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Methods to assess vitamin B12 bioavailability and technologies
to enhance its absorption

Alex Brito, Edwin Habeych, Irma Silva-Zolezzi, Nicola Galaffu, and Lindsay H. Allen

Vitamin B12 (B-12) deficiency is still relatively common in low-, medium-, and high-
income countries, mainly because of dietary inadequacy and, to a lesser extent,
malabsorption. This narrative review is based on a systematic search of evidence
on methods to assess B-12 bioavailability and technologies to enhance its absorp-
tion. A total of 2523 scientific articles identified in PubMed and 1572 patents identi-
fied in Orbit Intelligence were prescreened. Among the reviewed methods,
Schilling’s test and/or its food-based version (using cobalamin-labeled egg yolk)
were used for decades but have been discontinued, largely because they required
radioactive cobalt. The qualitative CobaSorb test, based on changes in circulating
holo-transcobalamin before and after B-12 administration, and the 14C-labeled B-
12 test for quantitative measurement of absorption of a low-dose radioactive tracer
are currently the best available methods. Various forms of B-12 co-formulated with
chemical enhancers (ie, salcaprozate sodium, 8-amino caprylate) or supplied via
biotechnological methods (ie, microbiological techniques, plant cells expressing co-
balamin binding proteins), encapsulation techniques (ie, emulsions, use of chitosan
particles), and alternative routes of administration (ie, intranasal, transdermal ad-
ministration) were identified as potential technologies to enhance B-12 absorption
in humans. However, in most cases the evidence of absorption enhancement is
limited.

INTRODUCTION

Vitamin B12 (B-12) is an essential vitamin that humans

must ingest through dietary sources, including supple-

ments or fortified food. In nature, B-12 is only present

in food from animal sources.1 Biochemical data indicate

that the global prevalence of B-12 deficiency (based on

combined low [<148 pmol/L] and marginal [148–

221 pmol/L] serum/plasma B-12 values) varies widely,

with some countries having rates that exceed 40%.2

Infants, young children, women of reproductive age,

pregnant and lactating women, vegetarians, and the

elderly are groups at higher risk.2 Maternal B-12 deple-

tion or low B-12 intake during pregnancy and/or lacta-

tion increases the risk of delayed development in the

offspring. This problem is exacerbated when depleted

mothers exclusively breastfeed because of the low con-

centration of B-12 in their milk.3 Older adults are at

higher risk of deficiency due to physiologically impaired

absorption associated with aging.4

B-12 is essential for normal erythropoiesis and

neurological functions. In the cytoplasm, B-12 partici-

pates in the conversion of homocysteine to methionine,

a precursor of the universal methyl group donor,
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S-adenosylmethionine.4 Thus, B-12 is required for

methyl group turnover during the synthesis of creatine,
phospholipids, proteins, lipids, neurotransmitters, and

deoxyribonucleic and ribonucleic acids.4 B-12 is also a
cofactor in the intramitochondrial conversion of

methylmalonyl-CoA to succinyl-CoA catalyzed by
methylmalonyl-CoA mutase.4 Considering the key role
of B-12 in these metabolic processes, the importance of

optimal status is not limited to the hematological and
neurological domains but also involves general health,

including energy utilization and the prevention of neu-
ral tube defects.2,3 Biochemically, B-12 deficiency

is usually characterized by low concentrations of the
circulating serum B-12 and holo-transcobalamin

(holoTC), accompanied by elevated total homocysteine
in plasma and elevated methylmalonic acid in serum

and urine.5 As with other micronutrient deficiencies,
the best approach to reduce the prevalence of B-12 de-

ficiency is to ensure consumption of a healthy bal-
anced diet. Low intake of food from animal sources is

common in most developing countries because of
poor accessibility, high cost, or cultural-religious

beliefs.1 As a result, B-12 supplementation programs
and fortified products that target vulnerable popula-

tions could substantially reduce the prevalence of this
deficiency. However, effectiveness of these approaches

is conditioned by several factors, including the vita-
min dose, bioavailability from the food source or de-

livery vehicle, frequency of supplementation, and the
health and social conditions of the targeted

population.6

Several endogenous and exogenous factors have

been shown to profoundly affect B-12 absorption,7 in-
cluding genetic or acquired diseases that result in de-

creased production of intrinsic factor (IF),8 atrophic
gastritis, and malabsorption due to long-term chronic

infection with Helicobacter pylori and/or bacterial over-
growth in the small intestine.9–13 Gastrointestinal mal-

absorption due to inflammatory bowel disease,14 celiac
disease, tropical sprue, bypass or extensive resection of
the ileum,15 total or partial gastrectomy16; and parasitic

infestations (eg, Diphyllobothrium latum, Giardia lam-
blia) are also recognized factors affecting B-12 absorp-

tion. Zollinger-Ellison syndrome and exocrine
pancreatic insufficiency are rare causes of B-12 malab-

sorption caused by low pH in the small intestine and
impaired degradation of transcobalamin-I by pancreatic

enzymes.17 Finally, B-12 malabsorption may also be iat-
rogenic (eg, caused by the use of gastric acid suppres-

sion medications that impair the release of B-12 from
food).18,19

B-12 deficiency may be accompanied by high folate
status because of mandatory folic acid fortification of

flour in many countries.20 A negative biochemical

interaction between high serum folate and biomarkers

of B-12 status has been reported in the National Health

and Nutrition Examination Survey and other studies
that were mainly conducted in the elderly.21–26 In addi-

tion, some studies have found a negative association be-

tween high folate/low B-12 status and cognitive

impairment, anemia, and slower nerve conductivity.21–

26 Of particular concern are women during the perina-

tal period, when future mothers may be exposed to

higher amounts of folic acid because of the potential

combination of mandatory fortification and folic acid
supplementation. For example, in India the prevalence

of insulin resistance was higher in offspring from moth-

ers with low serum B-12 (<160 pmol/L) and high red

blood cell folate (>1144 vs 807 nmol/L) during preg-
nancy, as found in the Pune Maternal study.27

Concerns about excessive folic-acid exposure have also

been extended to associations with unmetabolized folic

acid, which increases when folic-acid intakes are high.28

These interactions remain controversial, and random-
ized controlled trials are needed to substantiate any ad-

verse effects of high folic-acid intake on B-12 status and

function. Meanwhile, it is sensible to ensure adequate

B-12 intake, absorption, and status, particularly in
countries with mandatory folic-acid fortification, where

supplementation of folic acid is also common practice

across the population and in individuals at risk of B-12

deficiency.
B-12 bioavailability has been studied for decades,

and some technologies to enhance the absorption of B-

12 have been developed. However, there is uncertainty
about the efficacy of different methods, and there has

been no critical discussion of existing technologies for

measuring and enhancing absorption. This work pro-

vides a critical review of the available literature on
methodologies to study B-12 bioavailability and tech-

nologies to enhance its absorption.

Mechanisms of B-12 absorption: key for
methodological and technological development

Active absorption starts when B-12 is released from
food and is bound by salivary transcobalamin-I (hapto-

corrin) (Figure 1).29 Simultaneously, gastric parietal

cells produce hydrochloric acid and IF stimulated by

histamine, gastrin, and acetylcholine.30 In the stomach,
haptocorrin protects B-12 from acid degradation, but

once in the duodenum, the protein is partially degraded

by pancreatic trypsin favoring transfer to IF, which is

more resistant to proteolysis. The distal ileum is the pri-
mary absorption site of the B-12–IF complex, which is

taken up via receptor-mediated calcium-dependent ac-

tive transport. The complex binds to the cubam recep-

tor (consisting of cubilin and a receptor-associated
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protein).18,31,32 Upon its internalization within the ileal
enterocyte, IF is degraded in lysosomes, releasing the

free B-12. Subsequently, B-12 is either metabolized to
its active cofactor forms for use within the enterocyte or

transferred into the portal circulation by the ABC drug
transport protein ABCC1 (also known as multidrug re-

sistance protein 1) The free cobalamin binds to unsatu-
rated transcobalamin II (TC) and is transported as

holoTC in serum, from which it is taken up by cells.33

Uptake of the TC–B-12 complex into tissues occurs by
receptor-mediated endocytosis. HoloTC is then de-

graded in lysosomes, releasing B-12 to be further con-
verted to its cofactor forms. Between 0.5 and 5.0 mg of

B-12 is excreted in bile per day. This biliary B-12 is
readily reabsorbed across the ileal enterocyte, and thus

enterohepatic circulation represents a mechanism by
which B-12 is recycled in the body.2 A small fraction of

overall B-12 absorption (�1%–2% of an oral dose)

Figure 1 Vitamin B12 absorption. Active absorption of dietary B-12 in humans is a complex, multistep process. First, B-12 is released from
food proteins by proteolysis in the acidic stomach and bound to salivary haptocorrin, which protects B-12 from acid degradation. Second, the
B-12–haptocorrin complex is degraded due to the action of pancreatic trypsin and then binds to intrinsic factor (IF), a glycoprotein produced
by the gastric parietal cells (that secreted hydrochloric acid) upon stimulus by histamine, gastrin, and acetylcholine. Third, the B-12–IF com-
plex enters the mucosal cells in the distal ileum by cubam receptor–mediated endocytosis. Fourth, after internalization within the ileal entero-
cyte, the IF–B-12 complex enters lysosomes in which IF is degraded. Then, the B-12 is either metabolized to its active cofactor forms for use
within the enterocyte or processed for release into the portal circulation. Abbreviations: HCl, hydrochloric acid; IF, intrinsic factor.
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occurs by passive diffusion.2 This pathway is inefficient

but important, especially in populations with low or

zero IF (eg, gastrectomized patients). Passive absorption

of B-12 also occurs in mucous membranes when it is

administered into the nose.34

METHODOLOGY

Identification and selection of studies and patents

A systematic search of scientific articles complemented

by an exhaustive search of published patents was con-

ducted in June 2017 and revised in July 2017. Evidence

regarding B-12 absorption, B-12 bioavailability, and

technologies to enhance the absorption of B-12 was

considered. Combinations of the terms (“vitamin B-12”

OR “vitamin B12” OR “cobalamin”) AND

(“bioavailability” OR “absorption”) were used in

PubMed. In addition, commercial websites were

assessed to identify potential sources of information.

The exhaustive search of patents was done in Orbit

Intelligence (Paris, France), an integrative database for

intellectual and industrial property. Patents were se-

lected using a search engine based on the combination

of the following keywords: “vitamin B-12” OR “vitamin

B12” OR “cobalamin”; “absorbed” OR “absorption” OR

“digestion” OR “bioavailability” OR “uptake”;

“microorganism” OR “probiotic” OR “lactobacilli” OR

“reuteri” OR “gasseri” OR “bifidobacter” OR “longum”

OR “bifidus.” Patent classes A23L1–C12N were consid-

ered for identification of food particles and the use of

microorganisms or enzymes in the formulation. The

figure was plotted using Adobe Illustrator version 11.0

(Adobe System, San Jose, CA, USA).35

Eligibility criteria and study selection

The majority of the evidence reported in this review

was based on intestinal absorption of B-12, with a lim-

ited number of publications focused on absorption by

nonintestinal routes. This review considered any evi-

dence relevant to the development of methodologies to

assess B-12 bioavailability and technologies to enhance

B-12 absorption regardless of absorption route. In vivo

and in vitro studies were included; studies conducted in

humans, animals, or cells were also considered. In the

case of clinical human studies, those that focused of ap-

plication of methods to assess B-12 absorption in pa-

thologies were excluded, unless the information was

relevant to the context of methodological or technologi-

cal development. Studies were not excluded based on

language or year of publication.

RESULTS AND DISCUSSION

A total of 2523 studies were identified in PubMed. After

exclusion of 2225 studies because the information was

not eligible or relevant for the present review, 298 stud-

ies were initially selected. After in-depth review of the

titles and abstracts, an additional 188 studies were ex-

cluded, leaving 75 studies focused on methods and 35

studies focused on technologies. Finally, 72 studies for

methods and 26 for technology were included in the re-

view after further exclusions as well as inclusions of

references recommended by experts in the field and 1

patent found for methods (Figure 2A). A total of 1572

patents were identified in Orbit Intelligence, 1113 of

which were excluded after checking eligibility criteria.

From this total of 459 early selected patents, 42 were se-

lected for final inclusion, after exclusion of those not

relevant (Figure 2B).

Methods to measure vitamin B12 absorption

Schilling’s test, the egg-yolk cobalamin absorption test,

the CobaSorb test, and the use of 14C-labeled B-12 are

the main methods used to assess B-12 absorption.

Table 1 summarizes these methods.

Assessment of bioavailability using colabeled B-12 and

Schilling’s test for malabsorption. The first attempts to

quantify B-12 absorption were conducted several deca-

des ago.36 Pioneering work used B-12 radioactively la-

beled with 57Co, 58Co, or 60Co with 1–100 nanocuries

(nCi).37–47 The most common approach consisted of

giving individuals a dose of labeled B-12 and calculating

absorption based on recovery of the unabsorbed isotope

in urine and/or feces.48–57 An alternative third approach

that involves performing serum counting of the isotope

has been proposed.42,58–61 Among these different meth-

ods, the Schilling’s test, which is described in detail be-

low, has received the most attention and application.

The Schilling’s test was the gold-standard test used

for decades to detect defective B-12 absorption, espe-

cially in patients with B-12 deficiency, and to diagnose

malabsorption in the elderly. The multiple-stage

method was developed by Professor Robert F.

Schilling62–66 and tested in both humans and animals.67

In the first stage of the method, oral administration of

radiolabeled B-12, usually as 57Co or 58Co, was followed

an hour later by a 1-mg intramuscular dose of unlabeled

B-12 that aimed to saturate blood transport of B-12 and

ensure that a measurable amount of isotope appears in

the urine during the first 24 hours.62 If < 10% of the

oral dose appeared in urine, the diagnosis was malab-

sorption. In the second stage, if abnormal absorption

was found, the test was repeated with the addition of a
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Figure 2 Systematic search. A, Systematic search of methods and technologies in PubMed. B, Systematic search of patents for technologies
in Orbit Intelligence.

Table 1 Methodologies to measure vitamin B12 absorption
Method General description Advantages Limitations

Schilling’s test Tests based on oral administration
of radioactive B-12 labeled
mainly with 57Co and/or 58Co.
An intramuscular dose (1 mg) of
unlabeled B-12 is given 1 h later,
and urine radioactivity is mea-
sured during the first 24 h. If
<10% of the oral dose appears
in urine, this is defined as diag-
nosing malabsorption.
Repetition of the test is sug-
gested with IF to diagnose per-
nicious anemia

Mainly used to diagnose malab-
sorption in the elderly or in per-
nicious anemia

Widely used in the past in clinical
practice

Provides a qualitative estimate of
B-12 absorption

Requires exposure to radioactivity
In its simplest form does not

assess absorption from B-12
in food

Need to collect a complete urine
sample for 24 h (often difficult in
elderly people)

Not currently used due to lack of
availability of radiolabeled B-12
required for the test, high cost,
difficulty for patients

The egg-yolk cobala-
min absorption test

Modification of Schilling’s test, by
mixing the labeled B-12 with
albumin, egg yolk, or chicken

Most often used in clinical
investigations

Same limitations as Schilling’s
test except that it can detect
malabsorption of the vitamin
bound to food

CobaSorb test By giving 3 9-mg doses of crystal-
line B-12 in water over the pe-
riod of 24 h and measuring the
increase in serum holoTC on the
following day, malabsorbers can
be detected

Detection of B-12 malabsorption
Useful for determining if patients

will respond to low-dose B-12
supplements or require treat-
ment with pharmacological doses

Readily available for diagnostic or
research use

Qualitative assay. It measures rela-
tive absorption but does not
provide a quantitative estimate
of bioavailability

The test cannot be used once the
patient is treated with B-12

14C-labeled B-12 Biotechnological production of
14C–B-12. Measurement of the
isotope excreted in urine and
feces by accelerator mass
spectrometry

Very low dose of radioactivity
Quantitative estimate of the

percentage absorbed
Test for food-bound absorption or

crystalline form

Not yet been developed into a
clinical test

Abbreviations: C, carbon; CO, cobalt; holoTC, holo-transcobalamin; IF, intrinsic factor.
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dose of oral IF mixed with water.68 If the second urine

collection contained > 10% of the oral dose, this was a
sign of poor IF production and led to the identification

of probable pernicious anemia.69 For confirmation of
pernicious anemia, an augmented Schilling’s test was

proposed by which patients who failed to respond to
the standard test received 8 times the conventional

dose.70 Many modifications and alternatives have been

proposed through the years, including giving different
cobalt radioisotopes, usually 57Co and 58Co, at the same

time and thus only requiring a single radioactive urine
collection (a double-isotope technique)71–76; using la-

beled B-12 co-ingested with antibiotics to identify
patients with bacterial overgrowth; and providing la-

beled B-12 with pancreatic enzymes to identify patients
with pancreatitis.77 Validation of Schilling’s test was a

topic of interest,78–80 often used for comparative pur-

poses against other methods of assessing absorption.
For example, an effort to introduce an unlabeled B-12

technique failed after comparison with Schilling’s test.81

An alternative to Schilling’s test was the fractional

B-12 absorption test “FAB12,” a double-isotope tech-
nique that included the addition of carmine powder,
51Cr-chromic chloride, and a single stool sample test, as
well as a complete stool collection.82,83 The fractional B-

12 absorption test based on a single stool sample that
had the highest content of 51Cr (corresponding to the

most carmine-colored stool) correlated closely with the

fractional B-12 absorption test based on complete stool
collection.82,83 Nowadays, Schilling’s test and alterna-

tives methodologies, such as the double-isotope
Schilling’s test for measuring absorption of food-bound

and free B-12 simultaneously,84 have virtually disap-
peared from standard clinical practice. The main rea-

sons for this are 1) difficulties implementing the tests,
including failure of the simpler standard Schilling test

to detect food-bound B-12 malabsorption; 2) lack of

availability of radiolabeled B-12; 3) the need to dose
with radioactivity and to accurately collect patient’s

urine for 24 hours; and 4) high cost.

Egg-yolk cobalamin absorption test. Schilling’s test was
usually performed with B-12 in its crystalline form

without considering the food matrix effect. However, to

detect food cobalamin malabsorption, the test was mod-
ified by mixing labeled B-12 with egg yolk (the egg-yolk

cobalamin absorption test). Other proteins such as albu-
min,85 chicken serum, or chicken meat were also used,

but egg yolk was most predominant. This approach was
used frequently in clinical research studies.86,87

CobaSorb test for cobalamin malabsorption. The
CobaSorb is one of the most advanced and reliable tests

available for diagnosis of B-12 malabsorption. This

qualitative assay is based on the analysis of cyanocobala-

min carried as holoTC (the active form of B-12) in se-
rum before and after oral intake of the vitamin.88 This

test is the most readily available for diagnostic or re-
search use.88,89

Lindgren and coworkers90 demonstrated that
holoTC is a sensitive marker of cobalamin malabsorp-
tion by showing a high correlation between cobalamin

malabsorption and holotTC in patients with low levels
of holoTC (< 35 pmol/L). Later, Bor and collaborators91

also showed that holoTC concentrations (and TC satu-
ration) reflected B-12 absorption better than serum B-

12 levels because holoTC concentrations and TC satura-
tion produced a higher increase than serum B-12 after

oral administration of 3 high physiological doses (9 mg)
of B-12.

The CobaSorb test was further performed in
patients with inherited malabsorption of B-12 attribut-

able to Imerslund-Gr€asbeck syndrome or with IF defi-
ciency, their heterozygous biological parents, and

healthy controls.92 Three 9-mg doses of B-12 were given
orally at 6-hour intervals, and serum B-12 and holoTC

were measured 24 hours after the last dose was given.
In the patients, there were no changes in B-12 or

holoTC after the B-12 load, whereas in controls there
were increases in B-12 and holoTC.92 Thus, the

CobaSorb test was able to confirm that holoTC was the
best marker for reflecting B-12 absorption.93 The per-

formance of the test was evaluated using a cutpoint for
holoTC or B-12 of < 75% percentile of healthy absorb-

ers. Changes were well-reflected by an increase in
holoTC after 2 days of administration of oral B-12.93

Further assessments included the optimal timeline for
B-12 administration and the magnitude and patterns of

change in the postabsorption response of holoTC to
oral B-12.94 Healthy adults with normal B-12 status

were given the 3 9-mg doses of B-12 at 6-hour intervals
beginning early in the morning (baseline) on day 1.

Blood was taken at 17 timed intervals over the course of
3 days for analyses of holoTC and other indicators of B-
12 status.94 The timeframe for this methodology is

based on the observation that the greatest increase in
holoTC was observed 24 hours after B-12 ingestion.94

By measuring the different forms of cobalamin isolated
by high-performance liquid chromatography and quan-

tified with an enzyme-linked immunosorbent essay,88

the CobaSorb test showed that cyanocobalamin is

absorbed unchanged in healthy individuals, indicating
that cyanocobalamin bound to TC reflects B-12 absorp-

tion better than the total B-12 bound to TC.88 Increases
in serum holoTC have also been used to reliably assess

B-12 absorption in individuals with low serum B-12.95

For example, in the Pune Maternal Study in India, a

population for which the main cause of B-12 deficiency

Nutrition ReviewsVR Vol. 76(10):778–792 783

D
ow

nloaded from
 https://academ

ic.oup.com
/nutritionreview

s/article/76/10/778/5041899 by guest on 10 April 2024



is presumably low intake of food from animal sources,

participants had a rise in serum holoTC concentrations
(a proxy for B-12 absorption) after they were given a

standard dose of oral B-12.95

The CobaSorb test has also been used to investigate

whether treatments with intramuscular B-12 injections
were effective in patients with B-12 deficiency and to

identify individuals able to absorb B-12 orally versus
the parenteral route.89 The study highlighted the impor-

tance of considering the capacity of an individual to ab-
sorb B-12 prior to treatment.89 The CobaSorb test has

also served biochemical validation purposes—for exam-
ple, to validate the commercial enzyme immunoassay

kit for measurement of holoTC.96

Currently, the CobaSorb test is based on giving

9-mg doses of crystalline B-12 in water 3 times over a
24-hour period and measuring the increase in serum

holoTC on the following day to identify malabsorbers.
To detect an increase in holoTC, the test has to be per-

formed before participants are treated for B-12 defi-
ciency. Detection of B-12 malabsorption using the

CobaSorb test can help to determine whether patients
will respond to low-dose B-12 supplements or require

treatment with pharmacological doses of the vitamin,

either oral or parenteral. The CobaSorb test measures
relative absorption, and it is important to recognize that

it does not provide a quantitative estimate of
bioavailability.97

Assessment of bioavailability using 14C-labeled B-12.

Accelerator mass spectrometry has been proposed for
assessing absorption and kinetics of 14C-labeled sub-

stances after oral ingestion and can measure levels of
isotopic carbon in tiny volumes (microliters) of biologi-

cal samples with negligible exposure to radioactivity.
The radioactivity from this tracer can be measured at

doses as low as approximately 30 nCi, which makes it
an excellent alternative for human feeding trials that re-

quire detection of absorbed radioactivity in plasma or
urine for a long period of time. The 14C-labeled B-12 is

produced by growing Salmonella enterica in a medium

containing 14C dimethylbenzimidazole, which results in
cobalamin labeled in the dimethylbenzimidazole ring

rather than cobalt in the corrin ring.98 The test has been
used with doses of B-12 in the range of normal dietary

intake (1.4–2.6 mg). In humans, a physiological dose
(1.5 mg, 2.2 kilobecquerel/59 nCi) of purified
14C-labeled B-12 was administered, and it showed
plasma appearance and clearance curves consistent with

the predicted behavior of the natural vitamin. 14C-la-
beled B-12 has been used to measure bioavailability

from chicken eggs labeled in vivo by injecting hens
once a day with the labeled vitamin over a 4-day period

(unpublished data). A high sensitivity of the test was

observed compared with the use of labeled cobalt (as in

the Schilling’s test) in an intervention where a single

dose of labeled eggs given to humans showed a several-

fold increase of radioactive cobalamin in urine after

8 days of urine and feces collection. Because the 14C
was incorporated into the dimethylbenzimidazole ring,

the outcome of this study suggested that the moiety is

detached from the unabsorbed vitamin in the intestine,

probably by bacteria.98 The 14C-labeling method con-

firmed that the relative bioavailability was inversely pro-

portional to the dose consumed due to saturation of the

active absorption receptor, even within the range of

usual intake from foods.1 This method has not yet been
developed into a clinical test, but it opens new avenues

for studying B-12 assimilation and kinetics in

humans.98

Efficiency of absorption of a single oral dose of
vitamin B12 across a range of intakes

The first studies based on radioactive isotopes showed

that the efficiency of absorption of B-12 was inversely

proportional to the dose. Indeed, 50% absorption was
observed for a 1-mg oral dose, 20% for a 5-mg dose, and

approximately 5% for a 25-mg dose.99,100 After 4–

6 hours there was no inhibitory effect of the first dose

on the absorption of subsequent doses.49 At doses

� 500 mg, only 1% was absorbed.101 The reason for this

is saturation of the B-12–IF receptors in the ileum at

higher doses. Although, the B-12–IF complex receptor

is saturated at relatively low doses, 1%–2% of an oral
dose is passively absorbed from any level of intake that

exceeds the specific binding capacity of IF in the diges-

tive tract.36

Vitamin B12 bioavailability from foods

In general, an absorption of 50% of the vitamin from

food is assumed when estimating, for example, B-12
requirements.100,102 Studies assessing bioavailability of

B-12 from different food sources in healthy participants

showed that absorption ranges 36%–24% for egg prod-

ucts (dose 0.3–0.94 mg, respectively), 83%–52% for lean

meat (dose 0.54–5.11 mg, respectively), 42%–30% for

fish (dose 2.1–13.1 mg, respectively) and 49%–4.5% for

liver products (dose 0.5–38 mg, respectively). The turn-

over of the vitamin in these studies was measured as
loss in body radioactivity after administration of a dose

of radioactive co-labeled B-12 or as B-12 excretion in

bile corrected for estimated reabsorption.103 In the case

of B-12 bound to food, the proteins present in the meal

increase the intragastric pH,104 a situation that is sensed

by antral G cells, triggering the release of gastrin, which

increases the secretion of hydrochloric acid and IF by
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the parietal cells.105 In such a situation, the higher

secretion of IF is hypothesized to play a key role in in-
creasing the efficiency of B-12 absorption from protein-

bound B-12.

Technologies to enhance B-12 absorption

Information on technologies to enhance B-12 absorp-

tion that was found in the scientific articles and patents

included in this review was organized and classified
into 4 main categories: 1) different forms of B-12 cofor-

mulated with enhancers; 2) alternative biotechnological

solutions; 3) encapsulation technologies; and 4) alterna-
tive routes of administration (Table 2).106–174

Technological solutions have focused on both passive
and active absorption mechanisms. An example of a

technological solution that aims to enhance B-12 ab-

sorption using the regular B-12 active absorption pro-
cess is the use of B-12 bound to transport proteins,

including IF or conjugates of B-12 proteins or peptides.
Other technologies, such as the use of salcaprozate so-

dium (SNAC), have been proposed to enhance B-12 ab-

sorption via passive diffusion. Among the different
technological solutions proposed in the literature, only

B-12 formulated with SNAC and B-12 formulated with

recombinant human IF were identified as having fairly
good evidence of their enhancing effect on the absorp-

tion of B-12; strong scientific evidence is lacking for
other proposed technologies.

Different forms of B-12 coformulated with enhancers.
Ding et al106 reported the enhanced absorption of B-12

coformulated with SNAC via the formation of noncova-
lent complexes capable of transcellular passage without

altering tight junctions. Later, Castelli and colleagues107

reported improved B-12 bioavailability of an oral for-
mulation of cyanocobalamin with SNAC (4.7%) versus

commercially available cyanocobalamin (2.2%) when

given as a single 5-mg dose in healthy individuals. The
efficacy and tolerability of the B-12 formulation with

SNAC was further investigated in individuals with se-
rum B-12 concentrations < 350 pg/mL108. A dose of

1000 mg/day of B-12 in this oral formulation was pro-

vided to 22 patients for 90 days. The effects on B-12 lev-
els were compared with that of 26 patients who were

administered 1000 mg of intramuscular B-12 on 9 occa-
sions for 90 days. Both the oral and intramuscular for-

mulations were effective in restoring normal B-12

status, and no differences or adverse effects were attrib-
uted to the use of SNAC. At those levels of B-12 provi-

sion and at those frequencies, B-12 status would be

expected to improve with or without inclusion of SNAC
in the oral formulation. Therefore, this study was un-

able to prove the absorption-enhancing property of

SNAC because B-12 status was improved by B-12 provi-

sion, rather than by addition of the potential enhancer.
B-12 bound to transport proteins, IF, or conjugates

of B-12 proteins or peptides has been proposed as a way
to administer bioavailable B-12. Cobalamin transport

proteins are not limited to IF, but also include
transcobalamin-I, transcobalamin–II, and transcobala-

min-III.109–115 A TC–B-12 complex derived from bo-
vine milk has been highlighted for its capacity to

stimulate the uptake of B-12 in cultured bovine, mouse,
and human cell lines.116 The complex stimulated the

uptake of B-12 via the apical surface of differentiated
Caco-2 human intestinal epithelial cells.116 In rats, how-

ever, cobalamin bound to bovine milk proteins was
absorbed as efficiently as free cobalamin, and compara-

ble amounts of hydroxocobalamin (the main form in
animal products, including milk) and cyanocobalamin

were absorbed. Interestingly, hydroxocobalamin was
found to accumulate at 3-fold higher levels in the liver

than cyanocobalamin, while less remained in the kidney
and plasma.117 The efficacy and metabolism of these

forms of B-12 should be examined in clinical studies, as

well as in isolated intestinal tissue and whole animals,
to confirm in vitro data.

Oral combinations of 8-amino caprylate or amino
derivatives,118,119 mixtures of B-12 chemical forms,120–

123 B-12 formulations with D-sorbitol,124–126 poly(a-
crylic acid)–cysteine,127 diterpene glycoside and triter-

pene glycoside,128–130 B-12 bound by a glycoprotein
matrix,131 and resin adsorbate have been proposed for

the administration of B-12.132 However, it is unclear
whether there is a formulation effect on B-12 bioavail-

ability and what mechanisms are involved, as well as to
what extent better absorption should be expected.

Alternative biotechnological solutions. The evidence of

biotechnological solutions for enhancement of absorp-
tion is limited except for evidence for binding B-12 to

recombinant human IF. Fedosov and colleagues133 sug-
gested the use of a recombinant human IF expressed in

the plant Arabidopsis thaliana as an approach to en-

hance B-12 absorption. The IF produced by this method
bound B-12 and interacted with the cubilin receptor

with good or better affinity than human IF.133 Using
the CobaSorb test, Hvas and colleagues demonstrated

that the recombinant human IF promoted B-12 absorp-
tion among patients with evident B-12 deficiency.134

There are several commercial sources of recombinant
human IF, but to the authors’ knowledge it is not being

used clinically. Many commercial B-12 supplements
now contain porcine-derived IF, but the amount of B-

12 is also very large, and it is unclear whether the IF has
additional benefit, especially considering that the sup-

plements would usually be consumed only once a day.
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Table 2 Technologies identified as potential enhancers of vitamin B12 absorption
Technology Description References

Different forms of B12 coformulated with enhancers
B-12 formulation with salcaprozate so-

dium as absorption enhancer
Salcaprozate sodium has been proposed to en-

hance B-12 absorption by forming a noncova-
lent complex that enables transcellular
absorption without altering tight junctions

Ding et al (2004)106, Castelli et al
(2011)107, Castelli et al (2011)108

B-12 bound to transport proteins, IF, or
conjugates of B-12 proteins or
peptides

B-12 transport proteins are administered in
combination with B-12. Cobalamin transport
proteins include, but are not limited to IF,
transcobalamin-I, transcobalamin–II, and
transcobalamin-III. Formulations include pro-
teins conjugated to B-12

Ellenbogen et al (1962)109, Oertli R
(1957)110, Collins (2003)111, Russell-
Jones et al (1994)112, Seetharam and
Bose (2001)113, Serfontein (1994)114,
Habberfield et al (1996)115, Hine et al
(2014)116, Williams and Spray
(1968)117

B-12 formulation with 8-amino capry-
late or amino derivates as absorption
enhancers

Oral preparations containing combinations of 8-
amino caprylate or amino derivatives

Yuhong (2012)118, Castelli and Kragie
(2009)119

B-12 formulations containing mixtures
of B-12 chemical forms to enhance
absorption

Mixtures of chemical forms, including cyanoco-
balamin, adenosylcobalamin, hydroxocobala-
min, methylcobalamin, in substantially
equivalent ratios and with pharmaceutically
acceptable carriers

Brown (2013)120, Brown (2007)121,122,
Brown (2006)123

B-12 formulation with D-sorbitol as ab-
sorption enhancers

This polyhydric alcohol received attention as an
enhancer of B-12 absorption with studies in
humans and animals

Okuda (1961)124, Okuda et al (1960)125,
Authors Unknown (1959)126

Poly(acrylic acid)-cysteine–based
formulations

The oral administration of B-12 with poly(acrylic
acid)-cysteine improved B-12 absolute bio-
availability compared with B-12 with buffer,
verapamil, and glutathione

Sarti et al (2013)127

Use of diterpene glycoside and triter-
pene glycoside

Formulations for immediate release comprising
B-vitamins developed with the addition of
diterpene glycoside and triterpene glycoside

Burge et al (2016)128, Copp (2016)129,
Koch et al (2015)130

B-12 bound by a glycoprotein matrix Formulation comprising B-12 bound by a glyco-
protein matrix

Chokshi (2002)131

Use of resin Resin adsorbate proposed for the administration
of B-12

Davis et al (1982)132

Alternative biotechnological solutions
Plant cells for expression of cobalamin

binding proteins
Plant cells are transformed with nucleotide

sequences adapted for expression and secre-
tion of B-12 binding proteins

Fedosov et al (2003)133, Hvas et al
(2006)134

Microbiological technologies Microbiological technologies include natural en-
richment of beverages with multiple vitamins
by fermentation or the use of probiotics

Hugenholtz and Strachotta (2014)135,
Kelemen et al (1987)136, Johan et al
(1976)137, Szemler et al (1971)138,
Mogna et al (2013)139, Mogna et al
(2012)140, Adams and Huang
(2003)141, Hugenschmidt et al
(2011)142, Madhu et al (2010)143,
Zelder et al (2008)144, Bijl and
Sardjoepersad (2004)145, Bijl
(1998)146, Berglund et al (2003)147

Encapsulation techniques
Emulsions Method for delivering B-12 via a suspension or

emulsion of water-soluble vitamins and/or
minerals in edible oils

Schramm et al (2008)148, Schramm and
McGrath (2005)149

Chitosan nanoparticles as delivery
agent

A chitosan derivative capable of being specifi-
cally absorbed by the small intestine accom-
panied by a preparation method and a drug-
carrying nanoparticle of the derivative and
B-12

Yang et al (2017)150, Goto et al
(2015)151

Hydrogels and hydrophilic polymers for
sustained release dosage

Oral administration of a sustained release nutri-
tional supplement containing B-12, which ele-
vates B-12 in plasma for a period of at least
12 h after ingestion

Smidt et al (2009)152

(continued)
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Microbiological technologies include the natural

enrichment of beverages with multiple vitamins by fer-

mentation135–138 or probiotics. Some formulations in-

clude at least 1 probiotic bacterial strain belonging to

the species Lactobacillus reuteri,139,140

Propionibacterium jensenii,141 Propionibacterium freu-

denreichii,142 and probiotic lactic acid bacterium from

kanjika,143 which are B-12 producers. Genetically modi-

fied microorganisms have been described.144–147

However, there is uncertainty about how useful and ef-

fective these technologies are for improving B-12

bioavailability.

Encapsulation techniques. Methods for delivering B-12

via a suspension or emulsion of water-soluble vitamins

and/or minerals in edible oils have been devel-

oped.148,149 Particles containing the water-soluble frac-

tion are coated with edible oils as a means to improve

absorption through an increased resistance to degrada-

tion in the acidic environment of the stomach. A chito-

san derivative capable of being specifically absorbed by

the small intestine, as well as a preparation method and

a drug-carrying nanoparticle of the derivative, has been

proposed.150 In vivo application of chitosan to improve

bioavailability of cyanocobalamin has been demon-

strated in rats.151 Goto et al151 showed that the bioavail-

ability of B-12 was 0.6 6 0.2% when the chitosan-free

B-12 solution was administered, whereas it increased to

10.5 6 3.3% when chitosan was dissolved in the B-12

solution at a concentration of 1%. A method exists for

orally administering a sustained-release nutritional sup-

plement containing B-12 based on hydrogels and hy-

drophilic polymers whereby the encapsulated vitamin is

slowly released starting in the stomach and continuing

into the upper intestinal tract, elevating B-12 in plasma

for at least 12 hours after ingestion.152 Finally, soy pro-

tein isolate nanoparticles have been proposed as a

promising carrier to facilitate the oral delivery of B-12

by improving its intestinal transport and absorption. B-

12 transport across Caco-2 cell monolayers was in-

creased 2- to 3-fold after nanoencapsulation, depending

on particle size, with smaller particles better absorbed

(30> 100> 180 nm soy protein isolate nanopar-

ticles).153 However, clinical substantiation of this tech-

nology in humans has not yet been demonstrated.

Alternative routes of administration. To avoid the bar-

riers existing in oral administration, the following

technologies were used: intranasal administration of

B-12154–166; transdermal administration of B-12

through formulations and devices (transdermal

patch)167–169; transmucosal administration of B-

12170,171; sublingual or buccal administration of a B-12

formulation172; and buccal bioadhesive devices.173,174

There is uncertainty about how many of these have

Table 2 Continued
Technology Description References

Use of soy protein isolate nanoparticles Soy protein isolate nanoparticles have been pro-
posed as a promising carrier to facilitate the
oral delivery of B-12

Zhang et al (2015)153

Alternative routes of administration
Intranasal administration of B-12 Compositions have been designed for nasal

administration
Wenig (1986)154, Quay et al (2016)155,

Riepma (2014)156, Patel et al
(2012)157, De Casteele and Gerike
(2006)158, Berenguer Huertas
(1995)159, Wenig (1986)160, Van den
Berg et al (2003)161, Pisal et al
(2004)162, Garcia-Arieta et al
(2001)163, van Asselt et al (1998)164,
Slot et al (1997)165, Wenig (1987)166

Transdermal administration of B-12 Formulations and devices (transdermal patch).
Main principle based on encapsulation in
nano-reservoirs to release the vitamin in small
quantities and in a sustained manner

Zeltman (2008)167, Madhaiyan et al
(2013)168, Yang et al (2011)169

Transmucosal administration of B-12 Solid compositions comprising B-12 permeation
enhancers (ie, isopropyl myristate), a mucoad-
hesive agent, and a penetration enhancer
(chitosan)

Daud et al (2017)170, Gerike an De
Casteele (2007)171

Sublingual or buccal administration of
B-12

B-12 formulations including propylene glycol, a
solid adsorbent, and a solid water-soluble
excipient

McCarty (2014)172

Buccal bioadhesive devices B-12–loaded buccoadhesive devices and films
have been proposed

Tiwari et al (1999)173, Mohamad et al
(2017)174

Abbreviation: IF, intrinsic factor.
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been clinically tested, and evidence for improvements

of absorption or status in humans is limited.

Strengths and limitations of this review

This narrative review focused on a broad topic. The sys-

tematic search was based on specified comprehensive

sources, with an explicit search approach and a
criterion-based selection, uniformly applied. The syn-

thesis of the information was qualitative, and the infer-

ences were based on evidence. A unique aspect of this
review was the incorporation of an exhaustive search of

patents. Furthermore, the review was not restricted to

specific interventions or exposures, comparators,

outcomes, or settings, which allowed for identification
of a high spectrum of available evidence and activity in

the field of B-12 bioavailability and technologies to

enhance it.
It was not posible to synthesize the information

quantitatively as recommended for systematic reviews
(Table S1 in the Supporting Information online).175 We

acknowledge that it is possible that some available evi-

dence was not identified in the search, and there may

be risk of publication bias.

Future perspectives

Technologies are highly desired for improving B-12 ab-

sorption in elderly individuals with B-12 absorption
problems and for those with malabsorption associated

with reduced secretion of IF and low dietary intake of

B-12. In the case of advanced gastric problems, a tech-

nology such as SNAC may be effective as a single oral
solution. Questions remain about the methods and

technologies that would be most effective for increasing

absorption in subgroups of apparently healthy popula-
tions, such as infants, young children, nonpregnant

women, and pregnant women. Intrinsic factor deserves

special attention in the context of both methods and
technologies. Ideally, technologies to enhance B-12

absorption must take into consideration the role of

B-12–specific binding glycoproteins with high affinity
for B-12 in the alkaline medium of the duodenum.176

Several approaches have considered individual or

mixtures of chemical forms of B-12, including cyanoco-
balamin, aquacobalamin, 5-deoxyadenosylcobalamin,

adenosylcobalamin, methylcobalamin, and hydroxoco-

balamin.111,112,120–123,128–130,143,151–166 There is not yet
clarity about differences in absorption and metabolism

of these chemical forms of B-12 and their capacity to

accumulate in tissues and improve status.177–179

Development or optimization of existing strategies are

needed to improve basic physiological knowledge (eg,

to understand how B-12 absorption in young infants is

related to haptocorrin [present in high amounts in hu-

man milk]180 and/or TC [which binds cow milk B-12]

and to confirm the low percentage of absorption of

B-12 from human milk and mechanisms involved in

passive diffusion).181,182 Advances are needed to study

appropriate interventions to mitigate B-12 deficiency

(eg, to measure the extent to which the limited absorp-

tion capacity of B-12 in healthy individuals might ex-

plain some of the high prevalence of B-12 deficiency

worldwide); to study differences between B-12 ana-

logs183; to further improve methods to detect and quan-

tify food-bound malabsorption; to investigate the role

of the microbiota; to assess and understand bioavailabil-

ity values; and to interpret relationships between intake

and status.184

Improvement of clinical study designs to assess the

efficacy of new technologies to enhance B-12 absorption

(eg, assessments of clinical or functional outcomes in

well-designed, double-blind, randomized controlled

clinical trials) and validation of new technologies that

attempt to enhance absorption of crystalline B-12 are

needed. Also needed are appropriate assessment tests to

set more accurate dietary requirements. Recommended

dietary intakes of B-12 are approximately 2.0–2.5 mg/

day for adults, assuming approximately 50% bioavail-

ability from the diet.185 Is this 50% independent of the

dietary source and method of delivery, such as frequent

smaller doses versus daily larger doses? Improving the

accuracy of the recommended dietary intakes for B-12,

as well as knowledge of the bioavailability of current

strategies for B-12 delivery, could benefit current inter-

vention programs.186,187 A recent national wheat flour

fortification program that included B-12188 showed sur-

prisingly large increases in plasma and breast milk B-12

at the end of 1 year, suggesting that the recommended

levels of addition were higher than predicted or neces-

sary. In flour fortification programs, usual intake is

likely to be 1–2 mg/day, so absorption from fortified

flour is usually estimated at around 50%. However, ab-

sorption from repeated small amounts of fortified food

appears to be >50%. This requires verification.

CONCLUSION

This work provides a critical review of the available lit-

erature on methods to measure the absorption of B-12

and of technologies to enhance its absorption.

Absorption tests are important for assessing and inter-

preting bioavailability values, setting dietary require-

ments, and interpreting relationships between intake

and status of the vitamin. Advances in the development

of formulations, technologies, and discoveries are

needed to confirm the utility of agents whose function
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is to enhance gastrointestinal absorption and therefore

improve B-12 status and protect health.

Supporting Information

Table S1 Characteristics of narrative and systematic

literature reviews versus present review
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