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Research in virology has usually focused on one selected 
host–virus pathosystem to examine the mechanisms 
underlying a particular disease. However, as exemplified 
by the mechanistically versatile suppression of antiviral 
RNA silencing by plant viruses, there may be functionally 
convergent evolution. Assuming this is a widespread fea-
ture, we propose that effector proteins from diverse plant 
viruses can be a powerful resource for discovering new 
regulatory mechanisms of distinct cellular pathways. The 
efficiency of this approach will depend on how deeply 
and widely the studied pathway is integrated into viral in-
fections. Beyond this, comparative studies using broad 
virus diversity should increase our global understanding 
of plant–virus interactions.

Viruses represent the most numerous and diverse organismal 
group defined to date (Culley et al., 2007; Paez-Espino et al., 
2017) and there are multiple hypotheses speculating that 
viruses contributed to the origin of cellular life and have a 
longstanding co-evolutionary history with higher life forms 
(Durzyńska and Goździcka-Józefiak, 2015; Moreira and 
López-García, 2015). It is a reasonable assumption that a mu-
tualistic relationship would be the most desired outcome of 
the tight co-evolutionary relationship between host and virus. 
While the majority of viruses, including those existing in 
plants, do not cause disease and are speculated to have a non-
harmfull relationship with their host plants (Roossinck, 2005, 
2015), the scientific literature is clearly dominated by the 
pathogenic viruses that cause diseases of economic import-
ance (Scholthof et al., 2011). There can be diverse strategies 
that viruses utilize for pathogenicity, the ability of the virus 
to cause a disease in its host. Several factors such as horizontal 
transmission by animal vectors and use of multiple plant spe-
cies as hosts influence the fitness of the virus in the host popu-
lation (Froissart et al., 2010; Acosta-Leal et al., 2011; Lancaster 
and Pfeiffer, 2012; Márquez and Roossinck, 2012). Indeed the 

ecological prerequisites driving expansion and diversification 
of viruses are complex.

Convergent evolution of viral effector 
functions

Most, if not all, pathogens have acquired proteins with effector 
functions, which are defined by their capacity to manipulate 
host immune responses and resources for the benefit of infec-
tion (Mandadi and Scholthof, 2013). Plant viruses have strong 
potential for rapid evolution (Duffy et  al., 2008; Acosta-Leal 
et  al., 2011), driving diversification and the establishment of 
immense sequence variability. Importantly, plant viruses seem 
to acquire effector functions in parallel through convergent 
evolution rather than horizontal gene transfer, as the latter is 
common for bacterial and fungal pathogens (Kado, 2009; Selin 
et al., 2016).

The outcome of this convergent effector evolution is nicely 
exemplified by the most famous and well-studied class of plant 
viral effectors, the RNA silencing suppressors, that counteract 
the prominent RNA silencing pathway employed in plant de-
fense (Csorba et  al., 2015; Zhao et  al., 2016). Here we have 
observed that plant viruses universally evolved RNA silencing 
suppressors in a parallel manner. First, the suppressors lack se-
quence homology and, secondly, they interfere with different 
steps of this antiviral pathway (Box. 1). Consequently, the 
identification and mechanistic study of these effectors have 
contributed to the holistic understanding of the mechanisms 
and components underlying the RNA silencing pathway in 
plants. It is plausible that the convergent evolution of RNA 
silencing suppressors exemplifies a general model of virus ef-
fector evolution. Building on this hypothesis, we expect that 
viruses have together accumulated mechanistically diverse 
ways to manipulate and exploit different cellular pathways im-
portant for infection in plants (Garcia-Ruiz, 2018). Research 
suggests that these targets are numerous, including autophagy 
(Dong and Levine, 2013), RNA granules (Poblete-Duran et al., 
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2016), translational regulation (Zorzatto et al., 2015), the ubi-
quitin–proteasome system (Verchot, 2016a), the unfolded pro-
tein response (Verchot, 2016b), lipid metabolism (Strating and 
van Kuppeveld, 2017), phytohormones (Collum and Culver, 
2016), vesicular trafficking (Laliberté and Zheng, 2014; Pitzalis 
and Heinlein, 2017), macromolecular transport between cells 
(Heinlein, 2015; Kumar et al., 2015), and major developmental 
pathways including flowering (Cecchini et al., 2002). All these 
infection targets are also linked to plant defense responses. This 
lays the groundwork for using diverse virus effectors as a re-
source for mechanistic and functional studies of such pathways 
both within and outside an infection context.

Arabidopsis: a powerful model

For the vast majority of plant species, the currently known and 
available viruses that are capable of a compatible infection are 
limited. How many different viral species can we expect to 
infect a single host species? Humans are probably the best sur-
veyed species, with a recent estimate of well over 200 infecting 
viral species (Woolhouse et  al., 2012). Considering the short 
time period for which Arabidopsis thaliana (Arabidopsis) has 
been used as a plant model in virology (Pagán et  al., 2010; 
Ouibrahim and Caranta, 2013), an impressive number of vir-
uses have already been found to infect this plant, with at least 
46 different species spanning 16 genera (Table 1). For many 
viral species, there are several known strains that further ex-
pand this diversity, not least because they frequently show large 
variations in the severity of disease (Cecchini et al., 1998). This 

enables broad virus diversity and comparative virology studies 
in the resource-rich model plant Arabidopsis. Owing to broad 
virus diversity, additional plant models such as tomato, cu-
cumber, lettuce, potato, melon, pepper, and rice could all be 
considered (Hanssen et al., 2010). The diverse viruses infecting 
a single host can be exploited to understand pertinent cellular 
pathways. If using well-established heterologous systems such 
as Nicotiana benthamiana for screening viral effector proteins 
without a prerequisite for infection of a specific host, the avail-
able virus diversity becomes practically unlimited.

Diverse viruses to dissect selected 
pathways

The efficiency of a virus diversity approach increases with the 
overall number of viruses targeting a specific pathway. How 
globally a selected pathway is integrated into virus infections 
usually becomes clear in retrospect when enough examples 
have emerged. However, animal viruses have been studied 
much more extensively than plant viruses and may therefore 
provide clear hints as to which cellular pathways could be ap-
proached through virus diversity in plants. An example of such 
a pathway is autophagy, which has so far been shown to func-
tion in >50 different animal virus infections, with roles ranging 
from different antiviral immune responses to direct support for 
infection (Dong and Levine, 2013). Importantly, animal vir-
uses commonly manipulate different regulatory nodes of the 
autophagy pathway, transforming them into a potential re-
source for functional dissection of the pathway.

Box 1. Diverse virus adaptation to suppress an RNA silencing pathway

The simplified scheme shows how diversely viruses have adapted to suppress the plant DCL2/DCL4-
dependent RNA silencing pathway. This illustrates how plant viruses have undergone convergent 
evolution to suppress the function of this pathway, with the general aim of reducing the antiviral RNA-
induced silencing complex (RISC), which is achieved via both common and distinct strategies/interaction 
points. We expect that the virome could co-evolve similarly with any plant pathway that has a central 
role in infection and thus consider it as a potential toolbox for studying such pathways. This simplified 
illustration is based on information from a review on viral RNA silencing suppressors (Csorba et al., 2015).
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It is only recently that discoveries of autophagy in plant virus 
infections have been made, including an ssDNA virus (Haxim 
et  al., 2017), a dsDNA virus (Hafrén et  al., 2017), and three 
ssRNA viruses (Hafrén et  al., 2018; Yang et  al., 2018). These 
few examples already imply global integration of autophagy 
in plant virus infections, identifying mechanisms involved in 
inhibition of autophagy by viral proteins, viral protein inter-
action with autophagy components, viral component deg-
radation by autophagy, and more generally that autophagy 
has both antiviral and proviral functions in plant virus epi-
demiology. According to our point of view, we predict that 

a systematic application of diverse viruses could be used to 
identify a plethora of autophagy-based mechanisms that are 
activated and manipulated by viruses, thereby broadening our 
understanding of the plant autophagy pathway per se and its 
diverse roles in viral pathogenesis. RNA granules is yet an-
other infection point we consider promising to study further 
using virus diversity, owing to their broad incorporation into 
animal virus infections (Poblete-Duran et  al., 2016) and also 
the intriguing connections that slowly accumulate for plant 
viruses (Beckham et  al., 2007; Hafrén et  al., 2015; Ma et  al., 
2015; Ye et al., 2015; Meteignier et al., 2016; Krapp et al., 2017).

Table 1.  List showing viruses that infect Arabidopsis thaliana Col-0

Genus Species Reference

Alfamovirus Alfalfa mosaic virus Balasubramaniam et al. (2006)
Begomovirus Cabbage leaf curl virus Hill et al. (1998)
 Cleome leaf crumple virus Paprotka et al. (2010)
 Euphorbia mosaic virus Paprotka et al. (2010)
 Sri Lankan cassava mosaic virus Mittal et al. (2008)
 Tomato yellow leaf curl virus Sade et al. (2014)
 South African cassava mosaic virus Pierce and Rey (2013)
Bromovirus Brome mosaic virus Dzianott and Bujarski (2004)
 Cassia yellow blotch virus Iwahashi et al. (2005)
 Cowpea chlorotic mottle virus Fujisaki et al. (2003)
 Spring beauty latent virus Iwahashi et al. (2005)
Carmovirus Cardamine chlorotic fleck virus Skotnicki et al. (1993)
 Turnip crinkle virus Li and Simon (1990)
Caulimovirus Cauliflower mosaic virus Melcher (1989)
Cheravirus Apple latent spherical virus Igarashi et al. (2009)
Cilevirus Citrus leprosis virus C Arena et al. (2013)
 Solanum violaefolium ringspot virus Arena et al. (2017)
Comovirus Turnip ringspot virus Rajakaruna et al. (2007)
Cucumovirus Cucumber mosaic virus Takahashi et al. (1994)
Curtovirus Beet curly top virus Lee et al. (1994)
 Beet severe curly top virus Lee et al. (1994)
 Spinach curly top virus Baliji et al. (2007)
Dichorhavirus Clerodendrum chlorotic spot virus Arena et al. (2017)
 Coffee ringspot virus Arena et al. (2017)
Nanovirus Faba bean necrotic yellow virus Vega-Arreguín et al. (2007)
Nepovirus Arabis mosaic virus Martinez-Herrera et al. (1994)
 Cherry leaf roll virus Rumbou et al. (2009)
 Tobacco ringspot virus Lee et al. (1996)
 Tomato spotted wilt virus German et al. (1995)
Polerovirus Beet mild yellowing virus Stevens et al. (2005)
 Beet western yellows virus Bortolamiol et al. (2007)
 Turnip yellows virus Stevens et al. (2005)
Potexvirus Plantago asiatica mosaic virus Yamaji et al. (2012)
Potyvirus Lettuce mosaic virus Revers et al. (2003)
 Plum pox virus Decroocq et al. (2006)
 Tobacco etch virus Contreras-Paredes et al. (2013)
 Turnip mosaic virus Martinez-Herrera et al. (1994)
 Watermelon mosaic virus Ouibrahim et al. (2014)
Sobemovirus Turnip rosette virus Callaway et al. (2004)
Tobamovirus Oilseed rape mosaic virus Aguilar et al. (1996)
 Tobacco mosaic virus Ishikawa et al. (1991)
 Turnip vein clearing virus Lartey et al. (1997)
Tobravirus Pepper ringspot virus Jaubert et al. (2011)
 Tobacco rattle virus Donaire et al. (2008)
Tospovirus Iris yellow spot virus Naveed and Pappu (2012)
Tymovirus Turnip yellow mosaic virus Martinez-Herrera et al. (1994)
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What potential advantages and complements do this ap-
proach bring compared with others such as Arabidopsis for-
ward genetics? First and as already discussed in connection 
with the virome interaction with the RNA silencing pathway 
(Box 1), convergent evolution of the different viruses will 
result in the identification of different regulatory nodes of 
complex pathways. Secondly, if we are dealing with cellular 
pathways and functions that show no growth phenotypes 
when disrupted and cell biological phenotyping is required, 
the screening of a virome using such phenotyping platforms 
is simple compared with a forward genetics screen. This 
could hold especially true in the absence of an automated 
high-throughput platform for forward genetics. Thirdly, if the 
deletion of a pathway component is lethal for plants, it can 
still be manipulated by viruses without too severe growth 
phenotypes. One example is provided by the RNA granule 
pathways that can show quantitative phenotypes during plant 
virus infections (Hafrén et  al., 2015), and seedling lethality 
when knocked out (Xu and Chua, 2011). Another interesting 
approach will be examining plant pathways that are not 
globally conserved, but rather between monocot and dicot 
plants or even solely in between clades (e.g. glucosinolates in 
Brassicaceae) and how these pathways are altered by viruses 
capable of infection.

Concluding remarks

Molecular and cell biology-based virology continues to reveal 
fundamental mechanisms of cellular pathways both within and 
outside an infection context. Evidently, in many cases, these 
discoveries have arisen through the mechanistic dissection of 
viral effector protein manipulations of the host cell. In accord-
ance with the central hypothesis of this viewpoint that viruses 
acquire effector protein functions through functionally con-
vergent evolution and presuming that convergent evolution 
successfully equipped diverse viruses with effectors targeting a 
specific pathway, as observed for RNA silencing, these effectors 
should provide a unique tool for its mechanistic study. Based 
on the discussion above, we propose that a prominent resource 
could be an expression library that consists of proteins from a 
wide and comprehensive plant virus diversity to be used for 
screening pathway phenotypes as a starting point to identify 
pathway regulators. In parallel, this could systematically evaluate 
the phenomenon of virus effector convergent evolution.
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