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Abstract
In this study, rough elliptic bore journal bearing performance is predicted using an artificial neural network (ANN)
technique. The effects of non-circularity and roughness are quantified to elliptic and isotropic in macro and micro scale,
respectively. The numerically estimated performance parameters like load, friction, and flow-in at different eccentricities
[0.3 (low), 0.5 (medium), and 0.8 (high)], non-circularities [0.5 (low), 1.0 (medium), and 2.0 (high)], and roughness factors [0.1
(low), 0.2 (medium), 0.3 (medium), and 0.4 (high)] are used to train and build the ANN model. The training continued until
the maximum mean square error is achieved, and the best-fitting plot is generated. With a confidence level of 99.75% or an
R-value of 0.99757, the results predicted are found to be satisfactory.
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Abbreviation

ANN: Artificial neural network
ICA: Imperialism competitor algorithm
LCC: Load-carrying capacity
MSE: Mean squared error
Nu: Nusselt number
PSO: Particle swarm optimization
R2: Determination coefficient
TBD: Tunnel boring machine
TiO2: Titanium dioxide
ZnO: Zinc oxide

Nomenclature

c : Radial clearance (mm)
e : Eccentricity (mm)
G : Non-circularity
h : Film thickness (μm)
H : Non-dimensional film thickness
r j : Radius of journal (mm)
Rmin : Major radius (mm)
Rmaj : Minor radius (mm)
U : Entraining velocity (m/s)
W∗ : Non-dimensional load
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x, y : Coordinate axis
Y : Roughness parameter
Z : Axial direction
θ : Film position from load line
α : Load angle
φ : Attitude angle
β : Length-to-diameter ratio
η : Coefficient of viscosity
ε : Eccentricity ratio
or f : Overrelaxation factor
� : Film thickness function
ζ : Expectancy operator
F : Non-dimensional friction
Q : Non-dimensional flow-in
ω : Angular velocity
uav : Average entraining velocity
L : Length of journal
N : Number of date points

1. Introduction

Journal bearing is a full fluid film bearing. It is also known as
bearing of infinite life. Metal-to-metal contact between the ro-
tating journal and the stationery bore is entirely absent due to
the thick lubricant film (5–100 μm) in the clearance space. Such
bearings have broad applications in industries to support vital
components like gas turbines, crankshaft, connecting rods, etc.
The tribological performance parameters such as load-carrying
capacity (LCC; Sivák et al., 1981), friction force, flow-in, and side
leakage were investigated from smooth circular journal bearing
in static and dynamic conditions in many works reported in lit-
erature. The presence of ellipticity in bore (Crosby, 1992) has sig-
nificant effects on journal bearing performance. It is observed in
various studies (Christensen, 1969; Christensen & Tonder, 1973;
Mishra, 2013) that bore ellipticities up to 3.0 bring better stability
for journal bearing. Again, microscopic irregularities like surface
roughness have positive effects on bearing performance (Binu et
al., 2014; Liang et al., 2014; Li et al., 2019). Bearing surface rough-
ness with parameters up to 10% of roughness height has better
impact on LCC (Christensen, 1969; Christensen & Tonder, 1973).
A transverse pattern of roughness has a better LCC, while the
longitudinal pattern has more side leakage (Christensen, 1969).
Further, isotropic roughness orientation has a good compromise
between LCC and side leakage. Roughness in a bearing bore is
quantified using stochastic (Christensen, 1969) and determinis-
tic models. Through stochastic method, the probabilistic density
distribution of roughness height is plotted and compared with
Gaussian distribution (Christensen, 1969; Christensen & Tonder,
1973), while in deterministic model, the roughness influence
on operating characteristics is emphasized. In both cases, the
nature of impact depends on the orientation of the roughness
(transverse, longitudinal, and isotropic).

Metal nanoparticles like TiO2, ZnO, and ZnAl2O4 improve the
lubrication properties. The addition of such nanoparticle addi-
tive (Shahnazar et al., 2016; Laad & Jatti, 2018) enhances the LCC
of journal bearing (Binu et al., 2014). The LCC can also be en-
hanced due to the use of multilobe as the bearing sleeve con-
straint improves the LCC (Li et al., 2019). Stability (Pai et al., 2012;
Mishra, 2013) of journal bearing depends on spring constant and
damping coefficient. These parameters are used to find the crit-
ical mass and the whirl ratio. The highly non-linear whirl and
whip of the bearing are due to the combined effect of shaft
misalignment, bore ellipticity, and roughness orientation. In the

journal bearing analysis, minimal works are reported in finite
element simulation (Shen et al., 2012). Shen et al. (2012) used a
thermal wear simulation program in ABACUS to analyse the dy-
namic wear process of bearing. There are very limited number
of works reported on the experimental aspect of journal bear-
ing, because of the requirement of interfacing and the associ-
ated problems of data acquisition system with moving shaft and
micro size conjunctional dimension.

So many parameters of a journal bearing while in operation
and their interdependence often make it a complicated system
to understand the correct combination of parameters for opti-
mum performance. Artificial neural network (ANN) is consid-
ered to be one of the advanced tools to train data from simu-
lations or experiments of journal bearing operation. The ANN
found its application in estimating the wear using Response sur-
face methodology (RSM) and LMBP [Levenberg–Marquardt (L–M)
back-propagation] neural network architecture (Kannaiyan et al.,
2019). Hayajneh et al. (2009) used ANN to predict the quantity
of material loss due to the Al–Cu–Si carbide wear. They stud-
ied the effect of Cu as an alloying element and Si carbide as
reinforcement particle to Al-4 wt % Mg metal matrix. The re-
sults were compared with the experiment and relative errors
were found to be 2.4% of the non-coded values. There are a
number of ANN applications found in wear estimation (Zhang
et al., 2002; Genel et al., 2003; Rashed & Mahmoud, 2009; Xiao &
Zhu, 2010; Leema et al., 2015). Even applying the ANN, the op-
timization of emission characteristics was carried out for dif-
ferent injection timings and engine load at different blend mix-
tures. This ANN application revealed that blended fuels provide
better engine performance and improved emission character-
istics (Sharma et al., 2015). Bhowmik et al. (2017) developed an
ANN model to study the synthesis of MnFe2O4 and Mn3O4 mag-
netic nano-composites for enhanced properties of adsorption.
Through this model, they predicted Cr (VI) ion removal with a
minimum mean squared error (MSE) of 15.4 × 104 and a max-
imum R2 of 0.98. Similar work of ANN on adsorption of mixed-
phase CaFe2O4 magnetic nano-composites (Bhowmik et al., 2019)
predicted the second-order kinetic and Langmuir isotherm to
best fit with experimental data. The maximum MO dye absorp-
tion capacity in this case is found to be of 344.83 mg/.

Application of ANN to study the chemical route synthesis
of nanoparticles (Debnath et al., 2015), to study the kinetic and
equilibrium isotherm (Debnath et al., 2015), and to study the effi-
ciency of toxic Congo Red dye adsorption from aqueous solution
(Deb et al., 2017) was found reasonable. The ANN application in
rock mechanics and blasting phenomena is also reported. Ar-
maghani et al. (2017) developed a hybrid intelligence model to
predict the TBD penetration rate in hard rock conditions. In this
case, the intelligence was created using 1286 data sets with com-
bined particle swarm optimization (PSO), ANN, and imperialism
competitor algorithm (ICA). Such a hybrid model was found to
yield a better result than simple ANN. Using this hybrid tech-
nique, the air-over pressure (Armaghani et al., 2015) in air blast
was successfully predicted. Also, the maximum bearing capacity
of rock socketed piles was accurately predicted using this algo-
rithm (Armaghani et al., 2015). Parrales et al. (2019) applied the
ANN to find Nusselt (Nu) number correlations in heat transfer
analysis of helical double pipe evaporator. With a coefficient of
determination, R2 > 0.99 and one node in the hidden layer, this
model used Prandtl and Jacob liquid as input variables. Using
ANN, the Nu for biphasic flow with an accuracy of ±0.2 for an-
nular Nu and ±4 for the inner Nu was successfully evaluated.

Based on this broad literature survey, it is observed that
a significant number of research works reported on bearing
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Figure 1: Mechanism of hydrodynamic pressure lubrication in circular and elliptic bore journal bearing.

Figure 2: Roughness pattern of bearing surface.

performance analysis, while ANN applications were found in
the area of wear analysis, manufacturing, material processing,
chemical synthesis, rock mechanics, etc. Its application to jour-
nal bearing in general and rough elliptic bearing in particular
was never reported, which is the objective of this research work.

2. Material and Methods
2.1. Configuration of rough elliptic bore journal bearing

Journal bearing bore is manufactured through machining oper-
ation like boring or turning. Due to machine tool vibration, the
non-circular geometry of the bore is bound to occur in the inner
surface. Crosby (1992) quantified these irregularities as oval or
elliptical, which is given in equation (1).

G = δ − 1
ψ

(1)

Here, ‘G’ is the non-circularity/ellipticity coefficient, ‘δ’ is the
ratio of major radius to the minor radius (Rmaj/Rmin). If the value
of G = 0, then δ = 1 leads to the bore to be circular. The max-
imum value of G ever taken in the analysis is 3 (Mishra, 2013),
which has good stability. In this analysis, we consider G, δ, and
ψ as ellipticity parameters, which are interdependent. Figure 3a–

d shows the charts of ψ versus G, δ versus G, δ versus ψ , and 

versus ψ . The value of G increases with an increase in the value
of δ and ψ .

Figure 1 shows the mechanism of hydrodynamic lubrication
in the case of circular and elliptic bore bearing. Due to the for-
mation of a double wedge shape (lubrication conjunction), two
different pressure bumps appeared. The pressure profile on the
unwrapped bearing surface shows more pressure development
due to isotropic roughness in the bearing surface. Figure 2 shows
the different pattern of roughness, which is expected in the bear-
ing surface.

Like ellipticity, roughness is also bound to occur in a bore sur-
face, as the small amplitude vibration of the tool during man-
ufacturing is replicated on a machined surface (Christensen &
Tonder, 1973). The orientations are classified to be transverse,
longitudinal, or isotropic as pointed out in Fig. 2. Christensen
and Tonder (Christensen, 1969) considered the roughness as an
extra component in the film thickness, which is known to be
stochastic. It is given in equation (2).

hs =

∣∣∣∣∣∣∣
hs (θ, z, ξ ) (Isotropic)
hs (z, ξ ) (Longitudinal)
hs (θ, ξ ) (Transverse)

(2)
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Figure 3: Ellipticity parameters inter-dependence.

Hence, the film thickness for rough elliptic bore journal bear-
ing is upgraded as follows:

h = c + Gccos2 (θ − α) + e cos(θ − φ) + hs (θ, z, ξ ) . (3)

Hence, the non-dimensional film thickness is as follows:

H = 1 + Gcos2 (θ − α) + ∈ cos(θ − φ) + Hs (θ, z, ξ ) . (4)

2.2. Numerical method for rough elliptic bore
lubrication performance

The Reynolds equation for this rough elliptic case as per Chris-
tensen and Tonder (1973) is taken as

∂

∂x

(
∂ P
∂x

ζ1(H)
)

+ ∂

∂z

(
∂ P
∂z

ζ2(H)
)

= 6ηu
∂

∂x
ζ3(H). (5)

For an elliptic bore with isotropic roughness (Christensen,
1969), the equation modified to

∂

∂x

(
∂ P
∂x

E (H3)
)

+ ∂

∂z

(
∂ P
∂z

E (H3)
)

= 6ηu
∂

∂x
E (H). (6)

Here, E(H3) are expectancy operators, which can be evaluated
as

E
(
H3) =

c∫
−c

H3 f (hs) dhs =
c∫

−c

(h + hs)3 f (hs) dhs = h3 + 3hσ 2. (7)

Here, 2c is the maximum peak to peak roughness distance,
and σ 2 is the variance of the height variation.

σ 2 =
c∫

−c

h2
s f (hs) dhs = c2

9
(8)

The different expectancy operators for isotropic surface and
their corresponding value in terms of G, H, and Y are given in
Table 1.

Equation (6) is discretized using the central finite difference
method. A numerical technique is adopted to solve the dis-
cretized equations for hydrodynamic pressure through effective
influence Newton–Raphson method. To speed up the iterative
process, the overrelaxation factor in the case of oil-lubricated
bearing is introduced as follows:

P K
i, j = P K

i, j + or f
(

P K +1
i, j − P K

i, j

)
. (9)

The convergence criteria for pressure error are set as
per equation (10).

Error =
n∑
i

m∑
j

∣∣∣P K +1
i, j − P K

i, j

∣∣∣ ≤ 0.005 (10)

The error tolerance ≤0.0015 has been decided by trials. The
convergence criteria are decreased gradually like 0.1, 0.01, 0.001,
and 0.0001, and the result is compared for successively fell con-
vergence (Mishra, 2013). If the result shows very little change
between two sets of convergence, the higher value of Pi, j is con-
sidered.

In the beginning, the pressure at all nodes is taken as zero.
This automatically satisfies the boundary conditions on the left,
top, and bottom sides, i.e. at θ = 0, Z = 0, and 1 (Mishra, 2013).
The value of Pi, j is found by starting with P1,1 and either moving
zigzag to the right-hand corner node within the boundary or by
moving vertically and zigzag to the corner to satisfy the bound-
ary conditions. The Pi, j is never allowed to become negative by
setting any negative value to zero (Mishra, 2013). Once the error
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Table 1: Expectancy operator values.

Film terms Value Expectancy function

E (H) 1 + Gcos2θ+ ∈ cos θ ζ3(H)

E ( 1
H ) 35

37Y7 {6(Y2 − H2) log( Y+H
Y−H ) + 2

5 YH(15H4 − 40Y2 H2 + 33Y4)} ζ4(H)

E (H3) H3 + HY2

3 ζ1(H),ζ2(H)

Table 2: Non-dimensional to dimensional correlation of parameters.

Description
Non-dimensional to dimensional

relations

Hydrodynamic pressure p∗ = pc2

ηω2r j
2 L

Load W∗ = Wc
ηωr j

2 L

Friction F ∗ = F c
ηωr j

2 L

Flow-in Q∗
in = Qin

uav Lc

of convergence is reached between two consecutive iterations as
per equation (10), the process of iteration is stopped.

The LCC of the bearing is given as follows:

Wx =
2π∑
0

1∑
0

(P sin θ )θZ, (11)

and

Wz =
2π∑
0

1∑
0

(P cos θ )θZ. (12)

Hence,

W =
√

W2
x + W2

z

φ = tan−1
(

Wz

Wx

)
. (13)

Here, φ is the load angle. The friction force is the integra-
tion of shear over the grid area. The shear stresses at the pres-
sure zone and cavitation zone are different (Christensen & Ton-
der, 1973). The friction force considering these issues is given

in equation (14).

F =
π∑
0

1∑
0

[
1
2

∂ P
∂θ

ζ3 (H) + ηu (ζ4 (H) − ζ5 (H))
]

︸ ︷︷ ︸
Pressure Zone

+
2π∑
π

1∑
0

[ηu (ζ4 (H) − ζ5 (H))]

︸ ︷︷ ︸
Cavitation Zone

(14)

The mean oil flows per unit width along the direction of ro-
tation and direction of side leakage are, respectively, given as

qθ = u
2

ζ3 (H) − 1
12η

∂ P
∂x

ζ1 (H) (15)

qZ = − 1
12η

∂ P
∂ Z

ζ2 (H) . (16)

The total flow-in and side leakages are obtained by integrat-
ing equations (15) and (16), respectively.

The non-dimensional parameters discussed in the model are
presented Table 2, with their dimensional relationships. In the
non-dimensional pressure, load, and friction, the effect of vis-
cosity is present.

2.3. ANN for rough elliptic bore lubrication

2.3.1. ANN model
ANN is an advanced simulation and modelling tool that uses
computational skills integrated into the human brain. It per-
forms learning and prediction in a sequence to study vari-
ous scientific data and suggests favourable combinations. The
ANN deals with some artificial neurons, organized in a defi-
nite structure and interacting with each other with the help
of weight (Bhowmik et al., 2019). Since last few years, the ANN
has found its application in various fields of science and tech-
nology such as manufacturing, robotics, metal processing, etc.
The current ANN method is developed using the neural network
toolbox of the MATLAB software. In order to observe the perfor-
mance, the number of neurons is varied from 1 to 20 in the hid-
den layers. Further, the value of mean square error (MSE) and

Table 3: Statistical details of model input/output parameters.

Symbol Unit Category Minm Maxm Mean

G Non-dimensional Input 0 2.0 1.0
Y Non-dimensional Input 0 0.3 0.1
ε Non-dimensional Input 0.1 0.9 0.45
β Non-dimensional Input 0.5 2.0 1.0
Wis Non-dimensional Output 3.8245 24.5895 9.6155
Wth Non-dimensional Output 1.302 6.3785 3.8013
Fis Non-dimensional Output 16.7014 102.67 47.3882
Fth Non-dimensional Output 5.3692 58.46 24.675
Qis Non-dimensional Output 4.4388 6.4226 5.4006
Qth Non-dimensional Output 5.2415 7.0872 6.0289
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Figure 4: Architecture of neural network model.

determination coefficient (R2) of training and testing of the data
set were studied for analysing the performance.

The equations for MSE and R2 are, respectively, given by

MSE = 1
N

N∑
i=1

(∣∣yprd,i − yexp,i
∣∣)2 (17)

R2 = 1 − 1
N

N∑
i=1

(
yprd,i − yexp,i

)
N∑

i=1

(
yprd,i − ym

) . (18)

Here, yprd , i is the model predicted value, yexp , i is the experi-
mental value, and ym is the arithmetic mean of all experimental
data. N is the number of data points. There are 162 data points
considered for the model, out of which 70% of total data points
(114) were considered for training, 15% (24) for testing, and 15%
(24) for validation. The input parameters are chosen as G, Y, ε,
and β. The raw data (both input and output) are normalized (0–
1) using equation (19). The statistical details of input/output pa-
rameters are given in Table 3.

Xnorm = X − Xmin

Xmax − Xmin
(19)

ANN model of the finite journal bearing was constructed us-
ing four and six parameters in the input and output layers, re-
spectively. The performance parameters, i.e. LCC, friction, and
flow of the lubricant into the bearing, were considered as targets
and the non-circularity (G), L/D ratios(β), roughness parameters
(Y), and eccentricities (ε) were used as the input parameters. Fig-
ure 4 shows the architecture of the neural network model. Here,
the data were used to train and build the ANN model and obtain
the trained results. The ANN model training was conducted for

Table 4: Comparison of the number of neurons (1–20) in the hidden
layer.

No. of
neurons MSE R2

No. of
neurons MSE R2

1 0.03239 0.7641 11 0.00262 0.9821
2 0.01863 0.8583 12 0.00274 0.9638
3 0.01653 0.9035 13 0.00338 0.9853
4 0.01487 0.9346 14 0.00448 0.9763
5 0.00698 0.9487 15 0.00568 0.9608
6 0.00387 0.9884 16 0.00638 0.9370
7 0.00208 0.9832 17 0.00946 0.9196
8 0.0178 0.9794 18 0.00997 0.9143
9 0.00154 0.9747 19 0.01458 0.9096
10 0.00146 0.9854 20 0.01856 0.8983

several cycles until the minimum mean square error (MSE) was
reached, and best-fitting plots were obtained to stop the train-
ing. These outputs are compared to the targets, and the error
data were calculated and discussed. Various plots and perfor-
mance graphs were also obtained using the ANN tool and dis-
cussed in the result analysis section.

A comparison of the number of neurons in the hidden layer
is given in Table 4. Based on the maximum value of R2 and the
minimum value of MSE, the optimal network’s topology is con-
figured. The most challenging task to be accomplished in ANN
modelling is to determine the best network architecture in terms
of selecting both the proper ANN training algorithm and the
number of hidden nodes in hidden layers. Armaghani et al. (2016,
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Figure 5: Flow chart for combined numerical and ANN model.

Figure 6: Validation of the numerical model.
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Figure 7: Load response to eccentricity for smooth and rough elliptic bore Case I.

Figure 8: Load response to eccentricity for smooth and rough elliptic bore Case II.

Figure 9: Load response to eccentricity for smooth and rough elliptic bore 3.

2017) used the proposed equations to determine the number of
hidden nodes in the network. In the current analysis, we used
the L–M back-propagation training algorithm to work with 5, 10,
and 20 hidden nodes and observe the error convergence. The
best convergence is found in the case of 20 nodes. As shown in
Fig. 4, in the architecture diagram, the nodes are arranged in two
layers, each containing ten hidden nodes.

Figure 5 shows the combined flow chart for numerical and
ANN models. Here, the Reynolds equation is solved for the hy-
drodynamic pressure, and then load capacity, friction, and flow-
in are estimated for the smooth and rough case. For the ANN
model, four inputs and six outputs were set. The ANN model
started with the input of data from the numerical model up-
loaded to MATLAB neural network tool in a matrix form. Now,
the data are categorized as trained data set and test data set.

It was followed by a network setting, network training, plotting,
and network testing to receive data output. If the error in trained
data and test data is not acceptable, then the network training
was repeated. Once the error is permitted, the mapping of ANN
output is carried out.

3. Results and Discussion
3.1. Analysis of numerical result

The numerical model developed here is validated with the work
of Christensen and Tonder (1973). For the comparison, the model
is converted to a one-dimensional circular case. Figure 6a–b
shows the validation bar chart for short (β = 0.5) and finite (β
= 1.0) journal bearing.
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Figure 10: Friction response to eccentricity for smooth and rough elliptic bore.

At different eccentricities (0.1, 0.3, 0.5, 0.7, and 0.9), the LCC
for the current case is compared with that of Christensen and
Tonder (1973) for roughness parameters (Y = 0.1 and 0.2). The
validation shows that the difference between this work and
Christensen and Tonder (1973) is less than 5%. Hence, it is en-
couraging to adopt this model for further analysis of rough el-
liptic bore journal bearing.

Figure 7a–b shows the load response to eccentricities for
short (β = 0.5 and 0.75), finite (β = 1.0), and long (β = 1.5 and
2.0) journal bearing at (Y = 0.0 and 0.2). For smooth case (Y = 0.0)
at G = 0.5, the LCC increases 12 times between eccentricities of
0.1 and 0.9. At each eccentric position, the LCC increases in order
of short, finite, and long journal bearing. The highest LCC at 0.9
eccentricity decreases by 20% due to the presence of roughness
parameters (Y = 0.2).

Figure 8a–b shows the bar chart of the smooth and rough el-
liptic bore at G = 1.0. The highest value of LCC decreases by 25%
due to roughness value of Y = 0.2. With the increase in eccen-
tricity from 0.1 to 0.9, the LCC increases by six times for smooth
bearing, while in the case of rough bearing, the increase ob-
served is eight times for all short, long, and finite bearing cases.

Figure 9a–b shows the LCC bar chart of G = 2.0. In this case
for smooth, the LCC changes four times between eccentrici-
ties of 0.1 and 0.9. While for rough case (Y = 0.2), it increases
three times. Based on Figs 6–8, it was observed that by increas-
ing non-circularity 0.5 < G < 2.0, the maximum LCC reduces
as 60 < W < 20 in smooth bearing case. While for rough cases
(Y = 0.2) for 0.5 < G < 2.0, the LCC decreases as 40 < W < 15.

Figure 10a–c shows the non-dimensional friction force at a
different value of non-circularities. G = 0.3, 0.5, and 1.0 for dif-
ferent roughness parameters (Y = 0, 0.1, 0.2, 0.3, and 0.4). For all
cases, the maximum friction occurs at Y = 0.1. The highest value
of friction increases with an increase in non-circularity value. It

Table 5: Comparison of various bearing parameters (non-
dimensional).

ε Wc Wre Fc Fre Qc Qre

0.1 3.093 4.9387 33.91 81.85 0.3784 2.179
0.2 3.6028 5.2531 33.99 83.75 0.3874 2.1867
0.3 4.5363 5.806 34.88 88.09 0.4506 2.0464
0.4 5.905 6.3253 29.88 95.06 0.5468 2.0671
0.5 8.0067 7.5557 30.7 102.48 0.6429 2.0958
0.6 10.9951 9.3407 32.34 114.5 0.684 2.132
0.7 15.58 11.9975 35.25 126.9 0.7682 2.1783
0.8 23.5057 16.443 40.51 144.67 0.8491 2.0404
0.9 41.4012 24.5413 51.43 170.48 0.9263 2.1035

(i) Wc: LCC (conventional bearing); Wre: LCC (rough elliptic bore bearing).
(ii) Fc: Friction (conventional bearing); Fre: Friction (rough elliptic bore bearing).
(iii) Qc: Flow-in (conventional bearing); Qre: Flow-in (rough elliptic bore bearing).

is 84, 92, and 165 at G = 0.3, 0.5, and 1.0, respectively. For all non-
circularity cases, the friction force increases two times between
eccentricities of 0.1 and 0.9. From Y = 0.0 to 0.1, the friction in-
creases suddenly, and later beyond 0.1 and 0.4, it decreases and
becomes even less than the smooth case.

Figure 10a–c shows the non-dimensional flow-in for short,
finite, and long journal bearing. As flow-in is in the circum-
ferential direction, it is independent of whether the bearing is
short, finite, or long. The flow-in increases with increase in non-
circularity and is 8.5% more between G = 0.5 and 1.0. Table 5
shows the comparison of output parameters between the con-
ventional bearing and rough elliptic bore bearing. The output pa-
rameters are more in rough elliptic case.

In the current program, the load, friction, and flow-in
could be computed for different eccentricities, non-circularities,
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Table 6: Neural network window display.

Algorithm

Data division Random (dividerand)
Training L–M
Performance MSE
Calculations MEX
Progress Range Current display
Epoch 0–1000 Seven iterations
Time 0:00:00
Performance 2.49–0.00 1.57e-28
Gradient 45.1–1.00e-10 3.95e-13
Mu 0.00100–1.00e + 10
Validation check 0–70 7
Plots
Performance Plot perform
Training state Plot train state
Regression Plot regression

Table 7: First training observation table of simulated data I (experimental outputs).

Run Factor-1 (ε) Factor-2 (β)
Factor-3

(G)
Factor-4

(Y)
Experimental outputs

Wis Wth Fis Fth Qis Qth

1 0.3 0.5 0.5 0.1 3.9176 1.302 52.95 22.51 4.4394 5.2438
2 0.3 0.5 0.5 0.2 3.882 1.302 33.85 14.83 4.4388 5.2429
3 0.3 0.5 0.5 0.3 3.8245 1.3026 33.73 14.83 4.4382 5.2415
4 0.3 1 1 0.1 5.806 3.432 88.09 46.01 4.8875 5.8628
5 0.3 1 1 0.2 5.7681 3.432 30.83 13.12 4.8875 5.8605
6 0.3 1 1 0.3 5.7063 3.432 30.12 13.12 4.8875 5.8567
7 0.3 2 2 0.1 5.4342 3.214 94.27 58.46 5.2134 6.342
8 0.3 2 2 0.2 5.41 3.321 38.32 15.43 5.1121 6.123
9 0.3 2 2 0.3 5.13 3.133 36.31 14.35 5.0032 6.0021
10 0.5 0.5 1 0.1 5.6321 1.7324 102.67 42.15 5.5016 7.0872
11 0.5 0.5 1 0.2 5.5731 1.7324 33.53 12.98 5.5016 7.0863
12 0.5 0.5 1 0.3 5.4786 1.7324 32.71 12.98 5.5016 7.0847
13 0.5 1 2 0.1 5.9403 2.1872 95.36 36.65 5.324 6.832
14 0.5 1 2 0.2 5.9018 2.3413 40.32 14.32 5.123 6.342
15 0.5 1 2 0.3 5.81 2.43 38.43 13.78 5.006 6.213
16 0.5 2 0.5 0.1 10.5943 5.397 63.31 54.38 5.5016 5.7148
17 0.5 2 0.5 0.2 10.465 5.3972 38.23 31.18 5.5016 5.7116
18 0.5 2 0.5 0.3 10.2577 5.3972 38.09 31.18 5.5016 5.7063
19 0.8 0.5 2 0.1 8.8186 4.345 68.231 40.824 5.756 5.821
20 0.8 0.5 2 0.2 8.6272 4.234 40.13 40.021 5.754 5.281
21 0.8 0.5 2 0.3 8.2216 4.132 40.012 38.293 5.345 5.221
22 0.8 1 0.5 0.1 24.5895 6.19 74.78 31.49 5.9745 6.0376
23 0.8 1 0.5 0.2 23.8265 6.19 42.39 17.11 5.9745 6.0356
24 0.8 1 0.5 0.3 22.7026 6.19 40.52 17.11 5.9745 6.0324
25 0.8 2 1 0.1 17.9991 6.3785 17.9991 6.3785 6.4226 6.2705
26 0.8 2 1 0.2 17.6003 6.3785 17.6003 6.3785 6.4226 6.2675
27 0.8 2 1 0.3 16.7014 6.3785 16.7014 6.3785 6.4226 6.2625

roughness, and L/D ratio. Such data are further used as input for
the ANN model for data training and simulation.

3.2. ANN model architecture and training

A forward feedback propagation multilayer ANN is used for
modelling, training, and testing using MATLAB. As the activation
transfer functions, TANSIG (hyperbolic tangent sigmoid) func-
tion, and linear transfer function (purelin) were used. However,
the back-propagation function that updates weight and bias val-
ues according to L–M optimization (trainlm) was used as an al-

gorithm for training. Such algorithm was chosen due to its high
accuracy in prediction and fast convergence. The hidden layers
consist of 20 neurons, and the output layer consists of 6 neurons.

3.3. Process parameters for the ANN model

In this model, 27 data sets are used by varying the input pa-
rameters such as non-circularity (G), l/d ratios (β), roughness fac-
tors (Y), and eccentricities (ε). These data sets have the cor-
responding targets as both isothermal and thermal load (Wis,
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Figure 11: Flow-in response to variation of non-circularity, eccentricities, and roughness parameter.

Figure 12: Network training window.

Wth), frictional forces (Fis, Fth), and flow into the bearing (Qis,
Qth) as given in the tabular form. These data sets were pro-
cessed for training, validation, and testing. The output parame-
ters were predicted, and the performance was considered from
the mean square error (MSE). According to the construction, it
is a two-layer feed-forward network with tan sigmoid and linear
output neurons. It can give an excellent fit to this complicated
problem.

3.4. MSE of performance plot using ANN

As the MSE reaches its minimum value, the training was
stopped. Table 7 shows the first training results and the errors of
every data set. As per the performance graph, the minimum MSE
of the model after several training cycles shows 0.68008 as the
best validation. This structure is finally used for the ANN pre-
diction system. Table 3 shows the comparison of experimental

data and the predicted data for the input data sets. It is shown
in Fig. 11 that with a minimal iteration (seven), the data are vali-
dated and attain an accuracy of 0.68008. Here, training and test-
ing curves are entirely overlapping, which is a good indication
that there is a minor error in the validation check.

The training curve in Fig. 13 shows the gradual decrease in
MSE over the epochs, and in the seventh epoch, it becomes zero,
indicating the early completion of the training based on similar
value and pattern detection. The initial stages, however, were
completing the training cycle in 70–90 epochs, which eventually
reduced due to the repetition of results and pattern.

3.5. Regression plots of training, testing, validation
using ANN

Tables 7–9 show the first training observations for experimen-
tal outputs, training data, and error in the primary analysis.
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Figure 13: Validation of performance with mean square error.

Table 8: First training observation table of simulated data II (training data).

Run Factor-1 (ε) Factor-2 (β)
Factor-3

(G)
Factor-4

(Y)
Training data

Wis Wth Fis Fth Qis Qth

1 0.3 0.5 0.5 0.1 3.962551 1.478617 53.07155 22.52402 4.551524 5.460392
2 0.3 0.5 0.5 0.2 3.883718 1.684947 32.70376 6.3785 4.996161 6.625786
3 0.3 0.5 0.5 0.3 4.201598 1.361866 32.37818 6.3785 5.847097 6.83724
4 0.3 1 1 0.1 5.804787 1.30645 88.11588 46.00925 4.843563 5.957066
5 0.3 1 1 0.2 5.76862 1.331829 30.82933 13.10492 4.859897 5.705345
6 0.3 1 1 0.3 5.697839 1.305551 30.12345 6.378501 4.911592 5.899324
7 0.3 2 2 0.1 3.824935 3.219166 94.26723 58.42768 5.233276 6.339558
8 0.3 2 2 0.2 3.825398 4.972288 39.43574 10.8877 4.638372 5.485973
9 0.3 2 2 0.3 3.868563 1.960157 34.25957 6.380608 4.865232 6.423138
10 0.5 0.5 1 0.1 5.635592 1.543351 102.5553 42.13741 5.439068 6.822277
11 0.5 0.5 1 0.2 4.540916 1.322737 32.04239 6.3785 5.468863 6.668719
12 0.5 0.5 1 0.3 5.481786 1.328806 32.70506 6.3785 5.528242 6.974799
13 0.5 1 2 0.1 5.936903 2.173041 95.37896 36.66705 5.313265 6.94684
14 0.5 1 2 0.2 5.906886 2.335576 40.31716 14.32401 5.046067 6.289983
15 0.5 1 2 0.3 5.80769 2.466069 38.42528 13.78715 5.078906 6.209455
16 0.5 2 0.5 0.1 10.59625 6.36486 63.3785 6.3785 5.510916 5.7629
17 0.5 2 0.5 0.2 10.45416 5.422999 38.27635 6.3785 5.548423 5.70291
18 0.5 2 0.5 0.3 9.770155 1.490455 34.3577 6.3785 6.356785 6.912747
19 0.8 0.5 2 0.1 8.830468 4.368222 68.19568 58.46 5.833418 5.83428
20 0.8 0.5 2 0.2 8.627354 4.210859 40.14663 40.02834 5.756091 5.406863
21 0.8 0.5 2 0.3 8.21909 4.140153 40.01349 38.291 5.31386 5.273918
22 0.8 1 0.5 0.1 24.53371 6.3705 74.76906 6.3785 5.990167 6.02237
23 0.8 1 0.5 0.2 23.82795 6.261925 42.39088 6.3785 5.973234 6.076912
24 0.8 1 0.5 0.3 18.07396 2.44515 37.86881 6.3785 6.015176 7.036599
25 0.8 2 1 0.1 17.99805 6.377965 17.99534 6.3785 6.296026 6.247124
26 0.8 2 1 0.2 19.69706 6.377685 16.70198 6.3785 6.122437 5.804993
27 0.8 2 1 0.3 16.7014 6.247057 16.70708 6.3785 6.29855 6.239001
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Table 9: First training observation table of simulated data III (errors).

Run Factor-1 (ε) Factor-2 (β)
Factor-3

(G)
Factor-4 (Y)

Error

Wis Wth Fis Fth Qis Qth

1 0.3 0.5 0.5 0.1 − 0.04495 − 0.17662 − 0.12155 − 0.01402 − 0.11212 − 0.21659
2 0.3 0.5 0.5 0.2 − 0.00172 − 0.38295 1.146241 8.4515 − 0.55736 − 1.38289
3 0.3 0.5 0.5 0.3 − 0.3771 − 0.0592 1.35182 8.4515 − 1.4089 − 1.59574
4 0.3 1 1 0.1 0.001213 2.12555 − 0.02588 0.000746 0.043937 − 0.09427
5 0.3 1 1 0.2 − 0.00052 2.100171 0.000665 0.015082 0.0027603 0.155155
6 0.3 1 1 0.3 0.008461 2.126449 − 0.00345 6.741499 − 0.02049 0.04262
7 0.3 2 2 0.1 1.609265 − 0.00517 0.002766 0.03232 − 0.01988 0.002442
8 0.3 2 2 0.2 1.584602 − 1.65129 − 1.11574 4.542305 0.473728 0.637027
9 0.3 2 2 0.3 1.261437 1.172843 2.050428 7.969392 0.137968 − 0.42104
10 0.5 0.5 1 0.1 − 0.00349 0.189049 0.114737 0.012593 0.06532 0.264923
11 0.5 0.5 1 0.2 1.032184 0.409663 1.487613 6.6015 0.032737 0.417581
12 0.5 0.5 1 0.3 − 0.0319 0.403594 0.004935 6.6015 − 0.02664 0.109901
13 0.5 1 2 0.1 0.003397 0.014159 − 0.01896 − 0.01705 0.010735 − 0.11484
14 0.5 1 2 0.2 − 0.00509 0.005724 0.002873 − 0.00401 0.076933 0.052017
15 0.5 1 2 0.3 0.00231 − 0.03607 0.005417 − 0.00715 − 0.07291 0.003545
16 0.5 2 0.5 0.1 − 0.00195 − 0.96786 0.031298 48.0015 − 0.00932 − 0.0481
17 0.5 2 0.5 0.2 0.01084 − 0.0258 − 0.04635 24.8015 − 0.85516 − 1.220645
18 0.5 2 0.5 0.3 0.487545 3.906745 3.732297 24.8015 − 0.85516 − 1.20645
19 0.8 0.5 2 0.1 − 0.01187 − 0.02322 0.035325 − 17.636 − 0.07742 − 0.01328
20 0.8 0.5 2 0.2 − 0.00015 0.023141 − 0.01663 − 0.00734 − 0.00209 − 0.12586
21 0.8 0.5 2 0.3 0.00251 − 0.00815 − 0.00149 0.00203 0.03114 − 0.05292
22 0.8 1 0.5 0.1 0.055789 − 0.18075 0.010941 25.1115 − 0.01567 0.01523
23 0.8 1 0.5 0.2 − 0.00145 − 0.07192 − 0.00088 10.7315 0.001266 − 0.04131
24 0.8 1 0.5 0.3 4.628642 3.74485 2.651186 10.7315 − 0.13068 − 1.0042
25 0.8 2 1 0.1 0.001049 0.000535 0.003761 − 4.49E-9 0.126574 0.023376
26 0.8 2 1 0.2 − 2.09676 0.000815 0.898323 0 0.300163 0.462507
27 0.8 2 1 0.3 3.41E-06 0.131443 − 0.00586 0 0.12405 0.023499

Table 10: Final training observation table of trained simulated data I (experimental outputs).

Run Factor-1 (ε) Factor-2 (β)
Factor-3

(G)
Factor-4 (Y)

Experimental outputs

Wis Wth Fis Fth Qis Qth

1 0.3 0.5 0.5 0.1 3.9176 1.302 52.95 22.51 4.4394 5.2438
2 0.3 0.5 0.5 0.2 3.882 1.302 33.85 14.83 4.4388 5.2429
3 0.3 0.5 0.5 0.3 3.8245 1.3026 33.73 14.83 4.4382 5.2415
4 0.3 1 1 0.1 5.806 3.432 88.09 46.01 4.8875 5.8628
5 0.3 1 1 0.2 5.7681 3.432 30.83 13.12 4.8875 5.8605
6 0.3 1 1 0.3 5.7063 3.432 30.12 13.12 4.8875 5.8567
7 0.3 2 2 0.1 5.4342 3.214 94.27 58.46 5.2134 6.342
8 0.3 2 2 0.2 5.41 3.321 38.32 15.43 5.1121 6.123
9 0.3 2 2 0.3 5.13 3.133 36.31 14.35 5.0032 6.0021
10 0.5 0.5 1 0.1 5.6321 1.7324 102.67 42.15 5.5016 7.0872
11 0.5 0.5 1 0.2 5.5731 1.7324 33.53 12.98 5.5016 7.0863
12 0.5 0.5 1 0.3 5.4786 1.7324 32.71 12.98 5.5016 7.0847
13 0.5 1 2 0.1 5.9403 2.1872 95.36 36.65 5.324 6.832
14 0.5 1 2 0.2 5.9018 2.3413 40.32 14.32 5.123 6.342
15 0.5 1 2 0.3 5.81 2.43 38.43 13.78 5.006 6.213
16 0.5 2 0.5 0.1 10.5943 5.397 63.31 54.38 5.5016 5.7148
17 0.5 2 0.5 0.2 10.465 5.3972 38.23 31.18 5.5016 5.7116
18 0.5 2 0.5 0.3 10.2577 5.3972 38.09 31.18 5.5016 5.7063
19 0.8 0.5 2 0.1 8.8186 4.345 68.231 40.824 5.756 5.821
20 0.8 0.5 2 0.2 8.6272 4.234 40.13 40.021 5.754 5.281
21 0.8 0.5 2 0.3 8.2216 4.132 40.012 38.293 5.345 5.221
22 0.8 1 0.5 0.1 24.5895 6.19 74.78 31.49 5.9745 6.0376
23 0.8 1 0.5 0.2 23.8265 6.19 42.39 17.11 5.9745 6.0356
24 0.8 1 0.5 0.3 22.7026 6.19 40.52 17.11 5.9745 6.0324
25 0.8 2 1 0.1 17.9991 6.3785 17.9991 6.3785 6.4226 6.2705
26 0.8 2 1 0.2 17.6003 6.3785 17.6003 6.3785 6.4226 6.2675
27 0.8 2 1 0.3 16.7014 6.3785 16.7014 6.3785 6.4226 6.2625

Similarly, Tables 10–12 show the final training observations for
experimental outputs, training data, and error in the prelimi-
nary analysis.

From Fig. 14a–d, it is evident that the data fit well because of
adequate training of the network. Finally, this neural network

model is to predict directly the unknown parameters for the
newer data sets in future. The regression coefficient or the coef-
ficient of determination or the R-value gives outputs against the
corresponding target values. When R is nearer to 1, the closer
is the relation between the experimental and predicted data. It
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Table 11: Final training observation table of trained simulated data II (training data).

Run Factor-1 (ε) Factor-2 (β)
Factor-3

(G)
Factor-4 (Y)

Training data

Wis Wth Fis Fth Qis Qth

1 0.3 0.5 0.5 0.1 3.962551 1.478617 53.07155 22.52402 4.551524 5.460392
2 0.3 0.5 0.5 0.2 3.883718 1.684947 32.70376 6.3785 4.996161 6.625786
3 0.3 0.5 0.5 0.3 4.201598 1.361866 32.37818 6.3785 5.847097 6.83724
4 0.3 1 1 0.1 5.804787 1.30645 88.11588 46.00925 4.843563 5.957066
5 0.3 1 1 0.2 5.76862 1.331829 30.82933 13.10492 4.859897 5.705345
6 0.3 1 1 0.3 5.697839 1.305551 30.12345 6.378501 4.911592 5.899324
7 0.3 2 2 0.1 3.824935 3.219166 94.26723 58.42768 5.233276 6.339558
8 0.3 2 2 0.2 3.825398 4.972288 39.43574 10.8877 4.638372 5.485973
9 0.3 2 2 0.3 3.868563 1.960157 34.25957 6.380608 4.865232 6.423138
10 0.5 0.5 1 0.1 5.635592 1.543351 102.5553 42.13741 5.439068 6.822277
11 0.5 0.5 1 0.2 4.540916 1.322737 32.04239 6.3785 5.468863 6.668719
12 0.5 0.5 1 0.3 5.481786 1.328806 32.70506 6.3785 5.528242 6.974799
13 0.5 1 2 0.1 5.936903 2.173041 95.37896 36.66705 5.313265 6.94684
14 0.5 1 2 0.2 5.906886 2.335576 40.31716 14.32401 5.046067 6.289983
15 0.5 1 2 0.3 5.80769 2.466069 38.42458 13.78715 5.078906 6.209455
16 0.5 2 0.5 0.1 10.59625 6.36486 63.2787 6.3785 5.510916 5.7629
17 0.5 2 0.5 0.2 10.45416 5.422999 38.27635 6.3785 5.548423 5.70291
18 0.5 2 0.5 0.3 9.770155 1.490455 34.3577 6.3785 6.356758 6.912747
19 0.8 0.5 2 0.1 8.830468 4.368222 68.19568 58.46 5.833418 5.83428
20 0.8 0.5 2 0.2 8.627354 4.210859 40.14663 40.02834 5.756091 5.406863
21 0.8 0.5 2 0.3 8.21909 4.140153 40.01349 38.291 5.31386 5.273918
22 0.8 1 0.5 0.1 24.53371 6.37075 74.76906 6.3785 5.990167 6.02237
23 0.8 1 0.5 0.2 23.82795 6.261925 42.39088 6.3785 5.973234 6.076912
24 0.8 1 0.5 0.3 18.07396 2.44515 37.86881 6.3785 6.105176 7.036599
25 0.8 2 1 0.1 17.99805 6.377965 17.99534 6.3785 6.296026 6.247124
26 0.8 2 1 0.2 19.69706 6.377685 16.70198 6.3785 6.122437 5.804993
27 0.8 2 1 0.3 16.7014 6.247057 16.70708 6.3785 6.29855 6.239001

Table 12: Final training observation table of trained simulated data III (errors).

Run Factor-1 (ε) Factor-2 (β)
Factor-3

(G)
Factor-4 (Y)

Error

Wis Wth Fis Fth Qis Qth

1 0.3 0.5 0.5 0.1 − 0.04495 − 0.17662 − 0.12155 − 0.01402 − 0.11212 − 0.21659
2 0.3 0.5 0.5 0.2 − 0.00172 − 0.38295 1.146241 8.4515 − 0.55736 − 1.38289
3 0.3 0.5 0.5 0.3 − 0.3771 − 0.05927 1.35182 8.4515 − 1.4089 − 1.59574
4 0.3 1 1 0.1 0.001213 2.12555 − 0.02588 0.000746 0.043937 − 0.09427
5 0.3 1 1 0.2 − 0.00052 2.100171 0.000665 0.015082 0.027603 0.155155
6 0.3 1 1 0.3 0.008461 2.126449 − 0.00345 6.741499 − 0.02409 − 0.04262
7 0.3 2 2 0.1 1.609265 − 0.00517 0.002766 0.03232 − 0.01988 0.002442
8 0.3 2 2 0.2 1.584602 − 1.65129 − 1.11574 4.542305 0.473728 0.637027
9 0.3 2 2 0.3 1.261437 1.172843 2.050428 7.969392 0.137968 − 0.42104
10 0.5 0.5 1 0.1 − 0.00349 0.189049 0.114737 0.012593 0.062532 0.264923
11 0.5 0.5 1 0.2 1.032184 0.409663 1.487613 6.6015 0.032737 0.417581
12 0.5 0.5 1 0.3 − 0.00319 0.403594 0.004935 6.6015 − 0.02664 0.109901
13 0.5 1 2 0.1 0.003397 0.014159 − 0.01896 − 0.01705 0.010735 − 0.11484
14 0.5 1 2 0.2 − 0.00509 0.005724 0.002837 − 0.00401 0.076933 0.052017
15 0.5 1 2 0.3 0.00231 − 0.03607 0.005417 − 0.00715 − 0.07291 0.003545
16 0.5 2 0.5 0.1 − 0.00195 − 0.96786 0.031298 48.0015 − 0.00932 − 0.0481
17 0.5 2 0.5 0.2 0.01084 − 0.0258 − 0.04635 24.8015 − 0.04682 0.00869
18 0.5 2 0.5 0.3 0.487545 3.906745 3.732297 24.8015 − 0.85516 − 1.20645
19 0.8 0.5 2 0.1 − 0.01187 − 0.02322 0.035325 − 17.636 − 0.07742 − 0.01328
20 0.8 0.5 2 0.2 − 0.00015 0.023141 − 0.01663 − 0.00734 − 0.00209 − 0.12586
21 0.8 0.5 2 0.3 0.00251 − 0.00815 − 0.00149 0.002003 0.03114 − 0.05292
22 0.8 1 0.5 0.1 0.055789 − 0.18075 0.010941 25.1115 − 0.01567 0.01523
23 0.8 1 0.5 0.2 − 0.00145 − 0.07192 − 0.00088 10.7315 0.001266 − 0.04131
24 0.8 1 0.5 0.3 4.628642 3.74485 2.651186 10.7315 − 0.13068 − 1.0042
25 0.8 2 1 0.1 0.001049 0.000535 0.003761 − 4.49E-09 0.126574 0.023376
26 0.8 2 1 0.2 − 2.09676 0.000815 0.898323 0 0.300163 0.462507
27 0.8 2 1 0.3 3.41E-06 0.131443 − 0.00568 0 0.12405 0.023499

generally shows the quality of the network and how good it is
capable of predicting data.

Figure 14 illustrates the training, validation, testing, and
comprehensive set of R-values. It can be seen that R-value for
the combined data set is 0.99757, which concludes that this net-

work training is good, and can be used for quality data predic-
tion. The training data give R = 0.99654, whereas validation data
and testing data give R-values as 0.99931 and 0.99995, respec-
tively. There are some residual data with unusual errors, which
can be due to fewer data sets or the arbitrary behaviour of data
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Figure 14: Regression plots for training and testing using MATLAB.

patterns around the parameters, or the errors in the experimen-
tal results. This can be improved by providing further training
with more extensive data size by which the network perfor-
mance will be enhanced.

3.6. Prediction of new data using ANN

The prediction of new data was conducted to validate the de-
veloped ANN model by using two sets of data by varying input
parameters, i.e. non-circularity (G), L/D ratios (β), roughness fac-
tors (Y), and eccentricities (ε). Their corresponding outputs, i.e.
isothermal and thermal load carrying capacities (Wis, Wth), fric-
tional forces (Fis, Fth), and flow into the bearing (Qis, Qth), were
obtained by simulating the prepared ANN model. The results ob-
tained are given in Table 13.

It is observed that for an eccentricity of 0.4, an L/D ratio of 0.5
with a non-circularity factor of 2, and a roughness value of 0.1,
isothermal (Wis) and thermal (Wth) LCCs are 8.32 and 1.32, re-
spectively. The frictional forces (Fis) and (Fth) are 96.03 and 25.85,
respectively. Also, the flow-ins to the bearing are (Qis) 8.32 and
(Qth) 6.57, respectively. Similarly, the values for the second set

also obtained corresponding outputs as shown in Table 13. Pre-
diction is confirmed by comparing the new data and the previous
range of values. Therefore, by considering the confidence level
of 99.75% or the R-value of 0.99757, the predicted results are sat-
isfactory.

4. Conclusion

The ANN prediction of the output parameters for the finite jour-
nal bearing is carried out and compared with the training re-
sults. The ANN model was developed based on the data obtained
from the simulation results of rough elliptic bore journal bear-
ing. It was trained and tested. The output process parameters,
LCCs, frictional forces, and flow into the bearing were analysed
and validated in this study and the results predicted are sum-
marized as follows:

1. The LCC of journal bearing decreases with the increase in
non-circularity, but the non-circularity value up to 1 is con-
ducive for bearing operation as it gives better stability.
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Table 13: Simulation results.

Sl. no.
Input parameters Simulated data

Factor-1 (ε) Factor-2 (β) Factor-3 (G) Factor-4 (Y) Wis Wth Fis Fth Qis Qth

1 0.4 0.5 2 0.1 8.323433 1.322677 96.03969 25.85195 4.05391 6.570336
2 0.6 0.5 1 0.2 5.762695 1.468324 45.51122 7.315798 5.884018 7.125625

2. Friction force increases with the increase in non-circularity,
while the flow is independent of whether the bearing is short,
finite, or long.

3. The ANN simulation predicts the combination of eccentric-
ity, L/D ratio, non-circularity, and roughness parameters as
(0.4, 0.5, 2, and 0.1) and (0.6, 0.5, 1, and 0.2), respectively, for
best output with a confidence level of 99.75% or the R-value
of 0.99757.

The limitation of this model is that it is very simple and deals
with only a few eccentric positions of the shaft. It uses only
162 data points. The eccentricity range (0.1–0.9) could avail more
data points for better bearing condition monitoring. Even the hy-
brid models, if developed, would predict more accurate results.
The immediate application of this model is to bearing manu-
facturing industries, engaged in journal bearing manufacturing
for automotive, aerospace, and heavy-duty machineries. Future
work of this research is to develop a combined PSO-, ANN-, and
ICA-based hybrid model for journal bearing design considering
bore ellipticity and non-circularity.
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