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Abstract 
Objectives The genus Reynoutria belonging to the family Polygonaceae is widely distributed in the north temperate zone and used in folk 
medicine. It is administered as a sedative, tonic and digestive, also as a treatment for canities and alopecia. Herein, we reported a review on 
traditional uses, phytochemistry and pharmacology reported from 1985 up to early 2022. All the information and studies concerning Reynoutria 
plants were summarized from the library and digital databases (e.g. ScienceDirect, SciFinder, Medline PubMed, Google Scholar, and CNKI).
Key findings A total of 185 articles on the genus Reynoutria have been collected. The phytochemical investigations of Reynoutria species re-
vealed the presence of more than 277 chemical components, including stilbenoids, quinones, flavonoids, phenylpropanoids, phospholipids, 
lactones, phenolics and phenolic acids. Moreover, the compounds isolated from the genus Reynoutria possess a wide spectrum of pharma-
cology such as anti-atherosclerosis, anti-inflammatory, antioxidative, anticancer, neuroprotective, anti-virus and heart protection.
Summary In this paper, the traditional uses, phytochemistry and pharmacology of genus Reynoutria were reviewed. As a source of traditional 
folk medicine, the Reynoutria genus have high medicinal value and they are widely used in medicine. Therefore, we hope our review can help 
genus Reynoutria get better development and utilization.
Keywords: Reynoutria; traditional uses; phytochemistry; pharmacology

Introduction
The genus Reynoutria, a genus of the family Polygonaceae, is 
mainly distributed in the wide temperate areas of the northern 
hemisphere. This genus comprises about seven species, five of 
which were discovered in China. As a country that has been 
using herbal medicine to treat diseases since ancient times, 
China has abundant natural drug resources and experience 
in clinical application. The plants of the genus Reynoutria, 
with rich chemical compositions and pharmacological activi-
ties, have been used in Traditional Chinese medicines or folk 
medicines to treat various diseases, which have become a hot 
spot for phytochemical studies.[1] Currently, more than 277 
compounds have been extracted and identified from the genus 
Reynoutria, with stilbenoids,[2] quinones[3] and flavonoids[4] 
being major compounds. Meanwhile, several studies showed 
that the compounds and extracts isolated from the genus 
Reynoutria possessed a wide spectrum of pharmacology in 
vivo or in vitro such as anti-atherosclerosis,[5] anti-inflam-
matory,[6] antioxidative,[7] anticancer,[8] neuroprotective,[9] 
anti-virus,[10] heart protection,[11] hair darkening.[12] So, it is 
necessary for better research to review the genus Reynoutria. 
In this study, we comprehensively summarized research on 
the traditional uses, phytochemistry, and pharmacology of the 
genus Reynoutria. The extant information on these species 

allows us to provide a scientific basis for future research 
studies and to explore their potential therapeutic use.

Search strategy
Comprehensive research and analysis of previously published 
literature were conducted for studies on the traditional use, 
distribution, chemistry and pharmacological properties of the 
genus Reynoutria. The search was conducted using databases 
such as ScienceDirect, SciFinder, Medline PubMed, Google 
Scholar, Baidu Scholar and CNKI by using the keywords such 
as Reynoutria, Reynoutria japonica, Reynoutria ciliinervis 
and Reynoutria multiflora. Meanwhile, since some of the main 
Reynoutria species have long been reported as Fallopia spe-
cies, we also used other keywords such as ‘Fallopia japonica’ 
and ‘Fallopia multiflora’ in the search strategy. Furthermore, 
part of the analyzed studies was got by a manual search 
of articles in the reference lists of the included studies. The 
PRISMA template for determining the list of the article is dis-
played in Figure 1. The chemical structures were drawn using 
ChemDraw Professional 20.0 software.

Traditional uses
Genus Reynoutria has seven species all over the world, 
which included Reynoutria × bohemica Chrtek & Chrtková, 
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Reynoutria ciliinervis (Nakai) Moldenke, Reynoutria 
compacta (Hook.f.) Nakai, Reynoutria forbesii (Hance) 
T.Yamaz., Reynoutria japonica Houtt., Reynoutria multiflora 
(Thunb.) Moldenke, Reynoutria sachalinensis (F.Schmidt) 
Nakai.[13] Reynoutria plants originated in Asia, and six species 
of the genus are known. Due to human activities, Reynoutria 
plants were introduced into Europe and North America, 
and resulted in the hybrid species Reynoutria × bohemica.[14] 
Among them, the tuberous root of R. japonica and R. multi-
flora known as “Hu Zhang” and “He Shouwu”, respectively, 
are famous Traditional Chinese medicines in China.[15, 16]  
Meanwhile, R. compacta, R. ciliinervis and R. forbesii also 
have been reported as folk herbs.[17–20] A summary of their 
local names, geographical distribution and traditional 
uses were presented in Table 1. The distribution of genus 
Reynoutria in the world is shown in Figure 2.

Phytochemistry
Currently, approximately 277 chemical components have 
been isolated and identified from the genus Reynoutria. The 
fundamental chemical constitutions are stilbenoids, quinones, 
and chromones. In this article, 277 compounds have been re-
ported, including 58 stilbenoids (1–58), 51 quinones (59–109), 
48 flavonoids (110–157), 21 phenylpropanoids (158–178), 9 
phospholipids (179–187), 9 lactones (188–196), 23 phenolics 
and phenolic acids (197–219), 19 fatty acids (220–238), 
and 39 other compounds (239–277), which are shown in  
Figures 3–15 and Table 2.

Stilbenoids
The stilbenoids are divided into two groups, one with 
2,3,5,4ʹ-tetrahydroxy stilbene (1–19) and the other with res-
veratrol (20–40). 2,3,5,4ʹ-Tetrahydroxy stilbene glycosides 
mostly form glycosides at the 2-hydroxy position and the glu-
cose group’s 2-position hydroxy often be replaced by different 
groups (Figure 3). While resveratrol glycosides mostly form 
glycosides at the 3-hydroxy or 4ʹ-hydroxy position (Figure 4). 

It is worth noting that most stilbenoids are trans-stilbenoids, 
which may be related to the stronger photostability of trans-
stilbenoids. Furthermore, 17 stilbenoid glycoside dimers (42–
58) have been isolated from R. multiflora (Figure 5), which 
often consist of two stilbenes units polymerized.

Quinones
Quinones can be divided into anthraquinones (59–85), 
naphthoquinones (86–93), benzoquinones (94–95) and 
dianthrones (96–109). Among them, anthraquinones are 
emodin-type anthraquinones, whose 1,8-hydroxy positions 
are easy to form ethers and glycosides with methyl and 
sugar groups. All reported naphthoquinones are α-(1,4) 
naphthoquinones (Figure 6). Meanwhile, the dianthrones 
(Figure 7) mostly exist in the form of intermediate linkage 
and form glycosides at the 8 position.

Flavonoids
According to structures, 48 flavonoids are divided into 
chromones (110–122), flavones (123–139), flavanones (140–
155), isoflavone (156) and flavonone (157).

Chromones are a group of natural compounds that 
are commonly found in plants. The oxygen-containing 
heterocycles are the core of flavonoid. Mostly chromones 
(Figure 8) are substituted at the 2, 5, and 7 positions and 
form glycosides at the 7 position. Flavonoid’s basic parent 
nucleus is 2-phenyl chromone. Notably, flavones (Figure 9) 
mostly form glycosides with various sugars at the 3 position. 
Whereas flavanones (Figure 10) rarely form glycosides, they’re 
more often replaced by galloyl at the 3 position. Meanwhile, 
flavanones can form dimer or trimer.

Phenylpropanoids
Phenylpropanoids, a class of compounds consisting of a ben-
zene ring linked to three carbons (C6–C3), can be divided into 
simple phenylpropanoids (158–166), coumarins (167–171) 
and lignans (172–178) (Figure 11). This type of component is 

Figure 1 Research data search and selection flow.
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less distributed in the genus Reynoutria. Notably, vanicosides 
A (164) and B (165) were reported from R. sachalinensis, 
which could induce an apoptotic death pathway in the mela-
noma cell lines.

Phospholipids
Phospholipids are an important class of lipid concomitants, 
which are present in almost all cells of plants and animals. A 
total of 9 phospholipids (179–187) (Figure 12) are obtained 
from the genus Reynoutria.

Lactones
Lactones are formed by the esterification of molecules 
containing both carboxyl and hydroxyl groups. The char-
acteristic of lactone is that there is only one ester group in 
the ring. Now 9 lactones (188–196) are reported from the 
genus Reynoutria. The structures of the specific compounds 
are shown in Figure 12.

Phenolics and phenolic acids
Phenolic compounds are important secondary metabolites in 
plants, which have good antioxidant activity for the exist-
ence of phenolic hydroxyl and phenolic compounds. While 
phenolic acid is a kind of organic acid containing a phenol 
ring. A total of 20 phenolics (197–216) and 3 phenolic acids 
(217–219) have been isolated from the genus Reynoutria. The 
structures of specific compounds are shown in Figure 13.

Fatty acids
Fatty acids are the main components of neutral fat, 
phospholipids and glycolipids. According to the chain 
length, fatty acids can be divided into short-chain fatty acids, 
medium-chain fatty acids, and long-chain fatty acids. A total 
of 19 fatty acids (220–238), mostly long chain saturated fatty 
acids, were reported in the genus Reynoutria (Figure 14).

Other compounds
In addition, 39 other compounds are isolated from the genus 
Reynoutria, including 3 saccharides (239–241), 4 polyols 
(242–245), 5 steroids (246–250), 6 terpenoids (251–256), 6 
alkaloids (257–262) and 15 miscellaneous compounds (263–
277). Specific compounds structure are shown in Figure 15.

Pharmacology activities
Anti-atherosclerosis
The compound 2,3,5,4ʹ-tetrahydroxystilbene-2-O-β-D-
glucoside (TSG) from the genus Reynoutria has a pro-
tective effect on vascular endothelium. In vitro, 50 or 100 
μM TSG could block the (transforming growth factor-β/
drosophila mothers against decapentaplegic protein) TGFβ/
Smad signal pathway and improve the endothelial dysfunc-
tion of umbilical veins caused by tumor necrosis factor α 
(TNF-α).[88] TSG (1 or 10 μmol/l) protected umbilical vein 
endothelium from LPS damage by inhibiting mitochondria-
dependent apoptotic pathway,[90] which also could ameliorate 
lysophosphatidylcholine (LPC)-induced umbilical vein endo-
thelial cell injury through ROS/p-JNK pathway,[91] and inhibit 
LPC-induced vascular endothelial growth factor (VEGF) and 
VEGF165mRNA expression.[92] TSG (1 × 10−5 mol/l) inhib-
ited vascular smooth muscle cell proliferation via the NO/
cyclic guanosine monophosphate/cGMP–dependent protein Ta
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kinase (NO/cGMP/PKG) pathway.[93] In vivo, TSG (100 
mg/kg/day) inhibited excessive autophagy in vascular tissue 
and improved microvascular endothelial dysfunction by 
activating the protein kinase B/mammalian target of the rapa-
mycin (Akt/mTOR) pathway.[94] In addition, studies showed 

that TSG (60 or 120 mg/kg/day) could restore endothelial di-
astole and remodel the aortic intima.[95] Meanwhile, emodin 
(20 or 40 mg/kg) could treat atherosclerosis through Janus 
kinase 2/Signal Transducer and Activator of Transcription 3 
(JAK2/STAT3) cell signal pathways.[96] Hyperlipidemia is also 

Figure 2 Distribution of genus Reynoutria in different regions of the world.

Figure 3 Structure of 2,3,5,4ʹ-tetrahydroxystilbene glucoside in the genus Reynoutria.
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Figure 4 Structure of resveratrol glucoside in the genus Reynoutria.

Figure 5 Structure of stilbene glycoside dimers in the genus Reynoutria.
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thought to be a cause of atherosclerosis. R. multiflora 70% 
ethanol extract (16.2 g/kg) was able to significantly reduce 
blood lipids.[97] Polydatin (50 or 100 mg/kg/day) could reduce 

total cholesterol (TC), triglyceride (TG), and low-density lip-
oprotein cholesterol (LDL-C) in hyperlipidemic rabbits[98] and 
high-fat/high-cholesterol-fed hamsters.[99]

Figure 6 Structure of anthraquinones, naphthoquinones, and benzoquinones in the genus Reynoutria.

Figure 7 Structure of dianthrones in the genus Reynoutria.
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Anti-inflammatory
In vitro, it was reported that TSG (50 μM) could achieve 
anti-inflammatory effects by reducing LPS-induced pro-
inflammatory cytokine release.[100] Crude extract of R. ja-
ponica and emodin (40 mg/kg) both inhibited chemotaxis 
through inhibition of the Mitogen-activated protein kinase/
extracellular regulated protein kinases(MEK/ERK) pathway, 
resulting in anti-inflammatory effects.[101] In addition, emodin 
(20 μg/mL) can reduce the activation of NF-κB in RAW264.7 
cells and achieve a good anti-inflammatory effect.[102] In vivo, 
10 μM polydatin could inhibit the NLRP3 inflammasome 
pathway and reactive oxygen species(ROS) production.[103] 
Meanwhile, TSG (60 mg/kg) significantly up-regulated per-
oxisome proliferators -activated receptors (PPAR)-γ and in-
hibited the NF-κB pathway, which could ameliorate acetic 
acid-induced colitis injury.[104] Chlorogenic acid (120 mg/
kg/day) could alleviate DSS-induced mucosal injury and 

reduce the expression of a series of inflammatory-related 
proteins, which was related to the MAPK/ERK/JNK signaling 
pathway.[105]

Anti-oxidative
TSG had good free radical scavenging ability and could at-
tenuate the (1-methyl-4-phenylpyridiniumion) MPP+-induced 
rise in ROS levels in PC12 cells to achieve antioxidant 
effects.[106] It produced antioxidant effects by modulating su-
peroxide dismutase (SOD)-3 and GST-4, which could improve 
the survival time of Caenorhabditis elegans.[7] Moreover, 50 
μM TSG could increase SOD and Glutathione peroxidase 
(GSH-Px) activities in serum and organs of galactose-aging 
rats; reduced 2-thiobarbituric acid content to achieve antiox-
idant effects.[7] Both polydatin and resveratrol (200 mg/kg) 
showed significant antioxidant activity.[107] R. multiflora acidic 
polysaccharides had good 2,2-diphenyl-1-picrylhydrazyl 
(DPPH) radical scavenging activity and anti-proliferative 
activity.[108] Likewise, R. multiflora polysaccharides also had 
high hydroxyl radical scavenging activity.[109]

Anti-cancer
It was shown that 50 μM emodin significantly inhibited the 
proliferation of RAW 264.7 cells through the Ca2+-STAT 
pathway.[110] Meanwhile, emodin and emodin-8-methyl ether 
inhibited the growth of human colon cancer cells by inhibiting 
Recombinant Cell Division Cycle Protein 25B (Cdc25B) 
phosphatase (IC50 = 62.5, 30, 34 μg/ml, respectively).[111] 
Whereas emodin-8-O-glucoside and physcion-8-O- gluco-
side possessed farnesyl protein transferase (FPTase)[60] (IC50 
= 46.3 and 28.2 µg/ml, respectively). What is noteworthy is 
that rhein could reverse the drug resistance in doxorubicin-
resistant SMMC-7721 cells, IC50 = 26.81 μM,[112] polydatin 
(6 μM) inhibited AMC-HN-8 and HeLa cells proliferation 
and induced apoptosis by inhibiting platelet-derived growth 
factor (PDGF)/AKT signal pathway,[113] and 80 or 120 μM 
chrysophanol suppressed the proliferation of SNU-C5 cells 
by inhibiting the overexpression of epidermal growth factor 
receptor(EGFR).[114] The extract of R. multiflora roots (100 
or 200 µg/ml) was able to inhibit MCF-7 cells and promote 
apoptosis.[115]

Neuroprotective
It has been shown that TSG (6.25–50 μM) could inhibit 
MPP+ cytotoxicity in SH-SY5Y cells by protecting mitochon-
drial function, and preventing caspase-3 activation.[116] And 
TSG (200 μM) could protect rat hippocampus neuron cells 
through phosphatidylinositol 3 kinase (PI3K)/Akt signal 
pathway and mitochondrial apoptotic pathways,[117] which 
also could prevent 6-OHDA-induced apoptosis in PC12 cells 
by regulating the ROS-NO signal pathway (10–50 μM)[118] 
and protect HT22 cells by suppressing glutamate-induced 
disruption of MMP and anion channel-1 (30–200 µg/ml).[119] 
The hexane extract of R. multiflora (0.1–10 µg/ml) may in-
hibit glutamate-induced apoptosis cortical neurons by 
inhibiting death receptor 4 (DR4) and caspase activation.[120] 
The water extract of R. multiflora (0.1–10 µg/ml) exerted a 
protective effect on hippocampal neurons by inhibiting brain-
derived neurotrophic factor (BDNF) expression and cyclic 
adenosine monophosphate (cAMP)-response element binding 
protein (CREB) phosphorylation.[121] Notably, emodin (10–40 
μM) could induce Neuro2a cell regeneration by activating 

Figure 8 Structure of chromones in the genus Reynoutria.

Figure 9 Structure of flavones in the genus Reynoutria.
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Figure 10 Structure of flavanones and isoflavone in the genus Reynoutria.

Figure 11 Structure of phenylpropanoids in the genus Reynoutria.
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the PI3K/Akt/GSK-3β-mediated signal pathway.[122] In vivo, 
ethanolic extract of R. multiflora (2 g/kg/day) improved 
cognitive dysfunction in diabetic rats by downregulating 
myosinlightchainkinase (MLCK) signaling expression.[123]

Alzheimer’s disease (AD) is the most common neurodegener-
ative disorder, characterized by progressive neuronal loss with 
amyloid β-peptide (Aβ) plaques. In vivo, TSG (120 and 240 
μmol/kg/d) not only prevented learning memory impairment 

Figure 12 Structure of phospholipids and lactones in the genus Reynoutria.

Figure 13 Structure of phenolics and phenolic acids in the genus Reynoutria.
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by preventing the elevation of Aβ levels and amyloid plaque 
formation but also treated learning memory impairment by 
breaking down amyloid plaques.[124] In particular, physcion-
8-O-β-glucoside (5–40 mg/kg/day) significantly enhanced 
learning memory in Aβ1-40-induced dementia rats.[125]

Parkinson’s disease (PD) is a progressive, age-related and 
neurodegenerative disorder characterized by tremors, rigidity 
and cognitive impairment. In vitro, TSG (0.1 to 10 μM) had 
a therapeutic effect on Parkinson’s via the PI3K/Akt signal 
pathway against MPP+-induced PC12 cell damage and ap-
optosis.[126] In vivo, TSG (20 mg/kg/day) was able to reduce 
MPTP-induced neurotoxicity in animal brains and treat 
Parkinson’s disease through BDNF-Tyrosine Kinase receptor 
B (TrkB) and Fibroblast growth factor 2 (FGF2)-Akt signal 
pathways.[127] Ethanolic extract of R. multiflora (400 or 800 
mg/kg/day) had significant therapeutic effects on Parkinson’s 
syndrome induced by a combination of paraquat and daidzein 
manganese.[128]

Ischemic brain injury
In vitro, hexane extract from R. multiflora (0.1–10 µg/ml) 
was found could prevent cerebral ischemic injury and signif-
icantly reduce infarct volume and neurological deficits.[129] 
Emodin (10–40 mM) reduced infarct size after focal ischemia 
by activating the PI3K/Akt survival pathway.[130] In vivo, TSG 
(120 mg/kg) was found to promote angiogenesis and recovery 
from ischemic brain injury by increasing microvessel density 
and upregulating the expression of CD31 in the brain,[131] 
which also inhibited c-Jun N-terminal kinase (JNK) and B-cell 
lymphoma-2(Bcl-2)-related apoptotic signal pathways while 
suppressing NF-κB activation and reducing inducible nitric 
oxide synthase (iNOS) gene expression to protect neuronal 
cells and reduce brain infarct volume (25 μM).[132] Notably, 
it also had a significant protective effect on brain injury in 
ischemia-reperfused mice (6 or 12 mg/kg), which ameliorated 
neuronal injury in the ischemic cortex and hippocampus by 
inhibiting NADPH oxidase 4 (NOX4), caspase-3(9), and 
Beclin 1 expression.[133] Moreover, polydatin (25, 50 mg/kg/
day) was effective in reducing oxygen and glucose deprivation 

(OGD) damage to cultured neurons and significantly reduced 
cognitive impairment.[134]

Memory improvement
TSG (42, 84 and 168 mg/kg) reduced serum levels of 
ROS, 2-thiobarbituric acid, NO and insulin-like growth 
factors-1 (IGF-1) and increased SOD and GSH-Px activity 
in D-galactose-induced senescent mice to improve memory 
capacity.[135] Subsequent studies indicated that it improved 
memory capacity in mice by regulating the ERK signal 
pathway[136] and the amyloid precursor protein (APP) signal 
pathway.[137] Otherwise, resveratrol (25, 50 and 100 mg/kg) 
significantly increased the activity and expression of antioxi-
dant enzymes and SOD to improve memory ability in mice.[138]

Anti-virus
Emodin (1–10µg/ml) inhibited the infectivity of S protein-
pseudotyped retroviruses on VeroE6 cells, which was a poten-
tial drug to treat coronavirus SARS.[10] Meanwhile, it inhibited 
transcription and expression of EBV lysis protein (1.1, 2.1 
and 4.2 μg/ml),[139] and inhibited Coxsackievirus B4 (CVB4)-
induced apoptosis both in vitro and in vivo (EC50 =12.06 
μM). Hereby, it could be used as a potential antiviral agent for 
CVB4 infection.[140] Both resveratrol and emodin were found 
could inhibit the growth of H3N2 and H1N1 strains and A/
WSN/33 (H1N1) influenza virus through the TLR9-MYD88-
IRF7 pathway (IC50 = 37.3 μM and 24.7 μM).[141] Resveratrol, 
(+)- catechin and emodin-8-O-β-D-glucoside showed an in-
hibitory effect on HIV-1-induced syncytium formation (EC50 
= 4.37, 14.4, 11.29 µg/ml, respectively).[142] In addition, res-
veratrol inhibited varicella-zoster virus (VZV) replication by 
limiting the synthesis of IE62 protein in a dose-dependent and 
reversible manner (EC50 =19 μM).[143] Of particular note is 
that resveratrol (50 µg/mL) could inhibit the replication of 
herpes simplex virus-1(HSV-1) and HSV-2 by reducing viral 
adherent cells and inhibiting virus reactivation.[144] It has been 
found experimentally that resveratrol inhibited duck enteritis 
virus replication by reducing several early viral proteins es-
sential for virus replication (IC50 = 3.85 µg/mL).[145]

Figure 14 Structure of fatty acids in the genus Reynoutria.
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Heart protection
TSG (0.4 mM) protected against PA-induced cardiomyocyte 
apoptosis by stimulating miR-129-3p-targeted inhibi-
tion of Smad3 signaling,[146] which also prevented overload 
stress-induced cardiac remodeling by reducing angiotensin 

II, decreasing TGF-β1 expression, inhibiting ERK 1/2 
and p38 MAPK (30, 60 and 120 mg/kg/day).[11] It is note-
worthy that resveratrol (5 or 50 mg/kg/day) remodeled the 
heart by enhancing the activity of AMPK and silencing in-
formation regulator 1(SIRT1) in the heart and cellular 

Figure 15 Structure of other compounds in the genus Reynoutria.
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Table 2 Chemical compounds isolated and identified from the genus Reynoutria

No Compounds From Part Ref.

2.1 Stilbenoids

2.1.1 2,3,5,4ʹ-Tetrahydroxystilbene and their glycosides

1. 2,3,5,4ʹ-Tetrahydroxystilbene-2-O-β-D-glucoside R1 P1 [21]

2. 2,3,5,4ʹ-Tetrahydroxystilbene-2-O-rhamnoside R1 P1 [22]

3. 2,3,5,4ʹ-Tetrahydroxystilbene-2-O-xyloside R1 P1 [23]

4. 2,3,5,4ʹ-Tetrahydroxidene-2,3-di-O-glucoside R1 P1 [24]

5. 2,3,5,4ʹ-Tetrahydroxystilbene-2,4ʹ-O-glucoside R1 P1 [25]

6. 2,3,5,4ʹ-Tetrahydroxystilbene-2-O-β-D-glucopyransoyl-5-O-α-D-glucoside R1 P1 [25]

7. 2,3,5,4ʹ-Tetrahydroxystilbene-2-O-(2″-O-acetyl)-β-D-glucoside R1 P4 [26]

8. 2,3,5,4ʹ-Tetrahydroxystilbene-2-O-(2″-O-galloyl)-β-D-glucoside R1 P1 [27]

9. 2,3,5,4ʹ-Tetrahydroxystilbene-2-O-(2″-O-feruloyl)-β-D-glucoside R1 P4 [28]

10. 2,3,5,4ʹ-Tetrahydroxystilbene-2-O-(2″-O-coumaryl)-β-D-glucoside R1 P4 [28]

11. 2,3,5,4ʹ-Tetrahydroxystilbene-2-O-(2″-O-p-hydroxybenzoyl)-β-D-glucoside R1 P1 [29]

12. 2,3,5,4ʹ-Tetrahydroxysterene-2-O-(2″-O-β-D-fructose)-β-D-glucoside R1 P1 [25]

13. 2,3,5,4ʹ-Tetrahydroxystilbene-2-O-(6″-O-acetyl)-β-D-glucoside R1 P1 [29]

14. 2,3,5,4ʹ-Tetrahydroxystilbene-2-O-(6″-O-galloyl)-β-D-glucoside R1 P1 [27]

15. 2,3,5,4ʹ-Tetrahydroxystilbene-2-glucosyl-(1→6)-β-D-glucoside R1 P4 [26]

16. 2,3,5,4ʹ-Tetrahydroxystilbene-2-O-(3“-O-galloyl)-β-D-glucoside R1 P1 [27]

17. 2,3,5,4ʹ-Tetrahydroxystilbene-2-glucosyl-(1→4)-β-D-glucoside R1 P1 [25]

18. cis-2,3,5,4ʹ-tetrahydroxysterene-2-O-glucoside R1 P1 [22]

19. cis-2,3,5,4ʹ-Tetrahydroxystilbene-2-glucosyl-(1 → 6)-β-D-glucoside R1 P1 [30]

2.1.2 resveratrol and their glycosides

20. Resveratrol R1 P1 [31]

R2 P1 [32]

R3 P1 [33]

21. Resveratrol-4ʹ-O-β-D-glucoside
(resveratroloside)

R1 P1 [34]

R3 P1 [16]

22. Resveratrol-3-O-β-D-glucoside (polydatin) R1 P1 [31]

R2 P1 [32]

R3 P1 [33]

23. Resveratrol-3-O-β-D-(2″-O-galloyl)-glucoside R1 P1 [31]

R2 P1 [32]

24. Resveratrol-3-O-β-D-3-(2″-O-cinnamoyl)-glucoside R2 P1 [32]

25. Resveratrol-4ʹ-O-β-D-(2″-O-galloyl)-glucopyranoside R3 P1 [35]

26. resveratrol-4ʹ-O-β-D-(6″-O-galloyl)-glucopyranoside R3 P1 [35]

27. Rhapontin R1 P3 [36]

28. Isorhapontigenin R1 P1 [37]

29. Piceatannol R1 P1 [37]

30. Piceatannol glucoside R3 P1 [38]

31. trans-Stilbene glycoside sulfate 1 R3 P1 [39]

32. trans-Stilbene glycoside sulfate 2 R3 P1 [39]

33. trans-Stilbene glycoside sulfate 3 R3 P1 [39]

34. trans-Stilbene glycoside sulfate 4 R3 P1 [39]

35. trans-Stilbene glycoside sulfate 5 R3 P1 [39]

36. cis-Stilbene glycoside sulfate 1 R3 P1 [39]

37. cis-Stilbene glycoside sulfate 2 R3 P1 [39]

38. cis-Stilbene glycoside sulfate 3 R3 P1 [39]

39. cis-Stilbene glycoside sulfate 4 R3 P1 [39]

40. cis-Stilbene glycoside sulfate 5 R3 P1 [39]

2.1.3 2,4,6,4ʹ-Tetrahydroxystilbene glucoside

41. 2,4,6,4ʹ-Tetrahydroxystilbene-2-O-β-glucoside R1 P1 [40]
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2.1.4 Stilbene glycoside dimers

42. Multifloraiside A R1 P1 [41]

43. Multifloraiside B R1 P1 [41]

44. Multifloraiside C R1 P1 [41]

45. Multifloraiside D R1 P1 [41]

46. Multifloraiside E R1 P1 [41]

47. Multifloraiside F R1 P1 [41]

48. Multifloraiside G R1 P1 [41]

49. M ultifloraiside H R1 P1 [42]

50. Multifloraiside I R1 P1 [42]

51. Multifloraiside J R1 P1 [42]

52. Multifloraiside K R1 P1 [42]

53. Polygonumoside A R1 P4 [43]

54. Polygonumoside B R1 P4 [43]

55. Polygonumoside C R1 P4 [43]

56. Polygonumoside D R1 P4 [43]

57. Polygonumnolide D R1 P1 [44]

58. Polygonflavanol A R1 P1 [45]

2.2 Quinones

2.2.1 Anthraquinones

59. Chrysophanol R1 P1 [29]

R2 P1 [46]

R3 P1 [47]

60. Chrysophanol-8-O-glucoside R1 P1 [48]

R3 P1 [49]

61. Emodin R1 P1 [50]

R2 P1 [32]

R3 P1 [33]

62. Emodin-8-O-β-D-glucoside
(anthraglycoside B)

R1 P1 [27]

R2 P1 [46]

R3 P1 [33]

R4 P5 [51]

63. Emodin-1-O-β-D-glucoside R1 P1 [6]

64. Emodin-8-O-(6ʹ-O-acetyl)-glucoside R1 P1 [52]

65. Emodin-8-O-(6ʹ-O-malonyl)-glucoside(emoghrelin) R1 P1 [53]

66. Emodin-8-O-(6ʹ-propionyl)-glucoside R1 P1 [54]

67. Emodin-3-ether R1 P1 [55]

68. ω-Hydroxy emodin
(citreorosein)

R1 P1 [29]

R2 P1 [32]

R3 P1 [56]

69. ω-Hydroxy emodin-8 methyl ether
(questinol)

R1 P1 [57]

R3 P1 [58]

70. Emodin-1-methyl ether R1 P1 [57]

71. Emodin-6,8-dimethyl ether R1 P1 [52]

72. 2-Acetyl emodin R1 P1 [29]

73. Emodin-1,6-dimethyl ether R1 P1 [29]

74. Physcion R1 P1 [27]

R2 P1 [59]

R3 P1 [33]

75. Physcion-8-O-β-D-glucoside
(anthraglycoside A)

R1 P1 [60]

R2 P1 [46]

R3 P1 [56]

Table 2. Continued
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76. Physcion-8-O-(6ʹ-O-acetyl)-glucoside R1 P1 [61]

77. Rhein R1 P1 [62]

R2 P1 [46]

R3 P5 [63]

78. Aloe-emodin R1 P1 [29]

R3 P5 [63]

79. Aloe-emodin-8-O-glucoside R1 P1 [31]

80. Fallacinol R1 P1 [52]

R3 P1 [33]

81. Digitolutein R1 P1 [64]

82. Polyganin A R3 P1 [65]

83. Polyganin B R3 P1 [65]

84. Xanthorin R3 P1 [66]

85. Isorhodoptilometrin R3 P1 [66]

2.2.2 Naphthoquinones

86. 2-Methoxy-6-acety1-7-methy1-juglone R1 P1 [67]

R3 P1 [58]

87. 6-Methoxyl-2-acetyl-3methyl-1,4-naphthoquinone-8-O-β-D-glucoside R1 P1 [28]

88. 7-Acetyl-2-methoxy-6-methyl- 8-hydroxyl-1, 4-naphthoquinone R3 P1 [68]

89. 6-Acetyl-2-methoxy-5-hydroxy-7-methyl-1,4-naphthoquinone R3 P1 [66]

90. 6-Acetyl-5,8-dihydroxy-2-methoxy-7-methyl-1,4-naphthoquinone R3 P1 [66]

91. Cuspidatumin C R3 P1 [66]

92. 3-Acetyl-5-hydroxy-7-methoxy-2-methyl-1,4-naphthoquinone R3 P1 [66]

93. cuspidatumin A R3 P1 [68]

2.2.3 Benzoquinones

94. Phylloquinone B R3 P1 [69]

95. Phylloquinone C R3 P1 [69]

2.2.4 Di-anthraquinones

96. Polygonumnolide A1 R1 P1 [70]

97. Polygonumnolide A2 R1 P1 [70]

98. Polygonumnolide A3 R1 P1 [70]

99. Polygonumnolide A4 R1 P1 [70]

100. Polygonumnolide B1 R1 P1 [70]

101. Polygonumnolide B2 R1 P1 [70]

102. Polygonumnolide B3 R1 P1 [70]

103. Polygonumnolide C1 R1 P1 [71]

104. Polygonumnolide C2 R1 P1 [71]

105. Polygonumnolide C3 R1 P1 [71]

106. Polygonumnolide C4 R1 P1 [71]

107. Polygonumnolide E R1 P4 [44]

108. trans-Emodin dianthrones R1 P1 [71]

109. cis-Emodin dianthrones R1 P1 [71]

2.3 Flavonoids

2.3.1 Chromones

110. Noreugenin R1 P3 [36]

111. 2,5-Dimethyl-7-hydroxychromone R1 P1 [67]

R2 P1 [46]

R3 P1 [58]

112. 2-(2ʹ-Hydroxypropyl)-5-methylchromogenketone-7-O-β-D-glucopyranoside R1 P1 [67]

113. (s)-2-(2-hydroxypropyl)-5-methyl-7-hydroxychromogenketone-7-O-α-L-fucosyl (1→2)-β-D-
glucoside

R1 P1 [4]

114. 5-Carboxymethyl -7-hydroxy-2-methyl chromone R1 P1 [48]

R2 P1 [46]

Table 2. Continued
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115. 2-Methyl-5-hydroxymethyl-7-hydroxychromone R2 P1 [46]

116.  2-Methyl-5-methylcarboxymethyl-7-hydroxychromone R2 P1 [46]

117. 2-Methyl-5-carboxylicacid-7-hydroxy-chromone R2 P1 [46]

118. 2-(2ʹ-Hydroxypropyl)-5-methyl-7-hydroxychromone R1 P2 [72]

119. 2,5-Dimethyl-7-hydroxy-chromone-7-O-β-D-glucopyranoside R1 P2 [72]

R2 P1 [46]

120. Noreugenin-7-O-β-D-glucopyranoside R1 P2 [72]

121. Polygonumoside E R1 P1 [67]

122. Polygonimitin B R1 P1 [24]

2.3.2 Flavones

123. Tricin R1 P1 [67]

124. Apigenin R3 P5 [63]

125. Tricin-7-O-β-D-glucoside R1 P4 [5]

126. Vitexin R1 P3 [36]

127. Isoorientin R1 P1 [73]

128. Kaempferol R1 P1 [29]

R3 P1 [47]

129. Quercetin R1 P1 [31]

R3 P5 [63]

R4 P5 [51]

130. Isoquercetin (querctin-3-O-β-D-glucopyranoside) R3 P1 [66]

R4 P5 [51]

131. Hyperoside R1 P3 [36]

P1 [74]

R3 P1 [66]

132. Rutin R1 P3 [36]

R3 P5 [63]

133. Quercetin-3-O-β-D-arabinosidey R1 P1 [74]

R3 P1 [68]

134. Querctin-3-O-β-D-rhamnoside R3 P1 [66]

135. Querctin-3-O-β-D-xyloside (reynoutrin) R3 P1 [66]

136. Icaritin R1 P1 [6]

137. Kaempferitrin R2 P1 [6]

138. Annulatin-3ʹ-O-β-D-xyloside R2 P1 [6]

139. Luteolin-7-O-glucoside R3 P1 [66]

2.3.3 Flavanones

140. (+)-Catechin (C) R1 P1 [75]

R3 P1 [69]

R4 P3 [76]

R5 P3 [76]

141. (+)-Catechin-5-O-β-D-glucopyranoside R3 P1 [77]

142. Epicatechin (EC) R1 P1 [75]

R3 P1 [47]

R4 P3 [76]

R5 P3 [76]

143. Gallocatechin(GC) R1 P1 [75]

144. Epigallocatechin (EGC) R1 P1 [75]

145. Catechin gallic acid (CG) R1 P1 [75]

146. Epicatechin gallate (ECG) R1 P1 [75]

R4 P3 [76]

R5 P3 [76]

147. Gallocatechin gallate (GCG) R1 P1 [75]

148. Epigallocatechin gallate (EGCG) R1 P1 [75]

Table 2. Continued
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149. Proanthocyanidin R1 P1 [78]

150. Proanthocyanidin B1 R1 P1 [78]

R4 P3 [76]

151. Proanthocyanidin B2 R1 P1 [78]

R4 P3 [76]

R5 P3 [76]

152. Proanthocyanidin C1 R4 P3 [76]

153. 3-O-galloyl-procyanidin B-2 R1 P1 [79]

154. 3,3ʹ-di-O-galloyl-procyanidin B-2 R1 P1 [79]

155. Polygonflavanol A R1 P1 [45]

2.3.4 Isoflavone

156. Genistin R1 P2 [72]

R3 P5 [63]

2.3.5 Flavonone

157. Hesperetin R3 P5 [63]

2.4 Phenylpropanoids

2.4.1 Simple phenylpropanoids

158. Caffeic acid R1 P2 [72]

R3 P1 [69]

159. Piscidic acid R2 P1 [6]

160. Ferulic acid R3 P1 [69]

161. Chlorogenic acid R3 P1 [69]

162. 2-Methyl-(4-hydroxybenzyl)-tartrate R2 P1 [6]

163. 2-Monobutyl-(4-hydroxybenzyl)-tartrate R2 P1 [6]

164. Vanicosides A R4 P6 [80]

165. Vanicosides B R4 P6 [80]

166. 1,2-Propanediol-1-(4-hydroxy-phenyl) R1 P1 [30]

2.4.2 Coumarins

167. Coumarin R3 P1 [68]

168. 7-Hydroxy- 4-methoxy-5-methylcoumarin R3 P1 [58]

169. 7-Hydroxy-4-methylcoumarin-5-O-glucoside R1 P1 [28]

170. 7-Hydroxy-3,4-dim-methyl-coumarin-5-O-glucososide R1 P1 [28]

171. Polyisocoumarin R3 P1 [81]

2.4.3 Lignans

172. Schizandrin R1 P4 [82]

173. Isolariciresinol R2 P1 [46]

174. 5-[4-(3, 4-dimethoxyphenyl)-2,3-dimethylbutyl]-1,3-benzodioxole R2 P1 [46]

175. Isolariciresinol-9-O-β-D-xylopyranoside R2 P1 [46]

176. (+)-Lyoniresinol-3-α-O-β-D-glucopyranoside R1 P1 [30]

177. Sodium(−)-lyoniresinol-2a-sulfate R3 P1 [77]

178. Sodium(+)-isolaricireinol-2a-sulfate R3 P1 [77]

2.5 Phospholipids

179. Phosphatidylcholine (PC) R1 P4 [82]

180. Phosphatidylethanolamine (PE) R1 P1 [83]

181. Phosphatidylglycerol (PG) R1 P1 [83]

182. Phosphatidylinositol (PI) R1 P1 [83]

183. Iysophosphatidylcholine (LPC) R1 P1 [84]

184. Phosphatidylserine R1 P1 [84]

185. 1-O-Stearoyl-2-O-Δ4ʹ,7ʹ-dodecenoyl-3-O-phosphatidicacid-O-β-D-glucoside R1 P4 [28]

186. 1-O-stearoyl-2-O-Δ4ʹ,7ʹ-dodecenoyl-3-O-phosphatidicacid-O-(6″-O-α-D-
2-glucose)-β-D-glucoside

R1 P4 [28]

187. Phosphatidic acid R1 P1 [83]

Table 2. Continued
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2.6 Lactones

188. 5,7-Dihydroxy-isobenzofuran R2
R3

P1
P1

[46]

[56]

189. 5-Methoxy-7-hydroxy-isobenzofuran R2 P1 [46]

190. 5-Methoxy-isobenzofuran-7-O-β-D-glucoside R2 P1 [46]

191. Polyphthaliside A R3 P1 [81]

192. Polyphthaliside B R3 P1 [81]

193. Ambrettolide R3 P1 [68]

194. 4,8,12,16-Tetramethylheptadecan-4-olide R1 P4 [85]

195. cis-E-3-butylidene-4,5,6,7-tetrahydro-6,7-dihydroxy-l(3H)-isobenzofuranone R1 P1 [40]

196. trans-E-3-butylidene-4,5,6,7-tetrahydro-6,7-dihydroxy-l(3H)-isobenzofuranone R1 P1 [40]

2.7 Phenolics and phenolic acids

2.7.1 Phenolics

197. 1,4-Benzenediol R1 P4 [57]

198. Tachioside R3 P1 [69]

199. Isotachioside R3 P1 [69]

200. 2,6-Dimethoxy-phydroquinone-1-O-β-D-glucopyranoside R3 P1 [66]

201. 4-Hydroxyacetophenone R3 P5 [63]

202. 5,7-Dihydroxyisobenzofuran R3 P1 [56]

203. 2-(Hydroxymethyl)-6-(3-methoxy-4-methylphenoxy)tetrahydro-2H-
pyran-3,4,5-triol

R1 P1 [86]

204. 1-(3-O-β-D-glucopyranosyl-4,5-dihydroxy-phenyl)-acetophenone R3 P1 [69]

205. 2,5-Diacethylhy-droquinone R2 P1 [46]

206. p-Hydroxybenzaldehyde R1 P4 [57]

207. 2,3,4,6-Tetrahydroxyacetophenone-3-O-β-D-glucoside R1 P1 [74]

208. Pyrogallol R1 P1 [67]

209. Methylgallate R1 P1 [54]

210. Torachrysone R3 P1 [66]

211. Torachrysone-8-O-β-D-glucoside R2 P1 [6]

R3 P1 [69]

212. Torachrysone-8-O-(6ʹ-galloyl)-β-D-glucoside R2 P1 [6]

213. Torachrysone-8-O-(6ʹ-O-acetyl)-β-D-glucoside R2 P1 [32]

R3 P1 [69]

214. 6-Hydroxymusizin-8-O-β-D-glucoside R2 P1 [32]

215. Thunberginol C-6-O-β-D-glucopyranoside R1 P1 [30]

216. 5,6,7,8-Tetrahydro-2,5-dimethyl-8-(1-methyl-ethyl)-l-naphthalenol R1 P4 [85]

2.7.2 Phenolic acids

217. Gallic acid R1 P4 [87]

R2 P1 [6]

R3 P1 [69]

218. Protocatechuic acid R3 P1 [68]

219. 2,6-Dihydroxy-benzoic acid R1 P1 [30]

2.8 Fatty acids

220. Succinic acid R2 P1 [6]

221. Hexanoic acid R1 P4 [85]

222. Palmitic acid R3 P1 [69]

223. Stearic acid R3 P1 [69]

224. Arachidonic acid R3 P1 [69]

225. Nonanoic acid,9-oxo,methyl ester R1 P4 [85]

226. Hexadecaroic acid methyl ester R1 P4 [85]

227. Heptadecanoic acid methyl ester R1 P4 [85]

228. Octadecanoic acid methyl ester R1 P4 [85]

229. Docosanoic acid methyl ester R1 P4 [85]
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No Compounds From Part Ref.

230. 10-octadecenoic acid methyl ester R1 P4 [85]

231. Tetradecanoic acid ethyl ester R1 P4 [85]

232. Hexadecanoic acid ethyl ester R1 P4 [85]

233. Heptadecanoic acid ethyl ester R1 P4 [85]

234. Octadecanoic acid ethyl ester R1 P4 [85]

235. Acetic acid octadecyl ester R1 P4 [85]

236. 9,11-Octadecadienoic acid methly ester R1 P4 [85]

237. (Z,Z,Z)-9,12,15-octadecatrienoic acid methyl ester R1 P4 [85]

238. Ethyl oleate R1 P4 [85]

2.9 Saccharides

239. α-D-glucose R2 P1 [6]

240. Inotodisaccharide R2 P1 [6]

241. n-Butyl-β-D-fructopyranoside R2 P1 [6]

2.10 Polyols

242. Erythritol R2 P1 [6]

243. D-mannitol R3 P1 [47]

244. Citricn acid R3 P1 [47]

245. (1S,2R,3R,4S)-4-(hydroxymethyl)-4-pentylcyclopentane-1,2,3-triol R1 P1 [27]

2.11 Steroids

246. β-Sitosterol R2 P1 [6]

R3 P5 [63]

247. Daucosterol R2 P1 [6]

R3 P5 [63]

R4 P5 [51]

248. Dammaran-3β-ol R4 P5 [51]

249. Campesterol R4 P5 [51]

250. Ergosterol peroxide R4 P5 [51]

2.12 Terpenoids

251. β-Amyrin R1 P3 [36]

R4 P5 [51]

252. Oleanolic acid R3 P1 [68]

253. 1,2,3,4,4a,5,6,8a-Octahydro-7-methyl-4-methyl naphthalene R1 P4 [85]

254. 1,8-Dimethyl-4-(1-melthylethenyl)-spiroene R1 P4 [85]

255. 3,7,7-Trimethyl-11-methylenespiro[5.5]undec-2-ene R1 P4 [85]

256. Copaene R1 P4 [85]

2.13 Alkaloids

257. Pyrrolezanthine-6-monobutyl-ether R2 P1 [6]

258. Indole-3-(L-α-amino-a-hydroxypropionic acid) -methyl ester R1 P1 [30]

259. Polygonimitin A R1 P1 [30]

260. n-Trans-feruloyl tyramine R1 P1 [67]

261. n-Trans-feruloyl-3’-O-methyldopamine R1 P1 [62]

262. (E)-2-(4-hydroxy-3-methoxyphenyl)-3-[N-2-(4-hydroxyphenyl)ethyl]carbamoyl-5-
[N-2-(4-hydroxyphenyl)ethyl]carbamoylethenyl-7-methoxybenzofuran

R1 P1 [88]]89]

2.14 Miscellaneous compounds

263. 2,3-Dihydro-3,5-dihydroxy-6-methyl-4-H-pyranone(DDMP) R1 P4 [57]

264. 5-Hydroxymaltol R1 P4 [57]

265. Zanthopyranone R2 P1 [46]

266. 5-Hydroxymethyl-furfura R1 P4 [57]

267. l-Chloro-4-mitro-benzene R1 P4 [85]

268. (E,E)-2,4-decedienal R1 P4 [85]

269. 2-Ethyl-2-hexenlol R1 P4 [85]

270. 6,10,14-Trimethyl-2-pentadecanone R1 P4 [85]

271. Squalene R1 P4 [85]
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autophagy.[147] Polydatin (100, 200 mg/kg/day) significantly 
limited the infarct size through activation of protein kinase 
C-ATP-sensitive potassium channel (PKC-KATP)-dependent 
signaling and anti-oxidative stress mechanisms,[148] which 
also had an attenuating effect on ventricular remodeling.[149] 
In vivo and vitro, TSG inhibited the production of reactive 
oxygen species and elevated Bcl-2 protein levels to protect the 
heart from doxorubicin (DOX)-induced effects.[150] A study 
has shown that resveratrol at lower doses still ensured the 
survival of cardiomyocytes through autophagy of the mTOR-
Rictor pathway (0.1 and 1 mM in cells and 2.5 mg/kg/day in 
rats).[151]

Liver protection
In vitro, emodin (20–160 μM) protected against hepato-
cyte apoptosis by inhibiting the PI3K/AKT/mTOR signal 
pathway.[152] In vivo, polydatin (50 or 100 mg/kg) inhibited 
liver tissue inflammation in carbon tetrachloride injured 
mice by lowering alanine aminotransferase (ALT) and as-
partate aminotransferase (AST) and restoring the balance of 
antioxidants in liver tissue.[153] Meanwhile, polydatin (6.25, 
12.5 and 25 µg/ml) reduced the expression of genes related 
to alcohol and lipid metabolism and inhibited oxidative stress 
in the liver. Notably, it significantly upregulated the expres-
sion of DNA damage-related genes to reduce hepatocyte ap-
optosis,[154] and attenuate nonalcoholic fatty liver disease (30 
or 90 mg/kg) by reducing the expression of SREBP-1c and 
genes involved in adipogenesis, including fatty acid synthase 
(FAS) and stearoyl-CoA desaturase 1 (SCD1),.[155] TSG (100 
or 300 mg/kg) significantly reduced CCl4-induced liver in-
jury in rats by inhibiting Smad and ERK signal pathways,[156] 
which also protected the liver from injury by inducing he-
patic autophagic cell death by activating PI3K/Akt and Erk 
pathways (100 or 200 mg/kg).[157]

Anti-bacterial
Emodin (10 µg/ml) significantly inhibited the growth and in-
fection of Vibrio traumaticus and the combination with other 
antibiotics may help patients to treat Vibrio traumaticus 
sepsis.[158] Resveratrol was found to have a minimum inhibi-
tory concentration (MIC) of 50 μg/ml against Mycobacterium 
avium wax,[159] the MIC against Mycobacterium pubescens 
was 64 μg/ml,[160] H. pylori was 25 μg/ml,[161] Vibrio cholerae 
was 60 μg/ml,[162] Campylobacter coli was 50 μg/ml,[163] and 
Lactic acid bacteria was 50 μg/ml.[164]

Anti-fungal
Emodin inhibited phosphorylation induced by the protein ki-
nase CK2 and showed resistance to Candida with MIC and 

minimal fungicidal concentration (MFC) values between 
12.5 and 200 μg/ml. Notably, even at low concentrations, 
it was effective in preventing the formation of myce-
lium.[165] Resveratrol had a toxic effect on dormant gray 
mold conidia.[166] The inhibitory activity of resveratrol 
against Trichophyton rubrum, Trichophyton flocculentum 
epidermidis, and Microsporum gypsum was about 25–50 μg/
ml,[167] against Candida albicans, Saccharomyces cerevisiae 
and Serratia marcescens was 10–20 μg/ml.[168]

Hyperglycemia
Proanthocyanidins isolated from R. multiflora were found 
to display potent α-amylase and moderate α-glucosidase in-
hibitory activity with an acarbose equivalence (AE) value of 
1,954.7 µmol AE/g and 211.1 µmol AE/g, respectively.[169] 
Cis-TSG was more effective than trans-TSG in terms of hy-
poglycemic effect and improvement of glucose intolerance 
and insulin resistance. In HepG2 cells, cis-THSG also showed 
stronger Phosphoenolpyruvate carboxykinase (PEPCK) 
transcriptional repression to reduce blood glucose than 
trans-THSG.[170]

Obesity
R. multiflora extract (0.46 mg/ml) had a strong inhibitory ef-
fect on fatty acid synthase FAS can be used to prevent obe-
sity.[171] Meanwhile, R. multiflora root ethanol extract (5 or 
10 μg/ml) prevented obesity by inhibiting adipocyte differ-
entiation in 3T3-L1 cells and stimulating the expression of 
genes for lipolysis and fatty acid oxidation and brown fat-
specific genes in white adipose tissue.[172]

Bone protection
TSG (10−3, 10−4and 10−5 mg/ml) treated osteoporosis by 
activating the PI3K/Akt pathway, which promotes prolifer-
ation and differentiation of MC3T3-E1 cells.[173] Similarly, 
trans-resveratrol (0.7 mg/kg) increased epiphyseal bone den-
sity and inhibited the decrease of bone calcium content in 
bilateral ovariectomies (OVX) rats, which had a protective 
effect against estrogen deficiency-induced bone loss.[174]

Promotes hair growth
In vitro, R. multiflora extract (10 or 100 μg/ml) could promote 
hair growth by prolonging the initial phase of hair growth and 
activating follicle stem cells to delay hair degeneration.[175] It 
was found that R. multiflora water extract (0.01 mg/ml) was 
able to reduce the accumulation of ROS in cells, protect cells 
from hydrogen peroxide and improve pigmentation of iso-
lated human hair follicles.[176] Studies showed that fermented 
water extract of R. multiflora leaves (4.7 mg/12 cm2) could 

No Compounds From Part Ref.

272. dodecane R1 P2 [72]

273. Tridecane R1 P2 [72]

274. Tetradecane R1 P2 [72]

275. Eicoeane R1 P4 [85]

276. 1-Decanol R4 P5 [51]

277. 1,2-Dihydroxy nonadecone -3 R1 P4 [85]

R1: R. multiflora; R2: R. ciliinervis; R3: R. japonica; R4: R. sachalinensis; R5: Reynoutria × bohemica
P1: Tuberous roots; P2: stems; P3: leaves; P4: processed roots; P5: flowers; P6: rhizomes
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induce hair growth in resting hair follicles by upregulating 
Shh and β-catenin expression.[177] Meanwhile, TSG (200 μM) 
had a good hair regrowth effect on hair loss, which may be 
achieved by inhibiting p53, Fas, and Bcl2-Associated X (Bax)-
induced apoptosis.[178]

Toxicity
Chrysophanol-8-O-glucoside had strong hepatotoxicity 
which can increase LDH leakage and ROS, and decrease 
GSH and MMP in L-02 hepatocytes.[179] In vitro neurotox-
icity experiments showed that R. japonica water extract 
(300 and 400 μg/ml) had general toxicity and neurotoxicity 
on hippocampal neurons and astrocyte cells, respectively.[180] 
Experimental evidence indicated that in the setting of hepatic 
immune activation, cis-2,3,5,4ʹ-tetrahydroxystilbene-2-O-β-
D-glucoside was a key factor in the pathogenesis of the id-
iosyncratic hepatotoxicity of R. multiflora.[181] In addition, 
Aloe-emodin could cause zebrafish liver lesions by increasing 
the mRNA and protein expression levels of pro-inflammatory 
and pro-apoptotic targets in NF-κB and P53 pathways and 
pathological sections.[182] All the pharmacological effects of 
this genus are summarized in Supplementary Table S1.

Discussion and Further Perceptives
This review summarized current research development re-
garding the traditional uses, phytochemistry and pharma-
cology of genus Reynoutria. More than 277 compounds have 
been isolated and identified from this genus. Meanwhile, 
modern pharmacological research revealed Reynoutria 
plants have significant pharmacological properties including 
anti-cancer, anti-atherosclerotic, anti-inflammatory and 
neuroprotective. Regardless, there are still several aspects that 
need to be concerned about the further development of the 
genus Reynoutria.

First, Fallopia multiflora and Fallopia multiflora var. 
ciliinerve have been now reclassified as a member of the 
genus Reynoutria, just as R. japonica was divided from the 
genus Fallopia to the genus Reynoutria. Now, they were 
formally called Reynoutria multiflora (thumb.) Moldenke 
and Reynoutria ciliinervis (Nakai) Moldenke, respectively. 
However, in Asian countries such as China, they are still 
regarded as Fallopia plants, which is urgent to be corrected.

Second, the current phytochemical studies on the genus 
Reynoutria focus on R. multiflora and R. japonica. Other 
Reynoutria plants are regarded as invasive plants in Europe 
and America, and their phytochemical and biological activi-
ties have not yet been comprehensively investigated.

Third, 277 compounds have been reported from genus 
the Reynoutria, including 58 stilbenoids, 51 quinones, 
48 flavonoids, 21 phenylpropanoids, 9 phospholipids, 9 
lactones, 23 phenolics and phenolic acids, 19 fatty acids, and 
39 other compounds. Among them, stilbenoids are the main 
active compounds, which have a variety of pharmacology 
activities. 2,3,5,4ʹ-tetrahydroxystilbene-2-O-β-D-glucoside 
showed excellent activity in anti-aging, anti-inflammatory, 
hepatoprotective and free radical scavenging.[183] Resveratrol 
has significant anti-infective, antiviral, and cardiovascular 
protective effects.[184] More stilbenoids with various activities 
need to be found in this genus. Of course, it cannot be ignored 
that monomeric compounds with outstanding pharmacolog-
ical activities can be considered the source of new drugs with 
excellent therapeutic effects.

Finally, Reynoutria plants were widely used in the treat-
ment of chronic hepatopathy, but it was noteworthy that they 
were reported to have hepatotoxicity as well. For instance, 
pang et al found that the high dosage of R. multiflora had 
either an injuring effect on normal rats or a therapeutic ef-
fect on the rats with chronic liver injury.[185] Therefore, it is 
still necessary to further study the material basis and mech-
anism of hepatotoxicity to provide a scientific basis for clin-
ical medication.

Conclusion
Reynoutria is a genus in the family Polygonaceae, many 
species of which have been used in traditional Chinese 
medicines or folk medicines to treat various diseases. This 
review summarized all the compounds of genus Reynoutria, 
including stilbenoids, quinones, flavonoids and so on. 
Stilbenoids and quinones were generally considered major bi-
oactive ingredients in Reynoutria, exhibiting various impor-
tant qualities. In addition, pharmacological studies showed 
that compounds and extracts isolated from Reynoutria 
plants possess a wide range of pharmacological activities, 
such as anti-cancer, anti-atherosclerotic, anti-inflammatory 
and neuroprotective. In short, as a source of traditional folk 
medicine, Reynoutria plants are widely used in medicine. 
Therefore, we believe it’s necessary to review this genus, 
which will help to gain a greater understanding and appreci-
ation of genus Reynoutria.
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