




# Abelia and relatives: phylogenetics of Linnaeeae (Dipsacales-Caprifoliaceae s.l.) and a new interpretation of their inflorescence morphology

SVEN LANDREIN\*, GERHARD PRENNER, MARK W. CHASE and JAMES J. CLARKSON

Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK

Received 18 November 2011; revised 27 January 2012; accepted for publication 14 March 2012

We present a phylogenetic analysis with sampling from all taxonomic groups in the tribe Linnaeeae (Caprifoliaceae) and interpret the results in relation to inflorescence morphology. Characters from inflorescences are shown to be highly informative for the classification of Linnaeeae; however, they have been neglected in recent studies, possibly as a result of confusion between descriptive and typological views. The phylogenetic relationships of 27 taxa are investigated using the nuclear ribosomal internal transcribed spacer (ITS) region and multiple plastid regions (rbcL, ndhF, matK, trnL intron and trnL-F spacer). Two additional plastid regions, atpB-rbcL and the trnK intron, are also investigated for a subset of taxa. Results indicate that several taxonomic groups, including sections and genera, are not monophyletic. Several groups are supported, e.g. Zabelia, Vesalea and Abelia section Abelia, but Abelia series Serratae is not supported. A new hypothesis for inflorescence evolution in Dipsacales is proposed, and the distinctiveness of Abelia series Serratae is reinforced. The position of tribe Zabeliinae remains unclear within Caprifoliaceae. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, **169**, 692–713.

ADDITIONAL KEYWORDS: Abelia series Serratae – Diabelia – thyrse – Zabeliinae.

# INTRODUCTION

In recent phylogenetic studies (Bell *et al.*, 2001; Donoghue *et al.*, 2001; Zhang *et al.*, 2002a; Jacobs, Pyck & Smets, 2010), Linnaeeae forms a distinct clade more closely related to Morinaceae, Dipsacaceae and Valerianaceae than to Caprifolieae and Diervilleae. In previous phylogenetic studies, Caprifoliaceae had been redefined to include Caprifolieae, Diervilleae, Linnaeeae, Morinaceae, Dipsacaceae and Valerianaceae (Bell *et al.*, 2001). The name Linnina for the clade including Linnaeeae and Valerian (Morinaceae, Dipsacaceae and Valerianaceae) was also introduced by Donoghue *et al.* (2001). Backlund & Pyck (1998) preferred to raise Linnaeeae and Diervilleae to family level, but this system was not followed by Donoghue *et al.* (2001) because it does not retain most of the names currently in use.

Caprifoliaceae s.l. (APG III, 2009) is used here because of the problematic position of *Heptacodium* Rehder, which has morphological characters that are a mixture of those in Linnaeeae and Caprifoliaea. A genus *incertae sedis* within a family is acceptable, but a genus without a clear family placement is problematic; therefore, we favour Caprifoliaceae *sensu* APG III (2009). As in Linnaeeae, ovaries of *Heptacodium* are trilocular with a single fertile locule, and the achenes have a persistent accrescent calyx. However, flowers have five stamens, and the inflorescence is reminiscent of *Lonicera* L. subgenus *Periclymenum* Mill. (Caprifolieae). The phylogenetic study of Pyck &

<sup>\*</sup>Corresponding author. E-mail: s.landrein@kew.org

LINNAEEAE PHYLOGENETICS 693

Smets (2000) placed *Heptacodium* as an unresolved lineage in Caprifoliaceae *s.l.* A karyomorphological study (Zhang, Zhou & Gu, 2002b) suggested that *Heptacodium* perhaps resulted from hybridization and polyploidization between two ancestral species, possibly with a base chromosome number of x = 8 or 9 and having characters of Caprifolieae and Linnaeeae (dislocation hypothesis; Stebbins, 1971). Another reason not to raise Linnaeeae to family level was presented in a phylogenetic study by Jacobs *et al.* (2010), in which the relationship between *Abelia* R.Br. and *Zabelia* (Rehder) Makino was questioned, and a weakly supported position of *Zabelia* sister to the *Morina* clade rather than Linnaeeae was shown.

A classification of Linnaeeae was first proposed by Vatke (1872), which was followed by that of Zabel (1893). Graebner (1900) published the first complete study of Linnaeeae and produced an artificial classification. Rehder (1911) and Fukuoka (1968) produced more recent classifications based solely on morphology. An unpublished thesis using molecular data (nuclear ribosomal DNA sequences) by Kim (1998) produced more insight into the classification of Linnaeeae; he included one new subtribe, Zabeliinae, but this remains unpublished. Kim's (1998) generic delimitation is based on a number of traditionally used morphological characters (mostly inflorescences) and molecular data. He recognized six genera (Table 1).

The centre of diversity for Linnaeeae is China. Linnaea L. is circumboreal, and other taxa also occur in Japan, Korea, easternmost Russia, Central Asia, the Himalayas and Mexico. The total number of species recognized is 17-39, depending on the author. Members of Linnaeeae are important in horticulture, and clarification of the generic limits in this clade is necessary. With this in mind, we initiated this molecular study of Linnaeeae based on five plastid regions (*rbcL*, *ndhF*, *trnL* intron, *trnL-F* spacer and *matK*) and the nuclear ribosomal internal transcribed spacer (nrITS) region; two more plastid regions (atpBrbcL spacer and trnK intron) were sampled for a smaller dataset. The resulting phylogenetic trees were used to re-evaluate the morphology and evolution of the inflorescence in this group.

## INFLORESCENCE

The DNA analyses performed here provide us with a framework to reinterpret inflorescence architecture; the molecular data create a backbone against which hypotheses can be tested. Most taxonomic studies of Linnaeeae have mentioned the inflorescence as the most important morphological character to examine, but inflorescence studies suffer from confusion between descriptive and typological views (idealized

| © 2012 The Linnean Society | y of London, | <b>Botanical</b> | Journal of | the Linne | an Society, | 2012, | <b>169</b> , | 692 - 713 |  |
|----------------------------|--------------|------------------|------------|-----------|-------------|-------|--------------|-----------|--|

| Tribe                         | Subtribe                           | Genus                                         | Section/Series                            | Species<br>number | Species names                        |
|-------------------------------|------------------------------------|-----------------------------------------------|-------------------------------------------|-------------------|--------------------------------------|
| Linnaeeae<br>Dumortier (1829) | Zabeliinae T.Kim &<br>B.Sun, ined. | Zabelia Makino cf. Ikuse &<br>Kurosawa (1954) | Zabelia                                   | က                 | Z. corymbosa, triflora and tyaihyoni |
| Linnaeeae                     | Zabeliinae                         | Zabelia                                       | <i>Biflorae</i> (Zabel)<br>Fukuoka (1968) | က                 | Z. biflora, dielsii and integrifolia |
| Linnaeeae                     | Linnaeinae                         | <i>Linnaea</i> L. (1753)                      | I                                         | 1                 | L. borealis                          |
| Linnaeeae                     | Linnaeinae                         | Vesalea Martens & Galeotti (1843)             | I                                         | 2                 | V. coriacea and floribunda           |
| Linnaeeae                     | Linnaeeae                          | Abelia Brown (1818)                           | Abelia                                    | က                 | A. chinensis, forrestii and uniflora |
| Linnaeeae                     | Linnaeeae                          | Abelia                                        | Serratae Graebn.                          | က                 | A. serrata, spathulata and           |
|                               |                                    |                                               |                                           |                   | tetrasepala                          |
| Linnaeeae                     | Linnaeinae                         | Kolkwitzia Graebn. (1901)                     | I                                         | 1                 | K. amabilis.                         |
| Linnaeeae                     | Linnaeinae                         | Dipelta Maxim. (1878)                         | I                                         | က                 | D. elegans, floribunda and           |
|                               |                                    |                                               |                                           |                   | yunnanensis                          |

morphology; Endress, 2010). In order to establish relationships between taxa, it is nevertheless not possible to use only a descriptive approach, and a theory of idealized morphological characters needs to be developed.

Inflorescence descriptions can sometimes be difficult, and it is often more suitable to focus on a smaller group of closely related taxa, which may be easier to interpret (Endress, 2010). Prenner, Vergara-Silva & Rudall (2009) proposed four main inflorescence types: cymes, panicles, racemes and thyrses. More recently, Endress (2010) suggested two main inflorescence types: racemes and cymes with intermediates between the two. The inflorescence of Caprifoliaceae *s.l.* is a thyrse, which is a raceme of cymes. Members of Linnaeeae also follow this branching pattern, but have fewer flowers within each cyme and shorter internodes between prophylls, resulting in a distinct epicalyx.

The terminology of inflorescence morphology is currently under debate (Prenner *et al.*, 2009; Endress, 2010). In a three-flowered cyme, the primary flower is subtended by a pair of bracts that become supernumerary bracts for secondary flowers. Secondary flowers are preceded by two bracteoles and subtended by one bract, which is also a bracteole of the primary flower. Endress (2010) used the term 'pherophylls' for the phyllome subtending a new branch, which is therefore equivalent to the bracts and supernumerary bracts; for bracteoles, he used the term 'prophylls', described as the two first phyllomes.

# CHOICE OF TAXA AND DNA REGIONS TO BE SEQUENCED

The overall aim was to elucidate generic limits in Linnaeeae and to evaluate infrageneric groups within *Abelia* and related genera. Because there are only a few species in each group, we used nearly every available species; *Vesalea coriacea* (Hemsl.) T.Kim & B.Sun ex Landrein, *Diabelia tetrasepala* (Koidz.) Landrein, *A. forestii* (Diels) J.Q.Hu and *Dipelta elegans* Batalin were not available. We used a narrow species concept and included 19 species (Kim, 1998). Three recently published species from Mexico (Villareal, 1997, 2000) were not sampled because of the lack of available material.

The nrITS region (Baldwin, 1992) and plastid rbcL (Bell *et al.*, 2001; Donoghue *et al.*, 2001), ndhF (Pyck & Smets, 2000; Bell *et al.*, 2001; Zhang *et al.*, 2002a), trnL intron and trnL-F spacer (Taberlet *et al.*, 1991), matK (Bell *et al.*, 2001) and atpB (Bell *et al.*, 2001) regions were used in previous studies and showed insufficient taxon sampling of Linnaeeae, with the exception of Kim (1998), who only

employed nrITS, and this analysis lacked resolution. Recently, Jacobs *et al.* (2010) used the *atpB-rbcL* spacer and *trnK* intron regions in a study of the group and we were able to analyse these sequences with our dataset. Based on previous analyses, *Hep-tacodium miconioides* Rehder was included as an outgroup (Pyck & Smets, 2000; Donoghue *et al.*, 2001; Zhang *et al.*, 2002b).

# MATERIAL AND METHODS

# DNA EXTRACTION AND AMPLIFICATION

Most material of Linnaeeae was cultivated at the Royal Botanic Gardens, Kew, and the Royal Horticultural Society garden at Wisley (UK) and extracted directly from fresh tissue. Some taxa were available only from herbarium specimens or silica gel material dried in the field. Collections made in the field were dried and stored in silica gel (Chase & Hills, 1991). Accessions are vouchered at RBG Kew (K), Makino (MBK) or Harvard (GH) (Table 2).

Total DNA was extracted from 0.3 g of silica geldried leaf tissue, 0.1 g of herbarium material or 1 g of fresh tissue using the  $2 \times \text{cetyltrimethylammo-}$ nium bromide (CTAB) method (Doyle & Doyle, 1987) with additional purification on a caesium chloride/ ethidium bromide gradient (1.55 g mL<sup>-1</sup>), followed by dialysis and removal of the ethidium bromide.

Target regions were amplified in a Gene Amp 9700 PCR system (ABI, Applied Biosystems, Warrington, Cheshire, UK) using ReddyMix PCR Mastermix at 2.5 mM MgCl<sub>2</sub> concentration (ABgene, Epsom, Surrey, UK) with the addition of  $1 \mu$ L of bovine serum albumin (BSA, 0.4%),  $0.25-0.50 \mu$ L of each primer (Table 3) and  $0.5-1.0 \mu$ L of template in a final reaction volume of  $25 \mu$ L. Regions were amplified using the following programme: 4 min of initial denaturation at 94 °C, followed by 28 cycles of 1 min of denaturation at 94 °C, 1 min of annealing at 48 °C and 1 min of extension at 72 °C, and a final extension of 7 min at 72 °C.

PCR products were cleaned using miniprep columns (Life Technologies, Paisley, Strathclyde, UK) following the manufacturer's protocols. Templates were sequenced on a 48-capillary 3730 DNA Analyser (ABI) using Big Dye terminator v3.1 chemistry, following the manufacturer's protocols (ABI). For cleaning of cycle sequencing products, precipitation in ethanol was used.

Characters were divided into five matrices to take into account the potential for incongruence between nuclear and plastid regions and also to incorporate recently published data (Jacobs *et al.*, 2010) and an unpublished thesis (Kim, 1998). A single large combined dataset would have been less reliable because of

| Taxa                                                  | Voucher and provenance data                                                                                                                                                                                                                     | DNA bank<br>accession | rbcL      | matK      | <i>trnL</i> intron and <i>trnL_F</i> spacer | ndhF      | SLI        | atpB-rbcL | trnK     |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------|-----------|---------------------------------------------|-----------|------------|-----------|----------|
|                                                       |                                                                                                                                                                                                                                                 |                       |           |           |                                             |           |            |           |          |
| Abelia chinensis R.<br>Br.                            | (K) RBG Kew Living Collection 1978-2338 donated by Coblands<br>nurseries                                                                                                                                                                        | 25461                 | HQ680737  | HQ693935  | HQ693980                                    | НQ693958  | Kim (1998) | GU168616  | I        |
| Abelia uniflora R.Br.<br>ex Wall.                     | (K) RBG Kew Living Collection 1985-4595. Provenance: China,<br>Guizhou, near Guaxi, alt. 400 m, 28.x.1985. Collected by<br>Simmons et al #888                                                                                                   | 24054                 | НQ680734  | НQ693932, | НQ693977                                    | НQ693955  | I          | 1         | I        |
| Abelia uniflora R.Br.<br>ex Wall.                     | (K) RBG Kew Living Collection 2002-410, Provenance: China,<br>Sichuan, Bazhong pref., Ji Gong Shan, alt. 1670 m, N32 <sup>2</sup> 40'18",<br>E107'03'21", 301x:1999. Collected by <i>T. Kirkham, Cole,<br/>Flangenn &amp; Myannua</i> #SICH2029 | 24028                 | HQ680736  | HQ693934  | НQ693979                                    | НQ693957  | 1          | GU168604  | GU168670 |
| Abelia uniflora R.Br.<br>ex Wall.                     | (K) RBG Kew Living Collection 1958-80619 donated by A.Vogt                                                                                                                                                                                      | 24026                 | НQ680735  | НQ693933  | НQ693978                                    | НQ693956  | Kim (1998) | I         | I        |
| Abelia × grandiflora<br>'Francis Mason'               | (K) RBG Kew Living Collection 1984-1355 donated by Waterers                                                                                                                                                                                     | 35309                 | НQ680738  | НQ693936  | НQ693981                                    | НQ693959  | I          | I         | I        |
| Acanthocalyx albus<br>(HandMazz.)<br>M.J.Cannon       | GenBank                                                                                                                                                                                                                                         | GenBank               | AF446943  | AF446913  | AF446973                                    | AY 496556 | AY236183   | AF447003  | AY290027 |
| Cryptothladia<br>chinensis (Pai)<br>M.J.Cannon        | GenBank                                                                                                                                                                                                                                         | GenBank               | AF446944  | AF446914  | AF366925                                    | AF447034  | AY236184   | AF447004  | AY290026 |
| Diabelia serrata<br>(Siebold et Zucc.)<br>Landrein    | (K) RBG Kew Living Collection 1998-1337 Provenance: Japan,<br>Shikoku, Mt Yokohura, x.1993. Collected by Yuji Kurashiga<br>#0665                                                                                                                | 23922                 | HQ680744, | НQ693942  | НQ693987                                    | I         | Kim (1998) | I         | I        |
| Diabelia serrata<br>(Siebold et Zucc.)<br>Landrein    | (MBK) Gale, S. #2077005 Provenance: Japan, Kochi pref.,<br>Tengu-Kogen, N33*28'46", E133*00'43", alt. 1484.9 m, 10.vi.2007                                                                                                                      | 30478                 | HQ680745  | НQ693943  | НQ693988                                    | НQ693965  | I          | I         | I        |
| Diabelia serrata<br>(Siebold et Zucc.)<br>Landrein    | (MBK) Gale, S. #207009 Provenance: Japan, Ehime pref.<br>Shigiyama, Mikame-cho, N33"24'45", E133"25'17", alt. 250 m,<br>23.vi.2007                                                                                                              | 30479                 | НQ680746  | НQ693944  | НQ693989,                                   | НQ693966  | I          | I         | I        |
| Diabelia spathulata<br>(Siebold et Zucc.)<br>Landrein | (K) RBG Kew Living Collection 1996-4676 Provenance: Japan,<br>Honshu, Kanagawa pref, Hakone, alt. 970 m, 01.xi.1996.<br>Collected by <i>Thunsend &amp; Bridger</i> #90                                                                          | 23918                 | HQ680743  | НQ693941  | НQ693986                                    | НQ693964  | Kim (1998) | GU168605  | GU168671 |
| Dipelta floribunda<br>Maxim.                          | (A; K) D.E. Boufford, Q.Tan & Z.YZhang #37425 Provenance:<br>China, Gansu, Wen Xian: Shilong Gou, N32°41'38", E105°16'35",<br>alt. 900–1150 m, 06.v.2007                                                                                        | 30914                 | HQ680740  | НQ693938  | НQ693983                                    | НQ693961  | I          | I         | I        |
| Dipelta floribunda<br>Maxim.                          | (K) Cultivated at Cambridge Botanical Gardens, UK                                                                                                                                                                                               | 35317                 | HQ680741  | НQ693939  | HQ693984                                    | НQ693962  | Kim (1998) | GU168606  | I        |
| Dipelta yunnanensis<br>Franch.                        | (A, K) Boufford #37836, Provenance: China, Gansu, Wen Xian: W<br>of the Qiujiaba field station, N32°53′48″, E104°19′42″, alt.<br>2170–2425 m, 21.v.2007                                                                                         | 30915                 | HQ680742  | НQ693940  | НQ693985                                    | НQ693963  | Kim (1998) | AF447000  | AY290042 |
| Fedia cornucopiae<br>(L.) Gaertn.                     | GenBank                                                                                                                                                                                                                                         | GenBank               | AF446953  | AF446923  | AF446983                                    | AF447043  | AY 236193  | AF447013  | GU16873  |

© 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 169, 692-713

| Continued |
|-----------|
| બં        |
| Ο         |
| pl        |
| ສີ        |
| Ê         |

| Taxa                                                     | Voucher and provenance data                                                                                                                                                                | DNA bank<br>accession | rbcL                        | matK                        | trnL_F spacer              | ndhF                        | STI                      | atpB-rbcL            | trnK                 |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------|-----------------------------|----------------------------|-----------------------------|--------------------------|----------------------|----------------------|
| Heptacodium<br>miconioides<br>Rehder                     | GenBank                                                                                                                                                                                    | GenBank               | AF446936                    | AF446906                    | AF446966                   | AF447026                    | Kim (1998)               | AF446996             | FJ745412             |
| Kolkwitzia amabilis<br>Graebn.                           | (K) RBG Kew Living Collection 1996-1609, Provenance: China,<br>Hubei, Near Yan Chi He, alt. 400 m. Collected by the North<br>American China Plants exploration consortium s.n. 9.xii. 1994 | 35318                 | НQ680739                    | НQ693937                    | НQ693982                   | НQ693960                    | Kim (1998)               | AF447002             | GU168674             |
| Linnaea borealis L.<br>Morina longifolia<br>Wall. ex DC. | (K) Cultivated from White Cottage Nurseries<br>GenBank                                                                                                                                     | 25460<br>GenBank      | <b>HQ680732</b><br>AF446945 | <b>HQ693930</b><br>AF446915 | <b>HQ693975</b><br>AF44975 | <b>HQ693953</b><br>AF447035 | Kim (1998)<br>Kim (1998) | AF447001<br>AF447005 | AY290040<br>AY290020 |
| Succisa pratensis<br>Moench                              | GenBank                                                                                                                                                                                    | GenBank               | FJ640593                    | FJ45401                     | AY290007                   | AF130491                    | AY290018                 | GU168607             | AY 290033            |
| Triplostegia<br>glandulifera Wall.<br>ex DC.             | GenBank                                                                                                                                                                                    | GenBank               | AF446949                    | AF446949,<br>AF446919       | AF446979                   | AF447039                    | AF446919                 | AF447009             | AY 794323            |
| Valeriana officinalis<br>L.                              | GenBank                                                                                                                                                                                    | GenBank               | L13934                      | AY362532                    | AF366917                   | AY362469                    | DQ180745                 | AF448583             | AY94362              |
| Vesalea floribunda<br>M. Martens et<br>Galeotti          | (K) Cultivated from Royal Horticultural Society at Wisley                                                                                                                                  | 25410                 | HQ680733                    | НQ693931                    | НQ693976                   | НQ693954                    | Kim (1998)               | GU168600             | GU168668             |
| Zabelia biflora<br>(Turcz.) Makino                       | (K) RBG Kew Living Collection 1993372. Provensance: South<br>Korea, Chungchong Pukto, Tanyang Gun, 10.vi.1989. Collected<br>by the U.S. National Arboretum: USNA no: 61752                 | 23923                 | НQ680728                    | НQ693926                    | НQ693971                   | НQ693949                    | I                        | I                    | I                    |
| Zabelia biflora<br>(Turcz.) Makino                       | (K) RBG Kew Living Collection 1995-1638. Provenance: China,<br>Sichuan, Above Kanding on Paoma Shan, alt. 2580 m,<br>20.ix.1991. Collected by Simmons et al. #SICH 525                     | 23917                 | HQ680729                    | НQ693927                    | НQ693972                   | НQ693950                    | Kim (1998)               | GU168598             | GU168684             |
| Zabelia biflora<br>(Turez.) Makino                       | (K) RBG Kew Living Collection 1999-4173. Provenance: Japan,<br>Shikoku, Kochi pref, bank of Makiyama river, alt. 560 m,<br>13.x.1999. Collected by <i>Tounsend and Bridger</i> #SOKU 112   | 23921                 | НQ680730                    | НQ693928                    | НQ693973                   | НQ693951                    | I                        | I                    | I                    |
| Zabelia biflora<br>(Turcz.) Makino                       | (MBK) Gale, S. #2007003 Provenance: Japan, Kochi pref.<br>Tengu-Kogen N33°28'46", E133°00'43", alt. 1484.9 m, 10.vi.2007                                                                   | 30480                 | HQ680731                    | НQ693929                    | НQ693974                   | НQ693952                    | I                        | I                    | I                    |
| Zabelia corymbosa<br>(Regel et<br>Schmalh.) Makino       | (K) Landrein, S. #121. Provenance: Kyrgyzstan, Talas Oblast,<br>Talas Rayon, Chychkan Valley, N42°09'49", E72°54'25", alt.<br>2062 m, 05 vii.2008                                          | 35319                 | HQ680726                    | НQ693924                    | НQ693969                   | НQ693947                    | I                        | I                    | I                    |
| Zabelia corymbosa<br>(Regel et<br>Schmalh.) Makino       | (K) Landrein, S. #152. Provenance: Kyrgyzstan, Jalal-Abad Oblast,<br>Ala-Buka Rayon, 6 km west of Terek-Say, N41°28'51",<br>E71°05'41", alt. 1581 m, 08.vii.2008                           | 35321                 | НQ680727                    | НQ693925                    | НQ693970                   | НQ693948                    | I                        | I                    | I                    |
| Zabelia triflora (R.<br>Br. ex Wall.)<br>Makino          | (K) RBG Kew Living Collection 1999–3330. Provenance: Pakistan,<br>Palas, Bush to Barser and onto Pharlogah, alt. 1970 m,<br>09.ix.1995. Collected by Sinnott, Burnell & Jackson #182       | 24053                 | HQ680725                    | НQ693923                    | НQ693968                   | HQ693946                    | Kim (1998)               | GU168617             | GU168689             |
| Zabelia tyaihyoni<br>(Nakai) Hisauchi<br>et H. Hara      | (K) Cultivated from Royal Horticultural Society at Wisley                                                                                                                                  | 25411                 | НQ680724                    | НQ693922                    | HQ693967                   | НQ693945                    | Kim (1998)               | GU168616             | GU168687.            |

© 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 169, 692-713

| Primer region name                                     | Primer sequences published    | Primers used in this study                                  |
|--------------------------------------------------------|-------------------------------|-------------------------------------------------------------|
| <i>trnL</i> intron and <i>trnL-F</i> intergenic spacer | Taberlet et al. (1991)        | c (forward), f (reverse)                                    |
| ndhF                                                   | Olmstead & Palmer (1994)      | 972F (forward)-2110R (reverse)                              |
| matK                                                   | Sun, McLewin & Fay (2001)     | 390F (forward)-1326R (reverse)                              |
| rbcL                                                   | Olmstead <i>et al.</i> (1992) | 1F (forward)-724R (reverse), 636F (forward)-1460R (reverse) |

Table 3. Sources of primers used in this study

Table 4. Statistics of the eight regions

|                                   | rbcL    | $trnL$ - $F^*$            | matK                        | ndhF                      | atpB-rbcL | trnK    | ITS     | Combined |
|-----------------------------------|---------|---------------------------|-----------------------------|---------------------------|-----------|---------|---------|----------|
| No. taxa                          | 31      | 31                        | 31                          | 30                        | 18        | 19      | 22      | 19       |
| Total aligned                     | 1382    | 958                       | 826                         | 1061                      | 658       | 752     | 766     | 6403     |
| Constant                          | 1223    | 704                       | 613                         | 770                       | 431       | 467     | 452     | 4660     |
| Variable                          | 80      | 155                       | 100                         | 160                       | 153       | 187     | 131     | 966      |
| Potentially parsimony informative | 58      | 77                        | 91                          | 110                       | 52        | 76      | 111     | 575      |
| No. trees                         | 5667    | 553                       | 4                           | 1751                      | 251       | 2763    | 18      | 1        |
| No. steps                         | 177     | 280                       | 245                         | 351                       | 263       | 329     | 522     | 2167     |
| Consistency index                 | 0.83    | 0.92                      | 0.88                        | 0.87                      | 0.90      | 0.89    | 0.64    | 0.83     |
| Retention index                   | 0.82    | 0.91                      | 0.88                        | 0.89                      | 0.80      | 0.73    | 0.70    | 0.72     |
| Evolution model                   | HKY + I | $\mathrm{GTR}+\mathrm{G}$ | $\mathrm{GTR} + \mathrm{I}$ | $\mathrm{GTR}+\mathrm{I}$ | GTR + G   | GTR + G | GTR + G |          |

\*For the *trnL* intron and *trnL-F* spacer combined.

the different species sampling. The five matrices were:

- 1. A large plastid matrix with new data collected for this paper (*rbcL*, *ndhF*, *matK*, *trnL* intron and *trnL-F* spacer).
- 2. The nrITS matrix from Kim (1998) re-entered by hand from the unpublished thesis.
- 3. A large plastid and nuclear ITS dataset with new data collected for this paper and nrITS data from Kim (1998).
- 4. The extended combined plastid dataset: new data collected for this paper plus atpB-rbcL spacer and trnK region (Jacobs *et al.*, 2010); with some taxa missing.
- 5. All available data combined (with some taxa missing data).

The sequences were assembled and edited using Sequencher version 4.5 (Gene Codes, Ann Arbor, MI, USA). They were aligned by eye in PAUP\* 4.0b10 (Swofford, 2002). Gaps were coded as missing data. Newly obtained sequences were submitted to GenBank and matrices to Tree Base (http://www.treebase.org, S12323) (Table 2).

## ANALYSIS OF SEQUENCE DATA

PAUP\* 4.0b10 (Swofford, 2002) was used for parsimony analyses. Heuristic searches were performed using tree bisection-reconnection (TBR) branch swapping and 1000 replicates of random taxon addition with 10 trees held at each step to reduce time searching suboptimal 'islands' of trees. All character transformations were treated as equally likely and unordered (Fitch, 1971). To assess internal support, 1000 bootstrap replicates (Felsenstein, 1985) were performed with equal weights using TBR branch swapping with 10 trees held at each step and simple taxon addition. Individual and combined matrix statistics are presented in Table 4; one sequence [ndhF] for *Diabelia serrata* (Siebold & Zucc.) Landrein 23922] was missing because of technical difficulties.

Bayesian analyses were performed using MrBayes v3.1 (Huelsenbeck & Ronquist, 2001) at the freely available Bioportal server (http://www.bioportal.uio.no). Two runs were performed and each marker was placed in unlinked separate partitions. jModelTest v0.1.1 (Guindon & Gascuel, 2003; Posada, 2008) selected a GTR + G model for the nuclear data, GTR + G model for *trnL* intron, *trnK* and *atpB-rbcL* 

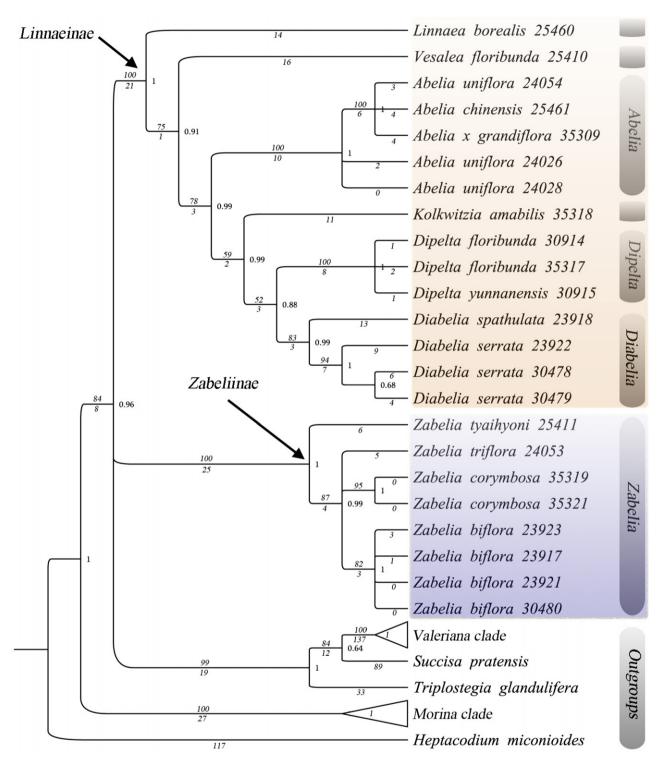
and a GTR + I model for *matK* and *ndhF*, and HKY + I for *rbcL*. The analyses were performed with 20 million generations of Monte Carlo Markov chains with equal rates and a sampling frequency of 1000. Tracer v1.5 (Rambaut & Drummond, 2011) was used to plot the generation number against ln *L* to find the 'burn in'. Trees of low posterior probability (PP) were deleted, and all remaining trees were used. A majority rule consensus tree was produced showing the frequencies (i.e. PP) of all observed partitions.

# RESULTS

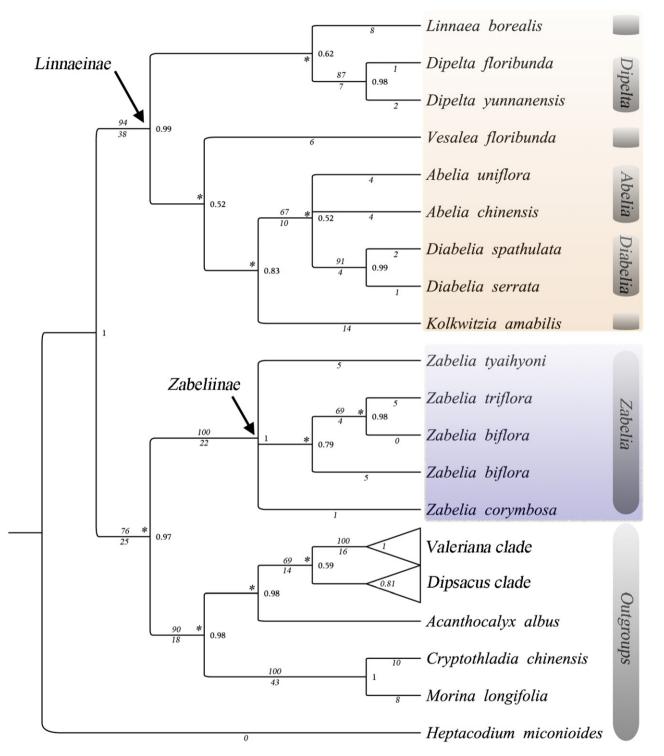
*Matrix* 1 (four plastid regions): for 31 taxa, the number of characters was 4227, 495 (11.7%) of which were variable and 336 (7.9%) of which were potentially parsimony informative. The number of characters contributed by each individual region was 1382 from rbcL, 513 from the trnL intron and 445 from the trnL-F spacer, 826 from matK and 1061 from ndhF. Analysis produced 12 equally most-parsimonious [length = 1076]trees steps, consistency index (CI) = 0.86 and retention index (RI) = 0.86]. Details for each region are provided in Table 4. In the Bayesian analysis (Fig. 1), two million trees of low likelihood were eliminated, and the tree shown is a consensus of 18 000 individual trees; frequencies of node occurrence are recorded as PPs, which are shown next to each node. Bootstrap percentages (BPs) consistent with the strict consensus tree are shown above each branch.

Zabeliinae (BP 100, PP 1.0) and Linnaeinae (BP 100, PP 1.0) form well-supported clades, but Zabeliinae has an unresolved position in both analyses and forms a poorly supported clade. Abelia (BP 100, PP 1.0), Diabelia (BP 83, PP 0.99), Dipelta Maxim. (BP 100, PP 1.0) and Zabelia section Biflorae (Zabel) Fukuoka (BP 82, PP 1.0) form well-supported groups. Dipelta and Kolkwitzia Graebn. are sister to Diabelia (Siebold & Zucc.) Landrein (BP 59, PP 0.99), and Vesalea M.Martens & Galeotti is sister to the rest of Linnaeinae, except Linnaea (BP 75, PP 0.91). Diabelia, Dipelta and Kolkwitzia form a moderately supported clade (BP 59, PP 0.99). Finally, Zabelia section Zabelia is not monophyletic; Z. tyaihyoni (Nakai) Hisauti & Hara is sister to the rest of Zabelia (BP 100, PP 1.0).

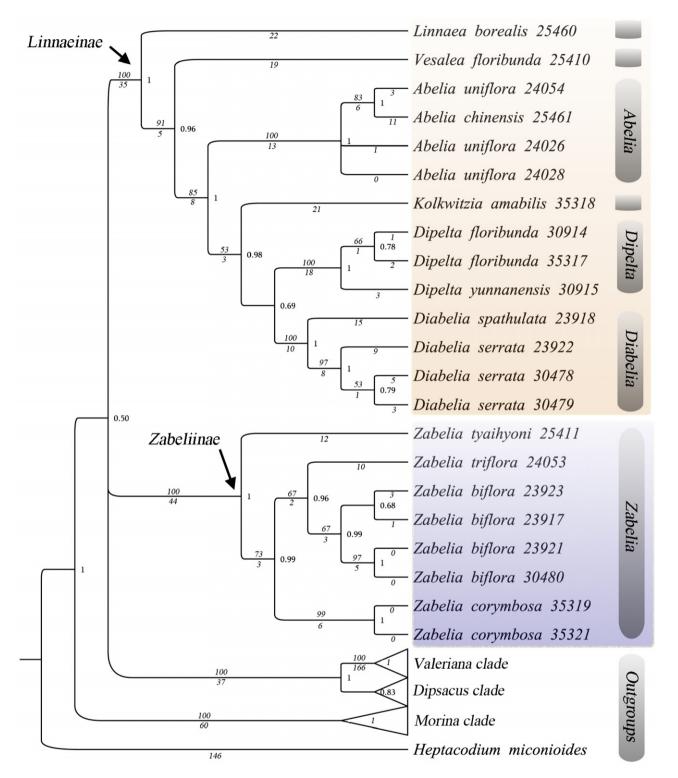
*Matrix* 2 (nrITS only) (Kim, 1998): for 21 taxa, the number of characters was 766, 131 (17.1%) of which were variable and 111 (14.5%) of which were potentially parsimony informative. Analysis produced 18 equally most-parsimonious trees (length = 522 steps, CI = 0.64 and RI = 0.70). Details are provided in Table 4. The Bayesian analysis is shown in Figure 2 with PPs given next to each node. BPs consistent with the strict consensus tree are shown above each branch.


Zabeliinae (BP 100, PP 1.0) and Linnaeinae (BP 94, PP 0.99) form well-supported clades. Zabeliinae are sister to a clade containing *Dipsacus* L., *Morina* L. and *Valeriana* L. (BP 76, PP 0.97). Clades in Linnaeinae are not well resolved, but *Abelia* and *Diabelia* form a weakly supported clade (BP 67, PP 0.52). Clades within Zabeliinae are also not well resolved.

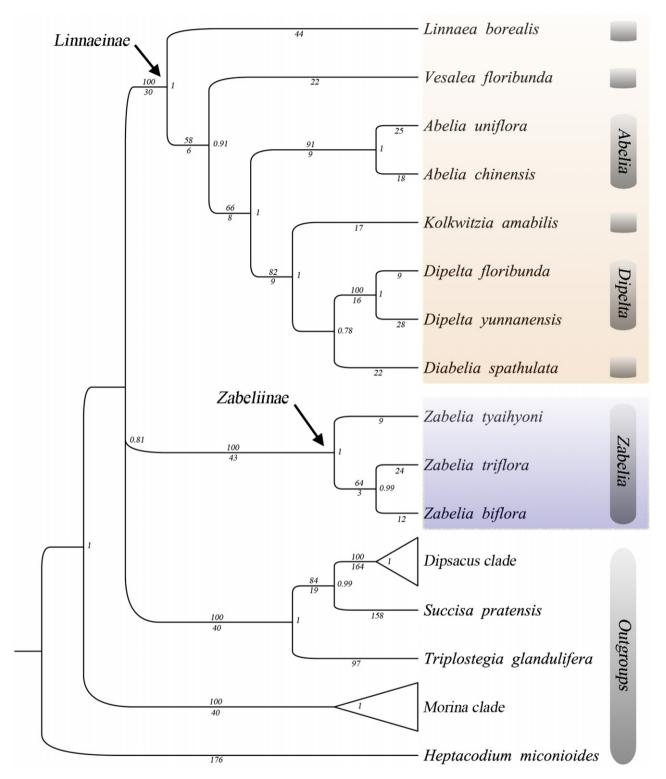
*Matrix 3* (four plastid regions and nrITS data): for 30 taxa, the number of characters was 4993, 622 (12.4%) of which were variable and 499 (10.0%) of which were potentially parsimony informative. Analysis produced eight equally most-parsimonious trees (length = 1612 steps, CI = 0.81 and RI = 0.81). Details are provided in Table 4. The Bayesian analysis is shown in Figure 3 with PPs given next to each node. BPs consistent with the strict consensus tree are shown above each branch.


Zabeliinae (BP 100, PP 1.0) and Linnaeinae (BP 100, PP 1.0) form well-supported clades, but Zabeliinae have an unresolved position in both analyses. *Abelia* (BP 100, PP 1.0), *Diabelia* (BP 100, PP 1.0), *Dipelta* (BP 100, PP 1.0) and *Zabelia* section *Biflorae* (BP 67, PP 0.99) form well-supported groups. *Diabelia*, *Dipelta* and *Kolkwitzia* form a moderately supported clade (BP 53, PP 0.98). *Vesalea* is sister to the rest of Linnaeinae, except Linnaea (BP 91, PP 0.96). Finally, *Zabelia* section *Zabelia* is not monophyletic; *Z. tyaihyoni* is sister to the rest of *Zabelia* (BP 100, PP 1.0).

Matrix 4 (six plastid regions including atpB-rbcL spacer and trnK intron; Jacobs *et al.*, 2010): for 19 taxa, the number of characters was 5637, 835 (14.8%) of which were variable and 464 (8.2%) of which were potentially parsimony informative. The numbers of characters contributed by each individual region were 1382 from *rbcL*, 513 from the *trnL* intron and 445 from the trnL-F spacer, 826 from matK, 1061 from ndhF, 658 from atpB-rbcL and 752 from the *trnK* intron. Analysis produced six equally mostparsimonious tree (length = 1665 steps, CI = 0.86 and RI = 0.74). Details for each region are provided in Table 4. The Bayesian analysis is shown in Figure 4 with PPs given next to each node. BPs consistent with the strict consensus tree are shown above each branch.


Zabeliinae (BP 100, PP 1.0) and Linnaeinae (BP 100, PP 1.0) form well-supported clades, but Zabeliinae have an unresolved position in both analyses. The Morina clade is well supported (BP 100, PP 1.0). Abelia (BP 91, PP1.0) and Dipelta (BP 100, PP 1.0) form well-supported groups. Diabelia, Dipelta and Kolkwitzia form a well-supported clade (BP 82 PP 1.0). Vesalea is sister to the rest of Linnaeinae, except Linnaea (BP 58, PP 0.91). Finally, Zabelia section Zabelia is not monophyletic; Z. tyaihyoni is sister to the rest of Zabelia (BP 100, PP 1.0).




**Figure 1.** Bayesian consensus of 18 000 trees from a 31-taxon analysis of plastid data (*rbcL*, *trnL* intron, *trnL-F* spacer, *matK*, *ndhF*). Posterior probabilities (PPs) are shown next to the nodes. Parsimony analysis branch lengths (DELTRAN optimization) are shown below the branches. Bootstrap percentages (BPs) > 50 and consistent with the strict consensus tree are shown above the branches.



**Figure 2.** Bayesian consensus of 18 000 trees from a 22-taxon analysis of nuclear data (nrITS). Posterior probabilities (PPs) are shown next to the nodes. Parsimony analysis branch lengths (DELTRAN optimization) are shown below the branches. Bootstrap percentages (BPs) > 50 and consistent with the strict consensus tree are shown above the branches. Stars show the node incongruences when compared with all the other figures.



**Figure 3.** Bayesian consensus of 18 000 trees from a 30-taxon analysis of nuclear and plastid data (*rbcL*, *trnL* intron, *trnL-F* spacer, *matK*, *ndhF* and nrITS). Posterior probabilities (PPs) are shown next to the nodes. Parsimony analysis branch lengths (DELTRAN optimization) are shown below the branches. Bootstrap percentages (BPs) > 50 and consistent with the strict consensus tree are shown above the branches.



**Figure 4.** Bayesian consensus of 18 000 trees from a 19-taxon analysis of plastid data (*rbcL*, *trnL* intron, *trnL-F* spacer, *matK*, *ndhF*, *atpB-rbcL* and *trnK* intron). Posterior probabilities (PPs) are shown next to the nodes. Parsimony analysis branch lengths (DELTRAN optimization) are shown below the branches. Bootstrap percentages (BPs) > 50 and consistent with the strict consensus tree are shown above the branches.

*Matrix* 5 (all data, six plastid regions and nrITS data): for 19 taxa, the number of characters was 6403, 966 (15.1%) of which were variable and 575 (9.0%) of which were potentially parsimony informative. This analysis produced one most-parsimonious tree (length = 2167 steps, CI = 0.83 and RI = 0.72). Details for each region are provided in Table 4. The Bayesian analysis is shown in Figure 5 with PPs given next to each node. BPs consistent with the strict consensus tree are shown above each branch.

Zabeliinae (BP 100, PP 1.0) and Linnaeinae (BP 100, PP 1.0) form well-supported clades, but Zabeliinae form a moderately supported clade with the clade of *Valeriana*, *Dipsacus* and *Morina* (BP 79, PP 0.89). *Abelia* (BP 98, PP 1.0) and *Dipelta* (BP 100, PP 1.0) form well-supported groups. *Diabelia*, *Dipelta* and *Kolkwitzia* form a moderately supported clade (BP 79, PP 1.0), and *Vesalea* is sister to the rest of Linnaeinae, except *Linnaea* (BP 84, PP 0.95). Finally, *Zabelia* section *Zabelia* is not monophyletic; *Z. tyaihyoni* is sister to the rest of *Zabelia* (BP 100, PP 1.0).

## INFLORESCENCE DATA

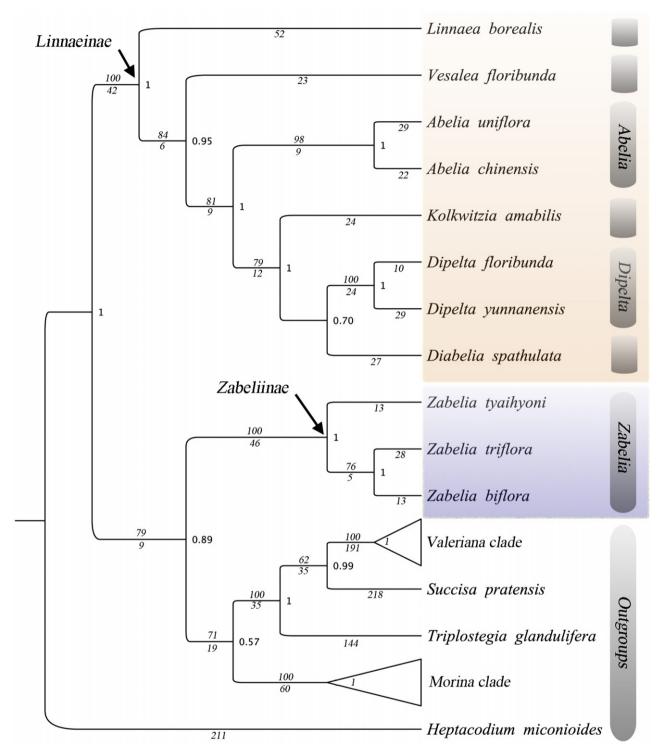
To avoid confusion in the terminology for inflorescences, we decided to use the terms 'prophylls-1' for bracteoles of secondary flowers, 'prophylls-2' for bracts of secondary flowers and bracteoles of primary flowers and 'prophylls-3' for bracts of primary flowers and supernumerary bracts of secondary flowers (Fig. 6A). All prophylls are located at the base of ovaries and form a more or less distinct epicalyx.

Zabelia section Zabelia inflorescences are terminal compact thyrses with one- to three-flowered cymes. They appear on short shoots developing from winter buds surrounded by several pairs of scales (Fig. 6B). Inflorescences of Zabelia section Biflorae are terminal and composed of one pair of flowers opening simultaneously. Inflorescences appear on short shoots developing from winter buds surrounded by several pairs of scales (Fig. 6C). Vesalea inflorescences are compact racemes; they are grouped at ends of branches. Racemes appear on short shoots developing from winter buds surrounded by several pairs of scales (Fig. 6D). Linnaea inflorescences are similar to those of Vesalea, but each inflorescence is reduced to a pair of opposed flowers. Paired nodding flowers develop at ends of single short erect shoots along a woody and creeping stem, and the opposed bud does not develop (Fig. 6E). Kolkwitzia inflorescences are terminal thyrses formed at the end of short shoots; flowers are paired or single, when paired they open consecutively. Short shoots develop from winter buds surrounded by several pairs of scales (Fig. 6F). Dipelta inflorescences are terminal thyrses formed at ends of short shoots.

Short shoots develop from winter buds surrounded by several pairs of scales (Fig. 6G). *Diabelia* inflorescences are terminal and composed of one pair of flowers opening simultaneously. Inflorescences appear on short shoots developing from winter buds surrounded by several pairs of scales (Fig. 6C). *Abelia* inflorescences are axillary cymes or racemes; flowers can be solitary. Inflorescences appear at the ends of long arching shoots. *Abelia chinensis* R.Br. and *A. uniflora* Wall. are closely related, but their inflorescences differ; flowers are single in *A. uniflora* (Fig. 6H) but are paired in *A. chinensis* and open consecutively (Fig. 6I). Detailed results, including ontogenetic data, will be published elsewhere (S. Landrein, unpubl. data).

#### DISCUSSION

#### TAXON SAMPLING AND INCONGRUENCES


Recently, some major phylogenetic studies have focused on Dipsacales and have improved our understanding of the classification of the group (Bell *et al.*, 2001; Donoghue *et al.*, 2001; Zhang *et al.*, 2002a). The sampling of the tribe Linnaeeae has nevertheless always been incomplete. Jacobs *et al.* (2010, 2011) provided the first good sampling of the tribe, and we have improved this sampling to include all taxonomic groups. We have also added more markers, allowing for better resolution and support (Wortley *et al.*, 2005).

Phylogenetic analyses using four different matrices and six plastid regions were all congruent, despite the differences in sampling and regions sequenced. The nuclear ribosomal dataset nevertheless showed many incongruences when compared with the plastid data. It is well documented that, unlike the plastid genome, ITS is not always maternally inherited (e.g. Chase *et al.*, 2003). This difference in the inheritance pattern of the two datasets could explain the differences in topologies, and thus result in gene trees rather than species trees.

## LINNAEEAE

The placement of Zabeliinae is not fully resolved in any of the results of our five matrices. In all plastid analysis trees (Figs 1, 4), Zabeliinae are unresolved. When using the plastid and nuclear data, we find moderate support (Fig. 5; BP 79, PP 0.89) for Zabeliinae sister to the clade of *Dipsacus*, *Morina* and *Valeriana*.

The inclusion of nrITS data results in Zabeliinae being sister to a clade containing *Dipsacus*, *Morina* and *Valeriana* using both parsimony and Bayesian methods. This sister relationship receives moderate support (BP 76 and PP 0.97) from nrITS alone



**Figure 5.** Bayesian consensus of 18 000 trees from a 19-taxon analysis of nuclear and plastid data (*rbcL*, *trnL* intron, *trnL-F* spacer, *matK*, *ndhF*, *atpB-rbcL*, *trnK* intron and nrITS). Posterior probabilities (PPs) are shown next to the nodes. Parsimony analysis branch lengths (DELTRAN optimization) are shown below the branches. Bootstrap percentages (BPs) > 50 and consistent with the strict consensus tree are shown above the branches.

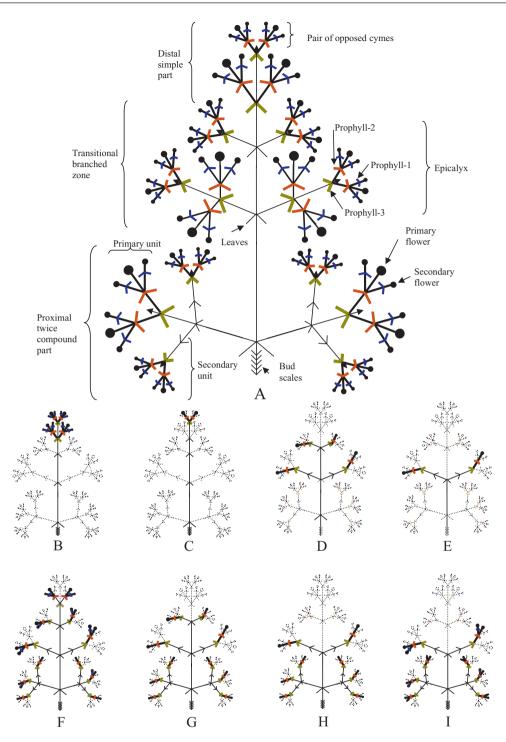



Figure 6. The inflorescence of Linnaeeae: A, terminology; B, Zabelia section Zabelia; C, Zabelia sections Biflorae and Diabelia; D, Vesalea; E, Linnaea; F, Kolkwitzia; G, Dipelta; H, Abelia uniflora; I, Abelia chinensis (dotted lines represent aborted flowers/branches).

(Fig. 2). It is also seen in the combined trees (Fig. 5) with similar support levels (BP 79 and PP 0.89). Therefore, the current evidence points towards Zabeliinae being sister to *Dipsacus*, *Morina* and *Valeriana* (as in Jacobs *et al.*, 2010).

A general trend in the reduction of sepal number from five to two is confirmed here. This character transition has occurred in several clades: *Zabelia*, *Abelia* and *Diabelia*. There is also a tendency for groups with a specialized epicalyx to have a reduced

© 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 169, 692-713

or deciduous calyx, e.g. *Linnaea*, *Kolkwitzia* and *Dipelta* (Table 5, Fig. 7).

## ZABELIINAE

As revealed in previous studies, Zabeliinae and Linnaeinae are well supported by both molecular and morphological data (Ikuse & Kurosawa, 1954; Fukuoka, 1968; Kim, 1998; Jacobs et al., 2010). The monophyly of Zabelia section Zabelia is not supported by the molecular results (Figs 1-5, 7); although morphologically similar to Zabelia section Zabelia. Z. corymbosa (Regel & Schmalh.) Makino has tetramerous flowers like Zabelia section Biflorae. Karyology, wood anatomy, pollen and petiole bases are all clear characters for Zabelia. Its distribution in the Himalayas, Tian-Shan and mountains of Korea to China and Japan shows an extension from the centre of diversity of Linnaeeae, but its thyrse, with only a simple distal part with three-flowered cymes (often reduced to one flower) and subregular flowers, is probably a plesiomorphic character (Table 5, Fig. 7).

#### LINNAEINAE

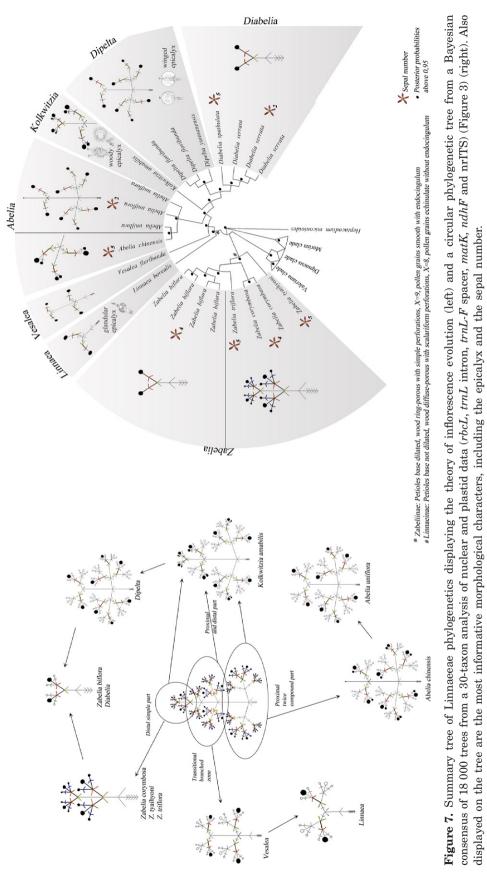
As seen in a previous analysis (Kim, 1998), phylogenetic relationships in Linnaeinae are less resolved than in other groups of Caprifoliaceae (Figs 1-5). Nevertheless, we are able to draw some conclusions. Linnaea and Vesalea appear to be distinct and successively sister to the rest of Linnaeinae. They both have thyrses reduced to the proximal part and oneflowered basic units [sometimes two-flowered in Vesalea coriacea (Hemsl.) T.Kim & B.Sun ex Landrein] with tubular-campanulate flowers in which the nectary does not form a distinct bulge at the base of the corolla tube. Linnaea and Vesalea have disjunct distributions; Vesalea occurs in Mexico, and Linnaea is circumboreal, but the latter also occurs in the centre of diversity for Linnaeeae, China. Linnaea differs in its habit and structure of the two prophylls-3 covered with long glandular and sticky hairs, which can be explained as a fruit dispersal mechanism (Giger, 1912).

It is clear from the phylogenetic results that *Abelia* is not monophyletic and that *Kolkwitzia*, *Dipelta* and *Diabelia* form a clade (BP 82, PP 1.0 in the combined plastid analysis, Fig. 4). *Abelia* differs from the rest in its unspecialized epicalyx, but mainly in its synflorescence of thyrses that appears on long arching shoots rather than short shoots as in the rest of Linnaeeae. The bilabiate and colourful flowers are strikingly similar to those of *Kolkwitzia*, *Dipelta* and *Diabelia*, but *Abelia chinensis* has an infundibuliform corolla with exserted stamens and style. One synapomorphy for Linnaeinae is a cyme

with single or paired flowers (primary and secondary flowers). Kolkwitzia, Dipelta and Diabelia have a characteristic inflorescence on short shoots. They also show a trend towards a specialization of the epicalyx; Dipelta and Kolkwitzia both have specialized bracts forming the epicalyx, which enhances dispersal. *Dipelta* has broadly fruit peltate prophyll-2 bracts, and Kolkwitzia has prophylls that are covered with stiff hairs that become woody; these hairs also cover achenes in the fruit. Molecular data give weak support to *Dipelta* as sister to Diabelia (BP 52, PP 0.88, matrix 1, Fig. 1); the morphology of the achenes and inflorescences indicates that Kolkwitzia and Dipelta are closely related.

The most puzzling group is *Diabelia*, which has always been considered part of Abelia, but the molecular results place it with Dipelta and Kolkwitzia (BP 82, PP 1.0; Fig. 4). A re-examination of its morphology also supports this; Abelia spp. are summerflowering shrubs with synflorescences of thyrses reduced to the proximal twice-compound portion that appears on long arching shoots. Species of Diabelia are spring-flowering shrubs with thyrses on short shoots that are reduced to the simple distal part. It is noticeable that the terminal thyrses of *Diabelia* are reduced to the terminal pair of opposed cymes, each being one-flowered and therefore similar to Zabelia section Biflorae, which is presumably a reversion. This group and *Zabelia* section *Biflorae* are also the only ones with a reduction in the number of sepals from five to four (Table 5, Fig. 7). It is now clear that Diabelia is distinct from Abelia and more closely related to Dipelta and Kolkwitzia. Landrein (2010) proposed the name Diabelia for Abelia series Serratae. A list of currently accepted genera is presented in Table 6.

#### INFLORESCENCE MORPHOLOGY


A broad interpretation that takes into account the genetic controls of the inflorescence, the repetitive (modular) nature of plant structure (Prenner *et al.*, 2009; Endress, 2010) and the phylogenetic results is proposed here: we consider a pair of three-flowered opposed cymes as the basic unit that forms the thyrse. A thyrse can be divided into three regions: (1) a distal simple part; (2) a transitional branched zone; and (3) a proximal part that is twice compound. Within the proximal part, each secondary unit is subtended by two further bracts that are not part of the epicalyx (Fig. 6A).

Each unit is initially composed of pairs of opposed three-flowered cymes (Fig. 6B) that later become reduced in three steps:

1. Units with a single pair of opposed cymes with two primary flowers from each cyme; paired flowers

| <b>Table 5.</b> Morphological characters of Linnaeeae | ogical characters (                                             | -                           | text shows putative | bold text shows putatively primitive character states). Personal observations (SL), except when stated  | states). Personal o                        | observations (SL), exce           | pt when stated                                              |
|-------------------------------------------------------|-----------------------------------------------------------------|-----------------------------|---------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------|-------------------------------------------------------------|
| Subtribe                                              | Groups                                                          | Petioles/character<br>state | Life form           | Wood (Ogata, 1988)                                                                                      | Distribution<br>(Kim, 1998)                | Karyology                         | Inflorescence                                               |
| Linnaeinae<br>Fukuoka                                 | Abelia R.Br.                                                    | Base not dilated            | Erect shrub         | Diffuse-porous,<br>scalariform<br>perforation                                                           | China, Japan                               | x = 8 (Kim, 1998)                 | Synflorescence of<br>thyrses reduced to<br>proximal twice   |
| Linnaeinae<br>Fukuoka                                 | <b>Diabelia</b><br>Landrein                                     | Base not dilated            | Erect shrub         | Diffuse-porous,<br>scalariform<br>nerforation                                                           | Japan, China<br>(one locality)             | x = 8 (Kim, 1998)                 | Thyrse reduced to<br>distal simple part<br>with two flowers |
| Linnaeinae<br>Fukuoka                                 | <i>Dipelta</i> Maxim.                                           | Base not dilated            | Erect shrub         | Diffuse-porous,<br>scalariform<br>perforation                                                           | China                                      | x = 8 (Kim, 1998)                 | Thyrses with or<br>without distal simple                    |
| Linnaeinae<br>Fukuoka                                 | <b>Kolkwitzia</b><br>Graebn.                                    | Base not dilated            | Erect shrub         | Diffuse-porous,<br>scalariform<br>perforation                                                           | China                                      | <i>x</i> = 8 (Li & Shang, 1989)   | Thyrses with or<br>without distal simple<br>part.           |
| Linnaeinae<br>Fukuoka                                 | Linnaea L.                                                      | Base not dilated            | Creeping subshrub   | Diffuse-porous,<br>scalariform<br>perforation                                                           | Circumboreal                               | x = 8 (Arohonka, 1982)            | Thyrses reduced to<br>proximal twice<br>compound part with  |
| Linnaeinae<br>Fukuoka                                 | <b>Vesalea</b><br>Martens &<br>Galaotti                         | Base not dilated            | Erect shrub         | Diffuse-porous,<br>scalariform                                                                          | Mexico                                     | ¢.                                | Thyrses with or<br>without distal simple                    |
| Zabelünae T.Kim &<br>B.Sun, ined                      | <b>Zabelia</b> section<br><b>Biflorae</b><br>(Zabel)<br>Fukuoka | Base dilated                | Erect shrub         | Ring-porous wood,<br>simple<br>perforations.<br>Branches with six<br>longitudinal                       | Russia Far East,<br>Japan, Korea,<br>China | x = 9 (Kim, 1998)                 | Thyrse reduced to<br>distal simple part<br>with two flowers |
| Zabeliinae T.Kim &<br>B.Sun, ined                     | <b>Zabelia</b> section<br><b>Zabelia</b>                        | Base dilated                | Erect shrub         | grooves<br>Ring-porous wood,<br>simple<br>perforations.<br>Branches with six<br>longitudinal<br>grooves | Himalaya, Korea,<br>Tian-Shan.             | x = 9 (Bedi, Bir &<br>Gill, 1980) | Thyrse reduced to<br>distal simple part                     |

| Table 5. Continued                                         |                                                                                           |                                                          |                                                          |                                                                                                |                                                                                   |                                                                   |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Subtribe                                                   | Epicalyx                                                                                  | Corolla                                                  | Calyx                                                    | Ovary                                                                                          | Nectaria trichomalia                                                              | Pollen                                                            |
| Linnaeinae<br>Fukuoka                                      | Four (single flowers) or<br>six (paired flowers);<br>nonaccrescent                        | Infundibuliform to<br>bilabiate                          | Two-five-lobed<br>accrescent                             | Trilocular, one<br>fertile ovule                                                               | Bulging                                                                           | Echinulate without<br>endocingulum                                |
| Linnaeinae<br>Fukuoka                                      | Six nonaccrescent                                                                         | Bilabiate                                                | Two-five-lobed<br>accrescent                             | Trilocular, one<br>fertile ovule                                                               | Bulging, clavate and<br>intruding inside tube                                     | Echinulate without<br>endocingulum                                |
| Linnaeinae<br>Fukuoka                                      | Four (two accrescent<br>and wing-like in<br>fruit)                                        | Bilabiate                                                | Five-lobed<br>nonaccrescent                              | Tetralocular, two fertile<br>ovules                                                            | Bulging                                                                           | Echinulate without<br>endocingulum                                |
| Linnaeinae<br>Fukuoka                                      | Four (single flowers) or<br>six (paired flowers);<br>accrescent becoming<br>woody, shongy | Bilabiate                                                | Five-lobed<br>nonaccrescent                              | Tri/tetralocular, one/<br>two fertile ovules                                                   | Bulging                                                                           | Echinulate without<br>endocingulum                                |
| Linnaeinae<br>Fukuoka                                      | Four, two covered with<br>stalked large<br>glandular hair and<br>accrescent               | Infundibuliform                                          | Five-lobed deciduous                                     | Trilocular, one<br>fertile ovule                                                               | Four lines of<br>compact glandular<br>hairs                                       | Echinulate without<br>endocingulum                                |
| Linnaeinae<br>Fukuoka<br>Zabeliinae T.Kim &<br>B.Sun, ined | Four nonaccrescent<br>Six nonaccrescent                                                   | Long tubular to<br>campanulate<br><b>Hypocrateriform</b> | <b>Five-lobed</b><br>accrescent<br>Four-lobed accrescent | <b>Trilocular, one</b><br><b>fertile ovule</b><br>Tri/tetralocular, one/<br>two fertile ovules | Four lines of<br>compact glandular<br>Four lines of<br>compact glandular<br>hairs | Echinulate without<br>endocingulum<br>Smooth with<br>endocingulum |
| Zabelünae T.Kim &<br>B.Sun, ined                           | Fourteen, leaf-like<br>and nonaccrescent                                                  | Hypocrateriform                                          | Four/five-lobed<br>accrescent                            | Trilocular, one<br>fertile ovule                                                               | Four lines of<br>compact glandular                                                | Smooth with<br>endocingulum                                       |



© 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 169, 692–713

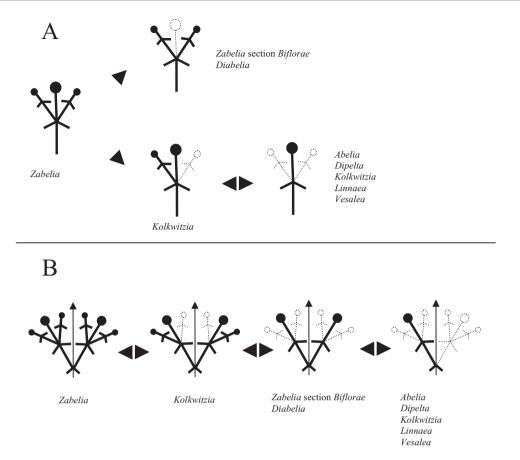
| Clade   | Tribe     | Subtribe   | Genus      | Species<br>number | Species names                                                                             |
|---------|-----------|------------|------------|-------------------|-------------------------------------------------------------------------------------------|
| Linnina | Linnaeeae | Zabeliinae | Zabelia    | 4                 | Z. biflora, corymbosa, triflora and tyaihyoni                                             |
| Linnina | Linnaeeae | Linnaeinae | Linnaea    | 1                 | L. borealis                                                                               |
| Linnina | Linnaeeae | Linnaeinae | Vesalea    | 2 (5)             | V. coriacea and floribunda (three newly<br>published species by Villareal, 1997,<br>2000) |
| Linnina | Linnaeeae | Linnaeinae | Abelia     | 3                 | A. chinensis, forrestii and uniflora                                                      |
| Linnina | Linnaeeae | Linnaeinae | Kolkwitzia | 1                 | K. amabilis                                                                               |
| Linnina | Linnaeeae | Linnaeinae | Dipelta    | 3                 | D. elegans, floribunda and yunnanensis                                                    |
| Linnina | Linnaeeae | Linnaeinae | Diabelia   | 3                 | D. serrata, spathulata and tetrasepala                                                    |

**Table 6.** Classification used in this article

open simultaneously and face their adaxial side. The epicalyx is formed of six prophylls from two reduced internodes: a pair of opposed cymes and two cymes (Fig. 6C).

- 2. Units with a single pair of opposed cymes with one primary and one secondary flower from a single cyme; paired flowers open consecutively and are oriented at an angle of around 90°. The epicalyx is formed by six prophylls from three reduced internodes: a pair of opposed cymes, the remaining cyme and a secondary flower (Fig. 6F, I).
- 3. Units with a single pair of opposed cymes with only one primary flower from a single cyme. The epicalyx is formed of four prophylls from two reduced internodes: a pair of opposed cymes and the remaining cyme (Fig. 6D, E, G, H).

This interpretation allows us to hypothesize that two parts of the same inflorescence, a distal simple part and a twice-compound proximal part, can coexist in the same plant. This also shows that Linnaeeae is a good case in which the transition between an open inflorescence (thyrse) to a closed inflorescence (thyrsoid) has occurred by reduction of a lateral cyme within a pair of opposed cymes. Thus, the tribe fits well between Caprifoliae with open thyrses (which can be mistaken for a racemose inflorescence when the primary flowers of a pair of opposed cymes do not develop, as in *Leycesteria* Wall. or *Symphoricarpos* Duhamel) and the rest of Linnina with purely cymose inflorescences.


## INFLORESCENCE EVOLUTION

An extended discussion of the relationships between inflorescence types in Caprifoliaceae was provided by Troll & Weberling (1966), and this was further discussed by Fukuoka (1969). Roels & Smets (1996) and Donoghue, Bell & Winkworth (2003) also discussed inflorescences in Caprifoliaceae in general, but did not focus on Linnaeeae.

Fukuoka's (1969: 162) interpretation was based on the work of Troll & Weberling (1966): 'Troll and others consider that the polytelic type is derived from the monotelic type by the extinction of [the] terminal flower on each axis of inflorescence. However, two forms of this polytelic type may be considered in our tribe. One is the inflorescence that has never borne any terminal flower from first, as the raceme seen in Symphoricarpos. The other is that derived from the cymose type by the reduction of [a] terminal flower, as in the other members of our tribe (transitional type). Thus, the evolutionary trend of the inflorescence may be considered as follows: the racemose type is more primitive; the cymose type is more advanced; the polytelic cymose type, which is the cymose type without terminal flower, is most advanced'.

Unfortunately, as shown by Endress (2010: 226), the two basic types, 'monotelic' and 'polytelic', are problematic. 'A difficulty in Troll's inflorescence concept is his distinction between a "descriptive" and a "typological" (i.e. idealistic) classification. Unfortunately, the "typological" classification with two basic types, monotelic and polytelic inflorescences, appears to be of limited use, as seen from current evolutionary knowledge on inflorescences.'

Nevertheless, some parallels with Troll & Weberling (1966) and Fukuoka (1969) can be drawn. The transition between the 'polytelic' and 'monotelic' types can be explained by abortion of a single cyme in a pair of opposed cymes. Therefore, the 'monotelic' type seems also to be derived from the 'polytelic' type if we follow the terminology of Troll & Weberling (1966). Fukuoka (1969) considered the cymose type as derived from a 'racemose' type. 'Racemose' can be interpreted as a thyrse in which each three-flowered cyme is reduced to just the primary flower. Therefore, in our interpretation, the 'racemose' type is derived from the thyrse (cymose inflorescence) if we follow the terminology of Fukuoka (1969).



**Figure 8.** Simplified schematic representation of the evolution of cymes by: A, Troll and Weberling (1966) and Fukuoka (1969); B, according to this article.

One of the points in which our interpretation differs significantly from that of previous authors is for the two-flowered inflorescences found in Diabelia and Zabelia section Biflorae. Troll & Weberling (1966) and Fukuoka (1969) interpreted the paired flowers as two secondary flowers of a single cyme or, as in Abelia chinensis, the terminal and secondary flower of one cyme. In our interpretation, the two-flowered inflorescences seen in Diabelia and Zabelia section Biflorae are the primary flowers of a pair of opposed cymes (Fig. 8). When viewing our interpretation against the framework of the molecular results, a clear correlation with the new interpretation is evident. Only one evolutionary pathway is necessary from the less derived or ancestral type of Zabelia to the more derived type of Diabelia, Dipelta, Kolkwitzia, Linnaea and Vesalea. This hypothesis also accommodates the position of *Diabelia* as an intermediate type; this could be the result of a reversion from the most derived type. Troll's and Fukuoka's interpretations involved the existence of two evolutionary pathways, which would not involve a parsimonious interpretation for cases of reversion, as in Diabelia.

# CONCLUSIONS

Abelia contains numerous shrubs of horticultural interest and, like many recently investigated genera, appears not to be monophyletic. This result encouraged us to re-examine the morphological characters and to search for synapomorphies. Reversions and convergence may be present in Linnaeeae and could explain the difficulty in classifying this small group of genera/species. Thanks to the molecular study, we were able to identify Abelia series Serratae as a distinct group, now renamed Diabelia; thyrses with a distal simple part, large accrescent calyx and small epicalyx are thus likely to be independent reversions and not indicative of a shared history. The position of Zabeliinae in Linnaeeae and in relation to the Dipsacus, Morina and Valeriana clades is more problematic, and our study did not manage to completely resolve these relationships. We feel that Linnaeeae inflorescences provide great insight into the evolution of Caprifoliaceae s.l., and thyrses with a twice compound portion seem to have evolved within Linnaeeae; they are absent in Caprifolieae (except in

*Heptacodium*), but present in Valerina. More work is still needed to resolve the relationships within species and the position of Zabeliinae, and this could eventually lead to a better understanding of the phylogeny and evolution of this group.

# ACKNOWLEDGEMENTS

For their assistance with laboratory work at the Royal Botanic Gardens, Kew, we are grateful to Laszlo Csiba and Sue Zmarzty. Thanks are also due to Stephen Gale, David Boufford and the woody trial staff of the Royal Horticultural Society, Wisley, for providing plant material, and to Laure Barrabe and Sven Buerki for help with the analysis.

# REFERENCES

- APG III. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. *Botanical Journal of the Linnean Society* 161: 105–121.
- Arohonka PA. 1982. Chromosome counts of vascular plants of the island Scili in Anuva, SW Finland. *Turu Yliopistou Biologian-Laitoksen Jalkaisuja* 3: 1–12.
- Backlund A, Pyck N. 1998. Diervillaceae and Linnaeaceae, two new families of caprifolioids. *Taxon* 47: 657–661.
- **Baldwin BG. 1992.** Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the Compositae. *Molecular Phylogenetics and Evolution* 1: 3–16.
- Bedi YS, Bir SS, Gill BS. 1980. Chromosome number reports LXVII. Taxon 29: 353–355.
- Bell CD, Edwards EJ, Kim A-T, Donoghue M. 2001. Dipsacales phylogeny based on chloroplast DNA sequences. *Harvard Papers in Botany* 6: 481–499.
- Brown R. 1818. Abelia. In: Clarke A, ed. Narrative of a journey in the interior of China and of a voyage to and from that country in the years 1816 and 1817. London: Printed for Longman, Hurst, Rees, Orme, and Brown, 376–378.
- Chase MW, Hills HG. 1991. Silica gel: an ideal desiccant for preserving field-collected leaves for use in molecular studies. *Taxon* 41: 215–220.
- Chase MW, Knapp S, Cox AV, Clarkson JJ, Butsko Y, Joseph J, Savolainen V, Parokonny AS. 2003. Molecular systematics, GISH and the origin of hybrid taxa in *Nicotiana* (Solanaceae). *Annals of Botany* **92:** 107–127.
- **Donoghue MJ, Bell CD, Winkworth RC. 2003.** The evolution of reproductive characters in Dispsacales. *International Journal of Plant Sciences* **164:** 453–464.
- **Donoghue MJ, Eriksson T, Reeves PA, Olmstead RG.** 2001. Phylogeny and phylogenetic taxonomy of Dipsacales, with special reference to *Sinadoxa* and *Tetradoxa* (Adoxaceae). *Harvard Papers in Botany* 6: 459–479.
- **Doyle JJ, Doyle JL. 1987.** A rapid DNA isolation procedure for small quantities of fresh leaf tissue. *Phytochemistry Bulletin, Botanical Society of America* **19:** 11–15.

- **Dumortier B-C. 1829.** Caprifoliaceae. Analyse des familles des plantes. Tournay: Imprimerie de J. Casterman, Aine: I. 33.
- Endress PK. 2010. Disentangling confusions in inflorescence morphology: patterns and diversity of reproductive shoot ramification in angiosperms. *Journal of Systematics and Evolution* 48: 225–239.
- Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. *Evolution* 39: 783–791.
- Fitch WM. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. *Systematic Zoology* 20: 406–416.
- Fukuoka N. 1968. Phylogeny of the tribe Linnaeeae. Acta Phytotaxonomica et Geobotanica 23: 82–94.
- Fukuoka N. 1969. Inflorescence of Linnaeeae (Caprifoliaceae). Acta Phytotaxonomica et Geobotanica 23: 153–162.
- Giger E. 1912. Linnaea borealis L., eine monographische Studie. Beihefte zum Botanischen Centralblatt 30: 1–78.
- Graebner P. 1900. Die Gattung Linnaea (einschliefslich Abelia). Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie 29: 120–145.
- **Guindon S, Gascuel O. 2003.** A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. *Systematic Biology* **52**: 696–704.
- Huelsenbeck JP, Ronquist F. 2001. MRBAYES: bayesian inference of phylogenetic trees. *Bioinformatics* 17: 754–755.
- Ikuse M, Kurosawa S. 1954. Notes on sect. Zabelia Rehder of the genus Abelia. The Journal of Japanese Botany 29: 107–110.
- Jacobs B, Geuten K, Pyck N, Huysmans S, Jansen S, Smets E. 2011. Unraveling the phylogeny of *Heptacodium* and *Zabelia* (Caprifoliaceae): an interdisciplinary approach. *Systematic Botany* **36**: 231–252.
- Jacobs B, Pyck N, Smets E. 2010. Phylogeny of the Linnaea clade: are *Abelia* and *Zabelia* closely related? *Molecular Phylogenetics and Evolution* 57: 741–752.
- **Kim T. 1998.** Phylogenetic studies of tribe Linnaeeae (Caprifoliaceae). DPhil Thesis, Chonbuk National University.
- Landrein S. 2010. *Diabelia*, a new genus of tribe Linnaeeae subtribe Linnaeinae (Caprifoliaceae). *Phytotaxa* 3: 34–38.
- Li RJ, Shang ZY. 1989. The chromosome observation on 5 species of rare plants of China. *Journal of Wuhan Botanical Research* 7: 217–220.

Linnaeus. 1753. Species plantarum. Stockholm: Salvius.

- Martens M, Galeotti H. 1843. Enumeratione synoptica plantarum phanerogamicarum ab Henrico Galeotti in regionibus Mexicanus collectarum. Lonicerae. Bulletin de l'Academie Royale de Bruxelles 10: 241–242.
- Maximowicz CJ. 1878. Diagnoses plantarum novarum asiaticarum. Bulletin de l'Academie Imperiale des Sciences de St-Petersbourg 24: 50–51.
- **Ogata K. 1988.** Wood anatomy of the Caprifoliaceae of Japan. *IAWA Bulletin* **9:** 299–316.
- Olmstead RG, Michaels HJ, Scott KM, Palmer JD. 1992. Monophyly of the Asteridae and identification of their major lineages inferred from DNA sequences of *rbcL*. Annals of the Missouri Botanical Garden **79**: 249–265.
- Olmstead RG, Palmer JD. 1994. Chloroplast DNA system-

atics: a review of methods and data analysis. American Journal of Botany 81: 1205-1224.

- Posada D. 2008. jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 1253–1256.
- **Prenner G, Vergara-Silva F, Rudall PJ. 2009.** The key role of morphology in modelling inflorescence architecture. *Trends in Plant Science* **14:** 302–309.
- **Pyck N, Smets E. 2000.** A search for the phylogenetic position of the seven-son flower (*Heptacodium*, Dipsacales): combining molecular and morphological evidence. *Plant Systematics and Evolution* **225**: 185–199.
- Rambaut A, Drummond AJ. 2011. Tracer v1.5. Available at: http://tree.bio.ed.ac.uk/software/tracer/. Accessed 02/2012.
- Rehder A. 1911. Wilson expedition to China. In: Sargent CS, ed. *Plantae wilsonianae*. Cambridge: The University Press, 118–128.
- Roels S, Smets E. 1996. A floral ontogenetic study in the Dipsacales. International Journal of Plant Sciences 157: 203–218.
- **Stebbins GL. 1971.** *Chromosomal evolution in higher plants.* London: Edward Arnold.
- Sun H, McLewin W, Fay M. 2001. Molecular phylogeny of *Helleborus* (Ranunculaceae), with an emphasis on the East Asia–Mediterranean disjunction. *Taxon* 50: 1001–1018.
- Swofford DL. 2002. PAUP\* phylogenetic analysis using parsimony (\*and other methods), version 4.0b10. Sunderland, MA: Sinauer Associates.

- Taberlet P, Gielly L, Pautou G, Bouvet J. 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. *Plant Molecular Biology* 17: 1105–1109.
- Troll W, Weberling F. 1966. Die Infloreszenzen der Caprifoliaceen und ihre systematische Bedeutung. Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse. Akademie der Wissenschaften und der Literatur in Mainz 4: 455–605.
- Vatke W. 1872. Üeber die Gattung Abelia R.Br. Öesterreichische Botanische Zeitschrift 32: 290–291.
- Villareal JA. 1997. A new species of *Abelia* (Caprifoliaceae) from western Mexico. *Brittonia* 52: 172–176.
- Villareal JA. 2000. Two new species of *Abelia* (Caprifoliaceae) from Mexico. *Brittonia* 52: 172–176.
- Wortley AH, Rudall PJ, Harris DJ, Scotland RW. 2005. How much data are needed to resolve a difficult phylogeny? Case study in Lamiales. *Systematic Biology* **54**: 697– 709.
- Zabel H. 1893. Über die Gattung Abelia. Mitteilungen der Deutschen Dendrologischen Gesellschaft 2: 29–31.
- Zhang WH, Chen ZD, Li JH, Chen HB, Tang YC. 2002a. Phylogeny of the Dipsacales *s.l.* based on chloroplast *trnL-F* and *ndhF* sequences. *Molecular Phylogenetics and Evolution* 26: 176–189.
- Zhang ZY, Zhou ZK, Gu ZJ. 2002b. Karyomorphology of *Heptacodium* (Caprifoliaceae *s.str.*) and its phylogenetic implications. *Taxon* 51: 499–505.