

Botanical Journal of the Linnean Society, 2011, 167, 19-46. With 2 figures

Affinities in C₃ *Cyperus* lineages (Cyperaceae) revealed using molecular phylogenetic data and carbon isotope analysis

ISABEL LARRIDON^{1*}, MARC REYNDERS¹, WIM HUYGH¹, KENNETH BAUTERS¹, KOBEKE VAN DE PUTTE², A. MUTHAMA MUASYA³, PASCAL BOECKX⁴, DAVID A. SIMPSON⁵, ALEXANDER VRIJDAGHS⁶ and PAUL GOETGHEBEUR¹

¹Ghent University, Department of Biology, Research Group Spermatophytes, K. L. Ledeganckstraat 35, 9000 Gent, Belgium
²Ghent University, Department of Biology, Research Group Mycology, K. L. Ledeganckstraat 35, 9000 Gent, Belgium
³University of Cape Town, Botany Department, Rondebosch 7700, South Africa
⁴Ghent University, Faculty of Bioscience Engineering, Laboratory of Applied Physical Chemistry – ISOFYS, Coupure 653, 9000 Gent, Belgium
⁵Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
⁶K.U.Leuven, Institute of Botany and Microbiology, Laboratory of Plant Systematics, Kasteelpark Arenberg 31, 3001 Leuven, Belgium

Received 22 November 2010; revised 9 February 2011; accepted for publication 18 May 2011

Maximum likelihood and Bayesian analyses of nrDNA (ETS1f) and plastid DNA (rpl32-trnL, trnH-psbA) sequence data are presented for 'C₃ Cyperus' (Cyperaceae). The term 'C₃ Cyperus' indicates all species of Cyperus s.l. that use C₃ photosynthesis linked with eucyperoid vegetative anatomy. Sampling comprises 77 specimens of 61 different taxa, representing nearly all previously recognized subdivisions of C₃ Cyperus and the segregate genera Courtoisina, Kyllingiella and Oxycaryum. According to our results, the Cyperus clade is divided in six well-supported clades. The first of these clades (clade 1) forms three subclades largely corresponding to Cyperus sections Haspani, Incurvi and Diffusi. Clade 2 comprises the entirely New World C. section Luzuloidei sensu Denton (1978). Clade 3 is a highly diverse clade including two subclades: clade 3a, C. sections Pseudanosporum and Anosporum plus the segregate genera Courtoisina and Oxycaryum; and clade 3b, C. section Fusci. Clade 4 corresponds to C. section Alternifolii and clade 5 to C. section Leucocephali plus the segregate genus Kyllingiella. The sixth clade is a well-supported monophyletic clade encompassing all C₄ Cyperus s.l. species ('C₄ Cyperus'). This study establishes a phylogenetic framework for future studies. © 2011 The Linnean Society of London, Botanical Journal of the Linnean Society, 2011, **167**, 19–46.

ADDITIONAL KEYWORDS: Bayesian inference – Cypereae – Cyperoideae – molecular phylogeny – photosynthetic pathway – systematics.

INTRODUCTION

Cyperaceae have an almost cosmopolitan distribution (Govaerts *et al.*, 2007). Sedges did not only evolve a large diversity of genera and species in the tropics and subtropics, but they are also often dominantly

present in the vegetation of temperate and arctic regions (*Carex* L., c. 1800 spp.; Govaerts et al., 2011). Because of their ecological significance in wetlands and the important role of some Cyperaceae in the food chain of dry grasslands, knowledge of the biodiversity and evolution of this plant family is very valuable. Cyperaceae are grass-like plants, often with complex compound inflorescences, in which many adaptations

^{*}Corresponding author. E-mail: isabel.larridon@ugent.be

such as reductions and contractions have occurred, complicating evolutionary reconstruction and classification. This has not only led to uncertain interpretations of the inflorescence and flowers (homology problems, e.g. Bruhl, 1991; Muasya et al., 2009b; Vrijdaghs et al., 2009, 2010), but also to conflicting classification systems (e.g. Clarke, 1908; Kükenthal, 1935-1936; Kern, 1974; Haines & Lye, 1983). Prior to the era of molecular phylogenetics, classifications based on cladistic analyses of matrices of morphological and anatomical character states were presented (Goetghebeur, 1986; Bruhl, 1995). Since then, molecular phylogenetic research has resulted in new insights into Cyperaceae. Molecular phylogenetic studies at family level have been largely based on plastid DNA: sequence data for rbcL (e.g. Muasya et al., 1998; Simpson et al., 2007) or rbcL and trnL-F (the trnL intron and the trnL-trnF intergenic spacer) (Muasya, Simpson & Chase, 2002; Muasya et al., 2009a). The latest molecular phylogenetic studies of Cyperaceae (Simpson et al., 2003, 2007; Muasya et al., 2009a) recognized only two subfamilies, Cyperoideae and Mapanioideae, which are easily distinguished by the structure of their reproductive units.

Tribe Cypereae Nees (Cyperoideae) is defined as including all taxa sharing the Cyperus-type embryo and the similar Ficinia-type embryo (Van der Veken, 1965; Goetghebeur, 1998; Muasya et al., 2009a, b). Based on molecular data (Muasya, Simpson & Chase, 2002; Muasya et al., 2009a), two clades are recognized in Cypereae. The Ficinia Schrad. clade is predominantly characterized by spikelets with spirally arranged glumes and includes Scirpoides Ség., Dracoscirpoides Muasya (Muasya et al., 2009a, 2011), Hellmuthia Steud., Isolepis R.Br. and Ficinia (Muasya & de Lange, 2010). The Cyperus L. clade usually has spikelets with distichously arranged glumes.

The generic limits in the *Cyperus* clade (c. 950 spp.) are notoriously controversial (Muasya et al., 2009b). When using the classification of Goetghebeur (1998), the Cyperus clade comprises a paraphyletic Cyperus s.s. as the core genus, in which 13 segregate genera are nested. These segregate genera (Alinula J.Raynal, Androtrichum (Brongn.) Brongn., Ascolepis Nees ex Steud., Courtoisina Soják, Kyllinga Rottb., Kyllingiella R.W.Haines & Lye, Lipocarpha R.Br., Oxycaryum Nees, Pycreus P.Beauv., Queenslandiella Domin, Remirea Aubl., Sphaerocyperus Lye and Volkiella Merxm. & Czech) were created because their species diverged significantly from typical Cyperus with respect to vegetative, floral and anatomical characters. Each of these segregates is circumscribed by a combination of morphological characters, including inflorescence and spikelet morphology, unit of dispersal, nutlet orientation and photosynthetic pathway (Bruhl & Wilson, 2007; Muasya et al., 2009b; Vrijdaghs et al., 2011).

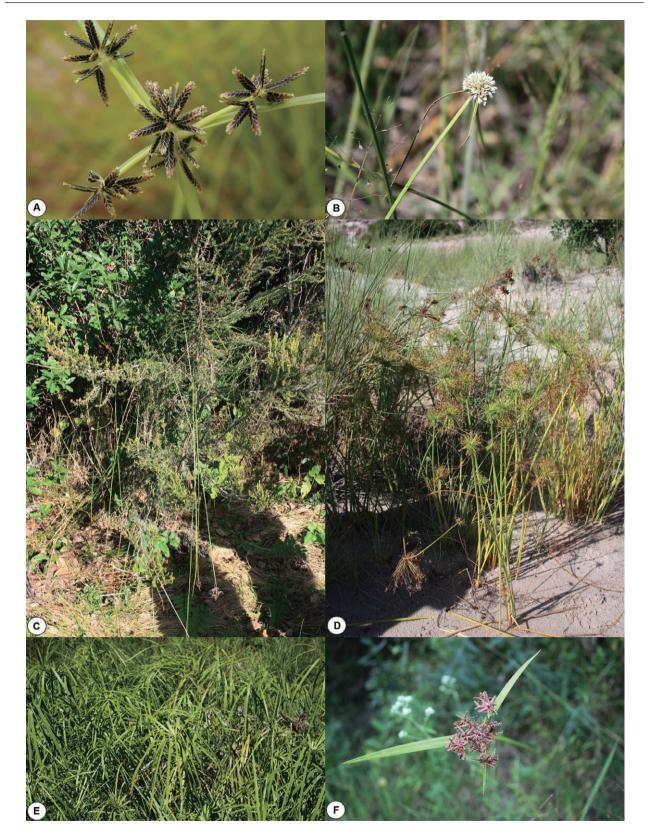
The presence of Kranz anatomy, linked with C_4 photosynthesis, is an important character in classifying taxa within the Cyperus clade. This character has been used in the classification of Cyperus since Rikli (1895), long before the discovery of the C_4 photosynthetic pathway. As already indicated by Raynal (1973) and Goetghebeur (1989), later authors such as Soros & Bruhl (2000), Muasya et al. (2002), Bruhl & Wilson (2007) and Besnard *et al.* (2009) confirmed that the C₄ photosynthetic pathway arose only once in Cypereae, although it arose at least four separate times in Cyperaceae. In the *Cyperus* clade, C_3 photosynthesis is characterized by the presence of the eucyperoid anatomy type (plesiomorphic), whereas C₄ photosynthesis is linked with the chlorocyperoid anatomy type. Bruhl, Stone & Hattersley (1987) and Bruhl & Perry (1995) clarified the chlorocyperoid anatomy. According to Besnard *et al.* (2009), the first appearance of C_4 photosynthesis in Cyperaceae probably occurred between 19.6 ± 4.9 and 10.1 ± 3.6 Ma in Bulbostylis DC., with the other C_4 appearances occurring during the last 12 Ma, making C₄ sedges generally younger than C₄ grasses (Christin et al., 2008a, b). Although sedges generally occupy wetter habitats than grasses and commonly occur in wetlands and marshes, many C_4 and a considerable number of C_3 sedges occupy seasonally dry habitats. The C₄ pathway, which raises the water-use efficiency compared with the C₃ photosynthesis type (Sage, 2004), might have contributed to the colonization of drier habitats (Besnard et al., 2009). However, water limitation might not have been the most important factor for the success of C₄ sedges. See Pyankov et al. (2010) for a discussion of C₄ photosynthesis in European representatives of Cyperaceae and other families. Li, Wedin & Tieszen (1999) and Stock, Chuba & Verboom (2004) argued that fire resistance, optimized nitrogen uptake and resistance to chemical stress (salt and heavy metals) and higher levels of irradiance were probably more important. Figure 1 represents some of the morphological and habitat diversity of C₃ Cyperus lineages.

As discussed in more detail in Larridon et al. (2011), Cyperus is most commonly divided into two units, determined by the character states of an anatomical and of an inflorescence character set. As mentioned above, the vegetative anatomy in *Cyperus* is either eucyperoid or chlorocyperoid. Based on this character, Rikli (1895) divided Cyperus into two separate genera: Eucyperus and Chlorocyperus. The prefix Eu-, which suggests the inclusion of the type species of Cyperus in this group, should have led Britton (1907) to use one of Linnaeus' (1753) original C_3 *Cyperus* spp. as the type of *Cyperus*. However, he chose *Cyperus esculentus* L. instead (Huygh *et al.*, 2010), a species with chlorocyperoid anatomy. The inflorescence in *Cyperus* is either composed of digitately clustered spikelets or is an anthela composed of spikes of spikelets. Clarke (1893) divided *Cyperus* into two subgenera based on these two inflorescence types: *Pycnostachys* and *Choristachys*. As demonstrated by Goetghebeur (1989), the two systems (based on anatomy type or inflorescence type) are not completely congruent.

In the present study, molecular phylogenetic data and results of carbon isotope analysis of the Cyperus clade were analysed with the specific objectives of: (1)elucidating phylogenetic relationships focusing on the C₃ Cyperus lineages in order to establish a phylogenetic framework for future studies of the Cyperus clade; (2) testing whether infrageneric taxa in Cyperus (e.g. Kükenthal, 1935–1936; Denton, 1978) are monophyletic; and (3) characterizing which photosynthetic system is used in previously unstudied taxa. For the accepted names of the taxa treated in this paper, we refer to the World Checklist of Cyperaceae (Govaerts et al., 2007, 2011). The classification used is that of Goetghebeur (1998). A paper documenting the necessary nomenclatural/taxonomical changes based on the results presented in this paper and further supported by morphological, embryological, ontogenetic and anatomical data will be published elsewhere (Larridon *et al.*, in press). The final objective of the research on *Cyperus* carried out by the authors is to recircumscribe the genus so that it is monophyletic and to create a new infrageneric classification of the genus supported by both molecular and morphological data.

MATERIAL AND METHODS SAMPLING

Seventy-seven samples of 60 different taxa were used for this study. The samples with species names, voucher information, origin and GenBank accession numbers for the sequences are given in Table 1. Three sequences were used from a previous unpublished study (GenBank accession numbers GU135417, GU135444, GU135397; J. R. Abbott, K. M. Neubig, W. M. Whitten & N. H. Williams, unpubl. data). The other sequences were all newly generated for this study. Taxa within *Cyperus* were selected to represent a broad morphological and geographical range and to include a wide range of the traditionally recognized sections, subgenera and segregate genera (C₃ Cyperus: Courtoisina, Kyllingiella and Oxycaryum; C₄ Cyperus: Alinula, Ascolepis, Lipocarpha, Kyllinga, Pycreus, Queenslandiella, Remirea and Sphaerocyperus). As this study assesses relationships above the rank of species, multiple species samples and infraspecific taxa were generally not used. The outgroup taxa were selected based on the family-wide analysis of plastid rbcL and trnL-F sequences by Muasya *et al.* (2009*a*).


Taxonomic details for most taxa mentioned (such as author, place and date of publication, synonyms, distribution) follow Govaerts *et al.* (2007, 2011). More detailed information on the nomenclature of generic and subdivisional names of the *Cyperus* clade is given in Huygh *et al.* (2010), Larridon *et al.* (2011) and Reynders *et al.* (2011).

DNA EXTRACTION

Samples were either of wild origin, mostly collected during recent field expeditions (silica-dried), or sampled from plants cultivated at the Ghent University Botanical Garden. Additional dried leaf samples were selected from herbarium specimens (GENT). Total DNA was extracted from 100 mg fresh or 20 mg dried material using the GenElute[™] Plant Genomic DNA Miniprep Kit (Sigma-Aldrich, USA) or the DNeasy Plant Mini Kit (Qiagen, Germantown, USA) following the manufacturers' protocols. The material was first ground using a mortar and pestle with the addition of the extraction buffers and a knifepoint of sterilized sand. Additional DNA samples were provided by the DNA Bank at the Royal Botanic Gardens, Kew (UK).

MARKERS

Two non-coding plastid DNA markers were used in this study: the *rpl32-trnL* intergenic spacer of the small single-copy region of the plastid genome (Shaw et al., 2007) and the trnH-psbA intergenic spacer (e.g. Kress et al., 2005; Shaw et al., 2005, 2007; Dragon & Barrington, 2009). To compare the information held in the plastid and nuclear genomes, sequences of a nuclear region were also produced. Also, molecular phylogenetic studies solely based on plastid markers (e.g. Muasya et al., 2002, 2009a; Simpson et al., 2007) give insufficient resolution at lower taxonomic levels, indicating that a marker with a more rapid rate of evolution was needed to resolve the relationships in the Cyperus clade. Although Álvarez & Wendel (2003) rightly indicated the challenges of using non-singlecopy or low-copy nuclear markers, we chose to use a fragment of the external transcribed spacer 1 (ETS1f). We selected the ETS1f marker, not only because it displays a rapid rate of evolution compared with most plastid loci, but also because we found it can be readily amplified and sequenced even from poorly preserved plant material. The relative poor quality of DNA extracted from herbarium specimens

Figure 1. Diversity of C_3 *Cyperus* morphologies and habitats. A. *Cyperus fuscus* with anthelate inflorescence with clearly distichously glume arrangement growing in the Ghent University Botanical Garden. B. *Cyperus pulchellus* with whitish capitate inflorescence growing seasonally wet area near Mahajanga, Madagascar. C. *Cyperus debilissimus* with extremely elongated culms growing up and hanging down from the vegetation at edge of the forest in Andringitra National Park, Madagascar. D. *Cyperus prolifer* with rays arranged so inflorescence is spherical growing with a creeping rhizome in wet sand at Cirque Rouge near Mahajanga, Madagascar. E. *Cyperus alternifolius* with many, almost equally sized involucral bracts growing on a shaded riverbank near Mahajanga, Madagascar. F. *Cyperus betafensis* with anthelate inflorescence and well-developed involucral bracts growing at the edge of the forest in Andringitra National Park, Madagascar. Photographs (A) by M. Reynders and (B-F) by W. Huygh.

prevents effective use of single-copy nuclear genes. ETS1f, like the internal transcribed spacer (ITS) part of the nuclear ribosomal DNA (nrDNA), has already proved useful in resolving phylogenetic relationships in Cyperaceae, e.g. *Uncinia* Pers. (Starr, Harris & Simpson, 2003), *Schoenoplectus* (Rchb.) Palla (Yano & Hoshino, 2005), *Fimbristylis* Vahl (Yano & Hoshino, 2007) and *Carex* (Dragon & Barrington, 2009).

PCR AMPLIFICATION, SEQUENCING AND ALIGNMENTS

PCR amplification was performed using buffer solutions and Taq polymerase from Qiagen. Reactions were carried out using a Gradient Mastercycler (Eppendorf Inc., Hamburg, Germany). Amplification of *rpl32-trnL* was performed following the protocol and using the primers of Shaw et al. (2007) for *rpl32*-F: (5'-CAGTTCCAAAAAACGTACTTC-3'); and $trnL^{(UAG)}$: (5'-CTGCTTCCTAAGAGCAGCGT-3'). Amplification of *trnH-psbA* was performed following the protocol of Shaw et al. (2005) and using adapted primers of Wanke (S. Wanke, unpubl. data) Pe-trnH: (5'-ATTCACAATCCACTGCCTTGAT-3'); and Pe-psbA: (5'-AATGCACACAACTTCCCTCTA-3'). Amplification of ETS1f was performed following the protocol and using the primers of Starr et al. (2003) for ETS1f: ETS-F (5'-CTGTGGCGTCGCATGAGTTG-3') and 18S-R (5'-AGACAAGCATATGACTACTGGCAGG-3'). The PCR products were electrophoresed on 1% agarose gels in 1×Tris-acetate-EDTA (TAE) buffer (pH 8.0) and stained with ethidium bromide to confirm a single product.

Sequencing was performed using the same primers used in the PCR reactions. Sequencing was run on an Applied Biosystems ABI 3130XL Genetic Analyser (Life Technologies, CA, USA). The software SequencherTM v4.8 (GeneCodes Corporation, Ann Arbor, MI, USA) was used to assemble forward and reverse sequences into contigs, inspect ABI chromatograms and edit nucleotides where needed. The sequences were aligned manually in PhyDE 0.995 (Müller, Müller & Quandt, 2008). To eliminate ambiguously aligned positions in the alignment as objectively as possible, the online program Gblocks v0.91b (Castresana, 2000) was used. The program was run with settings allowing for smaller blocks, gaps within these blocks and less strict flanking positions. Alignments are available from the first author by request.

DATA ANALYSIS

Phylogenetic hypotheses were produced using maximum likelihood (ML) and Bayesian inferences (BI). All analyses were first performed on the single marker data sets (ETS1f, rpl32-trnL, trnH-psbA). As no conflicting clades with a significant confidence value (i.e. with bootstrap / PP support) were revealed, a combined data set was constructed and analysed. The latter was subdivided into three partitions, corresponding to the single markers. The program RAxML v7.0.3 (Stamatakis, 2006) was used to execute the Rapid Bootstrapping algorithm for 500 replicates, combined with an ML search, using the GTRCAT model (Stamatakis, Hoover & Rougemont, 2008). Model parameters were optimized for each partition when analysing the combined data set.

Following Van de Putte *et al.* (2010), two Bayesian phylogenetic (BI) analyses were carried out in MrBayes v3.1.2 (Ronquist & Huelsenbeck, 2003). For the first analysis, MrModeltest v2.3 (Nylander, 2004) was used to determine the model that best fits the data, applying Akaike's information criterion. For the combined data set, a model was determined for each partition. This method is referred to as the BI-MrModeltest method. For the second analysis, a single general time-reversible model with rate variation across sites and a proportion of invariable sites was used. Rates and all model parameters were unlinked between all partitions of the combined data set. This method is referred to as the BI-GTR+I+F method.

Two independent, parallel runs of one cold and three heated chains were run for 10 million generations each. Trees and parameter estimates were saved every 1000th generation. Convergence, associated likelihood values, effective sample size values and burn-in values of the different runs were verified with Tracer v1.4.1 (Rambaut & Drummond, 2007). Calculation of the consensus tree and the posterior

Taxon	Voucher	Origin	ETS1f	trnH- $psbA$	rpl32-trnL
Alinula paradoxa (Cherm.) Goetgh. & Vorster	<i>Reid 1027</i> (GENT)	South Africa	HQ705964	-	HQ705894
Ascolepis capensis (Kunth) Ridl.	Hess 52/1760 (GENT)	Angola	HQ705957	_	HQ705887
Courtoisina assimilis (Steud.) Maquet	Faden et al. 96/119 (K*; Muasya et al., 2002)	Tanzania	HQ705939	HQ705812	HQ705872
Courtoisina cyperoides (Roxb.) Soják	Faden et al. 96/456 (K*)	Tanzania	HQ705940	HQ705813	_
Courtoisina cyperoides (Roxb.) Soják	Larridon et al. 2010-0261 (GENT)	Madagascar	HQ705941	HQ705814	HQ705873
Cyperus ajax C.B.Clarke	Malaisse & Goetghebeur 130 (GENT)	DR Congo	HQ705916	HQ705794	HQ705852
Cyperus albostriatus Schrad.	Reid 726 (GENT)	South Africa	HQ705915	HQ705793	HQ705851
Cyperus alternifolius L.	Goetghebeur 11516 (GENT)	BG Ghent	HQ705948	HQ705818	HQ705878
Cyperus balfourii C.B.Clarke	Dorr 2744 (GENT)	Madagascar	HQ705917	HQ705795	HQ705853
Cyperus betafensis Cherm.	<i>Larridon et al. 2010–0326</i> (GENT)	Madagascar	HQ705918	-	_
Cyperus betafensis Cherm.	Larridon et al. 2010-0200 (GENT)	Madagascar	HQ705919	HQ705796	HQ705854
Cyperus buchholzii Boeck.	Viane 1327 (GENT)	Ivory Coast	HQ705921	HQ705798	-
Cyperus buchholzii Boeck.	<i>Reynders et al. 090307/03</i> (GENT)	Cameroon, BG Ghent	HQ705922	HQ705799	HQ705856
Cyperus chamaecephalus Cherm.	Beentje 4774 (K – DNA Bank 29378)	Madagascar	HQ705930	-	_
Cyperus cuspidatus Kunth	Jongkind & Nieuwhuis 2847 (GENT)	Ghana	HQ705954	HQ705823	HQ705884
Cyperus debilissimus Baker	Larridon et al. 2010–0103 (GENT)	Madagascar	HQ705933	HQ705808	HQ705866
Cyperus debilissimus Baker	Larridon et al. 2010–0154 (GENT)	Madagascar	HQ705932	HQ705807	HQ705865
Cyperus debilissimus Baker	Larridon et al. 2010–0282 (GENT)	Madagascar	_	HQ705806	HQ705864
Cyperus denudatus L.f.	Muasya & Knox 1021 (EA)	Kenya	HQ705926	HQ705802	HQ705859
Cyperus dichrostachyus Hochst. ex A.Rich.	Muasya & Knox 976 (EA; Muasya et al., 2002)	Kenya	HQ705944	_	HQ705877
Cyperus difformis L.	Reynders & Sabulao 66 (GENT)	Philippines	HQ705945	HQ705817	-
Cyperus distinctus Steud.	Carter 9237 (GENT)	USA	HQ705907	HQ705788	HQ705844
Cyperus elegans L. Cyperus entrerianus Boeck.	Goetghebeur 5601 (GENT) Zardini 29789 (GENT)	Cuba Paraguay	HQ705959 HQ705908	HQ705827 HQ705789	HQ705889 HQ705845
Cyperus eragrostis Lam.	Bryson 16965 (GENT)	USA	HQ705903	_	HQ705840
Cyperus eragrostis Lam.	Van der Veken 12823 (GENT)	France	HQ705904	HQ705785	HQ705841

Table 1. List of the samples used in the molecular study with species names, voucher information (* leaf sample courtesy of the collector/A. M. Muasya), origin and GenBank accession numbers for the sequences

Taxon	Voucher	Origin	ETS1f	trnH- $psbA$	rpl32-trnL
Cyperus eragrostis Lam.	Goetghebeur 11494 (GENT)	BG Basel, BG Ghent	HQ705905	HQ705786	HQ705842
Cyperus esculentus L.	Goetghebeur 11303 (GENT)	BG Nantes, BG Ghent	HQ705960	HQ705828	HQ705890
Cyperus foliaceus C.B.Clarke	Larridon et al. 2010-0034 (GENT)	Madagascar	HQ705925	HQ705801	HQ705858
Cyperus friburgensis Boeck.	Montes 1799 (K – DNA Bank 29366)	Argentina	-	HQ705791	HQ705849
Cyperus friburgensis Boeck.	Goetghebeur 5869 (GENT)	BG Ghent	HQ705914	HQ705792	HQ705850
Cyperus friburgensis Boeck.	Øllgaard 74763 (GENT)	Ecuador	HQ705913	_	-
Cyperus fuscus L.	<i>de Retz 67715</i> (GENT)	France	HQ705946	_	_
Cyperus gardneri Nees	Schessl 3316 (GENT)	Brazil	HQ705943	_	HQ705876
Cyperus haspan L.	Muasya & Muthama 1269 (EA)	Kenya	HQ705927	HQ705803	HQ705860
Cyperus kerstenii Boeck.	<i>Muasya 984</i> (EA, K; Muasya <i>et al.</i> , 2002)	Kenya	HQ705961	HQ705829	HQ705891
Cyperus leptocladus Kunth	Reid 902 (GENT)	South Africa	HQ705923	_	_
Cyperus luzulae (L.) Retz.	Goetghebeur 5868 (GENT)	BG Ghent	HQ705909	-	_
Cyperus luzulae (L.) Retz.	Van den Eynden 213 (GENT)	Ecuador	HQ705910	_	HQ705846
Cyperus marginatus Thunb.	Larridon et al. 2009-0076 (GENT)	Kenya	HQ705949	HQ705819	HQ705879
Cyperus molliglumis Cherm.	Larridon et al. 2010-0225 (GENT)	Madagascar	HQ705931	_	HQ705863
Cyperus ochraceus Vahl	Viane 681 (GENT)	Venezuela	HQ705911	_	HQ705847
Cyperus papyrus L.	Goetghebeur 5866 (GENT)	BG Ghent	HQ705962	HQ705830	HQ705892
Cyperus pectinatus Vahl	De Wolf 92-86 (GENT)	Senegal	HQ705935	_	HQ705868
Cyperus pectinatus Vahl	Larridon et al. 2010–0265 (GENT)	Madagascar	HQ705936	HQ705810	HQ705869
Cyperus phaeolepis Cherm.	Phillipson 1647 (GENT)	Madagascar	HQ705950	-	HQ705880
Cyperus plantaginifolius var. minor Cherm.	Larridon et al. 2010-0069 (GENT)	Madagascar	HQ705934	HQ705809	HQ705867
Cyperus platystylis R.Br.	Chantaranothai et al. 814 (K – DNA Bank 29382)	Thailand	HQ705937	_	HQ705870
Cyperus prolifer Lam.	(II DIVIT Dame 20002) Larridon et al. 2010-0003 (GENT)	Madagascar	HQ705928	HQ705804	HQ705861
Cyperus purpureoviridis Lye	Muasya & Knox 964 (EA)	Tanzania	HQ705929	HQ705805	HQ705862
Cyperus pseudovegetus Steud.	Carter 6152 (GENT)	USA	HQ705912	HQ705790	HQ705848
Cyperus reduncus Hochst. ex Boeck.	Malaisse & Goetghebeur 1171 (GENT)	DR Congo	HQ705938	HQ705811	HQ705871
Cyperus renschii Boeck.	Mwachala et al. 446 (EA)	Kenya	HQ705924	HQ705800	HQ705857
Cyperus rotundus L.	Shaw 890 (K*)	Hong Kong (China)	HQ705963	HQ705831	HQ705893

Table 1. Continued

Table 1. Continued

Taxon	Voucher	Origin	ETS1f	trnH- $psbA$	rpl32- $trnL$
Cyperus schomburgkianus Nees	de Michel 2000 (GENT)	Bolivia	_	HQ705821	HQ705882
Cyperus sp. (Diffusi)	Larridon et al. 2010-0215 (GENT)	Madagascar	HQ705920	HQ705797	HQ705855
Cyperus submicrolepis Kük.	Laegaard 17222 (GENT)	Senegal	HQ705947	_	_
Cyperus surinamensis Rottb.	Jansen-Jacobs 521 (GENT)	Guyana	HQ705906	HQ705787	HQ705843
Cyperus textilis Thunb.	Goetghebeur 11517 (GENT)	BG Ghent	HQ705951	HQ705820	HQ705881
Cyperus waterloti Cherm.	Larridon et al. 2010-0010 (GENT)	Madagascar	HQ705955	HQ705824	HQ705885
Cyperus waterloti Cherm.	Larridon et al. 2010-0043 (GENT)	Madagascar	HQ705956	HQ705825	HQ705886
Ficinia gracilis Schrad. Isolepis fluitans (L.) R.Br.	Muasya 2713 (BOL) Muasya & Knox 3195 (EA)	South Africa Kenya	HQ705902 HQ705901	HQ705784 HQ705783	HQ705839 HQ705838
Kyllinga nemoralis (J.R.Forst. & G.Forst.) Dandy ex Hutch. & Dalziel	Goetghebeur 11518 (GENT)	Philippines, BG Ghent	HQ705965	HQ705832	HQ705895
Kyllingiella microcephala (Steud.) R.W.Haines & Lye	Muasya & Muthama 1262 (EA)	Kenya	HQ705952	-	_
Kyllingiella polyphylla (A.Rich.) Lye	Muasya & Muthama 1247 (EA)	Kenya	HQ705953	HQ705822	HQ705883
Lipocarpha chinensis (Osbeck) J.Kern	Reynders & Sabulao 26 (GENT)	Philippines	HQ705958	HQ705826	HQ705888
Oxycaryum cubense (Poepp. & Kunth) Palla	Mwachala 340 (EA)	Kenya	HQ705942	HQ705815	HQ705874
Oxycaryum cubense (Poepp. & Kunth) Palla	Zardini 18398 (GENT)	Paraguay	_	HQ705816	HQ705875
Pycreus polystachyos (Rottb.) P.Beauv.	Goetghebeur 11519 (GENT)	South Africa, BG Ghent	HQ705966	HQ705833	HQ705896
Queenslandiella hyalina (Vahl) Ballard	Muasya 2490 (EA)	Kenya	HQ705967	HQ705834	HQ705897
Remirea maritima Aubl.	Faden et al. 96/48 (K*; Muasya et al., 2002)	Tanzania	HQ705968	HQ705835	HQ705898
Scirpoides holoschoenus (L.) Soják	Goetghebeur 11520 (GENT)	BG Porto, BG Ghent	HQ705900	HQ705782	HQ705837
Sphaerocyperus erinaceus (Ridl.) Lye	Faden et al. 96/358 (K*; Muasya et al., 2002)	Tanzania	HQ705969	HQ705836	HQ705899

probability (PP) of clades was based upon the trees sampled after the chains converged. Trees were drawn using FigTree v1.3.1 and Adobe Photoshop CS3.

CARBON ISOTOPE ANALYSIS

Carbon isotope analysis ($\delta^{13}C$) was performed on 65 species to confirm their photosynthesis type. The

measurements of ¹³C natural abundance in plant samples were performed using an elemental analyser (ANCA-SL, SerCon, UK) coupled to an isotope ratio mass spectrometer (20–20, SerCon, UK). The measured ¹³C/¹²C ratios are expressed as δ^{13} C values (‰) relative to the Vienna Pee Dee Belemnite (VPDB) standard:

$$\delta^{13}C = \left(rac{\mathrm{R}_{\mathrm{sample}} - \mathrm{R}_{\mathrm{standard}}}{\mathrm{R}_{\mathrm{standard}}}
ight) imes 1000$$

 R_{sample} and $R_{standard}$ refer to the $^{13}C/^{12}C$ ratio in the sample and the standard, respectively. The working standard for the measurements was wheat flour with a $\delta^{13}C$ value of $-27.01\pm0.04\%$ (certified by Iso-Analytical, UK). All analyses were performed in duplicate.

RESULTS

SEQUENCE ALIGNMENTS

After alignment and application of Gblocks, the ETS1f alignment included 70 sequences of 400 bases, the rpl32-trnL alignment 63 sequences of 819 bases and the trnH-psbA alignment 58 sequences of 787 bases. The concatenated data set included 77 sequences and the Gblocks program retained 61% or 2006 characters of the original alignment. Most excluded regions came from the ETS1f region.

PHYLOGENETIC ANALYSIS

The three single-locus ML analyses revealed nearly identical topologies and bootstrap values. As expected, the clades supported by single-locus analyses received even greater support in the multi-locus ML analysis. In the various analyses, only minor conflicts concerning the position of the species in the C_4 *Cyperus* clade were detected, but most nodes in this clade are not supported. Also, in the ETS1f single locus ML tree, *Cyperus* section *Luzuloidei* branches off as a separate clade, whereas in all other analyses, section *Luzuloidei* (clade 2; Fig. 2) forms a clade sister to a clade with *C*. sections *Pseudanosporum* and *Anosporum*, the segregate genera *Courtoisina* and *Oxycaryum* and *C*. section *Fusci* (clade 3a and clade 3b; Fig. 2).

The three single-locus BI analyses did not differ significantly in tree topologies. The BI-MrModeltest and BI-GTR+I+ Γ methods also revealed the same topologies, but branches received slightly higher support in the BI-GTR+I+ Γ analysis. The multiplelocus BI topologies did not differ from the multiplelocus ML tree, except in C₄ *Cyperus*, as mentioned above for the ML analyses. Evaluation of the multiple-locus BI analyses output shows that the two runs of the BI-MrModeltest analysis converged on similar log likelihood (-17080) and parameter values. The burn-in value for both runs was determined at 1.5 million generations. The two runs of the BI-GTR+I+ Γ analysis also converged on similar log likelihood (-16947 to -16948) and parameter values. The burn-in value for the BI-GTR+I+ Γ method was determined at 2.5 million generations. The effective sample size (ESS) for the likelihood value of the combined runs was slightly higher for the BI-GTR+I+ Γ analysis. The latter consisted of 1455.91 uncorrelated samples, whereas the BI-MrModeltest analysis comprised 1282.38 uncorrelated samples.

Figure 2 shows the 50% majority consensus multiple-locus BI-GTR+I+ Γ tree with the associated PP values and the bootstrap values of the multiple-locus ML tree. Only bootstrap values above 75% and posterior probabilities above 0.85 are shown.

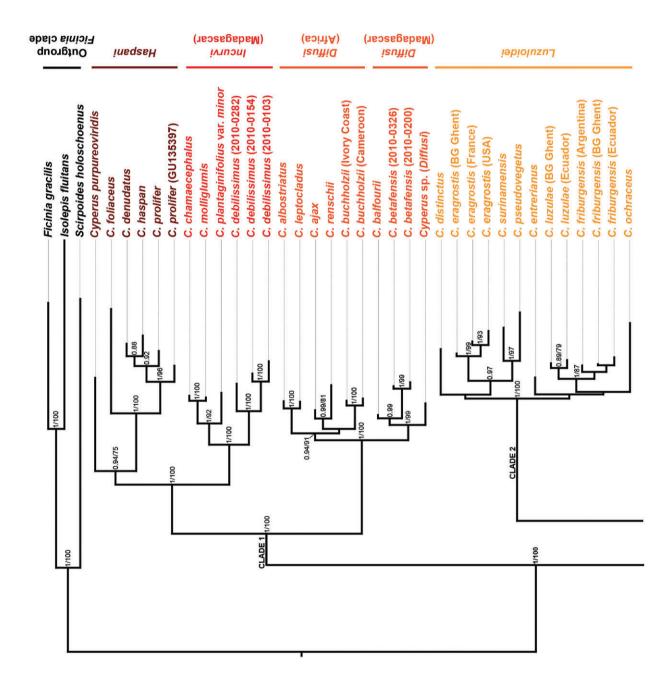

CARBON ISOTOPE ANALYSIS

Table 2 lists all confirmed C_3 *Cyperus* spp. and some of the C_4 *Cyperus* spp. used in the molecular study. The data listed in this table were either obtained through carbon isotope analysis (δ^{13} C) performed on 65 species at Ghent University or taken from the literature (Bruhl & Wilson, 2007). For 15 species, the photosynthesis type was confirmed for the first time overall, and for an additional eight species [indicated in Table 2 by an asterisk (*)] this was confirmed for the first time using carbon isotope analysis. Out of a total of 98 species of the *c*. 187 C₃ *Cyperus* species, the photosynthesis type is now confirmed (52%). Two sections as circumscribed by Kükenthal (1936) prove heterogeneous in this respect: *'Cyperus* section *Glutinosi'* and *'C*. section *Dichostylis'*.

DISCUSSION

GENERIC CIRCUMSCRIPTION AND OUTGROUP RELATIONSHIPS

The monograph of *Cyperus* by Kükenthal (1935–1936) offers an abundant source of hypotheses concerning groups of related species (Table 3). Nevertheless, not all taxa of the genus were explicitly placed within specific sections, and the generic circumscription of *Cyperus* and its allies has been adapted since Kükenthal's (1935–1936) revision. Also, it provides few clues as to how the taxa relate to each other or to possible outgroups. Previous molecular phylogenetic studies (Muasya *et al.*, 1998, 2000, 2002, 2009a; Simpson *et al.*, 2007), defined the closest related group within Cyperaceae as the *Ficinia* clade and place several segregate genera in the *Cyperus* clade. However, these studies do not

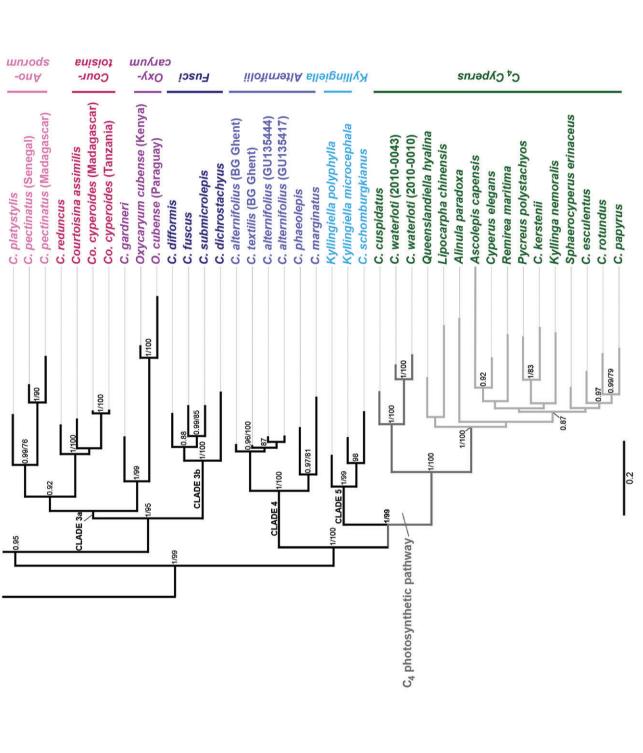


Figure 2. 50% majority consensus multiple-locus BI-GTR+I+F tree with the associated PP values and the bootstrap values of the multiple-locus ML tree. Only bootstrap values above 75% and posterior probabilities above 85% are shown.

Table 2. List of all confirmed C_3 *Cyperus* species and some of the C_4 *Cyperus* species used in the molecular study. The data listed in this table were either obtained through carbon isotope analysis (δ^{13} C) performed on 65 species at the Ghent University or taken from literature (Bruhl & Wilson, 2007). Of fifteen species, the photosynthesis type was confirmed for the first time overall, and, of an additional eight species (*), this was performed for the first time using carbon isotope analysis. The species included in Cyperus section Glutinosi by Kükenthal (1936) are in bold.

Species	C_3/C_4	References (δ^{13} C: value, voucher)
Ficinia gracilis Schrad.	C_3	IL (δ ¹³ C: -27.80, Muasya 2365 GENT); Bruhl & Wilson, (2007)
Isolepis fluitans (L.) R.Br.	C_3	IL (δ ¹³ C: -30.44, Leten s.n. GENT); Bruhl & Wilson, (2007)
Scirpoides holoschoenus (L.) Soják	C_3	IL (δ ¹³ C: -26.40, Goetghebeur 5246 GENT); Bruhl & Wilson, (2007
Androtrichum trigynum (Spreng.) H.Pfeiff.	C_3	IL (δ^{13} C: -27.44, Goetghebeur 4764 GENT); Bruhl & Wilson, (2007)
Courtoisina assimilis (Steud.) Maquet	C_3	IL (δ ¹³ C: -28.14, Van der Veken 9037 GENT); Bruhl & Wilson, (2007)
Courtoisina cyperoides (Roxb.) Soják	C_3	IL (δ ¹³ C: -27.85, Coppejans 693 GENT); Bruhl & Wilson, (2007)
Kyllingiella microcephala (Steud.) R.W.Haines & Lye	C_3	Bruhl & Wilson, (2007)
Kyllingiella polyphylla (A.Rich.) Lye	C_3	IL (δ ¹³ C: -31.38, Kornas 755 GENT); Bruhl & Wilson, (2007)
Kyllingiella simpsonii Muasya	C_3	IL (δ ¹³ C: -25.40, Ole Sayalel 5320 EA)
Oxycaryum cubense (Poepp. & Kunth) Palla	C_3	IL (δ ¹³ C: -30.06, Zardini 18347 GENT); Bruhl & Wilson, (2007)
Cyperus acuminatus Torr. & Hook.	C_3	Bruhl & Wilson, (2007)
Cyperus ajax C.B.Clarke	C_3	IL (δ ¹³ C: -28.05, Hess 50/176 GENT); Bruhl & Wilson, (2007)
Cyperus albostriatus Schrad.	C_3	IL (δ ¹³ C: -30.20, <i>Reid</i> 726 GENT); Bruhl & Wilson, (2007)
Cyperus alternifolius L.	C_3	IL (8 ¹³ C: -28.75, Harley 22939 GENT); Bruhl & Wilson, (2007)
Cyperus aquatilis R.Br.	C_3	Bruhl & Wilson, (2007)
Cyperus balfourii C.B.Clarke	C_3	IL (δ ¹³ C: -32.70, <i>Dorr</i> 2744 GENT)
Cyperus baronii C.B.Clarke	C_3	Bruhl & Wilson, (2007)
Cyperus buchholzii Boeck.	C_3	Bruhl & Wilson, (2007)
Cyperus burkartii Guaglianone	C_3	Bruhl & Wilson, (2007)
Cyperus canus J.Presl & C.Presl	C_3	IL (δ ¹³ C: -28.93, <i>Lopez 29</i> GENT)
Cyperus cephalotes Vahl	C_3	IL (δ ¹³ C: -29.56, <i>Heckman 116</i> K); Bruhl & Wilson, (2007)
Cyperus chalaranthus J.Presl & C.Presl	C_3	Bruhl & Wilson, (2007)
Cyperus chamaecephalus Cherm.	C_3	IL (δ ¹³ C: -35.34, Schatz 2789 GENT, δ ¹³ C: -34.35, Beentje 4774 K)
Cyperus colymbetes Kotschy & Peyr	C_3	IL (δ ¹³ C: -26.30, <i>Denny 1283</i> GENT)
Cyperus concinnus R.Br.	C_3	Bruhl & Wilson, (2007)
Cyperus constanzae Urb.	C_3	IL (δ ¹³ C: -29.19, <i>Ekman</i> 6879 K)
Cyperus debilissimus Baker	C_3	IL (δ ¹³ C: -29.54, Messmer 895 K)
Cyperus deciduus Boeck.	C_3	Bruhl & Wilson, (2007)
Cyperus dentatus Torr.	C_3	Bruhl & Wilson, (2007)
Cyperus denudatus L.f.	C_3	IL (δ ¹³ C: -27.26, Hess 51/53 GENT); Bruhl & Wilson, (2007)
Cyperus dereilema Steud.	C_3	Bruhl & Wilson, (2007)
Cyperus dichrostachyus Hochst. ex A.Rich.	C_3	IL (δ ¹³ C: -26.80, <i>Viane 2614</i> GENT); Bruhl & Wilson, (2007)
Cyperus difformis L.	C_3	IL ($\delta^{13}C\!\colon$ –29.44, Hess 52/158 GENT); Bruhl & Wilson, (2007)
Cyperus diffusus Vahl	C_3	IL (δ ¹³ C: -32.04, Viane 1327 GENT)
Cyperus disjunctus C.B.Clarke	C_3	Bruhl & Wilson, (2007)
Cyperus distinctus Steud.	C_3	IL * (δ^{13} C: -28.82, Carter 9237 GENT); Bruhl & Wilson, (2007)
Cyperus drummondii Torr. & Hook.	C_3	Bruhl & Wilson, (2007)
Cyperus entrerianus Boeck.	C_3	IL (δ^{13} C: -27.87, Zardini 29789 GENT); Bruhl & Wilson, (2007)
Cyperus eragrostis Lam.	C_3	IL (δ^{13} C: -29.59, Bryson 16965 GENT); Bruhl & Wilson, (2007)
Cyperus fertilis Boeck.	C_3	IL (δ ¹³ C: -37.13, Van der Veken 8940 GENT); Bruhl & Wilson, (2007)
Cyperus fischerianus A.Rich.	C_3	Bruhl & Wilson, (2007)
Cyperus flaccidus R.Br.	C_3	Bruhl & Wilson, (2007)
Cyperus foliaceus C.B.Clarke	C_3	Bruhl & Wilson, (2007)

Table 2. Continued

Species	C_3/C_4	References ($\delta^{13}C$: value, voucher)
Cyperus friburgensis Boeck.	C_3	IL (δ ¹³ C: -34.30, Øllgaard 74763 GENT)
Cyperus fuscus L.	C_3	IL (δ ¹³ C: -28.52, <i>De Retz</i> 67715 GENT); Bruhl & Wilson, (2007)
Cyperus gardneri Nees	C_3	IL * (δ ¹³ C: -31.33, Schessl 3316 GENT); Bruhl & Wilson, (2007)
Cyperus glaucophyllus Boeck.	C_3	Bruhl & Wilson, (2007)
Cyperus gracilis R.Br.	C_3	IL (δ^{13} C: -30.33, <i>Bruhl</i> 5 GENT); Bruhl & Wilson, (2007)
Cyperus gymnocaulos Steud.	C_3	Bruhl & Wilson, (2007)
Cyperus haspan L.	C_3	IL (δ ¹³ C: -25.66, Viane 908 GENT); Bruhl & Wilson, (2007)
Cyperus hieronymi Boeck.	C_3	Bruhl & Wilson, (2007)
Cyperus humilis Kunth	C_3	Bruhl & Wilson, (2007)
Cyperus incomtus Kunth	C_3	Bruhl & Wilson, (2007)
Cyperus intricatus Schrad. ex Schult.	C_3	Bruhl & Wilson, (2007)
Cyperus kipasensis Cherm.	C_3	Bruhl & Wilson, (2007)
Cyperus laevis R.Br.	C_3	Bruhl & Wilson, (2007)
Cyperus laxus Lam.	C_3	Bruhl & Wilson, (2007)
Cyperus lecontei Torr. ex Steud.	C_3	Bruhl & Wilson, (2007)
Cyperus leptocladus Kunth	C_3	IL (δ^{13} C: -27.84, <i>Reid 902</i> GENT); Bruhl & Wilson, (2007)
Cyperus leucocephalus Retz	C_3	IL * (δ ¹³ C: -30.38, <i>Chantaranothai 1630</i> K); Bruhl & Wilson, (2007)
Cyperus limosus Maxim.	C_3	Bruhl & Wilson, (2007)
Cyperus luzulae (L.) Retz	C_3	IL (δ^{13} C: -28.78, Schessl 85/1–4 GENT); Bruhl & Wilson, (2007
Cyperus mapanioides C.B.Clarke	C_3	Bruhl & Wilson, (2007)
Cyperus marginatus Thunb.	C_3	IL (δ^{13} C: -26.91, <i>Hess</i> 51/16 GENT); Bruhl & Wilson, (2007)
Cyperus megalanthus (Kük.) G.C.Tucker	C_3	Bruhl & Wilson, (2007)
Cyperus michoacanensis Britton	C_3	Bruhl & Wilson, (2007)
Cyperus microglumis D.A.Simpson	C_3	Bruhl & Wilson, (2007)
Cyperus miliifolius Poepp. & Kunth	C_3	Bruhl & Wilson, (2007)
Cyperus mirus C.B.Clarke	C_3	IL (δ ¹³ C: -31.16, Boorman 229 GENT)
Cyperus nayaritensis Tucker	C_3	Bruhl & Wilson, (2007)
Cyperus ochraceus Vahl	C_3	IL (δ ¹³ C: -30.19, <i>Viane 681</i> GENT)
Cyperus palianparaiensis Govindarajalu	C_3	Bruhl & Wilson, (2007)
Cyperus pectinatus Vahl	C_3	IL (δ ¹³ C: -26.76, De Wolf 92/86 GENT); Bruhl & Wilson, (2007)
Cyperus perennis (M.E.Jones) O'Neill	C_3	Bruhl & Wilson, (2007)
Cyperus phaeolepis Cherm.	C_3	IL (δ ¹³ C: -29.80, <i>Phillipson 1647</i> GENT)
Cyperus platycaulis Baker	C_3	Bruhl & Wilson, (2007)
Cyperus platystylis R.Br.	C_3	IL (δ ¹³ C: -27.35, <i>Chantaranothai et al.</i> 814 K); Bruhl & Wilson, (2007)
Cyperus prolifer Lam.	C_3	Bruhl & Wilson, (2007)
Cyperus pseudoleptocladus Kük.	C_3	IL (δ ¹³ C: -26.02, <i>Reid 1816</i> GENT); Bruhl & Wilson, (2007)
Cyperus pseudovegetus Steud.	C_3	IL (δ ¹³ C: -29.68, <i>Carter 6152</i> GENT); Bruhl & Wilson, (2007)
Cyperus pulchellus R.Br.	C_3	IL (δ ¹³ C: -27.32, De Smet 77/23 GENT); Bruhl & Wilson, (2007
Cyperus pulcher Thunb.	C_3	Bruhl & Wilson, (2007)
Cyperus reduncus Hochst. ex Boeck.	C_3	IL * (δ^{13} C: -29.74, Audru 5375 P); Bruhl & Wilson, (2007)
Cyperus reflexus Vahl	C_3	Bruhl & Wilson, (2007)
Cyperus renschii Boeck.	C_3	IL (δ^{13} C: -26.54, <i>Hess</i> 52/779 GENT); Bruhl & Wilson, (2007)
Cyperus schomburgkianus Nees	C_3	IL * (δ ¹³ C: -24.03, Schessl 177/2 GENT); Bruhl & Wilson, (200
Cyperus sciaphilus Cherm.	C_3	IL (δ ¹³ C: -33.91, <i>Lam & Meeuse 5816</i> K)
Cyperus seslerioides Kunth	C_3	Bruhl & Wilson, (2007)
Cyperus sexangularis Nees	C_3	IL (δ ¹³ C: -26.24, <i>Lambinon</i> 82/85 GENT)
Cyperus sphaerospermus Schrad.	C_3	Bruhl & Wilson, (2007)
Cyperus stradbrokensis Domin	C_3	Bruhl & Wilson, (2007)
Cyperus submicrolepis Kük.	C_3	IL * (δ ¹³ C: -28.75, Viane 961 GENT); Bruhl & Wilson, (2007)

Table 2. Continued

Species	C_3/C_4	References (δ^{13} C: value, voucher)
Cyperus surinamensis Rottb.	C_3	IL (δ ¹³ C: -28.68, Jansen-Jacobs 521 GENT); Bruhl & Wilson, (2007)
Cyperus sylvestris Ridl.	C_3	Bruhl & Wilson, (2007)
Cyperus tenerrimus J.Presl & C.Presl	C_3	IL * (δ ¹³ C: -31.13, <i>Davidse 35095</i> GENT); Bruhl & Wilson, (2007)
Cyperus tenuispica Steud.	C_3	Bruhl & Wilson, (2007)
Cyperus textilis Thunb.	C_3	IL * (δ ¹³ C: -24.26, Bohnen 7744 GENT); Bruhl & Wilson, (2007)
Cyperus trinervis R.Br.	C_3	IL (δ ¹³ C: -27.73, Wilson 8565 GENT)
Cyperus uncinulatus Schrad. ex Nees	C_3	Bruhl & Wilson, (2007)
Cyperus vaginatus R. Br.	C_3	IL (δ ¹³ C: -28.64, Wilson 905 K); Bruhl & Wilson, (2007)
Cyperus virens Michx. var. minarum (Boeck.) Denton	C_3	Bruhl & Wilson, (2007)
Cyperus virens Michx. var. montanus (Boeck.) Denton	C_3	Bruhl & Wilson, (2007)
Cyperus virens Michx., as C. virens var. virens	C_3	Bruhl & Wilson, (2007)
Cyperus xerophilus Cherm.	C_3	Bruhl & Wilson, (2007)
Cyperus elegans L.	C_4	IL (δ ¹³ C: -11.46, <i>Goetghebeur 5601</i> GENT); Bruhl & Wilson, (2007)
Cyperus esculentus L.	C_4	IL (8 ¹³ C: -12.83, Madsen 5310 GENT); Bruhl & Wilson, (2007)
Cyperus lacunosus Griseb.	C_4	Bruhl & Wilson, (2007)
Cyperus oxylepis Nees ex Steud.	C_4	IL (δ ¹³ C: -11.63, Carter 9061 GENT); Bruhl & Wilson, (2007)
Cyperus papyrus L.	C_4	IL (δ ¹³ C: -11.12, Hess 50/88 GENT); Bruhl & Wilson, (2007)
Cyperus trachysanthos Hook. &	C_4	IL (δ ¹³ C: -12.47, St. John 23599 K); Bruhl & Wilson, (2007)
Arn.		
Ascolepis capensis (Kunth) Ridl.	C_4	IL (δ ¹³ C: -10.77, <i>Traore</i> 33 GENT); Bruhl & Wilson, (2007)
Lipocarpha chinensis (Osbeck) J.Kern	C_4	IL (δ ¹³ C: -10.35, <i>Malaisse & Goetghebeur 790</i> GENT); Bruhl & Wilson, (2007)
Pycreus polystachyos (Rottb.) P.Beauv.	C_4	IL (δ ¹³ C: -10.60, <i>Reekmans 6441</i> GENT); Bruhl & Wilson, (2007)
Queenslandiella hyalina (Vahl) Ballard	C_4	IL (δ ¹³ C: -12.93, <i>Mwachala 269</i> GENT); Bruhl & Wilson, (2007)
Remirea maritima Aubl.	C_4	IL (δ ¹³ C: -11.56, MacDougal 3449 GENT); Bruhl & Wilson, (2007)

answer questions concerning the affinities between the taxa within the *Cyperus* clade. In this study, the outgroup was chosen to represent various lineages in the *Ficinia* clade.

As the C₄ photosynthetic pathway arose only once in the Cyperus clade (e.g. Soros & Bruhl, 2000; Besnard et al., 2009), we can recognize at least two main infrageneric groups in Cyperus: (1) an eucyperoid subgenus, uniting plants without the Kranz syndrome and with an inflorescence generally composed of digitately clustered spikelets (or contracted to a head-like inflorescence); and (2) a chlorocyperoid subgenus, uniting plants with a chlorocyperoid anatomytype (Kranz syndrome) and an inflorescence composed of spikes of spikelets or condensed spikes. Using the data gathered in a previous study of the nomenclature of the Cyperus clade (Huygh et al., 2010; Larridon et al., 2011; Reynders et al., 2011), the two subgenera have been named respectively: Cyperus subgenus Anosporum (Nees) C.B.Clarke (1884) and

subgenus *Cyperus*. Informally, we use the names C_3 *Cyperus* and C_4 *Cyperus* for these subgenera, respectively.

Relationships in C₃ Cyperus

The Cyperus clade (Fig. 2) is sister to the Ficinia clade and consists of a paraphyletic C_3 Cyperus, in which a well-supported monophyletic clade is nested, encompassing the species of the Cyperus clade that use C_4 photosynthesis (C_4 Cyperus). Table 3 shows the infrageneric classification of C_3 Cyperus species according to Kükenthal (1935–1936), with the species listed using their currently accepted names (Govaerts *et al.*, 2011). In contrast, Table 4 presents the preliminary subdivisional delimitations in C_3 Cyperus based on the results of the molecular phylogenetic hypothesis obtained in this study. The clades (or their subclades) in C_3 Cyperus (Fig. 2) largely concur with previously recognized taxa (Cyperus sections and sub-

Cyperus subgenus Eucyper		
Section	Species	Remarks
Hutinosi	Cyperus constanzae Urb.	
	Cyperus elegans L.	C_4 Cyperus
	Cyperus gardneri Nees	
	Cyperus lacunosus Griseb.	C_4 Cyperus
	Cyperus oxylepis Nees	C_4 Cyperus
	Cyperus trachysanthos Hook. & Arn.	C_4 Cyperus
Luzuloidei	Cyperus acuminatus Torr. & Hook.	
	Cyperus altsonii Kük.	
	Cyperus cellulosoreticulatus Boeck.	
	Cyperus columbiensis Palla	
	Cyperus distinctus Steud.	
	Cyperus drummondii Torr. & Hook.	
	Cyperus entrerianus Boeck.	
	Cyperus eragrostis Lam.	
	Cyperus hieronymi Boeck.	
	Cyperus incomtus Kunth	
	Cyperus intricatus Schrad. ex Schult.	
	Cyperus luzulae (L.) Retz.	
	Cyperus megalanthus (Kük.) G.C.Tucker	
	Cyperus ochraceus Vahl	
	Cyperus pseudovegetus Steud.	
	Cyperus reflexus Vahl	
	Cyperus sordidus J.Presl & C.Presl	
	Cyperus surinamensis Rottb.	
	Cyperus virens Michx.	
	Cyperus xanthostachyus Steud.	
	Cyperus boeckeleri Phil.	Unplaced name
	Cyperus elytropiptos Steud.	Unplaced name
seudanosporum	Cyperus platystylis R.Br.	
aginati	Cyperus alternifolius L.	
	Cyperus canus J.Presl & C.Presl	
	Cyperus debilissimus Baker	
	Cyperus dioicus I.M.Johnst.	
	Cyperus gymnocaulos Steud.	
	Cyperus marginatus Thunb.	
	Cyperus phaeolepis Cherm.	
	Cyperus sexangularis Nees	
	Cyperus textilis Thunb.	
	Cyperus vaginatus R.Br.	
	Cyperus limiticola Larridon & Reynders	Not seen by Kükenthal
iffusi	Cyperus ajax C.B.Clarke	·
	Cyperus albopurpureus Cherm.	
	Cyperus albostriatus Schrad.	
	Cyperus balfourii C.B.Clarke	
	Cyperus baronii C.B.Clarke	
	Cyperus buchholzii Boeck.	
	Cyperus chalaranthus J.Presl & C.Presl	
	Cyperus chorisanthos C.B.Clarke	
	Cyperus derreilema Steud.	
	Cyperus diffusus Vahl	
	Cyperus felipponei Kük.	
	Cyperus fischerianus Schimp. ex A.Rich.	

Table 3. Infrageneric classification of C_3 *Cyperus* species according to Kükenthal (1935–1936). The current synonymy for species names largely follows Govaerts *et al.* (2011)

© 2011 The Linnean Society of London, Botanical Journal of the Linnean Society, 2011, 167, 19-46

Table 3. Continued

Cyperus subgenus Eucyperus pars Pycnostachys

Section	Species	Remarks
	-	
	Cyperus glaucophyllus Boeck. Cyperus helferi Boeck.	
	Cyperus heijeri boeck. Cyperus kurzii C.B.Clarke	
	Cyperus laxus Lam.	
	Cyperus leptocladus Kunth	
	Cyperus longifolius Poir.	
	Cyperus multispicatus Boeck.	
	Cyperus nemoralis Cherm. Cyperus pseudoleptocladus Kük.	
	<i>Cyperus pseudolepiocialus</i> Kuk. <i>Cyperus radians</i> Nees et Meyen ex Kunth	
	Cyperus reaschii Boeck.	
	Cyperus sylvestris Ridl.	
	Cyperus tabina Steud. ex Boeck.	
	Cyperus thorelii E.G.Camus	
	Cyperus trialatus (Boeck.) J.Kern	
	Cyperus xerophilus Cherm.	
	Cyperus duclouxii E.G.Camus	Not seen by Kükenthal (1936
Incurvi	Cyperus anisitsii Kük.	Not seen by Rukentinai (1930)
Incurvi	Cyperus ankaizinensis Cherm.	
	Cyperus betafensis Cherm.	
	Cyperus chamaecephalus Cherm.	
	Cyperus consors C.B.Clarke	
	Cyperus dichromenaeformis Kunth	
	Cyperus disjunctus C.B.Clarke	
	Cyperus fertilis Boeck.	
	Cyperus filipes Benth.	
	Cyperus grandisimplex C.B.Clarke	
	Cyperus hoppiifolius Uittien	
	Cyperus hylophilus Cherm.	
	Cyperus inops C.B.Clarke	
	Cyperus longistylus Kük.	
	Cyperus mapanioides C.B.Clarke	
	Cyperus miliifolius Poepp. & Kunth	
	Cyperus molliglumis Cherm.	
	Cyperus neoguineensis Kük.	
	Cyperus pandanophyllum C.B.Clarke	
	Cyperus pearcei C.B.Clarke	
	Cyperus pedunculosus F.Muell.	
	Cyperus plantaginifolius Cherm.	
	Cyperus rufostriatus C.B.Clarke ex Cherm.	
	Cyperus sciaphilus Cherm.	
	Cyperus simplex Kunth	
	Cyperus subpapuanus Kük.	
	Cyperus tetraphyllus R.Br.	
Fusci	Cyperus dichrostachyus Hochst. ex A.Rich.	
	Cyperus difformis L.	
	Cyperus fuscus L.	
	Cyperus haematocephalus Boeck. ex C.B.Clarke	
	Cyperus pulcher Thunb.	
	Cyperus pulcherrimus Willd. ex Kunth	
	Cyperus reduncus Hochst ex Boeck.	
	Cyperus silletensis Nees	
	Cyperus submicrolepis Kük.	
	Cyperus trailii C.B.Clarke	

Table 3. Continued

Cyperus subgenus Eucyperus pars Pycnostachys

Cyperus subgenus Eucyper		
Section	Species	Remarks
	Cyperus unicolor Boeck.	
	Cyperus soongoricus Kar. & Kir.	
Haspani	Cyperus commixtus Kük.	
	Cyperus concinnus R.Br.	
	Cyperus dentatus Torr.	
	Cyperus denudatus L.f.	
	Cyperus foliaceus C.B.Clarke	
	Cyperus haspan L.	
	Cyperus lecontei Torr.	
	Cyperus pendulus Cherm.	
	Cyperus pinetorum Britton	
	Cyperus platycaulis Baker	
	Cyperus prolifer Lam.	
	Cyperus sphaerospermus Schrad.	
	Cyperus subaequalis Baker	
	Cyperus tenuispica Steud.	
	Cyperus kipasensis Cherm.	Not seen by Kükenthal (1936)
Leucocephali	Cyperus leucocephalus Retz.	
	Cyperus michoacanensis Britton ex C.B.Clarke	
	Cyperus pulchellus R.Br.	
	Cyperus schomburgkianus Nees	
	Cyperus tenerrimus J.Presl & C.Presl.	
Anosporum	Cyperus cephalotes Vahl	
	Cyperus colymbetes Kotschy et Peyr.	
	Cyperus pectinatus Vahl	
Graciles	Cyperus aquatilis R.Br.	
	Cyperus breviculmis R.Br.	
	Cyperus debilis R.Br.	
	Cyperus flaccidus R.Br.	
	Cyperus gracilis R.Br.	
	Cyperus laevis R.Br.	
	Cyperus mirus C.B.Clarke	
	Cyperus trichodes Griseb.	Unlikely distribution
	Cyperus trinervis R.Br.	
	Isolepis levynsiana Muasya & D.A.Simpson	Isolepis
	Isolepis leucoloma (Nees) C.Archer	Isolepis
Dichostylis	Cyperus humilis Kunth	
	Cyperus meeboldii Kük.	C_4 Cyperus
	Cyperus michelianus (L.) Link	C_4 Cyperus
	Cyperus seslerioides Kunth	
	Cyperus tweediei C.B.Clarke	
	Cyperus uncinulatus Schrad. ex Nees	
	Cyperus hilairenus Steud.	Uncertain (Kükenthal, 1936)
Cyperus subgenus		
Juncellus		
Minuti	Juncellus minutus C.B.Clarke	Unplaced name
	Cyperus limosus Maxim.	
Cyperus subgenus		
Mariscus		
Decidui	Cyperus deciduus Boeck.	
Aristati	Courtoisina assimilis (Steud.) Maquet	
	Courtoisina cyperoides (Roxb.) Soják	

Taxon	Species	Distribution
Courtoisina	Courtoisina assimilis (Steud.) Maquet Courtoisina cyperoides (Roxb.) Soják	Ethiopia to S Africa, Madagascar Chad to S Africa, Madagascar, Himalaya to Indo-China
ex Fusci	Cyperus reduncus Hochst. ex Boeck.	W Trop. Africa to Uganda
Kyllingiella	Kyllingiella microcephala (Steud.) R.W.Haines & Lye Kyllingiella polyphylla (A.Rich.) Lye Kyllingiella simpsonii Muasya Kyllingiella ugandensis R.W.Haines & Lye	Tropical and S Africa, Indian Subcontinent Ethiopia to E Tropical. Africa Tanzania to Zambia E Tropical Africa
Oxycaryum	Oxycaryum cubense (Poepp. & Kunth) Palla	Tropical and Subtropical Africa, tropical and Subtropical America
ex <i>Elegantes</i>	Cyperus gardneri Nees	Cuba, SE Mexico to NE Argentina
Cyperus section Alternifolii	<u>Cyperus alternifolius</u> <u>L.</u>	Ethiopia to Mozambique, W Indian Ocean, Arabian Pen.
	Cyperus canus J.Presl & C.Presl Cyperus dioicus I.M.Johnst. Cyperus gymnocaulos Steud. Cyperus marginatus Thunb. Cyperus phaeolepis Cherm. Cyperus sexangularis Nees Cyperus textilis Thunb. Cyperus vaginatus R.Br.	Mexico to Colombia Mexico (Baja California Sur) Australia Kenya to S Africa Madagascar S Tropical and S Africa S Africa Australia
Cyperus section Anosporum	Cyperus cephalotes Vahl	Tropical Asia to NE Australia
_	Cyperus colymbetes Kotschy & Peyr Cyperus pectinatus Vahl	Sudan to Mozambique, Madagascar Tropical and S Africa, Madagascar
Cyperus section Diffusi	Cyperus afromontanus Lye	E Tropical Africa
	Cyperus ajax C.B.Clarke Cyperus albopurpureus Cherm. Cyperus albostriatus Schrad.	W Central Tropical Africa to Malawi E Madagascar S Tropical and S Africa
ex Incurvi	Cyperus autoscriatus Schrad. Cyperus ankaizinensis Cherm. Cyperus balfourii C.B.Clarke Cyperus baronii C.B.Clarke	N Central Madagascar W Indian Ocean Tropical Africa, W Indian Ocean
ex Incurvi	Cyperus betafensis Cherm. Cyperus breedlovei G.C.Tucker Cyperus buchholzii Boeck. Cyperus burkartii Guagl. Cyperus chalaranthus J. Presl & C. Presl	Central Madagascar Mexico (Chiapas) Tropical Africa. Argentina (Misiones) W South America to Paraguay
	Cyperus chorisanthos C.B. Clarke Cyperus cinereobrunneus Kük. Cyperus costaricensis Gómez-Laur. Cyperus davidsei G.C.Tucker	Mexico to Central America Papua New Guinea Costa Rica to Panama Brazil (Bahia)
	Cyperus derreilema Steud. <u>Cyperus diffusus Vahl</u> Cyperus duclouxii Camus	Ethiopia to Malawi Tropical and Subtropical Asia to Queensland S Central China S Venezuela to NE Argentina
	Cyperus felipponei Kük. Cyperus fischerianus Schimp. ex A.Rich. Cyperus glaucophyllus Boeck. Cyperus helferi Boeck.	S Venezuela to NE Argentina Ethiopia to Malawi Kenya to Malawi Indo-China
	Cyperus kurzii C.B.Clarke Cyperus laxus Lam. Cyperus leptocladus Kunth	Andaman Island Mexico to Tropical America S Africa

Table 4. Preliminary subdivisional delimitations in C_3 *Cyperus* based on the presented results. The current synonymy for species names largely follows Govaerts *et al.* (2011). The distribution data were queried from Govaerts *et al.* (2011). Type species underlined

Table 4. Continued

Taxon	Species	Distribution
	Cyperus longifolius Poir.	W Indian Ocean
	Cyperus matudae G.C.Tucker	SE Mexico (Chiapas)
	Cyperus meistostylus S.T. Blake	New Guinea
	Cyperus multispicatus Boeck.	Assam to W Jawa
	Cyperus muniziae G.C.Tucker	Brazil (São Paulo)
	Cyperus nemoralis Cherm.	Central Madagascar
	Cyperus nyererei Lye	S Tanzania
	Cyperus pseudoleptocladus Kük.	Tropical and S Africa
	Cyperus pseudopetiolatus G.C. Tucker	Brazil (Bahia)
	Cyperus renschii Boeck.	Tropical Africa, Comoros
	Cyperus rupicolus S.T.Blake	Queensland to NE New South Wales
	Cyperus sylvestris Ridl.	Tropical Africa
	Cyperus tabina Steud. ex Boeck.	Central and S Tropical America
	Cyperus thorelii Camus	N Vietnam
	Cyperus trialatus (Boeck.) J.Kern	S China to W Malesia
	Cyperus turrialbanus Gómez-Laur.	Costa Rica to Panama
	Cyperus xerophilus Cherm.	Central Madagascar
Cyperus section Fusci	Cyperus dichrostachyus Hochst. ex A.Rich.	Tropical and S Africa, Madagascar
	Cyperus difformis L.	Tropical and Subtropical Old World
	Cyperus fuscus L.	Macaronesia, Europe, Mediterranean to
		China
	Cyperus heamatocephalus Boeck. ex C.B.Clarke	S Africa
	Cyperus pulcher Thunb.	Cape Province to KwaZulu-Natal
	Cyperus pulcherrimus Willd. ex Kunth	Tropical Asia
	Cyperus silletensis Nees	Assam to Vietnam
	Cyperus soongoricus Kar. & Kir.	E Kazakhstan
	Cyperus submicrolepis Kük.	Tropical Africa
	Cyperus traillii C.B.Clarke	N South America to N Brazil
	Cyperus unicolor Boeck.	S Venezuela to Argentina
Cyperus section Graciles	Cyperus aquatilis R.Br.	New Guinea to N and E Australia
Gruciics	Cyperus breviculmis R.Br.	N Australia
	Cyperus cristulatus S.T.Blake	N Australia
	Cyperus enervis R.Br.	Queensland, NE New South Wales
	Cyperus flaccidus R.Br.	N and E Australia
	Cyperus gracilis R.Br.	New Caledonia, E Australia
	Cyperus laevis R.Br.	E Australia
	Cyperus mirus C.B.Clarke	E Australia
	Cyperus sculptus S.T.Blake	Queensland to NE New South Wales
	Cyperus stradbrokensis Domin	Queensland, NE New South Wales
	Cyperus structoroxensis Domin Cyperus trinervis R.Br.	N and E Australia
Cyperus section	Cyperus afroalpinus Lye	Zaïre to Kenya
Haspani	Cyperus commixtus Kük.	N Somalia
	Cyperus commixius Ruk. Cyperus concinnus R.Br.	N and E Australia
	Cyperus concinnus R.Br. Cyperus deciduus Boeck.	Zaïre to S Africa
		SE Canada to E USA
	Cyperus dentatus Torr. Cyperus denudatus L.f.	
	51	Tropical and S Africa to N Australia
	Cyperus foliaceus C.B.Clarke	Tropical Africa
	Cyperus graciliculmis Lye	Tanzania (Mt Mnyera)
	<u>Cyperus haspan L.</u>	Tropical and Subtropical
	Cyperus kasamensis Podlech	Zambia
	Cyperus kipasensis Cherm.	Angola to W Tanzania
	Cyperus lecontei Torr. ex Steud.	SE USA

38 I. LARRIDON *ET AL*.

Table 4. Continued

Taxon	Species	Distribution
	Cyperus microumbellatus Lye	Kenya (Shimba Hills)
	Cyperus pendulus Cherm.	Madagascar
	Cyperus pinetorum Britton	Cuba (I. de la Juventud)
	Cyperus platycaulis Baker	Chad to KwaZulu-Natal, Madagascar
	Cyperus prolifer Lam.	Somalia to S Africa, W Indian Ocean
ex Diffusi	Cyperus purpureoviridis Lye	Tanzania (Nguru Mts)
	Cyperus sensilis Baijnath	KwaZulu-Natal
	Cyperus sphaerospermus Schrad.	Mozambique to S Africa
	Cyperus subaequalis Baker	Madagascar
	Cyperus tenuispica Steud.	Tropical and Subtropical Old World to
	egper de vertatopica social	Central Asia
	Cyperus vandervekenii Reynders, Dhooghe & Goetgh.	Rwanda
Cyperus section Incurvi	Cyperus almensis D.A.Simpson	Brazil (Bahia: Pico das Almas)
	Cyperus anisitsii Kük.	Paraguay
	Cyperus chamaecephalus Cherm.	E Madagascar
	Cyperus chinsalensis Podlech	S Tanzania to Zambia
	Cyperus consors C.B.Clarke	SE and S Brazil
ex Alternifolii	Cyperus debilissimus Baker	Central Madagascar
ex miemijom	Cyperus dichromenaeformis Kunth	SE Brazil
		E Australia
	<u>Cyperus disjunctus</u> C.B.Clarke	
	Cyperus fertilis Boeck.	W Tropical Africa to Angola
	Cyperus filipes Benth.	New South Wales
	Cyperus grandisimplex C.B.Clarke	S Venezuela to Paraguay
	Cyperus hoppiifolius Uittien	N South America, N Peru
	Cyperus hylophilus Cherm.	E Madagascar
	Cyperus inops C.B.Clarke	S Brazil
	Cyperus longistylus Kük.	Solomon Is.
	Cyperus lundellii O'Neill	Mexico to Guatemala
	Cyperus mapanioides C.B.Clarke	Tropical Africa
	Cyperus miliifolius Poepp. & Kunth	Central and S Tropical America
	Cyperus molliglumis Cherm.	Central Madagascar
	Cyperus multinervatus Bosser	Madagascar
	Cyperus neoguinensis Kük.	New Guinea
	Cyperus pandanophyllum C.B.Clarke	E Madagascar
	Cyperus pearcei C.B.Clarke	Peru to Bolivia
	Cyperus pedunculosus F.Muell.	New Guinea to N. Australia
	Cyperus plantaginifolius Cherm.	Madagascar
	Cyperus rufostriatus C.B.Clarke ex Cherm.	E Madagascar
	Cyperus sciaphilus Cherm.	E Madagascar
	Cyperus simplex Kunth	S Mexico to Tropical America
		Brazil (Bahia to Minas Gerais)
	Cyperus subcastaneus D.A.Simpson	
	Cyperus semifertilis S.T.Blake	Queensland
	Cyperus subpapuanus Kük.	Papua New Guinea
	Cyperus tetraphyllus R.Br.	E Australia
Cyperus section Leucocephali	Cyperus androhibensis D.A.Simpson	NW Madagascar
	Cyperus brumadoi D.A.Simpson	Brazil (Bahia: Pico das Almas)
	Cyperus leucocephalus Retz.	Indian Subcontinent, Indo-China
	<i>Cyperus michoacanensis</i> Britton ex C.B.Clarke	SW Mexico (Sierra de Manantlán)
	Cyperus microglumis D.A.Simpson	Central Somalia
	Cyperus nayaritensis G.C.Tucker	SW Mexico
	Sperio nayarmenoro G.O.TUCKEI	S IT IIICAICO

Table 4. Continued

Taxon	Species	Distribution
	Cyperus pulchellus R.Br.	Tropical Old World
	Cyperus schomburgkianus Nees	N South America to Brazil
	Cyperus tenerrimus J.Presl & C.Presl	Mexico to Bolivia
Cyperus section Luzuloidei	Cyperus acuminatus Torr. & Hook.	USA to NE Mexico
	Cyperus altsonii Kük.	Guyana
	Cyperus cellulosoreticulatus Boeck.	Venezuela, Bolivia, S Brazil
	Cyperus columbiensis Palla	Colombia
	Cyperus distinctus Steud.	SE USA, Bahamas
	Cyperus drummondii Torr. & Hook.	SE USA to Tropical America
	Cyperus entrerianus Boeck.	Mexico to N Argentina, Caribbean
	Cyperus eragrostis Lam.	Easter Island, America
ex Diffusi	Cyperus friburgensis Boeck.	S Tropical America
	Cyperus hieronymi Boeck.	Paraguay to N Argentina
	Cyperus incomtus Kunth	Peru to N Argentina
	Cyperus intricatus Schrad. ex Schult.	Costa Rica to N Argentina
	<u>Cyperus luzulae</u> (L.) Retz.	Mexico to Tropical America
	Cyperus megalanthus (Kük.) G.C.Tucker	Mexico to Central America
	Cyperus ochraceus Vahl	Tropical and Subtropical America
	Cyperus pseudovegetus Steud.	Central and E USA
	Cyperus reflexus Vahl	Oklahoma to Mexico, Costa Rica to
		Argentina
	Cyperus sordidus J.Presl & C.Presl	W Mexico
	Cyperus surinamensis Rottb.	Tropical and Subtropical America
	Cyperus virens Michx.	Tropical and Subtropical America
	Cyperus xanthostachyus Steud.	S South America
Cyperus section Pseudanosporu	<u>Cyperus platystylis</u> <u>R.Br.</u> um	Tropical and Subtropical Asia, Australia
Cyperus section Radiantes	Cyperus radians Nees & Meyen ex Kunth	SE China to W Malesia
Affinity unknow	n (C ₃)	
ex 'Dichostylis'	Cyperus humilis Kunth	Mexico to Tropical America
x 'Dichostylis'	Cyperus seslerioides Kunth	S USA to N Argentina
x 'Dichostylis'	Cyperus uncinulatus Schrad. ex Nees	S Mexico to Tropical America
ex Elegantes	Cyperus constanzae Urb.	Caribbean
ex Minuti	Cyperus limosus Maxim.	Russian Far East, China to Vietnam
	Cyperus palianparaiensis Govind.	India
	Cyperus perennis (M.E.Jones) O'Neill	NW Mexico
Affinity unknow	n (photosynthesis type not confirmed)	
ex Alternifolii	Cyperus limiticola Larridon & Reynders	Central Madagascar
ex Incurvi	Cyperus marojejyensis Bosser	Madagascar
x Graciles	Cyperus trichodes Griseb.	Jamaica
ex 'Dichostylis'	Cyperus tweediei C.B.Clarke	Argentina (Tucumán)
related to	Cyperus arsenei O'Neill & Ben.Ayers	Mexico
C. uncinulatus?)		
related to	Cyperus hilairenus Steud.	SE Brazil
C. uncinulatus?)		
related to	Cyperus microbrunneus G.C.Tucker	S Mexico to Central America
C. uncinulatus?)		
Jnplaced name	Cyperus boeckeleri Phil.	Chili
Unplaced name	Cyperus elytropiptos Steud.	?

genera or segregate genera; e.g. Clarke, 1908; Kükenthal, 1935–1936; Haines & Lye, 1983). Androtrichum, which was indicated as the earliest branching taxon of the *Cyperus* clade (Muasya *et al.*, 2009a), was not included in this study because of the lack of material suitable for DNA extraction.

Clade 1

Clade 1 (Fig. 2) encompasses the three sections *Diffusi*, *Haspani* and *Incurvi*, of which *Diffusi* and *Incurvi* have pantropical distributions. *Cyperus* section *Diffusi* has important radiations of species in South America, Africa, Madagascar and Asia and *C*. section *Incurvi* has important radiations in South America, Madagascar and Oceania (Table 4). Species from both sections mostly occur in shaded forest habitats. *Cyperus* section *Haspani* has a mainly African distribution (Table 4), but also includes pantropical species (e.g. *C. haspan* L.). The three sections form clearly delineated subclades in clade 1.

Species of section Haspani (23 spp.; Table 4) can be annuals or more often perennials, usually with poorly developed leaf blades, and an inflorescence of digitate clusters of three to seven spikelets. Kükenthal (1936) included 17 species in this section (of which three were unseen by him) corresponding to 15 currently accepted species (Table 3). Kükenthal (1936) placed C. deciduus Boeck. in C. section Decidui Kük. of his subgenus Mariscus because of its deciduous spikelets. However, he noted the similarity in habit with C. denudatus L.f and C. haspan. Since Kükenthal's monograph of Cyperus (Kükenthal, 1936), several new species have been described in this section. In this study (Fig. 2), five species of section Haspani are included in the molecular study: C. denudatus, C. foliaceus C.B.Clarke, C. haspan, C. prolifer Lam. (Fig. 1D) and C. purpureoviridis Lye. This last species was described by Lye (1983) without clear indication of its affinities. However, in Haines & Lye (1983) C. purpureoviridis is listed among species belonging to section Diffusi. In the molecular phylogenetic hypothesis presented here (Fig. 2), the species clusters in section Haspani. The morphology of this species falls between sections Diffusi and Haspani, but a clear Haspani character is the well-developed creeping rhizome with relatively long internodes as in, for example, C. denudatus and C. prolifer.

Cyperus section *Incurvi* (32 species; Table 4) includes a number of remarkable species. The section is characterized by having obtuse or shortly mucronate incurved glumes, which articulate at their saccate (pouched) and persistent base (Kükenthal, 1936). Kükenthal (1936) described this section and originally included 31 species (of which three were unseen by him). These correspond to 27 currently recognized species (Table 3). Since then

new species have been described and several species have been placed in synonymy. Four Malagasy species (five accessions) of *C.* section *Incurvi sensu* Kükenthal (1936) were included in our molecular study (Fig. 2): *C. betafensis* Cherm. (Fig. 1F), *C. chamaecephalus* Cherm. (Gautier *et al.*, 2010), *C. molliglumis* Cherm. and *C. plantaginifolius* Cherm. var. *minor* Cherm.

Kükenthal (1936) included the strange Malagasy endemic C. debilissimus Baker (Fig. 1C) in his C. section Vaginati [=C. section Alternifolii] based on the reduction of the leaves to leaf sheaths. Chermezon (1937) thought this species deserved its own section (C. section Debilissimi Cherm., nom. nud.; Larridon et al., 2011). However, our results place it with the other Malagasy species of Incurvi included in this study. Cyperus betafensis clusters with section Diffusi. Cyperus betafensis (Fig. 1F) differs in its habit from the other Malagasy Incurvi and Chermezon (1937) placed it in C. section Diffusi, together with C. ankaizinensis Cherm. At the same time, he placed the other endemic Malagasy Incurvi species in C. section Pandanophylli Cherm., nom. nud. (Larridon et al., 2011), based on their capitate inflorescences contrasting with the anthelate inflorescences of C. ankaizinensis and C. betafensis. The rainforest-dwelling, Malagasy endemics of C. section Incurvi (C. chamaecephalus, Cyperus hylophilus Cherm., C. molliglumis, C. multinervatus Bosser, *C. pandanophyllum* Cherm., C. plantaginifolius Cherm., C. rufostriatus C.B.Clarke ex Cherm. and C. sciaphilus Cherm.) are generally characterized by their broad leaves, purple leaf sheaths and long bracts much overtopping the capitate inflorescence. Their habit is rather unusual for the genus (Simpson, 1992; Gautier et al., 2010). Bosser (1955) also included C. marojejyensis Bosser in this group, but here we consider this relationship not well enough established. In our opinion, C. section Incurvi sensu Kükenthal (1936) is heterogeneous; the molecular phylogenetic hypothesis confirms it is polyphyletic. The absence from this study of the South American and Australasian species of the section, including the type (C. disjunctus C.B.Clarke; Larridon et al., 2011), makes it impossible to interpret the delimitations of the section correctly at this stage and to evaluate whether the Malagasy forest species should be considered as a separate group, as Chermezon (1937) indicated.

Cyperus section *Diffusi* (43 species; Table 4) is generally characterized by a perennial habit, welldeveloped leaves often with purplish leaf sheaths, large unequal bracts, and frequently a large, rather diffuse inflorescence of digitate clusters of one to six spikelets. Kükenthal (1936) recognized 26 species in section *Diffusi* (of which two were unseen by him) agreeing with 30 currently accepted species (Table 3). Few of the species included by Kükenthal (1936) were South American. However, later studies revealed numerous overlooked species in the Neotropics (Gómez-Laurito, 1978; Gómez & Gómez-Laurito, 1982; Tucker, 1986, 2007; Guaglianone, 1990). Cyperus diffusus Vahl, interpreted by Kükenthal (1936) as a pantropical species, is now divided into several taxa: C. laxus Lam. (South America), C. buchholzii Boeck. (Africa) and C. diffusus s.s. (Asia). In this study (Fig. 2), seven species (10 accessions) of section Diffusi sensu Kükenthal (1936) from Africa (including Malagascar) are included (C. ajax C.B.Clarke, C. albostriatus Cherm., C. balfourii C.B.Clarke, C. buchholzii, C. leptocladus Kunth and C. renschii Boeck.) and three samples of the South American species C. friburgensis Boeck. However, the last species consistently appears in the clade corresponding to C. section Luzuloidei sensu Denton (1978), making section Diffusi sensu Kükenthal (1936) polyphyletic. Consequently, C. friburgensis needs to be excluded from section Diffusi. As mentioned above, the Malagasy C. betafensis (Fig. 1F) does not belong to section Incurvi (cf. Kükenthal, 1936) but to section Diffusi (cf. Chermezon, 1937). The two Malagasy species included (C. balfouri and C. betafensis) appear more closely related to each other than to species of section *Diffusi* occurring in mainland Africa.

$Clade \ 2$

An entirely New World clade including C. section Luzuloidei sensu Denton (1978) ('Luzulae group') is sister to clade 3. This clade is a good example of a radiation of species in the New World. Of the 21 species in section Luzuloidei (Table 4), Denton (1978) included ten species in her 'Luzulae group', i.e. C. acuminatus Torr. & Hook., C. distinctus Steud., C. eragrostis Lam., C. intricatus Schrad. ex Schult., C. luzulae (L.) Retz., C. ochraceus Vahl, C. pseudovegetus Steud., C. reflexus Vahl, C. surinamensis Rottb. and C. virens Michx. She also included three more currently accepted species (Govaerts et al., 2011): C. entrerianus Boeck. in synonymy with C. luzulae, C. drummondii Torr. & Hook., as a variety of C. virens, and C. megalanthus (Kük.) G.C.Tucker, as a variety of C. pseudovegetus. Furthermore, Denton (1978) excluded six species previously included in section *Luzuloidei* bv Kükenthal (1936; Table 3), i.e. C. altsonii Kük., C. cellulosoreticulatus Boeck., C. columbiensis Palla, C. hieronymi Boeck., C. incomtus Kunth and C. xanthostachyus Steud., and omitted one more species (C. sordidus J.Presl & C.Presl). In our molecular phylogenetic analysis, ten samples of the Luzulae group were included, encompassing seven of its 13 currently accepted species. For two of the species, more than one accession was included: (1) for *C. era*grostis, a specimen was used collected in the USA where it occurs as a native plant, another specimen was collected in France where the species is naturalized, and a specimen from the Ghent University Botanical Garden was also used; (2) for *C. luzulae*, two specimens were used, one of which was collected in the wild, and the other cultivated in the Ghent University Botanical Garden.

We can conclude here that Denton's Luzulae group (Denton, 1978) forms a natural group of species. However, the relationships between the species in this group are not well resolved in the phylogenetic tree (Fig. 2). Because no species excluded by Denton (1978) were included in this study, we cannot comment on the monophyly of section Luzuloidei sensu Kükenthal (1936). The species C. friburgensis, previously included in section Diffusi (e.g. Kükenthal, 1936; Tucker, 2007) clusters in section Luzuloidei. We included several different specimens of C. friburgensis in the phylogenetic study to ensure its inclusion in section Luzuloidei was not erroneous.

Clade 3

Clade 3 is highly diverse, as it not only includes several previously recognized sections, i.e. Anosporum, Pseudanosporum and Fusci, but also includes the segregate genera Courtoisina and Oxycaryum. This clade can be divided into two major subclades, clade 3a and clade 3b. Anosporum, Courtoisina and Oxycaryum have all been or are still recognized at generic level because of their highly unusual morphological characteristics. Anosporum and Oxycaryum are characterized by their (floating) aquatic lifeform and corky nutlets. Oxycaryum is also characterized by its spirally arranged glumes. Courtoisina is characterized by its yellowish green colour, flattened spikelets which disarticulate as a unit when mature, leaving the spikelet bract and prophyll behind, often conspicuously winged glumes, and linear-lanceolate to linear-oblong nutlets. A further paper will focus in more detail on the C_3 Cyperus segregate genera and the necessary nomenclatural/ taxonomic changes to include these taxa into a monophyletic genus Cyperus (Larridon et al., in press).

In this study (Fig. 2), an African and an American specimen of *Oxycaryum cubense* (Poepp. & Kunth) Palla are included in the phylogenetic analysis. *Cyperus gardneri* Nees, a Neotropical species, which Kükenthal (1936) placed in the mainly C₄ *Cyperus* section *Elegantes* (as 'C. section *Glutinosi*'), clusters together with *Oxycaryum*. Analysis of the photosynthesis type used by the species in *C*. section *Elegantes* shows that, of the six species included by Kükenthal (1936; Table 3), two use C₃ photosynthesis (Table 2 in

bold, see below). The limited material available of the other proven C_3 species of *C*. section *Elegantes*, *C*. *constanzae* Urb., did not yield DNA fit for analysis.

For the genus *Courtoisina*, we included *Courtoisina* assimilis (Steud.) Maquet and an African and a Malagasy sample of *Courtoisina cyperoides* (Roxb.) Soják. Kükenthal (1936) placed the two species of *Courtoi*sina in *Cyperus* subgenus *Mariscus* based on its deciduous spikelets, but *Mariscus* has been shown to be polyphyletic (e.g. Lye, 1992). A *Cyperus* species previously classified in section *Fusci* (*Cyperus reduncus* Hochst. ex Boeck.; Kükenthal, 1936; Table 3) clusters with the two known *Courtoisina* spp. The other taxa clustering in this subclade belong to *Cyperus* section *Anosporum* (*Cyperus pectinatus* Vahl) and section *Pseudanosporum* (*Cyperus platystylis* R.Br).

Clade 3b corresponds to C. section Fusci (11 spp.; Table 4). This relatively small section is characterized by its generally annual habit (all species except C. dichrostachyus and C. pulcher), often reduced number of anthers (one or two, rather than three), and frequently small glumes and nutlets. Kükenthal (1936) included 11 species in his key of the section and mentioned a twelfth species (C. soongoricus Kar. & Kir.) as unknown to him (Table 3). In this study (Fig. 2), four species are included in the phylogenetic analysis (C. dichrostachyus Hochst. ex A.Rich., C. difformis L., C. fuscus L. (Fig. 1A) and C. submicrolepis Kük.). We exclude C. reduncus from section Fusci as it clusters with Courtoisina (see above).

Clade 4

The sampled species of C. section Alternifolii form a clade, which is sister to the clade including C. section Leucocephali and the genus Kyllingiella, and C_4 Cyperus (Fig. 2). This section is typified by the umbrella sedge (C. alternifolius L.), a well-known ornamental (Fig. 1E). Section Alternifolii has a southern hemisphere distribution, occurring in Australia, South America (including dioecious species), Madagascar and southern Africa, where the diversity of the section is noticeably higher (Table 4). The section comprises nine species (Table 4) and is characterized by its leafless culms, and many, almost equally sized involucral bracts. Cyperus alternifolius ssp. flabelliformis Kük. is sometimes recognized as the separate species, C. involucratus Rottb., but here we treat C. alternifolius in the broad sense.

Kükenthal (1936) included *C. debilissimus* in his key to this section (as 'C. section *Vaginati*'), and mentioned *C. paucispiculatus* Cherm. [= *C. limiticola* Larridon & Reynders] as unknown to him (Table 3). We included *C. alternifolius*, *C. marginatus* Thunb., *C. phaeolepis* Cherm., *C. textilis* Thunb. and *C. debilissimus* in the phylogenetic analysis. As mentioned above, *C. debilissimus* clusters with the Malagasy species of section *Incurvi*. The affinities of *C. limiticola* are as yet unknown (Larridon, Reynders & Goetghebeur, 2008). In our results, *C. textilis* clusters in between the three included *C. alternifolius* accessions (Fig. 2). As noted in Gordon-Gray (1995), two Southern African species are closely related to *C. alternifolius*, i.e. *C. sexangularis* Nees and *C. textilis* Thunb., and there is a need to carefully establish the differences, in particular between typical *C. alternifolius* and *C. textilis*.

Clade 5

Clade 5 is formed by Cyperus section Leucocephali and the segregate genus Kyllingiella (Fig. 2). The close relationship of section Leucocephali and Kyllingiella is reflected in a marked resemblance in habit (small grass-like plants with a pale-coloured capitate inflorescence; see Fig. 1B) and in their preference for wet open grasslands. However, in Kylling*iella* spp. the glumes are spirally arranged. In 1990, Simpson revised section Leucocephali, including seven species. Since then, two new species have been described. In this study, a specimen of C. schomburgkianus Nees from Bolivia is included. This specimen (Beck 25586) is a first record for the species from Bolivia. Simpson (1990) remarked on the disjunct distribution of this section across the tropics that might have implications for its monophyly. However, the recent discoveries of new species, and its intricate relationship with Kyllingiella, rather indicate a lack of knowledge of this group. A formal taxonomic revision with the inclusion of Kyllingiella in Cyperus will be published elsewhere (Larridon et al., in press).

Relationships with C₄ Cyperus

A well-supported monophyletic clade encompassing the C_4 Cyperus s.l. species (C_4 Cyperus; characterized by C₄ photosynthesis linked with chlorocyperoid vegetative anatomy) forms the sixth clade of Cyperus. The C₄ species C. cuspidatus Kunth (Bruhl & Wilson, 2007: chlorocyperoid anatomy, carbon isotope reading typical for C_4) and its Malagasy sister species C. waterloti Cherm. (synonymized with C. cuspidatus in Govaerts et al., 2011), consistently form a clade outside the main C₄ Cyperus clade (Fig. 2; Muasya et al., 2009a). Kükenthal (1936) placed C. cuspidatus in C. section Amabilis of his 'subgenus Cyperus pars Pycnostachys' (see above). The relationships in the main C₄ Cyperus clade are not well resolved in this study. A molecular phylogenetic study focusing on C₄ Cyperus is underway (W. Huygh, M. Reynders, I. Larridon, K. Bauters, A.M. Muasya, D.A. Simpson, P. Goetghebeur, unpubl. data).

CARBON ISOTOPE ANALYSIS

Carbon isotope analysis $(\delta^{13}C)$ was performed on 65 species to confirm their photosynthetic pathway (Table 2). In this study, emphasis was put on C. section *Elegantes*. This section was considered to belong in the group with C_4 photosynthesis, but has inflorescences with digitate spikelet clusters (Kükenthal's (1935–1936) pars Pycnostachys; see above). Cyperus section Elegantes (Clarke, 1883) is the correct name for Kükenthal's (1936) section Glutinosi (Larridon et al., 2011). This section includes C. elegans L. (the type species), C. constanzae, C. gardneri, C. lacunosus Griseb., C. oxylepis Nees and C. trachysanthos Hook. & Arn. (Table 3). The carbon isotope analysis conducted during this study confirmed previous studies (e.g. Bruhl & Wilson, 2007), indicating that C. section *Elegantes* is heterogeneous. Cyperus constanzae and C. gardneri have carbon isotope readings typical for C₃, whereas C. elegans, C. lacunosus, C. oxylepis and C. trachysanthos have carbon isotope readings typical for C₄.

Such heterogeneity can also be shown in other previously recognized sections using the data assembled by Bruhl & Wilson (2007), e.g. C. section Dichostylis sensu Kükenthal (1936). As well as two confirmed C4 species, i.e. C. meeboldii Kük. and C. michelianus (L.) Delile, Kükenthal (1936) also included several confirmed C_3 species, namely C. uncinulatus Schrad. ex Nees, C. seslerioides Kunth and C. humilis Kunth. Cyperus and inus Palla ex Kük., another species included by Kükenthal (1936), is now considered to be a heterotypic synonym of C. seslerioides (Govaerts et al., 2011). The photosynthesis type of the last species included in C. section Dichostylis sensu Kükenthal (1936: 310), C. tweediei C.B. Clarke, has not yet been confirmed. However, in the protologue of this species, Clarke (1908: 4) clearly stated its affinity to C. uncinulatus and C. humilis, so we can tentatively identify it as a C_3 *Cyperus* species. Since the publication of Kükenthal's monograph of Cyperus (Kükenthal, 1935–1936), two more species have been described which are placed in the vicinity of C. uncinulatus, i.e. C. arsenei O'Neill & Ben.Ayers and C. microbrunneus G.C. Tucker. The phylogenetic position of this group of species in C₃ Cyperus could not yet be verified.

Cyperus section Graciles is another group that includes confirmed C_3 Cyperus species. This section was not included in the molecular study because the specimens present in the GENT herbarium did not yield any useable DNA. Kükenthal (1936) included eight species in C. section Graciles, corresponding with 11 accepted species names (Table 3). Blake (1939) published a revision of C. section Graciles representing a more natural circumscription of this section. After correspondence, Kükenthal (1943) accepted Blake's opinions. Three species included by Kükenthal (1936) in section Graciles were no longer included by Blake (1939). Two of these, C. tenellus L.f and C. leucoloma Nees, have since been moved to the genus Isolepis, as I. levynsiana Muasya & D.A.Simpson and I. leucoloma (Nees) C.Archer, respectively (Archer, 1998; Muasya et al., 2002; Muasya, Simpson & Smets, 2006, 2007). A third species included in section Graciles by Kükenthal (1936), C. trichodes Griseb., was excluded most probably based on its highly unlikely distribution in Jamaica (Table 4); all other species of section Graciles are limited to Australia (Oceania). Furthermore, Blake (1939) had a quite different view of the synonymy and rank of some of the taxa included in section Graciles (see Table 4). For seven of the 11 species now included in section Graciles (Table 4), the photosynthesis type is confirmed as C_3 (Table 2; Bruhl & Wilson, 2007).

Cyperus radians Nees & Meyen ex Kunth was included by Kükenthal (1936) in section *Diffusi*, although Suringar (1898) placed it in its own section, *Radiantes*, an opinion which was shared by Kern (1974). Although generally considered as a eucyperoid species, no studies (carbon isotope analysis/molecular study) have as yet been performed to test this view.

CONCLUSIONS

From the maximum likelihood and Bayesian analyses of nrDNA (ETS1f) and plastid DNA (rpl32-trnL and trnH-psbA) sequence data presented here, we conclude that the *Cyperus* clade consists of a paraphyletic group with eucyperoid anatomy using C_3 photosynthesis (C_3 Cyperus; clades 1–5) and a wellsupported monophyletic clade with chlorocyperoid anatomy using C_4 photosynthesis (C_4 Cyperus). In C_3 Cyperus, five major clades are recognizable. Clade 1 can be divided in three subclades largely corresponding to Cyperus sections Haspani, Incurvi and Diffusi. The other major clades respectively correspond to: clade 2, an entirely New World C. section Luzuloidei sensu Denton (1978); clade 3, a highly diverse clade including two subclades: clade 3a, sections Pseudanosporum and Anosporum and the segregate genera Courtoisina and Oxycaryum, and clade 3b, C. section Fusci; clade 4, C. section Alternifolii; and clade 5, C. section Leucocephali and the segregate genus Kylling*iella*. This study establishes a phylogenetic framework for future studies in the diverse Cyperus clade.

ACKNOWLEDGEMENTS

We thank Pieter Asselman for his helpful suggestions with the lab work, Andy Vierstraete for performing the

sequence reactions (Ghent University, Belgium) and Lazlo Csiba (Roval Botanic Gardens, Kew) for the extraction of DNA from the specimens in the Kew Herbarium (Kew DNA Bank). We thank the Department of Environment and Natural Resources (DENR Region 8), for providing a collecting permit for Cyperaceae in the Philippines, and the Ministry of Scientific Research and Innovation for providing a collecting permit for Cameroon (No. 082/MINRESI/B00/C00/ C10/C12), and the general secretariat of the AETFAT congress 2007 and the staff of the National Herbarium in Yaoundé and Limbe Botanic Gardens for their field assistance. We are grateful for the invitation of the East African Herbarium (National Museums of Kenya, Nairobi) and the Kenya Wildlife Service for the permission to access and to collect sedges in the protected areas of Kenya and for their help with organizing the expedition. The ANGAP Madagascar National Parks authority, the general secretariat of the AETFAT congress 2010 and the staff of the MBG office in Antananarivo are acknowledged for their support in securing collecting permits (No. 082/10/MEF/SG/DGF/DCB. SAP/SLRSE – I. Larridon) for Cyperaceae in Madagascar and their help with organizing the expedition.

FUNDING

This work was supported by research grants of the Special Research Fund (BO5622, BO7418, BOF, Ghent University, Belgium) and the Department of Biology, Ghent University, Belgium. The field expeditions were financed through travel grants of the Research Foundation–Flanders (FWO) and the Leopold III-Fund, and with support of the Department of Biology, Ghent University, Belgium.

REFERENCES

- Álvarez I, Wendel JF. 2003. Ribosomal ITS sequences and plant phylogenetic inference. *Molecular Phylogenetics and Evolution* 29: 417–434.
- Archer C. 1998. A new combination in *Isolepis*. *Bothalia* 28: 41–42.
- Besnard G, Muasya AM, Russier F, Roalson EH, Salamin N, Christin P-A. 2009. Phylogenomics of C₄ photosynthesis in sedges (Cyperaceae): multiple appearances and genetic convergence. *Molecular Biology and Evolution* 26: 1909–1919.
- Blake ST. 1939. (publ. 1940). Notes on Australian Cyperaceae 3. Proceedings of the Royal Society of Queensland 51: 32–50.
- Bosser J. 1955. Cyperacées nouvelles de Madagascar. Naturaliste Malgache 7: 119–121.
- Britton NL. 1907. The sedges of Jamaica (Cyperaceae). Bulletin of the Department of Agriculture Jamaica 5 (Suppl. 1): 1–19.

- Bruhl JJ. 1991. Comparative development of some taxonomically critical floral/inflorescence features in Cyperaceae. *Australian Journal of Botany* 39: 119–127.
- Bruhl JJ. 1995. Sedge genera of the world: relationships and a new classification of the Cyperaceae. Australian Systematic Botany 8: 125–305.
- **Bruhl JJ, Perry S. 1995.** Photosynthetic pathway-related ultrastructure of C₃, C₄ and C₃-like C₃-C₄ intermediate sedges (Cyperaceae), with special reference to *Eleocharis*. *Australian Journal of Plant Physiology* **22**: 1–10.
- **Bruhl JJ, Stone NE, Hattersley PW. 1987.** C₄ acid decarboxylation enzymes and anatomy in sedges (Cyperaceae): first record of NAD-malic enzyme species. *Australian Journal of Plant Physiology* **14:** 719–728.
- Bruhl JJ, Wilson KA. 2007. Towards a comprehensive survey of C₃ and C₄ photosynthetic pathways in Cyperaceae. In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG, eds. *Monocots III/grasses IV. Aliso 23*. Claremont, CA: Rancho Santa Ana Botanic Garden, 99–148.
- Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. *Molecular Biology and Evolution* 17: 540–552.
- Chermezon H. 1937. Cypéracées. In: Humbert H, ed. Flore de Madagascar. 29e Fam. Tananarive: Imprimerie Officielle, 1–335.
- Christin PA, Besnard G, Samaritani E, Duvall MR, Hodkinson TR, Savolainen V, Salamin N. 2008a. Oligocene CO₂ decline promoted C₄ photosynthesis in grasses. *Current Biology* 18: 37–43.
- Christin PA, Salamin N, Muasya AM, Roalson EH, Russier F, Besnard G. 2008b. Evolutionary switch and genetic convergence on *rbcL* following the evolution of C₄ photosynthesis. *Molecular Biology and Evolution* 25: 2361– 2368.
- Clarke CB. 1883. Cyperaceae. In: Baker JG, ed. Contributions to the Flora of Madagascar 3. Journal of the Linnean Society, Botany 20: 279–299.
- Clarke CB. 1884. On the Indian species of *Cyperus*; with remarks on some others that specially well illustrate the subdivisions of the genus. *Journal of the Linnean Society, Botany* **21**: 1–202.
- Clarke CB. 1893. Cyperaceae. In: Hooker JD, ed. Flora of British India 6, 19. London: L. Reeve & Co., 585–672.
- Clarke CB. 1908. New genera and species of Cyperaceae. Kew Bulletin of Miscellaneous Information, Additional Series 8: 1–196.
- Denton MF. 1978. A taxonomic treatment of the Luzulae group of Cyperus. Contributions from the University of Michigan Herbarium 11: 197–271.
- **Dragon JA, Barrington DS. 2009.** Systematics of the *Carex* aquatilis and *C. lenticularis* lineages: geographically and ecologically divergent sister clades of *Carex* section *Phaco*cystis (Cyperaceae). American Journal of Botany **96:** 1896– 1906.
- Gautier L, Nusbaumer L, Larridon I, Callmander MW. 2010. Distribution of *Cyperus chamaecephalus* Cherm., a forest undergrowth species with inconspicuous inflorescences. *Candollea* 65: 364–367.

- **Goetghebeur P. 1986.** Genera Cyperacearum. Een bijdrage tot de kennis van de morfologie, systematiek en fylogenese van de Cyperaceae-genera. PhD Thesis, Ghent University, Belgium.
- Goetghebeur P. 1989. Studies in Cyperaceae 9. Problems in the lectotypification and infrageneric taxonomy of *Cyperus*. *Bulletin de la Société Royale de Botanique de Belgique* 122: 103–114.
- Goetghebeur P. 1998. Cyperaceae. In: Kubitzki K, ed. The families and genera of vascular plants 4. Flowering plants – monocotyledons. Berlin: Springer-Verlag, 141–190.
- Gómez LD, Gómez-Laurito J. 1982. Plantae mesoamericanae novae 7. *Phytologia* 52: 227–229.
- Gómez-Laurito J. 1978. De Cyperacearum costaricensium notitate. *Cyperus. Brenesia* 14–15: 357–359.
- Gordon-Gray KD. 1995. Cyperaceae in Natal. In: Leistner OA, Momberg BA, eds. *Strelitzia* 2. Pretoria: National Botanical Institute, 1–218.
- Govaerts R, Simpson DA, Goetghebeur P, Wilson KL, Egorova T, Bruhl J. 2007. World checklist of cyperaceae. Sedges. Kew: Kew Publishing, Royal Botanic Gardens, xiii + 765 p.
- Govaerts R, Simpson DA, Goetghebeur P, Wilson KL, Egorova T, Bruhl J. 2011. World checklist of cyperaceae. Kew: The Board of Trustees of the Royal Botanic Gardens, Published on the Internet; available at http://www.kew.org/ wcsp/monocots/ accessed 25.03.2011.
- **Guaglianone ER. 1990.** Une especie nueva de *Cyperus* (Cyperaceae) de Misiones, Argentina. *Darwiniana* **30:** 233-236.
- Haines RW, Lye KA. 1983. The sedges and rushes of East Africa. Nairobi: East African National History Society.
- Huygh W, Larridon I, Reynders M, Muasya AM, Govaerts R, Simpson DA, Goetghebeur P. 2010. Nomenclature and typification of names of genera and subdivisions of genera in *Cypereae* (*Cyperaceae*): 1. Names of genera in the *Cyperus* clade. *Taxon* 59: 1883–1890.
- Kern JH. 1974. Cyperaceae. In: van Steenis CGGJ, ed. Flora malesiana, ser. 1. Den Haag: Junk, 107–187.
- Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH. 2005. Use of DNA barcodes to identify flowering plants. Proceedings of the National Academy of Sciences of the United States of America 102: 8369–8374.
- Kükenthal G. 1935–1936. Cyperaceae–Scirpoideae– Cypereae. In: Engler A, ed. Das pflanzenreich 4 (20) [Heft 101]. Berlin: Engelmann, 1–671.
- Kükenthal G. 1943. Neue oder nicht genügend bekannte Cyperaceen. Mitteilungen des Thüringischen Botanischen Vereins n.f., 50: 1–13.
- Larridon I, Huygh W, Reynders M, Muasya AM, Govaerts R, Simpson DA, Goetghebeur P. Accepted. Nomenclature and typification of names of genera and subdivisions of genera in *Cypereae* (*Cyperaceae*): 2. Names of subdivisions in *Cyperus. Taxon* **60**: 868–884.
- Larridon I, Reynders M, Goetghebeur P. 2008. Cyperus limiticola, a new name for a Madagascan Cyperus (Cyperaceae). Novon 18: 187–188.

Larridon I, Reynders M, Huygh W, Bauters K, Vrijdaghs

A, Leroux O, Muasya AM, Goetghebeur P. In press. Taxonomic changes in C_3 *Cyperus* (Cyperaceae) supported by molecular phylogenetic data, morphology, embryology, ontogeny and anatomy. *Plant Ecology and Evolution*.

- Li M-R, Wedin DA, Tieszen LL. 1999. C₃ and C₄ photosynthesis in *Cyperus* (Cyperaceae) in temperate eastern North America. *Canadian Journal of Botany* 77: 18–209.
- Linnaeus C. 1753. Species plantarum. Stockholm.
- Lye KA. 1983. Studies in African Cyperaceae 25. New taxa and combinations in *Cyperus L. Nordic Journal of Botany* 3: 213–232.
- Lye KA. 1992. The history of the genus Mariscus. Lidia 3: 37–72.
- Muasya AM, Bruhl JJ, Simpson DA, Culham A, Chase MW. 2000. Suprageneric phylogeny of Cyperaceae: a combined analysis. In: Wilson KL, Morrison DA, eds. *Monocots:* systematics and evolution. Melbourne: CSIRO Publishing, 593–601.
- Muasya AM, de Lange PJ. 2010. Ficinia spiralis (Cyperaceae) a new genus and combination for Desmoschoenus spiralis. New Zealand Journal of Botany 48: 31-39.
- Muasya AM, Reynders M, Goetghebeur P, Simpson DA, Vrijdaghs A. 2011. Dracoscirpoides (Cyperaceae) – a new genus from Southern Africa, its taxonomy and floral ontogeny. South African Journal of Botany. doi:10.1016/ j.sajb.2011.05.011.
- Muasya AM, Simpson DA, Chase MW. 2002. Phylogenetic relationships in *Cyperus s.l.* (Cyperaceae) inferred from plastid DNA sequence data. *Botanical Journal of the Linnean Society* 138: 145–153.
- Muasya AM, Simpson DA, Chase MW, Culham A. 1998. An assessment of suprageneric phylogeny in Cyperaceae using *rbcL* DNA sequences. *Plant Systematics and Evolution* **211**: 257–271.
- Muasya AM, Simpson DA, Smets E. 2006. Isolepis tenella, a new combination in Cyperaceae. Novon 16: 89–90.
- Muasya AM, Simpson DA, Smets E. 2007. Isolepis levynsiana, a new name for Cyperus tenellus (Cyperaceae). Novon 17: 59.
- Muasya AM, Simpson DA, Verboom GA, Goetghebeur P, Naczi RFC, Chase MW, Smets E. 2009a. Phylogeny of Cyperaceae based on DNA sequence data: current progress and future prospects. *Botanical Review* **75**: 2–21.
- Muasya AM, Vrijdaghs A, Simpson DA, Chase MW, Goetghebeur P, Smets E. 2009b. What is a genus in Cypereae: phylogeny, character homology assessment and generic circumscription in Cypereae. *Botanical Review* 75: 52–66.
- Müller J, Müller K, Quandt D. 2008. PhyDE phylogenetic data editor, version 0.995. Available at http://phyde.de/
- Nylander JAA. 2004. *Mrmodeltest v2*. Program distributed by the author. Uppsala: Evolutionary Biology Centre, Uppsala University.
- **Pyankov VI, Ziegler H, Akhani H, Deigele C, Lüttge U. 2010.** European plants with C₄ photosynthesis: geographical and taxonomic distribution and relations to climate parameters. *Botanical Journal of the Linnean Society* **163:** 283– 304.

- Rambaut A, Drummond AJ. 2007. Tracer v1.4. Available at http://beast.bio.ed.ac.uk/Tracer
- Raynal J. 1973. Notes cypérologiques 19. Contribution à la classification de la sous-famille des Cyperoideae. Adansonia sér. 2, 13: 145–171.
- Reynders M, Huygh W, Larridon I, Muasya AM, Govaerts R, Simpson DA, Goetghebeur P. Accepted. Nomenclature and typification of names of genera and subdivisions of genera in Cypereae (Cyperaceae): 3. Names of subdivisions in segregate genera of *Cyperus*. Taxon 60: 885–895.
- Rikli M. 1895. Beiträge zur vergleichenden Anatomie der Cyperaceen mit besonderer Berücksichtigung der inneren Parenchymscheide. Jahrbücher für Wissenschaftliche Botanik 27: 485–580.
- Ronquist F, Huelsenbeck JP. 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics* 19: 1572–1574.
- Sage RF. 2004. The evolution of C₄ photosynthesis. New Phytologist 161: 341–370.
- Shaw J, Lickey EB, Beck JT, Farmer SB, Liu W, Miller J, Siripun KC, Winder CT, Schilling EE, Small RL. 2005. The tortoise and the hare II: Relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. *American Journal of Botany* 92: 142–166.
- Shaw J, Lickey EB, Schilling EE, Small RL. 2007. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. American Journal of Botany 94: 275–288.
- Simpson DA. 1990. A revision of Cyperus section Leucocephali. Kew Bulletin 45: 485–501.
- Simpson DA. 1992. A new species of Cyperus and a reassessment of Cyperus rufostriatus (Cyperaceae) from Madagascar. Notes on Madagascar Cyperaceae 1. Kew Bulletin 47: 745–751.
- Simpson DA, Furness CA, Hodkinson TR, Muasya AM, Chase MW. 2003. Phylogenetic relationships in Cyperaceae subfamily Mapanioideae inferred from pollen and plastid DNA sequence data. *American Journal of Botany* 90: 1071– 1086.
- Simpson DA, Muasya AM, Alves M, Bruhl JJ, Dhooge S, Chase MW, Furness CA Ghamkhar K, Goetghebeur P, Hodkinson TR, Marchant AD, Nieuborg R, Reznicek AA, Roalson EH, Smets E, Starr JR, Thomas WW, Wilson KL, Zhang X. 2007. Phylogeny of *Cyperaceae* based on DNA sequence data – a new *rbcL* analysis. In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG, eds. *Monocots III/grasses IV. Aliso 23*. Claremont, CA: Rancho Santa Ana Botanic Garden, 72–83.
- **Soros CL, Bruhl JJ. 2000.** Multiple evolutionary origins of C_4 photosynthesis in the Cyperaceae. In: Wilson KL,

Morrison DA, eds. *Monocots: systematics and evolution*. Melbourne: CSIRO, 629–636.

- Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihoodbased phylogenetic analyses with thousands of taxa and mixed models. *Bioinformatics* 22: 2688–2690.
- Stamatakis A, Hoover P, Rougemont J. 2008. A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology 57: 758–771.
- Starr JR, Harris SA, Simpson DA. 2003. Potential of the 5' and 3' ends of the intergenic spacer (IGS) of rDNA in the cyperaceae: new sequences for lower-level phylogenies in sedges with an example from Uncinia Pers. International Journal of Plant Sciences 164: 213–227.
- Stock WD, Chuba DK, Verboom GA. 2004. Distribution of South African C_3 and C_4 species of Cyperaceae in relation to climate and phylogeny. *Austral Ecology* **29**: 313–319.
- Suringar JV. 1898. Het geslacht Cyperus. Leeuwarden: Hugo Suringar.
- **Tucker GC. 1986.** New mesoamerican species of Cyperus (Cyperaceae). *Rhodora* 88: 503–513.
- Tucker GC. 2007. Systematics of Cyperus L. section Diffusi Kunth (Cyperaceae) in the neotropics. A Botânica no Brasil: Pesquisa, Ensino e Políticas Públicas Ambientais [58 Congresso Nacional de Botânica] 311–314.
- Van de Putte K, Nuytinck J, Stubbe D, Le HT, Verbeken A. 2010. Lactarius volemus sensu lato (Russulales) from northern Thailand: morphological and phylogenetic species concepts explored. Fungal Diversity 45: 99–130.
- Van der Veken P. 1965. Contribution à l'embryographie systématique 1 des Cyperaceae-Cyperoideae. Bulletin du Jardin botanique de l'État à Bruxelles 35: 285–354.
- Vrijdaghs A, Muasya AM, Goetghebeur P, Caris P, Nagels A, Smets E. 2009. A floral ontogenetic approach to questions of homology within the Cyperoideae (Cyperaceae). *Botanical Review* 75: 30–51.
- Vrijdaghs A, Reynders M, Larridon I, Muasya AM, Smets E, Goetghebeur P. 2010. Spikelet structure and development in Cyperoideae (Cyperaceae): a monopodial general model based on ontogenetic evidence. Annals of Botany 105: 555–571.
- Vrijdaghs A, Reynders M, Muasya AM, Larridon I, Goetghebeur P, Smets E. 2011. Spikelet and floral morphology and development in *Cyperus* and *Pycreus* (Cyperaceae). *Plant Ecology and Evolution* 144: 44–63.
- Yano O, Hoshino T. 2005. Molecular phylogeny and chromosomal evolution of Japanese Schoenoplectus (Cyperaceae), based on ITS and ETS1f sequences. Acta Phytotaxonomica et Geobotanica 56: 183–195.
- Yano O, Hoshino T. 2007. Phylogenetic relationships and chromosomal evolution of Japanese *Fimbristylis (Cyper*aceae) using nrDNA ITS and ETS1f sequence data. Acta Phytotaxonomica et Geobotanica 57: 205–217.