia pitardii var. yunnaica Sealy	Peng Q. F. 200603821	March 2006
Camellia xifongensis Y.K.Li ex X. C. Chen \& F. Z. Zheng	Peng Q. F. 200603831	March 2006
Camellia hongkongensis Seem.	Peng Q. F. 200603841	March 2006
Camellia cryptoneura Chang	Peng Q. F. 200603851	March 2006
Camellia oviformis Chang	Peng Q. F. 200603861	March 2006
Camellia brachygyna Chang	Peng Q. F. 200603871	March 2006
Camellia tunganica Chang \& B. K. Lee	Peng Q. F. 200603881	March 2006
Camellia bambusifolia Chang, Liu \& Zhang	Peng Q. F. 200603891	March 2006
Camellia saluenensis Stapf ex Been	Peng Q. F. \& Jiang B. 200610901	October 2006
Camellia albo-sericea Chang	Peng Q. F. 200603911	March 2006
Camellia bailinshanica Chang, Liu \& Xiong	Peng Q. F. 200603921	March 2006
Camellia oligophlebia Chang	Peng Q. F. 200603931	March 2006
Camellia uraku (Mak.) Kitamura	Peng Q. F. 200603941	March 2006
Camellia edithae Hance	Peng Q. F. \& Jiang B. 200610961	October 2006
Camellia paucipetala Chang	Peng Q. F. 200603971	March 2006
Camellia tenuivalvis Chang	Peng Q. F. 200603981	March 2006
Camellia boreali-yunnanica Chang	Peng Q. F. 200603991	March 2006
Camellia hibisciflora Chang	Peng Q. F. 2006031001	March 2006
Camellia concina Chang	Peng Q. F. \& Jiang B. 2006101011	October 2006
Camellia glabsipetala Chang	Peng Q. F. 2006031021	March 2006
Camellia delicata Y. K. Li	Peng Q. F. 2006031041	March 2006
Camellia hunanica Chang \& L. L. Qi ex Chang	Peng Q. F. \& Jiang B. 2006101051	October 2006
Camellia glabriperulata Chang	Peng Q. F. 2006031061	March 2006
Camellia magnocarpa (Hu \& Huang) Chang	Peng Q. F. \& Lin X. Y. 2006041081	April 2006
Camellia liberistamina Chang \& Chiu	Peng Q. F. \& Lin X. Y. 2006041091	April 2006
Camellia lucidissima Chang	Peng Q. F. 2006031101	March 2006
Camellia chekiangoleosa Hu	Peng Q. F. \& Jiang B. 2006101111	October 2006
Camellia mongshanica Chang \& Ye	Peng Q. F. 2006031121	March 2006
Camellia japonica L.	Peng Q. F. \& Jiang B. 2006101131	October 2006
Camellia rusticana (Honda) Kitamura	Peng Q. F. \& Jiang B. 2006101141	October 2006
Camellia changii Ye	Peng Q. F. \& Jiang B. 2006101151	October 2006
Camellia subintegra Huang ex Chang	Peng Q. F. \& Lin X. Y. 2006041161	April 2006
Camellia lienshanensis Chang	Peng Q. F. \& Lin X. Y. 2006041171	April 2006
Camellia crassissima Chang \& Shi	Peng Q. F. \& Lin X. Y. 2006041181	April 2006
Camellia apolyodonta Chang \& Q. M. Chen	Peng Q. F. \& Lin X. Y. 2006041191	April 2006
Camellia longicaudata Chang \& Liang ex Chang	Peng Q. F. \& Jiang B. 2006102001	October 2006

Table 2. Qualitative characters and character states

Pattern of anticlinal walls of	Straight-curved (1),
\quad adaxial epidermal cells	repand (2), sinuous (3)
Pattern of anticlinal walls of	Straight-curved (1),
\quad abaxial epidermal cells	repand (2), sinuous (3)
Hairs	Present (0), absent (1)
Cork wart	Present (1), absent (0)
Stomatal cluster	Present (1), absent (0)
Centre stomata	Present (1), absent (0)
Veins	Invisible (1), visible (2),
	raised (3)
Multiple epidermis	Present (1), absent (0)
Stone cells in mesophyll	Present (0), absent (1)

For the cluster analysis, all the measurements of quantitative characters (including leaf area, perimeter, width, length, aspect ratio, form coefficient, thickness of the upper and lower epidermis, thickness of palisade tissue and thickness of spongy tissue) were averaged and then transformed using formula 1. All the qualitative characters were given values (Table 2). A cluster analysis was conducted by PAST procedure (version 1.20) based on the data for quantitative characters and qualitative characters.

RESULTS

Characters of the epidermis

The characters of the leaf epidermis are listed in Table 3.

Epidermal cells

As seen under the light microsope (LM), the anticlinal walls of the epidermal cells appear straight-curved (Fig. 1), undulate (repand) (Fig. 2) or sinuous (Fig. 3). The patterns may vary between species or between the adaxial and abaxial epidermis of the same species (Table 3). Adaxial epidermal cells vary in size and (or) form even within the same specimen for 44 species (Figs 4-8). The adaxial epidermal cells of some species can be classified in more than one category. The abaxial epidermal cells usually share the same patterns within species. Sinuous anticlinal walls of the abaxial epidermal cells are found in 27 species (Fig. 9) and repand anticlinal walls of the abaxial epidermal cells are seen in 29 species (Fig. 10). Only one species has straight to curved anticlinal walls of the abaxial epidermal cells. Epidermal cells with walls are scarcely seen on the abaxial epidermis.

Stomatal apparatus

All species studied here are hypostomatic (i.e. with stomata only on the lower epidermis). Forty-three species have anisocytic stoma (Fig. 11, arrowhead),
whereas the other species have one of two distinct types of stomatal apparatus (Figs 12-15). One is larger in size, infrequently distributed and surrounded by four or more subsidiary cells (Figs 13-15, arrow), defined as cyclocytic stomata by Metcalfe \& Chalk (1979). The other is smaller and surrounded by three subsidiary cells which are variable in size, namely anisocytic stomata (Metcalfe \& Chalk, 1979). Frequently, a few anisocytic stomata surround the larger, cyclocytic stomata in the form of a circle (Figs 13-15). Therefore, we define this cyclocytic stoma as the 'centre stoma' for its situation and significantly larger size (Table 4).

Stomatal clusters

In section Camellia, non-clustered stomata are found in nine species (Figs 16, 17). Stomatal clusters, in which two or more stomata are arranged adjacently with common subsidiary cells, have been documented in previous studies (Yang \& Sack, 1995; Geisler, Yang \& Sack, 1998; Tang et al., 2002). In this study, 48 species have stomatal clusters, frequently involving 2-4 stomata (Figs 18, 19).

Hairs

A few species have hairs on the abaxial surface (Table 3). Camellia edithae has strikingly dense hairs and is thus distinguishable from other species. All of the hairs examined under LM are long, simple and unicellular. Their basal cells are usually stained red with safranin (Fig. 19).

Cork warts

Cork warts are of great diagnostic value (Sealy, 1958; Parks \& Griffiths, 1963; Gao et al., 2005). Only six species have cork warts and thus can be easily distinguished from other species (Fig. 20). These species are C. lanosituba, C. compressa, C. magniflora, C. hibisciflora, C. japonica and C. rusticana (Table 3). Cork warts are only present in the abaxial epidermis and their size is variable among species. On the fresh leaf surface, the cork warts look like brown spots. When examined under LM, they look like black pits surrounded by small fibrous epidermal cells, which are frequently stained red and thus easily distinguished from common epidermal cells.

Characters in transverse section

The characters in transverse section are shown in Table 5. (Detailed data of significance tests are listed in Supplementary Material, Appendix S1.)

Mesophyll

All species examined have bifacial leaves. The number of layers of palisade cells varies from species

Table 3. The characters of leaf epidermis

Taxa	Adaxial epidermis		Abaxial epidermis				
	VEC	POAWOEC	POAWOEC	Hairs	Cork warts	Stomatal clusters	Centre stomata
C. jinshajiangica	-	Repand	Sinuous	+	-	+	-
C. omeiensis	+	Repand	Sinuous	-	-	+	-
C. polyodonta	+	Repand	Sinuous	-	-	+	-
C. lanosituba	+	Repand	Sinuous	-	+	+	-
C. longigyna	+	Repand	Sinuous	-	-	+	-
C. lapidea	+	Repand	Repand	+	-	+	-
C. phelloderma	+	Repand	Repand	-	-	+	-
C. mairei	+	Repand	Sinuous	-	-	+	-
C. villosa	-	Repand	Sinuous	+	-	-	-
C. trichosperma	+	Str-cur	Repand	-	-	+	+
C. semiserrata	+	Str-cur	Repand	-	-	+	+
C. reticulata	+	Str-cur	Repand	-	-	+	-
C. semiserrata var. albiflora	+	Str-cur	Repand	-	-	+	+
C. brevipetiolata	+	Str-cur	Sinuous	-	-	+	+
C. phellocapsa	+	Str-cur	Sinuous	-	-	+	-
C. compressa	+	Sinuous	Repand	-	+	-	-
C. magniflora	+	Str-cur	Repand	-	+	-	-
C. lungshenensis	+	Str-cur	Sinuous	-	-	+	+
C. brevicolumna	-	Repand	Repand	-	-	-	-
C. pitardi	+	Repand	Repand	-	-	+	-
C. pitardii var. alba	+	Repand	Sinuous	-	-	+	-
C. pitardii var. yunnanica	+	Repand	Sinuous	-	-	+	-
C. xifongensis	+	str-cur	Sinuous	-	-	-	-
C. hongkongensis	+	str-cur	Sinuous	-	-	-	-
C. cryptoneura	+	Repand	Repand	-	-	+	+
C. oviformis	+	Sinuous	Sinuous	-	-	+	-
C. brachygyna	-	Sinuous	Sinuous	+	-	-	-
C. tunganica	+	str-cur	Sinuous	-	-	+	-
C. bambusifolia	-	str-cur	Repand	+	-	+	-
C. saluenensis	-	str-cur	Repand	+	-	+	-
C. albo-sericea	-	Repand	Sinuous	+	-	+	-
C. bailinshanica	-	Repand	Sinuous	+	-	+	-
C. oligophlebia	+	Sinuous	Sinuous	-	-	+	-
C. uraku	+	str-cur	str-cur	-	-	+	-
C. edithae	+	str-cur	Repand	+	-	+	-
C. paucipetala	+	Sinuous	Repand	-	-	+	-
C. tenuivalvis	-	Repand	Repand	-	-	+	-
C. boreali-yunnanica	-	Sinuous	Repand	-	-	+	-
C. hibisciflora	-	Repand	Repand	-	+	-	-
C. concina	-	Repand	Sinuous	-	-	-	-
C. glabsipetala	+	Sinuous	Sinuous	-	-	-	+
C. delicata	+	Sinuous	Sinuous	+	-	+	+
C. hunanica	+	Sinuous	Sinuous	-	-	+	-
C. glabriperulata	+	Sinuous	Sinuous	-	-	+	-
C. magnocarpa	+	str-cur	Repand	-	-	+	+
C. liberistamina	+	str-cur	Repand	-	-	+	+
C. lucidissima	+	str-cur	Repand	-	-	+	-
C. chekiangoleosa	+	str-cur	Repand	-	-	+	-
C. mongshanica	+	str-cur	Repand	-	-	+	+
C. japonica var. japonica	+	str-cur	Repand	-	+	+	-
C. japonica subsp. rusticana	+	str-cur	Repand	-	+	+	-
C. changii	-	str-cur	Repand	-	-	+	-
C. subintegra	+	str-cur	Repand	-	-	+	+
C. lienshanensis	+	str-cur	Repand	-	-	+	-
C. crassissima	+	str-cur	Repand	-	-	+	-
C. apolyodonta	+	str-cur	Sinuous	-	-	+	-
C. longicaudata	+	Sinuous	Sinuous	-	-	+	-

Figures 1-8. The characters of the adaxial epidermis under the light microscope. Figures 1-3. Showing the anticlinal walls of adaxial epidermal cells. Fig. 1. C. changii: straight-arched. Fig. 2. C. tenuivalvis: undulate (repand). Fig. 3. C. paucipetala: sinuous. Figures 4-8. Adaxial epidermal cells varying in size or form within the same species. Fig. 4. C. villosa. Fig. 5. C. chekiangoleosa. Fig. 6. C. edithae. Fig. 7. C. glabsipetala. Fig. 8. C. glabriperulata. Scale bar, $50 \mu \mathrm{~m}$.
to species (Figs 21-24). In some species, it is difficult to differentiate palisade tissue from spongy tissue.
Apart from C. changii, all species have stone cells (Fig. 25). Frequently, these are present in palisade tissue and some of them penetrate into spongy tissue. Cluster crystals are present in all species.

Epidermis

With the exception of those species with a singlelayered epidermis, 44 species have a multiple epidermis (Table 5). Of these, only C. japonica has a multiple epidermis in which hypodermal cells are arranged adjacently without intercellular spaces (Fig. 26) and therefore it can be readily distinguished. Forty-three species have a discontinuous multiple
epidermis (Fig. 27, arrow). Especially large epidermal cells, with few contents, are seen in some species (Fig. 28, arrow).

The transverse view reveals that the guard cells are not surrounded but slightly elevated by subsidiary cells (Fig. 29, arrow). In a few species, guard cells lie on two superposed subsidiary cells rather than a single subsidiary cell (Fig. 30, arrow). Both the basal cells of hairs (Fig. 31) and the cells in cork warts (Fig. 32) seem to be suberized.

Veins

Some diagnostic characters are found in veins. Camellia japonica has cork warts on the veins (Fig. 33) and is therefore different from other species.

Figures 9-14. The characters of the abaxial epidermis under the light microscope. Figures 9, 10. The anticlinal walls of abaxial epidermal cells. Fig. 9. C. lanosituba: sinuous. Fig. 10. C. trichosperma: repand. Figures 11-14. Showing two distinct types of stomatal apparatus within the same species. One is centre stomata (arrows). The other is anisocytic stomata. Fig. 11. C. brevipetiolata. Fig. 12. C. lungshenensis. Fig. 13. C. cryptoneura. Fig. 14. C. brevicolumna. Scale bar, $50 \mu \mathrm{~m}$.

Table 4. The area, perimeter, length and width of the guard cell of centre stomata and common stomata in two species

Taxa	Stoma types	Area $\left(\mu \mathrm{m}^{2}\right)$	Perimeter $(\mu \mathrm{m})$	Length $(\mu \mathrm{m})$	Width $(\mu \mathrm{m})$
C. lungshenensis	Centre stomata (cyclocytic)	$556.26 \pm 55.48 \dagger$	$63.74 \pm 3.58 \dagger$	$31.48 \pm 2.97 \dagger$	$15.56 \pm 2.39 \dagger$
	Common stomata (anisocytic)	$387.48 \pm 28.03 \ddagger$	$53.46 \pm 2.47 \ddagger$	$28.36 \pm 1.74 \ddagger$	$13.90 \pm 0.84 \ddagger$
C. cryptoneura	Centre stomata (cyclocytic)	$666.34 \pm 95.75 \dagger$	$72.78 \pm 4.10 \dagger$	$36.08 \pm 2.69 \dagger$	$15.54 \pm 1.34 \dagger$
	Common stomata (anisocytic)	$431.30 \pm 18.74 \ddagger$	$59.86 \pm 2.86 \ddagger$	$28.40 \pm 2.41 \ddagger$	$13.08 \pm 0.96 \ddagger$

[^1]

Figures 15-20. The characters of the abaxial epidermis under the light microscope. Fig. 15. C. xifongensis: non-clustered stomata and abortive stomata (arrow). Fig. 16. C. brachygyna: single-distributed stomata. Figs 17, 18. Showing stomatal clusters: 2-4 stomata arranged adjacently. Fig. 17. C. bambusifolia: stomatal clusters with two stomata arranged adjacently. Fig. 18. C. delicate: showing stomatal clusters (arrow) and hairs. Fig. 19. C. phellocapsa: showing anisocytic stomata (arrowhead) and stomatal cluster (arrow). Fig. 20. C. compressa: showing cork wart (arrow). Scale bar, $50 \mu \mathrm{~m}$.

Stone cells (Fig. 34) and crystals are randomly present in the veins of all species examined.

PCA BASED ON MEASUREMENTS OF LEAF MORPHOLOGY

The average values of lamina vertical length, horizontal width, ratio of width and length (W/L), area and leaf veins (Table 6, Supplementary, Appendix S1) were transformed before they were used for PCA. The PCA results (Fig. 35) indicate that component 1 and component 2 account for 63.2 and 20.6% of the total variance, respectively. Thus, the sum of the two components accounts for most of the total variance. In Figure 35, to compare readily the treatments of Chang
(1998) and Ming (2000), we use the number codes (Table 3) to represent species or varieties in Chang's treatment and tag them with corresponding symbols indicating their taxonomic status in Ming's treatment. The scatter diagram (Fig. 35) shows that C. trichosperma, C. semiserrata, C. semiserrata var. albiflora and C. magnocarpa cluster together. It also indicates that C. compressa, C. paucipetala, C. changii, C. crassissima and C. apolyodonta have particular leaf morphology and are thus distinct from other species.

Cluster analysis

In the cluster analysis, section Camellia was divided into two main clusters: cluster 1 (C1) consisting of
Table 5. Characters in transverse section

Taxa	Upper epidermis		Lower epidermis Thickness ($\mu \mathrm{m}$)*	Mesophyll			
			Palisade tissue			Spongy tissue Thickness ($\mu \mathrm{m}$)	
	Thickness ($\mu \mathrm{m}$)*	Multiple epidermis					
			Stone cells	Thickness ($\mu \mathrm{m}$)*	Layers		
C. jinshajiangica	26.37 ± 4.22	Absent	25.98 ± 3.13	Present	128.8 ± 7.01	2	247.1 ± 18.30
C. omeiensis	37.33 ± 3.06	Absent	19.18 ± 1.74	Present	161.3 ± 4.81	2	207.5 ± 8.24
C. polyodonta	12.62 ± 0.71	Discontinuous	13.39 ± 1.87	Present	92.57 ± 4.39	2	167.8 ± 4.28
C. lanosituba	15.95 ± 2.80	Absent	15.84 ± 1.23	Present	91.04 ± 4.00	2	170.8 ± 6.29
C. longigyna	22.22 ± 3.83	Absent	14.35 ± 2.75	Present	50.08 ± 4.55	1	119 ± 8.35
C. lapidea	24.04 ± 2.14	Discontinuous	15.48 ± 0.93	Present	114 ± 4.97	2	186.2 ± 3.79
C. phelloderma	26.96 ± 2.96	Discontinuous	15.12 ± 1.85	Present	100.7 ± 7.07	2	184.6 ± 13.90
C. mairei	19.53 ± 1.58	Discontinuous	16.13 ± 2.84	Present	174.3 ± 7.50	3	189.1 ± 3.27
C. villosa	26.61 ± 3.29	Discontinuous	15.93 ± 1.93	Present	126.1 ± 6.47	1	133.7 ± 6.45
C. trichosperma	42.34 ± 3.04	Discontinuous	18.96 ± 2.28	Present	95.79 ± 3.00	2	127.9 ± 4.44
C. semiserrata	46.8 ± 1.13	Discontinuous	23.53 ± 1.67	Present	62.35 ± 3.52	2	172.4 ± 2.71
C. reticulata	24.17 ± 1.83	Absent	20.48 ± 1.76	Present	141.2 ± 22.05	2	174 ± 6.80
C. semiserrata var. albiflora	30.78 ± 2.55	Absent	19.41 ± 2.25	Present	128.3 ± 5.86	2	157.1 ± 18.01
C. brevipetiolata	18.39 ± 2.29	Absent	19.29 ± 2.23	Present	159.2 ± 9.73	2	224.4 ± 5.70
C. phellocapsa	18.63 ± 1.68	Absent	13.01 ± 1.36	Present	88.83 ± 6.43	1	95.05 ± 8.35
C. compressa	39.88 ± 4.86	Discontinuous	20.24 ± 2.23	Present	185.6 ± 6.30	2	285.2 ± 7.52
C. magniflora	24.98 ± 1.96	Absent	19.9 ± 2.52	Present	144.5 ± 11.89	2	210.1 ± 8.29
C. lungshenensis	20.72 ± 2.13	Discontinuous	15.3 ± 1.19	Present	137 ± 9.57	2	227.9 ± 14.48
C. brevicolumna	23.04 ± 1.92	Absent	20.17 ± 2.18	Present	131.1 ± 2.73	2	217.8 ± 5.08
C. pitardii	16.26 ± 3.09	Absent	11.92 ± 1.15	Present	106.4 ± 3.67	2	175.5 ± 3.27
C. pitardii var. alba	19.62 ± 2.04	Discontinuous	12.15 ± 1.64	Present	145.4 ± 6.20	2	188.2 ± 7.04
C. pitardii var. yunnanica	30.14 ± 3.46	Discontinuous	15.8 ± 1.66	Present	155.3 ± 14.58	2	198.7 ± 8.58
C. xifongensis	28.88 ± 2.19	Absent	16.55 ± 1.49	Present	132.1 ± 6.56	2	223.7 ± 16.08
C. hongkongensis	14.98 ± 1.40	Discontinuous	14.94 ± 1.56	Present	84.17 ± 6.35	2	158.6 ± 8.66
C. cryptoneura	15.22 ± 1.46	Absent	20.74 ± 1.85	Present	191.1 ± 6.77	2	208.2 ± 4.25
C. oviformis	18.99 ± 1.89	Absent	20.73 ± 2.34	Present	169.2 ± 4.41	2	184.5 ± 6.74
C. brachygyna	24.36 ± 2.21	Absent	21.81 ± 1.99	Present	148.6 ± 9.72	2	194.1 ± 8.03
C. tunganica	22.03 ± 1.22	Discontinuous	14.18 ± 1.86	Present	159.9 ± 10.62	2	169 ± 10.82
C. bambusifolia	32.56 ± 2.17	Discontinuous	26.17 ± 2.42	Present	84.16 ± 4.99	1	140.1 ± 7.44
C. saluenensis	31.42 ± 3.76	Absent	15.39 ± 2.82	Present	129.3 ± 4.81	3	167.7 ± 7.93

$\begin{aligned} 252.1 & \pm 33.95 \\ 151.6 & \pm 6.95 \\ 212.7 & \pm 4.96 \\ 228.3 & \pm 5.29 \\ 200 & \pm 16.16 \\ 184.5 & \pm 8.45 \\ 165.7 & \pm 3.46 \\ 182 & \pm 11.47 \\ 150.5 & \pm 9.60 \\ 133.1 & \pm 5.04 \\ 223.4 & \pm 4.03 \\ 184.3 & \pm 18.04 \\ 178 & \pm 4.76 \\ 164 & \pm 8.40 \\ 165.3 & \pm 8.17 \\ 260.2 & \pm 6.51 \\ 241.8 & \pm 7.22 \\ 352.1 & \pm 10.94 \\ 200.6 & \pm 5.67 \\ 275.6 & \pm 4.71 \\ 176.7 & \pm 5.92\end{aligned}$

0
$\underset{\sim}{\circ}$
+
+1
\cdots
\cdots

C. albo-sericea
C. bailinshanica
C. oligophlebia
C. uraku
C. edithae
C. paucipetala
C. tenuivalvis
C. boreali-yunnanica
C. hilisciflora
C. concina
C. glabsipetala
C. delicata
C. hunanica
C. glabriperulata
C. magnocarpa
C. liberistamina
C. lucidissima
C. chekiangoleosa
C. mongshanica
C. japonica var. japonica
C. japonica subsp.
rusticana
C. azalea
C. subintegra
C. lienshanensis
C. crassissima
C. apolyodonta
C. longicaudata
C
*Thickness $(\pm \mathrm{SD})$ is the average value of 10 measurements.

Figures 21-24. Showing the number of layers of palisade cells. Fig. 21. C. longigyna: one layer of palisade cells. Fig. 22. C. hongkongensis: two layers of palisade cells. Fig. 23. C. crassissima: three layers of palisade cells. Fig. 24. C. bailinshanica: four layers of palisade cells. Scale bar, $50 \mu \mathrm{~m}$.
only one species, C. edithae; and cluster 2 (C2) including the remaining species (Fig. 36). On closer inspection, C 2 can be seen to contain two subclusters: subcluster 1 (SC1) comprising the 12 species and one variety with centre stomata; subcluster 2 (SC2) containing the remaining 39 species, one subspecies and three varieties. Six groups have similarity values greater than 0.96. These groups are: (1) C. japonica and C. rusticana; (2) C. pitardii, C. pitardii var. yunnanica and C. pitardii var. alba; (3) C. trichosperma, C. semiserrata, C. semiserrata var. albiflora and C. magnocarpa; (4) C. tunganica and C. hunanica; (5) C. crassissima and C. mongshanica; and (6) C. albo-sericea and C. bailinshanica.

DISCUSSION

Stomata of section Camellia

Of the epidermal features, stomatal characters are the most important in taxonomy and classification because they are not only easily observed but also constant within the same taxon. Previous works (Solereder, 1908; Keng, 1962; Ao et al., 2002; Yang et al., 2003) have described stomatal patterns in the genus

Camellia, subfamily Theoideae and family Theaceae. However, their studies are not consistent with our investigations of section Camellia in the genus Camellia .

Solereder (1908) first studied the patterns of stomatal apparatus of three species of Theaceae, proposing that there are two types of stomatal apparatus in this family. In one type, the guard cells (GCs) are surrounded by the subsidiary cells that are not distinguishable from the common epidermal cells. In the other type, the guard cells are usually surrounded by three (rarely two or four) narrow but distinguishable subsidiary cells. Keng (1962) defined the latter as the gordoniaceous type and suggested that this type was transitional between the anomocytic type (no distinguishable subsidiary cells surrounding guard cells) and the paracytic type (with two subsidiary cells surrounding and parallel to the guard cells). Having observed the stomata of Theaceae, he reported that all species in subfamily Theoideae share the gordoniaceous type, with the exception of the genus Pyrenaria. However, Yang et al. (2003) reported that all genera, including Pyrenaria, share the gordoniaceous type. He considered that the intermediate type between the

Figures 25-28. Characters of transverse view. Fig. 25. C. polyodonta: showing stone cells (arrow). Fig. 26. C. japonica and C. rusticana: showing continuous multiple eidermis in the adaxial epidermis. Fig. 27. C. magnocarpa: showing discontinuous multiple eidermis (arrow). Fig. 28. C. boreali-yunnanica: large epidermal cells (arrow), containing few contents. Scale bar, $50 \mu \mathrm{~m}$.
anomocytic type and paracytic types more exactly matched the anisocytic type. Ao et al. (2002, 2007) pointed out that all of Camellia spp. share the cyclocytic type.

Our investigations reveal that, in section Camellia, some species have two distinct types of stomata (one strikingly large, surrounded by four or more subsidiary cells, and the other smaller, surrounded by three subsidiary cells that are more frequently variable in size), whereas most of species share one type. Some species have particularly large cyclocytic stomata that are situated at the centre of a few markedly smaller anisocytic stomata arranged in the form of ring. We define the large cyclocytic stoma as the centre stomata for its position. Large cyclocytic stomata and centre stomata are significant for classification and identification.

Stomatal clusters (Yang \& Sack, 1995; Geisler et al., 1998; Tang et al., 2002) or stomata in groups (Metcalfe \& Chalk, 1979) have only rarely been reported in Camellia. Our examinations show that stomatal clusters are composed of 2-4 adjacent stomata with common subsidiary cells. Most species
examined have stomatal clusters which are readily discriminated under LM and are useful in taxonomy.

In the transverse section, the guard cell pairs can be seem to lie on, rather than be parallel to, the subsidiary cells. Therefore, in the surface view, most subsidiary cells are covered by guard cells and the subsidiary cells frequently appear narrow or even invisible. This may be the reason that Solereder (1908) noted that one type of stomatal apparatus lacked subsidiary cells and the other type had narrow ones.

RECONSIDERATION OF TAXONOMIC TREATMENTS IN SECTION CAMELLIA

At present, Chang's and Ming's taxonomic treatments are the two well-known taxonomic treatments of Camellia, but there are many differences between them. Chang's treatment, revised three times (Chang, 1981; Chang \& Bartholomew, 1984; Chang, 1998), suggested that Camellia consisted of four subgenera, 22 sections and c. 280 species. Ming following Sealy (1958), proposed that Camellia included two subgen-

Figures 29-32. Characters of transverse section view. Fig. 29. C. boreali-yunnanica: showing common stomata in transverse view. Guard cells lying on a single subsidiary cell (white arrow). Fig. 30. C. brevipetiolata: Showing especial stomata with guard cells lying on two superposed subsidiary cells. Fig. 31. C. villosa: showing hairs' transection view. Fig. 32. C. oligophlebia: showing cork wart's transverse section view. Scale bar, $50 \mu \mathrm{~m}$.

Figures 33-34. Characters of veins in the transverse view. Fig. 33. C. japonica and C. rusticana: showing cork wart (arrow) on the veins. Scale bar, $100 \mu \mathrm{~m}$. Fig. 34. C. hongkongensis: showing stone cells in the veins (arrow). Scale bar, $250 \mu \mathrm{~m}$.
era, 14 sections and 119 species. Chang (1998) suggested that section Camellia contained c. 60 species, whereas Ming (1998) treated many species as subspecies or synonyms and reduced it to 12 species and six varieties. These differences are shown in Figure 37.

With the exception of C. hongkongensis, C. changii and C. edithae, all the species in section Camellia were more or less merged by Ming (2000) (Fig. 37). Additionally, C. uraku was treated as a hybrid of C. japonica in Ming's treatment. Results show that
Table 6. The mean values of leaf area $\left(\mathrm{cm}^{2}\right)$, perimeter (cm), vertical length (cm), horizontal width (cm), the ratio of width and length (W/L) and form coefficient,
with values representing character states of leaf veins (1, not raised; 2, slightly raised; 3 , raised)

No.	Taxa	Area	Perimeter	Vertical length	Horizontal width	W/L	Form cofficient	Veins
1	C. jinshajiangica	27.93 ± 2.31	24.66 ± 2.72	8.36 ± 0.56	4.92 ± 0.23	0.59 ± 0.03	0.59 ± 0.09	1
2	C. omeiensis	29.25 ± 1.91	28.30 ± 1.10	10.90 ± 0.84	4.30 ± 0.23	0.40 ± 0.05	0.46 ± 0.01	3
3	C. polyodonta	44.45 ± 1.52	30.39 ± 4.84	11.32 ± 0.30	5.66 ± 0.22	0.50 ± 0.01	0.62 ± 0.18	3
4	C. lanosituba	27.58 ± 2.99	25.81 ± 1.69	10.22 ± 0.85	4.18 ± 0.20	0.41 ± 0.02	0.52 ± 0.02	1
5	C. longigyna	21.30 ± 0.57	27.50 ± 0.56	10.34 ± 0.27	3.20 ± 0.08	0.31 ± 0.00	0.35 ± 0.01	3
6	C. lapidea	18.46 ± 0.81	23.66 ± 1.16	7.88 ± 0.46	3.50 ± 0.11	0.44 ± 0.02	0.42 ± 0.02	3
7	C. phelloderma	21.33 ± 2.58	25.98 ± 1.17	8.95 ± 0.41	3.77 ± 0.22	0.42 ± 0.02	0.40 ± 0.03	2
8	C. mairei	25.06 ± 2.19	26.46 ± 1.45	10.39 ± 0.62	3.74 ± 0.22	0.36 ± 0.02	0.45 ± 0.01	3
9	C. villosa	20.65 ± 2.55	26.41 ± 1.46	8.96 ± 0.59	3.61 ± 0.25	0.40 ± 0.02	0.37 ± 0.03	3
10	C. trichosperma	69.57 ± 3.72	34.32 ± 0.36	11.45 ± 0.02	7.96 ± 0.22	0.70 ± 0.02	0.74 ± 0.02	1
11	C. semiserrata	69.56 ± 2.63	34.32 ± 0.26	11.45 ± 0.02	7.96 ± 0.15	0.70 ± 0.01	0.74 ± 0.02	1
12	C. reticulata	29.90 ± 5.19	25.61 ± 2.29	9.82 ± 0.64	4.29 ± 0.47	0.44 ± 0.03	0.57 ± 0.04	2
13	C. semiserrata var. albiflora	69.57 ± 2.63	34.32 ± 0.26	11.45 ± 0.02	7.96 ± 0.15	0.70 ± 0.01	0.74 ± 0.02	1
14	C. brevipetiolata	32.63 ± 1.71	29.42 ± 1.35	10.07 ± 0.30	4.67 ± 0.25	0.46 ± 0.03	0.47 ± 0.02	1
15	C. phellocapsa	25.79 ± 2.00	24.29 ± 1.21	9.13 ± 0.47	4.12 ± 0.23	0.45 ± 0.03	0.55 ± 0.02	3
16	C. compressa	58.77 ± 4.55	42.30 ± 2.19	15.41 ± 0.55	5.72 ± 0.31	0.37 ± 0.01	0.41 ± 0.02	2
17	C. magniflora	46.42 ± 6.24	33.85 ± 1.98	11.62 ± 0.67	5.81 ± 0.46	0.50 ± 0.02	0.51 ± 0.04	1
18	C. lungshenensis	42.06 ± 4.91	32.09 ± 1.06	11.07 ± 0.48	5.52 ± 0.45	0.50 ± 0.02	0.51 ± 0.03	2
19	C. brevicolumna	26.72 ± 1.18	30.38 ± 1.10	9.20 ± 0.36	4.54 ± 0.15	0.49 ± 0.03	0.36 ± 0.01	1
20	C. pitardii	16.28 ± 1.29	23.42 ± 0.72	8.39 ± 0.36	3.02 ± 0.15	0.36 ± 0.02	0.37 ± 0.03	2
21	C. pitardii var. alba	13.46 ± 0.86	19.64 ± 0.96	7.19 ± 0.36	2.93 ± 0.14	0.41 ± 0.02	0.44 ± 0.03	2
22	C. pitardii var. yunnanica	17.40 ± 0.71	23.94 ± 0.59	8.23 ± 0.28	3.26 ± 0.15	0.40 ± 0.02	0.38 ± 0.02	2
23	C. xifongensis	26.93 ± 2.32	31.99 ± 2.08	11.02 ± 0.56	3.84 ± 0.24	0.35 ± 0.02	0.33 ± 0.02	2
24	C. hongkongensis	23.00 ± 2.41	30.49 ± 2.68	9.96 ± 0.75	3.69 ± 0.12	0.37 ± 0.02	0.31 ± 0.02	2
25	C. cryptoneura	36.14 ± 2.07	31.33 ± 0.79	11.14 ± 0.38	4.91 ± 0.15	0.44 ± 0.03	0.46 ± 0.04	2
26	C. oviformis	33.01 ± 3.01	26.70 ± 0.78	9.18 ± 0.56	5.31 ± 0.22	0.58 ± 0.05	0.58 ± 0.04	2
27	C. brachygyna	24.65 ± 1.63	25.35 ± 0.98	9.92 ± 0.37	3.93 ± 0.23	0.40 ± 0.03	0.48 ± 0.02	2
28	C. tunganica	22.13 ± 1.01	23.32 ± 0.82	8.61 ± 0.30	3.71 ± 0.09	0.43 ± 0.02	0.51 ± 0.03	2
29	C. bambusifolia	10.25 ± 1.56	17.46 ± 0.89	6.65 ± 0.55	2.28 ± 0.16	0.34 ± 0.01	0.42 ± 0.02	2

Table 6. Continued

No.	Taxa	Area	Perimeter	Vertical length	Horizontal width	W/L	Form cofficient	Veins
30	C. saluenensis	8.25 ± 1.73	15.85 ± 1.65	5.92 ± 0.61	2.05 ± 0.23	0.35 ± 0.00	0.41 ± 0.01	2
31	C. albo-sericea	21.86 ± 1.66	23.62 ± 0.61	9.04 ± 0.32	3.75 ± 0.18	0.41 ± 0.01	0.49 ± 0.03	2
32	C. bailinshanica	20.30 ± 1.10	26.19 ± 0.74	9.44 ± 0.23	3.37 ± 0.21	0.36 ± 0.02	0.37 ± 0.02	2
33	C. oligophlebia	22.69 ± 2.12	22.89 ± 1.32	8.57 ± 0.38	4.13 ± 0.20	0.48 ± 0.01	0.54 ± 0.02	2
34	C. uraku	24.59 ± 1.71	23.41 ± 0.99	9.17 ± 0.43	4.09 ± 0.04	0.45 ± 0.02	0.56 ± 0.01	2
35	C. edithae	34.15 ± 5.29	27.09 ± 1.74	9.72 ± 0.29	5.03 ± 0.65	0.52 ± 0.05	0.58 ± 0.02	3
36	C. paucipetala	8.42 ± 1.03	14.19 ± 1.25	4.68 ± 0.30	2.58 ± 0.14	0.55 ± 0.02	0.53 ± 0.04	1
37	C. tenuivalvis	12.24 ± 1.90	16.58 ± 1.36	6.53 ± 0.47	2.77 ± 0.28	0.42 ± 0.02	0.56 ± 0.01	2
38	C. boreali-yunnanica	27.70 ± 4.93	27.36 ± 2.80	10.74 ± 1.62	3.92 ± 0.15	0.37 ± 0.04	0.46 ± 0.02	2
39	C. hilisciflora	22.59 ± 1.68	27.36 ± 1.04	9.73 ± 0.34	3.76 ± 0.14	0.39 ± 0.01	0.38 ± 0.03	1
40	C. concina	7.72 ± 1.13	16.53 ± 1.08	6.03 ± 0.32	2.06 ± 0.23	0.34 ± 0.02	0.35 ± 0.01	2
41	C. glabsipetala	9.78 ± 0.78	16.18 ± 0.67	6.31 ± 0.21	2.30 ± 0.14	0.36 ± 0.02	0.47 ± 0.01	2
42	C. delicata	13.67 ± 1.67	20.50 ± 1.29	7.30 ± 0.32	3.01 ± 0.24	0.41 ± 0.02	0.41 ± 0.03	3
43	C. hunanica	17.44 ± 0.95	20.57 ± 0.78	7.09 ± 0.25	3.58 ± 0.12	0.51 ± 0.01	0.52 ± 0.03	2
44	C. glabriperulata	10.69 ± 1.03	15.45 ± 0.87	6.18 ± 0.36	2.48 ± 0.15	0.40 ± 0.03	0.56 ± 0.03	2
45	C. magnocarpa	68.55 ± 2.96	34.17 ± 0.36	11.43 ± 0.04	7.87 ± 0.22	0.69 ± 0.02	0.74 ± 0.02	1
46	C. liberistamina	31.64 ± 4.99	30.41 ± 2.59	10.78 ± 1.38	4.61 ± 0.46	0.43 ± 0.01	0.43 ± 0.01	1
47	C. lucidissima	43.21 ± 0.30	30.99 ± 2.11	11.43 ± 0.62	5.95 ± 0.24	0.52 ± 0.05	0.57 ± 0.07	2
48	C. chekiangoleosa	28.27 ± 6.33	25.11 ± 3.55	9.28 ± 1.19	4.55 ± 0.65	0.49 ± 0.04	0.56 ± 0.03	1
49	C. mongshanica	31.84 ± 5.09	27.53 ± 3.09	10.03 ± 0.69	4.96 ± 0.72	0.49 ± 0.04	0.53 ± 0.04	2
50	C. japonica	17.59 ± 1.22	18.38 ± 0.64	7.13 ± 0.26	3.83 ± 0.24	0.54 ± 0.04	0.65 ± 0.03	2
51	C. rusticana	20.08 ± 2.21	20.94 ± 0.62	7.55 ± 0.17	4.05 ± 0.36	0.54 ± 0.04	0.57 ± 0.03	2
52	C. azalea	5.62 ± 0.52	11.04 ± 0.65	4.68 ± 0.34	1.70 ± 0.09	0.36 ± 0.03	0.58 ± 0.03	1
53	C. subintegra	17.04 ± 3.19	21.80 ± 1.82	9.31 ± 0.89	2.87 ± 0.31	0.31 ± 0.02	0.45 ± 0.02	1
54	C. lienshanensis	20.58 ± 1.46	22.11 ± 1.42	8.28 ± 0.58	3.97 ± 0.15	0.48 ± 0.03	0.53 ± 0.05	1
55	C. crassissima	1.46 ± 1.46	1.37 ± 1.37	0.95 ± 0.95	0.04 ± 0.04	0.04 ± 0.04	0.03 ± 0.03	2
56	C. apolyodonta	37.05 ± 2.43	38.63 ± 0.64	12.17 ± 0.49	4.75 ± 0.15	0.39 ± 0.02	0.31 ± 0.01	3
57	C. longicaudata	22.76 ± 1.32	21.82 ± 1.46	10.02 ± 0.43	3.42 ± 0.09	0.34 ± 0.02	0.61 ± 0.11	3

Figure 35. Comparing the taxonomic treatment by Chang (1998) with the treatment by Ming (2000) in Camellia section Camellia.
C. changii is characterized by its particular leaf shape and the absence of stone cells. Camellia edithae differs from the other species by its extremely dense and long hairs. These support the treatment of both Chang (1998) and Ming (2000) of C. changii and C. edithae as distinctive species, respectively.

Camellia semiserrata, C. trichosperma, C. semiserrata var. albiflora and C. magnocarpa share common features, such as centre stomata, straight to curved anticlinal walls of upper epidermal cells, repand anticlinal walls of lower epidermal cells and discontinuous multiple epidermis. Additionally, Figure 36 shows that the leaf morphology of C. magnocarpa is similar to that of C. semiserrata, C. trichosperma and C. semiserrata var. albiflora. Cluster analysis shows that
the similarity value among C. semiserrata, C. trichosperma, C. semiserrata var. albiflora and C. magnocarpa is larger than 0.96 (Fig. 36). These support the views of Ming (2000) that C. magnocarpa is a variety of C. semiserrata.

The leaf features of C. phellocapsa, including sinuous anticlinal walls of the upper epidermal cells, relatively smaller leaf area and form coefficient, do not agree with the proposal of Ming (2000) to merge C. phellocapsa with C. semiserrata. This opinion is consistent with that of Gao et al. (2005), who claimed that both flower size and foliar serration patterns of C. phellocapsa are different from those of C. semiserrata. Hence, the taxonomic status of C. phellocapsa needs to be reconsidered.

Figure 36. Scatter diagram of principle component analysis (PCA). Axes represent principle components 1 and 2. Each number code (see Table 6) represents a species or variety according to Chang (1998), while corresponding species (displayed in the top left corner) in Ming's (2000) treatment are shown by symbols. The results of PCA are shown in the top right corner.

Chang (1998) noted that all the features of C. mongshanica are similar to C. crassissima, except that C. crassissima had smaller capsules and tomentose seeds. Similar features of leaf morphology and anatomy of C. mongshanica and C. crassissima seem to support the views of Ming (2000) that C. mongs-
hanica should be treated as a variety of C. semiserrata. Figure 36 indicates that C. mongshanica is a close relative of C. semiserrata.

There are few differences between C. japonica and C. rusticana, except the continuous multiple epidermis in C. japonica and the discontinuous multiple

Figure 37. Cluster analysis based on quantitative and qualitative characters.
epidermis in C. rusticana. Figure 36 indicates that the leaf morphology of C. japonica is similar to that of C. rusticana. Our study supports Ming's (2000) treatment of C. rusticana as a variety of C. japonica.

In the light of Ming's taxonomic treatment, C. pitardii, C. pitardii var. alba, C. hunanica, C. tungannica, C. cryptoneura, C. lungshenensis, C. compressa and C. magniflora are merged into C. pitardii and treated as C. pitardii var. pitardii, C. pitardii form. alba and C. pitardii var. cryptoneura (Fig. 37).

It seems unnatural to treat C. hunanica and C. tungannica as forms of C. pitardii. Ming (2000) claimed that C. hunanica and C. tungannica only differ from C. pitardii in white flowers. However, our study reveals that C. pitardii differs from C. hunanica and C. tungannica as follows: (1) both C. hunanica and C. tungannica have white, fragrant flowers, but C. pitardii has red, non-fragrant flowers; (2) both C. hunanica and C. tungannica have relatively broader leaves, whereas C. pitardii has narrow leaves; (3) our cluster analysis demonstrates that the similarity value among C. pitardii, C. hunanica and C. tungannica is rather less than 0.96 .

The presence of centre stomata in C. cryptoneura and its larger leaf size make it distinct from C. pitardii. The chromosome number $(2 n=90)$ of C. cryptoneura is threefold higher than that of C. pitardii $(2 n=30)$. The results of PCA (Fig. 35) show that C. cryptoneura also differs from C. pitardii in leaf morphology. Therefore, we consider there is not enough evidence to merge C. cryptoneura into C. pitardii. When reconsidering Ming's (2000) merging of C. compressa and C. magniflora into C. pitardii, we also find this unnatural. Examination of anticlinal walls of upper epidermis cells shows that the straight-curved pattern is present in C. magniflora and the sinuous pattern in C. compressa, whereas C. pitardii has the repand pattern. Cork warts are found in C. compressa and C. magniflora, but not in C. pitardii. Ming (2000) noted 'compared to C. pitardii, C. compressa and C. magniflora are distinct due to broader and larger leaf, tip acuminate, serrate (not thinly and sharply serrate), larger flowers and capsules and chromosome number $2 n=90$ or $2 n=120$ (not $2 n=30$).' All these facts indicate that the combination of C. compressa, C. magniflora and C. pitardii needs more evidence. Gao et al. (2005) noted 'however, there are significant morphological differences between C. magniflora and C. pitardii.' We feel the decision to combine these two species should be examined further.

The most extensive combination is that Ming (2000) merged 11 species into C. reticulata. We find that C. albo-sericea and C. bailinshanica share common characters as follows: repand pattern of anticlinal walls of upper epidermal cells, sinuous pattern of anticlinal
walls of lower epidermal cells, presence of hairs, centre stomata, presence of stomatal clusters and absence of cork warts. Additionally, their anatomical features are similar: absence of multiple epidermis and presence of stone cells. These pieces of evidence indicate that C. albo-sericea is a close relative of C. bailinshanica. Figure 36 shows that the similarity value between C. albo-sericea and C. bailinshanica is larger than 0.96 . However, C. reticulata is obviously distinct from C. albo-sericea and C. bailinshanica by varied epidermal cells, straight-curved anticlinal walls of the upper epidermal cells, repand anticlinal walls of the lower epidermal cells and absence of hairs. The comparisons of characters from reproductive organs of C. albo-sericea, C. bailinshanica and C. reticulata are listed as follows (Gao et al., 2005):

1. C. albo-sericea: flowers are light red to red, $5-6 \mathrm{~cm}$ in diameter, borne at the tip of the shoot and in leaf axils; sepals $8-9$, outside surface white-silky pubescent; petals $6-7,3.0-3.5 \mathrm{~cm}$ long, obovate, white-silky pubescent on back, fused with the staminal column from the base up to $5-6 \mathrm{~mm}$; androecium glabrous, $c .2 \mathrm{~cm}$, outer layer of stamens fused from the base into a cup to 10 cm long; gynoecium $1.5-2.0 \mathrm{~cm}$ long, three styles slightly cleft at the tip, ovary tomentose; capsules globose, 3 locules, pericarp wall 8 mm thick.
2. C. bailinshanica: flowers are light red to red, $4-6 \mathrm{~cm}$ in diameter, borne at the tip of the shoot and in leaf axils; sepals $7-9$, slightly pubescent; petals 6-7, 3.0-4.0 cm long, obovate, white-silky pubescent on back, fused with the staminal column from the base up to $5-6 \mathrm{~mm}$; androecium glabrous, about $2.0-2.5 \mathrm{~cm}$, outer layer of stamens fused from the base into a cup to $5-7 \mathrm{~mm}$ long; gynoecium 2.5 cm long, three styles slightly cleft at the tip, ovary tomentose; capsules globose, 3 locules, pericarp wall 1.0 cm thick.
3. C. reticulata: flowers are rose-pink, $6.6-10.5 \mathrm{~cm}$ in diameter, borne at the tip of the shoot and in leaf axils; perules $7-10$, partially persistent, pubescent on both surface; petals $6-9,5.1-6.8 \mathrm{~cm}$ long, obovate or obcordate in shape, cleft at the tip from $4-10 \mathrm{~mm}$, fused with the staminal column from the base up to 15 mm ; androecium glabrous, 3.53.8 cm long, outer layer of stamens fused from the base into a cup to 2 cm long, approximately 130 stamens; gynoecium $3.7-4.1 \mathrm{~cm}$ long, $3-5$ mostly glabrous styles, more than one-half fused from the base, ovary tomentose; capsules oblate and indented at the tip, surface rough and scaling, 3-5 locules, pericarp wall $4-8 \mathrm{~mm}$ thick.

Therefore, merging C. albo-sericea and C. bailinshanica into C. reticulata should be reconsidered. The
combination of C. albo-sericea and C. bailinshanica is, however, probably justified.

In summary, section Camellia probably contains about 50 species. Although a large volume of data of leaf macromorphology and micromorphology has been obtained in our study, there is still a great deal of work to do because plants have many characters, including those based on morphology, anatomy, chemistry and floral biology. It is not usually considered natural to determine their taxonomic status based on only one or two characters. Our study provides data for leaf anatomical and morphological features that lay the basis for further research.

ACKNOWLEDGEMENTS

Thanks are due to Clifford R. Parks (University of North Carolina, USA), David B. Hannaway (Department of Crop and Soil Science, Oregon State University, USA) and Michael Möller (Royal Botanic Garden Edinburgh, UK) for valuable discussions and comments on this study, and the reviewers for revision of this manuscript.

REFERENCES

Ao CQ, Chen GX, Chang HT. 2002. Leaf epidermis morphology of Camellia and its taxonomic significance. Acta Botanica Yunnanica 24: 68-74 (in Chinese, with English abstract).
Ao CQ, Ye CX, Zhang HD. 2007. A systematic investigation of leaf epidermis in Camellia using light microscopy. Biologia 62: 157-162.
Baranova M. 1972. Systematic anatomy of the leaf epidermis in the Magnoliaceae and some related families. Taxon 21: 447-469.
Briggs D, Walters SM. 1984. Plant variation and evolution, 2nd edn. Cambridge: Cambridge University Press, 42-43.
Chang HT. 1981. A taxonomy of the genus Camellia. Acta Scientarum Naturalium Universitatis, Sunyatseni 1: 1-180 (in Chinese).
Chang HT. 1998. Genus Camellia. In: Chang HT, Ren S-X, eds. Theaceae, Flora Republicae Popularis sinicae, Vol. 49 (3). Beijing: Science Press, 6-194 (in Chinese).

Chang HT, Bartholomew B. 1984. Camellias. Portland: Timber Press.
Chen LH, Wang SZ, Nelson M. 2005. Genetic diversities within Camellia species confirmed by random amplified polymorphic DNA (RAPD) markers. Journal of the American Society for Horticultural Science 40: 993-1147.
Gao JY, Parks CR, Du YQ. 2005. Collected species of the genus Camellia, an illustrated outline. Hangzhou: Zhejiang Technology and Science Press (in Chinese and English).
Geisler M, Yang M, Sack FD. 1998. Divergent regulation of stomatal initiation and patterning in organ and suborgan regions of the Arabidopsis mutants too many mouths and four lips. Planta 205: 522-533.

Heintzelman CE, Howard RA. 1948. The comparative morphology of the Icacinaceae. American Journal of Botany 35: 42-52.
Keng H. 1962. Comparative morphological studies of Theaceae. University of California Publications in Botany 33: 269-384.
Kirchoff BK, Richter SJ, Remington DL. 2007. Characters as groups: a new approach to morphological characters in phylogenetic analysis. Taxon 56: 479-492.
Kirchoff BK, Richter SJ, Remington DL, Wisniewski E. 2004. Complex data produce better characters. Systematic Biology 53: 1-17.
Kong HZ. 2001. Comparative morphology of leaf epidermis in the Chloranthaceae. Botanical Journal of the Linnean Society 136: 279-294.
Lü HF, Hu ZH. 2001. Comparative anatomy of secretory structures of leaves in Hypericum L. Acta Phytotaxonomica Sinica 39: 393-404 (in Chinese, with English abstract).
Meade C, Parnell J. 2003. Multivariate analysis of leaf shape patterns in Asian species of the Uvaria group (Annonaceae). Botanical Journal of the Linnean Society 143: 231242.

Metcalfe CR, Chalk L. 1979. Anatomy of the dicotyledons, 2nd edn. Oxford: Clarendon Press.
Ming TL. 1998. The classification, differentiation and distribution of the genus Camellia sect. Camellia. Acta Botanica Yunnanica 20: 127-148 (in Chinese, with English abstract).
Ming TL. 2000. Monograph of the genus Camellia. Kunming: Yunnan Science and Technology Press (in Chinese).
Möller M, Gao LM, Mill RR, Li DZ, Hollingsworth ML, Gibby M. 2007. Morphometric analysis of the Taxus wallichiana complex (Taxaceae) based on herbarium material. Botanical Journal of the Linnean Society 155: 307-335.
Parks CR, Griffiths A. 1963. The saluenensis-pitardiireticulata complex. Camellia Review 25: 12-29.
Plotze RDO, Falvo M, Pádua JG, Berbacci LC, Vieira MLC, Oliveira GCX, Bruno OM. 2005. Leaf shape analysis using the multiscale Minkowski fractal dimension, a new morphometric method: a study with Passiflora (Passifloraceae). Canadian Journal of Botany 83: 287-301.
Rhodes AM, Malo SE, Campbell CW, Carmer SG. 1971. A numerical taxonomic study of the avocado (Persea americana Mill.). Journal of the American Society for Horticultural Science 96: 391-395.
Sealy JR. 1958. A revision of the genus Camellia. London: Royal Horticultural Society.
Shah A, Li DZ, Möller M, Gao LM, Hollingsworth ML, Gibby M. 2008. Delimitation of Taxus fuana Nan Li \& R.R. Mill (Taxaceae) based on morphological and molecular data. Taxon 57: 211-222.
Solereder H. 1908. Systematic anatomy of the dicotyledons. Oxford: Clarendon Press.
Stern WL, Judd WS. 2002. Systematic and comparative anatomy of Cymbidieae (Orchidaceae). Botanical Journal of the Linnean Society 139: 1-27.
Tang M, Hu YX, Lin JX, Jin XB. 2002. Developmental mechanism and distribution pattern of stomatal clusters in Begonia peltatifolia. Acta Botanica Sinica 44: 384-389.

Yang JB, Li HT, Yang SX, Li DZ, Yang YY. 2006. The application of four DNA sequences to studying molecular phylogeny of Camellia (Theaceae). Acta Botanica Yunnanica 28: 108-114 (in Chinese, with English abstract).
Yang M, Sack FD. 1995. The too many mouths and four lips mutations affect stomatal production in Arabidopsis. Plant Cell 7: 2227-2239.

Yang SX, Liu AZ, Peng H, Wu ZY. 2003. Stomatal apparatus of Pyrenaria (Theaceae) and its systematic significance. Guihaia 23: 250-252.
Yang ZR, Qi L. 2005. Comparative morphology of the leaf epidermis in Schisandra (Schisandraceae). Botanical Journal of the Linnean Society 148: 39-56.

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article:
Appendix S1. Significance test for leaf morphological and anatomical characters.
Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

[^0]: *Corresponding author. E-mail: luhongfei63@yahoo.com.cn
 The first and second authors contributed equally to this work.

[^1]: Note: Duncan's Multiple Range Test is made by the SAS program (version 9.0).
 \dagger, \ddagger Means with the same symbol are not significantly different ($P=0.05$).

