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SUMMARY 
A down-hole experiment was carried out in the transversely isotropic Oxford Clay 
outcropping in the south of England. Different moveout curves for the two shear wave types 
and anomalous amplitude features for the SV-wave were found in the field data. Based on 
velocity measurements carried out formerly at the site a model study was performed to 
explain the results. Phase velocity and group velocity curves computed analytically with the 
method of characteristics, and synthetic seismograms computed with the Alekseev- 
Mikhailenko method, are presented. The field experiment and the model studies demonstrate 
that the occurrence of cuspidal triangles in the qSV-wavefront is an essential feature of wave 
propagation in transversely isotropic media. Even for weak transversely isotropic media there 
is a focusing effect into the direction of the cusp which leads to prominent shear wave 
amplitudes in this direction. Furthermore, we examined the effect of numerical anisotropy 
which can contaminate the synthetic seismograms. Velocity errors are one order of magnitude 
higher for shear waves than for compressional waves and increase with increasing Poisson’s 
ratio. It was found that the error can be restricted to less than 1 percent only if using a spatial 
sampling of three times higher than a value that would generally be regarded as sufficient in 
finite difference computations. 
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1 INTRODUCTION 

Recent developments in wide angle reflection methods, 
offset vertical seismic profiling and the analysis of shear 
wave data have led to an increased awareness amongst 
exploration seismologists of the necessity to consider the 
influence of anisotropy on the properties of seismic waves. 
Transverse isotropy is generally regarded as the commonest 
form of anisotropic symmetry. It can be caused by layering 
as well as by intrinsic, microscopic properties of the rocks. 
Investigation on sediments have shown that large anisotropy 
effects are caused by clay (Brodov et al. 1984; Galperina & 
Galperin 1987). The percentage of clay in a sediment is 
correlated with the anisotropic property of the sediment, 
which can hence serve as a lithology indicator (Winterstein 
1986). 

In the past, interest in transverse isotropy has tended to 
focus on its influence on normal moveout velocities 

a clay layer. A simple surface to borehole survey with a 
single downhole three-component geophone was performed. 
At the same site the elastic coefficients for the shear wave 
velocities have been derived (Barnes 1983) for different 
depths by fitting theoretical to measured phase velocity 
versus angle curves (White, Martineau-Nicoletis & Monash 
1983). These data, together with data from a sonic log and a 
surface refraction survey (King 1983; King, Somerton & 
Davis 1982), were used to compute synthetic seismograms. 

A model study was performed to simulate the field data. 
It included an investigation of the kinematics and dynamics 
of wave propagation in a weak and a strong transversely 
isotropic medium and the influence of the source type on the 
amplitudes. Analytical velocity and polarization versus angle 
curves are presented. Synthetic seismograms were computed 
using a combination of the integral transform method and a 
finite difference scheme (Martynov & Mikhailenko 1984). 

(Berryman 1979; Byun 1982, 1984; Helbig 1984; Krey & 
Helbig 1956; Levin 1979, 1980; Thomas & Lucas 1977). 
Only a few studies exist that investigate the wave amplitudes 

AND METHODS OF 
COMPUTATION 

in tiansversely isotropic media (Piyton 1983; Mikhailenko 
1984; White 1982). However, Wright (1987) and Banik 
(1987) have emphasized that transverse isotropy might have 
a significant effect on amplitude versus offset studies. 

In this paper a field experiment is described which was 
carried out to investigate the effects of transverse isotropy in 

Linearly elastic material is described by the generalized 
Hooke’s law relating the stress tensor, p,, ,  to the strain tensor 
e,,. Due to symmetry conditions, the fourth order elasticity 
tensor, e,,, is given by only 21 independent constants for a 
general anisotropic elastic medium. This number reduces to 
five in the case of transversely isotropic media with a vertical 
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An isotropic medium is a special case of a transversely 
isotropic medium with c33 = cI1  = A + 2 p ,  cI2 = cI3 = A,  and 
c4 = p where I, p are the Lam6 parameters. 

A major difference between wave propagation in isotropic 
and transversely isotropic media is that in the latter case the 
phase velocity curve and the wavefront are neither 
congruous nor circular (Fig. 1). The wave vector, k, is 
perpendicular to the wavefront and points along the phase 
velocity vector. However, this direction is different from the 
ray direction which is also termed the group velocity vector 
(Berryman 1979). The angles between the phase and group 
velocity vectors and the vertical direction are the phase 
angle and the group angle, respectively. 

In transversely isotropic media, P-waves are not purely 
longitudinal and SV-waves are not purely transversal. 
Instead, polarization directions are deviated from the 
direction of propagation (k). Furthermore, for intermediate 
transmission angles, the SV-wave velocities are dependent 
on the P-wave velocities. In transversely isotropic media 
these waves are therefore referred to as quasi P- (qP) and 
quasi SV- (qSV) waves. 

For propagation along horizontal (h) or vertical (v) 
directions the phase velocities are directly related to the 
elastic parameters. The qP-wave velocities for the waves 
travelling in these directions are a,, = ( ~ ~ ~ / p ) " ~  and 
a" = ( ~ ~ ~ / p ) " ' .  For the qSV-wave the velocity is PI"" = 
/I:"" = (c,/p)'" in both directions. For SH-waves travelling 
in horizontal or vertical directions the velocities are 
/I;'" = [0.5(cl, - c12)/p]lR and B:'" = (c4Jp)l/' ( p  = 
density). However, the remaining parameter, cI3,  cannot be 
related directly to a velocity. 

One method we used to study wave propagation in 
transversely isotropic media was to solve the eigenvalue 
problem for plane wave solutions to the wave equation. This 
yields phase velocity and particle motion directions for plane 
waves incident upon the medium at different angles. 
Considering the propagation of waves diverging from a 
point source, the resulting wavefront can be constructed by 
computing the envelope of the plane waves (Huygen's 
method; Payton 1983). An equivalent approach is to 
compute the group velocity vector (Berryman 1979). 

These results are valid for wave propagation in the 
far-field. Furthermore, they imply an explosion source for 
the P-SV waves and a single-force source for the SH waves. 
The velocity curves can be used to trace a ray through 
transversely isotropic, multilayered media (Byun 1984; 
Stockli 1984). 

Instead of ray-tracing we used a wavenumber summation 
method to solve the wave equation numerically and 
compute synthetic seismograms. The method combines a 
finite integral transformation with a finite difference scheme 
(Martynov & Mikhailenko 1984; Alekseev & Mikhailenko 
1980; Korn 1987). The method yields complete seismograms 
which contain all wave types including converted and 
inhomogeneous 'waves. The algorithm is sketched in 
Appendix A for the three components of the displacement 
vector. 

However, numerical approximations in the finite 
difference scheme can cause a contamination of the 
synthetic seismograms by grid dispersion. Grid dispersion 
comprises both a frequency dependence of the wave 
velocities (numerical dispersion) and an angle dependence 
of the velocities (numerical anisotropy). It was essential to 
examine the effect of numerical anisotropy before modelling 
the anisotropy of rocks. The results are given in 
Appendix A. 

3 FIELD EXPERIMENT 

The Oxford Clay is an over-consolidated Upper Jurassic 
formation outcropping in the south of England. It is a mainly 

r 

z phase velocity curve 
I 

@re 1. Wave propagation in transversely isotropic media - definitions. 
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homogeneous fine-grained sedimentary sequence which has 
been found to be transversely isotropic (King 1983). At the 
site near Purton/Wiltshire the sediment is about 100 m thick 
and overlies a limestone layer. Compressional and shear 
wave velocities had been measured using a variety of 
techniques, including down-hole and cross-hole surveys, 
surface refraction recordings and sonic logging (King et af. 
1982; Barnes 1983). The velocities and elastic parameters 
measured in the depth range from 0 to 47m are listed in 
Table 1 (values in bold print; the values in light print are 
referred to later in the text). Other in-hole measurements 
(caliper, natural gamma, density logs) had shown that, apart 
from two sandy intrusions at about 30 and 75 m depth, the 
Oxford Clay is laterally homogeneous. 

Figure 2 is a sketch of the experimental geometry. Two 
three-component geophones were clamped in neighbouring 
boreholes at 38 and 45m depth, respectively. Data were 
recorded for source positions in an offset range from 0 to 
70m from the wellheads, at intervals of 5 m. Different 
source types were used: P-SV-waves were generated using a 
Betsy-gun which fires a shell into the ground; SH-waves 
were produced by hitting the end of a plank with a sledge 
hammer. 

The seismograms recorded in the two boreholes are 
shown in Fig. 3. SH-waves could only be measured in one 
borehole. The recorded horizontal components have been 
rotated into the in-line (radial) and cross-line (transversal) 
directions to yield maximum signal energy in the directions 
of P-SV- and SH-waves, respectively. All records have been 
normalized on a trace by trace basis. 

In the vertical and radial component gathers, shear wave 
signals with comparable amplitudes to the P-wave signals 
are visible. In the vertical component gathers, qSV-waves 
occur at source offsets of greater than 20m (Fig. 3a and d). 
Their amplitudes reach maximum values of nearly twice the 
qP-wave amplitude at offsets of 35m (Fig. 3a) and 45m 
(Fig. 3d). The qSV-wave arrivals in the radial component 
gathers (Fig. 3b and e) only exhibit large amplitudes in the 
offset range of 20-40111, but can also be detected in the 

OXFORD 
CLAY 

+ 
D[ I source (plank gun)  ., 

Figure 2. Sketch of the experimental geometry (I,  11: boreholes) 

seismograms for smaller offsets. It is apparent from the S/N 
ratio that the amplitudes of the SH-waves (Fig. 3c) are 
approximately the same for all offsets. Note that the plank 
source produces a much lower frequency wavelet than the 
Betsy-gun. In addition to the direct waves, a small reflected 
signal from the clay-limestone interface is visible in Figs 
3(a) and (d) at approximately 0.1 s. 

A comparison of the moveout curves of the qSV- and 
SH-waves gives clear evidence of the anisotropic properties 
of the Oxford Clay. In addition, hodograms have been 
produced for the qSV-signals recorded in borehole I1 in the 
offset range 35-55 m (Fig. 3f). The polarization directions 
are deviated from the perpendicular to the ray directions, 
shown as straight lines in the figure. The influence of the 
vertical velocity gradient on the ray directions slightly 
diminishes this effect. 

Our objective for the following modelling is to explain all 
the travel time, amplitude and polarization characteristics 
inherent in these field data. 

Table 1. Elastic parameter for the field case (a,,ur Bh,": P- and S-wave 
velocities for the horizontally and vertically travelling waves). Bold print: 
measured velocities (the P-wave velocities are mean values for a depth range 
obtained from a velocity log. The single velocity value for horizontally 
travelled P-wave is an estimate from a refraction survey. Shear-wave velocities 
are obtained from a downhole experiment). Light print: estimated velocities 
and calculated c,,-parameters (for the modelling, a constant density of 
1.8 gcm-' was assumed). 

Depth Depth (I" O h  a P h  c13 
range 
[ml [ml 

0.0 
7.0 
12.0 
17.0 

15.-20. 17.5 
22.0 
27.0 

25.-30. 27.5 
32.0 

30.-35. 32.5 
37.0 

35.-40. 37.5 
42.0 

40.-45. 42.5 
47.0 

[km/s] [km/s] [km/s] [km/s] lo"* .ml 

I60 
175 
1.75 
175 

1 75 
175 
1.75 
1 88 
1.88 
1 80 
1.80 
1 80 
1.80 
1 80 

1.62 
1.78 
1.78 
1.78 
1.70 
1.78 
1.78 
1.78 
1.91 
1.91 
1.83 
1.83 
1.83 
1.83 
1.83 

0.17 
0.20 
0.22 
0.25 

0.28 
0.33 

0.47 

0.39 

0.40 

0.39 

0.20 
0.27 
0.32 
0.36 

0.42 
0.53 

0.58 

0.59 

0.57 

0.57 

4.504 
5.369 
5.332 
5.297 

5.224 
5.116 

5.570 

5.293 

5.256 

5.358 
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Figure 3. Field data: seismograms for different source offsets measured in borehole I (a-c) and borehole I1 (d, e) using different sources for 
the qP-qSV- and SH-wave generation, respectively. In (9 hodograms computed from the qSV-wave signals are depicted. 

4 MODEL STUDIES 

4.1 General remarks 

Inspection of Table 1 (bold print) shows that shear wave 
velocities have been measured over the whole depth range. 
Also P-wave velocities for the vertically travelling waves are 
given in the depth range from 25 to 45m. However, no 
values are available for the P-wave velocity in the shallower 
parts of the sediment and only one velocity value for the 
horizontally travelling P-wave is given. Thus, the measure- 
ments provide only a rough estimate of the P-wave 
anisotropy and furthermore no c,,-parameters have been 
determined. Preliminary studies were therefore necessary to 
estimate these parameters. 

To achieve this, a general investigation of the dynamic 
and kinematic characteristics of wave propagation in 

transversely isotropic media was carried out. The results are 
described in the first part of this section. The elastic 
parameters were chosen to model the extreme cases of 
strong and weak transverse isotropy within the range of 
parameters for measured anisotropy as compiled by 
Thomsen (1986). Based on these studies, the P-wave 
anisotropy and c,,-parameters for the field case modelling 
were estimated by a trial and error procedure. These 
parameters were constrained principally by the travel times 
of the qSV-wave signals in the data which could be 
computed analytically for vertically homogeneous models. 
In the second part of this section, the simulation results for 
the final model derived for the field case are presented. 

Poisson's ratio for the Oxford Clay is about 0.47. 
Unfortunately, velocity errors due to numerical anisotropy 
were found to be unacceptably large for high Poisson's 
ratios (Appendix A). However, significant errors in the 
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Table 2. Elastic parameter for three models (the anisotropy factors E ~ ~ . ~ ~ ~ . ~ ~  
are defined as in-Banik (1987)). 
Model C I I  c33 C13 c44 

1 0 1 0 h  
,,a 

strong 
transverse 14.82 12.21 6.70 1.31 
isotropy 
weak 
transverse 5.24 9.00 5.04 1.22 
Isotropy 

clay 6.028 5.832 5.607 0.113 

modelling of the field data could be prevented by increasing 
the number of grid points per wavelength. This number was 
three times as high as the value that would generally be 
regarded as sufficient sampling in finite difference 
computations. 

The models investigated in the following general study 
represent unbounded media, consequently the results do not 
contain effects caused by the free surface or by artificial 
boundaries. To model the field case a free surface was 
introduced. 

4.2 Strong and weak transverse isotropy - general study 
The elastic parameters for the two transversely isotropic 
media which we consider are given in Table 2. Note that the 
anisotropy factors (Banik 1987) are more than twice as high 
for the 'strong transversely isotropic' medium than for the 
'weak transversely isotropic' medium. 

Figures 4 and 5 show the analytically computed velocity 
and polarization curves for both media for a range of angles 
from 0" (vertical direction) to 90" (horizontal direction). The 
phase velocity curves for the weakly anisotropic medium 
(Fig. 4a) are flatter with less pronounced velocity differences 
than for the strongly anisotropic medium (Fig. 5a). The 
phase velocities of the horizontally travelling qP-wave and 
SH-wave are higher than the velocities for these waves 
travelling in the vertical direction. In contrast, the 
qSV-wave velocities in horizontal and vertical direction are 
identical and are equal to the SH-wave velocity in the 
vertical direction. Therefore shear-wave splitting in 
transversely isotropic media cannot be observed in 
zero-offset VSP records. However, in strongly anisotropic 
media qSV-wave phase velocities are distinctly different 
from the SH-wave phase velocities for nearly the whole 
range of angles of incidence. 

The value of cI3 has a significant influence on the shape of 
the qSV-wave phase velocity curve. If c44 < c , ~  I ( c ~ ~ - ~ c , ) ,  
as is the case for both media, the curve exhibits a maximum 
at 45" and minima at 0" and 90". The closer cI3 is to c ,  the 
higher is the maximum. If cj3 > c13 > (cj3-2c4.,) a minimum 
occurs at 45" and maxima at 0" and 90". The maxima become 
higher with increasing cI3, c33 and c44 are the threshold 
values limiting the range for which real-valued solutions for 
every angle are obtained. 

The inflections in the qSV-phase velocity curve lead to 
cuspidal triangles in the respective group velocity curve or 
wavefront. It means that two or three qSV-wave signals 
exist in the directions of the cusps. ~ 1 3  was chosen such that 
the qSV-wave cusp is pronounced in the data for the 
strongly anisotropic medium (Fig. 5b) and is just 
recognizable in the data for the weakly anisotropic medium 
(Fig. 4b). 

The polarization of the qP- and qSV-wave is shown in two 

4 15 1 0 0  - 0 0 4  0 2 2  0 3 0  

5.299 1 8 0  0.02 0.20 0 80 

different ways: the deviation of the polarization directions 
from the wave vector direction and its perpendicular is 
shown in Figs 4(c) and 5(c). The absolute values of the 
polarization angles are the same for qP- and qSV-waves 
because their polarization directions are perpendicular to 
each other. They reach a maximum of 8.5" in the case of the 
strongly anisotropic medium and a maximum of 3.5" in the 
case of the weakly anisotropic medium. 

However, it is more interesting to visualize the 
polarization with respect to the group velocity direction or 
ray direction (Figs 4d and 5d), because these polarization 
angles can also be obtained from hodogram analyses of 
seismograms. The curves for the qSV-wave are multivalued, 
as are the group velocity curves. The values at a group angle 
of 40" in Fig. 5(d), for example, means that one qSV-phase 
is polarized perpendicular to the ray direction (polarization 
angle=O") and that the two other phases are polarized in 
the directions +35" and -42" with respect to the 
perpendicular to the ray direction. The maximum deviations 
from the perpendicular to the ray direction are about 25" 
and 50", respectively, for the two media. These significant 
values suggest that the polarization direction of the 
qSV-wave with respect to the ray direction can be used as 
diagnostic of transversely isotropic media. 

Figures 6 and 7 show the seismogram gathers for the three 
displacement components. P-waves were initiated by an 
explosion point-source and SH-waves by a horizontal single 
force point-source. The seismograms were computed for a 
circular profile with the source-point at the origin and a 
radius of 100 m. 

The qP-, qSV- and SH-wave signals in the seismograms 
align along wavefronts which fit the analytical curves 
(dashed lines). But qSV-phases are recognizable also 
beyond the tips of the cusps (examples marked by arrows). 
White (1982) interpreted these phases as near-field effects. 
He showed that their amplitudes decrease more rapidly with 
distance from the source than the amplitudes of the 
analytically predicted signal phases. 

The synthetic seismograms provide additional information 
about the amplitudes of the signal phases. In the case of the 
strongly anisotropic medium, the branch of the qSV- 
wavefront with decreasing group velocities is prominent in 
the angle range from 25" to 90" (Fig. 7, radial cpt). The 
amplitudes are high, especially close to the cusp tip at 25". In 
the case of the weakly anisotropic medium the largest 
qSV-wave amplitudes occur for phases in the angular range 
close to 45", where the cusp lies (Fig. 6). Transverse 
isotropy also leads to an angular dependence of the 
SH-wave amplitudes. For the strongly anisotropic medium 
the amplitude of a wave travelling in the horizontal direction 
is about 60 per cent higher than the amplitude of the 
vertically travelling wave. 
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(qP) or its perpendicular (qSV). 
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9 oo 

- I \ -  

Figure 6. Weak transverse isotropy: Seismograms computed for a circular profile. (a, b) Vertical and radial component gathers with qP- and 
qSV-wave signals. (c) Transversal component gather with SH-wave signals. (d) Hodograms with qP- and qSV-wave particle motion at different 
ray angles. 

Also depicted in Figs 6 and 7 are particle motion diagrams 
or hodograms for the qP- and qSV-waves. Here, it can be 
seen that the qP-wave amplitude is dependent on angle: for 
both media, amplitude minima occur in the angular range 
from 30" to 60". In the case of the strongly anisotropic 
medium the variation can be as large as 50 per cent of the 
maximum amplitude. 

The polarization directions of the qP-wave are nearly 
parallel to the ray directions for all angles. The deviations 
which are visible are identical to the polarization angles 
computed analytically with respect to the ray directions 
(Figs 4d and 5d). Naturally, the polarization of the 
qSV-wave signals also agree with the analytical results. In 
Fig. 7, for example, the two qSV hodograms at 40" indicate 
three different polarization directions. One direction is 
perpendicular to the ray direction, and corresponds to the 
value 0" in the analytical curve (Fig. Sd). This hodogram is 
of the qSV signal at the front branch of the cusp (Fig. 5b). 
The two other directions visible in the second hodogram 
belong to the qSV-wave signals of the decaying branches of 
the cusp. The polarization directions of these phases which 
are nearly perpendicular to each other can be more clearly 
distinguished in the two hodograms at 60", for example. 

For the weakly anisotropic medium, the qSV-wave is 
characterized by elliptical polarization in the range of angles 
enclosing the cusp (Fig. 6). This is due to superposition of 
qSV-phases whose polarization directions can be distin- 
guished at the beginning and the end of the hodograms. 

Figures 8 and 9 illustrate the influence of a different 
source type on the amplitudes. The seismograms were 
computed for a vertical single force source. If inserted into a 
homogeneous (isotropic) medium, this source radiates 
compressional waves with maximum amplitudes in the 
vertical directions and shear waves with maximum 
amplitudes in the horizontal directions. The maximum shear 
wave amplitude is a factor cr'/f?' (a, 6; P- and SV-wave 
velocities) higher than the maximum amplitude of the 
compressional wave. 

Due to these specific radiation features of the source, 
qP-wave amplitudes in the seismograms are significantly 
lower than the qSV-wave amplitudes. In both media the 
qSV-waves associated with the front branches of the cusps 
exhibit high amplitudes in the radial component records. In 
the vertical component records the qSV-wave signals with 
large amplitudes are associated with the wavefront branches 
with decreasing velocities for increasing angles. 

The differences in amplitudes for the different branches of 
the qSV-wave, the radiation of qSV-waves from an 
explosion source, and the dependence of amplitudes on the 
transmission angle are all features of wave propagation in a 
transversely isotropic medium. Levin (1979) assumed that 
the density of velocity values on the wavefront curve is an 
indication of the amplitude of the wave. (For demonstra- 
tion, the group- and phase-velocity values computed for the 
qSV-wave are marked by symbols in Fig. 5 . )  This should 
determine the gross amplitude features, because the density 
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Figure 7. Strong transverse isotropy: seismograms computed for a circular profile. (a)-(d) as in Fig. 6. 

of velocity points is identical to the density of plane waves of 
equal amplitude (cf. the coverage in ray tracing). The model 
studies confirm that qSV signals associated with the cusp, 
especially those at the tips of the cusp, exhibit prominent 
amplitudes in the seismogram. These parts of the wavefront 
are built up by a larger number of superposing plane waves 
than other parts of the wavefront. 

However, the different signal amplitudes for the two side 
branches of the qSV-wavefront cannot be explained by 

.- 
c 

different densities of plane waves. This feature becomes 
comprehensible by regarding wave propagation in a finely 
stratified medium which is analogous to a homogeneous 
transversely isotropic medium (Postma 1955). It can be 
shown that the two side branches of the qSV-wavefront are 
made up by plane waves with angles of incidence below the 
first and above the second point of inflection in the 
phase-velocity curve, respectively. Hence, the low signal 
amplitudes for one of the branches can be related to the low 

goo O0 3 Oo 60° goo 

Figure 8. Weak transverse isotropy: influence of a vertical single-force on the amplitudes. (a) Vertical component, (b) radial component. 
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Figure 9. Strong transverse isotropy: influence of a vertical single-force on the amplitudes. (a) Vertical component, (b) radial component. 

transmission amplitudes for P to SV converted waves in 
stratified media if the angles of incidence are steep. 
Furthermore, the shear wave generation by an explosion 
source is explained by conversion. 

4.3 Modelling of the field case 
The field data and the synthetic data for the weak 
transversely isotropic medium resemble one another in the 
Occurrence of a single qSV-wave signal and the amplitude 
characteristics of the qSV-wave. This suggests the existence 
of a small cusp at 45". By trial and error it was found that 
the best fit to the field data was obtained if cI3 was chosen to 
be C ~ ~ = ( C ~ ~ - ~ C ~ ) ;  in addition, the velocity of the 
horizontally travelling qP-wave was assumed to be 1.5 per 
cent higher than the velocity for qP-waves travelling in the 
vertical direction. Both choices mean that the medium is 
nearly isotropic for P-waves. All elastic parameters used for 
the modelling of the field case are given in Table 1 (light and 
bold print). These parameters were assumed to change 
gradually between the samples. A vertical and a horizontal 
single-force source was applied to the free surface to 
generate qP-qSV-waves and SH-waves, respectively. In 
contrast to a single force in an unbounded medium the 
vertical single force positioned at the free surface radiates a 
maximum of shear wave energy at about 45". 

The effect of the velocity gradient and the influence of the 
radiation pattern of the source at the surface on the 
qP-qSV-wave seismograms are shown in Fig. 10. In Figs 
1O(c) and (d) the radial and vertical components of the 
displacement vector computed for the gradient model on a 
circular profile with a radius of 40m are depicted. For 
comparison, the seismograms in Figs lO(a) and (b) have 
been computed for a homogeneous, transversely isotropic 
medium with a set of intermediate values for the elastic 
parameters (Table 2). 

The seismograms for both models (Figs 10a-d) show that 
P-wave signals with only very small amplitudes compared 
with the amplitudes of the Shear waves are radiated by the 
source. This is due to the extremely high Poisson's ratios in 
these models. Although the choice of the elastic parameters 
means that P-wave anisotropy is very small, the anisotropy 

effect on the qSV-wave is significant. The existence of a 
small cusp in the group velocity curve causes a focusing of 
wave energy in the direction of the cusp. As shown in Figs 
lO(a) and (b) this leads to similar amplitude characteristics 
in the seismograms computed for the homogeneous medium 
as those depicted in Fig. 8. However, the influence of the 
free surface on the radiation pattern causes a further 
concentration of shear wave energy for waves propagating in 
the directions around 45". 

A velocity gradient can counteract such an accumulation 
of wave energy as the comparison with the seismograms in 
Figs 1O(c) and (d) shows. However, in the angular range 
from 45" to 50" the amplitudes in the seismograms for both 
components are still significantly higher than for other 
transmission angles. Furthermore, a rather abrupt increase 
in amplitude between 40" and 45" is visible. That these 
amplitude characteristics are mainly due to transverse 
isotropy and not altogether an effect of the radiation pattern 
was tested by comparison with results obtained for an 
isotropic gradient model for which the velocities of the 
vertically travelling qP- and qSV-waves (Table 1) were 
taken. In the case of isotropy the amplitudes increase 
smoothly with increasing angles in the range from 0" to 45" 
(no picture). 

With the source-receiver configuration used in the field 
experiment, waves transmitted through the media in the 
angular range from 0" to 60" were measured. Fig. 10 shows 
that this is the range where the influence of cusping is the 
strongest visible in the data, as discussed before. Note that 
the data in this angular range do  not contain surface waves 
which exhibit large amplitudes in the seismograms recorded 
at the surface or close to it (Fig. 10: 80"-90"). 

Figure 11 shows the synthetic seismogram gathers for the 
same source-receiver configuration as in the field 
experiment and for all three components. A close inspection 
of the travel times for both shear wave types in the 
synthetic seismograms indicates that the kinematics of the 
shear waves are quantitatively predicted by the model. The 
moveout curves of the recorded signals, which are drawn on 
the seismogram gathers, fit nearly perfectly. Also the 
dynamics in the field seismograms (Fig. 3) and the synthetic 
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Figure 10. Synthetic data from the field case modelling: seismograms computed for a circular profile. (a, b) Vertical and radial component 
gathers computed for the homogeneous model of the Oxford clay layer. (c, d) Vertical and radial component gathers computed for the gradient 
model of the Oxford clay layer. 

seismograms (Fig. 11) are-at least qualitatively-in 
agreement. An abrupt increase in the amplitude of the 
qSV-signal occurs at offsets between 30 and 35 m (Fig. l l a )  
or 35 and 40 m (Fig. l l d )  in the vertical component gathers. 
In both vertical and radial component gathers, the 
amplitudes of the qSV-signals reach a maximum at larger 
offsets. 

Two differences between the synthetic data (Fig. 11) and 
the field data (Fig. 3) are visible. Firstly, the amplitudes of 
the qP-wave signals compared with the amplitudes of the 
qSV-wave signals are much higher in the field data than in 
the synthetic data. Furthermore, in the field data the 
decrease with offset of the shear wave amplitudes is more 
distinct than in the synthetic data. Both effects may be 
explained by absorption. It can be estimated from a 
comparison of relative amplitudes that the absorption for 
the shear wave is at least one order of magnitude higher 
than the absorption for the compressional wave. A further 
imperfection of the model is indicated by the differences in 
the polarization directions of the qSV-waves in the field 
seismograms and in the synthetic seismograms. 

5 CONCLUSION A N D  DISCUSSION 

The field experiment and the model studies presented in this 
paper demonstrate the significant differences in wave 
propagation between transversely isotropic media and 
isotropic media. In particular, the occurrence of cuspidal 
triangles in the qSV-wavefront is an essential feature. In the 
w e  of strong transverse isotropy, large cusps might exist 
which mean that up to three qSV-wave signals can occur in 
the seismograms. Their group velocities can be larger than 
the maximum SH-wave velocity. In the case of weak 
transverse isotropy, even very small cusps have a significant 
effect on the amplitude of the qSV-wave. 

The field data is an example of wave propagation in a 
weak transversely isotropic medium. The different moveout 
curves for qSV- and SH-waves indicate the anisotropy of the 
clay layer. They have been modelled quantitatively using a 
model with gradually increasing velocities which was derived 
from velocity recordings. Furthermore, the amplitude 
features of the qSV-wave appear also to be a significant 
indicator of transverse isotropy. Significant qSV-wave 
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F l p e  11. Synthetic data from the field case modelling. (a-c) Vertical, radial and transversal component gathers computed for borehole I. 
(d, e) Vertical and radial component gathers computed for borehole 11. (f) Hodograms computed from the qSV-wave signals in Fig. l l(d) 
and (e). 

amplitudes were restricted to an offset range which 
corresponds to transmission angles of about 45". The model 
studies have shown that this can be explained by a focusing 
effect in the direction of the cusp, which is inherent in wave 
propagation in transversely isotropic media. The focusing 
effect can be diminished by a velocity gradient. The 
amplitude features of the recorded qSV-wave were 
qualitatively simulated in the synthetic data. 

Levin (1979) has published an example that shows the 
effect of strong transverse isotropy in field data: an 
anomalous crossing of the moveout curves for qSV- and 
SH-waves was explained by the qSV-wave group velocities 
being higher than the SH-wave velocities of signals 
associated with the front branch of the cusp. However, only 
a single qSV-wave phase was recognized which Levin (1979) 
attributed to the waves belonging to the other branches of 
the wavefront possibly having only small amplitudes. The 

model studies presented here confirm those amplitude 
characteristics. qSV-signals associated with the cusp, 
especially those at the tips of the cusp, exhibit prominent 
amplitudes in the seismograms. White (1982) has shown that 
a further feature of these qSV-phases is that the amplitude 
decreases with distance by less than the geometrical 
spreading factor. 

Reflection amplitudes from interfaces between isotropic 
and transversely isotropic media have been investigated by 
Wright (1987) and Banik (1987). The studies presented here 
have shown that the amplitudes of qP-, qSV- and SH-waves 
can exhibit significant variations with angle also for 
transmission through a transversely isotropic layer. This 
influences the overall amplitudes of the waves. In the 
interpretation of amplitude variation with offset experiments 
it is therefore essential that the effects of transverse isotropy 
on transmission as well as reflection are taken into account. 
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APPENDIX A 

The Alekseev-Mikhailenko method and numerical 
anisotropy 

Assuming cylindrical symmetry the equations of motion for 
the components U,, U,, U, of the displacement vector in 
the vertical heterogeneous, transversely isotropic medium 
are 

a2 U, 
p, ,Z=c11 

1 +-  
r 

The source terms F,, e, F, can be chosen to represent a 
vertical single-force point source or an explosion point 
source for the P-SV-wave generation and a single-force 
point source for the generation of the SH-waves (Alterman 
& Aboudi 1970). 

A partial separation of variables is achieved by replacing 
the displacement components by functions which are 
dependent on one of the spatial components and a wave 
number integration over the other component. Using the 
finite Hankel transformation for the integration, the 
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separation formulas are 
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2 "  J ( k . r )  
U,(z, r,  t )  = ;Z S(z, ki ,  t )  1 

a i = l  lJ1(k;a)l2 ' 

The discrete wave number ki has to be evaluated from 
Jo(kia) = 0, where a is the model size in radial direction. 

The functions R,  S, T describe the dependence of the 
displacements on the vertical spatial coordinate z and the 
time t. The dependence on the horizontal spatial coordinate, 
r, is described by the zero'th and first order Bessel 
functions. Higher order Bessel functions and more than one 
set of functions R,  S, T are needed in the case of complex 
sources. The three components of the displacement vector 
are then coupled over the near-field contribution in the 
source term (Korn 1985). 

Substitution of these expressions for the displacements 
into the equation of motion leads to the following set of 
differential equations for R,  S ,  T: 

pS, = ( c J ,  - kiCWR), - kiC13Rz - k?c,lS + t, 
pR,= ( c ~ ~ R ,  + kic13S), + kiC& - k:c,R + fi,, 

pT,= (c,T,), - kf(+)T - c12 + fiq. 

The subscripts t ,  z indicate partial derivatives. t, t, & are 
the source contributions in the transformed system. These 
equations can be solved by conventional finite difference 
methods. 

For isotropic media, Korn (1985) derived a second-order 
finite difference scheme from the wave equation for the 
homogeneous medium and the boundary conditions using 
the concept of fictitious grid points. We extended this 
scheme to allow simulations for transversely isotropic 
media. 

An analysis of numerical anisotropy was carried out by 

Fiyre Al. Numerical anisotropy: the influence of the Poisson's ratio on the phase velocities of P- and SV-waves. (G: number of gridpoints 
per wavelength; the angle of incidence is defined with respect to the vertical direction). 
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described as being a characteristic of transverse isotropy in 
rock in the main part of this paper. To avoid these artefacts, 
the number of grid points has to be increased considerably if 
Poisson’s ratio is high. Using 30 grid points per wavelength 
the errors are overall less than 0.5 per cent, except for a 
Poisson’s ratio of 0.49. 

Figure A2 illustrates the drastic increase in the number of 
grid points per wavelength required to restrict the maximum 
shear wave velocity errors to 1 , 2  and 3 per cent as Poisson’s 
ratio is increased. Sampling with 10 grid points is certainly 
sufficient for media with Poisson’s ratios of less than 0.4, if 
an error of 2 or 3 per cent is acceptable for the modelling 
purpose. But, for the higher Poisson’s ratios which often 
occur in near-surface sedimentary layers, or for more exact 
solutions, the grid point number has to be much larger. For 
the modelling of the field case we restricted the velocity 
error to 1 percent which is one order of magnitude lower 
than the effect caused by rock anisotropy. We needed 30 
grid points per wavelength (as defined above) because of a 
Poisson’s ratio of 0.47. 

As the computer time increases with the square of the 
number of grid points per wavelength it is desirable to use a 
finite difference scheme which is less or not at all sensitive to 
the Poisson’s ratio. Virieux (1986) has developed an explicit 
finite difference scheme for the elastodynamic equations 
which fulfils these requirements. In a forthcoming paper 
(Kerner 1989) the application of his approach to the 
Alekseev-Mikhailenko method will be given. 

5 
0) 
t 
a, 
a, 
> 
m 

- 5 0 -  

using the method described by Alford, Kelly & Boore 
(1974). Plane wave solutions were introduced into the finite 
difference equations for the homogeneous, isotropic 
medium and the phase velocities for waves incident under 
different angles were evaluated. We shall not investigate the 
dependence of numerical anisotropy on the time increment 
but carry out the analysis using the largest time increment 
which guarantees stability (critical time step). The effects of 
the time increment on second-order finite difference results 
have been investigated, for example by Marfurt (1984). 

The numerical anisotropy depends on the number of grid 
points per wavelength G. Obviously, if the chosen space 
sampling in the finite difference grid is fine enough, the finite 
difference solution converges to the error-free solution. 
However, computational limits are quickly reached when 
increasing the number of samples. Ten grid points per 
wavelength is the value for G which is generally regarded as 
sufficient sampling for finite difference modelling with 
second-order accuracy. It has to be chosen for the lowest 
wavelength in the model. In a time-iterating scheme, the 
lowest wavelength has to be determined from the highest 
significant frequency (= upper half-power frequency) in the 
source signal and the lowest shear wave velocity in the 
model. This choice means that the wavelengths related to 
lower frequency values are sampled by more than G grid 
points. For example in the case of a Kupper-wavelet 
(Kupper 1958) which we used in the modelling, the 
wavelength related to the predominant frequency is sampled 
with about 3 x G grid points. 

Figure A1 shows the effect of numerical anisotropy on the 
P- and SV-wave phase velocities. The velocities are 
normalized with the body wave velocities. We computed the 
velocity curves for 10 grid points per wavelength and for 30 
grid points per wavelength. The velocity curves were also 
computed for different Poisson’s ratios. 

The results illustrate that the effect of numerical 
anisotropy is much larger for shear waves than for 
compressional waves. For 10 grid points per wavelength in 
the case of P-waves, the error in the velocity does not 
exceed 1 per cent for the whole range of Poisson’s ratios. It 
is noticeable that the largest errors occur for low Poisson’s 
ratios. The reverse is true for the velocity errors of the shear 
wave. In this case the errors increase for higher Poisson’s 
ratios. Except for Poisson’s ratios less than 0.25, maxima 
occur in the SV velocity error curves at approximately 40”. 
In the case of a Poisson’s ratio of 0.44, corresponding to a 
factor of three between P- and S-wave velocities, the 
maximum velocity error is 5 per cent. For a Poisson’s ratio 
of 0.49 the maximum error is more than 20 per cent. For 
many modelling purposes such large errors are unaccep- 
table, especially in cases of large models with long travel 
paths for the waves. The occurrence of maxima in the shear 
wave phase velocity curves causes a focusing of wave energy 
in the direction of maximum phase velocity which is 
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Figure A2. Numerical anisotropy: number of gridpoints per 
wavelength required to restrict the maximum phase velocity errors 
to 1, 2 and 3 percent. 
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