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Crabs are a large subtaxon of the Arthropoda, the most diverse and species-rich metazoan group. Several outstanding questions remain 
regarding crab diversification, including about the genomic capacitors of physiological and morphological adaptation, that cannot be 
answered with available genomic resources. Physiologically and ecologically diverse Anomuran porcelain crabs offer a valuable model 
for investigating these questions and hence genomic resources of these crabs would be particularly useful. Here, we present the first two 
genome assemblies of congeneric and sympatric Anomuran porcelain crabs, Petrolisthes cinctipes and Petrolisthes manimaculis from 
different microhabitats. Pacific Biosciences high-fidelity sequencing led to genome assemblies of 1.5 and 0.9 Gb, with N50s of 706.7 
and 218.9 Kb, respectively. Their assembly length difference can largely be attributed to the different levels of interspersed repeats 
in their assemblies: The larger genome of P. cinctipes has more repeats (1.12 Gb) than the smaller genome of P. manimaculis 
(0.54 Gb). For obtaining high-quality annotations of 44,543 and 40,315 protein-coding genes in P. cinctipes and P. manimaculis, respect-
ively, we used RNA-seq as part of a larger annotation pipeline. Contrarily to the large-scale differences in repeat content, divergence 
levels between the two species as estimated from orthologous protein-coding genes are moderate. These two high-quality genome as-
semblies allow future studies to examine the role of environmental regulation of gene expression in the two focal species to better under-
stand physiological response to climate change, and provide the foundation for studies in fine-scale genome evolution and 
diversification of crabs.
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Introduction
Arthropoda is the largest and most diverse metazoan phylum 
(Thomas et al. 2020). Yet questions of genome evolution and diver-
sification are limited to a relatively small number of clades (i.e. 
Diptera, Hymenoptera) for which a wealth of genome sequence 
data are available (Thomas et al. 2020). The crustaceans are one 
of the most diverse arthropod groups in terms of variation in 
morphology, habitat, and lifestyle, but also one of the most poorly 
represented arthropod groups in terms of whole genome se-
quence data. Of the six classes of Crustacea, the largest group, 
Malacostraca, contains about 40K species including crabs, 
shrimps, lobsters, crayfish, krill, amphipods, and isopods. Of the 
3,750 complete Arthropod genomes currently available in the 
NCBI database of sequenced genomes, only 51 (∼1%) are for 
Malacostracans. If we consider only the Malacostracan order 
Decapoda, we observe tremendous species richness and diversity. 
The Decapoda contains over 14K extant species, of which the ma-
jority are the nearly 9K species of crabs (6.5K species of Brachyura 
and 2.4K species of Anomura, which includes the king, hermit, 
porcelain, and galatheid crabs) (De Grave et al. 2009). Despite the 
species richness and diversity of crabs, there are only 13 crab 

genome records in the NCBI database: 10 Brachyura, 5 of 
which are for the commercially important swimming crabs 
(Portunidae: Portunus and Callinectes), 4 of which are for the com-
mercially important Chinese mitten crab (Varunidae: Eriochir), 
and 1 spider crab (Majidae: Chionecetes), and 3 Anomura (1 
Coenobitidae: Birgus, 2 Lithodidae: Paralithodes). Clearly, if we are 
to understand the genomic basis of the ecological, physiological, 
and taxonomic diversification of such large and diverse group of 
arthropods, there is a need to develop better genomic resources 
for the Malacostraca, and for crabs in particular.

In this study, we produced functionally annotated long-read 
genome assemblies for two species of Anomuran porcelain 
crabs: P. cinctipes and P. manimaculis. Porcelain crabs, family 
Porcellanidae, are a species-rich group that inhabit shallow coast-
al ecosystems throughout the temperate and tropical regions of 
the Pacific Rim and warm regions of the Western Atlantic (Kropp 
and Haig 1994; Stillman and Reeb 2001; Raso et al. 2005; 
Rodriguez et al. 2005; Naderloo et al. 2013; Werding and Hiller 
2015; Limviriyakul et al. 2016; Diez and Lira 2017; DE Azevedo 
Ferreira and Anker 2021; Mantelatto et al. 2021). The largest genus 
of Porcellanidae is Petrolisthes (Haig 1960). In the eastern Pacific, 
there are approximately 50 species of Petrolisthes split into four 
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principal regions, the north temperate, the northern Gulf of 
California, the tropics, and the south temperate (Haig 1960; 
Stillman and Reeb 2001). Within each biogeographic region, spe-
cies are distributed across vertical distribution gradients such 
that some species live solely in the intertidal zone and some are 
subtidal (Stillman and Somero 2000). As intertidal zone species 
are exposed to terrestrial conditions during low tide, they experi-
ence a wider range of environmental variation than subtidal zone 
species (Stillman 2002; Gunderson et al. 2019). Intertidal zone spe-
cies possess physiological and morphological adaptations that al-
low them to survive the challenges of life out of water, including 
thermal variation and respiratory challenges (Stillman and 
Somero 1996; Gaitan-Espitia et al. 2014).

A molecular phylogenetic analysis of the eastern Pacific 
Petrolisthes indicated that there are two main subgenera or clades, 
which can be identified by the presence or absence of serrate saw- 
teeth on the meral segment of the chelae (Stillman and Reeb 
2001). The clade possessing the serrate teeth is comprised mainly 
of species that live in tropical subtidal habitats; of the ∼25 species 
in that clade only two species have radiated to a different habitat: 
Petrolisthes armatus, inhabits tropical intertidal habitats, and 
Petrolisthes desmarestii, inhabits temperate subtidal habitats 
(Stillman and Reeb 2001). Thus, that clade has not had much 
adaptive radiation. Additionally, from phylogenetic analyses, 
the speciation events in the serrate teeth clade are well resolved 
(Stillman and Reeb 2001). In contrast, the other clade has an unre-
solvable polytomy at the base of the phylogenetic tree, with spe-
cies that have radiated into every possible habitat (temperate, 
tropical, intertidal, subtidal) and evolved additional life-history 
innovations (e.g. specific commensalism). Only more recent speci-
ation events within that clade are phylogenetically resolvable, 
and include additional radiation into different vertical zones with-
in a biogeographic region (Stillman and Reeb 2001).

In one of those subclades there are two sympatric species, 
P. cinctipes and P. manimaculis (Fig. 1), that share a common ances-
tor approximately 8–14 mya (Stillman and Reeb 2001), and live in dif-
ferent vertical zones on shores of the northeastern Pacific (Miller et al. 
2013; Delmanowski and Tsukimura 2015; Armstrong and Stillman 
2016; Delmanowski et al. 2017; Gunderson et al. 2017). These two spe-
cies differ in their heat tolerance (Stillman and Somero 2000; 
Stillman 2002; Miller et al. 2013), and their responses to stress at the 
organismal (Wasson et al. 2002; Gunderson et al. 2017) and transcrip-
tomic (Armstrong and Stillman 2016) levels. The genomic bases for 
the physiological differences between P. cinctipes and P. manimaculis 
are unknown.

Previous comparative studies of mitochondrial genomes have 
indicated that genome arrangements have likely played a strong 
role in the evolution of crabs (Wang et al. 2021; Zhang et al. 2021; 

Sun et al. 2022), and gene arrangement is known to be essential 
for emergent properties of gene products in development such 
as HOX genes (Sun and Patel 2019) and in cancer (Heng and 
Heng 2021, 2022). Evidence for the extent to which arrangement 
of nuclear genes is in general involved in adaptative evolution 
does not yet exist for crabs, but has been observed in other taxa 
including bacteria (Kang et al. 2022), fungal pathogens (Gourlie 
et al. 2022; Ma et al. 2022), and domesticated yeast (Garcia-Rios 
and Guillamon 2022), and may represent a generalized aspect of 
genome evolution during adaptive radiation (Cao et al. 2022; 
Wang et al. 2022). By providing two high-quality porcelain crab 
genome assemblies generated using long-read high-fidelity 
(PacBio HiFi) whole genome sequencing along with RNA-seq 
data for both species for genome annotation, we set the stage 
for exploring the extent to which differences in the physiology 
and ecology of P. cinctipes and P. manimaculis are reflected in their 
genomes.

Methods
Specimen collection, DNA extraction 
and sequencing
We produced de-novo genome assemblies P. cinctipes and P. mani-
maculis based upon Pacific Biosciences high-fidelity (PacBio HiFi) 
sequence data, which was then cross-validated and contaminant- 
filtered using independently generated cDNA library data, with 
additional 10× Genomics short-read data available from another 
study (J. Stillman, unpublished) for cross-validation in the case 
of P. cinctipes. PacBio sequencing was conducted using the HiFi 
method on gill tissues dissected from a single male crab specimen 
of each species collected near Fort Ross, California, USA 
(38.50421°N, 123.23152°W) on January 16, 2022 and frozen on li-
quid nitrogen and stored at −80 °C. Gill tissue was used because 
other tissue types did not provide suitable DNA for PacBio sequen-
cing. Special attention was paid to bioinformatic filtering of non-
target DNA, because gill likely had a high load of epi-microbiota. 
Frozen tissues were delivered to UC Davis Genome Center DNA 
Technologies Core for high molecular weight (HMW) DNA extrac-
tion that yielded a fragment size peak of 155 and 132 Kb for P. man-
imaculis and P. cinctipes, respectively. PacBio HiFi libraries were 
prepared from those samples and each library was sequenced 
across three SMRT cells on the PacBio Sequel II platform.

10× Genomics sequencing was conducted on claw muscle tis-
sue dissected from a single specimen of P. cinctipes. The specimen 
was likely collected at the site near Fort Ross, CA, USA (as above), 
but collection date of the specimen and the sex of the specimen 
are unknown. The HMW DNA extraction from claw muscle tissue 
is less prone to contamination and yielded adequate DNA of 

(a) (b)

Fig. 1. Petrolisthes cinctipes (a) and Petrolisthes manimaculis (b). Identifying marks on P. cinctipes include red antennae, red spots on claws, and red 
mouthparts. Identifying marks on P. manimaculis include lines of blue spots on claws, blue mouthparts, and red spots on base of gray antennae. P. cinctipes 
photograph by Adam Paganini and P. manimaculis photograph by Steven Sharnoff; both used with permissions.
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>40 Kb for 10× Genomics library construction. Libraries were size 
selected to 350–650 bp to maximize the quality of the paired end 
reads. Samples were sent to Novogene (Sacramento, CA, USA) 
for 150 bp PE sequencing on the Illumina HiSeqX10 platform.

RNA-seq data used in the analysis was obtained from Illumina 
100 bp PE reads of cDNA libraries made from gill tissue of P. cinc-
tipes and P. manimaculis as previously described (Armstrong and 
Stillman 2016). Additional transcriptomics data from ESTs of a 
cloned cDNA library of P. cinctipes are available (Tagmount et al. 
2010), though not used in the present study.

Assembly
Our primary genome assemblies were created using hifiasm 
v.0.16.0-r369 (Cheng et al. 2021). As our tissue samples likely con-
tained nontarget DNA from epibionts and associated microbiota, 
our primary assemblies were carefully filtered to remove nontar-
get contigs. Contig filtering was performed using BlobTools v.1.1.1 
(Laetsch and Blaxter 2017), which combines information about GC 

content, sequencing depth, and taxonomic classification to create 
a profile of each contig (Fig. 2). Based upon an iterative filtering 
process, we found that the following parameters removed all 
clearly nontarget contigs: GC content between 0.3 and 0.5 (five 
standard deviations from the mean of all unambiguously arthro-
pod contigs) and sequencing depth between 0.33 and 3 times the 
average sequencing depth of all unambiguously arthropod 
contigs. We also removed circular contigs and contigs with strong 
sequence similarity to taxa outside the animal kingdom, except 
microsporidia, which tend to be wrongly annotated in reference 
databases likely because of tight host–parasite relations (intra-
cellular parasitism). Sequencing depth for HiFi reads (required 
for BlobTools analysis) was calculated based on minimap2 
map-hifi v.2.20-r1061 (Li 2018) mapping, while nucleotide align-
ments to reference databases (also required for BlobTools ana-
lysis) were done using blastn v.2.12.0+ (Camacho et al. 2009) and 
the NCBI database, as well as Diamond blastx -F 15 -b4 -c1 
v.2.0.15.153 (Buchfink et al. 2021) and the UniProt database 

(b)(a)

(d)(c)

Fig. 2. Filtering of raw sequence data from (a, b) P. cinctipes and (c, d) P. manimaculis using BlobTools. For each species, the coverage and GC content are 
compared (main plot Y- and X-axes), and are also plotted against sequence span for (a, c) unfiltered sequence data and (b, c) filtered sequence data. For 
both species, the effectiveness of sequence filtering can be observed by the enrichment of data represented by the blue Arthropod color in plots of 
sequence span vs GC proportion (top plot) and in plots of coverage vs sequence span (right plot).
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(The UniProt Consortium 2022). For P. cinctipes, we additionally fil-
tered PacBio-based contigs based on independently generated 10× 
Genomics short-read data. We retained only contigs with mean 
10× Genomics read depth between 1 and 286 (three times the 
mean whole-genome depth). 10× Genomics reads were mapped 
to the PacBio-based contigs using bwa-mem2 v.2.2.1 (Vasimuddin 
et al. 2019). For P. manimaculis, we additionally removed a set of con-
tigs with no taxonomic classification which were responsible for an 
odd peak in the GC distribution around 0.33, likely arising from an 
unknown epibiont that was not represented in our BLAST database 
(Fig. 2).

BlobTools analyses indicated that 20% of the primary assem-
blies’ contigs had sequence similarity to Arthopoda, and the 
bulk of the sequences had either no strong similarity to any taxa 
(“No-hit”) or were microbial in origin (Table 1, Fig. 2). Following fil-
tration of the data with BlobTools, the overall contig number was 
reduced by approximately 60% for both species, and the fraction 
of contigs with sequence similarity to Arthropoda increased to 
∼50% for both species (Table 1). In fact, 75% or greater of the con-
tigs in both species had similarity to either Arthropoda or had no 
similarity to any known taxa (Table 1, Fig. 2). Because further fil-
tration of the data with BlobTools may have caused inadvertent 
discarding of Petrolisthes contigs, we kept all the contigs in the fur-
ther analyses. Both final assemblies had similar proportions of 
taxonomic classification (Table 1).

All contig filtering was performed using seqtk v.1.3-r106 
(https://github.com/lh3/seqtk), with before and after kmer distri-
butions visualized using jellyfish v.2.2.10 (Marçais and Kingsford 
2011) and GenomeScope v.2.0 (Ranallo-Benavidez et al. 2020). We 
used the default parameters for all bioinformatics tools if not 
mentioned otherwise.

Annotation
After removal of all identifiable nontarget contigs in the assemblies, 
we masked repeats with lower-case letters using RepeatModeler 

v.2.0.2, including the LTR pipeline (Flynn et al. 2020), and 
ReapeatMasker v.4.1.2 (Smit et al. 2013). Masking the repeats using 
lower-case letters ensured that software for gene prediction was 
aware of them. We then performed quality and adapter trimming 
on the RNA-seq reads using trim_galore v.0.6.4_dev (https:// 
github.com/FelixKrueger/TrimGalore) and cutadapt v.2.3 (Martin 
2011) before mapping them to the respective species’ genome using 
HISAT2 v.2.2.1 (Kim et al. 2019). With the mapped reads, we trained 
GeneMark-ES v.4.62 (Brůna et al. 2020) and AUGUSTUS v.3.4.0 
(Stanke et al. 2006, 2008) for gene prediction as implemented in 
BRAKER v.2.1.6 (Brůna et al. 2021). The resulting annotation files 
were converted to GFF3 files and to sequence files using AGAT 
v.1.0.0 (Dainat 2022). The resulting files were used for functional an-
notation with the combined evidence from InterProScan v.5.55_88.0 
(Jones et al. 2014), eggNOG-mapper v.2.1.9 (Huerta-Cepas et al. 2019; 
Cantalapiedra et al. 2021), Phobius v.1.01 (Käll et al. 2004), and 
SignalP v.5.0b (Almagro Armenteros et al. 2019) as well as with com-
parisons to Pfam (Mistry et al. 2021), UniProt (The UniProt 
Consortium 2022), MEROPS (Rawlings et al. 2014), dbCAN (Yin 
et al. 2012) databases, and BUSCO (Manni et al. 2021) with the 
Arthropoda database (arthropoda_odb10) with funannotate 1.8.11 
(Palmer and Stajich 2022). Annotation statistics were generated 
with agat_sp_statistics.pl v.1.0.0 (Dainat 2022).

Comparative genomics
We examined synteny between the two species in terms of se-
quence homology across large contigs and in terms of the order 
of orthologous gene pairs. For assessing sequence similarity on 
the contig level, we used D-Genies v.1.5.0 (Cabanettes and Klopp 
2018). For gene level comparisons, we only used single copy ortho-
logs inferred with OrthoFinder v.2.5.4 (Emms and Kelly 2019). Each 
information was used to identify 10 homologous contigs for in- 
depth sequence comparison (Supplementary Fig. 1). For visualiza-
tion of the syntenic regions, we used GENESPACE v.1.1.7 (Lovell 
et al. 2022) and gggenomes v.0.9.5.9000 (Hackl et al. 2021) in R 
v.4.2.2 (R Core Team 2022). To estimate divergence between single 
copy orthologs, we aligned them using prank v.170427 (Löytynoja 
2014) while using seqinR v.4.2–23 (Charif and Lobry 2007) for file 
handling. The alignment was followed by a masking step, in which 
poorly aligned sequences were excluded from downstream ana-
lysis. Sequence divergence was then calculated using CodeML of 
the paml v.4.9 package (Yang 2007). A phylogenetic tree based 
on available Anomuran and Brachyuran crab genomes was in-
ferred using IQ-TREE2 v.2.1.4-beta (Minh et al. 2020) as implemen-
ted in funannotate's compare function with the spiny lobster, 
Panulirus ornatus (Veldsman et al. 2021), as an outgroup. For this, 
we performed 1,000 bootstrap replicates.

Results
PacBio HiFi sequencing resulted in a total throughput of 63.1 Gb 
for P. cinctipes (read N50: 12.9 Kb) and 81.4 Gb for P. manimaculis 
(read N50: 13.6 Kb), which we individually used for genome as-
sembly of the two species. The assembled and filtered genome 
for P. cinctipes comprised 9.4K contigs with an assembly N50 of 
707 Kb and a total length of 1.49 Gb (Table 2). The number of con-
tigs (7.5K), assembly N50 (219 Kb), and total length (0.92 Gb) were 
all lower for P. manimaculis (Table 2). The genome assembly length 
of P. cinctipes was closer to the genome size estimate of a species of 
the same genus (∼2.05 Gbp in P. galathinus; Rheinsmith et al. 1974). 
Despite the differences in overall sequence length, the two gen-
omes had equivalent completeness with 94% and 95% complete 
BUSCOs in P. cinctipes and P. manimaculis, respectively (Table 2

Table 1. Assembly statistics before and after filtering the data 
using BlobTools.

Prefiltering Postfiltering

Taxon # of 
contigs

% Taxon # of 
contigs

%

Petrolisthes cinctipes
Arthropoda 5,361 42 Arthropoda 4,577 72
Proteobacteria 3,824 22 Chordata 973 11
Chordata 1,175 7 No-hit 2,364 5
No-hit 5,097 6 Echinodermata 305 4
Planctomycetes 1,144 5 Microsporidia 826 3
Bacteroidetes 1,579 4 Platyhelmithes 86 1
Bacteria-undef 97 3 Mollusca 105 1
Actinobacteria 342 2 Nematoda 52 1
Other 2,542 9 Other 103 <1
Total 21,161 100 Total 9,391 100
Petrolisthes manimaculis
Arthropoda 5,214 35 Arthropoda 3,991 73
Proteobacteria 1,815 24 No-hit 1,926 9
No-hit 7,728 19 Chordata 581 8
Bacteriodetes 865 5 Microsporidia 456 3
Chordata 870 4 Echinodermata 254 3
Microsporidia 936 2 Platyhelmithes 82 1
Echinodermata 384 2 Mollusca 54 1
Rotifera 155 2 Rotifera 50 1
Other 977 6 Other 88 <1
Total 18,944 100 Total 7,482 100

Percentages refer to the sequence content per taxon.
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and Supplementary Table 1). Additionally, the total number of 
protein-coding genes identified was similar in the two species, 
with 45K and 40K for P. cinctipes and P. manimaculis, respectively 
(Table 2). Within protein coding genes, the mean transcript 
length, exon length, and exons per gene were also similar between 
the two species (Table 2).

Comparing the sequence content of the two genome assem-
blies, the difference in length can largely be explained by differing 
level of repeat content (Table 3). Despite the presence of many re-
petitive regions, which might be species specific, we found that 
36.47% of the P. cinctipes sequence had matches in P. manimaculis 
by whole genome sequence alignment (Fig. 3a). To be able to com-
pare genetic regions that not only share sequence similarity but 
also share the same evolutionary origin, i.e. are homologous, we 
used alignments of single copy orthologs. Assessing divergence 
between single copy orthologs of the two species, we found a 
mean dS value of 0.154 (95% confidence interval 0.148–0.160) and 
a mean dN/dS value of 0.266 (0.260–0.273) indicating a relatively 
low level of divergence. For a larger scale comparison of homolo-
gous sequence between the two species, we identified 10 contigs of 
at least 200 Kb in length in which the two species shared at least 17 
single copy orthologs (Supplementary Fig. 1 and Fig. 3b). An exam-
ination of those contig pairs indicated that genes were always in a 
similar order (Fig. 4, top panel), though there were some differ-
ences between the genomic regions in terms of gene spacing 
(Fig. 4, middle panels) and gene sequence (Fig. 4, bottom panels). 
For example, in contig pair A, there is a region of insertion/deletion 
of approximately 150 Kb (Fig. 4, middle panels). Homologous contig 
pairs were for the most part syntenic in their overlapping regions 
(Table 4 and Supplementary Fig. 2), but in contig pair A, there was 
a nonsyntenic region in which none of the genes were shared be-
tween species (Fig. 4). Orthologs within these contig pairs showed 
very high sequence homology.

Focusing on the predicted gene functions obtained from funan-
notate, we found similar distributions in both Petrolisthes genomes 

Table 2 Sequencing and annotation statistics for two species of 
porcelain crab.

Petrolisthes 
cinctipes

Petrolisthes 
manimaculis

Assembly
Total length (Gb) 1.49 0.92
GC content (%) 39.63 38.23
Contig N50 (Kb) 706.73 218.94
Contig number 9391 7482
BUSCO completeness score (%) 91.7 92.3
Annotation
Total length of repeats (Gb) 1.12 0.54
% Repeats 75% 59%
Number of protein-coding genes 44,543 40,315
Mean transcript length (bp) 6,672 6,277
Mean coding sequence length (bp) 1,200 1,218
Mean exon length (bp) 299 275
Mean intron length (bp) 1,362 1,188
Average exons per gene 4.8 5.1
BUSCO completeness score (%) 94.3 95.1

Table 3. Different repeat categories found using RepeatModeler 
coupled with RepeatMasker.

Petrolisthes cinctipes Petrolisthes manimaculis

Retroelements 203 100
DNA transposons 29 25
Unclassified 806 329
Small RNA 2 2
Satellites <1 <1
Simple repeats 67 78
Low complexity 6 8
Total 1,115 543

All values are in Mb. Unclassified repeats could not be assigned to any category 
and might represent species-specific repeat families.
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Fig. 3. Pairwise dotplots for (a) entire genome assemblies and (b) 10 selected homologous contigs (also see Supplementary Fig. 1, Table 4). In both plots, 
contigs from P. cinctipes are on the X-axis and contigs from P. manimaculis are on the Y-axis. In panel a, what looks like a gap in the P. cinctipes assembly is an 
assortment of numerous small P. manimaculis contigs (clustered together by D-genies) not present in P. cinctipes. If the sorting and clustering would be 
done based on P. manimaculis, a gap-like pattern would appear in the P. manimaculis assembly.
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(Fig. 5), which was expected for species of the same genus. 
The combined study of the crabs gene arrangement with their 
expression level will hopefully provide insight into their adaptive 
evolution. Using additional Anomuran and Brachyuran crab 
species’ genomes, available from the NCBI database (Table 5), 
we conducted a phylogenetic analysis. We identified 114 single- 
copy orthologs and generated a maximum-likelihood tree which 
supports the phylogenetic placement of the Porcellanidae 
within the Anomura separate from the Lithodidae (Paralithodes 
camtschaticus) and Coenobitidae (Birgus latro) (Fig. 6) (Wolfe 
et al. 2021).

Discussion
Crabs are an exceptionally species-rich and diverse taxon (De 
Grave et al. 2009; Wang et al. 2021), whose evolution might be dri-
ven by ecology, physiology, and gene rearrangements (Tang et al. 
2021; Veldsman et al. 2021; Wang et al. 2021). Available nuclear 
genomic resources of crabs are sparse but needed for comparative 
genomic approaches, which would allow investigating the evolu-
tionary role of these factors in crabs. Here, we present two 
Anomuran crab genome assemblies, P. cinctipes and P. manimaculis, 
the first ones of the Anomuran porcelain crabs, family 
Porcellanidae. We found differences in genome size, genome 
structure, and gene sequence in homologous regions of the gen-
omes. The largest differences between the two species include a 
larger genome size and a higher repeat content of P. cinctipes. 
Together, these findings suggest that minor differences in coding 
regions reflect just a part of the different evolutionary trajectories 
of the two species when considered with larger scale structure of 
the two species’ genomes.

Though there are about 9K crab species, genome sequence data 
are sparse: Only few nuclear genome assemblies (n = 13) are avail-
able, mainly for four species of Brachyuran (n = 10) crabs and 
three species of Anomuran (n = 3) crabs (Table 5). The genomes 
of Brachyuran crabs have been assembled to chromosome-level 
in Portunidae [Callinectes sapidus “blue crab” (Bachvaroff et al. 
2021), Portunus trituberculatus “swimming crab” (Tang et al. 2020)] 
and Varunidae (Eriocheir sinensis “Chinese mitten crab”; Cui et al. 
2021], as well as to a nonchromosome level in Majidae 
[Chionecetes opilio “snow crab” (NCBI database; Assembly name: 
ASM1658430v1; GenBank assembly accession: GCA_016584305.1; 
Bioproject accession: PRJNA602365)]. While not a chromosome- 
level assembly, the genome of a third Portunid crab has been se-
quenced and had a similar genome size and other characteristics 
to the other Portunid crabs (Charybdis japonica “Asian paddle crab”; 
Liu et al. 2022). Only one Anomuran crab species has been as-
sembled to chromosome-level (Lithodidae: Paralithodes platypus 
“blue king crab”; Tang et al. 2021) and there are nonchromosomal 
genome assemblies for two additional species (Lithodidae: 
Paralithodes camtschaticus “red king crab” and Coenobitidae: 
Birgus latro “coconut crab”; Veldsman et al. 2021). Comparing our 
genome assemblies to the available ones, the GC content in all as-
semblies is close to 40%. Our assemblies feature the highest com-
pleteness measured as BUSCO score and the highest number of 
genes. Assembly lengths of our porcelain crab assemblies are 
more similar to the Brachyuran crabs than to the other 
Anomuran crabs, which have about four times longer assemblies. 
Our porcelain crab assemblies, however, have a repeat content 
amount that is more similar to other Anomuran crabs than to 
Brachyuran crabs. These differences might reflect differential 
evolution among crab species (Iannucci et al. 2022) but might 

Fig. 4. Syntenic map of orthologous regions among P. cinctipes and P. manimaculis for contigs selected based on gene density and size (see Fig. 3, Table 4). 
Ribbons are named (“A” to “J”) and color coded by contig. The beginning of each contig name (ptg00) was trimmed and contigs with an asterisk were 
inverted to improve visibility. Gene order and spacing for two contig pairs (“A” and “H”) are provided, and gene sequence comparison for one of the larger 
genes within each contig pair illustrates interspecific differences in the genomes at structural (e.g. nonsynteny and indel in “A”) and sequence levels (blue 
highlighted amino acids in sequences). For more information about each contig pair, see Table 4, and for detailed figures of each contig pair, see 
Supplementary Fig. 2.
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also partially arise from sequencing artifacts owing to the differ-
ent sequencing technologies used for the assemblies.

Previous studies on the two Petrolisthes species studied here 
have found that their responses to stress differ at the transcrip-
tomic level (Armstrong and Stillman 2016). Given that gene ar-
rangements have been suggested to be involved in the 
mitochondrial evolution of crabs (Wang et al. 2021; Zhang et al. 
2021; Sun et al. 2022), the question arises of the extent to which dif-
ferences in the physiology and ecology of the two crab species is 
reflected in their genomes. A common hypothesis is that under 
stress, there are more genetic rearrangements (Heng and Heng 
2021, 2022). The high-quality genome assemblies of the two por-
celain crab species presented here can be combined with existing 
knowledge of their ecological, physiological, and transcriptional 
differences to provide a maximally integrative investigation of 
their adaptive evolution and understanding of the mechanisms 
driving their physiological differences. For example, the absolute 

and relative location of differentially expressed genes in the two 
species can be compared, which allows inferences about their mo-
bility level as compared to nondifferentially expressed genes. 
Such investigations should consider the genome size differences 
in the here-generated assemblies. The larger genome P. cinctipes 
features more repetitive regions (Table 3) and a higher number 
of duplicated BUSCO genes (Supplementary Table 1), which could 
indicate different performance of the applied software for assem-
bly or biological differences. In the latter, relaxed selection could 
enable the proliferation of repetitive elements and gene duplica-
tion in P. cinctipes. The generated genome assemblies add to an 
ever-increasing number of available crab genomes, improving 
the potential for deeper insights into the evolution of the genomes 
and the diverse traits in Anomuran and Brachyuran Decapod 
crustaceans.

Comparative genomics yield most valuable insights when 
applied to completest possible genome assemblies of highest 

Table 4. Interspecific synteny analysis of contigs from P. cinctipes (Cinc) and P. manimaculis (Mani) selected on the basis of length and 
number of single copy orthologous genes (orthologs).

Contig 
pair

Cinc_Contig Mani_Contig Length of 
overlap 

(Kb)

Nr. shared 
single copy 
orthologs

Nr. Cinc 
nonsingle 

copy 
orthologs

Nr. Mani 
nonsingle 

copy 
orthologs

IDs Cinc nonsingle copy 
orthologs [Pcinc_v1.9_]

IDs Mani nonsingle copy 
orthologs [Pmani_v1.7_]

A ptg000617l ptg000532l 244 8 2 14 g782, g783 g3404, g3405, g3406, g3407, 
g3408, g3409, g3410, 
g3411, g3413, g3416, 
4266_g, g3417, g3418, 
g3419

B ptg000987l ptg001917l 365 23 13 10 10939_g, g42538, g42539, 
g42540, g42544, 
10944_g,, g42551, 
g42552, 10956_g, 
g42558, g42560, g42564, 
g42565

g29145, 15539_g, g29148, 
g29152, 15545_g, 15547_g, 
g29154, g29160, 15562_g, 
g29171

C ptg001331l ptg001720l 275 19 2 13 g1285, g1286 g19593, g19595, g19596, 
g19608, g19609, g19613, 
g19614, g19615, g19616, 
g19617, 14126_g, g19618, 
g19619

D ptg001639l ptg001198l 334 22 6 13 g34991, g34993, g35004, 
g35005, g35010, g35013

g16436, g16437, g16438, 
g16440, g16444, 10076_g, 
g16448, 10078_g, 10082_g, 
g16450, g16456, g16458, 
g16463

E ptg001934l ptg002242l 239 18 9 2 g3817, g3820, g3821, 
g3825, g3828, 18677_g, 
g3830, g3832, g3835

g31995, g31999

F ptg001952l ptg003091l 204 42 7 14 g17612, g17632, 18771_g, 
g17646, g17651, 
18794_g, g17656

g14228, g14237, g14239, 
g14241, g14242, g14243, 
g14244, g14246, g14256, 
g14258, g14259, g14276, 
g14280, g14281

G ptg002646l ptg000346l 409 19 11 3 g16185, g16186, g16188, 
g16191, g16192, g16194, 
g16195, g16196, g16197, 
g16198, g16207

g4887, g4891, g4900

H ptg003461l ptg001358l 270 17 9 3 g39945, 28259_g, 28263_g, 
g39954, g39955, g39956, 
g39958, g39963, g39964

g28965, g28967, 11234_g

I ptg003961l ptg002080l 321 18 7 6 g22530, g22531, g22534, 
31088_g, 31090_g, 
31091_g, g22544

g8956, g8957, g8969, g8970, 
16629_g, g8973

J ptg005038l ptg003413l 188 29 11 9 g29107, g29109, g29122, 
g29126, g29127, g29128, 
g29130, g29134, g29135, 
g29136, g29137

g1785, g1789, g1790, g1791, 
g1792, g1796, g1797, 
g1802, g1815

Ortholog IDs starting with “g” were predicted by AGUSTUS gene predictor software, and ortholog IDs ending with “_g” were predicted by GeneMark.hmm gene 
predictor software (see methods for details). Please see the full GFF file for additional details on each ortholog. Contig pairs refer to Fig. 4.
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Table 5. Summary of Brachyuran and Anomuran genome sequencing projects.

Species/(Infraorder) Genome  
Size (Gb)

Repeat % GC Content % Protein coding  
genes (1,000 s)

Complete  
BUSCO %

Reference

Brachyura
Callinectes sapidus (Portunidae) 1.1 36 40 25 93 Bachvaroff et al. (2021)
Portunus trituberculatus (Portunidae) 1.0 54 41 17 95 Tang et al. (2020)
Eriochir sinensis (Varunidae) 1.6 45 41 28 92 Cui et al. (2021)
Chionecetes opilio (Majidae) 2 NA 42 22 NA NCBI GCA_016584305.1
Anomura
Paralithodes platypus (Lithodidae) 4.8 78 42 28 77 Tang et al. (2021)
Paralithodes camtschaticus (Lithodidae) 7.3 68 41 29 90 Veldsman et al. (2021)
Birgus latro (Coenobitidae) 6.2 24 42 24 90 Veldsman et al. (2021)
Petrolisthes cinctipes (Porcellanidae) 1.5 75 40 45 94 This Study
Petrolisthes manimaculis 

(Porcellanidae)
0.9 59 38 40 95 This Study

0.04

Petrol isthes cinct ipes

Eriocheir sinensis

Birgus latro

Petrol isthes manimacul is

Paralithodes camtschaticus

Chionoecetes opilio

Portunus trituberculatus

Panulirus ornatus

Callinectes sapidus
100

100

100

100

100

100

Anomura

Brachyura

Fig. 6. Maximum-likelihood tree of available Brachyuran and Anomuran genomes. The two Petrolisthes species are less related to the other two Anomuran 
crab species than these two other species to each other. The spiny lobster, P. ornatus (Palinuridae), was used as an outgroup. Node labels represent 
bootstrap values.

Fig. 5. Predicted functions of gene sets based on clusters of orthologous genes (COGs). Depicted are the distributions of the predicted gene function 
categories in P. cinctipes (outer ring) and P. manimaculis (inner ring). These distributions are similar. The legend's order reflects the clockwise order of the 
functional categories in the graph. Categories which consist of only a few genes are not labeled with percentages to increase visibility.
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possible quality. Our genome assemblies were generated based on 
the most reliable available sequencing technology for de novo 
genome sequencing, but there are options which might improve 
their contiguity further. For example, with the available re-
sources, it is possible to use the sequence information from one 
species to scaffold the genome assembly of the other species 
and vice versa, because of their moderate sequence divergence. 
This approach, however, would only improve the assemblies to 
a small degree and at the same time might lead to wrong sequence 
links in cases of genomic rearrangements. Other possibilities for 
scaffolding and therefore improving the assemblies would involve 
the generation of additional data using Oxford Nanopore (Price 
et al. 2023; Salson et al. 2023) and Hi-C (Bracewell et al. 2023) se-
quencing, both of which are established scaffolding approaches. 
Furthermore, even though we applied state-of-the-art method-
ology to identify (non-)focal DNA sequence in our assemblies, fu-
ture work should focus on generating higher quality DNA from 
less contaminant-prone tissue, like muscle issue. This would re-
duce uncertainty in the identification of (non-)focal DNA se-
quence, i.e. reduce the number of nonfocal contigs still included 
in the genome assemblies. Using approaches such as those would 
be a next step toward generating the first-ever chromosome-level 
assembly for a porcelain crab.

Data availability
Raw data is deposited at the NCBI SRA database, and the as-
sembled genomes as well as the predicted sets of protein se-
quences are available at the NCBI GenBank database (BioProject 
ID: PRJNA1002960) and at https://doi.org/10.6084/m9.figshare. 
23823531. Analysis scripts are deposited at https://github.com/ 
pascalangst/Petrolisthes_assemblies.

Supplemental material available at G3 online.
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