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BACKGROUND: Although statin therapy is known to in-
crease concentrations of PCSK9, whether this effect is
related to the magnitude of LDL reduction is uncertain.
This study was undertaken to understand the extent of
this effect and examine the relationship between
PCSK9 and LDL cholesterol (LDL-C) reduction.

METHODS: We measured plasma PCSK9 concentrations
by ELISA at baseline and at 1 year in 500 men and 500
women participating in the Justification for Use of St-
atins in Prevention: an Intervention Trial Evaluating
Rosuvastatin (JUPITER) trial that randomly allocated
participants to rosuvastatin 20 mg daily or placebo. We
also evaluated rs11591147, a single nucleotide poly-
morphism known to have an impact on plasma PCSK9
concentrations.

RESULTS: At baseline, median (interquartile range)
PCSK9 concentrations were higher in women [73 (62–
90)] ng/mL than in men [69 (57– 81) ng/mL] (P �
0.005). During 1 year, there was no change in PCSK9
concentrations in the placebo arm, suggesting stability
in time. In contrast, the rosuvastatin increased PCSK9
by 35% in women [101 (82–117) ng/mL] and 28% in
men [89 (71–109) ng/mL] (P � 0.0001). Among those
allocated to rosuvastatin, greater reductions in LDL-C
were associated with greater increases in PCSK9 on
both absolute and relative scales (r � �0.15, P �
0.0005). Furthermore PCSK9 (rs11591147) did not al-
ter the magnitude of LDL-C reduction associated with
rosuvastatin use.

CONCLUSIONS: In this randomized trial, rosuvastatin in-
creased plasma concentration of PCSK9 in proportion
to the magnitude of LDL-C reduction; the LDL-C re-

sponse to statin could not be inferred by PCSK9
concentrations.
© 2011 American Association for Clinical Chemistry

The major mechanism of action of statins is mediated
through upregulation of the LDL receptor (LDLR)5

found predominantly on hepatocytes (1). Recently, a crit-
ical role for the PCSK9 protein was found in the cellular
processing of the LDLR (2, 3), and it has subsequently
been reported that mutations in the proprotein conver-
tase subtilisin/kexin type 9 (PCSK9) gene associate with
wide variation in LDL cholesterol (LDL-C) concentra-
tions. Specifically, gain-of-function mutations in PCSK9
are associated with marked increases in LDL-C, similar to
those seen in familial hypercholesterolemia due to defects
in the LDLR protein (4), whereas loss-of-function muta-
tions are associated with lower PCSK9 concentrations,
low lifelong LDL-C concentrations, and reduced cardio-
vascular risk (5, 6). Given these interrelationships, there
has been considerable interest in understanding the effect
of statins on PCSK9 concentrations, particularly since
agents designed to inhibit PCSK9 are likely to be used as
adjuncts to statin therapy. To date, it has been established
that several statins increase plasma PCSK9 concentra-
tions, but whether this effect is related to the magnitude of
LDL-C reduction associated with statin treatment or is
modified by genetic status at rs11591147 remains
uncertain.

We addressed these issues among 500 men and 500
women participating in the Justification for the Use of
Statins in Prevention: An Intervention Trial Evaluating
Rosuvastatin (JUPITER) trial (7 ). These individuals
underwent genotyping at rs11591147 and had baseline
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and 1-year blood samples evaluated for both PCSK9
and LDL-C concentrations.

Methods

The patient population was derived from participants
in the JUPITER trial, a primary prevention trial com-
paring rosuvastatin 20 mg daily to placebo in 17 802
apparently healthy men and women with LDL-C �3.4
mmol/L (130 mg/dL) and high-sensitivity C-reactive
protein (hsCRP) �2.0 mg/L. For the purposes of the
current analysis, 500 men and 500 women allocated to
either rosuvastatin or placebo were selected using a
stratified randomization method from compliant trial
participants who provided consent for genetic and
plasma biomarker studies as approved by the Review
Ethics Board.

Concentrations of LDL-C were measured cen-
trally as part of the overall JUPITER trial protocol.
Genotyping was performed using the Omni 1M Quad
platform (Illumina) as part of an ongoing genome-
wide association study being conducted within the
JUPITER trial. Using these data, genetic information
on rs11591147, a previously described polymorphism
at the PCSK9 gene locus that leads to an arginine-for-
leucine substitution at position 46 (R46L), was avail-
able in 955 of the 1000 participants. We evaluated
plasma PCSK9 concentrations using a sandwich ELISA
as described (8 ). This assay measures total PCSK9, i.e.,
both mature and furin-cleaved forms (9, 10 ).

On the Basis of on our previous reports using
PCSK9 ELISA in a healthy population, we assumed a
mean value of 89 �g/L at baseline and SD 32 (8 ). With
a likely effect of 12.5%, an � value of 0.01, and a 90%

power, we expected that a minimum of 200 partici-
pants per group would be required. The estimated co-
hort size effect is considered a minimum and is likely to
be larger. Because each subject serves as his or her own
control, we anticipated achieving sufficient statistical
robustness for firm conclusions. Therefore we analyzed
250 men and 250 women randomized to placebo and
rosuvastatin and determined PCSK9 concentrations at
baseline and at 1 year. In a sex-specific analysis, we
compared baseline clinical characteristics between the
placebo and rosuvastatin groups using t-tests for con-
tinuous variables and the �2 statistic for categorical
variables. The difference in the change in PCSK9 and
LDL-C over time in all groups was tested using Spear-
man rank correlation coefficients. We used ANOVA
and Tukey–Kramer multiple comparison to determine
differences in PCSK9 by quintile of LDL-C, adjusted
for age, sex, body mass index, blood pressure, serum
glucose, serum concentrations of lipids and lipopro-
tein lipids (total cholesterol, triglycerides, LDL-C,
HDL-C), apolipoproteins AI and B, and hsCRP. Cor-
relations between PCSK9 and these variables were an-
alyzed by Spearman rank correlation coefficients.

Results

Baseline characteristics of the 500 men and 500 women
participating in this study, stratified by rosuvastatin or
placebo use, are shown in Table 1. As would be antici-
pated in a randomized trial, there were no significant
differences at study entry within each sex-specific
group according to treatment allocation.

Baseline and 1-year concentrations of measured
lipid parameters, hsCRP, and PCSK9 are shown in Ta-

Table 1. Patient demographics stratified by sex and intervention group.a

Men Women

Placebo Rosuvastatin Placebo Rosuvastatin

Age, years 64 (59–70) 62 (57–69) 70 (67–75) 70 (66–74)

Glucose

mmol/L 5.3 (5.0–5.6) 5.3 (5.0–5.7) 5.2 (4.8–5.5) 5.2 (4.8–5.4)

mg/dL 95 (90–101) 96 (90–102) 93 (87–99) 93 (87–98)

Hb A1c, % 5.6 (5.3–5.8) 5.6 (5.3–5.8) 5.7 (5.5–5.9) 5.6 (5.4–5.8)

Body mass index, kg/m2 29 (26–32) 29 (26–32) 29 (25–33) 29 (25–33)

Systolic blood pressure 130 (122–140) 130 (120–140) 132 (120–142) 130 (122–140)

Diastolic blood pressure 80 (72–82) 80 (72–84) 78 (70–81) 77 (70–81)

Metabolic syndromeb 95 (38) 97 (39) 99 (40) 92 (37)

Smoking 41 (16) 38 (15) 13 (5) 18 (7)

a Data are median (25th–75th percentile) or n (%). No statistical difference exists between the 2 groups in either sex (n � 250 in each group).
b As defined by the consensus criteria of the American Heart Association.
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ble 2 and Fig. 1. Median (interquartile range) baseline
concentrations of PCSK9 were higher in women [73
(62–90) ng/mL (n � 499)] than in men [69 (57– 81)
ng/mL (n � 500)] (P � 0.005). Participants random-

ized to placebo had no significant change in any mea-
sured variable, including PCSK9, suggesting consider-
able stability of PCSK9 concentrations over time. In
contrast, participants randomized to rosuvastatin had

Table 2. Baseline and 12-month lipids, apolipoproteins A and B, and hsCRP.a

Baseline 12 months

Placebo Rosuvastatin Placebo Rosuvastatin

Men

Cholesterol, mg/dL 184 (171–194) 180 (165–194) 182 (168–199) 125 (109–139)b

Triglycerides, mg/dL 123 (82–174) 125 (85–190) 121 (88–167) 99 (72–151)b

LDL-C, mg/dL 108 (95–118) 106 (88–117) 107 (94–120) 50 (40–61)b

HDL-C, mg/dL 46 (38–55) 44 (37–54) 46 (40–55) 49 (41–59)b

Apo B, mg/dL 107 (95–119) 106 (92–119) 108 (96–120) 64 (55–74)b

Apo A, mg/dL 153 (137–172) 152 (136–167) 157 (139–176) 159 (142–180)b

hsCRP, mg/L 3.8 (2.5–6.4) 3.5 (2.4–6.5) 3.2 (1.8–5.6) 2.2 (1.2–4.3)

Women

Cholesterol, mg/dL 194 (179–206) 192 (179–207) 196 (181–214)b 134 (121–149)b

Triglycerides, mg/dL 116 (86–158) 117 (93–159) 116 (88–167) 98 (74–125)b

LDL-C, mg/dL 110 (95–121) 108 (96–120) 112 (97–124)b 49 (41–62)b

HDL-C, mg/dL 57 (48–70) 58 (49–68) 58 (49–67) 62 (53–73)b

Apo B, mg/dL 107 (94–119) 105 (93–118) 108 (94–120) 61 (54–70)b

Apo A, mg/dL 175 (156–201) 178 (158–198) 182 (161–203) 188 (168–204)b

hsCRP, mg/L 4.3 (3.0–6.9) 4.7 (3.1–7.6) 4.1 (2.5–6.7) 2.3 (1.3–4.1)b

a Data are median (25th–75th percentile).
b P � 0.005 baseline vs 12 months (n � 250 in each group unless stated otherwise in the text).

Fig. 1. Stability of PCSK9 concentrations over 1 year in the JUPITER placebo arm vs the rosuvastatin arm. PCSK9
concentrations in men and women at baseline and over 1 year.

Vertical bars, minimum and maximum values; box, interquartile range (IQR); horizontal bar, median; NS, nonsignificant;
t � 0, baseline values; t � 12, 1-year values. *P � 0.0001.

PCSK9 in JUPITER
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significant reductions in total cholesterol, LDL-C, trig-
lycerides, and hsCRP as well a modest increase in
HDL-C. These effects were accompanied by a 35% in-
crease in median concentrations of PCSK9 in women
from 75 (66 – 85) ng/mL to 101 (82–117) ng/mL, P �
0.0001, and a 28% increase in men from 69 (57– 8)
ng/mL to 89 (71–109) ng/mL, P � 0.0001 (Fig. 1). At
baseline, there was a significant correlation (n � 999,
r � 0.15, P � 0.0001) between concentrations of
PCSK9 and LDL-C; however, this relationship was no
longer observed on rosuvastatin treatment (n � 498,
r � �0.01, P � 0.84) (see Supplemental Fig. 1, A and B,
which accompany the online version of this article at
http://www.clinchem.org/content/vol58/issue1).

Furthermore, the individual LDL-C percent
change from baseline in response to rosuvastatin treat-
ment was plotted in a declining manner as shown in
Fig. 2A and corresponding individual percent change
from baseline in PCSK9 in Fig. 2B. Although individual

variation among those allocated to rosuvastatin was
wide, a significant relationship was observed between
the magnitude of LDL-C reduction and the increase in
PCSK9 concentrations; this was seen in both an analy-
sis of quintiles of LDL-C reduction (Fig. 2C) and when
the LDL-C change was treated as a continuous variable
(Fig. 2D). A similar response was observed for apolipo-
protein B and non–HDL-C changes and PCSK9
changes (data not shown).

Polymorphism at rs11591147 PCSK9 (R46L) was
found in 46 of 955 individuals (24 male heterozygotes,
21 female heterozygotes, and 1 male homozygote). The
allele frequency was thus 47 of 1910 chromosomes or
0.0246, close to that previously reported in population-
based studies (6 ). The sole homozygous subject was
excluded from further analysis. Serum PCSK9 at base-
line was lower in carriers of the R46L SNP by �19%
(P � 0.005) (see online Supplemental Fig. 2A). And as
seen in previous studies (6 ), the baseline LDL-C con-

Fig. 2. Rosuvastatin increased plasma concentrations of PCSK9 in proportion to the magnitude of LDL-C
reduction.

(A), Individual percentage LDL-C change in response to rosuvastatin 20 mg ranked by magnitude of effect. (B), Corresponding
change in PCSK9 concentrations for each study subject ranked by the magnitude of LDL-C change. (C), Changes in PCSK9 ranked
by quintiles of LDL-C change on rosuvastatin (P � 0.0231 by ANOVA). (D), LDL-C percentage change [(LDL-C at 12 months �
LDL-C baseline)/LDL-C baseline � 100] on rosuvastatin correlates significantly with PCSK9 percentage change [(PCSK9 at 12
months � PCSK9 baseline)/(PCSK9 baseline � 100)].
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centrations in R46L carriers were lower by �9% in
men (n � 24, mean 94 mg/dL, vs n � 451, mean 103
mg/dL) and by �7% in women (n � 21, mean 100
mg/dL, vs n � 458, mean 107 mg/dL). In the rosuvas-
tatin arm with available genetic status (n � 478), no
significant differences in LDL-C reduction were ob-
served as influenced by the genetic status and thus no
increased response to statin therapy in the R46L carri-
ers (see online Supplemental Fig. 2B).

Discussion

We examined 1000 patients in the JUPITER trial. Half
(n � 500) were randomized to placebo and half to ro-
suvastatin 20 mg/day. We established that plasma
PCSK9 concentrations were stable as a biomarker over
time among those allocated to placebo, but increased
by approximately 30% among those allocated to rosu-
vastatin 20 mg. Although individual responses were
variable, we observed a significant relationship be-
tween the magnitude of LDL-C reduction and the in-
crease in PCSK9 concentrations on both absolute and
relative scales. Specifically, across the full study cohort,
greater LDL-C reductions were associated with greater
increases in plasma PCSK9 concentrations, an effect
present in both sexes despite higher baseline PCSK9
concentrations in women compared with men.

PCSK9 gain-of-function mutations were identi-
fied as 1 of 4 molecular causes of familial hypercholes-
terolemia (4 ). PCSK9 is the ninth member of the
mammalian proprotein convertase family of serine en-
doproteases (11 ). PCSK9 is recognized as a key regula-
tor of serum LDL-C concentrations. The gene for
PCSK9 is located on chromosome 1p34 and encodes a
692–amino acid protein that is mostly expressed in the
liver and intestine (11 ). The protein comprises a 30 –
amino acid signal, peptide (SP), a prodomain (amino
acids 31–152), a catalytic domain (amino acids 153–
454), and a cysteine- and histidine-rich C-terminal do-
main (amino acids 455– 692) (12, 13 ). The only known
substrate for PCSK9 is itself. PCSK9 catalytic domain
contains the main binding structure for the epidermal
growth factor–like repeat A (EGF-A) domain on the
LDLR (14 ), whereas the C-terminal domain binds cell-
surface proteins, including annexin A2 (15 ). The major
function of PCSK9 is to mediate the degradation of the
LDLR protein, and evidence exists for both intracellu-
lar and extracellular sites of interaction between the
LDLR EGF motif and PCSK9 (16 –19 ). However, the
predominant source of circulating PCSK9 in blood
originates from the extracellular pathway in the liver,
and this correlates with the concentration of plasma
cholesterol (18 ).

PCSK9 is regulated at the transcriptional level by
sterol regulatory element binding protein 2 (SREBP-2)

(20, 21 ), possibly by SREBP-1c (22 ), and especially by
hepatocyte nuclear factor 1� (HNF-1�) (23 ). PCSK9
expression is downregulated by cholesterol via
SREBP-2 (24 ) and upregulated by statins via SREBP-2
(25 ). The liver specific receptor LXR and insulin also
regulate PCSK9 (26, 27 ). Therefore, mRNA levels of
LDLR and PCSK9 are regulated by SREBP-2 and st-
atins, inducing an upregulation of both LDLR and
PCSK9 (28 ). The results obtained in the present study
are consistent with this observation. The concept that
the statin-mediated increase in PCSK9 may limit the
efficacy of statins in humans (13, 29 ), however, is not
supported by the present study.

The effect of statins on PCSK9 has been inferred or
documented in previous studies (11, 30 –32 ). Here we
show that rosuvastatin at a daily dose of 20 mg reduces
LDL-C by approximately 50% on average and increases
PCSK9 by 28% in men and 34% in women. Baseline
PCSK9 concentrations correlate with LDL-C (n � 999,
r � 0.15, P � 0.0001). Although a statistically signifi-
cant correlation between serum concentrations of
PCSK9 and LDL-C is present at baseline (r � 0.15),
only approximately 2.25% of the variance in LDL-C
concentrations is explained by PCSK9 concentrations.
On rosuvastatin, this correlation is no longer observed
(n � 498, r � �0.01, P � 0.84) (see online Supplemen-
tal Fig. 1, A and B). Similar findings with the drug ator-
vastatin have been reported (31 ). The observation that
the increase in PCSK9 concentrations with rosuvastatin is
not associated with a blunted LDL-C response is counter-
intuitive, based on the postulated mechanisms of action
of PCSK9. In fact, the data presented here show a signifi-
cant negative correlation between the percentage change
in PCSK9 concentration on rosuvastatin and the percent-
age change of LDL-C (n � 498, r � �0.15, P � 0.0005)
(Fig. 2D). This observation warrants further mechanistic
explanation. Based on these data (Fig. 2, A and B), how-
ever, plasma PCSK9 concentrations cannot be used to
predict individual response to statin therapy. It remains to
be determined whether the measurement of PCSK9 con-
centration in blood aids in diagnosing patients who are
refractory to statins. The development of PCKS9 inhibi-
tors may require such measurement if it can be demon-
strated that measuring PCSK9 concentrations influences
the choice and success of treatment.

The R46L allele frequency in our study was 2.5%,
similar to that of the general population, leading to
approximately 8% lower LDL-C than noncarriers
(6, 33 ). Given the ethnic heterogeneity of our popula-
tion, we cannot, however, perform meaningful statisti-
cal comparisons without a much larger sample size.
Nonetheless, the presence or absence of this single nu-
cleotide polymorphism was not associated with a dif-
ference in the response to rosuvastatin (see online Sup-
plemental Fig. 2B); therefore, knowing the R46L

PCSK9 in JUPITER
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variant would not likely guide therapy in our
population.

We confirm the observation that statins increase
PCSK9 (23, 25, 29 ). Whereas individual LDL-C re-
sponse to rosuvastatin cannot be predicted by PCSK9
concentrations (Fig. 2, A and B); there is a significant
association between the magnitude of change in
LDL-C and changes in PCSK9 concentrations (see on-
line Supplemental Fig. 1C). A possible explanation is
that the transcriptional regulatory protein SREBP-2
mediates the coordinate expression of the LDLR and
PCSK9 in response to cellular cholesterol deprivation
(24 ).

As a biomarker and a therapeutic target, PCSK9 is
appealing (12 ), but because of stoichiometric interac-
tions between the EGF-A region of the LDLR and
PCSK9, it has, to date, not been amenable to targeting
by small molecules. Several approaches have thus been
examined to decrease PCSK9 concentrations and are at
an advanced stage. One such approach is the use of
antisense mRNA that modulates the expression of
PCSK9 mRNA, leading to reduced PCSK9 production
(34 –36 ). Another approach is the inhibition of PCSK9
binding to the LDLR by using antibodies against
PCSK9, leading to inhibition of LDLR degradation me-
diated by PCSK9 (19, 37 ). These approaches require
the manufacture of biological substrates (antisense oli-
gonucleotides or antibodies) and are likely to entail
production costs that will restrict their application to
patients in whom statins at maximally tolerated doses
still do not allow target levels to be reached as proposed
in national guidelines (38, 39 ). Given this interest, sev-
eral monoclonal antibodies to PSCK9 are already in
phase 2 clinical trials (see www.clinicaltrials.gov), giv-

ing clinicians a potentially effective add-on treatment
alternative. A strategy based on the measurement of
LDL-C response and PCSK9 concentrations may help
identify those statin-resistant subjects who may benefit
from PCSK9 modulation for therapeutic benefits and
the smaller proportion of subjects unable to tolerate
statins (40 ).
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