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ABSTRACT

The amphibious ‘bug-eating slug’ Aiteng ater Swennen & Buatip, 2009 shows a worm-like, compact
body shape lacking any cephalic tentacles or body processes. Anatomically it has been described as
showing an unusual mix of sacoglossan and acochlidian characters, thus the systematic affinities are
uncertain. The species is redescribed here with an integrative microanatomical and molecular
approach. All major organ systems were three-dimensionally reconstructed from serial histological
sections using AMIRA software. Aiteng ater has a prepharyngeal nerve ring with separate cerebral
and pleural ganglia rather than cerebro-pleural ganglia, and no sacoglossan-like ascus is detectable
histologically. The radula is triseriate rather than uniseriate, showing one lateral tooth on each side
of the rhachidian tooth. A well-developed two-chambered heart is present. The vas deferens in A. ater

splits off distal to the female glands. The intestine is short and opens into a small mantle cavity. Long
cavities in the connective tissue are remains of dissolved calcareous spicules. Only a few characters
thus remain to support a closer relationship of A. ater to Sacoglossa, i.e. the Gascoignella-like body
shape lacking cephalic tentacles, the presence of an elysiid-like system of dorsal vessels, and an
albumen gland consisting of follicles. Additionally we describe in microanatomical detail an equally
small and vermiform new aitengid species from Japan. Aiteng mysticus n. sp. differs from A. ater in
habitat, body size and colour, central nervous system and presence of a kidney. Both aitengid species
resemble acochlidians in the retractibility of the head, by possessing calcareous spicules, a prepharyn-
geal nerve ring with separated cerebral and pleural ganglia, a triseriate radula with an ascending
and descending limb, but without sacoglossan-like ascus, and a special diaulic reproductive system.
The prominent rhachidian tooth of Aitengidae, which is used to pierce insects and pupae in A. ater,
and the large, laterally situated eyes closely resemble the anatomy of members of the limnic
Acochlidiidae. The acochlidian nature of Aiteng is strongly indicated by our molecular analysis, in
which it forms a basal hedylopsacean offshoot or the sister clade to limnic Acochlidiidae and brackish
or marine Pseudunelidae within Hedylopsacea. Such a topology would, however, imply that
Aitengidae have lost the most characteristic acochlidian apomorphy, the subdivision of the body into
a headfoot complex and a free, elongated visceral hump. Also, the absence of cephalic tentacles gives
the Aitengidae an appearance that is very different to other, strictly aquatic Acochlidia. Differences
of the external morphology and the internal anatomy are discussed in the light of a habitat shift of
Aitengidae within the Acochlidia.

INTRODUCTION

The Acochlidia and Sacoglossa were traditionally regarded as
taxa of the ‘Opisthobranchia’ in morphological (e.g. Jensen,

1996; Dayrat & Tillier, 2002; Wägele & Klussmann-Kolb,
2005; Schrödl & Neusser, 2010) as well as molecular (e.g.
Grande et al., 2004; Vonnemann et al., 2005; Händeler et al.,
2009) studies. Recent molecular studies (e.g. Klussmann-Kolb
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et al., 2008; Dinapoli & Klussmann-Kolb, 2010; Jörger et al.,
2010) have changed our understanding of the phylogeny of
Heterobranchia considerably. With a comprehensive euthy-
neuran taxon set, an analysis of mitochondrial cytochrome c
oxidase subunit I (COI) and 16S rRNA genes and nuclear
18S and 28S rRNA genes has revealed the traditional
‘Opisthobranchia’ as polyphyletic (see Schrödl et al., 2011).
Both Sacoglossa and Acochlidia have been shown to be part of
an early (pan)pulmonate radiation (Jörger et al., 2010). The
internal acochlidian topology revealed by molecular markers is
congruent with that obtained by our morphology-based cladis-
tic analysis (Schrödl & Neusser, 2010). However, a still unde-
scribed putative member of the recently established Aitengidae
Swennen & Buatip, 2009, named ‘himitsu namekuji’ (English:
secret slug) when the specimens were found in Japan, clustered
among hedylopsacean acochlids in the molecular analyses
(Jörger et al., 2010).

The family Aitengidae was established as a monotypic saco-
glossan family with a possible affinity to Acochlidia (Swennen
& Buatip, 2009). Its sole species, the mysterious ‘bug-eating
slug’ Aiteng ater Swennen & Buatip, 2009 was included into the
‘top ten list of bizarre new species 2010’ by the International
Institute for Species Exploration at Arizona State University
(http://species.asu.edu/Top10). Aiteng ater lives amphibiously in
a mangrove forest in Thailand. The body length is 8–12 mm
and the body shape is worm-like, lacking any cephalic tenta-
cles or body processes. Anatomically it was described as
showing an unusual mix of acochlidian and sacoglossan fea-
tures, such as the prepharyngeal nerve ring characteristic for
the Acochlidia, but the uniseriate radula, an ascus, a ramified
digestive gland, a system of dorsal vessels and the albumen
gland consisting of follicles—features which are all character-
istic for Sacoglossa. The head and back of the slug bear strange
‘white cigar-shaped bodies’, which were interpreted as para-
sites by Swennen & Buatip (2009). Aiteng ater was preliminarily
placed within Sacoglossa, but the authors expressed their

doubts and the systematic affinities remained uncertain. The
present study aims to re-examine A. ater with a microanatomi-
cal approach using computer-based three-dimensional (3D)
reconstructions, as used e.g. for Acochlidia (Neusser et al.,
2006; Neusser & Schrödl, 2007, 2009; Jörger et al., 2008, 2009;
Neusser, Heß & Schrödl, 2009a; Neusser, Martynov &
Schrödl, 2009b; Brenzinger et al., 2010; Neusser, Jörger &
Schrödl, 2011) and to compare it to the ‘secret slug’ from
Japan, which is also reconstructed in the present study in the
same way. Combining evidence from detailed micromorpholo-
gical descriptions and molecular analyses of both aitengid
species we aim to clarify the systematic relationships and
evolutionary history of the Aitengidae.

MATERIAL AND METHODS

Material

One paratype of Aiteng ater was obtained from the Zoological
Museum, University of Amsterdam (ZMA) for semithin sec-
tioning. One specimen of A. ater was collected at the type
locality by Dr Swennen (Prince of Songkla University,
Thailand) in October 2009 and was provided for the examin-
ation of the radula. Several specimens of Aiteng mysticus n. sp.
were collected by H.F. and Y.K. on different islands of
Okinawa Prefecture, Ryukyu Islands, Japan, in April 1992,
March 1993, May 2008 and June 2009. The latter specimens
were relaxed in 7.5% MgCl2, fixed in 10% formalin and pre-
served in 75% ethanol for semithin sectioning and scanning
electron microscopy (SEM) or fixed in 99% ethanol for mol-
ecular studies. Details of collecting sites are given in Table 1
and a summary of all material used in the morphological study
in Table 2.

Table 1. Collecting date and localities of Aiteng mysticus n. sp. in Okinawa Prefecture, Ryukyu Islands, Japan.

Locality no. Locality GPS data Date/collected by

1 Shimozaki, Nikadori, Hirara, Miyako Island 24849′49′′N, 125816′42′′E 04.1992 and 05.2008/HF, YT

2 Matsubara, Hirara, Miyako Island 24847′01′′N, 125816′05′′E 05.2008/HF, YT

3 Nakamoto, Kuroshima Island 24813′42′′N, 123859′58′′E 03.1996/YK

4 NW of Yonaguni Airport, easternmost corner

of Higashi-bokujô, Yonaguni Island

24828′04′′N, 122858′15′′E 06.2009/HF, YT

HF, Hiroshi Fukuda; YK, Yasunori Kano; YT, Yuki Tatara.

Table 2. Material examined for morphological study.

Species Locality (no., see Table 1) Type of investigation and storage Museum no.

Aiteng mysticus n. sp. 1 Specimen in 75% ethanol (H) ZSM Mol 20110185

Section series (P) ZSM Mol 20110186

Radula on SEM stub (P) ZSM Mol 20110187

Specimen in 99% ethanol (P) NSMT Mo 77319

Aiteng mysticus n. sp. 2 Section series (P) ZSM Mol 20110188

Specimen in 99% ethanol (P) OKCAB M21473

Aiteng mysticus n. sp. 4 Specimen in 5% formalin and radula on SEM stub (P) OKCAB M21474

Aiteng ater Pak Phanang Bay, Gulf of Thailand Section series (P) ZMA 409068

Radula on SEM stub ZSM Mol 20110189

Abbreviations: H, holotype; NSMT, National Museum of Nature and Science, Tokyo, Japan; OKCAB, Laboratory of Conservation of Aquatic Biodiversity, Faculty

of Agriculture, Okayama University, Japan; P, paratype; ZMA, Zoological Museum, University of Amsterdam, The Netherlands; ZSM, Bavarian State Collection

of Zoology, Germany.
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Embedding and sectioning

Specimens were decalcified in Bouin’s solution overnight and
dehydrated in an acetone series (70, 90, 100%). For semithin
sectioning two specimens of A. mysticus were embedded in
Spurr’s low-viscosity resin (Spurr, 1969) and the paratype of
A. ater was embedded in Epon (Luft, 1961). Three series of rib-
boned serial semithin sections of 2 mm thickness were prepared
using a diamond knife (Histo Jumbo, Diatome, Biel,
Switzerland) with contact cement on the lower cutting edge to
form ribbons (Ruthensteiner, 2008). Sections were stained with
methylene-azure II (Richardson, Jarett & Finke, 1960). The
sections of A. mysticus were deposited at the Bavarian State
Collection of Zoology, Germany (ZSM), Mollusca Section
(ZSM Mol 20110186 and 20110188); the sections of A. ater
were deposited at ZMA (ZMA 409068).

3D reconstruction

Digital photographs of every second section were taken with a
CCD microscope camera (Spot Insight, Diagnostic
Instruments, Sterling Heights, MI, USA) mounted on a
DMB-RBE microscope (Leica Microsystems, Wetzlar,
Germany). Images were converted to 8-bit greyscale format,
contrast enhanced and unsharp masked with standard
image-editing software. A computer-based 3D reconstruction
of all major organ systems was conducted with the software
AMIRA 5.2 (Amira Visaging GmbH, Germany) following the
procedure of Ruthensteiner (2008). The 3D reconstruction of
A. ater was based on the paratype series and that of A. mysticus
on the series ZSM Mol 20110188.

Scanning electron microscopy

One specimen of A. mysticus from Miyako Island, Japan, pre-
served in 75% EtOH, one specimen of the same species from
Yonaguni Island, Japan, preserved in 5% formalin and one
specimen of A. ater from Thailand were used for SEM examin-
ation of radulae. Specimens were macerated in 10% KOH
overnight. Remaining tissue was removed with fine dissection
pins. Radulae were mounted on specimen stubs and
sputter-coated with gold for 135 s (SEM-Coating-System,
Polaron) and examined with a LEO 1430 VP (Leo
Elektronenmikroskopie GmbH, Oberkochen, Germany) at
15 kV.

Molecular studies

One alcohol-preserved specimen of A. ater from the type
locality was available for molecular study. DNA was extracted
by K. Händeler (University of Bonn, Germany) using the

Qiagen Blood and Tissue Kit according to manufacturer’s rec-
ommendations. Four genetic markers were sequenced following
the protocols and using the same primers as described by
Händeler et al. (2009) for partial mitochondrial COI and 16S
rRNA genes, and following Jörger et al. (2010) for nuclear 18S
rRNA and partial 28S rRNA genes. Sequences were edited
using Geneious ProTM 5.1 (Biomatters Ltd). To supplement
sequence data available from public databases we additionally
sequenced the sacoglossan Platyhedyle denudata and the acochli-
dian Parhedyle cryptophthalma, Ganitus evelinae and Palliohedyle sp.
as described above (see Table 3 for collection details and
Table 4 for GenBank accession numbers).
The sampled Aitengidae were analysed in a dataset contain-

ing 35 heterobranch taxa with a focus on Acochlidia and
Sacoglossa (Table 4). We aimed to cover known acochlidian
and sacoglossan diversity by including at least one representa-
tive of each genus for Acochlidia (only lacking monotypic
Tantulum elegans) and one sacoglossan representative per family
following the classification of Jensen (1996). Other outgroups
were chosen to cover a variety of euopisthobranch and panpul-
monate taxa (see Jörger et al., 2010). The alignments for each
marker were generated using Muscle (Edgar, 2004). To
remove ambiguous regions the alignments of 18S, 28S and 16S
rRNA were masked with Gblocks (Castresana, 2000; Talavera
& Castresana, 2007) using the options for a less stringent selec-
tion; the COI alignment was checked manually according to
translation into amino acids. We performed maximum-
likelihood analyses using RAxML v.7.0.3 (Stamatakis, 2006)
according to the programmer’s instructions (‘hard and slow
way’) of the concatenated datasets combining 18S þ 28S, 18 þ
28S þ COI, 18S þ 28S þ COI þ 16S and 28S þ COI þ 16S
with the GTR þ G þ I model, chosen via the Akaike
Information Criterion implemented in jModeltest (Posada,
2008) and with one partition for each marker. The acteonoid
Rictaxis punctocaelatus was defined as outgroup.

SYSTEMATIC DESCRIPTIONS

AITENGIDAE Swennen & Buatip, 2009
Aiteng Swennen & Buatip, 2009

Type species: Aiteng ater Swennen & Buatip, 2009, by original
designation.

Aiteng ater Swennen & Buatip, 2009
(Figs 1–4, 5A, 6)

Aiteng ater Swennen & Buatip, 2009: 495–500, figs 1B–M,
2A–H.

Table 3. Collection data of the species for which molecular data were generated.

Species ZSM no. Locality GPS data Date/collected by

Aiteng ater — Pak Phanang Bay, Thailand, Gulf of Thailand 8829′18′′N, 100810′55′′E 09.2007/CS

Aiteng mysticus n. sp.* — Matsubara, Miyako, Okinawa, Japan 24847′01′′N, 125816′05′′E 05.2008/HF,YT

Aiteng mysticus n. sp.§ — Shimozaki, Nikadori, Miyako, Okinawa, Japan 24849′49′′N, 125816′42′′E 05.2008/HF,YT

Palliohedyle sp. Mol 20100356 Tambala River near Manado, Sulawesi, Indonesia 1824′11′′N, 124841′08′′E 11.2009/KJ

Pontohedyle milaschewitchii Mol 20080054 Cap Kamenjak, Istria, Croatia, Mediterranean Sea 44846′03′′N, 13854′58′′E 09.2005/KJ

Parhedyle cryptophthalma Mol 20100584 Bacoli, Naples, Italy, Mediterranean Sea 40847′19′′N, 14803′54′′E 09.2009/MS

Ganitus evelinae Mol 20100328 Sina da Pedra, Ilhabela, Brazil, Atlantic Ocean 23846′43′′S, 45821′33′′W 03.2010/MS

Platyhedyle denudata Mol 20091351 Secche della Meloria, Livorno, Italy, Mediterranean Sea 43833′01′′N, 10813′08′′E 09.2009/MS

CS, Cornelis Swennen; HF, Hiroshi Fukuda; KJ, Katharina Jörger; MS, Michael Schröd; YT, Yuki Tatara; ZSM, Bavarian State Collection of Zoology, Germany.

*as Aitengidae sp. in Jörger et al. (2010). §COI sequence only.
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Central nervous system (CNS) (Fig. 1A, C, D): CNS euthyneurous
with paired cerebral (cg), optic (og), pedal (pg), pleural (plg),
buccal (bg) and gastro-oesophageal ganglia (gog) and four dis-
tinct ganglia on visceral nerve cord (Figs 1C, 2B, 3). All
ganglia prepharyngeal, except buccal and gastro-oesophageal

ganglia (Fig. 1D). Cerebral, pedal and pleural ganglia linked
by short connectives forming prepharyngeal nerve ring
(Figs 1D, 2B, 3). Cerebral ganglia (Figs 1C, 2B, 3) linked by
short commissure. Labiotentacular nerve (ltn) (Figs 1C, D,
2A, 3) emerges anteriorly from cerebral ganglion. Optic

Table 4. Taxon sampling and GenBank accession numbers for the gene sequences used in the present study.

Taxon Family Species 18S 28S 16S COI

PANPULMONATA

Incerta sedis Aitengidae Aiteng ater JF828036* JF828037* JF828038* JF828031*

Aiteng mysticus n. sp.§ HQ168428 HQ168441 HQ168415 HQ168453

Acochlidia Hedylopsidae Hedylopsis ballantinei HQ168429 HQ168442 HQ168416 HQ168454

Pseudunelidae Pseudunela sp.† HQ168431 HQ168444 HQ168418 HQ168456

Acochlidiidae Strubellia paradoxa HQ168432 HQ168445 HQ168419 HQ168457

Acochlidiidae Acochlidium fijiense HQ168433 HQ168446 HQ168420 HQ168458

Acochlidiidae Palliohedyle sp. — JF828039* JF828040* JF828032*

Asperspinidae Asperspina sp. HQ168434 HQ168447 HQ168421 —

Microhedylidae Pontohedyle milaschewitchii HQ168435 JF828043* HQ168422 HQ168459

Microhedylidae Parhedyle cryptophthalma — JF828041* JF828042* JF828033*

Microhedylidae Microhedyle glandulifera HQ168437 HQ168449 HQ168424 HQ168461

Ganitidae Paraganitus ellynnae HQ168436 HQ168448 HQ168423 HQ168460

Ganitidae Ganitus evelinae — JF828044* JF828045* JF828034*

Sacoglossa Volvatellidae Volvatella viridis HQ168426 HQ168439 HQ168413 HQ168451

Cylindrobullidae Cylindrobulla beauii EF489347 EF489371 EF489321 —

Juliidae Julia exquisita — GQ996653 EU140895 GQ996661

Oxynoidae Oxynoe antillarum FJ917441 FJ917466 FJ917425 FJ917483

Platyhedylidae Gascoignella nukuli HQ168427 HQ168440 HQ168414 HQ168452

Platyhedylidae Platyhedyle denudata — JF828046* — JF828035*

Caliphyllidae Cyerce nigricans AY427500 AY427463 EU140843 DQ237995

Plakobranchidae Plakobranchus ocellatus AY427497 AY427459 DQ480204 DQ237996

Elysiidae Elysia viridis AY427499 AY427462 AY223398 DQ237994

Limapontiidae Limapontia nigra AJ224920 AY427465 — —

Boselliidae Bosellia mimetica AY427498 AY427460 EU140873 GQ996657

Hermaeidae Hermaea cruciata — GU191025 GU191042 GU191058

Siphonarioidea Siphonaridae Siphonaria concinna EF489334 EF489353 EF489300 EF489378

Amphiboloidea Amphibolidae Phallomedusa solida DQ093440 DQ279991 DQ093484 DQ093528

Hygrophila Lymnaeidae Lymnaea stagnalis EF489345 EF489367 EF489314 EF489390

Stylommatophora Arionidae Arion silvaticus AY145365 AY145392 AY947380 AY987918

Systellommatophora Onchidiidae Onchidella floridana AY427521 AY427486 EF489317 EF489392

Glacidorboidea Glacidorbidae Glacidorbis rusticus FJ917211.1 FJ917227.1 FJ917264.1 FJ917284.1

EUOPISTHOBRANCHIA

Umbraculoidea Tylodinidae Tylodina perversa AY427496 AY427458 — AF249809

Anaspidea Akeridae Akera bullata AY427502 AY427466 AF156127 AF156143

Cephalaspidea s.s. Diaphanidae Toledonia globosa EF489350 EF489375 EF489327 EF489395

‘LOWER HETEROBRANCHIA’

Acteonoidea Acteonidae Rictaxis punctocaelatus EF489346 EF489370 EF489318 EF489393

*Sequences generated in the present study. §Aitengidae sp. in Jörger et al. (2010), described as new in the present study. †P. marteli Neusser et al. (2011).

Figure 1. 3D reconstruction of Aiteng ater. A. General microanatomy, dorsal view. B. Mantle cavity, dorsal view. C. Central nervous system, dorsal
view. D. CNS and anterior part of digestive system, left view. E. Digestive system (only main branch of digestive gland reconstructed), right
view. F. Circulatory and excretory systems, dorsal view. G. Reproductive system, dorsal view. H. Anterior copulatory organs, ventral view. I.
Female reproductive system including sperm storing receptacles, right view. Abbreviations: a, anus; alg, albumen gland; am, ampulla; ao, aorta;
apg, anterior pedal gland; at, atrium; bc, bursa copulatrix; bg, buccal ganglion; cg, cerebral ganglion; cns, central nervous system; dg, digestive
gland; do, distal oviduct; dv, dorsal vessel; ed, ejaculatory duct; ey, eye; f, foot; fgl, female gland; fgo, female gonopore; gog, gastro-oesophageal
ganglion; i, intestine; ltn, labial tentacle nerve; nb, notum border; od, oviduct; oe, oesophagus; og, optic ganglion; on, optic nerve; ot, oral tube; ov,
ovotestis; p, penis; pag, parietal ganglion; pc, pericardium; pcc, pedal commissure; pg, pedal ganglion; ph, pharynx; plg, pleural ganglion; pn,
pedal nerve; pod, postampullary gonoduct; pr, prostate; prd, preampullary gonoduct; ps, penial sheath; r, radula; rpd, renopericardioduct; s,
statocyst; sgd, salivary gland duct; sgl, salivary gland; sp, spicule cavity; subg, subintestinal ganglion; supg, supraintestinal ganglion; v, ventricle;
vd, vas deferens; vg, visceral ganglion; vn, visceral nerve; *, aggregation of nerve cells. Scale bars: A ¼ 700 mm; B, E ¼ 500 mm; C ¼ 300 mm; D,
H, I ¼ 200 mm; F, G ¼ 600 mm.
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ganglion (Figs 1C, 3) attached laterally to each cerebral
ganglion. Optic nerve (on) (Figs 1C, 3) emerges from optic
ganglion innervating pigmented eye (ey) of 150 mm (Figs 1C,

D, 2A, 3). Precerebral accessory ganglia absent. Pedal commis-
sure (Fig. 1D) longer than cerebral commissure. Statocyst
(Figs 1C, D, 2B, 3) attached dorsally to each pedal ganglion

Figure 2. Histological cross-sections of Aiteng ater. A. Eyes, vas deferens and penial sheath. B. Ganglia, prostate. C. Mantle cavity. D. Dorsal
vessels, renopericardioduct. E. Bursa copulatrix, ovotestis. F. Ampulla. Abbreviations: alg, albumen gland; am, ampulla; ao, aorta; apg, anterior
pedal gland; at, atrium; bc, bursa copulatrix; cg, cerebral ganglion; dg, digestive gland; do, distal oviduct; dv, dorsal vessel; ed, ejaculatory duct;
ey, eye; fgl, female gland; i, intestine; ltn, labial tentacle nerve; mc, mantle cavity; od, oviduct; oe, oesophagus; ot, oral tube; ov, ovotestis; p, penis;
pc, pericardium; pg, pedal ganglion; ph, pharynx; plg, pleural ganglion; pn, pedal nerve; pod, postampullary gonoduct; pr, prostate; ps, penial
sheath; r, radula; rpd, renopericardioduct; s, statocyst; sgd, salivary gland duct; sgl, salivary gland; sp, spicule cavity; v, ventricle; vd, vas deferens;
wdv, wide lumen of dorsal vessel; arrowhead, aggregation of nerve cells on visceral nerve cord. Scale bars: A, B ¼ 250 mm; C ¼ 300 mm; D, E ¼
200 mm; F ¼ 400 mm. This figure appears in colour in the online version of Journal of Molluscan Studies.
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(Figs 1D, 2B, 3). Pleural ganglion (Figs 1C, 3) connected to
visceral nerve cord by very short connective. Four separate
ganglia on visceral nerve cord (Figs 1C, 3): left parietal
ganglion (pag), subintestinal ganglion (subg), small visceral
ganglion (vg) and fused supraintestinal/right parietal ganglion
(pag þ supg). Aggregation of few cells on visceral nerve cord
(Figs 1C, 2C) between visceral ganglion and fused supraintest-
inal/right parietal ganglion. No osphradial ganglion and no
histologically differentiated osphradium detected. Paired
buccal ganglia (Figs 1C, D, 3) posterior to pharynx, short
buccal commissure ventrally to oesophagus. Small gastro-
oesophageal ganglion (Figs 1C, D, 3) dorsally to each buccal
ganglion.

Digestive system: Anterior pedal gland (apg) (Figs 1E, 2A–C)
discharging ventrally of mouth opening to exterior. Oral tube
(ot) (Figs 1E, 2A) short. Radula (r) U-shaped (Figs 1D, E,
2B, C), 1–1.2 mm long, embedded within muscular pharynx
(ph) (Fig. 1D, E, 2B–E). Ascending and descending limbs
almost equally long (Fig. 1D), each terminating in muscular
bulb. Radula formula 57 � 1.1.1, 33 rows of teeth on upper
ramus, 24 rows of teeth on lower one. Each row consists of rha-
chidian tooth and one lateral tooth on each side. Lower ramus
without any lateral teeth in oldest part, only c. 7 of youngest
teeth of lower ramus with lateral teeth (Fig. 4A). Triangular
rhachidian tooth (Fig. 4A–C) with one large, projecting
central cusp (cc). Central cusp with up to 20 lateral denticles
(ld) on each side (Fig. 4B, C). Distance between lateral denti-
cles increasing towards tip of central cusp. Right lateral tooth
(ltr) (Fig. 4B, D) plate-like with one pointed, well-developed
denticle (d) (Fig. 4B, D) and 10–15 smaller denticles (sd) on
anterior margin (Fig. 4D). Prominent notch (n) on posterior
margin in which denticle of anterior lateral tooth fits. Posterior

margin with emargination on inner side of tooth. Left lateral
tooth (ltl) (Fig. 4A, E) plate-like with two well-developed,
pointed denticles on anterior margin, two prominent notches
(n) on posterior one. Jaws absent. Oesophagus (oe) (Figs 1D,
E, 2D, E) short, ciliated. One pair of large, folliculate salivary
glands (sgl) (Figs 1E, 2C–F) connected via salivary gland
ducts (sgd) (Figs 1E, 2C, D) at transition between pharynx
and oesophagus. No distinct stomach detected. Digestive gland
(dg) (Figs 1E, 2B–F) ramified, consisting of long main branch
extending posteriorly and several smaller lateral branches only
partly reconstructed. Intestine (i) (Figs 1E, 2D, E) densely
ciliated, short. Anus (a) (Fig. 1E) opens on right side of body
posterior to female gonopore into narrow and deep cavity
(Fig. 1B).

Circulatory and excretory systems: Circulatory and excretory systems
dorsal to digestive system. Circulatory system with wide, thin-
walled pericardium (pc) surrounding large two-chambered
heart (Figs 1F, 2D–F, 5A) with anterior ventricle and posterior
atrium (Figs 1F, 2D–F, 5A). Aorta (Figs 1F, 2D, 5A) extending
to head from anterior of ventricle. Renopericardioduct (rpd)
(Figs 2D, E, 5A) well developed, densely ciliated, next to
mantle cavity (Figs 1B, 2C); it connects to extensive system of
ramified dorsal vessels (Figs 1A, F, 5A). The latter with very
thin epithelium with minute vacuoles (Fig. 2C–F) inside cells
extending to notum border. Part of dorsal vessels connected to
renopericardioduct wider (wdv) than other branches of dorsal
vessels (Figs 2D, E, 5A). However, histologically both parts
look identical; distinct kidney with characteristic large, highly
vacuolated cells absent. Nephroduct and nephropore not
detected.

Reproductive system: Reproductive system ventral to digestive
system, hermaphroditic and showing a special androdiaulic
condition (Fig. 6). Ovotestis (ov) with follicles (Figs 1G, 2D–
F, 6) located in semicircle over whole visceral sac. Tiny ducts
emerge from follicles, joining in preampullary gonoduct (prd)
(Fig. 6). Large tubular ampulla (am) (Figs 1I, 2F, 6) with
autosperm in disorder. Sperm heads short. Receptaculum
seminis absent or not developed in examined specimen. Four
nidamental glands (Figs 1G, I, 2D–F, 6) from proximal to
distal: ramified albumen gland (alg) discharges into postam-
pullary gonoduct (Figs 1I, 2F, 6), followed by three glands
with different histological and staining properties. Distal part
of nidamental glands extends to right side of body where her-
maphroditic duct bifurcates into internal vas deferens (vd) and
short oviduct (od) (Figs 1I, 2D, 6). Bursa copulatrix (bc) large
(Figs 1G, I, 2D,E, 6), splits off oviduct, without pronounced
bursal stalk. Distal oviduct (do) opens through female gono-
pore (fgo) (Figs 1I, 2C, 6) at right side of body into narrow
and deep cavity (Fig. 1B, 2C). Female gonopore considerably
anterior to anus. Internal vas deferens (Figs 1G, H, 2A, 6)
extends subepidermally up to head connecting to long, tubular
prostate gland (pr) (Figs 1G, H, 2B, C, 6). Muscular ejacula-
tory duct (ed) (Figs 1H, 2B, 6) arises from prostate, discharges
at top of penis (p) (Figs 1H, 2B, 6). Penis slender, without any
stylet or spine, partially surrounded by thin-walled penial
sheath (ps) (Figs 1H, 2A, B, 6).

Remarks: Our microanatomical results substantially revise the
original description of A. ater, with discrepancies related to all
organ systems (summary in Table 5). The original description
of the CNS of A. ater is limited to mentioning four prepharyn-
geal ganglia, two of them being the fused cerebro-pleural
ganglia. Instead, our reconstruction clearly shows the cerebral
and pleural ganglia being separated rather than fused. We sup-
plement the original description with the presence of the
paired optic, buccal and gastro-oesophageal ganglia and four

Figure 3. Schematic overview of the central nervous system of Aiteng
ater (dorsal view). Abbreviations: bg, buccal ganglion; cg, cerebral
ganglion; ey, eye; gog, gastro-oesophageal ganglion; ltn, labial tentacle
nerve; og, optic ganglion; on, optic nerve; pag, parietal ganglion; pg,
pedal ganglion; plg, pleural ganglion; s, statocyst; subg, subintestinal
ganglion; supg, supraintestinal ganglion; vg, visceral ganglion; vn,
visceral nerve. Not to scale.
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Figure 4. SEM micrographs of the radula of Aiteng ater. A. Radula, left view. B. Rhachidian teeth, right view. C. Rhachidian teeth, anterior view.
D. Right lateral teeth. E. Left lateral teeth. Abbreviations: cc, central cusp; d, denticle; frh, functional rhachidian tooth; ld, lateral denticle;
lr, lower ramus; ltl, left lateral tooth; ltr, right lateral tooth; n, notch; sd, small denticle; ur, upper ramus; urh, used rhachidian tooth. Scale bars:
A ¼ 60 mm; B–E ¼ 20 mm.

Figure 5. Schematic overview of the circulatory and excretory systems (dorsal view). A. Aiteng ater. B. Aiteng mysticus n. sp. Abbreviations: ao, aorta;
at, atrium; dv, dorsal vessel; k, kidney; pc, pericardium; rpd, renopericardioduct; v, ventricle; wdv, wide lumen of dorsal vessel; ?, no data
available. Not to scale.
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ganglia on the visceral nerve cord. Additionally, there is an
aggregation of several cells on the visceral nerve cord between
the visceral ganglion and the fused right parietal-
supraintestinal ganglion, which is not considered as a true
ganglion herein. Our data about the digestive system match
generally with the original description; however, a histologi-
cally distinct stomach could not be detected. This is consistent
with other acochlidian species originally described with a
stomach, e.g. Asperspina murmanica (Kudinskaya & Minichev,
1978) or Pontohedyle milaschewitchii (Kowalevsky, 1901), that
were shown to possess a distal cavity of the digestive gland
rather than a distinct stomach (Jörger et al., 2008; Neusser
et al., 2009b). The intestine in Aiteng ater is short rather than
long and opens into a deep and narrow cavity that was not
mentioned by Swennen & Buatip (2009); probably, this cavity
was misinterpreted as the intestine opening to the exterior.
This narrow but deep cavity, receiving the anal and female
genital openings and, likely, the (nondetected) opening of the
closely associated excretory system, is herein interpreted as a
putative mantle cavity. In the absence of other typical mantle
cavity organs such as gills or osphradia, and without ontogen-
etic evidence, such an interpretation is speculative. However,
the marine hedylopsacean Hedylopsis ballantinei was described as
possessing a similarly small mantle cavity in which the anus,
nephropore and gonopore open and that has a special cell type
not observed on the normal body integument (Fahrner &
Haszprunar, 2002; Sommerfeldt & Schrödl, 2005). In contrast,
the originally reported presence of a large longitudinally separ-
ated mantle cavity in Asperspina murmanica could be rejected in
our re-examination; here the body orifices open directly to the
exterior (Neusser et al., 2009b). Though situated in a similar
position, the mantle cavity in A. ater is a deep cavity with a
small opening rather than a transversal ciliated groove as in
elysiid sacoglossans (Jensen, 1992); whether or not the latter
also represents a reduced and modified mantle cavity should
be clarified by comparing the microanatomy of shelled and
shell-less sacoglossans in histological detail.

Figure 6. Schematic overview of the reproductive system of Aiteng ater
(dorsal view). Abbreviations: alg, albumen gland; am, ampulla; bc,
bursa copulatrix; do, distal oviduct; ed, ejaculatory duct; fgl, female
gland; fgo, female gonopore; mgo, male gonopore; od, oviduct; ov,
ovotestis; p, penis; pod, postampullary gonoduct; pr, prostate; prd,
preampullary gonoduct; ps, penial sheath; vd, vas deferens. Not to
scale.

Table 5. Comparison of Aiteng ater with A. mysticus n. sp.

Aiteng ater Swennen & Buatip, 2009 Aiteng ater Swennen & Buatip, 2009 Aiteng mysticus n. sp.

Data source Swennen & Buatip (2009) Present study Present study

Habitat Mangrove forest See orig. description On or underside of rocks

Body size (mm) 8–12 (alive) 3.5 (preserved) 4–6 (alive)

Body colour Grey-black See orig. description Brownish, pale

CNS Prepharyngeal Prepharyngeal Prepharyngeal

Fused cerebro-pleural ganglia Present Absent Absent

No. of ganglia on visceral nerve cord ? 4 2 or 3

Oesophagus Short Short Long

Radula Uniseriate Triseriate Triseriate

Radula length (mm) ,900 1,200 900

Radula formula 59–67 × 0.1.0 57 × 1.1.1 70 × 1.1.1

Rhachidian tooth cc projecting, 6–10 ld cc projecting, 20 ld cc large, 7–9 ld

No. of denticles on right lateral tooth ? 1 large, 10–15 small 1 large, 4–6 small

No. of denticles on left lateral tooth ? 2 large, no small 1 large, 12–13 small

Ascus Present Absent Absent

Intestine Long Short Short

Heart ? Two-chambered One-chambered

Kidney ? Indistinct from dorsal vessels Present

Vas deferens splits off Postampullary duct Female glands Female glands

Small mantle cavity Absent Present Present

Endoparasites Present Absent Absent

Spicules Absent Present Present

Abbreviations: cc, central cusp; ld, lateral denticle; ?, no data available.
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The radula in A. ater was reported as being uniseriate with
only one rhachidian tooth per row, but our histological sections
suggested the presence of one lateral tooth on each side. The
examination by SEM clearly confirms the presence of a triseri-
ate radula with a rhachidian tooth and one lateral tooth on
each side (the latter of which is lacking in the oldest rows of
the descending limb). In contrast to the original description
we could not detect any sacoglossan-like ascus and there are no
broken teeth at the posterior end of the descending limb in the
pharynx. However, both radular limbs terminate in a separate
muscular bulb.

Besides mentioning heart beats there are no more data
about the circulatory system in the original description. Our
reconstruction shows A. ater with a well-developed two-
chambered heart, an aorta emerging from the ventricle, and
the renopericardioduct connecting to a widened lumen of
the dorsal vessel system. Our results for the reproductive
system match well with the original data with one difference:
whereas in the original description the postampullary her-
maphroditic duct splits into vas deferens and oviduct, in our
study the vas deferens splits off distal to the female glands,
i.e. spermatocytes have to pass the female glands before
entering the internal vas deferens and being transported to
the male copulatory organs.

Swennen & Buatip (2009) reported “white, cigar-shaped
bodies of different sizes” distributed “under the skin and loose
on other organs in some specimens” of A. ater and supposed
these were endoparasites. We cannot confirm this finding;
instead our histological sections indicate the presence of subepi-
dermal spicules (Figs 1A, 2A, B), which are distributed over
the whole body, but concentrate in the head. We suppose these
spicules have been misinterpreted in the original description
as the endoparasites, as the latter dissolved later in the
laboratory in an acidic solution (C.K. Swennen, personal
communication).

Aiteng mysticus new species
(Figs 5B, 7B–F, 8–10)

Type material: Holotype: in 75% ethanol, c. 3 mm
(ZSM Mol 20110185). Type locality Shimozaki, Nikadori,
Hirara, Miyako Island, Okinawa, Japan, 2484904900N,
12581604200E.

Paratypes: two section series (ZSM Mol 20110186, ZSM
Mol 20110188), one radula on SEM stub (ZSM Mol
20110187), two specimens in 99% ethanol (NSMT Mo 77319,
OKCAB M21473) and one in 5% formalin with radula on
SEM stub (OKCAB M21474). For localities see Table 1.

Etymology: After the Japanese common name ‘himitsu name-
kuji’ (English: secret slug), given to the specimens when they
were found.

Material examined: See Table 2.

Distribution: Known from Miyako Island, Kuroshima Island
and Yonaguni Island (Okinawa Prefecture, Ryukyu Islands,
Japan).

Habitat: The specimens were found in two different habitats.
In Nikadori, Miyako Island, the animals were found on the
surface of notches and lateral walls of small caves formed
by erosion caused by strong waves (Fig. 7A), on shores of
white limestone facing the open sea. In the intertidal zone
were many small crevices which were usually moist with
seawater and covered with two algae, Caulacanthus ustulatus
(Gigartinales: Caulacanthaceae) and Cladophora herpestica
(Cladophorales: Cladophoraceae). The specimens were

Figure 7. Habitat and external morphology of Aiteng mysticus n. sp.
A. Coastal cavern on Miyako Island, Okinawa, Japan. B–D, F. Living
specimens of c. 5 mm on Miyako Island. B. On algae. C. Brownish
coloration. D. Pale coloration. E. Pale coloration (Yonaguni Island).
F. Autotomy.
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observed crawling just above the high tidal line at night
from 11 p.m. to 5 a.m., together with Paludinella sp. and
Angustassiminea sp. (both Assimineidae), Pedipes jouani,
‘Allochroa’ aff. affinis and A. layardi (all Ellobiidae). While
the ellobiids occurred in high numbers, Ai. mysticus was rare
and it was hard to find more than two individuals in the
same locality in one night. As reported for most of the ello-
biid species found in the same habitat (Fukuda, 1996), A.
mysticus is truly nocturnal and rapidly disappears after
sunrise. In the same habitat the large chiton Acanthopleura
spinosa (Chitonidae) was often found alive at midnight.
Sasaki, Hamaguchi & Nishihama (2006) reported the distri-
bution and habitat of Ac. spinosa in Miyako Island, and Ai.
mysticus was also collected from one of their localities. The
habitat of Ai. mysticus in Kuroshima Island was similar to
Nikadori, but Ac. spinosa was not found. In Yonaguni
Island, Ai. mysticus was found in a narrow space among
rocks at the innermost part of a spacious cave (about 10 m
in width and length) similar to the Nikadori habitat. The
inside of the cave was always dark and humid. The accom-
panying molluscan species were the same as those of
Nikadori, with the addition of Ditropisena sp. (Assimineidae)
and the ellobiid Microtralia sp.

Aiteng mysticus was also found in Matsubara, Miyako Island,
however the habitats differ considerably. This site was a brack-
ish area neighbouring a small mangrove swamp on a narrow
(about 10 m) river estuary at the innermost part of a small
bay. Many rocks of various sizes lay on flat, sandy-mud bottom
in the intertidal. Aiteng mysticus was found alive beneath large
rocks (30–50 cm diameter) deeply buried in mud in the upper
intertidal zone, during daytime. The underside of these rocks
was usually wet. Angustassiminea sp. and several other ellobiid
species (e.g. Blauneria quadrasi, Laemodonta monilifera, L. aff.
minuta, L. octanflacta, L. typica, Melampus fasciatus, Me. granifer,
Me. parvulus, Me. sculptus, Melampus sp., Microtralia sp. and
Pedipes jouani; see Fukuda, 1996) were also found.
The two habitats mentioned above were rather different

from each other, but Angustassiminea sp., Pedipes jouani and
Microtralia sp. were observed in both. Among them, P. jouani
was considered to be restricted to notches or caves in the
rocks. Judged from the presence of P. jouani and Aiteng
mysticus, the two habitats may share some environmental con-
ditions that are suitable for these two species. Two specimens
of Ai. mysticus from the two habitats were found to share
exactly the same COI sequence (see below), supporting their
conspecific status.

Figure 8. A–D. Histological cross-sections of Aiteng mysticus n. sp. A. Kidney, pericardium. B. Female glands, spermatocytes under notum border.
C. Spermatocytes. D. Supporting cells. E. Supporting cells in Aiteng ater. Abbreviations: apg, anterior pedal gland; dg, digestive gland; dv, dorsal
vessel; fgl, female gland; k, kidney; nb, notum border; pc, pericardium; rpd, renopericardioduct; sc, spermatocytes; scl, supporting cells; sgd,
salivary gland duct; sgl, salivary gland; sp, spicule cavity; v, ventricle. Scale bars: A ¼ 150 mm; B ¼ 200 mm; C ¼ 20 mm; D, E ¼ 100 mm. This
figure appears in colour in the online version of Journal of Molluscan Studies.
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External morphology of living specimens: Slug-like, lacking cephalic
tentacles or other body processes (Fig. 7B, C). Length c. 5 mm.
Dorsal surface glossy from copious mucus. Dorsal mantle pale
to purplish brown. Brown coloration (Fig. 7B–D) variable in
intensity, some individuals (e.g. from Yonaguni Island;
Fig. 7E) paler than others. Large, vacuolated supporting cells
visible as many distinct white granules through translucent
skin of dorsal mantle (Figs 7, 8D). Head with pair of short,
round bulges with distinct black eyes at postero-lateral corners.
Head colour almost same as on dorsal mantle. Dorsal foot
around head with thin pigment of same colour as dorsal
mantle. Shallow transverse groove across anterior part of foot
(uncertain whether or not this is an artefact by contraction).
Sole flat, elongate oval, pale beige, without pigmentation. It
consists of propodium and rest of foot: propodium occupies
anterior 1/6 of whole foot; weak constriction on both sides at
posterior end of propodium. Indistinct longitudinal groove on
centre from portion just posterior to propodium to posterior
end of foot. Foot simple, round. Lateral sides of foot pale beige
without pigments.

Possible autotomy observed in one individual from Nikadori
(Fig. 7F). While kept alive in small container, posterior edge of

mantle and foot suddenly separated from rest of animal. This
happened automatically without disturbance, but might have
been a reaction to change of environmental condition from
field to laboratory. The individual was still alive and crawled
after this.

Central nervous system: CNS of Aiteng mysticus euthyneurous, pre-
pharyngeal (Fig. 9B); arrangement of ganglia mainly as in
A. ater (Fig. 3). Paired cerebral ganglia (cg) connected by
short cerebral commissure. Labiotentacular nerve (ltn)
(Fig. 9B) emerges from cerebral ganglion anteriorly. Optic
ganglion (Fig. 9B) attached laterally to each cerebral ganglion;
connective not detected. Optic nerve (on) arises from optic
ganglion innervating pigmented eye (ey) of 100 mm (Fig. 9A, B).
Hancock’s nerve (Fig. 9B) splits off optic nerve innervating
Hancock’s organ. Small ganglion (Fig. 9B) attached to
cerebral ganglion posterior to optic ganglion with unknown
function. Precerebral accessory ganglia absent. Paired pedal
ganglia (pg) ventral to cerebral ganglia; pedal commissure
(Fig. 9B) considerably longer than in A. ater. Statocyst small,
attached to each pedal ganglion. Pleural ganglion (plg)
smaller than cerebral and pedal ganglia, posterior to both;

Figure 9. 3D reconstruction of Aiteng mysticus n. sp. A. General microanatomy, right view. B. Central nervous system, dorsal view. C. Digestive
system, dorsal view. D. Circulatory and excretory systems, dorsal view. Abbreviations: a, anus; apg, anterior pedal gland; bg, buccal ganglion; cg,
cerebral ganglion; dg, digestive gland; dv, dorsal vessel; ey, eye; f, foot; gog, gastro-oesophageal ganglion; hn, Hancock’s nerve; i, intestine; k,
kidney; ltn, labial tentacle nerve; oe, oesophagus; og, optic ganglion; on, optic nerve; pc, pericardium; pcc, pedal commissure; pg, pedal ganglion;
ph, pharynx; plg, pleural ganglion; pn, pedal nerve; r, radula; rpd, renopericardioduct; s, statocyst; sgd, salivary gland duct; sgl, salivary gland; sp,
spicule cavity; v, ventricle; 1,2, ganglia on the visceral nerve cord; *, ganglion attached to the cerebral ganglion. Scale bars: A, C ¼ 400 mm;
B ¼ 150 mm; D ¼ 300 mm.
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pleural ganglion (Fig. 9B) clearly separated from cerebral
ganglion. Visceral nerve cord with only two large ganglia
(Fig. 9B), both at ends of visceral nerve cord next to pleural
ganglia. In one specimen three ganglia on visceral nerve cord.
No osphradial ganglion, no histologically differentiated osphra-
dium detected. Buccal ganglion (bg) just posterior to pharynx;
however, in 3D reconstruction shifted more anteriorly because
buccal apparatus was somewhat withdrawn in this specimen.
Small gastro-oesophageal ganglion (gog) dorsal to each buccal
ganglion.

Digestive system: Digestive system closely resembles that of
A. ater. Anterior pedal gland (apg) (Figs 8B, 9A) discharges
ventrally of mouth to exterior. Oral tube (ot) very short.
Radula (r) U-shaped (Fig. 9A, C), 900 mm long, within
muscular pharynx (ph) (Fig. 9C). Ascending and descend-
ing limbs almost equally long, each terminating in muscular
bulb. Radula formula 70 � 1.1.1, 26 rows of teeth on upper
ramus, 44 rows on lower one. Each radular row with tri-
angular rhachidian tooth and one lateral tooth on each side
(Fig. 10A). Lower ramus without any lateral teeth in oldest

Figure 10. SEM micrographs of the radula of Aiteng mysticus n. sp. A. Rows of radular teeth (anterior view). B. Right lateral teeth. C. Left lateral
teeth. D. Rhachidian teeth, right view; E. Rhachidian teeth, anterior view. Abbreviations: cc, central cusp; d, denticle; ld, lateral denticle; ltl, left
lateral tooth; ltr, right lateral tooth; n, notch; rh, rhachidian tooth; sd, small denticle. Scale bars: A, D, E ¼ 20 mm; B, C ¼ 6 mm.
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part, only c. 16 of youngest teeth of lower ramus bear
lateral teeth. Rhachidian tooth (Fig. 10D, E) with one large
central cusp (cc) with 7–9 thinner, pointed lateral denticles
(ld) on each side (Fig. 10D, E). All lateral denticles of
almost same size. Right lateral tooth (ltr) (Fig. 10B, D)
elongated plate-like with one prominent, pointed denticle
(d) on anterior margin and well-developed notch (n) on
posterior one, in which denticle of anterior lateral tooth fits.
Additionally, 4–6 small denticles (sd) (Fig. 10B) on inner
side of right lateral tooth. Left lateral tooth (ltl) (Fig. 1C)
with same shape as right one with one large denticle and
well-developed notch, but anterior margin with 12 or 13
small denticles (Fig. 1C) which look smaller and thinner
than on right side. Jaws absent. Oesophagus (oe) (Fig. 9C)
long, ciliated. Paired salivary glands (sgl) large (Figs 8B,
9A, C) with numerous small follicles reconstructed only in
part. Follicles connected by small ductules before uniting in
broad salivary gland ducts (sgd) (Figs 8B, 9C) that dis-
charge at posterior of pharynx. Digestive gland (dg)
(Figs 8A, 9A, C) ramified, extending to posterior end of
visceral sac, as in A. ater. Intestine (i) (Fig. 9C) densely
ciliated, short. Anus opens on right side of body posterior to
female gonopore into small mantle cavity.

Circulatory and excretory systems: Circulatory and excretory systems
dorsal to digestive system (Fig. 9A). Circulatory system with
one-chambered heart surrounded by thin-walled pericardium
(Figs 5B, 8A, 9A, D). Aorta and atrium not detected.
Renopericardioduct (rpd) (Figs 5B, 8A, 9D) well developed,
densely ciliated, connected to kidney (Figs 5B, 9D) with highly
vacuolated cells (Fig. 8A). Kidney is one anterior branch of
ramified dorsal vessel system (Fig. 5B); can be distinguished
only histologically; whereas dorsal vessels have very thin epi-
thelium (Fig. 8A) with minute vacuoles inside cells, kidney is
characterized by highly vacuolated tissue with large vacuoles.
Nephroduct and nephropore not detected.

Reproductive system: Reproductive system of A. mysticus not recon-
structed in 3D due to very compressed tissue; general anatomy
as in A. ater (Fig. 6). Reproductive system hermaphroditic,
special androdiaulic, ventral to digestive system. Ovotestis (ov)
with follicles united by small ductules discharging into pream-
pullary gonoduct. Ampulla large, tubular. Sperm heads short.
Receptaculum seminis absent or not developed in examined
specimen. Albumen gland with follicles, discharges into post-
ampullary gonoduct. Other nidamental glands very com-
pressed in examined specimens, cannot be distinguished clearly
from each other. Hermaphroditic duct bifurcates into internal
vas deferens and short oviduct. Bursa copulatrix large, splits off
oviduct. Bursal stalk connects to distal oviduct which opens
through female gonopore into small mantle cavity at right side
of body. Internal vas deferens subepidermally on right side of
body wall up to head, connects to glandular prostate; prostate
tubular, coiled. Ejaculatory duct muscular, arises anteriorly
from prostate, connects to slender penis lacking any armature.
Penis surrounded by thin-walled penial sheath. Male gonopore
opens to exterior on right side of body near eye. In one exam-
ined specimen spermatocytes (Fig. 8B, C) under notum on
right body side. Spermatocytes all directed with their heads to
body wall filling notum rim from head up to female gonopore.

Remarks: Autotomy is known from several nudibranch species
which detach their cerata, e.g. in Janolus (Schrödl, 1996),
and parts of their mantle (e.g. Discodoris sp.; Fukuda, 1994:
pl. 40, fig. 793) or even their whole mantle as in Berthella
martensi (see Rudman, 1998). However, autotomy of the foot
as in A. mysticus is only known from a few gastropods, such
as the vetigastropod Stomatella varia (see Taki, 1930) or the

sacoglossans Oxynoe panamensis and Lobiger serradifalci (see
Lewin, 1970).

Noteworthy is the triseriate radula of A. mysticus (and A. ater)
in which the lateral teeth are not present over the whole length
of the descending limb and only the youngest rows of the lower
ramus and the whole upper ramus bear lateral teeth. The
oldest, i.e. no more functional rows of the lower ramus consist
only of the rhachidian tooth. This phenomenon is unknown to
us and is not observed in any sacoglossan or acochlidian
species. The triseriate radula of the Acochlidia bears lateral
teeth in all tooth rows, although the lower limb is usually con-
siderably shorter than the upper limb (Schrödl & Neusser,
2010). If we imagine the oldest teeth rows (without lateral
teeth) eliminated in the aitengid species, the radula could be
perfectly an acochlidian one. On the other hand, nonshelled
sacoglossan species have smaller, preradular teeth in front of
the normal teeth rows (Jensen, 1996). However, the presence
of such preradular teeth in Aitengidae is not likely as the teeth
on the lower limb have the same appearance as the younger
teeth, only the central cusps are used and more worn.

Our observation of the spermatocytes situated in the notum
rim with their heads directed to the body wall in A. mysticus is
peculiar. This specimen had mature female glands and a filled
ampulla could not be detected, thus autosperm might have
been just released. If these spermatocytes were autosperm, the
question arises why they are situated under the notum rim;
perhaps autosperm were released accidentally when the animal
was disturbed, but in this case we would expect the spermato-
cytes unorientated rather than directing their heads to the
wall. Thus, it is probable that these spermatocytes are allos-
perm. As there is a penis in A. mysticus, sperm are perhaps
transferred by the copulatory organ and attached to the body
and not near or directly inside the genital pore by copulation.
Similarly, in the nudibranch Aeolidiella glauca a spermatophore
is attached to the mate’s body and sperm migrate externally
towards the gonopore (Haase & Karlsson, 2000; Karlsson &
Haase, 2002).

Molecular phylogeny: Two specimens of Aiteng mysticus from differ-
ent habitats on Miyako Island (Table 3) were found to share the
same COI sequence, supporting their conspecificity.
Independent of the combination of molecular markers A. ater
and A. mysticus always cluster together in a highly supported
Aitengidae clade (see Fig. 11 for ML tree based on the 28S þ
COI þ 16S dataset; trees from other gene combinations not
shown). In all analyses Aitengidae cluster outside of the well-
supported monophyletic Sacoglossa and within acochlidian
Hedylopsacea. Their position within Hedylopsacea, however,
varies according to the different genes combined for analysis: in
18Sþ 28S and 18S þ 28Sþ COI trees Aitengidae form the
sister group to a clade uniting marine and brackish
Pseudunelidae with limnic Acochlidiidae (trees not shown).
When 16S is included in the dataset Aitengidae form the sister
group to all remaining Hedylopsacea (Hedylopsidae,
Pseudunelidae and Acochlidiidae). Monophyly of Acochlidia
(uniting Microhedylacea and Hedylopsacea) is poorly supported
and in some analyses not recovered at all due to pulmonate taxa
separating both clades (e.g. Glacidorbis or Hygrophila). This may
be a result of the taxon set that was selected to cover acochlidian
and sacoglossan families, rather than to comprehensively rep-
resent all other major euthyneuran groups, as done by Jörger
et al. (2010). Acochlidian relationships recovered in the present
study are congruent with a previous morphology-based hypoth-
esis (Schrödl & Neusser, 2010), only the paraphyly of Ganitidae
is surprising. The Sacoglossa form a well-supported clade in all
analyses, with a division into shell-bearing Oxynoacea (includ-
ing Cylindrobulla) and shell-less Plakobranchacea, with
Platyhedylidae as most basal offshoot. Internal sacoglossan
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relationships slightly differ between the different analyses and
resolved clades within Plakobranchacea are not entirely congru-
ent with previous morphological analyses (Jensen, 1996).

DISCUSSION

Aitengid taxonomy

Our specimens from Japan can be clearly distinguished from
Aiteng ater from Thailand by the habitat, the external mor-
phology, the internal anatomy and perhaps by their feeding
habits. Aiteng ater inhabits a dense mangrove forest high in the
intertidal, which is not covered by the sea during high tides

(Swennen & Buatip, 2009), but the specimens are always
associated with small pools of water in the mud. In contrast,
Aiteng mysticus n. sp. from Japan is found on rocky shores in the
upper intertidal in tiny crevices of small sea caves that are
usually wet by sea water; or, it is found in a brackish area
neighbouring a mangrove swamp on the underside of large,
wet rocks deeply embedded in mud in the upper intertidal
zone. Although these various habitats are quite different, they
all provide a wet and shaded environment without direct
exposure to sunlight. Furthermore, both species show a higher
activity during the night.
The external morphology of A. ater is quite different from

that of A. mysticus: the body size of A. ater is 8–12 mm
(Swennen & Buatip, 2009) whereas mature specimens of
A. mysticus are smaller with a body length of 4–6 mm. The
living coloration of A. ater is grey-black (Swennen & Buatip,
2009), but brownish or pale in A. mysticus.
The internal anatomy is different in nearly all organ

systems. At the present stage of knowledge we do not consider
the absence/presence of the tiny Hancock’s nerve or the small
additional ganglion attached to the cerebral ganglion as suit-
able for species identification, as these tiny structures can be
easily overlooked. However, the number of ganglia on the visc-
eral nerve cord differs more clearly between the species: two or
three in A. mysticus, but (at least) four in A. ater. The digestive
system is very similar in both aitengid species, but with great
differences in radular structure: whereas the rhachidian tooth
in A. ater has one large, projecting central cusp with up to 20
lateral denticles on each side, in A. mysticus there is one large
central cusp with 7–9 thinner, pointed lateral denticles on
each side. Furthermore, the lateral denticles are smaller in the
A. ater and the distance between them increases towards the tip
of the central cusp, whereas in A. mysticus they are larger and
evenly spaced. The right lateral teeth in both species bear one
pointed, well-developed denticle; in A. ater there are 10–15
very small denticles on the anterior margin, whereas A. mysticus
has only 4–6 small denticles, which are considerably stronger
than those of the species from Thailand. Additionally, there is
an emargination on the posterior margin of the inner side of

Table 6. Comparison of characteristic sacoglossan and acochlidian
features with those of Aitengidae.

Sacoglossa Acochlidia Aitengidae

Retractibility of the

head

2 + +

Calcareous spicules 2 + +
CNS Postpharyngeal Prepharyngeal Prepharyngeal

Cerebral and pleural

ganglia separated

2 + +

Radula Uniseriate Triseriate Triseriate

Ascending and

descending limb

+/2 + +

Ascus + 2 2

Branched digestive

gland

+/2 +/2 +

Cephalic tentacles 2 + 2

Dorsal vessel system +/2 2(+) +
Albumen gland follicled + 2 +

+, present; 2, absent.

Figure 11. Maximum-likelihood tree generated with RAxML based on the concatenated 28S þ COI þ 16S dataset, clustering monophyletic
Aitengidae basal within Hedylopsacea (bootstrap values .50% given above nodes) Pseudunela sp. ¼ P. marteli Neusser et al., 2011.
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the right lateral teeth in A. ater, which is absent in the
Japanese species. There are great differences in the left lateral
teeth: whereas there are two well-developed, pointed denticles
without small denticles on the anterior margin in A. ater, there
is only one large denticle but accompanied by 12 or 13 small
denticles in A. mysticus.

The circulatory and excretory systems show major differences
between the two species. Whereas a well-developed two-
chambered heart is present in A. ater, we could only detect a
one-chambered heart in A. mysticus; however, the epithelium of
the pericardium and the atrium is very thin and both organs
may collapse artificially. Thus, we do not consider the absence
of an atrium as species-specific yet. The thin epithelium of the
dorsal vessel system with small vacuoles looks histologically
similar in both species. However, in A. ater the renopericardio-
duct connects to a widened lumen of the dorsal vessels, while
in A. mysticus it is connected to a kidney. The latter is an
anterior branch of the dorsal vessel system, but looks histologi-
cally very different and shows the characteristic tissue of the
kidney with large vacuoles. Concerning the reproductive
system we could not detect major differences between the two
aitengid species.

The morphological and anatomical differences found in our
study are paralleled by the molecular results, which show that
our Japanese specimens belong to the family Aitengidae, but
are distinct from A. ater. In all analyses A. ater and A. mysticus
formed a highly supported clade (bootstrap 100%). Genetic
similarities between the two Aiteng species are 89% in 16S
rRNA and 85% in COI sequences.

Sacoglossa or Acochlidia?

Aiteng ater was described with an unusual mix of sacoglossan
and acochlidian characters and the authors doubtfully
suggested a sacoglossan relationship. A comparison of sacoglos-
san and acochlidian features is given in Table 6. Our results
show that only a few characters remain that indicate a closer
relationship to Sacoglossa: (1) the absence of any cephalic
tentacles similar to e.g. the semi-terrestrial Gascoignella aprica
(Jensen, 1985) or Platyhedyle denudata (Rückert, Altnöder &
Schrödl, 2008); (2) the presence of an elysiid-like system of
dorsal vessels, as in Elysia (Marcus, 1982; Jensen, 1996); (3) the
albumen gland consisting of follicles as e.g. in the limapontioid
Hermaea (Jensen, 1996). There are two ambiguous characters
that are characteristic of at least some sacoglossan and acochli-
dian species: (1) the radula with an ascending and a descending
limb present in all acochlidian species known in detail (Neusser
et al., 2006, 2009a, b; Neusser & Schrödl, 2007, 2009; Jörger
et al., 2008; Brenzinger et al., 2010) and e.g. in the sacoglossan
Ascobulla (Jensen, 1996); (2) the branched digestive gland
which has been reported from the limnic Acochlidium fijiense,
A. amboinense and Palliohedyle weberi (Bergh, 1895; Bücking,
1933; Haynes & Kenchington, 1991) and which is present e.g.
in the sacoglossan Limapontia and Hermaea (Jensen, 1996).

Finally, aitengids resemble acochlidians by (1) retractibility
of the head; (2) presence of calcareous spicules; (3) prepharyn-
geal nervous system; (4) separated cerebral and pleural
ganglia; (5) triseriate radula; (6) absence of a sacoglossan-like
ascus; and (7) the “special androdiaulic reproductive system”
(Schrödl, et al., 2011) as present in Tantulum elegans, Pseudunela
cornuta and P. espiritusanta (Neusser & Schrödl, 2007, 2009;
Neusser et al., 2009a). Furthermore, the large, laterally situated
eyes of Aitengidae closely resemble the anatomy in members of
the large, limnic acochlidian family Acochlidiidae (e.g. in
Strubellia paradoxa) (Brenzinger et al., 2010); as well as the pro-
minent rhachidian tooth of members of Aitengidae, which is
used to pierce insects and pupae in A. ater and for piercing
neritid egg capsules in Strubellia (Brenzinger et al., 2011). The

case for the originally suspected sacoglossan relationship of
Aiteng is clearly weakened and, based on our morphological
results, the affinity to Acochlidia, in particular to limnic
Acochlidiidae, is more evident. Morphological features alone,
however, might not be sufficient to reveal correctly the sys-
tematic relationships of aberrant species inhabiting special
habitats (see e.g. Schrödl & Neusser, 2010). Thus, supporting
molecular evidence is needed.

In a recent multilocus molecular analysis, A. mysticus (as
Aitengidae sp.) also clusters within hedylopsacean Acochlidia
(Jörger et al., 2010); however, only a single aitengid species and
single representatives of acochlidian families were included.
Here we present a focused taxon sampling for Acochlidia and
Sacoglossa and new sequence data for A. ater. Acochlidian
rather than sacoglossan relationships for Aitengidae are again
supported. Their position within Hedylopsacea, however,
cannot be ascertained at the present stage of knowledge, differ-
ing depending on the molecular markers included: they are
sister to a clade of marine/brackish Pseudunelidae and limnic
Acochlidiidae in analysis of 18S þ 28S (with or without COI);
but sister to all remaining Hedylopsacea when 16S is included
(see Fig. 11). A hedylopsacean origin of Aitengidae reflects
morphological similarities discussed above. Any inner acochli-
dian origin would, however, imply that Aitengidae have lost
the most characteristic acochlidian apomorphy (Sommerfeldt
& Schrödl, 2005; Schrödl & Neusser, 2010), which is the subdi-
vision of the body into a headfoot complex and a free,
elongated visceral hump. Furthermore, the absence of cephalic
tentacles gives the Aitengidae a compact external appearance
that is very different from other marine or limnic Acochlidia.

Habitat shift

The question is whether or not these external differences
between Aitengidae and other Acochlidia, and perhaps also
some peculiar anatomical features, might be evolutionarily
related to the habitat shift from an ancestrally aquatic to an
amphibious lifestyle.

The cephalic head appendages and the free, elongated visc-
eral sac of ‘normal’ aquatic acochlidian species are supported
in shape while under water, but in air, e.g. during collecting,
they collapse to an amorphous mass. Obviously, elongate head
appendages on land should be hydrostatic and/or provided
with muscles as in terrestrial stylommatophoran pulmonates,
or must be reduced. Following the putative acochlidian
relationship of Aitengidae, this implies that in Aiteng the ances-
tral rhinophores (as e.g. in the marine acochlidians Pontohedyle
milaschewitchii and Ganitus evelinae; Marcus, 1953; Jörger et al.,
2008) were lost, and labial tentacles became short lobes that
fused to a velum. The compact body shape of aitengids with a
short stout head might be also interpreted as an adaptation to
an amphibious lifestyle, with the visceral hump connected to
the foot on all its length guaranteeing better stability and
minimizing the body surface.

Calcareous spicules in the connective tissue are already
present in aquatic acochlidians, and in aitengids spicules are
present but do not build an elaborate skeleton. However, the
notum of aitengids shows a unique layer of large, vacuolated
supporting cells. This layer almost certainly contributes to a
more stable and robust body shape in Aitengidae. Probably
the notal layer also provides some mechanical protection as
well as protection from desiccation. By analogy, the sea slug
Corambe shows a thickened protective notum that, however,
hinders the diffusion of oxygen through the notal tissue and
thus likely induced the multiplication of hyponotal gills
(Martynov et al., 2011; Martynov & Schrödl, 2011). Despite
the presence of the special notal supporting cell layer in Aiteng,
the diffusion of oxygen is probably sufficient when animals are
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exposed to air. If submerged for a long period, the compact
gill-less animals may have a problem. Under any conditions,
cells of the body wall need to be supplied with oxygen and
other substances, and waste removed. We speculate that these
and perhaps other functions might be carried out by the dorsal
vessel system lying directly below the supporting cell layer,
extending in fine ramifications to the notum border. Thus, the
presence of the thin-walled dorsal vessel system of the
Aitengidae, which is a modified portion of the kidney, is
assumed to enhance respiratory, secretory and excretory pro-
cesses in a secondarily amphibious lineage and, as such, might
also be explained by the habitat shift.

Similar dorsal vessels exist in elysiid and some other non-
shelled sacoglossans. Jensen (1992) assumed an excretory or
osmoregulatory function, but also discussed a possible hom-
ology with the gills of the shelled sacoglossan species; so far
neither cellular structures of sacoglossan dorsal vessels, nor the
connections to the circulatory or excretory system, nor hom-
ologies with e.g. atrial, pericardial or renal tissue have been suf-
ficiently explored. Accepting the phylogenetic distance between
aitengids and elysiids, these vessel systems evolved convergently.
Dorsal vessels have been discussed earlier as a ‘negative gill’ in
sacoglossan species having functional kleptoplasts, i.e. species in
which an excess of the oxygen produced must be transported
away from the tissue (Jensen, 1996, and references therein).
However, Aitengidae do not incorporate and maintain active
plastids as do some sacoglossan species (Wägele et al., 2011) and
therefore such a function is not imaginable in Aiteng.

The dark body coloration of aitengid species might be a pro-
tection from UV radiation to which these species could be
exposed, in contrast to other acochlidian species which live
hidden in sand or under stones. This coincides with the mostly
nocturnal activity of Aitengidae preventing an excessive
exposure to sunlight.

Regarding acochlidians, Bücking (1933) reported vessels
emerging from the heart bulb and extending over the whole
dorsal surface of the visceral sac in the limnic Acochlidium amboi-
nense and suggested a respiratory function. Wawra (1979)
observed vessel-like structures in Palliohedyle sutteri. However,
both observations were based on preserved specimens only.
Other limnic Acochlidiidae, such as A. fijiense and A. bayerfehl-
manni were described to lack any vessels (Wawra, 1980; Haynes
& Kenchington, 1991). Preliminary re-examinations of
A. amboinense and A. bayerfehlmanni show both species to possess
a dorsal vessel system that is, however, less ramified than in
aitengids (own unpublished data). Thus a histological survey
on all known Acochlidiidae is necessary to confirm the pres-
ence or absence of dorsal vessels and to clarify the homology
and the function of such vessels in the large limnic
Acochlidiidae. Only if they are part of the excretory rather
than circulatory system, could acochlidiid and aitengid dorsal
vessels be synapomorphic and thus support a sistergroup
relationship, as suggested by further potential morphological
apomorphies and some molecular analyses discussed above.

Finally, the habitat shift might induce a change in the
feeding habits. While the prominent rhachidian tooth in
Strubellia is used to feed on neritid egg capsules (Brenzinger
et al., 2011), other molluscan eggs might not be available in
the new habitat outside the water, but instead insects and
pupae as in the case of Aiteng ater. The food source of Aiteng
mysticus was not observed in the field. This species can be found
frequently on intertidal algae, but shows no sign of feeding on
algae. Furthermore, its pale coloration argues against any food
containing plastids. Although the rhachidian tooth of A. mysti-
cus is not as prominent as in A. ater, a grazing feeding habit is
not likely. We assume that the food resource of A. mysticus is
present on the algae and might consist of animal eggs or pupae
similar to its congener from Thailand.

Conclusion

Aitengidae are small but highly specialized amphibious slugs,
now known from two species from the Indian and Pacific
Oceans. Traditional morphological means such as dissections
and light microscopy gave a glimpse of the acochlidian
relationship of Aiteng ater. Applying 3D-reconstruction
methods to soft parts and SEM radula examinations substan-
tially supplement and refine the original description of A. ater
and reveal several putative apomorphies indicating the aco-
chlidian nature of Aitengidae. Molecular data additionally
support Aitengidae clustering within Acochlidia as a more or
less basal offshoot of Hedylopsacea, implying a switch from
aquatic to amphibious lifestyle. Considerable external dissimi-
larities and even aberrant anatomical structures such as the
layer of vacuolated notal cells and the kidney that is modified
into a highly ramified system of dorsal vessels can be
explained as aitengid autapomorphies that evolved (or
further elaborated) during that habitat shift. Surveying tropi-
cal slug diversity in different, not only aquatic, habitats may
reveal further and perhaps even more specialized and aber-
rant creatures. Integrating biological observations such as
‘bug-eating’ with (micro)morphological and genetic data
allows us to reconstruct an evolutionary scenario that turns a
‘mysterious slug’ into an instructive and amazing example of
animal evolution.
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NEUSSER, T.P. & SCHRÖDL, M. 2009. Between Vanuatu tides: 3D
anatomical reconstruction of a new brackish water acochlidian
gastropod from Espiritu Santo. Zoosystema, 31: 453–469.

POSADA, D. 2008. jModelTest: phylogenetic model averaging.
Molecular Biology and Evolution, 25: 1253–1256.

RICHARDSON, K.C., JARETT, L. & FINKE, E.H. 1960.
Embedding in epoxy resins for ultrathin sectioning in electron
microscopy. Stain Technology, 35: 313–323.
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