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Synopsis Evolutionary transitions across abiotic gradients can occur among habitats at multiple spatial scales, and among
taxa and biotas through a range of ecological and evolutionary time frames. Two diverse groups of electric fishes, Neotropi-
cal Gymnotiformes, and Afrotropical Mormyroidea, offer interesting examples of potentially convergent evolution in aspects
of morphological, physiological, and life history traits. We examined biogeographical, morphological, and functional patterns
across these two groups to assess the degree of convergence in association with abiotic environmental variables. While there
are superficial similarities across the groups and continents, we found substantially more differences in terms of habitat occu-
pancy, electric signal diversity, and morphological disparity. These differences likely correlate to differences in biogeographical
histories across the Neotropics and Afrotropics, biotic factors associated with aquatic life and electric signals, and sampling is-
sues plaguing both groups. Additional research and sampling are required to make further inferences about how electric fishes
transition throughout diverse freshwater habitats across both microevolutionary and macroevolutionary scales.

Introduction
Freshwater habitats account for just 0.01% of the Earth’s
water supply, but they provide area for nearly 50% of
fish species (Lundberg et al. 2000, Albert et al. 2020,
Lavoué 2020, Eschmeyer’s Catalogue of fishes). Con-
tinental river and lake basins include a wide range of
freshwater habitats, from torrential mountain rivers to
meandering lowland river channels and their flank-
ing floodplains, ancient tectonic lakes, a vast network
of small streams flowing under a closed-forest canopy,
hypogean caves and aquifers, interior wetlands, and
coastal estuaries (Fig. 1; van der Sleen & Albert 2017).
Tropical freshwater habitats exhibit strong longitudinal
gradients by stream order, climate and soil chemistry,
that control abiotic habitat properties like water veloc-
ity, water volume, and water chemistry (Vannote et al.
1980, Larsen et al. 2019). The two largest and most di-
verse freshwater regions of the world are the Neotropics
and Afrotropics, which together are home to more than
9300 (or 51%) of the c. 18,000 valid species of freshwater

fishes on Earth (Fig. 1; Albert et al. 2020, Lavoué 2020,
Eschmeyer’s Catalogue of fishes).

Two diverse groups of freshwater electric fishes,
Gymnotiformes and Mormyroidea, inhabit Neotropi-
cal, and Afrotropical freshwaters, respectively. These
fishes have historically been considered an example of
convergent evolution (Roberts 1972, Lowe-McConnell
1975, Bullock & Heiligenberg 1986, Marrero & Wine-
miller 1993, Kirschbaum 1995, Winemiller & Adite
1997, Bullock et al. 2005, Zakon et al. 2006). More recent
research has shown there are more differences than sim-
ilarities in these fishes (Tagliacollo et al. 2015, Ford et al.
in press, Ford et al. in review). Studies on genetics, elec-
tric organ discharges (EOD), physiology, diet, habitat
occupancy, and morphology show examples of diver-
gence or incomplete convergence, with few examples of
complete or total convergence (Gallant et al. 2014, Ford
et al. in review). While many of these studies focused on
biotic factors and variables, this study looks at several
abiotic factors as potential explanations for electric fish
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946 K. L. Ford and J. S. Albert

Fig. 1 Habitat diversity across the Neotropics and Afrotropics. Maps of the Neotropics (Central and South America) and the Afrotropics
(continental Africa) with labels for habitat types. The Neotropics are dominated by Tropical uplands and tropical lowlands, while the
Afrotropics are dominated by Closed basins + Xeric basins and Tropical lowlands. There are more prominent river deltas in the
Neotropics and more lakes in the Afrotropics. Habitats include: lakes, river deltas, montane freshwater, temperate coast, temperate
floodplain, temperate uplands, tropical coast (dry), tropical coast (wet), tropical lowlands, tropical uplands, and closed basins + xeric basins.
Based on Rios-Touma et al. and Fouchy et al. figures.

diversity patterns. In context of “abiotic transitions at
an evolutionary level”, we assessed similarities across
Gymnotiformes and Mormyroidea using biogeographi-
cal patterns, habitat utilization, species diversity, EODs,
and morphological characteristics.

Methods
We obtained habitat data for all 261 valid species of
Gymnotiformes and 199/234 (85.0%) valid species of
Mormyroidea from museum collection records and the
published literature reports (Corbet 1961, Greenwood
1966, Ita 1978, Banister & Bailey 1979, Møller et al.
1979, Balon & Stewart 1983, Gosse 1984, Lévêque et
al. 1991, Bailey 1994, Paugy et al. 1994, Kirschbaum
1995, Sanyanga et al. 1995, Ikomi 1996, van der Bank
& Kramer 1996, Bigorne 2003a, Bigorne 2003b, Seegers
et al. 2003, Lavoué et al. 2004, Sullivan & Hopkins
2005, Konan et al. 2006, Hopkins et al. 2007, Lavoué
et al. 2010, Albert & Reis 2011, Lavoué 2011, Lavoué
2012, Kramer 2013, Monsembula Iyaba et al. 2013,
Lavoué & Sullivan 2014, Lamanna et al. 2016, Lavoué
2016, Sullivan et al. 2016, Rich et al. 2017, Albert
et al. 2020, Mulelenu et al. 2020, Fricke et al. 2021,
gbif.org). We used primary literature when available for
all species, but there is more primary literature avail-
able for Gymnotiformes than Mormyroidea. We supple-

mented the primary literature with data from GBIF for
other species.

We recorded the presence and absence of each species
based on seven habitat types following the classification
of tropical freshwater habitats by Albert et al. (2020): (1)
deep (5-100 m) river channels; (2) high-gradient upland
streams; (3) low-gradient lowland streams; (4) flood-
plains; (5) ancient tectonic (rift) lakes; (6) rapids; and
(7) caves/aquifers. These data were used to graph the
number of habitats occupied by each genus and species,
along with the diversity of species in each habitat type.
We compiled a list of species for which we have EOD,
habitat, and skull morphology data. Three-dimensional
geometric morphometrics were performed on 62/261
(23.7%) gymnotiform species in 3D-Slicer using the
landmark scheme found in Ford et al. in press, with rep-
resentatives from 23/29 (79.3%) gymnotiform genera
(Supplemental Tables 1 and 2; Federov et al. 2012). We
also sampled 42/234 (17.9%) mormyroid species, with
representatives from 17/20 (85%) mormyroid genera
and used the landmark scheme found in Ford et al. in
press and Ford et al. in review (Supplemental Tables 1
and 2). Procrustes superimpositions and a principal
components analyses were performed in geomorph
(Collyer and Adams 2018, Adams et al. 2021, Collyer
and Adams 2021, RStudio Team 2021). We highlighted
the overall habitat distribution by color for each individ-
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ual sampled for each group. Finally, we outlined genus
representatives for the groups and grouped by habitat
distribution to examine trends of body-shape diversity.

Results
Habitat utilization

There are contrasting patterns of habitat utilization
across genera and species of Gymnotiformes and
Mormyroidea (Fig. 2). In the Neotropics, the majority
of gymnotiform genera occupy a single habitat type (19
of 35 genera, 54.2%), while only two genera occupy five
or more habitat types. Most species in Gymnotiformes
also occupy a single habitat type (192 of 261 species,
73.5%), while no single species occupies five or more
habitat types. The overall pattern of habitat utilization
in this group is a power function in which most gen-
era and species occupy very few habitat types, while few
genera and species occupy many. Several genera include
species that occupy vastly different habitat types, e.g.,
species of Brachyhypopomus and Sternarchella inhabit
either small streams or deep river channels, respectively
(Supplementary Table 3). The same pattern is not found
in Mormyroidea, where the highest proportion of gen-
era occupy five or more habitat types (10 of 20 genera,
50%), while only two genera are restricted to a single
habitat type. Most mormyroid species occupy at least
two habitat types (157 of 198 species, 79%). The result
is a much more even distribution of habitat occupancy.

Habitat species diversity

The Neotropics and Afrotropics have differing pat-
terns of gymnotiform and mormyroid species diver-
sity across habitats (Fig. 3). In the Neotropics, the deep
river channels and lowland rainforest streams have the
highest species diversity with dramatically fewer species
found in floodplains, and even fewer in rapids. In the
Afrotropics, there is a more even distribution of species
across river channels, floodplains, and lowland and up-
land streams. There are fewer mormyrid species found
in rapids or the rift/tectonic lakes in eastern Africa.

Habitat EOD diversity

Across Gymnotiformes and Mormyroidea, the distribu-
tion of EOD diversity across habitat types follows dif-
ferent patterns (Fig. 4). In the Neotropics, the majority
of wave-type gymnotiform species (i.e., Apteronotidae
and Sternopygidae) inhabit swiftly moving river chan-
nels (n = 86), while a minority inhabit slowly flowing
streams (n = 27). By contrast, the majority of pulse-type
gymnotiform species (i.e., Gymnotidae, Hypopomidae,
Rhamphichthyidae) inhabit slower-moving waters (n =
61), while a minority inhabit larger channels (n = 14).

In the Afrotropics, there is only one wave-type mormy-
roid species (Gymnarchus niloticus), which inhabits all
our listed habitat types (Gosse 1984, Bigorne 2003a). All
other mormyroid species have a pulse-type EOD. The
majority of mormyroids are pulse-type species found in
large river channels (n = 124), while the minority are
found in slower-moving waters (n = 78).

Snout and EOD diversity

In both Gymnotiformes and Mormyroidea, there are
more short-snouted (i.e., brachycephalic) species than
species with intermediate-length or elongate (i.e.,
dolichocephalic) snouts (Fig. 5). Among Gymnoti-
formes, both wave- and pulse-type species exhibit ex-
treme brachycephalic and dolichocephalic morpholo-
gies. In Mormyroidea, the only wave-type species (G.
niloticus), has an intermediate-length snout. All known
aspects of diversity in mormyroid head and jaw shapes
are observed in pulse-type mormyroid species.

Skull diversity across habitats

There are different patterns of skull shape diversity
across gymnotiform and mormyroid species, especially
when species are grouped by habitat occupancy (Fig. 6).
In the Neotropics, the species that occupy the largest
portion of the morphospace are those found in the
fewest number of habitat types (< 3 habitats). This re-
gion of the morphospace is dominated by Apteronoti-
dae, a morphologically diverse family that primarily in-
habits deep (5-100 m) river channels in lowland Ama-
zonia. There is also a large area of the morphospace
that includes gymnotiform species occupying five or
more habitat types. In the Afrotropics, most mormy-
roid species are found in multiple habitat types (Figs 2
and 3). The largest portion of the morphospace includes
species that inhabit five or more habitat types (Fig. 6).
Taxa occupying fewer habitat types occupy a smaller
area of the PCA space.

Body morphology diversity

Patterns of body shape (i.e., body depth) differ between
Gymnotiformes and Mormyroidea (Fig. 7). In Gymno-
tiformes, the largest diversity of body shapes is found
in the deep channels; a pattern that makes sense due to
the morphological diversity of apteronotids. There is a
large amount of body shape diversity in Mormyroidea,
regardless of habitat occupancy.

Discussion
Physical geography

We observed similarities and substantial differences in
the distribution of habitat types among biogeographic
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948 K. L. Ford and J. S. Albert

Fig. 2 Species and genera habitat utilization. (A) The distribution of habitat utilization by the genera in Gymnotiformes (light) and
Mormyroidea (dark). The highest number of gymnotiform genera occupy a single habitat type, while most mormyroid genera occupy 5
habitats. (B) The distribution of habitat utilization by the species in Gymnotiformes (light) and Mormyroidea (dark). Most gymnotiform
species occupy a single habitat, while the distribution of mormyroid species is more even across 1–4 habitats. The habitat utilization
patterns are different across the two groups of interest.
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Electric fish functional diversity 949

Fig. 3 Species diversity by habitat type. The distribution of gymnotiform (light) and mormyroid (dark) species diversity across six habitat
types: channels, floodplains, rapids, rift lakes, lowland streams, and upland streams. In Gymnotiformes, channels and lowland streams are
most species rich, while rapids and rift lakes have the lowest species diversity. In Mormyroidea, the channels, floodplains, lowland streams,
and upland streams have similar amounts of species richness. The rapids and rift lakes are also the least species rich. There are some
similarities across groups, but also some clear differences in continental habitat diversity.

regions (Fig. 1). Both the Neotropics and Afrotropics
include large areas of tropical lowlands, floodplains and
wetlands, humid coastal plains, and tropical upland sa-
vannahs (Fouchy et al. 2018, Rios-Touma et al. 2018).
However, the Afrotropics has many more endorheic and
xeric river and lake basins, and smaller rivers and river
deltas (Fouchy et al. 2018). African ecosystems are more
dominated by large arid desert areas in the northern and
southwestern regions (Fouchy et al. 2018). In contrast,
South American ecosystems are dominated by large,
lowland tropical rainforests and wetlands (i.e., Ama-
zon, Orinoco, La Plata) and tropical savannas of upland
shields (Brazilian and Guiana) (Rios-Touma et al. 2018).

It is also important to consider the different cli-
mactic and geological histories of these two biogeo-
graphic regions. The modern Amazon river basin is not
only much larger than the river basins in Afrotropics
(in terms of total aquatic habitat volume and surface
area), but Amazonian habitats have also been more cli-
matically stable over evolutionary time (Albert & Reis
2011, Albert et al. 2020), and have been exposed to
larger-scale and biotically impactful river network re-
arrangements (Albert et al. 2021). The Pebas Megawet-
land likely contributed to high speciation and extinc-
tion rates of aquatic taxa in the paleo-Amazon dur-

ing the early and middle Miocene (c. 22-10 Ma), and
portions of that diversity have persisted into modern
times (Albert & Reis 2011, Albert et al. 2020). Further,
the South American platform has lower average topo-
graphic relief (is flatter) than the African platform and
has likely had the influence of river capture to both
divide and connect portions of the watershed (Albert
& Reis 2011, Val et al. 2022). The Afrotropics expe-
rienced higher extinction and speciation rates during
Neogene than the Neotropics, primarily due to aridifi-
cation and the conversion of tropical forests to savan-
nahs (Sepulchre et al. 2006). These differences likely
contribute to the overall diversity patterns seen across
these two groups, with temporal continental changes
being just as important as other abiotic factors. Gym-
notiformes have speciated over longer amounts of time
across the Neotropics compared to the more rapid spe-
ciation of Mormyroidea (Albert & Reis 2011, Peterson
et al. 2022). Today, the continents have significantly dif-
ferent flooding regimes, with Amazonia having many
large, seasonally flooded wetlands (Albert & Reis 2011).
The Afrotropics does not have wetlands of the same size,
but instead has multiple large, rift lakes that are absent
from the Neotropics (Sepulchre et al. 2006, Fouchy et al.
2018).
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950 K. L. Ford and J. S. Albert

Fig. 4 Electric organ discharge diversity across habitat type. The EOD diversity across habitat types for both Gymnotiformes and
Mormyroidea. For Gymnotiformes, most wave-type species are found in large river channels (n = 86), while most pulse-type species are
found in small streams, floodplains, and lakes (n = 61). In Mormyroidea, there is only one species of wave-type EOD, Gymnarchus niloticus,
which is found in all habitat types. More pulse-type species live in deep river channels (n = 124) than in slower-moving waters (n = 78).
The patterns across these two groups are noticeably different. Note that data are incomplete and based on a combination of literature
review and distribution data from gbif.com
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Fig. 5 Head and skull shape diversity across EOD types. Skull outlines depict the overall head and skull shape diversity across
Gymnotiformes and Mormyroidea, separated by EOD type. (A) In Gymnotiformes, there are short (brachycephalic), intermediate, and long
(dolichocephalic) species in both wave- and pulse-type species. (B) In Mormyroidea, the only wave-type species (Gymnarchus niloticus) has
an intermediate-length snout. All other head and skull shape diversity is found in the pulse-type species. There are clear differences in the
patterns across these two groups.
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952 K. L. Ford and J. S. Albert

Fig. 6 Principle Components Analysis of skull shape with habitat information. (A) A PCA of gymnotiform species colored by habitat
occupancy numbers. There is a lot of overlap across species, but the largest portion of the morphospace is occupied by species that are
found in only one habitat (yellow polygon). PC1 represents 45.9% of the morphological variation, while PC2 represents 16.2% for
Gymnotiformes. (B) A PCA of mormyroid species, colored by habitat occupancy numbers. The largest portion of the morphospace is
occupied by species that are found in five habitats (green polygon). PC1 represents 35% of the morphological variation, while PC2
represents 17.7% for Mormyroidea. These patterns are different across the two groups.
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Fig. 7 Body shape diversity across habitats. There are body outlines of both gymnotiform and mormyroid genera that are found in each
habitat type. While there are not clear patterns of traits like body depth across habitats in Mormyroidea, there are some indications that
deeper-bodied Gymnotiformes are found in deeper river channels. There do not appear to be any patterns in terms of traits like tail length
or snout length for either group.

Abiotic versus biotic factors

We also observed stark differences in the relationships
between gymnotiform and mormyroid EODs and fac-
tors such as habitat type and morphology. While gym-
notiform EOD diversity is greatest in large and deep
river channels, more mormyroid species are known in
slowly moving waters of rainforest streams and lakes
(Figs 3 and 4). When comparing head shape diversity
and EOD diversity, both wave- and pulse-type gymno-
tiform fishes exhibit high amounts of craniofacial di-
versity. This may be phylogenetically linked; the most
specious clade of Gymnotiformes is Apteronotidae, a
morphologically diverse family largely found in deep
river channels (Fig. 5). Most craniofacial diversity in
Mormyroidea is found in the pulse-type fishes (Fig. 5).
Again, this is likely phylogenetically linked as G. niloti-
cus, the only wave-type mormyroid, is the sister clade
to all other Mormyroids. Mosaic evolution in the rates
of the ecophysiological traits underlying phylogenetic
niche conservatism may allow some traits and clade to
diversify morphologically and ecologically faster than
others. Phylogenetic inertia may be playing a role, al-
lowing certain portions of each clade to diversify while
other portions remain less morphologically and ecolog-
ically diverse.

While these differences between Gymnotiformes and
Mormyroidea could be explained in terms of abiotic fac-
tors such as water type and flow-speed, we cannot ig-

nore the biotic factors that likely play a large role in the
diversity patterns across these groups. It is likely that
one factor leading to the evolution of EODs is the abil-
ity to navigate, communicate, and hunt during noctur-
nal hours in water systems (Møller et al. 1979). EODs
in weakly electric fishes are also considered species- and
sex-specific in both groups, leading to strong sexual se-
lection (Albert & Crampton 2005, Arnegard et al. 2010,
Ho et al. 2010). Other morphologies, including those
of head and skull shape, are also sexually dimorphic
in some gymnotiform species (Fernandes et al. 2002,
Albert & Crampton 2009, Santana & Fernandes 2012,
Hilton & Cox Fernandes 2017, Evans et al. 2019, Keeffe
et al. 2019). Functional traits, such as EOD and skull
shape, are also multi-functional and important for be-
haviors such as feeding and fighting (Albert & Cramp-
ton 2005, Evans et al. 2018, Evans et al. 2019). In elec-
tric fishes, head shape also plays an important role in
electroreception (Xu-Friedman & Hopkins 1999, Albert
& Crampton 2005). We therefore conclude that lineage
and phenotypic diversification of electric fishes occur
under the influence of both abiotic and biotic factors,
as they do in other diverse clades of tropical organisms
(Argenard et al. 2010, Albert et al. 2020).

Taxonomic and sampling factors

There are clear differences across habitats in
terms of utilization, diversity, and morphology of
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Gymnotiformes and Mormyroidea. While many Gym-
notiformes occupy a single habitat type and few occupy
many, most mormyroids occupy more than one habitat
type (Fig. 2). The deep river channels in the Neotrop-
ics dominate gymnotiform species diversity, while
there is more homogeneity of species diversity among
mormyroids across the Afrotropics (Fig. 3). The skull
shape diversity patterns across these groups show some
similarities, but overall, the patterns remain largely
distinct (Fig. 6). The most craniofacially diverse group
of mormyroid fishes occupy five or more habitats, while
the most craniofacially diverse gymnotiform fishes
occupy a single habitat.

While these patterns appear robust, there are some
taxonomic issues that may skew these results. The
species-level taxonomy of Mormyroidea remains poorly
resolved. The majority of taxonomic papers about
Mormyroidea involve naming newly identified species
and resolving phylogenetic relationships and naming
inaccuracies. The gymnotiform literature is also fo-
cused on identifying new species but has also expanded
to studies of functional, biogeographical, and physi-
ological topics, as well as analysis of within-species
variation (Craig et al. 2017, Evans et al. 2017), onto-
genetic and sexual dimorphism (Albert & Crampton
2009, Fronk et al. 2019, Garcia and Zuanon 2019), and
cryptic species (Milhomen et al. 2008, Waltz 2019).
There are also far more data on biogeographic distribu-
tions in Gymnotiformes (and across the Neotropics in
general) than in Mormyroidea. Despite recent advances
in mormyroid taxonomy and biogeography (e.g., Picq et
al. 2020, Mutizwa et al. 2021), substantially more efforts
will be required to obtain comprehensive and complete
distributional datasets.

Conclusions
Electric fish clades exhibit more phenotypic divergence
than convergence along abiotic gradients of elevation,
climate, and habitat type. In gymnotiform and mormy-
roid taxa, phenotypic differences in head, mouth, and
body shape, are not directly correlated with these sim-
ple abiotic gradients. Inferences on trophic position
from craniofacial morphology, behavioral observations,
gut-contents, and stable isotope data indicate a broader
range of trophic roles for brachycephalic than dolicho-
cephalic gymnotiform species, but not for mormy-
roids (Evans et al. 2019). Only dolichocephalic mormy-
roids are thought to be top predators (e.g. Mormy-
rops) (Kouamelan et al. 2000). While extreme brachy-
cephalic and dolichocephalic head shapes have evolved
in each group multiple times, closer examination of
Gymnotiformes and Mormyroidea show more exam-
ples of divergence or incomplete convergence than

complete convergence (Ford et al. in press, Ford et al. in
review).

The effects of abiotic environmental gradients on
diversification in weakly electric teleosts are complex.
We found no simple direct links between morpholog-
ical disparity or EOD diversity and any single trophic,
habitat, or abiotic variable. Both clades evolved over a
lengthy time-period of tens of millions of years, and
across a continental-scale arena of millions of square
km, and yet that geographical separation appears to
have led to differences in biogeographical and diver-
sity patterns (Albert & Reis 2011). Each clade encom-
passes many distinct evolutionary lineages, all evolv-
ing under the influences of multiple external environ-
mental (habitat utilization, trophic specialization, sex-
ual communication), and internal organismal (chromo-
somal and developmental constraints) factors. Compre-
hensive studies of these groups need to incorporate in-
tegrative and interdisciplinary methods to answer these
complex questions of diversity patterns. Our work in
this study shows that patterns of phenotypic evolution
in freshwater electric fishes is at best weakly correlated
with those abiotic factors available to us to evaluate. Dif-
ferent patterns of evolution are more pronounced than
commonalities in the two weakly electric teleost radia-
tions.
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