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Synopsis Onychophorans are carnivorous, terrestrial invertebrates that occur in tropical and temperate forests of the

Southern Hemisphere and around the Equator. Together with tardigrades, onychophorans are regarded as one of the

closest relatives of arthropods. One of the most peculiar features of onychophorans is their hunting and feeding behavior.

These animals secrete a sticky slime, which is ejected via a pair of slime-papillae, to entangle the prey. After the prey has

been immobilized, its cuticle is punctured using a pair of jaws located within the mouth. These jaws constitute inter-

nalized appendages of the second body segment and are innervated by the deutocerebrum; thus, they are homologous to

the chelicerae of chelicerates, and to the (first) antennae of myriapods, crustaceans, and insects. The jaws are also serial

homologs of the paired claws associated with each walking limb of the trunk. The structure of the jaws is similar in

representatives of the two major onychophoran subgroups, the Peripatidae and Peripatopsidae. Each jaw is characterized

by an outer and an inner blade; while the outer blade consists only of a large principal tooth and up to three accessory

teeth, the inner blade bears numerous additional denticles. These denticles are separated from the remaining part of the

inner jaw by a diastema and a soft membrane only in peripatids. The onychophoran jaws are associated with large

apodemes and specialized muscles that enable their movement. In contrast to the mandibles of arthropods, the ony-

chophoran jaws are moved along, rather than perpendicular to, the main axis of the body. Our elemental analysis reveals

an increased incorporation of calcium at the tip of each blade, which might provide rigidity, whereas there is no evidence

for incorporation of metal or prominent mineralization. Stability of the jaw might be further facilitated by the cone-in-

cone organization of its cuticle, as each blade consists of several stacked, cuticular elements. In this work, we summarize

current knowledge on the jaws of onychophorans, which are a characteristic feature of these animals.

Introduction

Onychophorans or velvet worms (Fig. 1A) are soft-

bodied, terrestrial invertebrates that inhabit decaying

logs and leaf litter of tropical and temperate forests

in the Southern Hemisphere and around the Equator

(Mayer 2007, 2015; Oliveira et al. 2012b). The ap-

proximately 200 described species of Onychophora

are classified in two major subgroups: the

Peripatidae and Peripatopsidae, which most likely

diverged 380–300 million years ago, i.e., before the

breakup of Gondwana (Allwood et al. 2010; Braband

et al. 2010; Mayer 2007; Mayer and Oliveira 2013;

Murienne et al. 2014). The anatomy of velvet worms

has changed little since the divergence of the two

subgroups and representatives of Peripatidae and

Peripatopsidae notably display a similar anatomy

(Ruhberg and Mayer 2013).

The onychophoran trunk exhibits 13–43 pairs of

walking limbs, each equipped with a pair of sclero-

tized claws, hence the name Onychophora or ‘‘claw-

bearers’’ for the entire clade (Oliveira and Mayer
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2013; Ruhberg and Mayer 2013). The three anterior-

most pairs of limbs have been modified into special-

ized cephalic appendages, including antennae, jaws,

and slime-papillae (Figs. 1A and 2A, B; Eriksson and

Budd 2000; Eriksson et al. 2003; Mayer et al. 2010;

Martin and Mayer 2014). While the antennae and

the slime-papillae do not have any sclerotized parts,

each onychophoran jaw bears heavily sclerotized

outer and inner jaw blades (Oliveira and Mayer

2013). The name ‘‘mandibles’’ has been commonly

applied to the onychophoran jaws (e.g., Bouvier

1905; Henry 1948; Ruhberg 1985), but this pair of

appendages is clearly not homologous to the mandi-

bles of arthropods, as it belongs to the second, rather

than to the fourth body segment (Eriksson et al.

2003, 2010; Mayer et al. 2010; Whitington and

Mayer 2011; Ou et al. 2012; Martin and Mayer

2014).

Fig. 1 Habitus, capture of prey, and feeding and biting behaviors of onychophorans. (A) Walking individual of the peripatopsid

Ooperipatus hispidus. (B) Anterior end of a peripatid (Principapillatus hitoyensis) caught in the act of ejecting slime. (C) Detail of the

ejected slime of P. hitoyensis. (D) Cricket (Acheta domestica) entangled by threads of slime. (E) A peripatopsid (Euperipatoides rowelli)

feeding on a cricket. (F) An individual of E. rowelli trying to drag away a piece of a cricket. (G) A peripatopsid (Phallocephale

tallagandensis) biting another specimen of the same species.
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Like other representatives of Ecdysozoa (¼molting

animals), onychophorans molt their chitinous cuticle

periodically by a process governed by the ecdysteroid

hormones (Manton 1938; Holliday 1942; Hackman

and Goldberg 1975; Campiglia and Lavallard 1989,

1990; Hoffmann 1997). Within the Ecdysozoa,

Onychophora is commonly united with Tardigrada

and Arthropoda in the clade Panarthropoda, al-

though the exact relationship among these three

animal groups remains unresolved (Mayer and

Whitington 2009a; Rota-Stabelli et al. 2010;

Campbell et al. 2011; Nielsen 2012; Mayer et al.

2013a, 2013b). In contrast to their relatives, the ar-

thropods and tardigrades, the overall anatomy of

the onychophoran body has remained largely

unchanged since the Early Cambrian and extant

onychophorans strikingly resemble the habitus of

fossil lobopodians, a non-monophyletic assemblage

of stem-group representatives of Panarthropoda,

Onychophora, Tardigrada, and/or Arthropoda (e.g.,

Maas et al. 2007; Ma et al. 2009; Liu et al. 2011;

Haug et al. 2012; Ou et al. 2012; Smith and

Ortega-Hernández 2014). Herein we provide an out-

line of our current knowledge about the feeding

mechanisms, functional morphology, and elementary

composition of the jaws in Onychophora.

Materials and methods

Specimens

Four species of Peripatidae from Costa Rica and

Brazil and five species of Peripatopsidae from Chile

and Australia were studied (Table 1). Specimens were

collected and maintained in the laboratory as de-

scribed previously (Mayer 2007; Baer and Mayer

2012; Oliveira et al. 2012a; Oliveira and Mayer

2013). All animal treatments complied with the

Principles of Laboratory Animal Care and the

German Law on the Protection of Animals.

Scanning electron microscopy

Specimens were fixed in 4% formaldehyde or pre-

served in 70% ethanol and then processed as de-

scribed previously (Mayer 2007). After dehydration

in an ethanol series, specimens were dried in a

CPD 030 Critical-Point Dryer (BAL-TEC AG,

Balzers, Liechtenstein), coated with gold in a SCD

040 Sputter Coater (BALZERS UNION, Balzers,

Liechtenstein), and examined in a Quanta 200

Scanning Electron Microscope (FEI, Hillsboro, OR,

USA). Jaws were dissected from specimens preserved

in 70% ethanol, rinsed in distilled water for 30 min,

and digested overnight in a solution of 10% pepsin

(0.3 g pepsin in 3 mL distilled water with two drops

of 2M HCl) to remove excess tissue and processed

further for scanning electron microscopy (SEM).

Synchrotron radiation-based X-ray micro-computer

tomography

Specimens were fixed overnight in 4% paraformalde-

hyde in phosphate-buffered saline (PBS; 0.1M, pH

7.4). After several washes in PBS, specimens

were postfixed in 1% osmium tetroxide in PBS,

dehydrated in an ethanol series, dried in a critical-

point dryer (CPD 030, BAL-TEC AG, Balzers,

Liechtenstein) and mounted onto standardized

sample holders (Helmholtz-Zentrum Geesthacht)

for synchrotron radiation-based X-ray micro-

computer tomography. The samples were imaged

by synchrotron radiation-based X-ray microtomogra-

phy operated by Helmholtz-Zentrum-Geesthacht

at beamline P05 (Haibel et al. 2010; Greving et al.

2014) of the storage-ring PETRA III at Deutsches

Elektronen Synchrotron (DESY, Hamburg,

Germany) at 15 KeV in the attenuation contrast

mode. We recorded 900 equally spaced projections

between 0 and �. For tomographic reconstruction of

the 3D datasets, the algorithm ‘‘back projection of

filtered projections’’ (Huesman et al. 1977) was used

to yield 32-bit floating-point image-stacks with iso-

tropic voxel size of (1.28 mm)3. Segmentation of jaws

was performed manually by labeling the structures in

AVIZO 8.1 (FEI Visualization Sciences Group,

Burlington, MA, USA). We obtained separate

image-stacks for the left and right jaws, as well as

for the head, based on the jaws’ label-fields using the

open-source software FIJI (Schindelin et al. 2012)

and applying mask-image filters for further visuali-

zation and the volume rendering in VG Studio MAX

2.2 (Volume Graphics, Heidelberg, Germany).

Transmission electron microscopy

Specimens were fixed overnight in 2.5% glutaralde-

hyde in 0.1M sodium cacodylate, pH 7.0. After sev-

eral washes in 0.1M sodium cacodylate, specimens

were postfixed in 0.2% osmium tetroxide in 0.1M

sodium cacodylate, dehydrated in an acetone series,

and embedded in Araldite (Huntsman Advanced

Materials, Basel, Switzerland) as described previously

(Mayer et al. 2005; Mayer 2006). Specimens were

then cut with a diamond knife into series of silver

interference-colored (55–65 nm) sections on an ul-

tramicrotome (Reichert Jung 2050 SuperCut, Leica

Microsystems, Wetzlar, Germany). The sections

were mounted on Formvar-coated, single-slot

copper grids, automatically stained with uranyl ace-

tate and lead citrate in an ultrostainer (Nanofilm
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TEM Stainer, Nanofilm Technologies GmbH,

Göttingen, Germany), and imaged in a transmission

electron microscope (CM 120, Philips/FEI).

Semi-thin sectioning and light microscopy

For semi-thin sectioning, specimens were embedded

in Araldite as described for transmission electron mi-

croscopy and cut with a diamond knife into series of

sections 0.5–1.0 mm thick on an ultramicrotome

(Reichert Jung 2050 SuperCut, Leica Microsystems).

The semi-thin sections were then placed on glass

slides and stained with Toluidine Blue (Mayer and

Tait 2009). The sections were analyzed with a light

microscope (Leica Leitz DMR), equipped with a dig-

ital camera (PCO AG SensiCam, Kelheim, Germany).

Phalloidin-rhodamine staining and
confocal laser-scanning microscopy

Heads of embryos at an advanced developmental

stage were fixed overnight in 4% paraformaldehyde

in 0.1M PBS, pH 7.4, at room temperature. They

were then rinsed in several changes of PBS and in-

cubated for 1 h in a solution containing phalloidin-

rhodamine (Molecular Probes, currently Invitrogen,

Carlsbad, CA, USA; catalogue no. R-415300; to

the 300 U stock, 1.5 mL methanol was added, and

10 mL aliquots were stored at �208C; prior to use,

methanol was dried and 200 mL PBS were added to

each aliquot) (see Mayer and Whitington [2009a,

2009b] for further details). After several rinses

in PBS, the specimens were mounted on glass

slides in Vectashield Mounting Medium (Vector

Laboratories Inc., Burlingame, CA, USA; catalogue

no. H-1000). They were analyzed with the confocal

laser-scanning microscope LSM 510 META (Carl

Zeiss MicroImaging GmbH, Jena, Germany). The

image stacks were merged into final projections

with the Zeiss LSM IMAGE BROWSER software

(v. 4.0.0.241).

Energy-dispersive X-ray spectroscopy

Jaws were dissected from molted skins and prepared

for SEM as described above, except that they were

not treated with pepsin/HCl solution. Prior to exam-

ination, the jaws were mounted on an aluminum

SEM stub and coated with gold-palladium using a

Denton Vacuum Desk IV (Denton Vacuum, LLC,

Moorestown, NJ, USA). Energy dispersive X-ray

spectroscopy (EDS) spectra were collected with a

JEOL 7410-140F Field Emission Scanning Electron

Microscope (FE-SEM; JEOL, Inc., Peabody, MA,

USA) with an energy dispersive spectrometer.

Spectra were analyzed with EDAX Genesis version

4.61 (EDAX Inc., Mahwah, NJ, USA). Spectra were

collected for 100 s at 10 mm working distance, an

accelerating voltage of 20 kV, emission current of 10

mA, and probe current of 15.

Photography and processing of the final images

Photographs of living animals and slime were taken

with a Nikon D70s SLR camera (Nikon Corporation,

Tochigi, Japan). Optimal-quality light micrographs

were achieved by using the AnalySIS software pack-

age (‘‘Extended Focal Imaging’’ and ‘‘Multiple Image

Alignment’’ functions) and Photoshop CS4 (Adobe,

San Jose, CA, USA). Final panels were designed with

Illustrator CS4 (Adobe) and exported in the Tagged

Image File Format.

Table 1 The onychophoran species studied and their corresponding locality data

Peripatidae

Epiperipatus acacioi Marcus and Marcus, 1955 Estação Ecológica do Tripuı́, 208230S, 438340W, 1215 m, Ouro Preto, Minas Gerais,

Brazil

Epiperipatus biolleyi Bouvier, 1902 Los Juncos, 838570W, 108000N, 1750–1800 m, Cascajal de Coronado, near San José,

Costa Rica

Principapillatus hitoyensis Oliveira et al., 2012 Reserva Biológica Hitoy Cerere, 098400N, 838020W, 300 m, Province of Limón, region

of Talamanca, Costa Rica

gen. et sp. (undescribed species) Parque Ambiental do Utinga, 018240S, 488240W, 38 m, Belém, Pará, Brazil

Peripatopsidae

Euperipatoides rowelli Reid, 1996 Tallaganda State Forest, 358260S, 1498330E, 954 m, New South Wales, Australia

Metaperipatus blainvillei Gervais, 1837 Forest near Lago Tinquilco, 398090S, 718420W, 815 m, IX Region de la Araucania, Chile

Metaperipatus inae Mayer, 2007 forest near Contulmo, 388010S, 738110W, 390 m, VIII Region del Biobio, Chile

Ooperipatus hispidus Reid, 1996 Tallaganda State Forest, 358260S, 1498330E, 954 m, New South Wales, Australia

Phallocephale tallagandensis Reid, 1996 Tallaganda State Forest, 358260S, 1498330E, 954 m, New South Wales, Australia
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Fig. 2 Position and anatomy of onychophoran jaws and associated structures. (A) Scanning electron micrograph of the anterior end of

Metaperipatus inae showing the three paired, modified, cephalic appendages: antennae, jaws, and slime-papillae. (B) Volume rendering of

the head of Euperipatoides rowelli based on X-ray microtomography data illustrating the position of the jaws (artificially colored in green

and purple) within the head. (C) Light micrograph of molted jaws of M. inae. Arrows point to the associated apodemes. (D) Scanning

electron micrograph of the mouth of an undescribed peripatid species from Brazil showing extended jaws. (E) Stereomicrograph of a

dissected specimen of E. rowelli demonstrating the extent and attachment sites of musculature associated with the apodemes (arrows).

Numerous white, fiber-like structures are the tracheal tubes filled with air. (F) Transmission electron micrograph of jaws of a late-stage

embryo of Epiperipatus biolleyi. Arrows point to the developing blood vessels at the basis of each jaw-blade. (G) Light micrograph of a

cross-sectioned head of Metaperipatus blainvillei at the level of jaws (semi-thin section stained with Toluidine blue). Arrow points to a

blood vessel within the jaw. (H) Detail of the blood vessel in the same specimen of E. biolleyi as in F. Abbreviations: an, antenna; at,

antennal tract; br, brain; bv, blood vessel; cn, central brain neuropile; cu, cuticle; ey, eye; ho, hypocerebral organ; ib, inner jaw blade; jw,

jaw; le, leg; le1, le 2, position of first and second legs; lp, lip papilla; mb, mushroom body; mc, mouth cavity; mu, jaw musculature;

nc, nerve cords; ob, outer jaw blade; sp, slime papilla; to, tongue. Scale bars ¼ 500 mm (A), 200 mm (B–D, G), 1 mm (E), 50 mm (F),

10 mm (H). (This figure is available in black and white in print and in color at Integrative and Comparative Biology online.)
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Results and discussion

Prey-capture and feeding behavior of onychophorans

One of the most peculiar features of onychophorans

is their hunting and feeding behavior, as these ani-

mals use a sticky slime for capturing prey and for

defense (Fig. 1B–D; Manton and Heatley 1937;

Lavallard and Campiglia 1971; Ruhberg and Storch

1977; Read and Hughes 1987; Baer and Mayer 2012).

The slime is produced and stored in large glands, the

structure of which differs between representatives of

Peripatidae and Peripatopsidae. While the glandular

endpieces are distributed along the duct of the slime

gland in peripatopsids, they are condensed in numer-

ous repeated rosettes in peripatids (Baer and Mayer

2012).

Once the potential prey has been localized using

the sensory antennae, the glue-like slime is ejected

via the slime-papillae and entangles the target

(Fig. 1B–D), e.g., crickets, amphipods, woodlice,

and other soil-dwelling arthropods (Manton and

Heatley 1937; Ruhberg 1985; Read and Hughes

1987; Baer and Mayer 2012). The mouth is then

pressed against the body of the immobilized prey

(Fig. 1E), whose cuticle is punctured using the

Fig. 3 The structure of onychophoran jaws. (A) Musculature associated with the jaw and its apodeme in Principapillatus hitoyensis

(Peripatidae). Phalloidin-rhodamine staining. Projection of confocal z-series. Note the complex arrangement of muscles, which are

numbered according to Oliveira and Mayer (2013). (B) Scanning electron micrograph of the outer and inner jaw-blades of the

peripatopsid Metaperipatus inae. (C) Light micrograph of the inner jaw-blade of the peripatid Epiperipatus acacioi, demonstrating the

cone-in-cone arrangement of cuticular elements (arrowheads). Asterisk demarcates the diastema. (D) Scanning electron micrograph of

the outer and inner jaw-blades of the peripatid Principapillatus hitoyensis. Arrow points to the soft diastemal membrane. Abbreviations:

at, accessory tooth; dt, denticles; ib, inner blade; ja, jaw apodeme muscle; jw, position of jaw; ob, outer blade; ph, pharynx; pt, primary

tooth. Scale bars ¼ 100 mm (A–D).
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jaws, and the prey is injected with digestive saliva

(Manton and Heatley 1937; Ruhberg 1985; Baer

and Mayer 2012). The extra-intestinally predigested

and liquefied contents are then ingested using a

sucking pharynx (Mayer et al. 2013a; Nielsen

2013). Occasionally, large pieces are also torn off

the prey and swallowed (Fig. 1F). After feeding, the

undigested remains are enclosed in a peritrophic

membrane and egested within 18 h after the com-

mencement of feeding (Manton and Heatley 1937; de

Mets et al. 1964; Ruhberg 1985). The onychophoran

jaws are not only used for puncturing the prey’s

cuticle but also for biting rivals—a behavior that

occurs frequently in captivity (Fig. 1G; Reinhard

and Rowell 2005).

Functional anatomy of onychophoran jaws

Similar to the limbs of the trunk, the jaws arise from

the lateral/ventrolateral regions of the body early in

development, but they are incorporated into the de-

finitive cavity of the mouth during ontogeny (Kennel

1885; Ou et al. 2012; Martin and Mayer 2014). In

adult onychophorans, the jaws are located on either

side of the tongue within the mouth (Fig. 2A, D, G).

The tongue and the lip papillae surrounding the

mouth fit closely against the jaw base, which helps

to maintain the suction while feeding (Manton and

Heatley 1937). The onychophoran jaws are tilted at

about 458 toward the midline (Fig. 2B, G;

Supplementary Movie S1) and, in contrast to the

arthropods’ mandibles, they are moved along,

rather than perpendicular to, the main axis of the

body (Manton and Heatley 1937; Ruhberg 1985;

Ruhberg and Mayer 2013).

Each jaw is composed of an inner and outer blade

and associated with a long, hollow, sclerotized pos-

terior apodeme (arrows in Fig. 2C). The apodemes

and the cuticle covering the jaws are molted period-

ically, together with the remaining cuticle of the

body (Manton 1938; Holliday 1942; Oliveira and

Mayer 2013). The molted jaws and their apodemes

appear darker than the remaining cuticle, indicating

a melanization or a higher degree of sclerotization of

these structures compared with the rest of the body

(Fig. 2C). Each jaw is associated with prominent in-

trinsic and extrinsic musculature, which shows a

complex arrangement and is richly supplied with tra-

cheal tubes (Figs. 2E–G and 3A) (Oliveira and Mayer

2013). The most prominent muscles are those asso-

ciated with the jaws’ apodemes. These muscles attach

each apodeme to the dorsolateral body wall and

extend as far behind as the region posterior to the

second pair of legs (arrows in Fig. 2E). At the base of

each jaw, there are hollow spaces that appear to be

blood vessels (Fig. 2F–H). These blood vessels may

be part of the hydrostatic skeleton of the onychoph-

oran body and act as fluid-filled antagonists to the

jaw’s musculature.

The structure of the jaws is similar, albeit not

the same, in representatives of Peripatidae and

Peripatopsidae (Fig. 3B–D). The distal portion of

each jaw is equipped with a pair of blades: an

outer and an inner blade. In both peripatids and

peripatopsids, the outer blade appears claw-like and

consists of a large principal tooth and one to three

smaller accessory teeth (Fig. 3B, D). In contrast, the

structure of the inner blade clearly differs between

Peripatidae and Peripatopsidae. While the principal

tooth is associated with numerous denticles, forming

a unitary blade in representatives of Peripatopsidae

(Fig. 3B), the principal tooth that may be associated

with one to three accessory teeth is separated from

the blade of the denticle by a diastema and a soft

diastemal membrane in representatives of Peripatidae

(Fig. 3C, D). This membrane may act as a joint-like

structure, allowing the denticle’s blade to move in-

dependently from the remaining portion of the jaw

(Oliveira and Mayer 2013).

In both Peripatidae and Peripatopsidae, each blade

of the jaw consists of several stacked, cuticular ele-

ments (Fig. 3C) (e.g., Oliveira et al. 2010, 2011;

Smith and Ortega-Hernández 2014). While the

outer element is shed during each molt, the inner

layer of epidermal cells continuously produces

additional elements inside the blade of the jaw. The

cone-in-cone arrangement of cuticular elements is

Table 2 Values obtained from the elemental analysis of jaw-

blades in the onychophoran Euperipatoides rowelli using energy-

dispersive X-ray spectroscopy

Locationa C N O Mg S Ca

Body 62.46 10.21 25.87 0.22 0.66 0.58

Distal-1 58.33 8.76 30.48 0.23 0.17 2.03

Distal-2 72.42 5.42 19.96 0.10 0.22 1.87

Distal-3 62.13 7.62 25.55 0.20 0.31 4.18

Mid-1 57.34 9.34 31.54 0.14 0.17 1.47

Mid-2 59.53 8.61 28.84 0.26 0.34 2.42

Mid-3 62.23 7.29 28.01 0.13 0.34 1.99

Proximal-1 60.92 9.06 27.83 0.23 0.43 1.54

Proximal-2 60.11 8.23 29.33 0.08 0.34 1.91

Proximal-3 60.52 7.97 29.28 0.17 0.27 1.79

Note: Values are in weight as a percentage of the total area scanned.
aThree samples per location in the blade were analyzed (numbered

1–3).
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not restricted to the jaws but has also been reported

for the claws of the onychophoran foot (Smith and

Ortega-Hernández 2014), and it is likely that these

stacked elements add stability to these sclerotized

structures. Hence, there are several correspondences

between the onychophoran jaws and claws, as they

share an overall sickle-like shape, a cone-in-cone ar-

rangement of their cuticle, apodemes associated with

extrinsic musculature, and they are the only sclero-

tized structures of the onychophoran body. These

specific correspondences support serial homology of

the onychophoran claws and jaws, suggesting that

the jaws evolved from the distal portions of the cor-

responding limbs in the last common ancestor of

Onychophora (Manton and Heatley 1937; Oliveira

and Mayer 2013).

Analyses of energy-dispersive X-ray spectroscopy

in the peripatopsid Euperipatoides rowelli show min-

imal variation in composition between the different

regions of the blade of the jaws (Fig. 4A–C; Table 2).

There is a high content of carbon, nitrogen, and

oxygen in all parts of the blade (Table 2), likely

due to the presence of a-chitin and the various pro-

teins to which it may bind (Lotmar and Picken 1950;

Rudall 1955). In addition to these expected elements,

there is a mostly uniform layer of calcium across the

entire blade. However, there is a slight increase in the

total calcium content along the proximal–distal axis

of the blade (Fig. 4A–C; Table 2). While the distal

and mid scans of the blade vary only slightly, the

proximal scans also have sulfur at higher levels

than the distal scans, although still at minimal

levels (50.5 wt%; Table 2). This sulfur may be due

to a higher concentration of disulfide bonds in this

area (Subramoniam and Azariah 1974) than in more

distal regions, as such bonds are believed to play a

role in the folding and stability of proteins secreted

to the extracellular medium (Sevier and Kaiser 2002).

Since the onychophoran cuticle is generally rich in

such extracellular proteins (Krishnan 1970;

Subramoniam and Azariah 1974; Hackman and

Fig. 4 Elemental histograms of the blades of the jaw in the on-

ychophoran Euperipatoides rowelli using energy-dispersive X-ray

spectroscopy. (A) Distal region. (B) Mid region. (C) Proximal

Fig. 4 Continued

region. Note that the tip of the blade contains more calcium than

the remaining regions. The high content of carbon and oxygen is

most likely due to the mainly chitinous composition of jaw-blades

(see also Table 2 for relative amounts of nitrogen). The labels K

and M refer to the K-shell and M-shell X-ray peaks. Peaks that

cannot be resolved in the figure (e.g., silicon) had their atomic

labels removed for clarity (see Table 2). Gold (Au) and palladium

(Pd) are present here as minor peaks from sputter coating with a

gold-palladium alloy; these atoms are not included in the quan-

titative analysis (Table 2).
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Goldberg 1975), this finding suggests that there may

be more protein and less calcium at the base and

more calcium and less protein at the tip of the

jaw. The increased incorporation of calcium at the

tip of the blade might provide the additional rigidity

required for efficient functioning of the onychopho-

ran jaws, e.g., puncturing the cuticle or exoskeleton

of their prey. Notably, our elemental analysis pro-

vides no evidence for incorporation of metal or

prominent mineralization beyond the assimilation

of calcium into the jaws of onychophorans; this dif-

fers from the elemental composition of arthropods’

mandibles (Schofield et al. 2003; Cribb et al. 2009).

However, encrustations of calcium carbonate have

been reported from stylets of tardigrades (Guidetti

et al. 2012) and these might be derivatives of claws

of a modified pair of cephalic appendages (Halberg

et al. 2009; Ou et al. 2012; Mayer et al. 2013a).

Conclusions

A recent experimental study revealed that the ony-

chophoran claws and jaws are highly resistant to

decay (Murdock et al. 2014). We have shown herein

that the incorporation of calcium and probably also

phenols and chinons (¼sclerotization) rather than an

impregnation with metals might be one of the reasons

for the stability of onychophorans’ jaw-blades. Despite

their resistance to decay, no comparable structures

have been identified in the corresponding body

segment of any fossil lobopodians so far, although

claws are known from various taxa (e.g., Hou and

Bergström 1995; Hou et al. 2004; Ma et al. 2009;

Ou et al. 2012; Liu and Dunlop 2014; Smith

and Ortega-Hernández 2014). This supports the hy-

pothesis that the jaws are a derived feature

(¼autapomorphy) of Onychophora (Ruhberg and

Mayer 2013). Hence, the jaws must have evolved

in the onychophoran lineage prior to the

divergence of Peripatidae and Peripatopsidae approx-

imately 380 million years ago (Murienne et al. 2014).

Comparative anatomy of onychophorans’ jaws sug-

gests that these structures most likely evolved from

the distal portions of an ancestral pair of walking

limbs and that their blades are derivatives of the

claws of these appendages (Oliveira and Mayer 2013).
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