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Abstract

Following the introduction of cattle, exotic dung beetles (Coleoptera: Aphodiidae, Geotrupidae, Scarabaeidae)
were imported into the Antipodes (Australia and New Zealand) and North America (primarily the United States) to
accelerate the degradation of cattle dung on pastures. The history of dung beetle introductions between the two
regions is similar but has not previously been assessed: this is important as new introductions are continuing in the
regions. Here, we review these introduction programs, report on their current status, and discuss methodological
advances. In doing so, we examine the accidental introduction of exotic (i.e., adventive) species and the contribution
of both deliberately introduced and adventive species to endemic dung beetle faunas. Further, we provide a list of
pest and parasite species whose populations can be reduced by dung beetle activity. We also identify a combined
total of 37 introduced and 47 adventive dung beetle species that have become established in the Antipodes and
North America, with exotic species dominating dung beetle assemblages from pasture habitats. Climatic and
edaphic matches, the size of founding populations, abiotic and biotic stressors, and the time of year when releases
are made are all critical determinants that affect the success of dung beetle introduction programs. Finally, we
discuss opportunities, plus the risks and challenges associated with dung beetle introductions. We hope that this
review will aid in the success of future introduction programs, either to enhance ecosystem services in areas that
they are needed, or potentially to reestablish native species in regions where they have been extirpated.
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Fresh dung of cattle (Bos taurus indicus Linnaeus, 1758), colloqui-
ally referred to as pads or pats, is about 80% water and rich in
volatile organic compounds, nutrients, and microorganisms (Stavert
et al. 2014, Frank et al. 2017). Accumulations of dung pollute water
sources, foul pastures, provide breeding sites for pests and para-
sites of livestock, and represent a loss of soil nutrients from the
pasture (Bornemissza 1960, 1976; Waterhouse 1974; Anduaga and
Huerta 2007). However, fresh dung also attracts a diverse group of
insects that function as coprophages, recyclers, decomposers, pred-
ators, and parasitoids (Hanski 1991, Floate 2011, Floate and Kadiri
2013). Through their activities, these insects scatter and bury dung,
thus maintaining pasture quality and incorporating nutrients from

the dung back into the soil. Dung beetles (Coleoptera: Aphodiidae,
Geotrupidae, Scarabaeidae) are primary contributors to the rapid
degradation of dung pads (Waterhouse 1974, Bornemissza 1976,
Forgie et al. 2010).

As critical ecosystem function providers, dung beetles are rec-
ognized as ecosystem engineers (Nichols et al. 2008, Johnson et al.
2016). Adults arrive at fresh pads to lay eggs and feed on the pad’s
nutrient-rich fluids, whereas larvae develop on undigested plant fiber
(Cambefort 1991, Errouissi et al. 2004). These feeding and nesting
activities: 1) disrupt breeding habitat for pests and parasites af-
fecting livestock (Hughes et al. 1978, Bornemissza 1979, Ridsdill-
Smith and Kirk 1985, Nichols and Gomez 2014, Gregory et al.
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2015); 2) reduce the spread of soil-borne human pathogens (Miller
1954, Jones et al. 2019); 3) accelerate the return of nutrients from
the pad back into the soil (Owen et al. 2006, Yamada et al. 2007,
Sitters et al. 2014); 4) improve soil aeration, water-holding capacity
and soil fertility (Bang et al. 2005, Decaéns et al. 2006, Brown et al.
2010); 5) enhance plant growth (Macqueen and Beirne 1975b, Bang
etal.2005); 6) aid in seed dispersal (Nichols et al. 2008, Manns et al.
2020); and 7) also provide pollination services (Sakai and Inoue
1999). The potential benefits of these services, when converted to
2021 US dollars, have been estimated at $US 5.9 billion per annum
in the United States (Fincher 1981, Losey and Vaughan 2006) and
$US 425.9 million per annum in the United Kingdom (Beynon et al.
2015). The value of dung beetle service in Australia has not been es-
timated to date, but it is expected to be higher than that in the United
Kingdom (Doube 2018a). The United Kingdom has a depauperate
dung beetle fauna (Holter 1982, Gittings and Giller 1997), whereas
the Australian native dung beetle fauna has been supplemented with
more efficient dung-degrading and diverse exotic dung beetle species
(Edwards 2007, Monteith 2015).

In terms of guilds, dung beetles are broadly classified as tun-
nelers, rollers, and dwellers, based on their adult reproductive be-
havior (Bornemissza 1976, Doube 1990, Tonelli 2021). Tunnellers
relocate dung from the fresh pad into tunnels or galleries in the
soil beneath or near the pad (Simmons and Ridsdill-Smith 2011).
Females lay eggs beside the buried dung, which provides food for
the larvae (Bornemissza 1976, Doube 1990). Rollers remove a por-
tion of dung from the pad and form it into a ball, which they roll
away for burial (Simmons and Ridsdill-Smith 2011). As with the
tunnelers, female rollers lay eggs beside the buried dung. Dwellers in-
clude both non-nesters and endocoprids—those that feed and breed
within the pad or in organic-rich soil immediately beneath the pad
(Bornemissza 1976, Christensen and Dobson 1976, Tonelli 2021).
Rollers are competitively superior to tunnellers, and tunnellers are
competitively superior to dwellers (Hanski and Cambefort 1991a).
However, tunnellers relocate dung deeper into the soil profile
(Gittings and Giller 1997, Anduaga and Huerta 2007). In contrast,
rollers and dwellers mostly scatter the pad or, for rollers, bury it in
shallow tunnels (Doube and Marshall 2014).

Prior to European settlement, the dung faunas of North America
were (and still are) dominated by species of dwellers (Aphodiidae:
Aphodiinae) ill-suited to degrade the large pad-like deposits of dung
left by cattle. In Australia, the native beetle species had evolved to
feed on the drier, smaller, and more pellet-shaped dung of native
marsupial species (Bornemissza 1970, 1976; Waterhouse 1974).
With European settlement, cattle were introduced into these regions
and became the dominant large grazing herbivore species. These
introductions first occurred in what is now the continental United
States in 1493 (Bowling 1942), in Canada in 1541 (MacLachlan
2006), Australia in 1788 (Redhead et al. 1991), and New Zealand
in 1814 (Stringleman and Scrimgeour 2009). The Antipodes and
North America (hereafter used in reference to Canada and the
United States; i.e., north of Mexico) together comprise 19% of
the global land area and now support 10% of the global herd of
cattle (FAO 2017). The dung produced by these animals inevitably
led to the aforementioned concerns of pasture quality, water pol-
lution, and increased numbers of pests and parasites affecting live-
stock. To address concerns associated with accumulations of cattle
dung, global searches were initiated to identify dung beetle species
capable of quickly degrading dung pads for introduction into the
Antipodes and the United States (Bornemissza 1970, 1976; Nakao
and Funasaki 1979; Blank et al. 1983; Funasaki et al. 1988; Dymock
1993). Other species of dung beetles were accidentally introduced

(i.e., adventive species) into the Antipodes and North America by
human activity (Brown 1940, 1950; Emberson and Matthews 1973;
Stebnicka 2009).

Within the context of almost half a millennium of European col-
onization and cattle production, we review the history and current
status of dung beetles associated with cattle dung in the Antipodes
and North America. More specifically, we examine: 1) the exotic spe-
cies that have been deliberately introduced and methods/procedures
used for their importation, 2) adventive species, 3) opportunities
that potentially might be realized with additional introductions, and
4) risks associated with such introductions. We close with a series of
recommendations for consideration in the development of potential
further dung beetle introduction programs.

Deliberate Introductions

More than 100 species of dung beetles have been deliberately intro-
duced into regions outside of their native range primarily to reduce
populations of dung-breeding flies affecting cattle. At least 37 of
these beetle species are now established in eight countries where
they have been introduced (Table 1). Historical perspectives and the
current status of dung beetle introduction programs, plus import-
ation and quarantine procedures associated with these programs, are
discussed below.

Historical Perspectives: Deliberate Introductions
Redistribution programs for dung beetles have been reported in the
literature since the early 1900s. In 1909, dung beetles were intro-
duced onto the Hawaiian islands to control horn fly, Haematobia
irritans irritans Linnaeus, 1758 (Fullaway 1921, Markin and
Yoshioka 1998). In 1929, Copris incertus Say, 1835 was imported
into Fiji from Hawaii (Simmonds 1929). In 1956, New Zealand
introduced C. incertus to control nuisance flies (Blank et al. 1983).
The Australian organization CSIRO (Commonwealth Scientific and
Industrial Research Organization) Entomology operated a dung
beetle importation program from 1964 to 1986. Under that pro-
gram, Digitonthophagus gazella (Fabricius, 1787) obtained from
Hawaii were released in 1968 to reduce populations of bush fly
(Musca vetustissima Walker, 1849) and buffalo fly (H. irritans exi-
gua Linnaeus, 1758) (Bornemissza 1976, Roth et al. 1988, Edwards
2007). Ultimately, the program resulted in the establishment of 23
exotic dung beetle species throughout Australia (Edwards 2007).
In 1978, releases of D. gazella, Euoniticellus intermedius (Reiche,
1849), and Sisyphus spinipes (Thunberg, 1818) were made on New
Caledonia, and of D. gazella, E. intermedius, and Liatongus milita-
ris (Castelnau, 1840) on Vanuatu, using beetles provided by CSIRO
Australia (Gutierrez et al. 1988). In 1988, releases of D. gazella and
Onitis venderkelleni Lansberge 1886 were made on Easter Island
(Pacific Ocean) using beetles obtained from Australia (Ripa et al.
1995). In 1990, D. gazella obtained from the state of Texas in the
United States were released into Brazil (Bianchin et al. 1992); it is
the only dung beetle species to have been deliberately introduced in
that country (Filho et al. 2018). The most comprehensive dung beetle
introduction programs were those of Australia and the United States,
which we assess further.

In the United States, releases on both the mainland and on the
island state of Hawaii have resulted in the establishment of 23 exotic
dung beetles species (Table 1). Indeed, Hawaii is a global pioneer
of classical biological control efforts, having deliberately introduced
at least 679 vertebrate and invertebrate species to control inva-
sive exotic pests (Fullaway 1921, Funasaki et al. 1988). One such
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pest is the horn fly. Native to the Mediterranean region, horn fly was
accidentally introduced onto Hawaii before 1897, became a signifi-
cant threat to cattle production, and received considerable attention
for almost a century from 1898 to 1982 (Funasaki et al. 1988). By
the 1950s, Hawaii had introduced seven dung beetle species, along
with 33 parasitoids and predators (including birds) for the biological
control of horn fly (Markin and Yoshioka 1998). By the 1970s, the
number of dung beetle species introduced into Hawaii reached 21
(Fincher 1981). In the continental United States, especially in the
southeastern region where most of the high-density livestock grazing
occurs, native dung beetles cannot effectively degrade the large
amounts of cattle dung deposited on pastures (Fincher 1981). In the
southeastern region, only ten of 40 native species are significant de-
graders of dung, and only three of these have a wide distribution
(Fincher 1981). To augment the dung burial activities of native spe-
cies and reduce horn fly populations, the United States Department of
Agriculture’s Agricultural Research Service (USDA/ARS) initiated a
program in 1969 to introduce exotic species of dung beetles (Fincher
and Hunter 1986). Several of the species subsequently released onto
the mainland were obtained from Hawaii, with additional species
obtained from Pakistan, Argentina, Egypt, and Mexico. Species of
African and European origin were received from Australia via the
CSIRO dung beetle project (Blume et al. 1973).

The CSIRO and the USDA/ARS projects coordinated their efforts
for mutual benefit. CSIRO sent Dr. George Bornemissza to Hawaii
to study local efforts to control horn fly for application to control
bush fly and buffalo fly in Australia (Markin and Yoshioka 1998).
In 1967 and 1968, Australia subsequently released nine dung beetle
species of African and Asian origin, which were obtained from popu-
lations established in Hawaii (Markin and Yoshioka 1998). In re-
turn, Hawaii received nine dung beetle species that had successfully
established following their release into Australia. These nine species
were released onto Hawaii between 1973 and 1982, with eight spe-
cies successfully becoming established (Funasaki et al. 1988, Markin
and Yoshioka 1998). Largely because of these two projects, a total of
37 exotic species of dung beetles have been successfully established
in the Antipodes (Australia — 23, New Zealand — 1) and 23 in the
United States, including continental and the island state of Hawaii
(Table 1).

One focus of the CSIRO project was to introduce into Australia,
different climatic and genetic strains of a given dung beetle species;
e.g., D. gazella (14 strains), O. taurus (Schreber, 1759) (7 strains),
E. fulvus (Goeze, 1777) (§ strains), E. pallipes (Fabricius, 1781) (3
strains). This was done to increase the genetic diversity of introduced
populations and enhance the likelihood of their establishment under
different bioclimatic conditions (Bornemissza 1976, 1979; Edwards
2007). Thus, dung beetle surveys were conducted in six African,
and 14 Asian and European countries, ranging from Morocco and
Spain to Hong Kong, to identify suitable species and strains that
are pre-adapted to bovine dung and to a wide range of climatic re-
gions similar to those occurring in Australia (Bornemissza 1976,
1979; Edwards 2007). Particular care was taken to release beetles
into regions with climates similar to the country of origin. For ex-
ample, dung beetles released in southwestern Australia were intro-
duced from countries with cold and moist winters, and warm and
dry summers (Bornemissza 1979, Steinbauer and Wardhaugh 1992,
Wright et al. 2015).

Current Status: Deliberate Introductions

Dung beetle introductions in the Antipodes continue intermittently
(Steinbauer and Wardhaugh 1992, Mackereth et al. 2013, Forgie

et al. 2014, Wright et al. 2015, Doube 2018a, Forgie et al. 2018).
In Australia, two species of European origin have been continu-
ously released since 2014 (Doube 2018b, DBEE 2021) with three
additional species approved for introduction (CSIRO 2018, Doube
2018b, DBEE 2021). In New Zealand, 11 species were approved for
introduction after years of intensive domestic field trials (Mackereth
et al. 2013, Forgie et al. 2014, Forgie et al. 2018). Eight of these
species have now been introduced, with seven of them being com-
mercially available for release across New Zealand, at least up until
2021 (DBEE 2021).

In North America, there are no ongoing dung beetle introduc-
tion programs and little effort has been made to introduce or redis-
tribute dung beetles since the 1990s (Table 1). There are three main
reasons for this. Firstly, there are higher regulatory barriers for the
importation of invertebrate biocontrol agents (IBCAs). There is now
greater emphasis in classical biocontrol programs to assess the risk
of exotic IBCAs introductions on native species (e.g., Sheppard et al.
2003, Hunt et al. 2008, Mason et al. 2017). Assessing this risk in-
creases the cost and reduces the likelihood of biocontrol initiatives
(Sheppard et al. 2003). Secondly, previous introduction programs
were undertaken to control invasive species of dung-breeding pests,
but there have been no recent such invasions to generate interest
in new programs. Horn fly was first reported in North America on
the east coast in 1887 and by 1897, it had spread across the con-
tinent and onto the Hawaiian Islands (Marlatt 1910). Its presence
on the islands led to introductions of exotic dung beetle species from
the early to mid-1900s (Table 1). Face fly (Musca autumnalis De
Geer, 1776) was first reported in North America in the 1950s and,
within 30 yr, it was present across southern Canada and in all but
the most southern states of the United States (Krafsur and Moon
1997). Introductions of exotic dung beetles in the 1970s (Table 1)
were undertaken to control this pest and also horn fly. This latter
Introduction program coincided with CSIRO’s dung beetle project
(Bornemissza 1976), whose positive results undoubtedly facilitated
research activity and producer support for efforts in North America.
Thirdly, North America already has a diverse assemblage of tun-
neling and rolling dung beetles associated with cattle dung; i.e., eight
species of Geotrupidae and 67 species of Scarabaeidae (Bezanson
and Floate 2019). Thus, introductions of exotic species into North
America are theoretically not needed to degrade cattle dung, but ra-
ther run the risk of supplanting the native species that already oc-
cupy this niche. The exception is the island state of Hawaii, which
lacks a dung beetle assemblage that evolved jointly with large grass-
land herbivores.

The most recent redistribution efforts of dung beetles within
North America occurred in 2008 when D. gazella and O. taurus
were collected from the field in the United States and imported into
Canada to establish research colonies. These colonies were used in
laboratory and field cage studies to develop bioclimatic models to
predict the eventual distributional limits of these species in North
America (Floate et al. 20135, Floate et al. 2017). Despite the release
of both species on pasture in southern Alberta, Canada (Floate et al.
2013), multiple years of dung-baited pitfall trapping have failed to
provide evidence of their establishment (Floate and Kadiri 2013,
Bezanson and Floate 2019). The import of these species into con-
tainment for scientific research and environmental release required
applications and petitions to Canadian regulatory authorities con-
cerning the potential impact of these IBCAs on the environment
and native species (Hunt et al. 2008, Mason et al. 2017). The major
points included in the petition were: 1) D. gazella is a Neotropical
species not expected to overwinter in Canada, 2) O. taurus was
present within 200 km of the Canadian border and possibly already
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established in parts of the country, and 3) dung beetle assemblages
on pastures in Canada are overwhelmingly dominated by exotic spe-
cies; e.g., Onthophagus nuchicornis.

Advances in Importation and Quarantine

Procedures

Dung beetle introduction programs require a series of steps to re-
duce the risk of accidentally introducing pests or pathogens from the
country of the beetle’s origin. Because cattle dung may harbor such
agents, beetles have been commonly shipped as surface-sterilized
eggs. The sterilization process used in CSIRO’s dung beetle project
(1964-1986) was immersion in 3% formalin for 3 min (Bornemissza
1976). The surface-sterilized eggs were then packed in boxes with
sterile peat and air-freighted to the recipient country into a specially
designed and equipped sterilizing room. The eggs were subsequently
placed into cavities within hand-formed balls of dung or in balls of
dung obtained from cultures of donor beetles, and held until adult
emergence (Bornemissza 1976, Fincher 1986). Rearing, breeding,
mass production, and field release are the major steps to be car-
ried out in the recipient country (Bornemissza 1976, Steinbauer and
Wardhaugh 1992, Wright et al. 2015).

Initial introductions of dung beetles into Hawaii during the early
1900s used adult beetles imported without a sterilization process
(Fullaway 1921). Most of the imported species failed to establish,
perhaps due to an ecological mismatch (Fincher 1981). One species
that did establish was D. gazella. CSIRO imported adult D. gazella
from Hawaii in 1966 after first applying acaricide treatments to
remove mites present on the beetles. However, upon receipt of the
beetles at CSIRO’s quarantine facility in the city of Canberra, live
mites were still present and the beetles were destroyed without re-
lease (Bornemissza 1976). CSIRO subsequently obtained D. gazella
from Hawaii as surface-sterilized eggs. These were reared to adults
and released in the field on 30 January 1968 to become the first spe-
cies of deliberately introduced dung beetle to successfully establish
in Australia (Bornemissza 1976). Importation of surface-sterilized
eggs became a standard practice for the CSIRO and the USDA/ARS
dung beetle introduction programs (Waterhouse 1974, Fincher and
Hunter 1986, Steinbauer and Wardhaugh 1992, Wright et al. 2015).

For the USDA/ARS program, the import permit process re-
quired the production and shipment of eggs from the country of
origin under the supervision of a United States scientist (Fincher and
Hunter 1986). The eggs were surface-sterilized, packed in boxes with
moist peat moss from the United States and then shipped to an ap-
proved quarantine facility in the United States (Fincher and Hunter
1986). Eggs received for four species, two each from South Korea (in
1976) and Pakistan (in 1978), either failed to hatch or hatched dur-
ing shipment with larvae dying en route (Fincher and Hunter 1986).
These results stimulated research on alternative methods of egg-ster-
ilization and shipment. In a comparison of ten methods, egg-to-adult
survival of D. gazella was greatest when adults were allowed to
make brood cells in autoclaved soil using rehydrated dung that had
been freeze-dried (Fincher and Hunter 1986). In a comparison of dif-
ferent methods incorporating steps mandated by federal Animal and
Plant Health Inspection Service guidelines, egg treatments inevitably
reduced egg-to-adult survival (Fincher and Hunter 1987).

Further examination revealed additional consequences of import-
ing beetles only as eggs, particularly for those species practicing
brood care. For example, female Onthophagus vacca (Linnaeus,
1767) transfer their microbiome to the larvae by lining the egg
chamber within the brood ball with regurgitated or fecal material
(Doube 2018b). In Copris hispanus (Linnaeus, 1764), brood-care

increases egg-to-pupal survival by 70-80%, and in Kheper nigroae-
neus (Boheman, 1957), eggs cannot survive without maternal
care (Edwards 1988, Halffter et al. 1996). The eggs of other dung
beetle species are easily desiccated during shipment, which causes
shrinkage, tearing or rupture of the egg membrane to kill the embryo
(Bornemissza 1976). Furthermore, larvae that emerge from eggs dur-
ing shipment perish in a few hours without food (Bornemissza 1976,
Fincher and Hunter 1986). Therefore, alternatives to the import-
ation of surface-sterilized eggs have been pursued.

Following the completion of the initial CSIRO dung beetle intro-
duction project (1964-1986), subsequent projects in Australia have
relied upon the importation of adults. Under a project conducted
by CSIRO/WA Department of Agriculture (1990-1992), adult bee-
tles were imported from Spain directly to quarantine facilities at the
Australian Animal Health Laboratory (AAHL) in Geelong, Victoria
(Steinbauer and Wardhaugh 1992). Projects operating from 2012 to
2014, and from 2017 to 2022 also imported beetles (Wright et al.
2015, DBEE 2021). For these latter projects, collected beetles were
sieved, rinsed in water, transferred to buckets of moist vermiculite,
and provided with fresh dung. Prior to shipment from the country of
origin, five to ten females were dissected in saline to assess ovarian
development and to ensure the absence of parasitic nematodes
(Steinbauer and Wardhaugh 1992, Wright et al. 2015, DBEE 2021).
If results of the assessment warranted, the remaining beetles were
transferred to fresh or damp vermiculite in tightly sealed vials and
held without food for 3-5 d to void their gut and reduce the chances
of mite survival. The beetles, still in the vials, were then packed in
large aluminum boxes with activated charcoal and air-freighted into
Australia. The presence of activated charcoal reduced the likelihood
of beetles being affected by the insecticidal sprays that are routinely
sprayed in aircraft entering Australia to prevent the introduction of
adventive species (Steinbauer and Wardhaugh 1992, Wright et al.
2015, DBEE 2021). Despite no food or water for a week, < 0.1%
of the beetles shipped in this manner died in transit (Steinbauer and
Wardhaugh 1992, Wright et al. 2015).

Species that have recently been imported into Australia (e.g.,
Bubas bubalus (Oliver, 1811) and Onthophagus vacca) were shipped
as adults and held for rearing in AAHA ultra-high quarantine insect-
aries (Wright et al. 2015, Doube 2018b). After they laid eggs, the
adults were destroyed to kill any mites or nematodes that they might
have harbored. Adults developing from the eggs were held for one or
more generations in quarantine to increase their numbers and then
shipped as surface-sterilized eggs to distribution centers for add-
itional rearing, multiplication and eventual field release (Steinbauer
and Wardhaugh 1995, Doube 2018b). Surface-sterilization using
formalin was replaced with use of Virkon, a new acid peroxygen sys-
tem-based disinfectant. Established field populations of these species
in Australia have provided source material for shipments of beetles
into New Zealand, following layers of quarantine procedures and
biosecurity guidelines (Pers. comm. Dr. Shaun Forgie, Dung Beetle
Innovations).

Importing beetles as pupae, instead of as eggs or adults, may pro-
vide additional advantages. Pupae are less likely to carry contamin-
ants (e.g., mites) and, because they are inactive, more easily handled
during transport (Wright et al. 2015, Doube 2018b). Shipping the
pupae of diapausing species also may reduce generation times and
increase reproductive potential by accelerating the vernalization pro-
cess as has been reported for B. bubalus (Wright et al. 2015, Doube
2018b).

In addition to how the beetles are shipped (egg, pupa or adult),
other steps are taken to further mitigate the risk of accidentally intro-
ducing pests and diseases with shipments. The CSIRO and USDA/
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ARS projects only collected beetles from regions within countries
for which an occurrence of foot-and-mouth disease had not been
reported for the previous 5 yr (Bornemissza 1976,1979; Fincher
1986, Wright et al. 2015). Prior to leaving quarantine, all packag-
ing materials, residual dung, soil and dead beetles are autoclaved
(Doube 1986, Fincher 1986, Fincher and Hunter 1986, Steinbauer
and Wardhaugh 1992, Wright et al. 2015). Rearing and quarantine
operations are undertaken in accordance with conditions stipu-
lated as part of the import process approved by federal authorities
(Bornemissza 1979, Fincher 1981).

Advances in Mass Rearing and Release Procedures
Methods used over the years in Australia have been modified to en-
hance the rearing and field establishment of imported dung beetles.
Bornemissza (1976) describes the rearing methods used for the first
CSIRO dung beetle project (1964-1986). Surface-sterilized eggs re-
ceived at quarantine facilities were implanted in hand-formed or
foster-parent brood balls. These brood balls were held for adult
emergence in environmental growth chambers to simulate diapause
and seasonal conditions specific to the given species. The new adults
were then reared in insectaries or in breeding pens with subsoil
heating to ensure continuous and rapid breeding. Using this method,
43 of the 53 species imported were successfully reared in quaran-
tine (Edwards 2007). The failure of the remaining ten species was
mainly due to low reproductive rates and a developmental diapause
(Edwards 2007). Adults of the successfully reared species were then
shipped for field release in damp peat moss in ventilated plastic con-
tainers in cardboard boxes.

For the first and second (1992-1994) CSIRO dung beetle pro-
jects, beetles were released into the paddocks on pasture by tipping
them out onto fresh cattle dung pads (Bornemissza 1976, Steinbauer
and Wardhaugh 1992). This method established field populations
for 23 of the 43 species released during the first project, but failed to
establish field populations for any of the species released during the
second project. Failure to establish has been attributed by Edwards
(2007) to: 1) the small number of beetles released, 2) unsuitable re-
lease sites in terms of soil type, habitat, and climate, 3) the wea-
ther conditions at the time of release and in the subsequent year,
and 4) the use of pesticides and anthelmintics on cattle resulting in
residues in dung detrimental to dung beetles (e.g., see Floate et al.
2005). The release of insufficient beetles is likely the main reason;
i.e., 20 of the 21 species released in greatest numbers successfully
established (Edwards 2007).

The field release method was altered for the third (2012-2014)
and the current (2017-2022) dung beetle introduction projects
as described by DBEE 2021), Doube (2018b), and Wright et al.
(2015). Adults are released into field cages provisioned with fresh
cattle dung each week and left to breed. The cages are screened
to prevent dung beetles from leaving. Many cages at one site can
be used as outdoor field nurseries to produce thousands of bee-
tles over the course of several months. Field releases also can be
made by placing brood balls in a special trench (20-40 cm deep)
with drainage to prevent flooding and covered with a heavy wire
mesh to exclude vertebrate predators. For introductions in New
Zealand, the farmers rear and breed a starter colony (250 to
500 beetles) for almost 10 wk to produce thousands of new bee-
tles. The sexually mature beetles are then released onto selected
(sunny, sheltered, and centrally located) paddocks during ap-
propriate times of the season when there is plenty of fresh dung
from cattle that have not been recently treated with anthelmintics
(DBEE 2021).

Accidental Introduction and Dispersal of Dung
Beetle Species

In addition to those species deliberately introduced, a further 47 spe-
cies have been accidentally introduced into the Antipodes and North
America (Table 2). Many of these adventive species were likely intro-
duced during European settlement when vessels from Europe dis-
carded livestock bedding and soil ballast near ports of entry (Horn
1887, Emberson and Matthews 1973). This hypothesis explains
the high number of adventive species of European origin in North
America that were first reported along the eastern seaboard (Brown
1940, 1950). It also explains why most of these adventive species
(38 of 47) are dwellers. Whereas rollers and tunnellers require fresh
dung and undisturbed soils, dwellers tend to be generalists that do
not need soil or fresh dung and can survive under a broad range of
temperatures (Stebnicka 2001, 2009; Hemmings 2018).

Of the 39 adventive species that are dwellers, 12 are exclusively
distributed throughout Australia, 1 throughout New Zealand, and
10 only in the United States—none exclusively occur in Canada
(Table 2). Aphodius fimetarius (Linnaeus, 1758) and Calamosternus
granarius (Linnaeus, 1767) are common throughout the Antipodes
and North America (Table 2). Labarrus lividus (Olivier, 1789) is
widespread in the tropical region of Australia, New Zealand, and
in the United States, but has not been found in Canada (Table 2).
Australaphodius frenchi (Blackburn, 1892) and Parataenius simu-
lator (Harold, 1868) are common in Australia and New Zealand.
Otophorus haemorrhoidalis (Linnaeus, 1758), Teuchestes fossor
(Linnaeus, 1758), Melinopterus prodromus (Brahm, 1790) and
Acrossus rufipes (Linnaeus, 1758) are common in both Canada and
the United States.

Of the eight adventive species that are tunnellers, only
Onthophagus depressus Harold, 1871, a species native to South
Africa, is present in both the Antipodes (in Australia) and North
America (in the southeastern United States) (Waterhouse 1974,
Hoebeke and Beucke 1997, Bezanson and Floate 2019). Two native
Australian species (Onthophagus granulatus Boheman 1858, O. pos-
ticus Erichson, 1842) are now common in New Zealand grasslands
(Emberson and Matthews 1973). The South African species Epirinus
aeneus (Wiedemann 1823) is widespread near Christchurch, New
Zealand (Dymock 1993). Onthophagus nuchicornis (Linneaus,
1758), a Eurasian species, is common across southern Canada and
adjacent states in the United States (Floate et al. 2017). Onthophagus
taurus was first reported in the southeastern United States in the
state of Florida (Fincher and Woodruff 1975). It has now spread
across much of the eastern United States north to Canada and, be-
cause of redistribution programs, is established along the west coast
in the state of California (Floate et al. 2017).

Dung Beetle Species Richness and Their
Distribution

There is a global total of about 6,000 species of rollers and tunnellers
(= true dung beetles) (Coleoptera: Geotrupidae, Scarabaeidae) (Davis
and Scholtz 2001) and at least 2,000 species of dwellers (Aphodiidae:
Aphodiinae) (Cabrero-Safiudo and Lobo 2009). Among the biogeo-
graphical regions, the Afrotropical region has the highest number
of true dung beetle species (around 44% of the total), followed by
the Neotropical region (24%), the Oriental region (14 %), Australia
(9%), the Palearctic region (7%) and the Nearctic region (2%)
(Cambefort 1991) (Fig. 1). These same patterns are reflected in the
species diversity of dung beetles at the scale of the individual dung
pad. One pad in South Africa attracted 64 true dung beetle species
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Table 2. Continued

References

FG Native to

Taxa

Country of establishment

Dung beetle species

NZ CA us

AU

Stebnicka 2001
Horn 1887

Australia
Europe

DW
DW
DW
DW

AP
+++ AP

+ 4+

Tesarius sulcipennis (Lea, 1981)

+ 4+

Teuchestes fossor (Linnaeus, 1758)

Stebnicka 2009
Stebnicka 2009

South Africa

Asia

AP

++ +

Trichaphodius paradivisus Balthasar, 1960
Trichaphodius reichei Harold, 1859

Total number of species

AP

+ 4+
20

22

11

15

The ‘+ + + denote the countries where accidentally introduced dung beetle species are established. Countries: AU-Australia, NZ-New Zealand, CA-Canada, US-the United States of America, PN Guinea-Papua New Guinea.

Functional group (FG): TN-tunneler, RL-roller, DW-dweller, AP-Aphodiinae, SC-Scarabaeinae.

2,500

i Small rollers
[ Large rollers
¥ Small tunnellers
B Large tunnellers

2,000

1,500

1,000

Number of species

500

Biogeographical regions

Fig. 1. Total number of true dung beetle (Scarabaeidae: Scarabaeinae)
species represented in global biogeographical regions. Dung beetles with
body size < 13mm are small and >13 mm are large. The information for the
diagram is derived from Cambefort (1991).

and four dweller species (Hanski and Camberfort 1991b), versus
16 true and three dweller dung beetle species in Australia (Doube
et al. 1991), versus four true and 18 dweller dung beetle species in
temperate North America (Hanski and Camberfort 1991b). For fast
and sustainable dung disposal and to fill ecological niches, a diverse,
stable, and efficient dung beetle community is necessary (Yoshihara
and Sato 20135, Soliveres et al. 2016).

Origin of Native Species in the Antipodes and

North America

The native dung beetle species of the Antipodes evolved in the ab-
sence of large, pad-like deposits of herbivore dung. The landmasses
that were to become Australia and New Zealand (the Antipodes)
were separated from Gondwana, 99 and 80 million years before
present (MYBP), respectively. Ancestors of current-day reptiles and
mammals were the dominant terrestrial vertebrates in Australia dur-
ing Mesozoic era (252 to 66 MYBP). Terrestrial marsupials and pla-
cental mammals coexisted in Australia in the Eocene (56 to 33.9
MYBP), but only the marsupials survived from that period to the
present (Godthelp et al. 1992). Since 25 MYBP, marsupials with
about fifty extant species have been the dominant herbivores and
dung producers (Godthelp et al. 1992). Dung beetles have an evo-
lutionary association with dung resources available (Gunter et al.
2016), such that the majority of Australian native dung beetle spe-
cies co-evolved with marsupial dung (Waterhouse 1974, Doube
and Marshall 2014). Unlike Australia, New Zealand did not have
terrestrial mammals with the exception of a few small species of
bats (Stringleman and Scrimgeour 2009). Therefore, New Zealand
dung beetles co-evolved to use droppings from native species of bats,
birds, reptiles and giant snails (Watt 1984).

Unlike in the Antipodes, a diverse and abundant assemblage of dung
beetles associated with the pad-like dung of large grassland herbivores
was present in North America at the time of European settlement and
the introduction of cattle. The origins of this assemblage are summarized
by Davis et al. (2002) and reflect the occurrence of two separate events.
The first event, described in detail by Webb (1977; 1978), was the tran-
sition from forests to grasslands across large regions of North America
(Nearctic) and South America (Neotropic) during the Cenozoic (66-0
MYBP) at a time when the two continents were physically separated.
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This change led to the evolutionary diversification of large grazing un-
gulate species and their associated dung beetle faunas. The subsequent
formation of an isthmus about 3 MYBP connected the two continents,
which allowed for the interchange of species and the establishment of
Nearctic and Neotropical elements in the dung beetle fauna in southern
regions of North America. The second event was associated with the
Bering Land Bridge, which existed up until about 11,000 yr ago be-
tween what is now present-day Siberia and Alaska (Elias et al. 1996).
This land bridge allowed for the movement of Palearctic species into
the Nearctic, including ancestors of the American bison, Bison bison
(Linnaeus, 1758) (Artiodactyla: Bovidae) and their associated dung
beetle faunas. Historically, bison roamed east of the Rocky Mountains
from northern Canada south into Mexico and numbered an estimated
40 to 60 million animals (Hornaday 1889, Soper 1941). When cattle
were introduced into North America prior to the 1640s (Bowling
1942), the coprophagous insects associated with bison were readily able
to breed in cattle dung (Tiberg and Floate 2011).

Composition of Dung Beetles and Introduction
Programs in Australia

There are 679 species of native and exotic dung beetles in Australia
(Table 4). This includes 474 native true dung beetles (Scarabaeidae:
Scarabaeinae), of which only 346 species have been described, in
three tribes and 20 genera (Matthews 1972, 1974, 1976; Monteith
2015). They mainly inhabit forests and woodland habitats and
feed on small, hard, and dry, pellet-like dung produced by marsu-
pial and other small mammalian species (Waterhouse 1974, Doube
and Marshall 2014). Many native dung beetles are generalist de-
tritivores and feed on a range of food such as rotten fruits, mush-
rooms, carrion, and decayed forest litter (Matthews 1972, Doube
et al. 1991, Monteith 2015, Ebert et al. 2019). There are limited
studies on ecology and behavior, but many of these native beetles
are captured in cattle dung baits (Edwards 2003). The 162 species
of native dwellers (Aphodiidae: Aphodiinae) comprise eight tribes
and 30 genera (Stebnicka 2009). The exotic species comprised 23
species that were deliberately introduced plus 20 adventive species
(Table 1, 2, and 4).

The introduction of cattle into Australia created a need for dung
beetle species capable of degrading large and wet cattle dung pads
on open grasslands (Waterhouse 1974). To address this need, CSIRO
Entomology imported into quarantine >114,000 eggs of 53 poten-
tially suitable species (Bornemissza 1979). Of these, 43 species (1.73
million adult dung beetles) were released between 1964 and 1986
into mainland Australia (Bornemissza 1976, 1979; Edwards 2007).
Only 23 species of the released species became established (Table 1),
with 14 now at the limits of their expected distribution (Edwards
2007, Doube 2018a). The remaining nine species occupy only a frac-
tion of their expected distributions (Tyndale-Biscoe 1990, Edwards
2007, Johnston et al. 2008, Doube 2018a).

Dung beetle introduction programs continue in Australia. Field
releases of the early spring-active species B. bubalus and O. vacca
were made in 2014 (Edwards et al. 2015, Doube 2018a). The Dung
Beetle Ecosystem Engineers (DBEE) project, the successor to the ori-
ginal CSIRO Entomology project, began in 2017. The major aims of
DBEE are: 1) to quantify the economic benefits of introduced dung
beetles to the Australian livestock industry, 2) to identify spatial and
temporal gaps in dung beetle activity and, 3) to import, rear, and
release a Moroccan strain of O. vacca and three other dung beetle
species (DBEE 2021). Currently, three new dung beetle species—FEu-
onthophagus crocatus (Mulsant and Godart 1870), Onthophagus
andalusicus (Waltl, 1835), and Gymmnopleurus sturmi (MacLeay,

1821)—have been approved for importation and release to enrich
the late winter through to spring gaps in dung beetle activity (CSIRO
2018).

Composition of Dung Beetles and Introduction
Programs in New Zealand
New Zealand has a total of 41 dung beetle species; i.e., 25 native, 15
adventive, and one deliberately introduced (Table 1, 2, and 4). The
native fauna include 16 species of rollers in the genera Saphobius,
Saphobiamorpha, and Boreobius (Watt 1984, Stavert et al. 2014,
DBEE 2021). There are also nine native species of dwellers in the
genera Phycocus, Saprosites, Tesarius, and Ataenius (Stebnicka
2001). In 1956, the Mexican species C. incertus was deliberately
introduced via Samoa to control cattle dung and dung-breeding
flies (Thomas 1960, Emberson and Matthews 1973). Two species
native to Australia (O. granulatus and O. posticus) were acciden-
tally introduced with livestock bedding over 150 yr ago (Emberson
and Matthews 1973). The South African species Epirinus aeneus
(Wiedemann, 1823) is also adventive (Dymock 1993). The origins of
the 12 adventive dweller species include six from Australia, two from
North America, two from Europe, and two from Africa (Table 2).
New Zealand’s Environmental Protection Authority has ap-
proved the importation and release of 11 dung beetle species
(ERMA 2011). Initially, farmers, environmentalists, academics
and the general public raised concerns about potential risks to
human health and the environment that might arise from these
releases. Therefore, exhaustive laboratory and field trials were
carried out to address these concerns (e.g., Mackereth et al. 2013,
Forgie et al. 2014, Forgie et al. 2018). The approved species are:
D. gazella, Onthophagus binodis (Thunberg, 1818), O. vacca,
O. taurus, Euoniticellus fulvus, Onitis alexis Klug, 1835, Bubas
bison (Linnaeus, 1767), B. bubalus, Copris hispanus, C. lunaris
(Linnaeus, 1758) and Geotrupes spiniger (Marsham, 1802).
With the exception of C. lunaris, all of these species were pre-
viously introduced to Australia (Edwards 2007, ERMA 2011).
Seven of the 11 species (except C. lunaris, E. fulvus, O. vacca
and B. bubalus) are commercially available (https://dungbeetles.
co.nz/orders) for release and four species (O. binodis, O. taurus,
Geotrupes spiniger, and Onitis alexis) have been already released
(DBEE 2021).

Composition of Dung Beetles and Introduction
Programs in Canada

A total of 44 dung beetle species associated with cattle dung have
been reported from Canada, comprising 34 native and 10 adven-
tive species of European origin (Tables 2 and 4). The adventive
species are abundant across southern Canada and extend further
south into the United States (Hoebeke and Beucke 1997, Floate
and Gill 1998). Onthophagus nuchicornis was present in the
United States prior to 1844 (Melsheimer 1844) and is now the
most common adventive tunneling species in Canada. It provides
significant dung burial services on native grasslands, but is not
effective in controlling horn flies—possibly because the adult bee-
tles are not active throughout the summer (Macqueen and Beirne
1975a). Onthophagus taurus is an efficient tunneler species that
is established in the northeastern United States at sites close to
the Canadian border and potentially already may be present in
southern regions of the provinces of Ontario, Quebec (Rounds
and Floate 2012, Floate et al. 2017). The adventive Colobopterus
erraticus (Linnaeus, 1758) is a rarity among aphodiine species.
Whereas other members of this group are dwellers, C. erraticus
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is a tunneler (Rojewski 1983) and has been expanding its distri-
bution across western Canada in recent years (Floate and Kadiri
2013). Where comparisons have been done, the number of indi-
viduals representing adventive species in cattle dung greatly ex-
ceeds that of native species (e.g., Floate and Gill 1998, Floate
2011, Floate and Kadiri 2013).

Native dung beetle species in Canada (and in the United States) that
bred in the pad-like dung of American bison, Bison bison were pre-adapted
to breed to the similar dung of cattle, when the latter were introduced to
North America during European settlement (Tiberg and Floate 2011).
This includes, for example, the roller species Canthon pilularius (Linnaeus,
1758) and C. praticola LeConte, 1859, the tunneler species Onthophagus
hecate (Panzer, 1794) and O. pennsylvanicus Harold, 1871, and several
species of dwellers (Howden and Cartwright 1963, Floate 2011). It has
been hypothesized that the near extirpation of bison in North America
during European settlement may have caused the extinction of some na-
tive species, but this has been refuted by Tiberg and Floate (2011). Rather,
European settlement and the attendant introduction of adventive species
has enhanced the overall diversity of dung beetle species in North America
(Bousquet et al. 2013, Bezanson and Floate 2019).

There has been no formal program to deliberately introduce
exotic species of dung beetles into Canada. However, O. taurus and
D. gazella were imported as part of a laboratory and field cage study
to predict their eventual distributions in North America (Floate et al.
2015, Floate et al. 2017). At the completion of the study, releases
of both species were made on native grassland in southern Alberta
(Floate et al. 2013). There was a slight possibility of establishment
by the more cold-tolerant O. taurus, but no expectation of estab-
lishment by the semi-tropical D. gazella. Sequential years of pitfall
trapping at the site have failed to recover either species (Floate and
Kadiri 2013, Bezanson et al. 2020).

Composition of Dung Beetles and Introduction
Programs in the United States

Species of dung beetles in the United States are particularly di-
verse, reflecting a country that includes regions that are subarctic
(Alaska), tropical (Hawaii), and almost a full spectrum of inter-
vening climates (the lower 48 contiguous states). The Nearctic
region (encompasses the United States, Canada, Greenland, and
parts of Mexico) supports 8 tribes, 10 genera, and 86 species
of true dung beetles (Scarabaeidae: Scarabaeinae) (Cambefort
1991, Davis and Scholtz 2001). These comprise four genera
and 24 species of rollers and six genera and 64 species of tun-
nellers (Cambefort 1991). Furthermore, the dweller dung beetles
(Aphodiidae: Aphodiinae) comprise nine genera, including 118
native, three deliberately introduced, and 16 accidentally intro-
duced species (Tables 1, 2, and 4). The 37 species of Onthophagus
originally reported in the United States and Canada (Howden and
Cartwright 1963) have been reduced to 29 species following taxo-
nomic revisions (Bezanson and Floate 2019). A total of 158 dung
beetle species have been updated in Scarabaeinae across America
north of Mexico (Bezanson and Floate 2019).

There have been no dung beetle introduction programs in the
United States since the 1990s (Table 1). Twenty-three species intro-
duced prior to this time have become established (Table 1). Releases
made to control horn fly included 29 species of which 14 species
became established in Hawaii (Table 1). These include eight of
nine species imported from Australia between 1973 and 1982; i.e.,
D. gazella, Euoniticellus africanus (Harold, 1873), E. intermedius,
Onitis alexis, Onitis vandekelleni Lansberge, 1886, Onthophagus

binodis, O. foliaceus Lansberge, 1886, and O. nigriventris d’Or-
bigny, 1905) (Table 1). Fincher (1981) summarizes the history of
deliberate releases of exotic species onto the mainland. These in-
clude D. gazella, E. intermedius, and O. alexis. All three species
have established, but remain restricted to the southern United States
(Bezanson and Floate 2019).

A reported 22 adventive species occur in the United States and
generally are common and widespread (Horn 1887, Brown 1940,
Bertone et al. 2005) (Tables 2 and 4). Among the more prominent
of these is the tunneler O. taurus. First reported in Florida in
1971 (Fincher and Woodruff 1975), it is now common on pas-
tures from North Carolina (Bertone et al. 2005) and north to the
Canadian border (Rounds and Floate 2012). Common adventive
dweller species include A. fimetarius, C. distinctus (Muller, 1776),
C. granarius, O. haemorrhoidalis, M. prodromus, and L. lividus
(Gordon 1983, Floate and Gill 1998, Fiene et al. 2011).

Opportunities Through Dung Beetle
Introduction Programs

Dung beetle introduction programs enhance the ecosystem services
provided by dung beetles and build knowledge networks to foster
technology transfer. We examine these aspects in more detail in the
following paragraphs.

Controlling Pests, Parasites, and Diseases

By scattering, shredding, and burying dung, dung beetles reduce the
suitability of cattle pads as breeding sites for pests and parasites that
affect livestock and humans (Horgan 2001, Forgie et al. 2010, Ryan
et al. 2011). Some of these pests attack animals directly to feed on
their blood, whereas others are vectors of parasites, bacteria, and vir-
uses that are pathogenic in humans and livestock (Table 3). Evidence
of these benefits is provided by numerous studies conducted indoors
or under semi-natural field conditions (Blume et al. 1973, Fincher
1975, Doube and Moola 1988, Roth et al. 1988, Tyndale-Biscoe and
Vogt 1991, Bishop et al. 2005, Gregory et al. 20135, Forgie et al. 2018).
However, documenting these benefits in the field—where conditions
are more difficult to control—is more challenging.

Dung Burial, Nutrient Recycling, and Carbon
Sequestration

Regardless of their effects in reducing populations of pest species,
dung beetles remove dung pads from the pasture surface—increas-
ingly so when present in high numbers (Macqueen and Beirne 1975b,
Tyndale-Biscoe 1994). By burying the dung, the beetles return labile
nutrients, including nitrogen, phosphorus, and potassium to plants,
and improve nutrient levels in the soil, soil aeration and water per-
colation, and reduce run-off into surface waters (Bornemissza 1960,
Fincher 1981, Nichols et al. 2008). The provision of these services by
introduced dung beetles is especially valuable when seasonal, local, or
geographic niches are not fully occupied by native species. (Fincher
1981, Forgie et al. 2010, Ridsdill-Smith and Edwards 2011). Dung
beetles sequester carbon, reduce carbon content and methane emis-
sions in fresh dung pads (Iwasa et al. 2015).

Scientific Understanding, Expertise, and

Collaboration

Introduction programs have increased opportunities for dung
beetle research and scientific understanding. Before the initiation
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Table 3. Continued

References Experi- Remarks

Problematic

to

Native/

Problem as

Taxa (Class:

Common, scientific name

mental

endemic to

Order: Family)

evidences

Dung burial and ingestion of feces by dung beetles reduce

Field and

United States Miller 1954

North

Human

Rhabditia: Stron-

New World hookworm, Necator

chances of exposure of the obligatory small intestine

parasite that causes necatoriasis.
A dung pad may load thousands of oocytes, infection is

lab

Amer-

enteric

gylida: Ancylos-

americanus (Stiles, 1902)

ca
Cosmo-

parasite

Enteric

tomatidae
Conoidasida:

Laboratory

Ryan et al. 2011

Europe,

Enteric parasite, Cryptosporid-

through fecal-oral route and is one of the major cause of

North

politan

disease
agent

Eucoccidiorida:
Cryptosporid-

iidae
Gammaproteobac-

ium parvum Tyzzer, 1912

water contamination in Europe and North America, dung

America

burial reduce their spread.
Dung beetles supress pathogenic E. coli in the soil and

Laboratory

Jones et al. 2019

Cosmo- North Amer-

Enteric

Pathogenic E. coli, Escherichia

co-occurring flies in vertebrate feces.

ca

i

politan

disease

teria: Entero-

coli (Migula, 1895)

agent

bacterales: En-

terobacteriace

of dung beetle introduction projects (e.g., from the 1940s to
1970s), dung beetles were not well studied and were the sub-
ject of only a few publications per year (Hemmings 2018). The
number of scientific publications per year increased to 10+ by the
mid-1980s and rose dramatically after the mid-1990s (Hemmings
2018). One likely explanation for this increase are the intro-
duction programs launched in the late 1960s and early 1970s
in Australia and in the United States, subsequently followed by
increased concerns of parasiticide residues in dung, which ne-
cessarily led to dedicated international studies on dung beetle
ecology, biology, and taxonomy (Hemmings 2018). As an out-
come of the first Australian project, over 600 species (50,000+
specimens) were classified and are now stored in the Dung Beetle
Research Unit, Pretoria, South Africa (Bornemissza 1979). These
programs also strengthened the expertise and capacity of govern-
ment and private institutions (Edwards 2007, DBEE 2021). For
example, Dung Beetle Solutions International (https://www.dung-
beetlesolutions.com.au), SoilCam (https://dungbeetleexpert.com.
au) and Dung Beetle Innovations (https://dungbeetles.co.nz) are
private firms that conduct dung beetle research, sales, and train-
ing activities (DBEE 2021). The collaboration among government
agencies, universities, schools, citizen scientists, councils, land
care groups and committees, and private agencies in dung beetle
research and introduction program (Edwards 2003, 2007; DBEE
2021) definitely indicates increased public interest, demand, scope
and importance of dung beetles. Further evidence of this interest
is the large and expanding number of studies examining the po-
tential adverse effects on dung beetles, of parasiticide residues in
dung of treated livestock (Floate et al. 2005, Lumaret et al. 2012,
Junco et al. 2021). Concerns of these potential non-target effects
are such that they have to be considered in the registration of new
veterinary products (VICH 2004).

Challenges in Dung Beetle Introduction
Programs

The dung beetles that have been introduced in the Antipodes and
into North America facilitate dung burial, pest control and pro-
vide critical ecosystem services. However, the introductions of the
past have had to surmount technical and regulatory challenges
that will continue, and possibly increase, as barriers that will
have to be addressed in future introduction programs. These are
discussed below.

The Spread of Pests, Diseases, and Weeds

Dung beetles are unlikely to become pests, but their introduction
into new regions may potentially result in the spread of mites, in-
vasive weeds, and pathogens affecting livestock and humans
(Bornemissza 1979, Janzen 1984, Funasaki et al. 1988, Niogret et al.
2006, Niogret et al. 2009, Mackereth et al. 2013). Because of these
biosecurity concerns, introduction programs have heightened regula-
tory, research, and rearing requirements that increase program costs
(Bornemissza 1979, Fincher and Hunter 1986, Hunt et al. 2008).
To import beetles across international or interstate borders, there is
typically a requirement for an import permit issued by the appro-
priate authorities. These permits specify conditions that must be met
by the importer to avoid potential legal action (e.g., for Canada, see
Mason et al. 2017). Previous programs in Australia and the United
States mandated quarantine operations under the strict supervision
of scientists and authorities in the country of origin, which increased
costs associated with travel and logistics (Bornemissza 1976, Fincher
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Table 4. Reported number of native and introduced dung beetle species in the Antipodes and North America®
Countries Native Deliberately introduced Adventive

Tunnellers Rollers Dwellers Tunnellers Rollers Dwellers Tunnellers Rollers Dwellers
Australia 474 162 21 2 0 1 0 19
New Zealand 0 16 9 1 0 0 3 0 12
gililtiiaStates 62 24 18 12 g g 2 8 12

*Source: Bezanson and Floate 2019; Cambefort 1991; Edwards 2007; Emberson and Matthews 1973; Floate 2011; Gordon 1983; Gordon and Skelley 2007;
Horn 1887; Howden and Cartwright 1963; Matthews 1972, 1974, 1976; Monteith 2015; Stebnicka 2001, 2009.

and Hunter 1987). If a suitable quarantine facility does not exist,
there are added (perhaps insurmountable) costs incurred in building
such a facility and developing the necessary quarantine procedures
(Wright et al. 2015, Doube 2018b).

Spread to Unintended Areas and Native Species
Displacement

If releases are successful, the introduced species will spread and be-
come abundant, but in doing so they may outcompete native species
(Kohlmann 1994, de Oca and Halffter 1998, Vidaurre et al. 2008,
Medina 2016, Genier and Davis 2017, Filho et al. 2018, Pokhrel
et al. 2020). Within a few years after its introduction into southwest-
ern Western Australia, the exotic species O. binodis displaced the
native species O. ferox Harold, 1867 (Ridsdill-Smith and Edwards
2011) and, in turn, was displaced within 6 yr by the exotic species
O. taurus (Ridsdill-Smith and Edwards 2011). Sampling conducted
across Queensland, Australia recognizes D. gazella and E. inter-
medius as predominant species. These species were sampled from
almost all of the sites and at several sites a single trap captured thou-
sands of these beetles (Edwards 2003). In Brazil, introductions of the
exotic species D. gazella have been reported to cause local extinc-
tions of six native dung beetle species (Filho et al. 2018). Pokhrel
et al. (2020) have examined the competitive success of the exotic
species D. gazella, O. taurus, and E. intermedius in regions of intro-
duction. They note that deliberate introductions allow beetles to es-
tablish in regions that might otherwise inaccessible due to climatic
and geographic barriers. Also, they may adjust their life-history
traits to adapt to novel environments, as has reportedly occurred for
O. taurus within 100 generations of release (Macagno et al. 2016).
Although one or more exotic species may provide the desired level of
ecosystem services (Manning and Cutler 2018), this benefit may be
offset by declines in assemblages of native dung beetle species (Aizen
et al. 2018, Filho et al. 2018, Pokhrel et al. 2020).

Failure in Quarantine Rearing and Multiplication

Many dung beetle species have complex reproductive behaviors,
biparental care, an obligate diapause and special breeding re-
quirements, and others that are poorly understood (Bornemissza
1976, Davis 1996, Hunt and Simmons 2002, Daniel et al. 2014).
Knowledge of these requirements is needed to facilitate egg-to-adult
production of each species being reared in quarantine; either in the
source or recipient country (Bornemissza 1976, Wright et al. 2015).
For example, rearing large numbers of a large-bodied brood caring
species such as Copris hispanus is difficult because 6 mo is required
by the female to care for each brood (Bornemissza 1976, Kirk and
Feehan 1984). Onthophagus nuchicornis appears to have an obli-
gate diapause, restricting its production to one generation per year
(Floate et al. 2015). Simply because of their biologies, some species

may be immediately excluded from consideration in an introduc-
tion program as being too difficult to mass-rear. Mass-reproduction
of other species in quarantine may be hindered by high mortality
rates of different life stages (Bornemissza 1976, Chown et al. 1995,
Edwards 2007, Wright et al. 2015) as occurred for 10 species con-
sidered for introduction in Australia (Edwards 2007).

Failure to Establish in the Field

Because dung beetle species have specific climatic and edaphic needs
(Barkhouse and Ridsdill-Smith 1986, Brown et al. 2010, Braga et al.
2013, Hemmings 2018, Holley and Andrew 2019), they may fail to
establish if released at sites with inappropriate climatic and soil con-
ditions (Floate et al. 2015, Floate et al. 2017, Doube 2018a). For this
reason, thorough consideration of both climatic (temperature, pre-
cipitation) and non-climatic (e.g., dispersal barriers, food resources,
natural enemies) factors is essential (Edwards 2007; Duncan 2009,
2016; Yelenik and Levine 2010). For example, models relying solely
on climatic factors performed poorly to predict regions of potential
establishment for three of five species released in Australia (Duncan
et al. 2009). In the earlier Australian dung beetle projects, a total of
20 species released in the field failed to establish (Edwards 2007).
Examination of these failures suggested that this outcome could have
been avoided by matching the physiology of the beetles to the season of
release, by increasing the number of beetles released at a given site, and
by increasing the number of release sites (Edwards 2007, Wright et al.
2015). In some cases, conclusions of failure may be premature; e.g.,
B. bubalus was only recovered 9 yr after the original release (Edwards
2007). Other factors preventing establishment or causing local extir-
pation can include drought, fire, predators, and parasitoids (Noriega
2010, Smith et al. 2019). Lastly, the widespread usage of chemical in-
secticides, herbicides, fungicides, and anthelmintics can impact survival
and establishment of dung beetle species (Floate et al. 2005, Lumaret
et al. 2012, Gonzalez-Tokman et al. 2017, Junco et al. 2021).

Recommendations

We recommend a number of points to consider in relation to the de-
velopment of a dung beetle introduction program.

First, clearly identify the goals of the introduction program based
on unoccupied ecological niches as characterized by seasonality,
geography, and habitat. Then identify dung beetle species capable of
achieving these goals by reviewing the literature (e.g., reports, theses,
archives, scientific papers) and/or by conducting preliminary trials
(Bornemissza 1970; Edwards 2003, 2007).

Secondly, develop species distribution models that incorporate
both climatic (temperature and precipitation) and non-climatic (en-
vironmental, biotic, and dispersal) factors to predict precisely the
native and introduced ranges. New technologies such as NicheMapR
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(Kearney and Porter 2017) can be used to identify suitable spe-
cies or group of species as it can more correctly predict species
distribution ranges.

Thirdly, it is essential to undertake research to answer funda-
mental questions regarding reproductive biology, thermal physi-
ology, and population genetics of candidate species (Edwards 2007,
Hemmings 2018). A thorough understanding in terms of repro-
ductive biology, thermal behavior, and genetics of the species can
help to select climatic and genetic strains of a species to enhance its
establishment in regions of introduction.

Fourthly, the importation and rearing of beetles in quaran-
tine are the most challenging steps in introductions because of
biosecurity issues (Steinbauer and Wardhaugh 1992, Wright et al.
2015). Precise protocols are needed to rear and mass-produce,
under quarantine conditions, sufficient numbers of individuals for
release. An inability to achieve this goal in the laboratory may
exclude consideration of some species for release; e.g., Copris his-
panus (Kirk and Feehan 1984). However, greater success may be
possible by rearing beetles using semi-controlled field conditions
(Doube 2018b, DBEE 2021).

Fifthly, the overall success of introduction programs depends on
the success of the species release and establishment. The appropriate
timing and season of release (Bornemissza 1979, Edwards 2007),
adequately-sized founding populations and an adequate number of
release sites (Edwards 2007, Duncan 2016), and restriction in the
use of parasiticides, insecticides, herbicides, and fertilizers that can
harm dung beetles at these sites (Floate et al. 2005, Lumaret et al.
2012, Gonzalez-Tokman et al. 2017, Righi et al. 2018) should be
considered during species release.

Sixthly, the redistribution programs should identify promising na-
tive and already established exotic species that are efficient dung de-
graders but limited in their distribution because they are slow breeding
and slow spreading. This minimizes project cost and the risks associated
with the spread of pests and diseases, and native species displacement
(Edwards 2007, Medina 2016, Pokhrel et al. 2020).

Finally, it may take years for dung beetle populations to become
locally abundant after their release. Therefore, long-term moni-
toring of release sites is essential to evaluate post-release success.
Factors such as efficacy of dung burial, pest and parasite control,
and native-introduced dung beetle assemblages are to be considered
in post-release monitoring (Edwards 2007, Medina 2016, Doube
2018b).

Conclusion

Exotic species of dung beetles that have either been deliberately
introduced or are adventive are widespread in grassland habitats in
the Antipodes and North America. They often dominate local as-
semblages of dung beetles in cattle dung to support the conclusion
that they fill niches unoccupied by native species and enhance dung
degradation. Dung beetle introduction programs have adopted a
standard set of procedures to optimize the selection of potentially
suitable species, their mass rearing, field release, and eventual estab-
lishment. But there is equally a need for post-release monitoring to
assess the effect of these introductions on native species, the speed of
dung degradation, and its concomitant benefits; e.g., pasture prod-
uctivity, suppression of dung-breeding pests, and parasite affecting
livestock. By reviewing the history of dung beetle introduction pro-
grams in the Antipodes and North America, including both failed
and successful efforts, we hope to inform the decision-making pro-
cess to aid the development of future such programs.
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