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S U M M A R Y  
We present a 2-D reformulation of surface wave scattering theory in terms of 
potentials, which allows an extension of the Born single-scattering approach to 
include multiple forward scattering. No additional numerical effort compared to 
single scattering is required for a computation of the wavefield over the whole 
heterogeneous region. Born single scattering for elastic surface waves and both 
multiple and single scattering for acoustic waves are also covered by the formula- 
tion. It is valid for fully anisotropic perturbations of the reference medium. We use 
the flexibility of our formulation to compare the different approximations with each 
other and, additionally, test all of them against an exact solution for the particular 
case of a cylindrical inclusion in a layered waveguide. 

Our numerical results, obtained for shear velocity contrasts of about 6 per cent, 
show that the method which includes multiple scattering is superior to the 
single-scattering methods if the scattering region extends over more than one 
wavelength. If coupling to higher modes is suppressed, the multiple-scattering 
method still yields nearly exact results for the vertical displacement. The influence of 
mode coupling and type conversion leads to only small errors in vertical displace- 
ment. Moreover, as we show for a cylinder with a diameter of two wavelengths, 
even an acoustic treatment of surface waves including multiple forward scattering 
may be more accurate than single scattering within an elastic treatment. For 
scatterer sizes below one wavelength the single-scattering approaches are accurate 
enough, while elastic and acoustic treatments of surface waves may differ 
considerably. 

The proposed multiple-scattering method is numerically very efficient, because the 
numerical effort mainly depends on the degrees of smoothness of the wavefield and 
the heterogeneity, and is not directly coupled to the wavelength. 
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1 INTRODUCTION 

Important progress in surface wave scattering theory in the 
last few years was made by Kennett (1984) and Odom 
(1986) who introduced the coupled-mode theory. and by 
Snieder (1Y86a) who developed an elegant formulation of 
Born scattering theory for elastic surface waves. The 
coupled-mode method has been applied by Kennett & 
Mykkeltveit (1Y84) to study the propagation o f  Lg-waves 
across the Central Graben in the North Sea. Bostock (IYY I ,  
1992) has recently extended the coupled-mode method to  
3-D structures, but with the limitation that the heterogeneity 
be composed of cylindrical shells in the radial direction. 

The Born scattering theory of Snieder is quite flexible as it 
allows the treatment of surface wave propagation across 
general 3-D structures with reasonable numerical effort by 
constraining the number of modes involved in coupling and 
conversion. Furthermore, Born scattering is ideally suited to 
inversion. since the scattered wavefield depends linearly on 
the structural perturbations. O n  the other hand, it is well 
known that Born single scattering may be a poor 
approximation if the region where scattering occurs is too 
large. 

For practical reasons, the use of  a purely numerical 3-D 
solution to interpret surface wave data is far from feasible. 
Hence one currently has to  choose between two 
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approximate methods; 2-D mode-coupling theory, which 
stresses a correct modelling of coupling and conversion and 
results in a detailed picture of the vertical variations of the 
wavefield, but does not include lateral effects such as 
diffraction; and scattering theory, which focuses on the 
horizontal variations of the wavefield. Which aspect of the 
wavefield is more important for a structural interpretation? 
The answer certainly depends on the tectonic situation in 
which the recordings are made. For example, at continental 
margins, large faults or graben structures, mode coupling or 
conversion certainly plays an important role (Gregersen 
1978; Kennett & Mykkeltveit 1984; Stange & Friederich 
1992a) and a 2-D treatment appears appropriate. For 
structures acting more as scatterers than as reflectors or 
refractors, lateral propagation phenomena gain importance. 
As shown by Stange & Friederich (1992b), for the vertical 
displacement, scattering of the incoming mode on to itself 
dominates the wavefield and mode coupling is of only minor 
importance. Thus in smoothly heterogeneous 3-D structures 
Born scattering should be favoured. 

We know that Born scattering is nearly exact if the 
scatterer is small compared to the wavelength. However, 
consider for example Central Europe where, with the 
German Regional Network (GRN) and the NARS array, we 
have the opportunity to obtain detailed information about 
earth structure. Presuming the existence of lateral 
heterogeneities in the whole area in which stations are 
installed, the heterogeneous region would have a diameter 
of about lo00 km, which is about six wavelengths at a period 
of 50s. In such circumstances, is Born single scattering still 
accurate enough? 

In this paper we present a method which gives reliable 
estimates of the surface wavefield for both small and smooth 
extended scatterers. It is an enhanced Born scattering 
method, which includes multiple scattering in the forward 
direction. We compare our method with different Born 
single-scattering methods, and test each method against an 
exact solution from Stange & Friederich (1992b). 

2 SURFACE WAVE SCATTERING THEORY 
USING POTENTIALS: GENERAL 
PERTURBATIONS 

Our starting point is the elastic wave equation in the 
frequency domain: 

[ -dk (CZk / r  2,) - P o 2  4/1u/ = 0. (1) 

Here c,,,, are the components of the elasticity tensor, p is 
density, o is angular frequency and u, are the components 
of the displacement vector. d, denotes differentiation with 
respect to the coordinate x,. We also use the notation 
( x ,  y, z )  for the coordinates which correspond to 
(xlr x2, x3) .  Where convenient, we change from component 
notation to vector notation using bold-face letters. In the 
above and all the following equations, the summation 
convention is used for lower indices, while for upper indices 
sums are written out explicitly. We use lower indices to 
denote components of vectors or tensors and upper indices 
to distinguish between different modes. Numbers as 
superscripts are always understood as exponents. For 
example, o2 means o squared. 

We are looking for solutions of equation (1) for a layered, 

laterally heterogeneous half-space, We use a right-handed 
coordinate system with x -  and y-axes in the horizontal plane 
and the z-axis pointing into the half-space. As a first step, 
we split displacement and material parameters into a 
reference and a perturbed part: 

c .  +/ . =c!(') rk// + Yikjf,  uj = u(o' + uj, p = p'") + (2) 

Here, u?) may for instance be regarded as the incoming 
wave, while uj represents the scattered wave. If equation (2) 
is inserted into the equation of motion ( l ) ,  one obtains 

[ - 3,(~$), 3,) - P(")w* 6,111, = [ a k (  ylkll a,) + w 2 A p  6 , ]~ ; .  (3) 

Here, it is assumed that u,(") is a solution of the elastic wave 
equation for the reference medium. With the Green 
function of the reference differential operator, equation (3) 
may be transformed to the equivalent integral equation 

u,(x) = G,,(x, x')[d;(y,,,, 3;) + w 2 A p  6,,]u,(x') d3x ' .  (4) 1" 
The prime on 6' denotes differentiation with respect to 
primed coordinates. x' and x are the radius vectors of 
scattering point and observation point, respectively. The 
integration volume encloses all regions where lateral 
heterogeneities are present. In principle, the Green 
function contains all types of waves which may exist in the 
reference medium. But, since we are interested in surface 
wave scattering, we only use the surface wave part of the 
Green function. In an isotropic or transversely isotropic 
medium, this reduced Green function may be written 
(Takeuchi & Saito 1972) 

1 
- k" - W " ( Z ' ) E i 3 ,  a; ]HS' (k"R) .  (6) 

Here, E ~ , ,  is the completely antisymmetric tensor of third 
order whose components are +1 if (i, j ,  k )  is an even 
permutation of (1,2,3),  -1 if (i, j ,  k)  is an odd permutation 
of (1,2,3) and zero otherwise. U" and V" are the vertical 
eigenfunctions of the nth Rayleigh mode, while W" denotes 
a Love-mode eigenfunction. To preserve generality, we do 
not distinguish between Love and Rayleigh modes, but 
instead consider them as elements of one set. If, for 
instance, mode n is a Love mode, U" and V" are assumed to 
be zero. If mode n is a Rayleigh mode, W" is taken to be 
zero. k" is the wavenumber and C" and c i  are phase and 
group velocity of the corresponding mode. .I: is a 
normalization integral given by 

Finally, Hi;) is the Hankel function of the second kind and 
zeroth order, and R is the distance between the scattering 
point x' and the observation point x. 
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In the same way as the Green function we may write the 
displacements u and v as sums of modes: 

and 
1 

Um(Z')6,3 -- v-(z')a; 
rn k" 

(9) 
1 -_ 

k" 

Here, @: is the scattered potential of mode n, while @" is 
the potential of the total displacement of mode m. By 
inserting equations (8) and (5) into (4), we obtain an 
expression for the scattered potential of mode n generated 
by mode m: 

x u;"(x') d'x' .  (10) 

Finally, assuming that the heterogeneities are buried, 
application of Gauss theorem leads to the set of integral 
equations 

The scattered potential @: of mode n may be retrieved from 
@grn by summing over m. The integral equations (11) are 
still exact, at least as exact as the Greens functions are. An 
approximate numerical solution can be obtained after two 
simplifying steps: the a priori unknown modal displacement 
field urn must be replaced by a known estimate, and the 
integral discretized into a sum. With a suitable formulation 
of these two steps, we can make the method applicable both 
to isolated small scatterers and to extended smooth 
anomalies of the structure. 

3 INTEGRAL EQUATIONS FOR THE 
SCATTERING POTENTIALS 

In the classical Born approximation, u y  in equation (11) is 
replaced by the incident, undisturbed field. This approxima- 
tion fails when the anomalous region is so large and uniform 
that the true displacement gets out of phase with the 
incident field. In this case, multiple forward scattering 
within the anomalous region must be taken into account. 
This could be done by iterating the solution of equation 
( l l ) ,  but this is computationally awkward; we propose a 
somewhat less precise but much simpler approach. 

In modelling surface waves from teleseismic sources, we 
can in general assume that the wavefield propagates roughly 
as a plane wave through the region of interest. We adjust 
the x-axis of our coordinate system in the general direction 
of propagation (the structure must be parametrized 
accordingly). Then, if the anomalies are smooth and if the 
wavefield is indeed roughly plane, derivatives of uy with 
respect to y are negligible compared with derivatives with 

respect to x ,  and we obtain from equation (9) that 

u;" = [ U " ( Z ' ) ~ ~ ~  + i 6 , , V m ( z r )  + i 6 ,2Wm(~ ' ) ]@m(~ ' ,  y') 

= Sy(Z')@m(X', y'). (12) 

S;" is introduced as an abbreviation defined by the 
corresponding expressions in the line above. Furthermore, 
we obtain approximately (see equation 11) 

allowing us to write for the scattered potential 

In this form the scattering problem is essentially 2-D, 
because the z-dependence of the expression in square 
brackets is known a priori. Thus we may carry out the 
z-integration in advance and collect these terms in the 
scattering kernel 

K"b(x, y, I x', y') = dz ' [ (ak : ) ( - y ik j3  8;s;" J 
The subscript P indicates that K ,  is the kernel for a point 
scatterer. The system of integral equations may now simply 
be written 

@:"(x, y )  = (15) 

We have thus transformed the numerically awkward 
integral equation (11) to a 2-D standard integral equation 
with a kernel which contains all details of the scattering 
problem considered. For a different structure or a different 
approximation, we have only to exchange the scattering 
kernel! 

Equation (15) may be interpreted as follows. Each point 
( x ' , y ' )  acts as a point scatterer which, excited by the field 
@", radiates a scattered field KF"'@"'. Integration over the 
anomalous region then yields the total scattered field. Now, 
if discretizing the integral naively, one would divide the 
medium into cells within which both the wavefield @"' and 
the kernel K ,  could be considered as constant. However, 
this procedure would require very small cells, since both the 
scattering kernel and the wavefield oscillate rapidly 
according to the wavenumber k". 

We follow here a more physical approach. Instead of 
requiring a constant wavefield within each cell, we only 
require a constant amplitude and, additionally, we specify 
how the phase changes within the cell. In our case, the 
obvious choice is to assume the wavefield in each cell to be a 
plane wave propagating in the x-direction: 

dx' dy'K;"(x, y I x', y')@"(x', y'). 

@"(x', y') = Q"(p ' ,  q') exp [-ik"(x' -p')], (16) 

where ( p ' ,  q')  denotes the coordinates of the centre of the 
cell. We call this assumption the piecewise-plane-wave 
approximation, because in each cell the true phase front is 
approximated by a straight line perpendicular to the 
dominant direction of propagation. We can now compute a 
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scattering kernel for each cell: X 

x exp [-ikm(x' - p ' ) ]  

By multiplying this kernel by @"(p' ,  q ' )  and summing over 
all cells, we get the scattered field due to mode m: 

= 2 KE"(p, 4 I p' ,  q ' )@Yp' ,  4 ' ) .  (18) 
P * . 4 #  

The great advantage of this formulation is that K, does not 
depend on the current value of the wavefield and may 
therefore be computed in advance. 

For a numerical evaluation of the scattering kernel K,, 
the definition of equation (17) is unfavourable because of 
sidelobes caused by the edges of the cell. We circumvent 
this difficulty by integrating over a square with an area 
double that of the cell, in which the elastic parameters are 
smoothed by a squared cosine taper in both the x -  and 
y-directions. Due to the squared cosine, the tapers of two 
neighbouring cells just overlap in such a way as to produce a 
constant value between their maxima. Thus by assembling 
several cells one can exactly represent a constant anomaly. 

How large is the error introduced by neglecting the fact 
that the wavefield within a cell might be either non-plane 
or not propagating in the x-direction? Non-planeness can be 
excluded by simply choosing the cells to be small enough. 
Moreover, if the true propagation direction slightly deviates 
from the x-direction, we only commit a second-order error 
in the scattered field, because the amplitude and phase of 
the scattered wave both have an extremum in the forward 
direction. Sideways-scattered waves will interfere destruc- 
tively if the medium is smooth enough. Note that the size of 
the cells is constrained by the request for planeness of the 
phasefront and constancy of the amplitude within each cell. 
Both requests are not necessarily coupled to the wavelength. 

4 INCLUSION OF MULTIPLE FORWARD 
SCATTERING 

The accuracy of our approach now crucially depends, aside 
from the validity of the approximations introduced above, 
on our estimate of the total wavefield Qm. For instance, if 
we substitute for Q"' the reference potential of mode m, we 
obtain the classical Born approximation of Snieder (1986a), 
here formulated in terms of potentials. If, however, the 
wavefield is to be computed over the whole heterogeneous 
region, one may as well include multiple forward scattering 
without any additional effort. 

Let us assume an incoming plane wave (see Fig. 1). Using 
the pre-computed scattering kernels, we first compute the 
scattered field originating from the row of cells nearest to 
the source, substituting the incident field for am. The 
scattered field is added, separately for each mode, to the 
incident field at all other rows. Then we compute and add 
the field scattered from the second row. But now we use the 
updated value of the modal field in this row when computing 
the scattered field. This procedure is repeated for all 
subsequent rows. Since we always use the most recent value 
of the modal field to compute the scattered field, all multiply 
scattered waves from previous rows are included. Backward- 

Figure 1. Plan view of the model showing the subdivision of the 
xy-plane into cells. The arrows indicate the direction of the 
incoming Rayleigh fundamental mode. Also sketched are radius 
vectors of a scattering point (x') and observation point (x), together 
with the definition of the scattering angle cp. 

scattered waves contribute to the final result but are not 
scattered again; their phase may therefore be incorrect at 
greater distances from the scattering cell. This simplified 
treatment of backward-scattered waves should nevertheless 
be adequate for two extreme types of anomaly: isolated 
small scatterers for which multiple scattering can be 
neglected, and extended smooth anomalies for which 
backward scattering is insignificant. 

This computational scheme may be accelerated, at some 
expense in terms of accuracy, by reducing the number of 
cells in which the wavefield is updated. For example, a 
factor of 2 may be gained by omitting backscattering, and a 
factor of 4 when scattering is limited to a f45" cone in the 
forward direction, similar to the 4.5" approximation used in 
finite-difference calculations. We have not tested these 
alternatives on accuracy, but we guess that tapers will be 
necessary to avoid cut-off effects which disturb the 
destructive interference of the sideways-scattered waves. 

5 ISOTROPIC PERTURBATIONS 

In the case of isotropic heterogeneities, the perturbed 
elasticity tensor takes the form 

yikjl = AA + Apc(6t, + 6d 6 k j ) .  (19) 

Here, AA and A p  are the perturbations of the Lam6 
parameters I and p, respectively. In the following, we 
consider layered media, and give expressions of the 
scattering kernels valid for a single layer. The scattering 
kernel for a whole package of layers is then simply obtained 
by summing over all layers. 

If equation (19) is inserted into equation (14), the 
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single-layer scattering kernel K ,  takes the form 

(20)  

By inserting the expressions of equation (6) for gi and of 
equation (12) for Sj, explicit formulae for the scattering 
kernel K ,  can be obtained. 

Here, we focus on a special case which we consider of 
particular interest for practical applications: scattering of the 
Rayleigh fundamental mode on to  itself. Then, the kernel 
which we denote now by K F K  may be written in the form 

x ( -AJR*, ,  + APR,,,, - APR,,,) 
- iH$’’(kR) cos q ( A p R , > ,  - A p R , , )  

- H y ’ ( k R )  cos 2 q ( - A p R p 2 ) ] .  (21)  

In this equation we have introduced layer integrals by, e.g. 
R, , ,  where p, A and p indicate the elastic parameter to  
which the integral belongs, and the indices 0, 1 or 2 stand 
for the associated order of the Hankel function. R is the 
distance between the point ( x ’ ,  y ’) and the observation 
point ( x ,  y) ,  and q is the scattering angle defined as the 
angle between the line connecting both points and the x-axis 
(Fig. 1). k is the wavenumber of the Rayleigh fundamental 
mode. The layer integrals are explicitly given by 

R,, = W2V2dZ’,  R,,,= I 
d z ’ ,  R , ,=  k 2 V 2 d z ’ ,  I 

where U and V denote the eigenfunctions of the Rayleigh 
fundamental mode. 

If we further assume the perturbations of the Lame 
parameters to  be constant in each cell, and define the cell 
integrals 

x H12’(kR) cos v q  exp [ - ik(x’  - p ’ ) ] ,  

(23)  
we may write the scattering kernel of a cell in the form 

K,KK(P, 4 I P‘r 4 ‘ )  = 4 , [ - 4 P ’ ,  4 ‘ P M  

+ AP(P’9 4’)Rpo - 4 ’ ) R J  

+ P , [ A P ( P ’ f  4’ )R, , ,  - APL(P‘, q”, , ) I  
+ P,[ -AP(P’ ,  4’)R,21. (24) 

The factorization into layer and cell integrals leads to  

another numerical commodity. Since the cell integrals only 
depend on the scattering angle and the distance between 
scatterer and observation point, it is sufficient to compute 
the cell integrals on a grid large enough to  encompass all 
possible scatterer-receiver configurations. Actually, we 
need to  consider only one-half of the possible configura- 
tions, because of the symmetry of the cell integrals with 
respect to  the forward direction. As well as the layer 
integrals, the cell integrals may be computed in advance and 
be used for different heterogeneous structures. 

We have not yet mentioned one important detail of our 
numerical scheme. When evaluating the cell integrals of 
equation (23) ,  we actually use the Born approximation, 
since neither the change of the exciting plane wave nor 
backscattering is taken into account. If we use a relatively 
coarse discretization, the Born approximation in its common 
linear form is not accurate enough (Snieder 1986b). We 
illustrate the problem with a simple example. Consider a 
band-like heterogeneity between x = 0 and x = a extending 
to infinity in the fy-direction and being embedded in a 
laterally homogeneous background medium with wavenum- 
ber k.  The wavenumber within the band is assumed to 
differ from k by a constant amount A k .  Let a plane wave 
exp(-ikx) be incident from x < O .  We show in the 
Appendix that, neglecting mode coupling and back- 
scattering, the solution for x > a is exp [ - i (kx  + u A k ) ] .  It is 
also shown that Born single scattering yields (1 - 
iaAk) exp ( - i k x ) .  The amplitude according to  Born 
scattering is then vl + (aAk)’, which is always greater than 
1. We now identify the band with a row of cells and examine 
the amplitude as we proceed through more bands. With 
single scattering, the scattered waves simply add up, and the 
amplitude is q l  + N(aAk)’  after N bands. With multiple 
scattering. we use the accumulated amditude in each steu v 

and obtain v[l + ( u A ~ ) ~ ] ~ ,  an exponentially growing 
amplitude. The error can be reduced by choosing the cell 
size to be small, but this would be numerically very 
inefficient because the computational effort increases with 
the inverse fourth power of the linear cell size. We avoid 
this by correcting the scattered wave from each cell with the 
factor 

1 - exp ( - i a A k )  
f =  iaAk 

This factor equals unity in the linear approximation, but 
converts the Born solution for the band into 

exp ( - i k x )  1 1 - exp ( - i a A k )  
iaAk 

[ 1 - iaAk 

= exp [ - i (kx  + a A k ) ] ,  (26)  

which is identical to  the exact solution except for the loss of 
amplitude due to reflection and mode conversion at the 
interfaces x = O  and x = a .  This is, however, a small 
second-order effect that does not accumulate while the wave 
propagates through a homogeneous region. 

6 RELATIONS TO OTHER SCATTERING 
APPROACHES 

If we use in equation (23)  the far-field approximations of the 
Hankel functions (Abramowitz & Stegun 1972), we obtain 
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from equation (24) that 

K z R =  8cc,J, -i I dr’ d y ‘ d h e x p  [ - i ( k R  - s)] 
x exp [ - ik(x’  - p ’ ) ] [ - A A R , ,  + Ap(R,,, + R,, cos q )  

- Ap(R, ,  + R,, cos + R,, cos 2 q ) ] .  (27) 

The expression in square brackets is identical to  the 
Rayleigh fundamental-mode interaction term integrated 
over a layer given by Snieder (1986a) in his equation (29d). 

If, in addition, in the square brackets of equation (27) the 
angular dependences a re  neglected, that is q is set to zero, 
but the Hankel function H g )  is resubstituted for its far-field 
approximation, the scattering kernel takes the form 

Summing in equation (28) the expression in square brackets 
over all layers yields (Snieder 1986b, equation 9.4) 
4cc,J,kAk, where Ak is the perturbation of local 
wavenumber. Thus we may write the scattered potential 
according to  equation (18) as 

x I d x ’  dy’H$’)(kR) exp [ - ik(x’  - p ’ ) ] .  (29) 

This expression is the discrete form of the equivalent 
integral equation to  the acoustic Helmholtz equation: 

V2QR + ( k  + A k ) ’ a R  = 0. (30) 
Thus several approximation methods to  model surface wave 
propagation a re  covered by our  formulation: (1) multiple 
forward scattering in an elastic treatment using the scattering 
kernel of equation (24) and the updated value of the 
wavefield t o  compute the scattered field; (2) multiple 
forward scattering in an acoustic treatment using the 
scattering kernel of equation (28) and the updated value of 
the wavefield; (3) Born single scattering in an elastic 
treatment using the scattering kernel of equation (24) and 
the incoming wavefield to  compute the scattered field; (4) 
Born single scattering in an acoustic treatment, termed by 
Snieder (1988) the isotropic approximation, using the 
scattering kernel of equation (28) and the incoming 
wavefield. Furthermore, we are  a t  liberty to  use the Hankel 
functions or their far-field expressions, as in Snieder 
(1986a). 

7 TEST A N D  COMPARISON OF T H E  
APPROXIMATION METHODS 

In this section, we shall test the following five approximation 
methods against an exact solution derived by Stange & 
Friederich (1992b) for an elastic, layered waveguide with a 
cylindrical inclusion: 

(i) acoustic treatment with Born single scattering 
(isotropic approximation); 

(ii) elastic treatment with Born single scattering and 

(iii) elastic treatment with Born single scattering; 
(iv) acoustic treatment with multiple forward scattering; 
(v) elastic treatment with multiple forward scattering. 

In all five cases, we only consider scattering of the Rayleigh 
fundamental mode on to  itself. Of course, we could have 
included coupling t o  higher modes in our numerical 
examples. But we think that the single-mode concept 
followed here is, in general, the only realistic way to  get 
information about the Earth’s structure from surface wave 
data, especially if one uses distant earthquakes for which 
the proposed method is tailored. Taking into account higher 
mode excitation for interpretational purposes would require 
a reliable distinction between the higher modes that are  
generated by the structure under investigation and those 
already contained in the incoming wavefield. In view of the 
number and density of stations currently available in Central 
Europe, it is doubtful whether a distinction is realistic. Since 
horizontal components are strongly influenced by higher 
modes excited by the local structure (Stange & Friederich 
1992b), we only show results for the vertical component. 

We have selected two different scatterers: a cylinder of 
radius r = 18 km and one of radius r = 9.7 km, correspond- 
ing to about two and one fundamental-mode wavelengths in 
diameter. The structure of the embedding waveguide is 
shown in Table 1. In the interior of the cylinder, the 
shear wave velocity is increased by 5.7 per cent in both 
layers. In all examples, the fundamental Rayleigh mode 
comes in as a plane wave of unit amplitude with the 
direction of propagation indicated by an arrow. In the 
following figures, the wavefield for the 18 km cylinder is 
always depicted on the left-hand side and that of the 9.7 km 
cylinder on the right-hand side. Moreover, the amplitude in 
the figures is given with respect to  the incoming fundamental 
mode which has unit amplitude. In all examples computed 
by a scattering method, we sampled the diameter of the big 
( r  = 18 km) cylinder by 13 cells and the diameter of the 
small ( r  = 9.7 km) cylinder by 7 cells. This corresponds to  
about 6 cells per fundamental-mode wavelength, which is a 
very conservative choice. 

In Figure 2 we show as a reference the amplitude of 
vertical displacement of the exact wavefield at  the surface of 
the waveguide. It was obtained by a mode-matching 
technique described by Stange & Friederich (1992b). The 
essential point of their method is that, in order to achieve a 
sufficiently accurate matching of the modal expansions 
within and outside the cylinder, it is necessary to  
incorporate non-propagating modes with complex wave- 
numbers into the modal series. For the example of Fig. 2 ,  20 
Rayleigh modes and 14 Love modes in the 18 km case, 22 
Rayleigh and 20 Love modes in the 9.7km case, were 
required. Both within and outside the cylinder, the structure 
of the waveguide admits five propagating Rayleigh modes 

far-field approximation; 

Table 1. Structure of the embedding waveguide. 

layer depth [km] up [m/s] u, [m/s] p[kg/m3] 
1 0-10 5000 3000 2000 
2 10-30 6000 35@@ 2500 
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t 

Figure 2. Amplitude of vertical displacement of the exact wavefield for a cylinder with 9.7 km radius in the right panel and for a cylinder with 
18 km radius in the left panel. Involved are 20 Rayleigh and 14 Love modes in the 18 km case, and 22 Rayleigh and 20 Love modes in the 
9.7 km case. The direction of the incoming fundamental Rayleigh mode which has unit amplitude is indicated by the arrow. 

and three propagating Love modes. All the other modes are 
non-propagating modes with complex wavenumbers (for 
details about complex modes, see Stange & Friederich 
1992a, b). 

For comparison, in Fig. 3 only the contribution of the 
fundamental Rayleigh mode to  the exact wavefield is shown. 
It is evident that, in spite of neglecting the contribution of 
the higher modes, we still obtain a very good 

approximation for the vertical component. The only 
noticeable difference is the somewhat more irregular form of 
the exact wavefield with its more pronounced defocusing 
region. 

In Figs 4, 5 and 6 we show results of different approaches 
using Born single scattering. For the 18 km cylinder, all 
three single-scattering methods produce a spurious focusing 
zone near the end of the cylinder. It reaches its greatest 

n 

a m m  ONO)(O 

00-- --0 0 
?"? ? ? ?  a! 

Figure 3. Amplitude of the contribution of the fundamental Rayleigh mode to the exact vertical displacement. Same arrangement as in Fig. 2 
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Figure 4. Amplitude of vertical displacement obtained from single scattering with acoustic treatment, i.e. scattering kernel evaluated according 
to equation (28). Same arrangement as in Fig. 2. 

value for the acoustic Born method. Furthermore, the 
extreme values in the defocusing zone behind the cylinder 
and in the focusing zone at both sides are overestimated. 
For the 9.7 km cylinder, the agreement between elastic 
single scattering and the exact solution is quite good. 
Obviously, there is a critical scatterer size between one and 
two wavelengths, for which the single-scattering methods 
begin to yield incorrect results. 

In Fig. 7, results of a computation based on an acoustic 
treatment including multiple forward scattering are de- 
picted. For the big cylinder, the wavefield agrees very well 
with the one shown in Fig. 3, except for a small focus at the 
end of the cylinder. The defocusing region is slightly 
overestimated. On the contrary, for the small cylinder the 
agreement is much worse. At the far end of the cylinder, 
there is a steep decline of the amplitude from a nearly 

Figure 5. Amplitude of vertical displacement obtained from single scattering with elastic treatment but without far-field approximation, i .e.  
scattering kernel evaluated according to equation (24). Same arrangement as in Fig. 2. 
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Figure 6. Amplitude of vertical displacement obtained from single scattering with elastic treatment and far-field approximation, i.e. scattering 
kernel evaluated according to equation (27). Same arrangement as in Fig. 2. 

constant value within the cylinder to its lowest value in the 
defocusing region, while in the elastic case the transition is 
rather smooth. In addition, the acoustic computation yields 
a backscattered field which is much stronger than in the 
elastic case. The reason for these discrepancies is quite 
obvious: within an acoustic treatment the field of a point 
scatterer is isotropic, while in the elastic case forward 
scattering dominates even for a point scatterer. Thus, for 

small scatterers, the differences in the radiation characteris- 
tics become noticeable, while for large scatterers forward 
scattering is dominant in any case. 

In Fig. 8 we present the results obtained with multiple 
elastic forward scattering as proposed in this paper. The 
amplitude of the potential @ of equation (18), which is 
proportional to vertical displacement, is plotted. Apart from 
very small differences, the exact fundamental-mode 

Figure 7. Amplitude of vertical displacement obtained from the multiple forward scattering method in the acoustic approximation. Scattering 
kernel evaluated according to equation (28). Same arrangement as in Fig. 2. 
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Figure 8. Amplitude of vertical displacement obtained from the proposed mulfiple forward scattering method. Elastic treatment, i.e. scattering 
kernel evaluated according to equation (24). Same arrangement as in Fig. 2. 
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displacement of Fig. 3 is reproduced by the proposed 
method. 

To give a more precise idea of the performance of the 
tested methods for the big cylinder, in Figs 9 and 10 we 
show the amplitude of the vertical displacement for two 
cross-sections, one at the end of the cylinder and one far out 
in the far field. It is evident that the multiple forward 
scattering methods are much closer to the exact solution 

than the Born single-scattering methods. 
This leads to an important conclusion. Depending on the 

shear wave velocity contrast, there exists a critical scatterer 
size above which the solutions obtained from elastic and 
acoustic multiple forward scattering converge to each other, 
while the error of the single-scattering methods increases. 
Below this critical scatterer size, elastic and acoustic 
multiple scattering diverge from each other, while the 

Figure 9. Cross-section of vertical displacement amplitude for the 18 km cylinder taken at a transverse profile at the end of the cylinder. The 
fundamental Rayleigh mode comes in with unit amplitude. The horizontal scale is in km. (1) Exact wavefield (only fundamental-mode 
contribution); (2) elastic treatment with multiple forward scattering; (3 )  acoustic treatment with multiple forward scattering; (4) elastic 
treatment with single scattering and far-field approximation; (5) acoustic treatment with single scattering. 
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-60 -40 -20 0 20 40 60 
Figure 10. Cross-section of vertical displacement amplitude for the 18 km cylinder taken at a transverse profile about six wavelengths behind 
the centre of the cylinder. The fundamental Rayleigh mode comes in with unit amplitude. The horizontal scale is in km. (1) Exact wavefield 
(only fundamental-mode contribution); (2) elastic treatment with multiple forward scattering; (3) acoustic treatment with multiple forward 
scattering; (4) elastic treatment with single scattering and far-field approximation; (S) acoustic treatment with single scattering. 

Error 

> 
' Scatterer size in wavelengths 

Figure 11. Qualitative behaviour of errors (therefore no scale) as a 
function of scatterer size for different approaches to surface wave 
scattering. For the velocity contrast used in the numerical 
examples, the horizontal axis would cover a range from zero to 
roughly two wavelengths. 

difference between single and multiple scattering shrinks. In 
Fig. 11 we show a very qualitative sketch which illustrates 
the above discussed behaviours of the various methods. 

8 CONCLUSION 

There are two main results of this paper. First, by 
introducing potentials and assuming that the wavefield 
propagates roughly as a plane wave through the region of 
interest, which is certainly valid in teleseismic situations, we 
have been able to  transform the elastic surface wave 
scattering problem of equation (11) into the form of a 
2-D standard integral equation. The formulation allows an 
extension of the classical Born single-scattering methods to  
include multiple scattering in the forward direction. It is 
valid for fully anisotropic perturbations of the elastic 
parameters. Moreover, no additional numerical effort 

compared to  single-scattering methods is required if the 
wavefield is to be computed over the whole anomalous 
region. 

Subdividing the medium into cells and invoking the 
piecewise-plane-wave approximation, we derived a dis- 
cretized form of the standard integral equation, Its kernel 
represents the scattered field of a cell excited by a plane 
wave travelling into the dominant direction of propagation. 
Due to  the formulation in terms of a standard integral 
equation, the method covers several approximation 
schemes, depending on the kind of scattering kernel used, 
and on the way in which the total wavefield is approximated 
to compute the scattered field; for instance, multiple 
forward scattering with single backscattering, as well as 
Born single scattering of both elastic surface waves and 
acoustic waves. Moreover, we are at liberty to  use the 
far-field approximations of the Hankel functions. 

Secondly, the multiple-scattering methods yield nearly 
exact results. We have been able to  test the performance of 
five different approximation methods against an exact 
solution obtained by Stange & Friederich (1992b) for a 
cylindrical scatterer. We found the multiple-scattering 
methods, in both an elastic and an acoustic treatment, 
superior to  all Born single-scattering methods if the scatterer 
exceeded a critical size. Above that critical scatterer size, 
which in our  cases lies between one and two wavelengths, 
the main errors are caused by the neglect of multiple 
scattering. Thus, depending on the kind of scatterers, even 
an acoustic treatment may be accurate enough to model 
surface wave propagation if multiple scattering is taken into 
account. For scatterer sizes below one wavelength, single 
scattering is accurate enough, but now elastic and acoustic 
treatments may differ considerably. 

The proposed method is not only very accurate but also 
very efficient. For example, at a period of 50 s, if we choose 
the cell size to  be a quarter of a wavelength, which is a very 
conservative choice, a grid of 20 x 20 cells would suffice to 
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cover an area of 1000 x loo0 kmL. Thus we also expect the 
multiple forward scattering method to be suited for an 
inversion of surface wave measurements. 
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APPENDIX 

We derive here the surface wave field for a band-like 
heterogeneity between x = 0 and x = a extending to infinity 
in the y-direction. The elastic parameters are assumed to 
vary only with respect to x .  Assume an incoming plane wave 
propagating in the positive x-direction. Since the incoming 
wave and the structure depend only on x ,  the scattering 

problem is purely 1-D. The 1-D point-scattering kernel is 
then simply obtained by integrating KFR of equation (21) 
with respect to y :  

KbD(x,  x’) = I:, dy’Kp“R(x, y I x ’ ,  y’). (31) 

After substituting u = R 2 / ( x  - x ’ ) ~ ,  the integrals over the 
Hankel functions can be brought into a form which may be 
found in Gradstein & Ryshik (1981, p. 90, 15). One obtains 

2 I:: k 

Together with equation (21) and the definition of A k  used in 
equation (29), the 1-D scattering kernel may be written in 
the simple form 

d y ’ H v ) ( k R )  cos v q  = i ” -  exp [ - i k ( x  - x ’ ) ] .  (32) 

KbD(x,  x ’ )  = - i A k ( x ’ )  exp [ ik(x - x ’ ) ] .  (33) 
The scattering field of the band heterogeneity is then 
computed from 

@&) = dx’KbD(x,  x ’ ) @ ( x ’ ) .  
0 

(34) 

This expression is exact except for the neglect of mode 
coupling. If we also neglect back scattering, the 
contributions of the scatterers ahead of the receiver must be 
discarded. Thus equation (34) reduces to 

(35)  

We follow Kennett (1984) and substitute @ ( x ) =  
c(x) exp ( - i k x ) ,  leading to 

C(X) - 1 = -i d r ’ A k ( x ’ ) c ( x ‘ ) ,  J” 
which is equivalent to the differential equation 

d,c(x)  = - i A k ( x ) c ( x ) ,  (37) 

with the initial condition c(0) = 1. The solution of equation 
(37) is 

c(x) = exp [ -i i : A k ( x ’ )  dx’]. (38) 

Thus, if multiple forward scattering is taken into account, 
there is only a change in the phase of the wave. The 
amplitude remains unchanged. Assuming constant A k ,  we 
may write, at x >a ,  

@ ( x )  = exp [ - i (kx  + a A k ) ] .  (39) 

If we solve equation (35) with constant A k  using the Born 
approximation, we obtain 

QBorn(x) = exp (-ikx)(l - i a A k ) ,  (40) 

which is just the first-order approximation of equation (39). 
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